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ABSTRACT 

The techniques that are used to make an array of sensors directive are known as 

beamforming techniques. Beamformers (BFs) have been designed to function as 

spatial-temporal filters. In this thesis, Capon’s beamforming technique has been 

studied under both narrowband and broadband scenarios. To compensate for the 

propagation time of the signals to other antenna elements (under narrowband scenario) 

Minimum Variance BF (MVB) would apply a simple phase shift to each signal. This 

phase-shift corresponds to a correct time delay for one particular frequency only and 

can’t be applied under the broadband scenario where multiple frequencies exist. 

To achieve high spectral and spatial resolution over wideband channels a large number 

of sensors or tapped-delay-line elements would be required and this would inevitable 

cause an increase in computational complexity. Fortunately, this high computational 

complexity can be reduced by applying a transformation at TDL elements of each 

sensor. In this thesis we have used the Discrete Fourier Transform (DFT) to generate 

various frequency bins and have applied narrowband beamforming for each different 

bin. Frequency bins in the DFT-based broadband BF are created using Block 

Processing (BP) and Sliding Window processing (SW).  

To evaluate the performance of the DFT-based BF, Ensemble Mean Squared Error 

(EMSE) and the Signal to Interference plus Noise Ratio (SINR) have been used. In 

addition, the thesis provides a comparison for the computational complexity of DFT-

based BF under BP and SW modes. The complexity has been assessed in terms of the 

Multiply-ACcumulate (MAC) operations. For simulations MATLAB platform has 
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used. Three broadband incoming signals each with bandwidth 𝐵 = 50𝑀𝐻𝑧, central 

frequencies of 150 𝑀𝐻𝑧 and DOAs of 𝜃1 = 20°, 𝜃2 = 40° and 𝜃3 = −20° were 

assumed. The signal with direction 𝜃1 = 20°was marked as the desired signal and 

power of the three sources were respectively set to 𝑃𝑠𝑑
= 5,10,10(𝑑𝐵𝑊/𝑀𝐻𝑧) . Each 

sensor’s output was sampled at Nyquist rate of 1/2𝐵. For a fair comparison between 

the DFT based BF using BP and the DFT based BF using SW processing, the length 

of the signals were fixed to 𝑁 = 1000 samples. 

Simulation results show that the DFT-based BF under BP has higher proficiency in 

handling wideband signal sources. The SINRs at the output of the DFT-based BF was 

seen to be time varying (in fact periodic). On the other hand, the DFT-based BF 

utilizing SW processing would take one new snapshot under each iteration, and 

generate one sample at its output and would suffer from highly correlated inputs. DFT-

based BF under SW processing would deliver lower SINRs in comparison to a DFT-

based BF under BP when the window size and the block size are same.   

Finally, the number of blocks or slides are the main factor in adjusting the 

computational complexities and accuracy of the estimated correlation matrices. 

Therefore, the size of blocks/slides should be selected carefully to meet certain criteria. 

Keywords: Tapped Delay Line, DFT-based Beamformer, Block or Sliding Window 

Processing, SINR, Multiply-Accumulate Operations. 
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ÖZ 

Dizilimli algılayıcıları belli bir yöne duyarlı kılmak için kullanılan tekniklere verilen 

ad hüzme oluşturma teknikleridir. Hüzme oluşturucular (BFs) birer uzamsal-zamansal 

süzgeç görevi yapmaları için tasarlanmışlardır. Bu tezde, en küçük değişintili hüzme 

oluşturucusu olarak da bilinen Capon hüzme oluşturma tekniği hem dar bant hem de 

geniş bant senaryoları altında çalışılmıştır. Dar bant senaryosu altında farklı sinyallerin 

anten elemanlarına yayılım zamanını denkleştirebimek için en küçük değişintili hüzme 

oluşturucusu (MV-BF) her sinyale basit bir faz kayması uygulamaktadır. Bu faz 

kayması her bir özel frekans için zamanda doğru bir gecikmeye denk geldiğinden 

çoklu frekansları barındıran geniş bant uygulamarında kullanılamamaktadır. 

Geniş bant uygulamalarında yüksek spektrum çözünürlüğü veya uzamsal çözünürlük 

kazanabilmek için büyük sayıda algılayıcı veya dallı gecikme hattı elemanı 

gerekmekte, bu da kaçınılmaz olarak hesaplama karmaşıklığını artırmaktadır. İyidir ki, 

bu hesaplama karmaşıklığı her algılayıcıdaki dallı gecikme hattı elemanlarında bir 

dönüşüm uygulayarak azaltılabilmektedir. Bu tezde, farklı frekans seleleri yaratmak 

için her algılayıcıda ayrık Fourier dönüşümü uygulanmış ve her selede dar bantlı bir 

hüzme oluşturucu kullanılmıştır. Ayrık Fourier dönüşüm tabanlı hüzme oluşturucunun 

frekans seleleri bölük (BP) ve kayan çerçeve (SW) işleme biçimleri altında 

oluşturulmuştur.  

Ayrık Fourier dönüşüm tabanlı hüzme oluşturucusunun başarımını değerlendirmk 

amaçlı ortalama karesel hatanın topluluk ortalaması (EMSE) ve sinyal-girişim artı 

gürültü-oranları (SINR) kullanılmıştır. Bunlara ek olarak, tezde ayrık Fourier dönüşüm 



vi 

 

tabanlı hüzme oluşturucusunun BP ve SW modundaki hesaplama karmaşıklıkları 

kıyaslanmıştır. Karmaşıklık hesapları Çarpma-Biriktirme (MAC) işlemleri cinsinden 

gösterilmiştir. MATLAB platforumu üzerinde gerçekleştirilen benzetimlerde 𝜃1 =

20°, 𝜃2 = 40° and 𝜃3 = −20°yönlerinden gelen ve bant genişlikleri ve merkez 

frekansları 50Mz ve 150 MHz olan üç farklı geniş bant sinyal varsayılmıştır (geliş 

yönü 20° olan sinyal istenen sinyaldir). Benzetimler esnasında kullanılan üç işaretin 

güçleri ise 𝑃𝑠𝑑
= 5, 10, 10(𝑑𝐵𝑊/𝑀𝐻𝑧)  olarak alınmıştır. Alıcıda her algılayıcının 

çıktısı 1/2B olan Nyquist hızında örneklenmiştir. Benzetimlerde tüm işaret ve gürültü 

sinyalleri sıfır ortalamalı birbirinden ilintisiz beyaz Gauss süreçleri kullanarak 

gerçeklenmiştir. Ayrık Fourier dönüşüm tabanlı hüzme oluşturucusunun BP ve SW 

modlarında adil kıyaslanabilmesi için işaretlerin uzunlukları N = 1000 örnek olacak 

şekilde sabitlenmiştir.  

Benzetim sonuçları BP modunda çalışan ayrık Fourier dönüşüm tabanlı hüzme 

oluşturucusunun geniş bantlı işaretleri işlerken daha başarılı olduğunu göstermiştir. 

Hüzme oluşturucusu çıktısındaki SINR değerlerinin zamanla değiştiği ve hatta 

periodik olduğu ve en iyi performansın her blokun ortasında elde edildiği 

gözlemlenmiştir. Ayrıca SINR değerlerinin blok başı ve sonunda en düşüktür. Diğer 

taraftan, SW modunda çalışan ayrık Fourier dönüşüm tabanlı hüzme oluşturucusu her 

döngüde sadece bir yeni enstantane aldığı ve çıktısında bir örnek yarattığı için yüksek 

ilintili girdiler sorun yaratmaktadır.  Çerçeve genişliği ve bölük uzunluğu aynı olarak 

alınan durumlarda SW modundaki ayrık Fourier dönüşüm tabanlı hüzme 

oluşturucusunun BP modunda çalışana göre daha düşük SINRs değerleri verdiği 

görülmüştür.   
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Son olarak, hesaplama karmaşıklığı ve kestirilen ilinti matrislerinin doğruluğu bölük 

sayısına veya çerçeve sayısına endekslidir ve bu yüzden bölük ve çerçeve sayıları belli 

kriterleri yakalayabilmek için dikkatle seçilmelidir.  

Anahtar Kelimeler: Dallı Gecikme Hattı, Ayrık Fourier Dönüşüm Tabanlı Hüzme 

Oluşturucu, Bölük veya Çerçeve İşleme Modu, SINR, Çarpma-Biriktirme İşlemleri. 
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Chapter 1 

INTRODUCTION 

Processing the BeamFormers (BF) (spatial-temporal filters) carry out can be 

summarized in two steps: 1) synchronization 2) weight-and-sum [1]. The 

synchronization process is delaying or advancing each sensor output by an appropriate 

time such that the signal components coming from a desired direction are aligned 

(synchronized). Weight-and-sum process on the other hand assigns weights to each 

sensor output and sums them to get one yield. The synchronization is for controlling 

the steering direction and the weight-and-sum processing to control the beam-width of 

the main lobe. 

As can be seen from Fig 1.1 BFs can be classified into four main groups. The first 

group looks at the bandwidth of the signal environment and classifies BFs as 

narrowband or broadband. The second group evaluates the closeness of the source and 

classifies BFs as near or far-field BFs [2]. The third group looks at the way the BF 

parameters have been selected and classifies the BFs as data independent and 

statistically optimum type [3]. For data independent beamforming only the direction 

of the desired signal is used as a-priori information while designing the beam. For 

statistically optimal BFs the coefficients are adjusted according to the array data while 

trying to optimize the array response according to some criteria such as the minimum 

mean squared error (MMSE). In general, the statistically optimum BFs place nulls in 

the directions of interfering sources in an attempt to maximize the Signal to 
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Interference plus Noise Ratio (SINR) at the BF output [3]. Better classification of 

statistically optimal BFs can also be achieved by considering the information used to 

modify BF coefficients. This information may include the direction of arrival (DOA) 

of a desired signal, the training sequence or the phase and amplitude collection of a 

transmitted data. An example for the statistically optimum BF is the Linearly 

Constrained Minimum Variance (LCMV) BF. The LCMV constrains the response of 

the BF to pass the signal from the intended direction with specific gain and phase. 

Contributions of interfering signals on the output is minimized by choosing a set of 

weights that minimizes the output power or the variance (𝐸{|𝑦|2} = 𝒘𝑯𝑹𝑥𝒘).  

LCMV formulation for choosing the weights can be written as: 

min
𝒘

 𝒘𝑯𝐑𝑥𝒘   s. t.    𝒂𝑯(θ,ω)𝒘 = 𝑔∗, (1.01) 

where, 𝒂(θ,ω) = [1   𝑒𝑗𝑤𝜏2𝜃  𝑒𝑗𝑤𝜏3𝜃     ⋯   𝑒𝑗𝑤𝜏𝑀𝜃]𝐻 and 𝑔 is a complex constant. 

The filter coefficients, w, can be obtained by solving (1.01) using the method of 

Lagrange multipliers and will be equal to:  

𝒘 = 𝑔∗  
𝐑𝑥

−1𝒂(θ,ω)

𝒂𝑯(θ,ω)𝐑𝑥
−1𝒂(θ,ω)

 . (1.02) 

Design of a beamforming system is important where received signals are mainly 

broadband and this impacts the speed of convergence, complexity, exactness and 

robustness of the BF. Figure 1.1 (d), classifies BFs based on how their coefficients are 

computed. Computations are carried out in time domain, in frequency domain and 

using sub-space methods [4], [5]. In general, implementation of a BF in time domain 

would lead to high computational complexity and slow convergence while 

computation of filter coefficients using either sub-spaces or the frequency domain 

would decrease this computational cost [6]. 
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Figure 1.1: Various Ways of Classifying Beamformers. 

In late decades, because of the increment in the bandwidth of emitted signals, 

evaluating the parameters of superimposed signals by using an arrangement of the 

sensors has turned into an interesting field of research and development in signal 

processing. Numerous theoretical reviews about broadband beamforming have been 

done, and profound information has been gathered as summarized by [7]. 

Beamformers which are directional arrays has the aim of focusing in a desired 

direction and they try to block out all interference and noise coming from other 

directions. However, in practice performance of adaptive antenna arrays can 

deteriorate due to: i) finite sample effect ii) correlated sources iii) steering vector faults 

etc. Many robust algorithms have been proposed to deal with these performance 

degrading effects. Most notable ones include spatial smoothing, signal blocking (or 

sliding), diagonal loading and eigenspace-based methods. Many methods are limited 

to the narrowband environment however applications such as sonar, radar and 
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communications are not necessarily narrowband. Because sources with non-zero 

bandwidths would degrade the performance of a sensor array, applying a broadband 

BF will become essential. BFs for reception of wideband signal can be categorized 

into two main structures: i) the Tapped Delay Line (TDL) structure and ii) the Discrete 

Fourier Transform (DFT) based BFs. In some publications the DFT-based BFs are 

referred to as the sensor-delay-line BFs. 

Due to their efficiency, the TDL BFs have taken their place among some of the most 

popular BFs and are widely considered under broadband scenarios. With TDL 

structures time domain signals are strictly weighted by a set of coefficients which are 

obtained as a result of an optimization problem with certain constraints. Generally, a 

DFT-based BF transforms the received signals into the frequency domain by the 

concept of DFT and applies a narrowband BF to each frequency bin. In comparison to 

the TDL BF a DFT-based BF is computationally less complex since the dimensions of 

the matrices in has to invert is less when compared to the case of a TDL BF. In the 

literature, the performance of the DFT-based BF hasn’t been considered in details. 

Furthermore, the performance of a DFT-based BF with estimated correlation matrices 

using finite number of samples has hardly been discussed or evaluated. Therefore, in 

this thesis we will examine the performance of a DFT-based BF under the wideband 

scenario when sample size is finite.   

1.1 Thesis Outline  

The contents of this thesis is organized as follows: Following a general introduction, 

the background survey and the description on how the thesis has been organized in 

Chapter1, Chapter 2 provides information on array signal processing, introduces the 

correlation based SINR measure and outlines the received signal model under 
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narrowband scenario. Chapter 3 introduces the Delay-And-Sum BeamFormer (DAS-

BF) using TDL and Chapter 4 gives details about some beamforming methods for the 

narrowband case. The DFT-based broadband BF is studied in Chapter 5 and Chapter 

6 provides simulation results under block processing (BP) and Sliding Window (SW) 

modes. Also, Chapter 5 explains the connection between the narrowband and 

broadband BFs in detail. Finally, Chapter 7 provides conclusions and makes 

suggestions for future work. 
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Chapter 2 

ARRAY SIGNAL PROCESSING 

A set of adjacent sensors (receivers) also known as an array of sensors are generally 

placed to follow a particular geometry and are used to observe and process 

electromagnetic or acoustic waves. As opposed to a single sensor scenario where the 

observation would be (1  𝑁) when an array with 𝑀 sensors is used one would receive 

an observation of (𝑀  𝑁) and this increase in the size of observations would lead to 

enhanced estimations of parameters. For instance, in beamforming expanding the 

number of sensors to have more data in the same length signals would help to obtain 

better estimates for the correlation matrix and inherently to more accurate coefficient 

estimation for spatial filters. Consequently, SINR will be improved [8]. All 

computations and processing carried out using an array of sensors classify under array 

signal processing and tries to model a received signal by their temporal and spatial 

parameters. This information is then used to construct BFs [9]. Figure 2.1 (a) depicts 

a Uniform Linear Array (ULA) with element spacing of 𝑑 units and without loss of 

generality, the first sensor is considered as the reference sensor. Figure 2.1 (b) shows 

a uniform circular array (UCA) with element spacing of 𝑑 = 2𝜋𝐷 𝛼⁄ . Here 𝐷 

represents the number of elements in the array and 𝛼 is the angle between the reference 

sensor and last element of the array [10]. 

2.1 Medium and Direction of Wave Field 

Many natural phenomena result from the displacement of molecules. All of these 
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Figure 2.1: Linear and Circular Geometry Arrays that Have Uniform Spacing. 

(a) ULA with inter-element spacing of d, (b) UCA with received signal at direction 

θ to the reference sensor. 

phenomena can be modeled by a wave field and formulated by wave propagation 

equations. Wave field propagation is a function of time and three-dimensional space 

which is expressed either in Cartesian or Spherical coordinates. While using Cartesian 

representation, signals are defined by three vectors along orthogonal axis 𝒙, 𝒚 and 𝒛, 

on the other hand with spherical representation is defined by a scalar r which is equal 

to distance between a fixed origin and desired point in space, and two angles 𝜃 and ∅ 

where, 𝜃 represents the elevation angle  (0 ≤ 𝜃 ≤ 𝜋) and ∅  is the azimuth angle 

(0 ≤ ∅ ≤ 2𝜋). Transformations that map the spherical coordinates to  
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Figure 2.2:  A 3-dimensional Representation with Cartesian Coordinates (x, y, z) and 

Spherical Coordinates (r, θ, Ø). 

the Cartesian ones have been shown in (2.01) - (2.03) and visually depicted in Fig. 2.2.  

𝒙 = 𝑟 sin 𝜃 cos∅ , 

𝒚 = 𝑟 sin 𝜃 sin ∅ , 

𝒛 = 𝑟 cos 𝜃          . 

(2.01) 

(2.02) 

(2.03) 

For any medium of propagation (2.04) describes propagated wave where 𝑠(𝑟, 𝑡) is 

emitted signal [11], (𝑟, 𝜃, 𝜙) is the coordinate of the wavefront and 𝑡 is the relevant 

time [12]. 

∇2𝑠(𝑟, 𝑡) =  
1

𝑐2
 (

𝜕2𝑠(𝑟, 𝑡)

𝜕𝑡2
 ), (2.04) 

the symbol 𝑐 stands for the speed of propagated signal and ∇ denotes the Laplace 

operator. For an electromagnetic wave the propagation speed is approximately 

3 × 108 (𝑚 𝑠⁄ ). Given (2.04) we can solve for 𝑠(𝑟, 𝑡) and the emitted signal would 

have the form:  

𝑠(𝑟, 𝑡) =  𝐴 exp [j(ωt − 𝒌𝑇𝑟)]. (2.05) 
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Here 𝐴 represents the amplitude of the emitted wave and is a constant, 𝜔 is the angular 

frequency and equals 2𝜋𝑓 and (. )𝑇 denotes the transpose of a signal. Vector 𝒌 is called 

wave-vector and is equal to 𝒌 =  𝜔 ∙ 𝒂(𝜃, ∅) where 𝒂(𝜃, ∅) is called the slowness 

vector which describes the coordinates of the points in signal regarding to the azimuth 

and elevation angles [1]. It is easy to prove that |𝒌| =  
𝜔

𝜋
= 

2𝜋

𝜆
 where 𝜆 is the 

wavelength, 2𝜋 𝜆⁄  is the number of cycles per unit space (𝑚) and 𝒂(𝜃, ∅)  represents 

direction of each cycle. Generally, when the observation points are nearby to the 

source the spherical representation would be used. In the case of a monochromatic 

spherical wave solution for (2.04) would be as in (2.06). 

𝑠(𝑟, 𝑡) =  
𝐴

𝑟
 exp [j(ωt − |𝒌|𝑟)] . (2.06) 

The homogeneity of the medium guarantees that the speed of propagation through the 

whole medium is remain constant. The dispersion-free medium guarantees that carrier 

frequency does not change from sender to receiver and lossless medium assumption 

assures that the medium will not modify the amplitude of the signals. 

2.2 Emitted Signal 

Assume that 𝐷 signals originating from sources in different directions have been 

observed. One of these signals is the desired signal, and the remaining (𝐷 − 1) are 

interfering signals that are covered with white Gaussian noise. Based on [13], Hilbert 

transform of the received signal can be written as in (2.07): 

𝑥𝐼(𝑡)  =  𝑠1,𝐼(𝑡 + 𝜏1) + 𝑠2,𝐼(𝑡 + 𝜏2) +  … …  + 𝑠𝐷,𝐼(𝑡 + 𝜏𝐷) + 𝒘𝐼 , 
 

and 

 

𝑥𝑄(𝑡) =  𝑠1,𝑄(𝑡 + 𝜏1) + 𝑠2,𝑄(𝑡 + 𝜏2) + ……+ 𝑠𝐷,𝑄(𝑡 + 𝜏𝐷) + 𝒘𝑄 . 

(2.07) 
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In (2.07),  𝑠𝑑,𝐼(𝑡) and 𝑠𝑑,𝑄(𝑡) where 1 ≤  𝑑 ≤  𝐷 are the in-phase and quadrature parts 

of the propagated signals, 𝑤𝐼 and  𝑤𝑄 are in-phase and quadrature part of the 

corresponding noise, 𝜏𝑑 , 𝑑 ∈ [1,2,⋯ , 𝐷] are the duration times from 𝐷 senders to the 

receiver. Throughout this thesis all sources will be assumed to be bandlimited and 

mutually uncorrelated and will be generated using white Gaussian distributions with 

zero mean and constant variance. Thus if all sources are bandlimited with central 

frequency 𝑓𝑐 and bandwidth 2𝐵 then the in-phase quadrature parts of the emitted 

signals can written as: 

𝑠𝑑,𝐼(𝑡) =  𝛼𝑑(𝑡) cos(2𝜋𝑓𝑐𝑡 + 𝜑𝑑(𝑡)), 

1 ≤ d ≤ D 

𝑠𝑑,𝑄(𝑡) =  𝛼𝑑(𝑡) sin(2𝜋𝑓𝑐𝑡 + 𝜑𝑑(𝑡)), 

(2.08) 

where 𝛼𝑑(𝑡) and 𝜑𝑑(𝑡) represent the amplitude and carrier phase of the incoming 

signals.  

2.3 Analytical Signal 

In practice, sensors detect the in-phase part of the signal. Therefore by considering an 

array of sensors with 𝑀 elements, analytical signal observed at the 𝑚𝑡ℎ element can 

be written as in (2.09): 

𝑥𝑡𝑜𝑡(𝑚)(𝑡) =  𝑥𝑡𝑜𝑡(𝐼)(𝑡) +  𝑗𝑥𝑡𝑜𝑡(𝜑)(𝑡)  

 
 

  = 𝛼1(𝑡 + 𝜏1,𝑚) exp{2𝜋𝑓𝑐(𝑡 + 𝜏1,𝑚) + 𝜑1(𝑡 + 𝜏1,𝑚)} +

 …                              
 

 

…+ 𝛼𝐷(𝑡 + 𝜏𝐷,𝑚) exp{2𝜋𝑓𝑐(𝑡 + 𝜏𝐷,𝑚) + 𝜑𝐷(𝑡 + 𝜏𝐷,𝑚)} + 𝒘𝑡𝑜𝑡(𝑚)        

𝑚 ∈ [1,2, … ,𝑀], 
 

(2.09) 
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where, 𝜏𝑑,𝑚, 𝑑 ∈ [1,2,⋯ , 𝐷] and 𝑚 ∈ [1,2,⋯ ,𝑀] is time taken by the signal to reach 

from 𝑑𝑡ℎ source to the 𝑚𝑡ℎ sensor of ULA and 𝒘𝑡𝑜𝑡(𝑚) is an additional noise to the𝑚𝑡ℎ 

sensor. After demodulating so that the signal is back in baseband, the output of the 

𝑚𝑡ℎ sensor can be written as: 

   𝑥𝑚(𝑡) = 𝑥𝑡𝑜𝑡(𝑚)(𝑡) exp{−𝑗2𝜋𝑓𝑐𝑡}                                                       

   =  𝑠1(𝑡 + 𝜏1,𝑚) exp{𝑗2𝜋𝑓𝑐𝜏1,𝑚} + …                        

…+ 𝑠𝑑(𝑡 + 𝜏𝐷,𝑚) exp{𝑗2𝜋𝑓𝑐𝜏𝑑,𝑚} + 𝒘𝑡𝑜𝑡(𝑚) .    (2.10) 

Furthermore, since the received signal is sampled at frequency 𝐹𝑠 = 1 𝑇𝑠⁄  (2.10) could 

be re-written in its discrete representation as depicted by (2.11). 

𝑥𝑚(𝑛𝑇𝑠) = 𝑥𝑡𝑜𝑡(𝑚)(𝑛𝑇𝑠) exp{𝑗2𝜋𝑓𝑐𝑡}                                                               

= 𝑠1(𝑛𝑇𝑠 + 𝜏1,𝑚) exp{𝑗2𝜋𝑓𝑐𝜏1,𝑚} + …                          

…+ 𝑠𝑑(𝑛𝑇𝑠 + 𝜏𝐷,𝑚) exp{𝑗2𝜋𝑓𝑐𝜏𝑑,𝑚} + 𝒘𝑡𝑜𝑡(𝑚)(𝑛𝑇𝑠). (2.11) 

Throughout of this study, for convenience, variable 𝑛𝑇𝑠 from the sampled version of 

signals has replaced by an integer 𝑛. Without any confusion 𝑥(𝑛𝑇𝑠) = 𝑥[𝑛], where [. ] 

denotes the discrete variable. 

2.4 Finite Impulse Response 

Various methods have been proposed in the literature to extract the desired signal 

(information) from a noisy sequence. In all methods the process of separating the 

desired signal from the received signal is referred to as filtering. Filters are generally 

characterized either by their impulse responses or frequency responses. For discrete-

domain the number of tabs is fixed and hence the filter is referred to as a Finite Impulse 

Response (FIR) filter. The types of FIR filters are low-pass, high-pass, band-pass and 

bandstop. A low-pass filter permits frequencies beneath a predefined passband  
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Figure 2.3: Band-pass Filter: (i) C Represents the Pass band, (ii) Section B and D 

Represent the Transition Bands and (iii) Parts A and E Denote the Stop bands. 

frequency (𝜔𝑝) to pass and is used to kill the high frequencies. A high-pass filter does 

the inverse and attenuates the low frequencies and passes frequencies above 𝜔𝑝. 

Bandpass and bandstop filters can be defined by a combination of low-pass and high-

pass filters [14] and are used to either pass or stop a band of frequencies. Stopband 

filters are also known as notch filters. 

2.5 Filters with Finite Impulse Response 

The frequency response of an FIR filter is composed of three separate regions: namely 

(i) the pass band, (ii) the transition band and (iii) the stopband. Regions A-E in Fig 2.3 

shows each one of these regions for a band-pass filter. 

Considering an input sequence {𝑥[𝑛]} as defined by (2.12) and a filter with 𝑀 

coefficients: 

𝑥[𝑛] =  
𝐴

𝑟
𝑒𝑗Ø𝑒𝑗𝜔𝑛 , (2.12) 

the output 𝑦[𝑛] of the filter can be written as in (2.13) 

𝑦[𝑛] =  ∑ 𝑏𝑘𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

 , (2.13) 
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where, 𝑏𝑘 represents the filter coefficients (tabs). 

By inserting (2.12) into (2.13) frequency response of the FIR filter can be written in 

the form (2.17). 

𝑦[𝑛] =  ∑ 𝑏𝑘 𝐴𝑒𝑗Ø𝑒𝑗𝜔(𝑛−𝑘)

𝑀−1

𝑘=0

 , (2.14) 

𝑦[𝑛] = 𝐴𝑒𝑗Ø𝑒𝑗𝜔𝑛  ∑ 𝑏𝑘𝑒
−𝑗𝜔𝑘

𝑀−1

𝑘=0

 , (2.15) 

𝑦[𝑛] = 𝑥[𝑛]𝐻(𝑒𝑗𝜔̂𝑛) , (2.16) 

𝐻(𝑒𝑗𝜔) =  ∑ 𝑏𝑘𝑒
−𝑗𝜔𝑘

𝑀−1

𝑘=0

 . (2.17) 

2.6 Correlation-Based Signal to Interference Plus Noise Ratio 

In the literature more often the Signal to Interference plus Noise Ratio (SINR) is used 

to evaluate the performance of a filter. SINR is based on the output power (𝑃𝑥) of a 

signal 𝑥[𝑛]. This output power can be calculated using (2.18): 

𝑃𝑥 = 𝐸{|𝒙|2} ,  (2.18) 

where 𝐸{ . } denotes the expected value function. Note that for convenience the time 

indexes have been dropped from equation (2.18). By inserting (2.16) into (2.18) the 

output power 𝑃𝑦 for an FIR filter can be obtained as: 

𝑃𝑦 = 𝐸{|𝒚|2}  = 𝐸{𝒚 𝒚𝐻} = 𝐻(𝑒𝑗𝜔)
𝐻
 𝐸{𝒙 𝒙𝐻} 𝐻(𝑒𝑗𝜔) . (2.19) 

Assuming a received signal that is Wide Sense Stationary (WSS), then the correlation 

function can be calculated using (2.20): 

𝑟𝑥 = 𝐸{𝒙 𝒙𝐻} . (2.20) 
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If we denote the power spectral density of the time sequence 𝒙 with 𝑆(𝜔), then in the 

[−𝐵, 𝐵] band 𝑟𝑥 can be computed by taking the inverse Fourier transform of  𝑆(𝜔)  as 

in (2.21) [15]: 

𝑟𝑥 =
1

2𝜋
∫ 𝑆(𝜔)𝑑𝜔

∞

−∞

. (2.21) 

As (2.21) indicates the calculation of the correlation function requires an infinite 

number of samples. Since this is not practical actual correlation of a signal can’t be 

obtained. Instead only an estimation of the correlation function is possible. How to 

estimate the correlation function given a fixed number of samples will be detailed in 

section 3.2. 

2.7 Narrowband Definition 

Without loss of generality if the bandwidth of a signal is much smaller than the central 

frequency, 𝑖. 𝑒. 𝐵 ≪ 𝑓𝑐, a signal can be considered as a narrowband signal [16] [17]. 

An alternative definition for narrowband signals has been provided by Zatman and is 

based on space decomposition for the covariance matrix. 

Covariance matrix 𝐑𝑥 can be decomposed to its eigenvalues and eigenvectors by the 

Singular Value Decomposition (SVD) algorithm as shown by (2.22): 

𝐑𝑥 = 𝐔 𝛬 𝐔𝐻 . (2.22) 

Here, 𝐔 represents a matrix that contains eigenvectors of the observed signal and 𝛬 

represents a diagonal matrix that contains eigenvalues (𝜆1, 𝜆2, … , 𝜆𝑁) of the received 

signal. These eigenvalues are ordered in descending format (𝑖. 𝑒.  𝜆1 ≥ 𝜆2 ≥ … ≥

 𝜆𝑁). If one decomposes (2.22) into signal and noise sub-spaces, then (2.22) can be re-

written as: 

𝐑𝑥 = 𝐔𝑠𝛬𝑠𝐔𝑠
𝐻 + 𝐔𝑛𝛬𝑛𝐔𝑛

𝐻  . (2.23) 
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Here, the subscripts 𝑠 and 𝑛 respectively denote the signal and noise sub-spaces. 

Matrix 𝐔𝑠 which contains the eigenvectors of the desired plus the interfering signals 

is known as the signal sub-space. For zero-bandwidth signal model (narrowband), the 

rank of signal sub-space is same as the number of the present signals. For broadband 

signals the viable rank of signal sub-space is larger than the number of signals [16].  

For the narrowband case, the received signal model can be written as in (2.24) 

𝑥𝑚[𝑛] = 𝑠1[𝑛] exp{𝑗2𝜋𝑓𝑐𝜏1,𝑚} + ……+ 𝑠𝑑[𝑛] exp{𝑗2𝜋𝑓𝑐𝜏𝑑,𝑚} + 𝒘𝑚[𝑛]. (2.24) 

Thus, under narrowband scenario, the received signals to the 𝑚𝑡ℎ sensor can be 

modeled by a simple phase-shift {𝑗2𝜋𝑓𝑐𝜏𝑑,𝑚}. In the following chapter we will show 

how 𝜏𝑑,𝑚 is related to the distance between the 𝑑th source and the 𝑚th element of a 

sensor array. 
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Chapter 3 

DELAY-AND-SUM BEAMFORMER 

Delay-And-Sum Beamformer (DAS-BF) is a data independent BF in which the outputs 

from an array of sensors are time delayed so that when they are summed together, a 

particular portion of the received wave is amplified over other interfering sources.  In 

what follows we introduce a model that shows the wavefront for a single source both 

in the near and far-fields and formulate the output for each sensor plus the filter in the 

far-field. 

3.1 Signal Model for Uniform Linear Array  

If we assume that there is a source 𝑠1 in the far-field that is transmitting at an angle of 

𝜃 as depicted by Fig 3.1 the wave front would be spherical near the source and as it 

travels further away from the source it will become a planar wave.  For a ULA with 𝑀 

sensors, 𝑥𝑚[𝑛] for 1 ≤ 𝑚 ≤ 𝑀 represent the observation of the received signal by the 

𝑚𝑡ℎ sensor. The sensor furthest to the left will capture the sound waves first. The 

adjacent sensors placed further to the right will receive the same signal, but with a 

slight time delay due to the additional distance sound waves must travel to get to the 

next sensors. If we denote the delay for each of the 𝑀 sensors as 

{𝜏1 (𝜃), 𝜏2(𝜃),⋯ , 𝜏𝑀−1(𝜃)} then with the narrowband presumption (by setting zero 

delay between reference sensor and sources) (2.24) in Chapter-2 for the reference 

sensor can be re-written as: 𝑥𝑟𝑒𝑓[𝑛] = 𝑠1[𝑛] + ⋯+ 𝑠𝐷[𝑛] + 𝑤𝑟𝑒𝑓[𝑛]. Considering 

that the first sensor is the reference sensor then the delay between the 𝑚𝑡ℎ sensor of 

the array and the reference sensor could be calculated as: 
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Figure 3.1:  Signal Model for a Single Source Transmitting at Angle   

Towards a ULA Containing 𝑀 Sensors.  

𝜏𝑚(𝜃) =  
(𝑚 − 1)𝑑 𝑠𝑖𝑛(𝜃)

𝑐
              1 ≤ 𝑚 ≤ 𝑀 − 1 (3.01) 

For the sake of simplicity in what follows we will drop the (𝜃) argument of the delays 

and simply write them as {𝜏1 , 𝜏2, ⋯ , 𝜏𝑀−1}. 

Furthermore, if we have 𝐷 sources located at any direction, the observation by the 𝑚𝑡ℎ 

sensor of the ULA could be formulated as:  

𝑥𝑚[𝑛] = 𝑠1[𝑛] exp{𝑗2𝜋𝑓𝑐𝜏𝑚} + 𝑠2[𝑛] exp{𝑗2𝜋𝑓𝑐𝜏𝑚} + ⋯+ 𝑠𝐷[𝑛] exp{𝑗2𝜋𝑓𝑐𝜏𝑚}
+ 𝑤𝑚[𝑛] 

(3.02) 

Similarly, for signals with wide bandwidths the observed sequence for a ULA with 

corresponding delays can be written as: 

𝑥𝑚[𝑛] = 𝑠1[𝑛+𝜏𝑚] exp{𝑗2𝜋𝑓𝑐𝜏𝑚} + 𝑠2[𝑛 + 𝜏𝑚] exp{𝑗2𝜋𝑓𝑐𝜏𝑚} +⋯

+ 𝑠𝐷[𝑛+𝜏𝑚] exp{𝑗2𝜋𝑓𝑐𝜏𝑚} + 𝑤𝑚[𝑛] 
(3.03) 
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Figure 3.2: Delay-and-Sum Beamforming 

(a) DAS beamformer under narrowband scenario,  

(b) DAS beamformer under broadband scenario.   

3.2 Delay-And-Sum Beamformer 

Figure 3.2 (a) represents schematic for a DAS-BF under narrowband scenario, where 

𝑥𝑚[𝑛] for 0 ≤ 𝑛 ≤ 𝑁 − 1 is the observed data by the 𝑚𝑡ℎ sensor. As depicted by the 

𝑦[𝑛] =  ∑ 𝒘𝑚
∗  𝑥𝑚[𝑛]

𝑀

𝑚 = 1

         0 ≤ 𝑛 ≤ 𝑁 − 1 (3.04) 
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figure each observation will be multiplied by some weight factor that is related to the 

desired DOA. Afterwards the weighted observations are accumulated to form the 

output of the DAS-BF as in [8]. This is output has been formulated in (3.04). 

The asterisk denotes the complex conjugate operator and 𝑤𝑚 is the weight for the 𝑚𝑡ℎ 

sensor to adjust the output of the BF. We can say that (3.04) has 𝑀 degrees of freedom 

(DOF) for steering 𝑀 received signals. One of the DOFs is used to steer the desired 

signal and the others are used to suppress any interfering signals. Obviously, if the 

number of sources is greater than 𝑀 then the system could only process 𝑀 of these 

received signals and the rest are not processed.  

If the signal passing through the adaptive weights has broadband characteristic, this 

structure proves ineffective since steering vector alone cannot provide a weighting 

such that all frequency components add up constructively as depicted by the 

narrowband BF in Fig. 3.2 (a) and an alternative structure is required. To resolve 

broadband signals, spatial-temporal flexibility must be enhanced and this is possible 

by applying a tapped-delay-line structure (finite impulse response filter) to the output 

of each sensor as depicted in Fig. 3.2 (b). Therefore under the broadband scenario the 

output y[n] of the BF can be written as: 

𝑦[𝑛] =  ∑ ∑ 𝒘𝑚,𝑙
∗

𝐿−1

𝑙 = 0

𝑥𝑚[𝑛 − 𝑙].               0 ≤ 𝑛 ≤ 𝑁 − 1

𝑀

𝑚 = 1

 (3.05) 

Here the weights 𝑤𝑚,𝑙 are used to filter each observation received by the 𝑚𝑡ℎ sensor 

of the ULA. The broadband BF has 𝑀 DOF for steering 𝑀 signals where each signal 

is passing through an 𝐿-tap FIR filter. This ability to sample the propagating wave both 

in space and time helps the BF resolve signals with broadband characteristics. 



20 

 

For convenience a common notation can be introduced for both narrowband and 

broadband beamforming structures of Fig. 3.2. The array outputs for (3.04) and (3.05) 

could be written as: 

𝑦[𝑛] =  𝐖𝐻 x[𝑛] (3.06) 

𝐖𝐻 CLM holds all coefficients of the broadband BF (for all L TDLs). It is composed 

of 𝑀, size-𝐿 vectors where each vector 𝒘𝑚  contains the complex conjugate 

coefficients of the FIR filter processing the signal observed at the 𝑚𝑡ℎ sensor of the 

ULA: 

𝐖𝐻 = [

𝑤1
𝑤2

⋮
𝑤𝑀

] (3.07) 

𝒘𝑚 = [𝑤𝑚,0
∗ , 𝑤𝑚,1

∗ , … , 𝑤𝑚,𝐿−1
∗ ]

𝐻
 (3.08) 

x[𝑛], is a (𝑀 × 𝐿) matrix where the 𝑚𝑡ℎ row of x[𝑛] represents the sample values in 

the tapped-delay-line for the 𝑚𝑡ℎ element of the ULA at discrete time n. Finally, 

( . ) 𝐻represents the conjugate transpose operator. Hence  x[𝑛] can be written as: 

x[n] =  [

𝑥1[0] 𝑥1[1]

𝑥2[0] 𝑥2[1]
⋯ 𝑥1[𝐿 − 1]

⋯ 𝑥2[𝐿 − 1]

⋮ ⋮
𝑥𝑀[0] 𝑥𝑀[1]

⋮
⋯ 𝑥𝑀[𝐿 − 1]

]. (3.09) 

By considering a DAS-BF as a spatial-temporal FIR filter with filter coefficients 𝒘𝑚 

for 1 ≤ 𝑚 ≤ 𝑀 and delays 𝜏𝑚(𝜃) as defined by (3.01), the frequency response of the 

DAS-BF can be expressed as: 

𝐻(𝑒𝑗𝜔̂) =  ∑ 𝒘𝑚
∗ 𝑒−𝑗𝜔̂𝑐𝑚

𝑀

𝑚 = 1

, (3.10) 
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where  𝜔̂𝑐 = 𝜔𝑐 ∙ 𝜏𝑚(𝜃). It is also possible to represent the frequency response of the 

DAS-BF in the form: 

𝐻(𝑒𝑗𝜔̂𝑐) =  𝐖𝐻𝒂(𝑒𝑗𝜔̂𝑐), (3.11) 

where, 𝒂(𝑒𝑗𝜔̂𝑐) is defined as: 

𝒂(𝑒𝑗𝜔̂𝑐) = [1    𝑒𝑗𝜔̂𝑐1    …    𝑒𝑗𝜔̂𝑐𝑀]
𝐻
. (3.12) 

Finally, (3.12) can be written as: 

𝒂(𝑒𝑗𝜔̂) =  [1  𝑒𝑗𝜏1(𝜃)𝜔𝑐   𝑒𝑗2𝜏1(𝜃)𝜔𝑐   …  𝑒𝑗𝑀𝜏1(𝜃)𝜔𝑐]
𝐻
. (3.13) 

In the literature 𝒂(𝑒𝑗𝜔̂𝑐) is known as the steering vector or the manifold vector.   

Since 𝜔̂𝑐 is a function of time and wavelength the steering vector 𝒂(𝑒𝑗𝜔̂𝑐) represents 

the spatial-temporal behavior of the FIR filter. 

Assuming unit amplitude for a desired signal received from an angle of 𝜃, the 

demodulated radio frequency (RF) signal observed by the 𝑚𝑡ℎ sensor of the antenna 

array can be represented as: 

𝑥𝑚[𝑛] =  𝑒𝑗𝜔(𝑛−𝜏𝑚(𝜃)).     1 ≤ 𝑚 ≤ 𝑀 (3.14) 

Using (3.14) in (3.05) the output of the sensor array can be obtained as: 

𝑦[𝑛] =  ∑ ∑ 𝒘𝑚,𝑙
∗

𝐿−1

𝑙 = 0

𝑀

𝑚 = 1

𝑒−𝑗𝜔(−𝑛+𝑙+𝜏𝑚(𝜃)) ,  

𝑦[𝑛] =  𝑒𝑗𝜔𝑛  ∑ ∑ 𝒘𝑚,𝑙
∗

𝑀

𝑚=1

𝐿−1

𝑙 = 0

𝑒−𝑗𝜔𝜏𝑚(𝜃)𝑒−𝑗𝜔𝑙, (3.15) 

𝑦[𝑛] = 𝑒𝑗𝜔𝑛  𝐻(𝜃, 𝜔). (3.16) 
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Therefore, the frequency response for the directional filter can be represented as: 

𝐻(𝜃,𝜔) =  ∑ ∑ 𝒘𝑚,𝑙
∗

𝑀

𝑚=1

𝐿−1

𝑙 = 0

𝑒−𝑗𝜔𝜏𝑚(𝜃)𝑒−𝑗𝜔𝑙 (3.17) 

where, 

𝐻(𝜃,𝜔) = 𝐻(𝑒𝑗𝜔̂)∑𝑒−𝑗𝜔̂𝑙

𝐿−1

𝑙=0

= 𝐻(𝑒𝑗𝜔̂) 𝒂(𝜃, 𝜔) 

Where, 

 

𝒂(𝜃, 𝜔) = [1    𝑒𝑗𝜏1(𝜃)𝜔     …    𝑒𝑗(𝐿−1)𝜏𝑚(𝜃)𝜔]
𝐻

 (3.18) 

Generally, the wave-vector 𝒂(𝜃, 𝜔) is denoted as 𝒂(𝜃). 

Different sensors, ideal or not, can be made directional by using a steering vector. The 

steering vector describes the ULA’s frequency response and the beam pattern is given 

by the square of the absolute value for 𝐻(𝜃, 𝜔). 
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Chapter 4 

NARROWBAND BEAMFORMING 

In the previous chapter we have showed how to obtain the steering vector for a BF 

both under narrowband and wideband scenarios. In this chapter we will describe the 

procedure for calculating the BF coefficients (𝒘𝑘 , 1 ≤ 𝑘 ≤ 𝑀) under narrowband 

assumption.  It is known that by weighting the signals from each sensor, it is possible 

to focus on signals arriving from a particular direction. However, the beamforming 

techniques differ in how they compute the weights and how they are applied. Weights 

can be computed either non-adaptively or using an adaptive process. Non-adaptive 

techniques are generally independent of the input data and can be considered as sub-

optimal.  Adaptive techniques on the other hand use the a-priori-statistics of the data 

and change, or adapt, in response to the data received before calculating the optimal 

weights. 

In what follows we will focus on non-adaptive techniques and firstly introduce the 

conventional beamforming technique. Subsequent sections will summarize briefly the 

Minimum Variance Distortion-less Response (MVDR), the sub-space based MUltiple 

SIgnal Classification (MUSIC) algorithm and an extended version of the MUSIC 

algorithm. The chapter will also show how the weight vectors are obtained for each 

case. 
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4.1 Conventional Beamformer (CBf) 

By assuming narrowband setting for the received signals, the usage of frequency 

diversity in received signal along the array is not critical, therefore (3.18) can be re-

written based on the center frequency 𝑤𝑐 as: 

𝒂(𝜃) =  [1 𝑒𝑗𝜔𝑐𝜏1(𝜃)   ⋯ 𝑒𝑗𝜔𝑐𝜏𝑚−1(𝜃)]𝐻, (4.01) 

𝜔𝑐 = 2𝜋𝑓𝑐, and it is based the central-frequency 𝑓𝑐. For a transmitted signal matrix 

𝑆[𝑛] which for 𝐷 sources is represented as:  

𝑆[𝑛] = [

𝑆1[𝑛]

𝑆2[𝑛]
⋮

𝑆𝐷[𝑛]

]. (4.02) 

The observation matrix can be defined as: 

x[n] =  𝒂(θ)𝑆[n] +  𝑁[n]. (4.03) 

From (2.19) the output power of the BF will be: 

𝑃 =  𝒘𝐻𝐑x 𝒘. (4.04) 

It is possible for the CBf to maximize its output power for a signal from a direction 𝜃. 

Maximizing the output power in fact requires solving an optimization problem as 

depicted in (4.05) 

 [𝐸𝑤
𝑚𝑎𝑥  {𝒘𝐻 x[n]x[n]𝐻𝒘}] =  [ 𝒘𝐻𝐸𝑤

𝑚𝑎𝑥  { x[n]x[n]𝐻} 𝒘] 

= [𝐸𝑤
𝑚𝑎𝑥  { |𝑆[n]|2 × |𝑤𝐻 𝒂(𝜃)|2 + 𝜎2|𝒘|2} ] . (4.05) 

Here, 𝜎2 denotes the variance of the white noise assumed.  

The output power of the CBf will be maximized when the weight vector is the same 

as the steering vector: 
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𝑤𝐶𝐵𝑓  =  𝒂(𝜃). (4.06) 

By placing (4.06) into (4.04) the output power of BF can be obtained as: 

𝑃𝐶𝐵𝑓(𝜃) = 𝒂𝐻(𝜃)𝐑𝑥 𝒂(𝜃). (4.07) 

4.2 Minimum Variance Distortion-less Response Beamformer 

In 1969, Capon came up with a new method now known as Capon’s BF or MVDR BF. 

This new beamforming technique would define the filter coefficients by minimizing 

the output power of the ULA with respect to a unit gain constraint for a specific 

steering vector: 

𝑚𝑖𝑛
𝑤

: 𝑃 

 

𝑠. 𝑡.   𝒘𝐻𝒂(𝜃) = 1 . 

(4.08) 

MVDR minimizes the power of received signals from undesired directions while the 

gain of the system at a desired direction is preserved. We can say that, MDVR select 

the coefficient from the space of the desired signal by setting the inner product of the 

coefficient basis and steering vector equal to one. This optimization problem can be 

solved using the method of Lagrange multipliers: 

ʆ =  𝒘𝐻 ∙ 𝐑𝑥 ∙ 𝒘 +  𝜆(𝒘𝐻 ∙ 𝒂(𝜃) − 1), 

∇𝑤ʆ = ∇𝑤(𝒘𝐻𝐑𝑥𝒘) + 𝜆 ∙ ∇𝑤(𝒘𝐻𝒂(𝜃)) = 0, 

 

𝒘 = −𝜆 ∙ 𝒂(𝜃)/𝐑𝑥 , 
 

𝜆 = −
1

𝒂𝐻(𝜃)𝐑𝑥
−1 𝒂(𝜃)

 

 

 

Therefore, the optimal weight vector would be: 

𝐖𝑀𝐷𝑉𝑅 = 
𝐑x

−1 𝒂(𝜃)

𝒂𝐻(𝜃)𝐑𝑥
−1 𝒂(𝜃)

 . (4.9) 
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Consequently, the output power of the MVDR BF could be written as: 

𝑃𝑀𝐷𝑉𝑅(𝜃) =  
1

𝒂𝐻(𝜃) 𝐑𝑥
−1 𝒂(𝜃)

. (4.10) 

We note that the CBf uses each and every opportunity to focus on the power of the 

desired signal in the look direction whereas the Capon’s BF eliminates some noise 

which are perpendicular to the desired signal sub-space and puts a null in the 

orientation where there are interfering sources. 

4.3 MUltiple SIgnal Classification (MUSIC) Beamformer 

Even though various sub-space based beamforming techniques have been proposed 

one which has attracted tremendous attention was the Multiple Signal Classification 

(MUSIC) algorithm. This method makes use of the eigenstructure of the process and 

attempts to decompose the observation into two separate sub-spaces: namely signal 

sub-space and noise sub-space. Assuming WSS scenario and white noise the 

eigenvalue decomposition for the MUSIC algorithm can be stated as in [18]: 

𝐑𝑥 = 𝐔𝑠𝛬𝑠𝐔𝑠
𝐻 + 𝜎2𝐔𝑛𝐔𝑛

𝐻 . (4.11) 

Matrix 𝛬𝑠 include 𝑀 largest eigenvalues of the observed signal and 𝐔𝑠 the 

corresponding eigen-vectors. Similarly, 𝑈𝑛 contains eigenvectors of the noise sub-

space which are orthogonal to the signal sub-space. The orthogonality between signal 

and noise subspaces can be used to suppress the noise along the desired DOA by 

putting a null on the basis of noise subspace: 

𝐔𝑛
𝐻𝒂(𝜃) =  0 . (4.12) 

On the other hand, the weight vector has to satisfy the non-singularity problem as 

follow: 

𝐖𝐻 ∙ 𝐖 = 𝐼. (4.13) 
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For a ULA with 𝑀 receiver, only 𝑀 angel of arrivals can be steered by the BF 

therefore, the set {𝜃1 , 𝜃2 , …… , 𝜃𝑀} contains all possible solutions for (4.12). If they 

represent the orthogonal projection onto the noise subspace as:   

П⊥  =  𝐔𝑛𝐔𝑛
𝐻  , (4.14) 

then, the output power of the BF using MUSIC algorithm for a specific direction can 

be calculated using: 

𝑃𝑀𝑈𝑆𝐼𝐶(𝜃) =  
𝒂𝐻(𝜃)𝒂(𝜃)

𝒂𝐻(𝜃)П⊥ 𝒂(𝜃)
  . (4.15) 

For a ULA with 𝑀 sensors, the steering vector(s) related to the 𝑀 different DOAs 

({𝜃1 , 𝜃2 , …… , 𝜃𝑀}) would form a linearly independent set {𝑎(𝜃1) , 𝑎(𝜃2), … , 𝑎(𝜃𝑀)}. 

For unambiguity in the BF output, each DOA has to satisfy the inequality below and 

the distance between sensors has to be set as: 

−
𝜋

2
<  𝜃𝑚 < 

𝜋

2
 ,𝑚 ∈ [1,𝑀];      and    𝑑 <

𝜆

2
  . (4.16) 

For coherent and correlated signals the MUSIC algorithm which is designed to search 

for some orthogonal subspace to the noise subspace would give poor performance 

while it tries to extract the desired signal from the interfering signals.  

4.4 Extentions to the MUltiple SIgnal Classification Beamformer 

The extended research carried around the basic MUSIC algorithm has led to various 

adjustments. These adjustments were the outcomes of attempts to modify 

shortcomings of the original MUSIC algorithm under different scenarios. The most 

famous adjustment which led to the weighted MUSIC (W-MUSIC) algorithm was 

done to select a set of weights (𝐖) that could be used to consider the effect of different 

eigenvectors. The output power for the weighted music algorithm in terms of the 

steering vector and the selected weights is as: 
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𝑃W−MUSIC(𝜃) =  
𝒂𝐻(𝜃)𝒂(𝜃)

𝒂𝐻(𝜃)П̂⊥ 𝐖 П̂⊥ 𝒂(𝜃)
. (4.17) 

The novel weighting function 𝐖 which is introduced to the spatial spectrum of the 

original MUSIC algorithm is a diagonal matrix where the diagonal elements are the 

characteristic vectors of the covariance matrix of the desired signal and 𝑞[0,1]: 

𝐖 =

[
 
 
 
 
𝜆1

𝑞 0

0 𝜆2
𝑞

⋯ 0
0 ⋮

⋮ 0
0 ⋯

⋱ 0
0 𝜆𝑀

𝑞
]
 
 
 
 

. (4.18) 

Range of q has been selected after extensive computer simulations and aims to reduce 

the covariance between the eigenvalues which then help the BF to better focus on a 

desired direction.   

Gracefully, when the eigenvectors are uniformly weighted the W-MUSIC algorithm 

would converge to the standard MUSIC algorithm. The modified W-MUSIC algorithm 

provides an alternative to obtain better resolution for signals which are either highly 

correlated or under low SNR. 
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Chapter 5 

DISCRETE FOURIER TRANSFORM BASED 

BROADBAND BEAMFORMER 

Beamforming techniques have been thoroughly studied due to their usage in various 

application areas such as radar, sonar, biomedical and wireless communications. Since 

in practice the performance of the traditional DAS-BF is degraded due to high 

correlation between signals researchers have come up with the idea of spatial 

smoothing to improve the BF’s performance. However, most of the studies have 

focused on beamforming under the narrowband scenario and the broadband issue 

hasn’t been much studied. This chapter introduces a broadband BF which makes use 

of the discrete Fourier transform (DFT) concept to focus on a specific DOA for a given 

desired signal.  

In any wave propagation medium (acoustic or electromagnetic) sensors can form a 

response pattern with higher sensitivity in a desired direction. An excellent data 

independent beam pattern is intended to reject interference signals and noise due to 

time sampling and position of sensors. One popular system for beam pattern 

configuration under broadband scenario is the frequency decomposition strategy. In 

this technique DFT is used to decompose the spectrum of a wideband signal into 

frequency containers or bins. What is in each bin is then taken into account as 

narrowband data.  
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5.1 Discrete Fourier Transform Based Beamformer 

In the literature two variants of the DFT based BF has been proposed. These are 

namely: i) DFT-based BF using BP and ii) DFT-based BF using SW processing. The 

block diagram of the general DFT-based BF is depicted in Fig 5.1. As can be seen 

from the figure, at each sensor in the sensor array the received signal is first sampled 

using an analog to digital convertor and then the discrete signal is processed by a 

General Side-lobe Canceller (GSC) to produce uncorrelated sequences. Afterwards, 

the GSC’s output is stored in a Length-N buffer and DFT of the samples in the buffer 

is taken. Following the DFT processing at each sensor, the DFT samples are weighed 

by BF weights at each sensor and 𝑖𝑡ℎ, 𝑖[0, (𝑁 − 1)] weighted samples of each sensor 

are accumulated to form the 𝑀 inputs of the IDFT block. 

For the case of 𝐷 sources with arbitrary locations, the observed signal at the 

𝑚𝑡ℎelement of the ULA given N snapshots of the received signal can be represented 

in a matrix form as: 

           𝐱 = [    𝐱(0)     𝐱(1)      …         𝐱(N − 1) ]       

                           =  [

𝑥1(0) 𝑥1(1)     ⋯ 𝑥1(𝑁 − 1)

𝑥2(0) 𝑥2(1)    ⋯ 𝑥2(𝑁 − 1)

⋮       ⋮                          ⋮
𝑥𝑀(0) 𝑥𝑀(1)  ⋯ 𝑥𝑀(𝑁 − 1)

] =  

[
 
 
 
𝑥̃1

𝑇

𝑥̃2
𝑇

⋮
𝑥̃𝑀

𝑇 ]
 
 
 
 , 

 

(5.01) 

where (.)T denotes the transpose operation. After taking DFT along each row of the 

input matrix 𝐱 the frequency domain matrix would be equal to: 

      𝐗 = [    X(0)     X(1)      …         X(N − 1) ] 

            =  

[
 
 
 
 
𝑋1(0) 𝑋1(1)  ⋯ 𝑋1(𝑁 − 1)

𝑋2(0) 𝑋2(1)     ⋯ 𝑋2(𝑁 − 1)

⋮       ⋮                         ⋮
⋮       ⋮                         ⋮

𝑋𝑀(0) 𝑋𝑀(1) ⋯    𝑋𝑀(𝑁 − 1)]
 
 
 
 

 , 

 

 

(5.02) 
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Figure 5.1: DFT-based Beamformer Using GSC with Buffer Length-𝑁. 

where X𝑚[𝑘] is defined as: 

X𝑚[𝑘] =  ∑ 𝑥𝑚[𝑛] 𝑒−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

= 𝑒𝑘
𝐻𝑥̃𝑚  , 𝑘 = 0, 1,, (𝑁 − 1).  (5.03) 

Here 𝑚 denotes the sensor in a sensor array with 𝑀 sensors, index-𝑛 which ranges 

from 0 to (𝑁 − 1) denote the 𝑁 samples and, 𝑘 denotes the number of the frequency 

bin after the spectrum is divided into 𝑁 narrower bands. The vector 𝑒𝑘 for the 𝑘𝑡ℎ 

frequency bin can be expressed as: 

𝑒𝑘 = [1  𝑒𝑗2𝜋𝑘 𝑁⁄ …  𝑒𝑗2𝜋(𝑁−1)𝑘 𝑁⁄ ]
𝑇
. (5.04) 
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In (5.02) X[𝑘] = X[𝑓𝑘] dedicates the (𝑘 + 1)-th frequency bin of the observed data and 

for input signals with length-𝑁, 𝑓𝑘 can be expressed as: 

𝑓𝑘 = {
𝑘. ∆𝑓                   𝑘 = 0: ⌈

𝑁

2
⌉ − 1

(𝑘 − 𝑁). ∆𝑓       𝑘 = ⌈
𝑁

2
⌉ : (𝑁 − 1)

 . (5.05) 

where the ⌈ . ⌉ represents ceil operator and ∆𝑓 denotes the frequency resolution and 

equals ∆𝑓 =
1

𝑁𝑇𝑠
. Conceptually, ∆𝑓 is the gap between frequency containers and better 

results is achievable by setting smaller gap between frequency bins. On the other hand, 

to avoid aliasing the sampling rate 𝑇𝑠 is bounded by 2𝐵 where 𝐵 denotes the bandwidth 

of the received signal. Hence for good resolution one must make sure that the number 

of samples (𝑁) is large. By considering each frequency bin (𝑓𝑘) as an individual data, 

it would be reasonable to apply a narrowband BF to each frequency bin. The output 

for each narrowband BF with weights 𝐰𝑘 can then be formulated as:  

𝐘 = 𝐰𝑘
𝐻  𝐗[𝑘], 

𝐘 = [ Y(0)  Y(1)  Y(2) …    Y(𝑁 − 1)]. 

 

(5.06) 

Lastly, by taking the Inverse Discrete Fourier Transform (IDFT) of the weighted data 

𝐘, the output of the DFT-based BF in time domain can be written as: 

𝐲 = [ 𝑦(0)  𝑦(1)  𝑦(2) …    𝑦(𝑁 − 1)],  

𝑦[𝑛] =  
1

𝑁
∑ Y[𝑘]𝑒𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑘=0

, 𝑛 = 0, … , (𝑁 − 1). (5.07) 

5.2 Generation of Steering Vector  

If the signal bandwidth is small relative to the center frequency (i.e., if it has small 

fractional bandwidth), and the time intervals over which the signal is observed are 

short then we can use a narrowband BF to process the received signals. However, for 
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broadband signals temporal frequency analysis would be necessary at the BF. Hence 

the steering vector defined in (3.18) will take the form: 

a𝑘(𝜃, 𝜔) = [1, 𝑒𝑗2𝜋(𝑓𝑐+𝑓𝑘)𝜏2 (𝜃), 𝑒𝑗2𝜋(𝑓𝑐+𝑓𝑘)𝜏3 (𝜃), … , 𝑒𝑗2𝜋(𝑓𝑐+𝑓𝑘)𝜏𝑀 (𝜃)]
𝐻
. (5.08) 

Consequently, by using the MVDR beamforming algorithm, the weight vectors for 

DFT based BF could be written as: 

𝒘𝑘 = 
𝐑𝑘

−1𝒂𝑘(𝜃, 𝜔)

𝒂𝑘
𝐻(𝜃, 𝜔)𝐑𝑘

−1𝒂𝑘(𝜃, 𝜔)
 , (5.09) 

here, 𝐑𝑘 is the covariance matrix of the 𝑘𝑡ℎ bin and is as: 

𝐑𝑘 = 𝐸{𝐗[𝑘]𝐗𝐻[𝑘]}. (5.10) 

Since calculation of the covariance matrix (𝐑𝑘) in (5.10) would require unlimited 

snapshots (infinite number of samples) it can’t be obtained via (5.10) and would be 

unknown. An approximate estimate of the covariance matrix 𝐑𝑘 could still be obtained 

as stated in [19] using 𝐾-snapshots as: 

𝐑̂𝑘 =
1

𝑁
∑ 𝐗(𝑖)[𝑘]

𝑁−1

𝑖=0

𝐗(𝑖)
𝐻[𝑘] , (5.11) 

where, the subscript (𝑖), 𝑖 = 0, 1, 2, , (𝑁 − 1) denotes the 𝑖𝑡ℎ snapshot of the 𝑘𝑡ℎ 

frequency component. 

5.3 Block Processing for Discrete Fourier Transform Based 

Beamformer  

For the DFT-based BF data across the sensor array at each frequency of interest must 

be processed separately by a narrowband sub-BF as depicted in Fig 5.2. In BP mode 

the algorithm needs to process 𝐽-blocks where each block has 𝑘𝐵 snapshots. For a total 

of 𝑁-snapshots coming from the sensor array, the number of snapshots per block 
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would be equal to ⌊
𝑁

𝐽
⌋ where ⌊∙⌋ represents the flooring operation. Thus 5.01 can be 

written as: 

𝐱𝑨𝑩 = [

𝑥1(0) 𝑥1(1) …

𝑥2(0) 𝑥2(1) …

𝑥1(𝑘𝐵 − 1) 𝑥1(𝑘𝐵) …

𝑥2(𝑘𝐵 − 1) 𝑥2(𝑘𝐵) …

𝑥1(2𝑘𝐵 − 1) … 𝑥1(𝐽𝑘𝐵 − 1)

𝑥2(2𝑘𝐵 − 1) … 𝑥2(𝐽𝑘𝐵 − 1)
⋮ ⋮ ⋮

𝑥𝑀(0) 𝑥𝑀(1) …
⋮ ⋮ ⋮

𝑥𝑀(𝑘𝐵 − 1) 𝑥𝑀(𝑘𝐵) …
⋮ ⋮ ⋮

𝑥𝑀(2𝑘𝐵 − 1) … 𝑥𝑀(𝐽𝑘𝐵 − 1)

] . (5.12) 

The subscript 𝑨𝑩 denotes the 𝐽-blocks in the BP mode. 

Note that in BP mode each block 𝐗(𝑗) can be denoted as: 

𝐱(𝑗) =

[
 
 
 
 
𝑥1((𝑗 − 1)𝑘𝐵) 𝑥1((𝑗 − 1)𝑘𝐵 + 1)

𝑥2((𝑗 − 1)𝑘𝐵) 𝑥2((𝑗 − 1)𝑘𝐵 + 1)

… 𝑥1(𝑗𝑘𝐵 − 1)

… 𝑥2(𝑗𝑘𝐵 − 1)

⋮ ⋮
𝑥𝑀((𝑗 − 1)𝑘𝐵) 𝑥𝑀((𝑗 − 1)𝑘𝐵 + 1)

⋮ ⋮
… 𝑥𝑀(𝑗𝑘𝐵 − 1)]

 
 
 
 

 . (5.13) 

And the full set of data is:  

𝐱𝐴𝐵 = [𝐱(1)  𝐱(2)    …    𝐱(𝐽)] . 

It is evident that the length of observation has to be an integer product of the block 

size. Consequently, the DTF of the observed signal under BP mode could be expressed 

as: 

𝐗𝐴𝐵 = [𝐗(1)  𝐗(2)    …    𝐗(𝐽)], (5.14) 

where,              𝐗(𝑗) =

[
 
 
 
 
𝑋1((𝑗 − 1)𝑘𝐵) 𝑋1((𝑗 − 1)𝑘𝐵 + 1)

𝑋2((𝑗 − 1)𝑘𝐵) 𝑋2((𝑗 − 1)𝑘𝐵 + 1)

… 𝑋1(𝑗𝑘𝐵 − 1)

… 𝑋2(𝑗𝑘𝐵 − 1)

⋮ ⋮
𝑋𝑀((𝑗 − 1)𝑘𝐵) 𝑋𝑀((𝑗 − 1)𝑘𝐵 + 1)

⋮ ⋮
… 𝑋𝑀(𝑗𝑘𝐵 − 1)]

 
 
 
 

 . 

 

The covariance matrix estimation for the DFT based BF under BP mode can be defined 

as: 

𝐑̂𝑘 = 
1

𝐽
 ∑𝐗(𝑖)[𝑘] 𝐗(𝑖)

𝐻 [𝑘]

𝐽

𝑖=1

,         𝑘 = 0, 1, 2, … , (𝑘𝐵 − 1). 

 

(5.15) 
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Figure 5.2: DFT-based Beamformer Using Block Processing Mode 

Moreover, by inserting (5.15) in (5.09), the weight vectors for BP could be denoted as: 

𝒘𝑘 =
𝐑̂𝑘

−1𝒂𝑘(𝜃, 𝜔)

𝒂𝑘
𝐻(𝜃, 𝜔)𝐑̂𝑘

−1𝒂𝑘(𝜃, 𝜔)
,           𝑘 = 0, 1, 2, … , (𝑘𝐵 − 1). (5.16) 

Finally, IDFT will be used to obtain the BF output in time-domain for each block. The 

output in BP mode is as follows:  

𝑦(𝑗)[𝑛] =
1

𝑘𝐵
 ∑ 𝒘𝑘

𝐻  𝐗(𝑗)[𝑘] 𝑒𝑗2𝜋𝑛𝑘/𝑘𝐵

𝑘𝐵−1

𝑘=0

,

𝑛 = 0, … , (𝑘𝐵 − 1),    𝑗 = 1,… , 𝐽. 

(5.17) 
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5.4 Sliding Window Mode for Discrete Fourier Transform Based 

Beamformer 

For the DFT based BF the SW processing is similar to that of the BP mode. These two 

modes differ in the way they estimate the covariance matrix. In SW processing when 

a new snapshot arrive the oldest snapshot will be pulled out and the new one inserted 

into the data set. Afterwards the same processing in BP mode will be carried out. 

However, during batch processing no new snapshots would in reality arrive. To 

account for accepting the new snapshot and discarding the oldest one the algorithm 

will reserve the first (𝑁 − 𝐽) snapshots into the first window and afterwards slide the 

window to the right by one snapshot at each step. Figure 5.3 illustrates the sliding 

procedure for 𝐱[𝑛] defined in (5.18): 

After taking DFT of each slide the spectrum of slides will be denoted as: 

𝐗(𝑗) = [

𝑋1(𝑗 − 1) 𝑋1(𝑗)

𝑋2(𝑗 − 1) 𝑋2(𝑗)
… 𝑋1(𝑘𝑆 + 𝑗 − 2)

… 𝑋2(𝑘𝑆 + 𝑗 − 2)
⋮ ⋮

𝑋𝑀(𝑗 − 1) 𝑋𝑀(𝑗)
⋮ ⋮
… 𝑋𝑀(𝑘𝑆 + 𝑗 − 2)

] ,   1 ≤ 𝑗 ≤ 𝐽. (5.19) 

An estimate of the covariance matrix under SW processing can then be defined as: 

𝐑̂𝑘 = 
1

𝐽
 ∑𝐗(𝑖)[𝑘] 𝐗(𝑖)

𝐻 [𝑘]

𝐽

𝑖=1

,         𝑘 = 0, 1, 2, … , (𝑘𝑠 − 1). (5.20) 

By inserting (5.20) in (5.09) the weight vectors under SW processing could be  

x = [

𝑥1(0) 𝑥1(1) …

𝑥2(0) 𝑥2(1) …

𝑥1(𝑘𝑆 + 𝐽 − 1)

𝑥2(𝑘𝑠 + 𝐽 − 1)
⋮ ⋮ ⋮

𝑥𝑀(0) 𝑥𝑀(1) …
⋮

𝑥𝑀(𝑘𝑆 + 𝐽 − 1)

], 

 𝐱(𝑗)𝑆𝑀
= [

𝑥1(𝑗 − 1) 𝑥1(𝑗)

𝑥2(𝑗 − 1) 𝑥2(𝑗)
… 𝑥1(𝑘𝑆 + 𝑗 − 2)

… 𝑥2(𝑘𝑆 + 𝑗 − 2)
⋮ ⋮

𝑥𝑀(𝑗 − 1) 𝑥𝑀(𝑗)
⋮ ⋮
… 𝑥𝑀(𝑘𝑆 + 𝑗 − 2)

], 

𝑘𝑆 = (𝑁 − 𝐽), 1 ≤ 𝑗 ≤ 𝐽. 

(5.18) 
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Figure 5.3: DFT-based Beamformer Under Sliding Window Processing 
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written as: 

𝒘𝑘 = 
𝐑̂𝑘

−1𝒂𝑘(𝜃, 𝜔)

𝒂𝑘
𝐻(𝜃, 𝜔)𝐑̂𝑘

−1𝒂𝑘(𝜃, 𝜔)
,          𝑘 = 0, 1, 2, … , (𝑘𝑠 − 1). (5.21) 

Consequently, the output of the DFT-based BF under SW processing for each slide 

becomes: 

𝑦(𝑗)[𝑛] =  
1

𝑘𝑆

 ∑ 𝒘𝑘
𝐻 𝐗(𝑗)[𝑘] 𝑒𝑗2𝜋𝑛𝑘/𝑘𝑆

𝑘𝑆−1

𝑘=0

,

𝑛 = 0, … , (𝑘𝑠 − 1),   𝑗 = 1,… , 𝐽. (5.22) 

5.5 Signal to Interference Plus Noise Ratio Formulation for the DFT-

Based Beamformer Under Block Processing 

Under DFT-based beamforming applying IDFT to each block of the output received 

from an 𝑀-element sensor array will result in a length-𝑁 output in the time-domain. 

The final output of the DFT-based BF can be expressed as in (5.23): 

𝑦(𝑗)[𝑛] =  
1

𝑘𝐵
 ∑ 𝒘𝑘

𝐻  𝐗(𝑗)[𝑘] 𝑒𝑗2𝜋𝑛𝑘/𝑘𝐵

𝑘𝐵−1

𝑘=1

,

𝑛 = 0, … , (𝑘𝐵 − 1),     𝑗 = 1,… , 𝐽,  

𝒚 = [𝑦(1) 𝑦(2)  ⋯ 𝑦(𝐽)] ,  

𝒚 =
1

𝑁
 𝒘𝐻 𝐹𝑛 𝐗| , (5.23) 

where 𝒘𝐻 and 𝐗| are column vectors each with size ((𝑀 ∙ 𝑘𝐵) × 1) as shown below: 

𝒘 ≜ [𝑤0
𝑇  𝑤1

𝑇  …  𝑤𝑘𝐵−1
𝑇 ]

𝑇
. (5.24) 

𝐗| ≜ [X𝑇[0]  X𝑇[1] …  X𝑇[𝑘𝐵 − 1]]
𝑇
, (5.25) 
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The operator matrix 𝐹𝑛, 1 ≤ 𝑛 ≤ 𝐽 shown in (5.23), can be considered as an IDFT 

operation for each block with fixed dimension (𝑀 ∙ 𝑘𝐵 × 𝑀 ∙ 𝑘𝐵), and can be 

expressed as: 

𝐹𝑛 ≜ 

[
 
 
 
𝑰𝑀 0

0 𝑒𝑗2𝜋𝑛 𝑘𝐵⁄ . 𝑰𝑀

… 0
⋮

⋮       
0       …        

⋱  0
0  𝑒𝑗2𝜋(𝑘𝐵−1) 𝑘𝐵⁄ . 𝑰𝑀]

 
 
 
=  𝑑𝑖𝑎𝑔(𝑒𝑛) ⊗ 𝑰𝑀 , (5.26) 

where 𝑰𝑀 denotes an (𝑀 × 𝑀) identity matrix and ⊗ denotes the Kronecker product. 

The vector 𝑒𝑛 for 0 ≤ 𝑛 ≤ (𝑘𝐵 − 1) has form: 

𝑒𝑛 = [1  𝑒𝑗2𝜋𝑛 𝑘𝐵⁄   𝑒𝑗2𝜋2𝑛 𝑘𝐵⁄   𝑒𝑗2𝜋3𝑛 𝑘𝐵⁄ …  𝑒𝑗2𝜋(𝑘𝐵−1)𝑛 𝑘𝐵⁄ ]
𝑇
. 

Obviously, 𝑒𝑛 is a column vector with size (𝑘𝐵 × 1), hence 𝑑𝑖𝑎𝑔(𝑒0) would 

be: 

𝑑𝑖𝑎𝑔(𝑒0) =  

[
 
 
 
 
 
 
 
 
 

1 0
⋮ ⋮
1 0

⋯
0

⋮
0 1 
⋮ ⋮ 

1 
⋱ 0

⋮ 0

0 ⋯

1
⋮
1 ]

 
 
 
 
 
 
 
 
 

.  

 

(5.27) 

By substituting (5.23) into (2.19), the output power of the signal can be calculated as: 

𝑃 = 𝐸{|𝒚|2} =  
1

(𝑘𝐵)2
 𝒘𝐻𝐹𝑛𝐸{𝐗|𝐗|

𝐻}𝐹𝑛
𝐻𝒘 , (5.28) 

where, 

𝐸{𝐗|𝐗|
𝐻} ≜  𝐑| . (5.29) 

Since expected value function is a linear function the covariance matrix 𝑹| can be re-

stated as: 
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𝐑| =

[
 
 
 

𝐸{𝑋[0]𝑋𝐻[0]}                𝐸{𝑋[0]𝑋𝐻[1]}

𝐸{𝑋[1]𝑋𝐻[0]}                𝐸{𝑋[1]𝑋𝐻[1]}

…          𝐸{𝑋[0]𝑋𝐻[𝑘𝐵 − 1]}

…           𝐸{𝑋[1]𝑋𝐻[𝑘𝐵 − 1]}

⋮               ⋮
𝐸{𝑋[𝑘𝐵 − 1]𝑋𝐻[0]} 𝐸{𝑋[𝑘𝐵 − 1]𝑋𝐻[1]}

⋮
… 𝐸{𝑋[𝑘𝐵 − 1]𝑋𝐻[𝑘𝐵 − 1]}]

 
 
 

 . (5.30) 

The covariance matrix 𝐑| contains 𝑁2 sub-matrices each with (𝑀 × 𝑀) dimension and 

represents the covariance between frequency bins 𝑖 and 𝑗,  𝑖 = 0,… , (𝑘𝐵 − 1) and 𝑗 =

0, … , (𝑘𝐵 − 1). Hence, the overall covariance matrix between all frequency bin pairs can be 

denoted as follow: 

𝐸{𝑋[𝑖]𝑋𝐻[𝑗]} =

[
 
 
 
𝐸{𝑋1[𝑖]𝑋1

∗[𝑗]}   𝐸{𝑋1[𝑖]𝑋2
∗[𝑗]}

𝐸{𝑋2[𝑖]𝑋1
∗[𝑗]}   𝐸{𝑋2[𝑖]𝑋2

∗[𝑗]}
… 𝐸{𝑋1[𝑖]𝑋𝑀

∗ [𝑗]}

… 𝐸{𝑋2[𝑖]𝑋𝑀
∗ [𝑗]}

⋮ ⋮
𝐸{𝑋𝑀[𝑖]𝑋1

∗[𝑗]} 𝐸{𝑋𝑀[𝑖]𝑋2
∗[𝑗]}

⋮
… 𝐸{𝑋𝑀[𝑗]𝑋𝑀

∗ [𝑗]}]
 
 
 
 , 

 𝑖 = 0,… , (𝑘𝐵 − 1), 𝑗 = 0,… , (𝑘𝐵 − 1) (5.31) 

where ( . )∗ denotes the conjugate transpose operator. The matrix in (5.31) is composed of 𝑀2 

sub-matrices such as 𝐸{𝑋𝑚[𝑖]𝑋𝑛
∗[𝑗]} where, 

𝐸{𝑋𝑚[𝑖]𝑋𝑛
∗[𝑗]} =  𝑒𝑖

𝐻𝐸{𝑥̃𝑚𝑥̃𝑛
𝐻}𝑒𝑗,  

 𝑖 = 0, … , (𝑘𝐵 − 1), 𝑗 = 0,… , (𝑘𝐵 − 1), 𝑚 = 1,… ,𝑀 and 𝑛 = 1, … ,𝑀. 

 

(5.32) 

Denoting the expected value of signals received from sensors m and n as: E{x̃𝑚x̃n
𝐻} =  R𝑚,n, 

(𝑚 = 1,… ,𝑀 and 𝑛 = 1,… ,𝑀) and substituting (5.31) into (5.30) the covariance matrix 

between frequency bins 𝑖 and 𝑗, 𝑖 = 0, … , (𝑘𝐵 − 1) and 𝑗 = 0,… , (𝑘𝐵 − 1) could be 

expressed as: 

𝐸{𝑋[𝑖]𝑋𝐻[𝑗]} =

[
 
 
 
 
𝑒𝑖

𝐻𝐑1,1𝑒𝑗 𝑒𝑖
𝐻𝐑1,2𝑒𝑗

𝑒𝑖
𝐻𝐑2,1𝑒𝑗 𝑒𝑖

𝐻𝐑2,2𝑒𝑗

… 𝑒𝑖
𝐻𝐑1,𝑀𝑒𝑗

… 𝑒𝑖
𝐻𝐑2,𝑀𝑒𝑗

⋮ ⋮
𝑒𝑖

𝐻𝐑𝑀,1𝑒𝑗 𝑒𝑖
𝐻𝐑𝑀,2𝑒𝑗

⋱ ⋮
… 𝑒𝑖

𝐻𝐑𝑀,𝑀𝑒𝑗]
 
 
 
 

 , (5.33) 

Decomposing (5.33) as below 
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𝐸{𝑋[𝑖]𝑋𝐻[𝑗]} = 𝐄𝑖
𝐻𝐑̅ 𝐄𝑗 , 𝑖 = 0,1,… , (𝑘𝐵 − 1), 𝑗 = 0,1,… , (𝑘𝐵 − 1), (5.34) 

Where 𝐄𝑘,  𝑘 = 0,… , (𝑘𝐵 − 1) and 𝐑̅ can be defined as in (5.35) and (5.36), 

respectively. 

𝐄𝑘 ≜ 

[
 
 
 
 
𝑒𝑘 0
0 𝑒𝑘

… 0
… 0

⋮ 0
⋮ ⋮
0 0

⋱
⋮ ⋮
… 𝑒𝑘]

 
 
 
 

 , (5.35) 

𝐑̅ ≜  [

𝐑1,1 𝐑1,2

𝐑2,1 𝐑2,2

… 𝐑1,𝑀

… 𝐑2,𝑚

⋮ ⋮
𝐑𝑀,1 𝐑𝑀,2

⋱ ⋮
 … 𝐑𝑀,𝑀

] . (5.36) 

Where, 𝐑𝑚,𝑛, 𝑚 = 1,… ,𝑀 and 𝑛 = 1,… ,𝑀 represents the cross-correlation between 

𝑚𝑡ℎ and 𝑛𝑡ℎ data received from sensors array (Note that 𝑚𝑡ℎ data is collected by the 

sensor number 𝑚). Using (5.33) in (5.29) would result in the correlation matrix 𝐑| as 

follow: 

𝐑| =

[
 
 
 
 𝐄0

𝐻𝐑̅ 𝐄0          𝐄0
𝐻𝐑̅ 𝐄1

𝐄1
𝐻𝐑̅ 𝐄0          𝐄1

𝐻𝐑̅ 𝐄1

 …          𝐄0
𝐻𝐑̅ 𝐄(𝑘𝐵−1)

 …          𝐄1
𝐻𝐑̅ 𝐄(𝑘𝐵−1)

⋮ ⋮

𝐄(𝑘𝐵−1)
𝐻 𝐑̅ 𝐄0 𝐄(𝑘𝐵−1)

𝐻 𝐑̅ 𝐄1

⋮

… 𝐄(𝑘𝐵−1)
𝐻 𝐑̅ 𝐄(𝑘𝐵−1) ]

 
 
 
 

. (5.37) 

Since the matrix 𝐄 can be written as: 

𝐄 = [𝐄0 𝐄1  … 𝐄(𝑘𝐵−1)], (5.38) 

it can be considered as a block DFT operator and 𝐑| can be re-write as: 

𝐑| = 𝐄𝐻𝐑̅ 𝐄. (5.39) 

Inserting (5.39) into (5.27) will result in output power of the DFT-based BF under BP 

mode as it shown below: 
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𝑃 = 
1

(𝑘𝐵)2
 𝒘𝐻𝐹𝑛𝐄𝐻𝐑̅ 𝐄 𝐹𝑛

𝐻𝒘, 𝑛 = 0,1, … , (𝑘𝐵 − 1). (5.40) 

Using (2.11) for uncorrelated baseband signals in (5.35) will give: 

𝐑𝑚.𝑛 = 𝐸{𝑥̃𝑚𝑥̃𝑛
𝐻} 

 

=  exp{𝑗2𝜋𝑓𝑐(𝜏1,𝑚1
− 𝜏1,𝑚2

)}

×

[
 
 
 
 

𝑟1(𝜏1,𝑚1
− 𝜏1,𝑚2

) 𝑟1(−𝑇𝑠 + 𝜏1,𝑚1
− 𝜏1,𝑚2

)

𝑟1(𝑇𝑠 + 𝜏1,𝑚1
− 𝜏1,𝑚2

) 𝑟1(𝜏1,𝑚1
− 𝜏1,𝑚2

)

… 𝑟1(−(𝑘𝐵 − 1) + 𝜏1,𝑚1
− 𝜏1,𝑚2

)

𝑟1(−(𝑘𝐵 − 2) + 𝜏1,𝑚1
− 𝜏1,𝑚2

)

⋮ ⋮
𝑟1((𝑘𝐵 − 1) + 𝜏1,𝑚1

− 𝜏1,𝑚2
) 𝑟1((𝑘𝐵 − 2) + 𝜏1,𝑚1

− 𝜏1,𝑚2
)

⋱ ⋮
… 𝑟1(𝜏1,𝑚1

− 𝜏1,𝑚2
) ]

 
 
 
 

+ 

 

              exp{𝑗2𝜋𝑓𝑐(𝜏2,𝑚1
− 𝜏2,𝑚2

)} 

×

[
 
 
 
 

𝑟2(𝜏2,𝑚1
− 𝜏2,𝑚2

) 𝑟2(−𝑇𝑠 + 𝜏2,𝑚1
− 𝜏2,𝑚2

)

𝑟2(𝑇𝑠 + 𝜏2,𝑚1
− 𝜏2,𝑚2

) 𝑟2(𝜏2,𝑚1
− 𝜏2,𝑚2

)

… 𝑟2(−(𝑘𝐵 − 1) + 𝜏2,𝑚1
− 𝜏2,𝑚2

)

𝑟2(−(𝑘𝐵 − 2) + 𝜏2,𝑚1
− 𝜏2,𝑚2

)

⋮ ⋮
𝑟2((𝑘𝐵 − 1) + 𝜏2,𝑚1

− 𝜏2,𝑚2
) 𝑟2((𝑘𝐵 − 2) + 𝜏2,𝑚1

− 𝜏2,𝑚2
)

⋱ ⋮
… 𝑟2(𝜏2,𝑚1

− 𝜏2,𝑚2
) ]

 
 
 
 

+ 

 

              exp{𝑗2𝜋𝑓𝑐(𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

)} 

×

[
 
 
 
 

𝑟𝐷(𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

) 𝑟𝐷(−𝑇𝑠 + 𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

)

𝑟𝐷(𝑇𝑠 + 𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

) 𝑟𝐷(𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

)

… 𝑟𝐷(−(𝑘𝐵 − 1) + 𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

)

𝑟𝐷(−(𝑘𝐵 − 2) + 𝜏𝐷,𝑚1
− 𝜏𝐷,𝑚2

)

⋮ ⋮
𝑟𝐷((𝑘𝐵 − 1) + 𝜏𝐷,𝑚1

− 𝜏𝐷,𝑚2
) 𝑟𝐷((𝑘𝐵 − 2) + 𝜏𝐷,𝑚1

− 𝜏𝐷,𝑚2
)

⋱ ⋮
… 𝑟𝐷(𝜏𝐷,𝑚1

− 𝜏𝐷,𝑚2
) ]

 
 
 
 

+ 

[

𝑟𝑤(0) 0
0 𝑟𝑤(0)

… 0
… 0

⋮         ⋮
0        0

⋱ ⋮
… 𝑟𝑤(0)

] , 𝑚1 = 1,2,… ,𝑀 and 𝑚2 = 1,2,… ,𝑀 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.41) 

Expected value function is a linear function, therefore, arrays of 𝐑̅ in (5.35) could be 

denoted as: 

𝐑𝑚,𝑛 = 𝐑(𝑚,𝑛),𝑠1
+ 𝐑(𝑚,𝑛),𝑠2

+ …+ 𝐑(𝑚,𝑛),𝑠𝐷
 ,  

 𝑚 = 1,2, … ,𝑀 and 𝑛 = 1,2, … ,𝑀 (5.42) 

Here, 𝐑(𝑚,𝑛),𝑠𝑑
, 𝑚 = 1,2, … ,𝑀, 𝑛 = 1, ,2… ,𝑀 and 𝑑 = 1,2, … , 𝐷 represents the 

cross-correlation matrix between the observation of the signal source 𝑆𝑑 which is 
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collected by the 𝑚𝑡ℎ and 𝑛𝑡ℎ element of the ULA. Thus (5.35) can be extend for overall 

observations as bellow: 

Consequently, inserting (5.43) into (5.40) would result in the contribution of each 

output signal’s power from the overall output power of the DFT-based BF using BP 

mode as: 

𝑃[𝑛] =  
1

(𝑘𝐵)2
 𝒘𝐻𝐹𝑛𝐄𝐻(𝐑̅𝑠1

+ 𝐑̅𝑠2
+ … + 𝐑̅𝑠𝐷

)𝐄 𝐹𝑛
𝐻𝒘,  

𝑃[𝑛] =  𝑃𝑠1
[𝑛] + ⋯ + 𝑃𝑠𝐷

[𝑛] + 𝑃𝑤[𝑛], 𝑛 = 0, … , (𝑘𝐵 − 1). (5.44) 

Finally, the SINR of the DFT-based BF under BP mode scenario could be calculated 

as: 

𝑆𝐼𝑁𝑅𝐷𝐹𝑇−𝐵𝑃 = 
𝑃𝑠1

[𝑛]

𝑃𝑠2
[𝑛] + ⋯ + 𝑃𝑠𝐷

[𝑛] + 𝑃w[𝑛]
, 𝑛 = 0, … , (𝑁 − 1) (5.45) 

where the out power of the 𝑑𝑡ℎ source can be obtained from 

𝑃𝑠𝑑
[𝑛] =

1

(𝑘𝐵)2
 𝒘𝐻𝐹𝑛𝐄

𝐻𝐑̅𝑠𝑑
𝐄 𝐹𝑛

𝐻𝒘, 𝑑 = 1, 2,… ,𝐷 (5.46) 

And 𝑃w[𝑛] is the output power of the noise as follow 

𝑃w[𝑛] =
1

(𝑘𝐵)2
 𝒘𝐻𝐹𝑛𝐄

𝐻𝐑̅w𝐄 𝐹𝑛
𝐻𝒘 =

𝑟w(0)

(𝑘𝐵)2
∥ 𝐄 𝐹𝑛

𝐻𝒘 ∥2,

𝑛 = 0,… , (𝑁 − 1), 

 

(5.47) 

Computation of the DFT-based BF’s output SINR can be summarized as in 4 steps 

below: 

Step(1): Construct the matrix 𝐄 using (5.35) and (5.38) and the definition of 𝑒𝑘 as in 

(5.27). 

Step(2): Calculate the matrix 𝐹𝑛 from (5.26) for 𝑛 = 0,… , (𝑁 − 1). 

𝐑̅ =  𝐑̅𝑠1
+ 𝐑̅𝑠2

+ …+ 𝐑̅𝑠𝐷
 . (5.43) 
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Step(3): Calculate the power of signals and noise for the DFT-based BF from (5.46) 

and (5.47). Consequently, calculate the output SINRs according to (5.45). 

Step(4): Afterward, set 𝑛 to (𝑛 + 1) and go back to second step. Pending 𝑛 ≥

(𝑘𝐵 − 1), select 𝑆𝐼𝑁𝑅[𝑛] instead of 𝑆𝐼𝑁𝑅[𝑛 − 𝑘𝐵]. 

5.6 Signal to Interference Plus Noise Ratio Formulation for the DFT-

Based Beamformer Under Sliding Window Mode 

In SW processing, each cycle of the BF only generates a new output, which it is the 

first element of the BF output 𝑦[0] in purposed cycle. Since, for 𝑛 = 0 in, the matrix 

𝐹𝑛 would reduce to identity matrix with size 𝑀𝑘𝑆, the power at the output of the DFT-

based BF under SW processing (DFT-SW) can be write as: 

𝑃DFT−SW[0] =
1

𝑘𝑠
2  𝒘𝐻𝐄𝐻𝐑 ̅𝐄 𝒘, (5.46) 

𝑃[0] =  𝑃𝑠1
[0] + 𝑃𝑠2

[0] + … + 𝑃𝑠𝐷
[0] + 𝑃w[0].  

And the SINR of the SW processing can be computed using each time instant (𝑡 = 0) 

in each cycle of the DFT-SW, on which in each cycle, one new sample is just 

generated. Thus SINR of the DFT-SW is given by: 

𝑆𝐼𝑁𝑅𝐷𝐹𝑇−𝑆𝑊[0] =  
𝑃𝑠1[0]

𝑃𝑠2
[0] + …… + 𝑃𝑠𝐷

[0] + 𝑃w[0]
,     for each slide. (5.47) 

Here, calculation of the output SINR of the DFT-based BF using SW processing can 

be summarized in 3 steps below: 

Step(1): Construct the matrix 𝐄 using (5.35) and (5.38) and the definition of 𝑒𝑘 as in 

(5.27). Note that matrix 𝐹𝑛 has reduced to identity matrix. 

Step(2): Calculate the power of the signals and noise for the DFT-based BF from 

(5.46) and (5.47). Consequently, compute the output SINRs according to (5.45). 

Step(3): For all time instants 𝑛, set 𝑆𝐼𝑁𝑅[𝑛] = 𝑆𝐼𝑁𝑅[0]. 
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Chapter 6 

PERFORMANCE ANALYSIS of DFT-BF 

In the literature, broadband beamforming has been broadly considered. Wideband BFs 

are generally designed to obtain high spatial resolution and have applications in 

various fields such as communications, acoustics, bio-medics and military. In 

comparison to their narrowband counterparts wideband BFs require considerably large 

spatial and temporal dimensions. To achieve high resolution large number of TDL 

elements (𝐿) and sensors (𝑀) are required. However, this increase in L and M would 

lead to a very high computational complexity for wideband beamforming techniques. 

To decrease the computational complexity of the broadband BFs a transformation such 

as DFT can be used to deal with different frequencies separately as in the case of a 

narrowband BF.  

The rest of this chapter provides information about the simulation setup and 

investigates the performance of a DFT-based BF under block processing (BP) and 

sliding window (SW) modes when correlation matrices are either known or estimated 

for a finite number of samples. The SINR criterion is used to assess the performance 

of the DFT-based BF. Afterward, the Ensemble Mean Squared Error (EMSE) is 

utilized to show the error between the input SINR and the output SINR. At the end, 

the computational complexity for BP and SW modes was compared in terms of 

Multiply-ACcumulates (MACs) operations. 
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6.1 Simulation Parameters 

Simulations were carried out using the MATLAB platform assuming an 8 element 

ULA (𝑀 = 8) with inter element spacing of 𝜆/2 and three baseband incoming signals 

each with bandwidths 𝐵 = 50𝑀𝐻𝑧, central frequencies of 150𝑀𝐻𝑧 and DOAs of 

𝜃1 = 20°,  𝜃2 = 40° and 𝜃3 = −20°. The signal with direction 𝜃1 = 20°was assumed 

to be the desired signal and individual powers for the three different sources were 

respectively set at 𝑃𝑠𝑑
= 5, 10, 10 (𝑑𝐵) over the noise level. Each sensor’s output was 

sampled at Nyquist rate of 1/2𝐵. All sources plus the noise were simulated using zero 

mean mutually uncorrelated white random Gaussian processes. For a fair comparison 

between the DFT-based BF under BP and SW processing modes, length of the signals 

were set at 𝑁 = 1000 and total number of samples was fixed at 8000 (𝑀𝑁). 

6.2 Power Spectral Density and Autocorrelation 

The power spectral density, 𝑆𝑥(𝑓), of a wideband signal 𝑥[𝑛] with constant power 

level 𝑃𝑥 inside the band [−𝐵, 𝐵] and zero outside can be expressed as: 

𝑆𝑥(𝑓) = {
𝑃𝑥, −𝐵 ≤ 𝑥 ≤ 𝐵
0,          𝑒𝑙𝑠𝑒

 . (6.1) 

 The corresponding correlation sequence of the signal 𝑥[𝑛] will then be: 

𝑟𝑥[𝑛] = 2𝐵𝑃𝑥𝑠𝑖𝑛𝑐(2𝐵𝑛) . (6.2) 

Since output of each sensor in the sensor array is sampled at Nyquist rate, this 

guarantees that each sample is uncorrelated with the others. Hence, the correlation 

sequence can be written as: 

𝑟𝑥[𝑛] = {
2𝐵𝑃𝑥, 𝑥 = 0

0   , 𝑥 ≠ 0
 . (6.3) 

Figure 6.1 below depicts the power spectral density (PSD) and the corresponding  
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     (a) 

 
       (b) 

Figure 6.1: Power Spectral Density and Autocorrelation for a White Gaussian 

Random Process (WGRP) for Bandwidth of 50 𝑀𝐻𝑧: 

 (a) PSD of the proposed band-limited WGRP,  

(b) Correlation function of the band-limited WGRP. 

autocorrelation function of a wideband signal with 5𝑑𝐵𝑊 𝑀𝐻𝑧⁄  power level above 

noise level. The approximation method reported in [20] has been used to generate the 

waveform for a band-limited white Gaussian random process assuming a fixed power 

level. Afterwards this signal has been sampled at Nyquist rate. The realization of this 

sampled signal is as depicted in Fig. 6.2. Also note that Fig. 6.1(a) has the periodogram 

approximation of this signal (the solid brown line).  
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Figure 6.2: An Observation of a Band-Limited WGRP. 

Output SINRs for DFT-based BF have been computed generating weight vectors with 

or without finite sample effect. For the ideal scenario without finite sample effect the 

autocorrelation matrices required for producing the weight vectors were assumed 

known and the output SINRs for DFT-based BF under BP mode has been obtained 

using 25, 50, 100, 200 and 1000 blocks (respective block sizes of 40, 20, 10, 5 and 1) 

and are as depicted in Fig. 6.3(a). Figure 6.3 (b) depicts the output SINRs of the DFT-

based BF under BP mode without knowing the correlation matrices (need to estimate 

𝐑̂𝑘s).  Spatial smoothing as in (5.11) has been used to estimate the correlation 

functions for same number of block as in Fig. 6.3(a). The impact of the number of 

frequency bins (𝑘𝐵) without and with finite sample effect has been demonstrated in 

Fig 6.3(a) and (b). observing the plots, we note that the  
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      (a)

     
      (b) 

Figure 6.3: Performance of DFT-Beamformer Under Block Processing  

With and Without Finite Sample Effect for 𝑁 = 1000 snapshots:  

(a) Corresponding SINRs for DFT-beamformer under BP with different number of 

blocks and with known correlation matrices, 

(b) The SINRs at the output of the DFT-based beamformer under block processing 

mode with different block’s sizes and with estimated correlation matrices using 

(5.11). 

output SINR of the DFT-based BF is time varying regardless of the finite sample 

effect. In fact, the SINRs curves are periodic and their period equals the number of 

frequency bins used. Due to the hill shape of the SINR curves, it could be understood 
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that the best SINR would be achieved at time index 𝑛 = ⌊𝑘𝐵 2⁄ ⌋ for both with and 

without finite sample effect.  For the case of no finite sample effect (Fig. 6.3(b)) it can 

be seen that by increasing the number of frequency bins (𝑘𝐵) the BF improves the 

peak SINR. However, for the fixed number of data snapshots (𝑁), there would be a 

compromise between number of snapshots in a block (𝑘𝐵), and the number of blocks 

( 𝐽 ) which could be seen from Fig. 6.3 (b).  

When the DFT-based BF operating under BP mode has higher number of frequency 

bins (accordingly smaller block size) the estimate of the correlation matrices 

(𝐑̂𝑘 , 𝑘 = 1,… , 𝑘𝐵) would be poorer and the SINR performance will degrade. As can 

be seen from the Fig. 6.3 (b), selecting 𝐽 = 200 and 𝑘𝐵 = 5 will result in highest peak 

among all different settings, but the SINR value for 𝐽 = 200 could be smaller in 

comparison with the narrowband MVDR case (𝐽 = 1000,  𝑘𝐵 = 1) at the time instant 

𝑛 = 0. For SINR plots with finite sample effect, generally the overall output SINR is 

weakened when 𝑘𝐵 is increased from 5 to 40. For 𝐽 = 25  and 𝑘𝐵 = 40 the SINR 

under DFT-based BF would become worse (lower) than the SINR for the narrowband 

MVDR case. Fig. 6.4 shows that the Ensemble-Mean-Squared-Error (EMSE) for both 

scenarios (with and without finite sample effect). EMSE will increase when less 

number of blocks is used (larger block size). In other words, selecting larger block 

sizes (𝑘𝐵) when number of snapshots is fixed would result in a lower SINR. However, 

as depicted in Fig. 6.6 when higher number of blocks is used then the computational 

complexity would rise. The DFT-based BF using SW mode will give just one sample 

in each cycle. Therefore, the output SINR for each cycle could be calculated at time 

instant zero. The output SINRs for DFT-based BF using SW mode for various window 
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Figure 6.4: Ensemble-Mean-Squared-Error (EMSE) Between the Input and Output 

SINRs of the DFT-BF Using BP Given Different Block Sizes. 

sizes have been plotted in Fig. 6.5. Note that as the window size selected becomes 

larger the SINR at the output of the DFT-based BF under SW mode will become lower.  

In this thesis the computational complexities for BP and SW modes were also 

calculated and compared in terms of Multiply-ACcumulates (MACs) operations. As 

stated in [21], for 𝑀 sensors and L-TDL elements the cost of the DFT-based BF under 

BP mode can be calculated as: 

𝐶𝐷𝐹𝑇−𝐵𝑃 = (𝑀 + 1) log2 𝐿 + 𝑀2 + 3𝑀. (6.4) 

This is a cost per full-band sampling period. The cost for SW mode in MACs is slightly 

higher since under the SW mode the DFT is computed at each time instant 𝑛 and IDFT 

is replaced by a summation as stated in [9]. The MAC cost for SW can be calculated 

using: 

𝐶𝐷𝐹𝑇−𝑆𝑊 = 𝐿(𝑀 log2 𝐿 + 𝑀2 + 3𝑀) . (6.5) 
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Figure 6.5: Output SINR for DFT-based Beamformer Using SW Processing 

[Window sizes of ks = 1, 2, 4, 6, 8, 10, 20, 25, 50 and 100 at time instant n = 0]. 

Figure 6.6. depicts the cost in MACs for DFT-based BF under both BP and SW mod- 

 
Figure 6.6: Computational Complexities in MACs  

(Block Processing Mode is denoted by BPM and the  

Sliding Window Mode is denoted by SWM) 
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-es for various number of TDL elements (𝐿), and 𝑀 = 10, 30 and 100 sensors (Note 

that the TDLs length is equal to the block or window sizes (𝐿 = 𝑘𝐵 𝑜𝑟 𝑘𝑆)). Clearly 

for the DFT-based BF the cost under BP mode is much lower in comparison to the cost 

under SW processing. 

6.3 Real Life Based Analysis 

While the voice services in 3G were using circuit-switching, todays 4G LTE networks 

use packet switching. These packet switched services can integrate with other services 

and applications such as messaging, video calling, Web applications, and other mobile 

applications. WebRTC is an open project supported by Google, Mozilla, and Opera 

within the Internet Engineering Taskforce (IETF) that enables real-time 

communications in Web browsers via JavaScript APIs. 3GPP Release 12 

specifications define how WebRTC clients can access IMS services, including packet 

voice and video communication.  

WebRTC is able to access device hardware, such as microphones or cameras, without 

the need to install a plugin or preload a dedicated communication application, such as 

Skype or Viber. Also when compared to VoLTE has the advantage that it is platform 

and device independent and is also open for development by third party developers.  

Because WebRTC is built into the browser, a lot of apps that incorporate voice and 

video as elements of a larger communications application will use it. It is expected that 

WebRTC along with voice over LTE (VoLTE) become the two leading real-time 

communication tools for future generations of mobile communications.  

This section of the thesis provides the SINR performance of a DFT-BF under BP mode 
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when WebRTC with 50 participants is assumed for video conferencing in Advance 

Long Term Evaluation (A-LTE) network. The uplink and downlink frequencies for A-

LTE (Fdownling and Fuplink) can be calculated using (6.6): 

𝐹
downlink

 =  𝐹
DL_Low

+  0.1 (𝑁
DL − 𝑁

DL_offset
) 

𝐹
uplink = 𝐹

UL_Low +  0.1 (𝑁
UL − 𝑁

UL_offset
) 

 

 

   (6.6) 

Where, 𝑁
DL  is downlink E-UTRA Absolute Radio Frequency Channel Number 

(EARFCN), 𝑁
UL  is uplink EARFCN, 𝑁

DL_offset
 is the offset used to calculate downlink 

EARFCN and 𝑁
UL_offset

 is the offset used to calculate uplink EARFCN using Table 6.1: 

Table 6.1: EARFCN to frequency conversion for downlink and uplink 

E-

UTRA 

band 

FDL_Low 

(MHz) NDL_Offset 

downlink 

EARFCN 

(NDL) 

FUL_Low 

(MHz) NUL_Offset 

uplink 

EARFCN 

(NUL) 

1 2110 0 0-599 1920 18000 

18000- 

18599 

2 1930 600 600-1199 1850 18600 

18600- 

19199 

3 1805 1200 1200-1949 1710 19200 

19200- 

19949 

4 2110 1950 1950-2399 1710 19950 

19950- 

20399 

In this last simulation we have assumed an 8 element ULA (𝑀 = 8) with inter element 

spacing of 𝜆/2 and three baseband incoming signals each in the third E-UTRA band 

of A-LTE channel with bandwidths of  𝐵 = 3.5 𝑀𝐻𝑧, central frequencies of 

1.7475 𝑀𝐻𝑧 and DOAs of  𝜃1 = 20°,  𝜃2 = 40° and 𝜃3 = −20°. The signal with 
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direction 𝜃1 = 20°was assumed to be the desired signal and individual powers for the 

three different sources were respectively set at 𝑃𝑠𝑑
= 10, 5, 30 (dB) over the noise 

level. Each sensor’s output was sampled at Nyquist rate of 1/2𝐵. All sources plus the 

noise were simulated using zero mean mutually uncorrelated white random Gaussian 

processes. Length of the signals were assumed to be 𝑁 = 1000 and with 8 sensors 

total number of samples (𝑀𝑁) is 8000.  

Output SINRs for DFT-based BF have been computed generating weight vectors with 

finite sample effect. Figure 6.7 depicts the output SINRs of the DFT-based BF under 

BP mode without knowing the correlation matrices (need to estimate 𝐑̂𝑘s).  Spatial 

smoothing as in (5.11) was used to estimate the correlation functions. From Fig 6.7 we 

observe that when the DFT-based BF operating under BP mode uses higher number of 

frequency bins (accordingly smaller block size) the estimate of the correlation matrices 

(𝐑̂𝑘 , 𝑘 = 1,… , 𝑘𝐵) and the SINR performance would be poorer. Selecting 𝐽 = 25 and 

𝑘𝐵 = 40 will result in highest peak among all different settings, however 𝐽 = 100 and 

𝑘𝐵 = 10 only has new deeps in the SINR plot and perhaps is the best setting.  

For 𝐽 = 200  and 𝑘𝐵 = 5 the SINR under DFT-based BF would become lower than 

sthe SINR for the narrowband MVDR case (𝐽 = 1000 and 𝑘𝐵 = 1). 
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Figure 6.7: Performance of DFT-BF Under 4G A-LTE Network 

Assuming Finite Sample Effect. 
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Chapter 7 

CONCLUSION AND FUTURE WORKS 

7.1 Conclusion 

The SINRs at the output of the DFT-based BFs under real correlation matrices and 

estimated correlations under finite sample effect, are examined in this thesis. 

According to this study, it is figured out that the DFT-based BFs have high proficiency 

to solve the wideband sources problem. However, the number of bins 𝑘𝐵 or 𝑘𝑆 have to 

be carefully selected especially when the overall samples are finite. On the other hand, 

the number of blocks/slides are very important factor in changing the computational 

complexities and the accuracy of the correlation matrices. Although, the higher 

number of blocks are resulted in better correlation estimations but, separating the 

bandwidth of received signal to more frequency bins doesn’t necessarily result in better 

performance under the limited sample environment. On the other hand, taking higher 

number of blocks will result in logarithmic increase on the computational 

complexities. Additionally, the output SINR of the DFT-based BF using BP mode at 

different time instants 𝑛 would be varying. Due to our simulations, the DFT-based BF 

under BP scenario would perform well results in the middle time instant at each block 

(𝑛 = ⌊𝑘𝐵 2⁄ ⌋) and the worst ones would be occur at the starting (𝑛 = 0) and ending 

(𝑛 = 𝑘𝐵 − 1) frequency bins of the blocks. Also the impact of the finite sample effect 

on DFT-based wideband BFs can be solved using BP investigation. Therefore, it isn’t 

necessary to concern about finite sample effect. 
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Since the DFT-based BF utilizing SW process always takes a new snapshot and 

generate only one sample at its output (at 𝑛 = 0) and suffers from the highly correlated 

inputs and it gives acceptable results just for small number of slides, these findings 

shows that the DFT-based BF using SW needs to replace by a new structure with the 

enhanced performance in comparison with the existing approach. In addition to these 

shortcomings of the DFT-based BF using SW process the computational complexities 

of this method is considerably higher than the DFT-based BF using BP procedure. 

7.2 Future Work 

Both the BP and SW modes of the DFT-based BF will neglect any correlation that may 

exist between the frequency bins. However as suggested by [22] overlap-add or 

overlap-save approaches can be applied to deal with the problem of internal 

correlations between frequency bins. Also, since DFT-based BF under BP scenario has 

worse performance at the start and end points of each block it would be useful to utilize 

a padding technique between the blocks. 
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