
 
 

Heuristic Solutions for Electric Vehicle Routing 

Problem with Time Windows and Recharging 

Stations  

 

 

Iman Roozbeh 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirements for the Degree of 

 

 

 

 

Master of Science 

in 

Industrial Engineering 

 

 

 

 

 

 

 

 

Eastern Mediterranean University 

September 2014 

Gazimağusa, North Cyprus 

 



 

ii 
 

Approval of the Institute of Graduate Studies and Research  

 

                                                                                                   Prof. Dr. Elvan Yılmaz 

                                                                                                              Director 
 

 

 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 

of Science in Industrial Engineering.  
 

 

 

 

 

 

                                                                          Asst. Prof. Dr. Gökhan İzbırak 

                                                                 Chair, Department of Industrial Engineering 
 

 

 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Industrial 

Engineering.  
 

 

 

 

 

   Assoc. Prof. Dr. Bülent Çatay                Asst. Prof. Dr. Gökhan İzbırak 

      Co-Supervisor           Supervisor 

 

 

                                                                                            Examining Committee  

 

 

1. Prof. Dr. Bela Vizvari 

2. Assoc. Prof. Dr. Bülent Çatay 

3. Asst. Prof. Dr. Sahand Daneshvar 

4. Asst. Prof. Dr. Hüseyin Güden 

5. Asst. Prof. Dr. Gökhan İzbırak 

  



 

iii 
 

ABSTRACT 

Due to the regulation and laws concerning the emission of greenhouse gasses, carriers 

are starting to use electric vehicles for last-mile deliveries. The limited battery 

capacities of these vehicles necessitate visits to recharging stations during delivery 

tours of industry-typical length, which have to be considered in the route planning to 

avoid inefficient vehicle routes with long detours. This thesis seeks to propose new 

heuristic solution methods for Electric Vehicle Routing Problem with Time Windows 

(E-VRPTW), which incorporates the possibility of recharging at any of the available 

charging stations to minimize the total travel distance based on the Clarke and Wright 

(CW) Saving Heuristic. The solution method focuses on the construction of routes 

according to waiting time of vehicles, determined priority of customers with regard to 

their earliest starting service time, customers’ demands and etc. Moreover, the 

recharging rate, vehicle freight capacity, battery capacity, time windows and 

recharging time are considered to make it close to real-life logistics problems. 

Numerical tests are performed on newly designed instances by Schneider and 

performances of proposed methods are discussed. 

Keywords: Vehicle Routing Problem, Clarke and Wright Saving Heuristic, Green 

Logistic, Electric Vehicles, Combinatorial Optimization  
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ÖZ 

Sera gazlarının salınımı ile ilgili kural ve yasalardan dolayı taşımacılar şehir içi 

taşımalarını elektrikle çalışan araçlarla yapmaya başlamışlardır. Bu araçların sınırlı 

olan batarya kapasiteleri, taşıma sırasında zorunlu olarak batarya dolum 

istasyonlarında şarj edilmeleri gereksinimini doğurmakta ve bu durum da uzun ve 

verimsiz rotaların önlenmesi için rota planlamasında gözönüne alınmalıdır. Bu tezin 

amacı, alınan toplam mesafeyi enküçüklemek amacıyla şarjın tüm dolum 

istasyonlarında mümkün olduğu ve Clarke & Wright tasarruf algoritmasını esas alan 

Electric Vehicle Routing Problem with Time Windows (E-VRPTW) problemine yeni 

bir sezgisel çözüm yöntemi önermektir. Önerilen çözüm yöntemi öncelikle araçların 

bekleme sürelerine, müşterilerin zaman önceliklerine, taleplerine vs. göre rotalar 

oluşturmaya odaklanmaktadır. Problemin lojistik olarak daha da gerçekçi olmasını 

sağlamak üzere araçların taşıma kapasiteleri, batarya kapasiteleri, zaman aralıkları, 

şarj zamanları ve hızları da gözönüne alınmıştır. Schneider’in değerleri üzerinden 

sayısal deneyler de yapılmış ve önerilen yöntemlerin performansları da tartışılmıştır. 

Anahtar Kelimeler: Araç rotalama sorunu, Clarke ve Wright tasarruf sezgiseli, yeşil 

lojistik, elektrikli araçlar, birleşi eniyilemesi 
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Chapter 1 

INTRODUCTION 

Through the history, many variants of Vehicle Routing Problems (VRP) are introduced 

of which Routing of Vehicles with Green Fuel is a subgroup member receiving close 

and increasing attention from business companies and governments. The importance 

of GVRP originates from the fact that current distribution and production strategies 

are not sustainable. Besides the conventional costs at designing level of logistics 

policies, the social, ecological and environmental effects should be taken into 

consideration. Among the environmental effects, the emission of greenhouse gasses, 

particularly CO2, is the most concerning one due to its hazardous impacts. Freight 

transport comprises 21% of total CO2 emissions from the transport division in the 

United Kingdom and this rises to 28% of national greenhouse gas emissions in the 

United States. 

The implementation of green logistics itself requires change in transportation scheme 

and usage of sustainable distribution network with less negative effect on environment. 

Many alternatives are provided for shifting onto sustainable logistic, such as using the 

green intelligent transportation systems, promotion of alternative fuels, electronic 

vehicles and other eco-friendly infrastructures. Many Small Package Shipping (SPS) 

companies have started to substitute their current fleets of vehicles to include 

Alternative Fuel Vehicles (AFVs) with greener fuels, such as CNG, LPG, Hydrogen, 

Biodiesel and electricity to meet new laws by governments. 
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The best fuel alternative for medium and heavy duty vehicles is promoted alternative 

fuels, like biodiesel, and for small package shipping vehicles, electricity is the best 

choice. However, using such vehicles leads to other challenges in route planning like 

meeting Alternative Fuel Stations (AFSs) due to fuel capacity constraint of green 

vehicles, while number of available AFSs and recharging stations are still scarce. 

Agencies consider various factors in selection of a specific vehicle type, including fuel 

availability, distribution of fuel stations, fuel efficiency, fuel cost and vehicle driving 

range. Several SPS companies such as Royal Mail, DHL, DPD, UPS and Japan Post 

started using Battery Electric Vehicles (BEVs) in urban area transports for last-mile 

deliveries by considering all the criteria. Concerning the utilization of electric vehicles, 

incorporation of electric vehicle’s specifications in route planning is required, such as 

driving range of BEVs, which is insufficient to meet all customers in one run or to 

travel to customers who are far from depot. Since reduction of customers in each tour 

is not an economical option, insertion of recharging stations along the tours is required 

to visit more customers in each departure. An insufficient integration of these 

characteristics in route planning methods can cause long detours, specifically if 

available recharging stations are scarce. 

The Capacitated Vehicle Routing Problem (CVRP) was introduced by Dantzing and 

Ramser (Dantzig & Ramser, 1959) and since then many extensions and varieties of the 

VRP have been proposed to add more real-life logistic constraints to the original 

problem so as to make it more applicable. One of the most famous extensions of VRP 

is a Vehicle Routing Problem with Time Windows (VRPTW) (Russell, 1977), where 

each customer should be reached in a predefined time interval. Recently, Electric 

Vehicle Routing Problem with Time Windows (E-VRPTW) and Recharging Stations 
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is proposed by Schneider et al. (Schneider, Stenger, & Goeke, 2014). E-VRPTW is an 

extension of VRPTW which deals with routing of electric vehicles while capacity 

constraint and time windows are taken into consideration.   

Vehicle Routing Problem is a well-known NP-hard problem with a primary objective 

of total travel distance minimization. Exact algorithms such as branch-and-cut, branch-

and-bound and branch-and-cut-and-price are not able to find optimal solutions for 

large number of customers. Computation time of exact algorithms for large number of 

customers is huge and this is more considerable in E-VRPTW when recharging 

stations are involved. However, heuristic and meta-heuristic algorithms compute 

appropriate solutions close to optimal in much less computation time. In general, NP-

hard problems are those of which solution is not verifiable in polynomial time. 

Heuristic Algorithms find feasible solutions among all feasible ones in much less 

computation time. Saving Algorithms (Gajpal & Abad, 2009) and Sweep Algorithm 

(Dondo & Cerdá, 2013) are the most popular and efficient algorithms among all 

Classical Heuristic Algorithms for VRP and other proposed heuristics for VRP are as 

follows: (1) Sequential Insertion Algorithm; (2) Petal Algorithm; (3) Cluster-First-

Route-Second Algorithm; (4) k-opt Heuristic; (5) Two-Phase Insertion Algorithm; (6) 

2-Petal Algorithm; (7) 𝜆-Interchanges; (8) OR-Exchanges and etc. All mentioned 

heuristic solution methods can be implemented to find a feasible (close to optimal) set 

of routes out of all possibilities, while there is no guarantee for optimality. 

CW Saving Algorithm uses saving values by merging pairs of customers in the same 

route. To the best of author knowledge, CW Saving Algorithm is the most 

implemented heuristic method for solving VRP due to its efficient computation time 
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and generation of reliable solution. Many enhancements are proposed for the CW 

Saving Algorithm to improve its performance to generate a better set of solutions.  

In recent years, Erdogan et al (Erdoğan & Miller-Hooks, 2012) and Schneider et al 

(Schneider et al., 2014) have investigated logistic problems concerning green vehicles. 

Erdogan used modified Clarke and Wright Saving Algorithm (MCW) to solve GVRP. 

This thesis investigates the efficiency of MCW which is proposed by Erdogan and 

Miller-Hooks (Erdoğan & Miller-Hooks, 2012) as a solution method for Routing of 

Green Vehicles for Green Fuels while it is adapted for capacitated E-VRPTW and 

Recharging Stations. Validity of the solution methodologies is investigated by small 

instances which are solved by both exact and heuristic methods. Then, further 

modifications are applied on MCW Algorithm to improve its performance and similar 

test instances are solved by enhanced model. Three of the most studied modifications 

on CW Algorithm are presented by Doyuran & Catay (Doyuran & Catay, 2009), 

Yellow (Yellow, 1970), Altinel and Öncan (Altinel & Öncan, 2005) and Paessens 

(Paessens, 1988). The aforementioned modifications are adapted for E-VRPTW to 

increase the solutions’ quality by expanding exploration ability of the algorithm in the 

least computation time and these algorithms are tested on the same benchmark 

instances to compare their results. 

The computational results were obtained using Solomon’s benchmark (Solomon, 

1987) which is modified by Schneider et al. (Schneider et al., 2014) for electric 

vehicles and classified by customers’ geographical distribution. The solution methods 

which performed better for small instances are also tested for bigger population size 

instances. 
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The thesis results are not for only E-VRPTW but also logistics service providers with 

a fleet of AFVs and limited refueling stations in their service area can implement the 

proposed techniques to find a good near to optimal set of solutions in an efficient 

computation time. 

The thesis has the following structure: Section 2 briefly reviews the basic concepts of 

Vehicle Routing Problem, existing research and studies up to now. Chapter 3 defines 

the problem characteristics and explains related works, while Chapter 4 focuses on the 

solution approaches. The computational results for small and large instances by 

proposed methodologies are discussed in Chapter 5. Lastly, conclusion and discussion 

are presented in Chapter 6 besides possible future studies.  
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Chapter 2 

LITERATURE REVIEW 

In order to grasp the idea behind VRP, the existence terminology and definitions 

should be provided. This chapter demonstrates the required terminology to be able to 

both understand the idea clearly and be consistent with the existing literature. On top 

of that, summary of the existing literature is also provided for representing the 

wideness of the studies and defining scopes of this study. Finally, a summary for 

heuristic methodologies on VRPs is indicated.  

2.1 Vehicle Routing Problem and Its Variants 

VRP is a well-known integer programming problem in combinatorial optimization and 

it dates back to the end of the fifties when Dantzing et al. (Dantzig & Ramser, 1959) 

proposed a mathematical and an algorithmic formulation as a solution method for 

delivery of gasoline to service stations. VRP is derived by Travelling Salesman 

Problem (TSP), while capacity constraint is considered. 

VRP is a combination of TSP and Bin Packing Problem (BPP) and it is applied in 

various fields. Some of the real-world applications of VRP are: laundry and mail 

distribution, delivery of goods in department store, tour planning, newspaper 

deliveries, picking up students by school buses, maintenance inspection tours and 

scheduling problems and so on. In VRP, there are m  vehicles initially located at a 

depot to deliver predefined quantities of freights to n  customers. Determining the 

optimal set of routes which are used by vehicles to satisfy customers’ demand is known 
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as VRP. The objectives of VRPs can be minimization of total travel distance and 

pollution, maximization of customers’ satisfaction and etc. Every vehicle in VRP has 

a limited capacity which may vary with others. VRP with freight capacity constraint 

for vehicles is known as CVRP (Dantzig & Ramser, 1959). Capacity constraint is the 

most studied constraint which makes restriction in route construction for vehicles and 

each vehicle can meet limited number of customers with predefined demands that may 

vary from each other. Classical VRP assumes that vehicles leave a common depot and 

they return back in a single depot. However, Tillman (Tillman, 1969) introduced 

Multi-depot Vehicle Routing Problem (MDVRP), which contains more than one depot 

and customers’ demands can be satisfied by a vehicle which is assigned to one of these 

depots. This variant of VRP is also originated from real-life distribution problems such 

as the delivery of packaged foods, chemical materials, soft drinks, industrial gasses 

and etc. 

An important extension of VRP is Vehicle Routing Problem with Time Windows 

(VRPTW), which was introduced by Russell (Russell, 1977). In the proposed problem 

by Russell, all customers must be visited in predefined time intervals. There are two 

variants of VRPTW which are mainly studied in literatures and they can be stated as 

follows. 

1) Soft Time Windows where customers can be serviced after their due-time with 

a price of predefined penalties. 

2) Hard Time Windows, where a vehicle must arrive and be ready to serve the 

customer before or right before the specified time interval. Late arrival is not 

allowed. If the vehicle arrives earlier than the time window, it has to wait.  
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The traditional VRP considers Euclidean distance between the customers, however 

this assumption throws down the real transportations on real road networks where 

travel time between customers is dependent on both road distance and time of the 

day. Musolino et al. (Musolino, Polimeni, Rindone, & Vitetta, 2013) considered 

other circumstances which affects travel time such as whether  conditions, rush 

hour and etc., and they also introduced Time-dependent Vehicle Routing Problem 

(TDVRP) and Time-dependent Traveling Sales-man Problem. One of the most 

studied extensions of TDVRP is Time-dependent Vehicle Routing Problem with 

Time Windows (TDVRPTW). Based on traditional benchmark instances by 

Solomon (Solomon, 1987), Figliozzi (Andres Figliozzi, 2012) introduced a set of 

benchmark problems to compare the results in terms of computation time and 

quality. 

Watson-Gandy and Dohm (Watson-Gandy & Dohrn, 1973) not only applied 

modifications on VRP to be able to solve the grocery distribution, parcel delivery and 

waste collection problems, but also have introduced Location Routing Problem (LRP). 

In LRP, decisions are related to travel cost and opening cost of a set of depots or a 

depot among all available locations so as to satisfy customers. 

VRP can be applied for multi-period deliveries in different day combinations and 

number of visits during a week or longer period of time. The application of VRP for 

multi-period deliveries was proposed by Beltrami and Bodin (Beltrami & Bodin, 1974) 

as Periodic Vehicle Routing Problem (PVRP).  
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Uncertainty in operational environments is included for VRP by Psaraftis (Psaraftis, 

1980). In real-world logistics problems, vehicles break down and traffic control can 

take place and Dynamic Vehicle Routing Problem (DVRP) considers all these 

circumstances in the dynamic world.  

The main question, which logistics companies seek to answer, is how many vehicles 

with what characteristics are needed to satisfy customers’ demands with minimum 

cost. Clark and Wright (Clarke & Wright, 1964) considered this real-life issue and they 

developed Fleet Size and Mixed Vehicle Routing Problem (FMVRP). In FMVRP, 

each vehicle has its own characteristics such as speed, freight capacity and fuel 

capacity. Green Vehicle Routing Problem (GVRP) is a new aspect of VRP which has 

recently been introduced in three main scopes, including VRP in Reverse Logistics 

(VRPRL) (Beullens, Van Oudheusden, & Van Wassenhove, 2004), Pollution Routing 

Problem (PRP) (Bektaş & Laporte, 2011) and Green-VRP (Erdoğan & Miller-Hooks, 

2012). PRP focuses on minimization of emitted Greenhouse Gasses (GHG) by 

vehicles. VRPRL investigates reverse logistics distribution aspects in four main 

categories including Waste Collection, Selective Pickup with Pricing, Simultaneous 

Distribution and Collection and End-of-life Goods Collection. A Green Vehicle 

Routing Problem was firstly introduced by Erdogan et al. (Erdoğan & Miller-Hooks, 

2012) for dealing with problems caused by the usage of new vehicles with alternative 

fuels such as biodiesel which are needed by vehicles to meet fuel stations through the 

routes. 

All the above mentioned VRPs can be solved in deterministic or stochastic 

environment. The notion of stochastic VRP was introduced by Gendreau et al. 

(Gendreau, Laporte, & Séguin, 1996). Stochastic Vehicle Routing Problem (SVRP) 
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assigns random values to customers’ demands, location and travel time to make 

Classical VRP applicable in uncertain environments.  

2.2 Solution Methods 

As VRP is an NP-hard Combinatorial Optimization Problem, computation of solutions 

by exact algorithms in polynomial time is only possible for small instances in long 

computation time. As a consequence of this property of VRP, all exact algorithms such 

as direct search methods, dynamic programming, integer linear programming and etc., 

become useless. Many Heuristic and Meta-heuristic Algorithms, whether designed or 

adapted to solve various VRPs in short computation time and much research 

investigates on decreasing the computation time of such these algorithms and 

increasing output quality of them. 

In general, approximate algorithms are categorized into two main sub-groups which 

are classical heuristic algorithms and meta-heuristic algorithms. The fastest way to 

reach the solution is implementation of classical heuristic algorithms. These 

algorithms are developed to achieve the best solution for large VRPs in efficient ways 

as fast as possible, while they can get equipped with improvement approaches to utilize 

the primary solution and improve the solutions as much as possible, therefore, heuristic 

algorithms with improvement part can generate solutions with higher quality, but in 

longer computation time.  

Many heuristic solution methods have been proposed since 1959, such as k-opt 

Heuristic, Petal Algorithm, 𝜆-interchanges, OR-exchanges, Sequential Insertion 

Algorithm, Sweep Algorithm, Saving Algorithms and etc., which can produce a 

feasible set of routes in a short computation time. Among all aforementioned 
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algorithms, Sweep and CW Saving Algorithms are the most studied methods, since 

they generate results with higher qualities. 

There are two versions of CW Saving Algorithm which are Parallel CW Saving 

Algorithm and Sequential CW Saving Algorithm. The Sequential CW Saving 

Algorithm only constructs one route at a time, whereas the parallel version may 

construct more than one route at a time. The CW Saving Algorithm calculates saving 

values for each pair of nodes and it starts to merge nodes in a way to satisfy constraints 

and minimize total travel distance. Erdogan et al. (Erdoğan & Miller-Hooks, 2012)  

used sequential CW Saving Algorithm to solve a GVRP, while many other authors 

like Cao (Cao, 2012), Pichpibul et al. (Pichpibul & Kawtummachai, 2012) and etc., 

also implement CW Saving Algorithm to solve classical VRP with various properties.  

Sweep Algorithm is another well-studied heuristic that constructs routes based on the 

angles of customers with depot and another arbitrary line (Schneider et al., 2014). 

However, to the best of my knowledge, it is not as efficient as CW Saving Algorithm 

in terms of both quality of solutions and implementation complexity. 

Meta-heuristic Algorithms can be categorized into two sub-groups (Lin, Choy, Ho, 

Chung, & Lam, 2014) as follows. 

1) Local Search Algorithms such as Tabu Search (TS) (Brandão, 2004), Variable 

Neighborhood Search (VNS) (Wen, Krapper, Larsen, & Stidsen, 2011), Large 

Neighborhood Search (LNS) (Mattos Ribeiro & Laporte, 2012), Simulated 

Annealing (SA) (Baños, Ortega, Gil, Fernández, & de Toro, 2013) and etc., 

explore solution space iteratively from a solution in a current neighborhood to 

another solution in other neighborhoods. 
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2) Population Search Algorithms, like Ant Colony Optimization (ACO) (Yu & 

Yang, 2011), Genetic Algorithm (GA) (Vidal, Crainic, Gendreau, & Prins, 

2013) and many others of which most are inspired from natural phenomena. 

Population Search Algorithms keep a pool of good parent solutions and by 

sequential selecting of parent solutions, they generate a new reliable offspring 

and hence updating the pool.  
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Chapter 3 

PROBLEM DESCRIPTION 

Using Electric Vehicles (EVs) for last-mile deliveries in Small Package Shipping 

companies (SPS) caused new restrictions for routing problems for EVs such as battery 

capacity constraint, various recharging rates depending on the charge level and etc. All 

these restrictions are raised from EVs in logistic companies, encouraged new 

investigations for determination of better routes according to fleet specifications. 

VRPTW (Russell, 1977) is a well-studied variant of VRP which is close to real-life 

problems. Schneider et al. (Schneider et al., 2014) proposed Electric Vehicle Routing 

Problem with Time Windows (E-VRPTW) and Recharging Stations which is an 

extension of VRP for electric vehicles. The first step in the definition of E-VRPTW is 

presentation of mathematical model, however one should not that without presenting 

mathematical model for CVRP and VRPTW, it is incomplete. 

3.1  Capacitated Vehicle Routing Problem 

CVRP is a variant of VRP that known number of vehicles with uniform capacity must 

serve customers with minimum transit cost, while all vehicles leave a common depot 

(Dantzig & Ramser, 1959). Total demand of each route must be less than the vehicle 

capacity and any violation in capacity is not allowed.  

Figure 3.1 illustrates a CVRP. In Figure 3.1, a depot and a set of customers are defined, 

while a possible solution is proposed for better understanding of the problem. The 

following figure illustrates the classical VRP with freight capacity; however the real-
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world logistic problems are more complicated. Many variants of VRP are proposed to 

include real-life logistic problems and constraints. 

 
Figure 3.1. Possible Solution for a VRP 

3.2  Vehicle Routing Problem with Time Windows  

Besides CVRP, another variant of VRP is used in this thesis to have a better simulation 

of real-life logistic problems. In VRPTW, certain time intervals are defined for each 

customer in such a way that beginning of customer service must be within the intervals. 

In general, time window for customer i will be shown as (ei,li) denoting the earliest 

time and the latest possible time that vehicles can start the service (Russell, 1977). 

VRPTW had dealt with Solomon case study (Solomon, 1987) and benchmarks are 

prepared according to Solomon’s instances. Figure 3.2 shows the general concept of 

VRP with time windows for three customers, where ei and li, represent the earliest time 

for beginning of customer i service and the latest time that vehicle can arrive to 

customer i and start the service respectively. 
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Figure 3.2. Time Windows for Three Customers 

The formal definition of VRPTW is provided as mixed-integer program in this section. 

Let 0 and N+1 denote instances of the same depot and V =1, 2, …, N the set of N 

customers where all routes start at 0 and end at N + 1. Moreover, N + 1 and 0 indices 

implies that a set contains depot like V0, which shows set of V contains 0. VRPTW can 

be shown as a complete directed graph  AVG N ,1,0   which contains a set of arcs 

  jiVjijiA N   ,,|, 1,0 . For each pair of nodes ijd  and ijt  indicate distance and 

travel time from customer i  to j . There are k  number of homogeneous vehicles with 

a maximum capacity of C  at depot and iq is a positive demand of each node, which 

is 0 for depot. Furthermore, each vertex 1,0  NVi  has a time window  ii le ,  and 

specific service time 
is , which is 0 for depot. Variable j  indicates the service 

starting time, while
ju  specifies the remaining freight at arrival to customer

1,0  NVj . 

Variable jiVjVix Nij   ,,, 10
 is a binary variable, which is equal to 1 if an arc 

 ji,  traveled and otherwise it is 0. According to descriptions above, the mathematical 

model for VRPTW is formulated as follows (Russell, 1977). 
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The objective of the above function (3.1) is the minimization of total distance. 

Constraint (3.2) guarantees that each node has only one successor. Equation (3.3) 

ensures that incoming and outgoing arcs into each customer are equal. Time feasibility 

is enforced by equation (3.4) for all customers and depot, while constraint (3.5) checks 

the arrival time of vehicles to customers which must be within the intervals. Capacity 

constraints are applied by (3.6) and (3.7). The subtours’ information is prevented by 

equation (3.4) and (3.5). Constraint (3.9) describes a binary variable, which may be 1 

or 0. 

3.3  Electric Vehicle Routing Problem with Time Windows 

E-VRPTW concerns with VRP which fleet vehicles’ fuel is electricity. Since 

recharging facilities for EVs are limited through the world and limited battery capacity 

of vehicles, VRP needs further modifications based on EVs characteristics in order to 

be beneficial, i.e., maximum travel ranges of EVs are not usually sufficient for doing 
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the typical deliveries and fuel constraint must be taken into consideration. In order to 

overcome the problem, EVs need to visit appropriate recharging stations before they 

run out of electricity to be able to complete routes and traverse minimum distance, 

while they visit in route customers. Another variant of routing of vehicles with green 

fuels is VRP for biodiesel vehicles which also needs refueling through the routes 

(Erdoğan & Miller-Hooks, 2012) and it is the same as E-VRPTW in origin, while EVs 

recharging is not as fast as other vehicles and recharging time needs to be considered 

in travel time. 

The following figure shows E-VRPTW. The shaded regions of the cylinders show the 

battery level concerned. Customers are shown by circles and available charge stations 

in triangles. The vehicle leaves depot and meets customers till customer five; however 

as it does not have sufficient charge, it has to visit the closest recharging (F2) to 

complete the route. All the customers and depot have to be visited within a predefined 

time interval.  

 
Figure 3.3. A sample solution for EVRPTW 
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In routing of vehicles with green fuels, Refueling Stations may be visited once, more 

than once or not visited at all (see Fig 3.4). 

 
Figure 3.4. Possible Visits for Refueling Stations 

The formal definition of capacitated E-VRPTW with Recharging Stations is provided 

as a mixed-integer program in this section. Let 0  and 1N  denote the same depot, 

where each route starts at 0  and ends at 1N . Let F  be a set of recharging stations, 

while F  is a set of dummy vertices, which allows vehicles to visit recharging stations 

several times. One of the recharging stations is located at depot and vehicles leave 

depot when they are fully charged. Let NV ,...,2,1  denote the set of N  customers 

and .FVV   The sets, which are subscripted by 0  or 1N  contain respective 

instances of the depot, such as  00  VV ,  00  FF , 

   101,0 
 NVV N

,  11 
 NVVN .  

E-VRPTW can be presented as a completed directed graph  AVG N ,1,0 
 , which 

contains a set of arcs   jiVjijiA N   ,,|, 1,0
, where 

ijd  and 
ijt are distance and 

travel time of each arc, while 
ijdh   indicates required battery charge for travelling 

through each arc, h  and g are charge consumption and recharging rates respectively. 

Each customer 
1,0 

 NVi  has demand iq , time window  ii le ,  and a unique service time 



 

19 
  

is , where homogeneous vehicles with freight capacity C  and charge capacity Q  must 

start the service after ie  and no later than il . Service starting time for each vertex is 

shown by i , while remaining cargo and battery charge are shown by iu  and iy  

respectively. Variable jiVjVix Nij   ,,, 10
 is a binary variable, which is equal to 

1 if an arc  ji,  is travelled and otherwise it is 0. According to above descriptions, the 

mathematical model for E-VRPTW is formulated as below (Schneider et al., 2014). 
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Variables and parameters in the above mathematical formulation are defined in 

following table. 

Table 3.1. Variables and parameter definitions 

Variables and Parameter Definitions 

1,0 N  Depot instances 

iq  Demand of customer i 

C  Vehicle capacity 

V  Set of customers 

0V   
Set of customers and recharging visits including depot 

instances 

V   Set of customers including recharging stations 

0F   Set of recharging stations including depot 

ie  Earliest start of service at customer i 

is  Service  time of customer i 

il  Latest start of service at customer i 

ijd  Distance between customer i and j 

ijt  Travel time between customer i and j 

r  Charge consumption rate 

Q  Battery capacity 

The objective of the above model is minimization of total travel distance (3.9). 

Equation (3.10) ensures that each node has one successor. Connectivity of Recharging 

Stations visits are handled by constraint (3.11). Equation (3.12) ensures that incoming 
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and outgoing arcs into each customer are equal. Time feasibility is enforced by 

equation (3.13) for all customers and depot, while time feasibility for arcs leaving 

recharging stations is applied by constraint (3.14). Formation of subtours is prevented 

by constraints (3.13)-(3.15). Constraint (3.15) enforces time window constraint for all 

vertices. Demand satisfaction of customers is guaranteed by constraints (3.16) and 

(3.17). Constraints (3.18) and (3.19) check the battery level, which is never negative. 

Finally, Constraint (3.20) describes a binary variable, which may be 0 or 1. 
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Chapter 4 

SOLUTION METHODOLOGY 

In this chapter, CW Algorithm and existing modifications are introduced. And those 

which are implemented are discussed. 

4.1 Clarke and Wright Saving Algorithm  

CW Saving Algorithm (Clarke & Wright, 1964) generates relatively good near to 

optimal solutions as it is a heuristic algorithm. CW Saving Algorithm is based on cost 

saving values obtained by merging two routes into one route as it is represented in 

figure 4.1. 

 
Figure 4.1. Illustration of the Savings Concept 

In Figure 4.1(a) customers i  and j are visited in two separate routes, while customers

i  and j are in the same route after saving values calculation. Transportation cost 

between i  and j  is represented by 
ijc  which is equal to 

ijd . The transportation costs 

for figure 4.1(a) and 4.1(b) can be expressed as follows respectively. 

0000 jjiia ccccD                  (4.1) 
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00 jijia cccD                   (4.2) 

By considering equation 4.1 and 4.2, saving value for each pair can be figured out as 

below. 

ijjibaij cccDDS  00
                (4.3) 

Five main steps of CW Saving Algorithm for classical VRP is as follows.  

 Step 1: Calculating saving values for all pairs and construction of saving pair 

list. 

 Step 2: Sorting out saving values in descending order. 

 Step 3: Merging the customer’s route of nodes at the top of the saving pair list. 

 Step 4: Checking the vehicle capacity to prevent occurrence of capacity 

violation. 

 Step 5: The above steps should be repeated in the case if any unvisited 

customers are remained. 

4.2 Clarke and Wright Saving Heuristic for Green Vehicle Routing 

Problem 

Erdogan and Miller-Hooks (Erdoğan & Miller-Hooks, 2012) considered fuel 

constraint besides the other constraints such as time windows and capacity for 

Alternative Fuel Vehicles (AFVs) and applied required modifications on CW Saving 

Algorithm to adapt it for routing of vehicles with green fuels. The main five steps of 

modified CW Saving Algorithm can be illustrated as follows. 

 Step 1: Assign each customer to each route which starts and ends at the depot, 

while it is meeting the corresponding customers. 

 Step 2: Check route’s feasibility by calculating tour duration, distance and etc., 

and categorize routes into feasible and infeasible tours list. 
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 Step 3: For each route in the infeasible tour list, try to insert an Alternative Fuel 

Station (AFS) and if by AFS insertion the route, driving range and travel 

duration constraints are satisfied, add it to the feasible tour list. Only insertion 

of one AFS is allowed for starting tours. Insertion cost of an AFS ( f ) between 

vertex ( i ) and depot ( 0 ) can be expressed as below. 

000 ifif

f

i cccC                  (4.4) 

 Step 4: Compute the saving values and sort them in a descending order in 

saving pair list. 

 Step 5: If the saving pair list is not empty: select the first unvisited pair of 

vertices from the saving pair list, merge with associated tours and check the 

driving range and tour duration constraints. If both constraints are met, add the 

new route to the feasible tour list. However, if the driving range violates from 

maximum driving range, insert a new AFS with a least cost into the route and 

check the feasibility constraints again. Insertion cost of AFS ( f ) between 

customers ( i ) and ( j ) is as follows. 

jifjif

f

ij ccccC 00                     (4.5) 

After insertion of AFSs, redundancy check should be applied to check the possibility 

of removing unnecessary AFSs in the route. Add the final tour to the feasible tour list 

after redundancy check. If any tour has been added to the feasible tours list, return to 

Step 4. Otherwise, stop.  

The above steps are illustrated in Figure 4.2 which illustrates additional characteristics 

of this problem class that affect the merging process. E . in Fig. 4.2a, two tours that 

visit the same AFS can be merged with only a deletion in the links incident on the 

depot. No additional links are required. Moreover, tours that cannot be merged directly 
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may be combined if an AFS is included as depicted in Fig. 4.2b. When a tour 

containing an AFS is included in a merge that involves an additional AFS visit, as in 

Fig. 4.2b, it may be that inclusion of an AFS from an original tour is redundant. This 

AFS can be dropped from the final post-merge tour, resulting in, for example, the tour 

depicted in Fig. 4.2c. 

 
Figure 4.2. Merging Characteristics 

4.2.1 Clarke and Wright Saving Heuristic with One and Two Parameters 

The classical CW Saving Algorithm calculates saving values by equation 4.3 and sort 

saving values in descending order. The corresponding saving values for each pair is 

large whenever nodes are far from depot and the distance between them is short. One 

of the weaknesses of CW Saving Algorithm is that it starts to join pairs with higher 

saving values together and it causes circular shapes for constructed tours. Both Yellow 

(Yellow, 1970) and Gaskell (Gaskell, 1967) improved CW Saving Algorithm by 

adding a new parameter to equation 4.3, which causes change in pairs’ priorities and 

in general shapes of constructed routes  The modified version of CW Saving Algorithm 
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is as below, which  interval is  2,1.0  and 0.1 is the step size. The best  interval has 

already been defined by researchers. 

 ijjiij cccS  00                  (4.6) 

Paeessens (Paessens, 1988) introduced another modification to CW Saving Algorithm 

by adding a second term to equation 4.7 in order to increase the reshaping ability of 

CW Saving Algorithm with one parameter. The second term of the proposed 

modification may exploit the asymmetry information of each pair of customers about 

their distances to the depot. The CW Saving Algorithm with two parameters is as 

follows. 

   jiijjiij cccccS 0000                  (4.7) 

In equation 4.7,   and   intervals are  2,1.0  and  2,0  respectively, while their 

incremental step size is 1.0 . 

4.2.2 Clarke and Wright Saving Heuristic Algorithm with Three Parameters 

Altinel and Öncan (Altinel & Öncan, 2005) proposed a new enhancement to CW 

Saving Algorithm. They considered customers’ demands in each pair and they gave 

more priority to the pairs with higher demands. The proposed formula is as follows. 

    






 


d

dd
cccccS
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jiijjiij  0000              (4.8) 

In equation 4.8 ,  and  intervals are  2,1.0 ,  2,0  and  2,0 respectively, while their 

incremental step size is 1.0 . 
id  shows the demand of customer i  in the formula. 
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Recently, Doyuran and Çatay (Doyuran & Catay, 2009) revealed that either promotion 

of pairs’ priorities with less or high demands results in the same outcome and they 

drew the conclusion that the performance of (4.9) and (4.10) are almost the same which 

can be observed as illustrated below. 
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Doyuran et al. (Doyuran & Catay, 2009) proposed a new enhancement to Altinel 

formula for assigning customers with high and low demands to the same route. 

Moreover, they added a new term to saving formula to increase the priority of 

customers near to depot. 
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The second term of the formula above is originated from Sweep Algorithm 

characteristic, while the third one allows customers with low and high demands to 

assign to same routes.  Figure 4.3 shows how the second term of the above formula 

improves the performance of the classical CW Saving Algorithm. From the figure, one 

can observe that the last route which is constructed by the saving value indicated in 

equation 4.11 is much better than the routes constructed by Sweep Algorithm and 

classical CW Saving Algorithm. The reason for that is considering customers’ 

demands, saving values and angles between customers. 
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Figure 4.3. Illustration of CWs Heuristic with Three Parameters 

 (Doyuran & Catay, 2009) 

4.3 Solution Methodologies for E-VRPTW 

The E-VRPTW is solved by different variants of CW Saving Algorithm to evaluate 

their performance, while appropriate modifications are applied and they are adapted 

for E-VRPTW and Recharging Stations. Proposed solution methodologies for E-

VRPTW are explained in the following sections. 

4.3.1 MCW Saving Algorithm  

Erdogan et al. (Erdoğan & Miller-Hooks, 2012) proposed Modified Clarke and Wright 

(MCW) Saving and Density Based Clustering Algorithm as solution methods for 

GVRP. The performance and solution qualities of these two algorithms are evaluated 

and compared by Erdogan and due to many similarities of the GVRP with E-VRPTW 

in principal concepts and admirable performance of MCW Saving Heuristic in 

comparison with Density Based Clustering Algorithm, it is chosen as one of the 

solution methodologies. The MCW Saving Algorithm has already been described in 

section 4.2, while the only difference of adapted MCW Saving Algorithm for E-

VRPTW is that vehicles meet Recharging Stations instead of Alternative Fuel Stations 
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for refueling. Recharging of electric vehicles compared to other AFVs requires more 

time for recharging dependent on the vehicle’s battery capacity which should be taken 

into consideration. The following methodologies focus on improvement of solution 

qualities in terms of time and accuracy. 

4.3.2 A New MCW Saving Heuristic for E-VRPTW 

A new modification of CW Saving Heuristic is proposed by the implementation of 

further adaptions to basic CW Saving Algorithm and inspiration from Erdogan and 

Miller-Hooks’ methodology. The new modifications on CW Saving Algorithm for E-

VRPTW tries to insert customers with earlier ready time at the beginning of the routes 

so as to decrease the probability of violation in time windows constraint and visit more 

customers in each route. Moreover, in this methodology, insertion of Recharging 

Stations in suitable and necessary locations occurs simultaneously with customer 

insertion; thus, prior to the insertion of each customer, fuel feasibly for reaching next 

customer will be checked by the algorithm and in the case if violation of fuel constraint 

occurs, a new Recharging Station will be inserted. In general, all the following 

constraints must be checked by the algorithm before each customer insertion 

(Schneider et al., 2014). 

Cqq wv        Vwv  ,          (4.12) 

wvwvv ltse       10, 
 nVwVv         (4.13) 

01 ltstse wnwvwvv       VwVv  ,0
         (4.14) 

  Qdddh wivwjv       1
 nFi          (4.15) 
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Equations (4.12) and (4.13) check load capacity and time window violations for each 

customer insertion and if violation occurs, the route can be labelled as infeasible. 

Equation (4.14) checks the time feasibility by considering service time, waiting time 

and travelling time. Insertion of a customer can be cancelled, if a vehicle cannot get 

back to the depot before its due time. Equation (4.15) is problem specific and refers to 

violations of the battery capacity.   

4.3.2.1 Insertion of Recharging Stations 

In adapted Erdogan and Miller-Hooks’ methodology for E-VRPTW, insertion of 

Recharging Stations occurs while the next customer is unreachable by the remained 

charge for the vehicle. Recharging Stations would be inserted between correspondent 

customers in order to eliminate violation in fuel constraint. In the case when the vehicle 

is able to reach neither the next Recharging Station nor the next customer, even by the 

insertion of Recharging Station with minimum cost, a Recharging Station should be 

inserted into the route between the previous pair of customers for providing sufficient 

charge level to reach the assigned customer or the next recharging station. 

4.3.3 Enhanced CW Saving Heuristic with One and Two Parameters  

CW Saving Algorithm with modifications mentioned in Section 4.3.2 is used, while 

the saving value is computed by equations (4.6) and (4.7). The algorithm proceeds as 

follows. 

 Step 1: Calculate saving values by using appropriate savings function. 

 Step 2: Sort saving values and corresponding pairs in descending order. 

 Step 3: Calculate insertion cost of Recharging Stations between each pair of 

customers by equation 4.5. 

 Step 4: Arrange cost values in increasing order. 

 Step 5: Select the starting pair of customers at the top of the saving list. 
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 Step 6: Check the feasibility of starting pair by constraints (4.12), (4.13), (4.14) 

and (4.15).If any violation occurs, get back to step 3 and select the next pair in 

the saving pair list. 

 Step 7: If violation in the battery constraint occurs, place a new Recharging 

Station on the route with minimum cost. 

 Step 8: If the remaining customers cannot be assigned to either constructed or 

new routes, they will be assigned individually to separate routes. 

 Step 9: All routes have to start with visiting a customer with earlier ready time 

before visiting the other customer of the pair. 

 Step 10: Find the first feasible link in the list which can be used to extend one 

of the two ends of the currently constructed route. Each step must be complied 

with the constraints. 

 Step 11: If the number of marked customers is less than the total number of 

customers, return to step 10, otherwise start a new route and return to step 5.  

 Step 12: Do the above steps while saving values are being calculated by new 

coefficients and return to step1 if any value is remained in the predefined 

intervals. 

 Step 13: Check all the set of the routes which are constructed by various 

coefficient and chose the one with least travel distance as the best.  

Equations 4.6 and 4.7 in the first step refers to CW Saving Algorithm with one and 

two parameters. 

4.3.4 MCW Saving Heuristic Algorithm with Three Parameters  

The proposed modification by Doyuran and Çatay (Doyuran & Catay, 2009) in 

computation of saving values is considered to evaluate the influence of customers’ 
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angles and their demands on the saving pair list construction (see section 4.2.2) , while 

CW Saving Algorithm has already been adapted for E-VRPTW and Recharging 

Stations. Saving values are computed by equation 4.11, while ,  and  intervals are 

 2,1.0 ,  2,0  and  2.0,2.0  respectively and the incremental step size for  and    is 

1.0 and 01.0 for  .  

4.3.5 MCW Saving Heuristic with Four Parameters  

It has already been proven that by adding any extra parameter to the saving formula, 

an improvement in the solution quality can be obtained. The following additional 

parameters in the cost formula for the insertion of Recharging Stations are added to 

check how they can improve the solution quality.  

jifjif

f

ij ccccC 0032                              (4.15) 

The above parameters in Equation 4.15 let those Recharging Stations which are worse 

in cost to be inserted where required. The benefit of parameters above are more 

obvious while a Recharging Station with minimum insertion cost cannot be reached 

by the vehicle from customer i, but the second best Recharging Station can be assigned 

to the route, since the Recharging Station is closer to customer i and farther from 

customer j. If any saving can be obtained by the insertion of the Recharging Stations 

that are worse than the ones with minimum cost, the algorithm will insert the 

Recharging Station between the pair of customers. It is worthwhile mentioning that 

two parameters are from the above formula and the other two from equation 4.7. 

 

 

 



 

33 
  

Chapter 5 

COMPUTATIONAL STUDY 

This chapter presents the results of E-VRPTW solved by former discussed 

methodologies, namely adapted Erdogan and Miller-Hooks’ methodology, Modified 

Clarke and Wright (MCW), MCW with one parameter, MCW with two parameters, 

MCW with three parameters and MCW with four parameters for small instances. All 

tests are performed on a laptop computer equipped with an Intel Core i5 -2430M 

processor clocked at 2.4 GHz with 4 GB RAM, running Windows 7 Professional. The 

proposed methodologies are coded in C++ and Microsoft Visual Studio 2012 is used 

as the compiler.  

5.1 Description of Benchmark Instances 

5.1.1 Solomon Benchmark Instances 

As priory mentioned, numerous scientists have worked on VRPTW and a few 

benchmark instances are proposed to evaluate new solution methodologies by 

comparing with other well-known results. The most reliable benchmark instances are 

designed by Solomon (Solomon, 1987) which 56 of the largest ones with 100 

customers have received much more attention. In Solomon’s instances and such 

benchmark instances time windows and coordinates of customers are defined. 

Moreover, the average speeds which are proposed for each set of instances have 

already been adjusted in such a way to take the traffic and road situation into the 

consideration. The proposed instances represented various problem specifications 

which are divided in 6 sub-groups namely, C1, R1, RC1, C2, R2, RC2 and they include 
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between 8 and 12 test problems. The aforementioned categorizations are based on four 

different customer location distributions: uniform distribution, cluster distribution and 

combination of clustered and uniform. Some features vary in above groups, i.e. 

scheduling horizon, vehicles’ capacity and number of customers. Figure 4.1 illustrates 

the geographical distribution of customers in each group with 100 customers. 

 
Figure 5.1. Distribution of Customers in Solomon’s Benchmark Instances 

5.1.2 Schneider’s Benchmark Instances 

Two set of benchmark instances are used for evaluation of proposed methodologies. 

A set of 36 instances with 5, 10 and 15 customers and a set of 56 large instances with 

21 recharging stations and 100 customers per instance. All customers can be reached 

from depot by visiting at most two recharging stations, while a recharging station is 

located at the depot. The battery capacity has to be at least equal to the maximum value 

of the following conditions:  
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1) 60% of the average of best-known routes’ length. 

2) Two times more than the required battery charge to travel from a station to a 

customer*. 

5.2 Results for Small Instances 

All the proposed solution methods are examined in this section in order to evaluate 

their performance on small instances of Schneider benchmark. Furthermore, run times 

for small instances are mentioned in following tables besides the total number of routes 

and total travelling distance.  

5.2.1 Adapted Erdogan’s Methodology (MCW 1) 

Small instances of Schneider benchmark which contain data for 5, 10 and 15 

customers, totally 36 instances, are solved and the correspondent computation times 

are mentioned in the tables. 

 

 

 

 

 

 

 

 

 

                                                           
*The generated instances by Schneider are available for download at  http://evrptw.wiwi.unifrankfurt.de 

http://evrptw.wiwi.unifrankfurt.de/
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Table 5.1. Obtained results for small sized instances by MCW 1 and CPLEX 

Best Known Results MCW 1 

Instance  m  Travel 

Distance 

m Travel 

Distance 

Δ best (%) T(ms) 

C101C5 3 247.15 3 250.03 1.16 0.09 

C103C5 2 165.67 2 184.38 10.69 0.11 

C206C5 2 236.58 1 245.96 3.89 0.12 

C208C5 1 158.48 1 185.15 15.52 0.11 

R104C5 2 136.69 2 185.21 30.15 0.10 

R105C5 2 156.08 2 168.47 7.64 0.08 

R202C5 1 128.78 2 159.51 21.32 0.10 

R203C5 1 179.06 1 232.38 25.92 0.11 

RC105C5 3 238.05 3 238.05 0.00 0.09 

RC108C5 2 253.93 2 258.75 1.88 0.12 

RC204C5 1 176.39 2 185.44 5.00 0.13 

RC208C5 1 167.98 1 188.63 11.58 0.13 

C101C10 3 393.76 5 440.53 11.21 0.21 

C104C10 2 273.93 2 297.26 8.17 0.23 

C202C10 2 243.20 3 264.57 8.42 0.21 

C205C10 2 228.28 3 314.33 31.72 0.19 

R102C10 3 249.19 5 334.00 29.08 0.22 

R103C10 3 202.85 3 232.10 13.45 0.21 

R201C10 3 217.67 3 276.03 23.64 0.19 

R203C10 1 218.21 3 362.79 49.77 0.24 

RC102C10 4 423.51 5 454.65 7.09 0.19 

RC108C10 3 345.92 4 434.44 22.69 0.19 

RC201C10 3 310.06 3 395.54 24.23 0.12 

RC205C10 2 325.98 5 499.29 42.00 0.25 

C103C15 4 371.70 4 436.86 16.12 0.26 

C106C15 3 275.13 4 424.21 42.63 0.20 

C202C15 3 376.79 5 578.57 42.24 0.29 

C208C15 2 300.55 4 411.54 31.17 0.25 

R102C15 5 413.93 7 518.27 22.39 0.35 

R105C15 4 336.15 6 431.53 24.85 0.24 

R202C15 2 358.00 4 517.09 36.36 0.35 

R209C15 2 293.20 3 522.12 56.15 0.34 

RC103C15 4 397.67 5 450.51 12.46 0.32 

RC108C15 3 370.25 5 524.37 34.45 0.43 

RC202C15 2 394.39 5 555.28 33.88 0.29 

RC204C15 2 310.58 3 509.51 48.51 0.31 

Average 

Deviation 

        22.43   

Average 

Time(sec) 

          0.0002 
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Table 5.1 shows the results by both Erdogan’s methodology and CPLEX. There is a 

positive correlation between number of customers and its deviation from the best-

known results by CPLEX. This is more evident among instances with 15 customers.  

Total deviation of the mentioned method from the best-known solutions for small 

instances is 22.43% which is reasonable for a heuristic solution in a very short 

computation time. As the computation times are extremely short, they are converted 

into millisecond to make it easier to read, while the total average time is shown in 

second to clarify the short computation time (0.0002). In each set of results, m 

demonstrates the number of required routes (vehicles) to satisfy all customers’ 

demands in predefined time windows. 

5.2.2 MCW Saving Heuristic Algorithm (MCW 2) 

This methodology focuses on insertion of customers with earlier starting service time, 

while waiting time for starting the service is limited and vehicles will pass from those 

customers which should be serviced after a long waiting time. Most importantly, 

assignment of recharging stations to routes occurs with the customer insertion, 

simultaneously.  

In Table 5.2, deviation from the best-known results is illustrated for each of the 

instances, while they are improved considerably compared to the Erdogan’s solution 

method. Number of required vehicles and total travel distance are also included in the 

table besides the computation time. 
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Table 5.2. Obtained results for small sized instances by MCW 2 and CPLEX 

Best Known Results MCW 2 

Instance  m 
Travel 

Distance  
m 

 Travel 

Distance 

Δ best 

(%) 
T(ms) 

C101C5 3 247.15 3 250.03 1.16 0.11 

C103C5 2 165.67 2 165.67 0.00 0.13 

C206C5 2 236.58 2 245.96 3.89 0.90 

C208C5 1 158.48 1 185.15 15.52 0.14 

R104C5 2 136.69 2 185.21 30.15 0.11 

R105C5 2 156.08 2 168.47 7.64 0.10 

R202C5 1 128.78 1 157.51 20.07 0.16 

R203C5 1 179.06 1 179.06 0.00 0.15 

RC105C5 3 238.05 3 238.05 0.00 0.09 

RC108C5 2 253.93 3 313.64 21.04 0.10 

RC204C5 1 176.39 1 185.44 5.00 0.14 

RC208C5 1 167.98 1 188.63 11.58 0.13 

C101C10 3 393.76 4 414.03 5.02 0.20 

C104C10 2 273.93 2 297.26 8.17 0.24 

C202C10 2 243.20 2 243.31 0.05 0.23 

C205C10 2 228.28 2 269.99 16.74 0.21 

R102C10 3 249.19 4 301.05 18.85 0.23 

R103C10 3 202.85 3 230.53 12.77 0.21 

R201C10 3 217.67 2 273.25 22.64 0.18 

R203C10 1 218.21 1 240.39 9.67 0.23 

RC102C10 4 423.51 4 459.33 8.11 0.19 

RC108C10 3 345.92 4 430.33 21.75 0.18 

RC201C10 3 310.06 3 388.46 22.45 0.13 

RC205C10 2 325.98 2 405.3 21.69 0.24 

C103C15 4 371.70 4 434.49 15.58 0.27 

C106C15 3 275.13 5 402.62 37.62 0.19 

C202C15 3 376.79 3 486.19 25.35 0.29 

C208C15 2 300.55 2 334.59 10.72 0.27 

R102C15 5 413.93 7 527.99 24.22 0.39 

R105C15 4 336.15 5 364.43 8.07 0.23 

R202C15 2 358.00 3 497.02 32.52 0.37 

R209C15 2 293.20 2 401.01 31.06 0.36 

RC103C15 4 397.67 5 450.52 12.46 0.40 

RC108C15 3 370.25 4 426.43 14.10 0.46 

RC202C15 2 394.39 4 621.97 44.78 0.35 

RC204C15 2 310.58 2 424.27 30.94 0.39 

Average 

Deviation 
        15.87   

Average 

Time(sec) 
          0.00024 
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It can be observed that outputs are improved roughly by 7%, while the computation 

time barely experienced any change and stabilized around 0.00024 seconds. In some 

cases, outputs reached to the best-known result, but the average deviation of results is 

still 15.87% compared to those by CPLEX. 

The proposed solution maintained a reduction in the total travel distance and hence an 

improvement is achieved, since the main objective of the defined problem was to 

minimize the total travelling distance.  To sum up, one can draw the conclusion that 

the implemented modifications on CW Saving Algorithm led to robust enhancement 

and with further modifications alongside, more significant improvements can also be 

obtained. 

5.2.3 MCW with One Parameter (MCW 3) 

In this case, one parameter is added to the saving value formula with the purpose of 

decreasing the total traveling distance. Adding a parameter acts as an improvement 

part for the MCW heuristic. Therefore, as can be seen in table 5.3, the total traveling 

distance compared to MCW and Erdogan’s solution method decreased by 2.27% and 

approximately 9%, respectively. As expected, computation time increased in this case 

due to the addition of which is increasing by 0.1 as its step size between 0.1 and 2. 

In general, outputs’ quality increased slightly in this case with cost of an increase in 

computation time which is negligible. This proved that adding an improvement part 

to MCW can contribute to solutions’ quality improvement in EVRP. 
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Table 5.3. Obtained results for small sized instances by MCW 3 and CPLEX 

Best Known Results MCW 3 

Instances  m Total 

Distance  

m  Travel 

Distance 

Δ best 

(%) 

T(ms) λ 

C101C5 3 247.15 3 250.03 1.16 0.21 0.1 

C103C5 2 165.67 2 165.67 0.00 0.43 0.5 

C206C5 2 236.58 2 245.96 3.89 0.33 0.1 

C208C5 1 158.48 1 185.15 15.52 0.37 0.1 

R104C5 2 136.69 2 185.22 30.15 0.38 0.6 

R105C5 2 156.08 2 156.08 0.00 0.27 0.1 

R202C5 1 128.78 1 157.55 20.10 0.61 0.3 

R203C5 1 179.06 1 179.06 0.00 0.43 0.9 

RC105C5 3 238.05 3 238.05 0.00 0.38 0.1 

RC108C5 2 253.93 3 313.64 21.04 0.96 0.8 

RC204C5 1 176.39 1 179.45 1.72 0.53 0.9 

RC208C5 1 167.98 1 179.96 6.89 0.49 0.1 

C101C10 3 393.76 4 427.76 8.28 0.86 0.3 

C104C10 2 273.93 2 297.26 8.17 1.72 0.7 

C202C10 2 243.20 2 243.31 0.05 1.92 0.6 

C205C10 2 228.28 2 269.99 16.74 0.89 0.2 

R102C10 3 249.19 4 301.05 18.85 3.31 0.1 

R103C10 3 202.85 3 222.55 9.26 3.82 0.1 

R201C10 3 217.67 3 259.26 17.44 1.18 1.2 

R203C10 1 218.21 1 240.39 9.67 1.35 0.9 

RC102C10 4 423.51 4 459.33 8.11 2.13 0.5 

RC108C10 3 345.92 4 420.27 19.41 4.23 1.5 

RC201C10 3 310.06 4 378.59 19.90 0.89 0.5 

RC205C10 2 325.98 3 405.30 21.69 2.87 0.2 

C103C15 4 371.70 4 430.83 14.74 5.11 1.1 

C106C15 3 275.13 5 372.22 30.00 3.22 0.6 

C202C15 3 376.79 3 486.19 25.35 5.27 1 

C208C15 2 300.55 2 305.80 1.73 2.19 0.9 

R102C15 5 413.93 7 508.65 20.53 6.73 0.1 

R105C15 4 336.15 5 364.44 8.08 1.82 0.3 

R202C15 2 358.00 3 459.61 24.86 9.41 0.3 

R209C15 2 293.20 2 378.24 25.33 2.98 0.5 

RC103C15 4 397.67 5 450.52 12.46 5.18 0.5 

RC108C15 3 370.25 4 426.43 14.10 7.23 0.7 

RC202C15 2 394.39 4 590.45 39.82 9.87 1.7 

RC204C15 2 310.58 2 359.02 14.47 6.63 1.5 

Average Deviation         13.60     

Average Time(sec)           0.0027   
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5.2.4 MCW with Two Parameters (MCW 4) 

In this case, two parameters are considered in the saving formula (see equation 4.7). 

Both two parameters try to consider more realistic route distance. Moreover, they bring 

about changes in constructed routes shapes. The parameters mentioned above 

improved the solution quality noticeably and this methodology produces results with 

12.85% deviation from the best-known solutions, which shows that it is highly reliable 

(see table 5.4). It is worth to mention that values of parameters which are referred in 

the table show the first values that lead to the optimal output and many other values 

might be found for all parameters, which bring about the same result. 

5.2.5 MCW with Three Parameters (MCW 5) 

It is already proven that consideration of customers’ demands in computation of saving 

values can improve the solution quality. Now, customers’ demands are taken into 

consideration in computation of saving values to see how it affects E-VRPTW. 

According to table 5.5, the result’s deviation fell to 12.04%, which shows the validity 

of the methodology, however the computation time rose slightly.  
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Table 5.4. Obtained results for small sized instances by MCW 4 and CPLEX 

 

 

 

Best Known Results MCW 4 

 Instances m Travel 

Distance  

m Travel 

Distance  

T(ms) λ μ Δ best 

(%) 

C101C5 3 247.15 3 250.03 3 0.1 0 1.16 

C103C5 2 165.67 2 165.67 8 0.5 0 0.00 

C206C5 2 236.58 2 245.96 7 0.1 0 3.89 

C208C5 1 158.48 1 185.15 9 0.1 0 15.52 

R104C5 2 136.69 2 185.22 6 0.5 1.1 30.15 

R105C5 2 156.08 2 156.08 8 0.1 0 0.00 

R202C5 1 128.78 1 144.67 6 0.1 1.1 11.62 

R203C5 1 179.06 1 179.06 10 0.9 0 0.00 

RC105C5 3 238.05 3 238.05 9 0.1 0 0.00 

RC108C5 2 253.93 3 313.64 19 0.1 0.9 21.04 

RC204C5 1 176.39 1 185.16 5 1 0.1 4.85 

RC208C5 1 167.98 1 178.90 9 0.1 1.3 6.30 

C101C10 3 393.76 4 420.19 15 0.9 0.5 6.49 

C104C10 2 273.93 2 297.26 13 0.7 0 8.17 

C202C10 2 243.20 2 243.31 19 0.6 0 0.05 

C205C10 2 228.28 2 269.99 17 0.2 0 16.74 

R102C10 3 249.19 4 293.78 22 1.2 0.3 16.42 

R103C10 3 202.85 3 222.55 14 0.1 0 9.26 

R201C10 3 217.67 3 251.13 19 1.3 0.6 14.27 

R203C10 1 218.21 1 240.39 26 0.8 0.5 9.67 

RC102C10 4 423.51 4 459.33 11 0.2 0.3 8.11 

RC108C10 3 345.92 4 417.11 14 1.2 1.3 18.66 

RC201C10 3 310.06 4 378.59 12 0.5 0 19.90 

RC205C10 2 325.98 3 401.91 16 0.1 1.6 20.86 

C103C15 4 371.70 4 430.83 19 1.3 0 14.74 

C106C15 3 275.13 5 372.22 25 0.6 0 30.00 

C202C15 3 376.79 3 486.19 29 1.4 0.5 25.35 

C208C15 2 300.55 2 305.80 28 0.9 0 1.73 

R102C15 5 413.93 7 502.57 19 0.1 0 19.34 

R105C15 4 336.15 5 364.44 31 0.2 0.4 8.08 

R202C15 2 358.00 3 459.61 26 0.3 0 24.86 

R209C15 2 293.20 2 356.56 37 0.9 1.7 19.50 

RC103C15 4 397.67 5 450.52 35 0.5 0 12.46 

RC108C15 3 370.25 4 426.43 22 0.7 1.8 14.10 

RC202C15 2 394.39 4 561.42 24 1.9 0.7 34.95 

RC204C15 2 310.58 2 359.02 21 1.5 0 14.47 

Average 

Deviation 

              12.85 

Average 

Time(sec) 

        0.613       
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Table 5.5. Obtained results for small sized instances by MCW 5 and CPLEX 

Best Known Results MCW 5 

 Instances m  Travel 

Distance 

m  Travel 

Distance 

T(ms) λ μ ν Δ best 

(%) 

C101C5 3 247.15 3 250.03 151 0.1 0 -0.20 1.16 

C103C5 2 165.67 2 165.67 369 0.1 0.2 -0.20 0.00 

C206C5 2 236.58 2 245.96 245 0.1 0 -0.20 3.89 

C208C5 1 158.48 1 183.59 208 0.1 0 0.10 14.68 

R104C5 2 136.69 2 185.22 238 0.1 0.5 -0.20 30.15 

R105C5 2 156.08 2 156.08 218 0.1 0 -0.20 0.00 

R202C5 1 128.78 1 157.55 254 0.1 0.1 -0.12 20.10 

R203C5 1 179.06 1 179.06 212 0.1 0.4 -0.20 0.00 

RC105C5 3 238.05 3 238.05 211 0.1 0 -0.20 0.00 

RC108C5 2 253.93 3 313.64 713 0.1 0.6 -0.20 21.04 

RC204C5 1 176.39 1 185.16 297 0.1 1 -0.20 4.85 

RC208C5 1 167.98 1 177.47 190 0.1 0.9 -0.20 5.49 

C101C10 3 393.76 4 414.04 1276 0.1 1 -0.14 5.02 

C104C10 2 273.93 2 292.47 1280 0.1 0.2 -0.19 6.55 

C202C10 2 243.20 2 243.31 600 0.1 0.2 0.00 0.05 

C205C10 2 228.28 2 269.99 518 0.1 0.1 -0.20 16.74 

R102C10 3 249.19 3 282.03 2315 0.1 0 -0.20 12.36 

R103C10 3 202.85 3 222.55 1715 0.1 0 -0.20 9.26 

R201C10 3 217.67 3 241.69 559 0.3 0.2 0.11 10.46 

R203C10 1 218.21 1 230.39 840 1.5 0.5 -0.20 5.43 

RC102C10 4 423.51 4 459.33 1431 0.1 0.1 -0.20 8.11 

RC108C10 3 345.92 4 413.80 2597 0.1 1.3 -0.20 17.87 

RC201C10 3 310.06 3 365.24 672 0.1 0.1 -0.20 16.34 

RC205C10 2 325.98 2 393.45 1835 0.1 0.6 0.17 18.76 

C103C15 4 371.70 3 409.40 2420 2 0.3 0.00 9.65 

C106C15 3 275.13 5 379.61 1697 0.1 0.4 0.10 31.91 

C202C15 3 376.79 3 486.19 2268 0.1 0.4 -0.20 25.35 

C208C15 2 300.55 2 305.80 1541 0.1 0.7 -0.20 1.73 

R102C15 5 413.93 7 496.46 5476 0.1 0.4 -0.20 18.13 

R105C15 4 336.15 5 364.44 1395 0.1 0.1 0.04 8.08 

R202C15 2 358.00 3 456.48 4718 0.1 0.3 -0.20 24.18 

R209C15 2 293.20 2 336.86 1949 0.2 0.3 -0.20 13.86 

RC103C15 4 397.67 5 448.69 3095 0.4 0.1 -0.05 12.06 

RC108C15 3 370.25 4 422.06 4382 0.1 0.3 -0.11 13.08 

RC202C15 2 394.39 3 547.92 6706 0.2 0.2 -0.20 32.59 

RC204C15 2 310.58 2 359.02 1980 1.5 0 -0.03 14.47 

Average 

Deviation 

                12.04 

Average 

Time(sec) 

        1.57         
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Table 5.6. Obtained results for small sized instances by MCW 6 and CPLEX 

Best Known Results MCW 6 

 Instances m Travel 

Distance

  

m Travel 

Distance  
T(ms) λ λ1 λ2 μ Δ best 

(%) 

C101C5 3 247.15 3 250.03 1086 0.1 0.1 0.1 0 1.16 

C103C5 2 165.67 2 165.67 2640 0.5 0.1 0.1 0 0.00 

C206C5 2 236.58 2 245.96 2530 0.1 0.1 0.1 0 3.89 

C208C5 1 158.48 1 185.15 1602 0.1 0.1 0.1 0 15.52 

R104C5 2 136.69 2 161.25 2889 0.1 0.7 0.8 1 16.49 

R105C5 2 156.08 2 156.08 1596 0.1 0.1 0.1 0 0.00 

R202C5 1 128.78 1 128.88 1779 0.1 0.1 0.6 1.1 0.08 

R203C5 1 179.06 1 179.06 3994 0.9 0.1 0.1 0 0.00 

RC105C5 3 238.05 3 238.05 2093 0.1 0.1 0.1 0 0.00 

RC108C5 2 253.93 3 308.81 5182 0.1 0.1 1.7 1.2 19.50 

RC204C5 1 176.39 1 176.39 1794 0.9 0.1 0.2 0 0.00 

RC208C5 1 167.98 1 178.90 3006 0.1 0.1 0.1 1.3 6.30 

C101C10 3 393.76 4 414.04 8214 0.4 0.1 0.1 0 5.02 

C104C10 2 273.93 2 292.09 13638 1.9 0.2 0.1 0.7 6.42 

C202C10 2 243.20 2 243.31 7798 0.6 0.1 0.1 0 0.05 

C205C10 2 228.28 2 269.99 4891 0.1 0.1 0.1 0.4 16.74 

R102C10 3 249.19 3 259.03 16662 0.1 0.2 0.1 0 3.87 

R103C10 3 202.85 3 209.23 14746 0.5 1.4 1.9 0 3.10 

R201C10 3 217.67 2 250.97 5545 0.1 0.1 0.1 1 14.21 

R203C10 1 218.21 1 230.39 9286 0.6 0.2 0.1 0.8 5.43 

RC102C10 4 423.51 4 423.51 13065 1.6 0.1 0.1 0.3 0.00 

RC108C10 3 345.92 3 354.37 22502 0.1 0.2 0.1 0 2.41 

RC201C10 3 310.06 3 337.82 5331 0.1 0.2 0.1 0.6 8.57 

RC205C10 2 325.98 2 330.55 15798 1.4 0.2 0.3 0 1.39 

C103C15 4 371.70 4 394.88 42622 0.8 0.2 0.1 0.8 6.05 

C106C15 3 275.13 4 350.63 20727 1.6 0.1 0.1 1.8 24.13 

C202C15 3 376.79 4 482.20 27622 1.3 0.4 0.1 0 24.54 

C208C15 2 300.55 2 305.80 17284 0.9 0.1 0.1 0 1.73 

R102C15 5 413.93 6 450.08 43707 0.8 0.2 0.1 1.1 8.37 

R105C15 4 336.15 5 361.95 16524 0.1 0.1 0.1 0.6 7.39 

R202C15 2 358.00 3 400.93 59511 0.1 0.1 0.3 0.4 11.31 

R209C15 2 293.20 2 362.41 1586.41 0.5 1.7 0.7 0 21.11 

RC103C15 4 397.67 5 450.52 55624 0.4 0.1 0.1 0.1 12.46 

RC108C15 3 370.25 3 398.98 57654 0.1 0.6 0.1 0.5 7.47 

RC202C15 2 394.39 4 512.92 142045 0.1 0.1 1.6 0.5 26.13 

RC204C15 2 310.58 1 350.07 29974 0.6 0.1 0.4 1.3 11.95 

Average 

Deviation 

                  8.13 

Average 

Time(sec) 

        18.95           
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5.2.6 MCW with Four Parameters 

The solution method by benefitting from four parameters which are added to both 

saving function of customer insertion and Recharging Stations bring about 

improvement in outputs by decrements in the total travel distance. The total travel 

distance deviation decreased to just above 8%, while the average run time boomed to 

18.95 seconds (see table 5.6). It is noteworthy that  and   refer to equation 4.7, while 

1 2 was derived from equation 4.15. 

5.3 Results for Large Instances 

All the proposed solution methods are examined on small size instances and the results 

are discussed. The superiority of MCW was cleared, compared to adapted Erdogan 

and Miller-Hooks’ methodology for E-VRPTW. Furthermore, the obtained results for 

small size instances evidenced that outputs quality has positive correlation with 

number of parameters that can be used in saving value formula, while it contributes to 

the increase in computation time. Now, among all aforementioned methods, three of 

them are chosen to solve big instances and evaluate the results. There are 56 set of 

large instances which contain 100 customers and 21 Recharging Stations.   

As previously mentioned, MCW 2 focuses on insertion of customers with earlier 

starting service time, while waiting time for starting the service is limited and vehicles 

will pass from those customers who should be serviced after a long waiting time. Most 

importantly, placing Recharging Stations to routes occurs with the customer insertion, 

simultaneously. Computation times of large size instances are neglected and the results 

are shown in table A.1 in appendix. The deviation of the results from the best known 

solutions are shown in the table. 
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Many of the constructed routes by MCW have circular shape as it is the nature of CW 

Saving Algorithm. In MCW 3, one parameter is added with the purpose of changing 

the routes’ shape and decreasing the total travel distance. The calculated results show 

about 5% improvement in total travel distance, compared to those obtained by MCW 

2 (see table A.2, appendix). 

The proposed method by Doyuran et al. (Doyuran & Catay, 2009) works well on large 

instances and the results support this claim (see table A.3 in appendix) where outputs 

are improved by approximately 13.5% with MCW3, compared to the obtained results 

by MCW 2.   

5.3.1 Summary of Large Instances Results 

All the results for large size instances are compared with the best known solution 

which was obtained by hybrid of LNS to check the validity of the results. The best 

result can be found in table A.4 in appendix (Keskin & Catay, 2014). Results for 

large size instances are summarized in table 5.7 

Table 5.7. Summary of obtained results for large sized instances  

Summary of Large Instances 

 Best MCW 2 MCW3 MCW 5 

Average Travel Distance 1032.06 1496.66 1427.11 1305.80 

Average Number of Routes 9 12 11 10 

Average Deviation from Best 

Known Solution 

0.00% 36.96% 32.16% 23.69% 
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Chapter 6 

CONCLUSION 

Route planning for Electric Vehicles with Time Windows has been carried out for 

small and large size instances to determine the cost-optimal set of routes. The limited 

battery capacity of electric vehicles leads to vehicles meeting one of the available 

Recharging Stations through the routes to recharge the battery with a recharging time, 

which depends on the battery level at arrival and the recharging rate. Moreover, 

vehicles’ capacity constraint and hard time windows constraint are incorporated into 

the problem to represent a real-life problem. 

Several solution methods based on Clarke and Wright Saving Heuristic have been 

developed to evaluate the efficiency, where they are adapted for the E-VRPTW. The 

numerical studies are performed on Schneider’s benchmark instances and the results 

have demonstrated that the applied modifications on classical CW work properly. 

Therefore, all the aforementioned methodologies are able to generate close to optimal 

results by which they can be applicable in real-world problems. In this way, 

transportation companies can realize how profitable it is to shift their fleets’ vehicles 

from conventional vehicles to green vehicles and they would be encouraged to support 

green logistic practices. 

As the discussed topic is newly introduced, many subjects can be considered as a future 

study topic. Specifically, consideration of soft time windows instead of the hard time 
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windows can be an interesting topic which allows time windows violation and by this 

way, customer satisfaction rate can be taken into consideration to approach the 

problem from a different perspective. Furthermore, inhomogeneous vehicle fleet can 

be considered instead of the current one, while more than one recharging scheme can 

be defined for the Recharging Stations.  
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Table A.1. Obtained results for large sized instances by MCW 2 

MCW 2 

Instance m Travel 

Distance 

Δ best 

(%) 

Instance m Travel 

Distance 

Δ best  

(%) 

c101 21 2165.97 69.08% r112 14 1357.65 27.78% 

c102 13 1825.96 56.41% r201 8 1590.32 36.43% 

c103 16 1668.01 49.91% r202 7 1363.77 31.33% 

c104 15 1392.47 37.62% r203 7 1205.31 32.95% 

c105 18 1885.3 58.33% r204 5 1044.69 36.69% 

c106 16 1583.17 42.59% r205 5 1347.31 34.54% 

c107 15 1598.5 43.66% r206 5 1276.68 34.98% 

c108 16 1563.84 42.50% r207 4 1117.67 33.07% 

c109 13 1457.38 37.83% r208 4 959.56 30.34% 

c201 7 1107.99 53.05% r209 5 1169.03 30.90% 

c202 6 1042.63 47.10% r210 5 1083.88 26.17% 

c203 7 1188.05 59.25% r211 3 983.11 25.40% 

c204 5 957.66 40.30% rc101 24 2415.4 33.05% 

c205 6 1075.56 50.61% rc102 21 2196.54 34.41% 

c206 5 886.52 32.58% rc103 18 2001.76 38.81% 

c207 5 892.18 33.20% rc104 15 1728.61 33.94% 

c208 5 895.32 33.54% rc105 20 2097.41 34.96% 

r101 27 2063.69 22.51% rc106 17 1879.59 28.20% 

r102 25 1917.52 26.63% rc107 15 1655.19 25.64% 

r103 20 1847.98 37.34% rc108 15 1688.64 33.16% 

r104 15 1436.92 29.10% rc201 9 1918.03 41.58% 

r105 21 1806.14 26.52% rc202 8 1734.73 41.20% 

r106 17 1572.87 20.82% rc203 6 1445.76 40.71% 

r107 16 1498.95 26.48% rc204 5 1308.45 44.78% 

r108 14 1415.96 29.68% rc205 6 1686.74 44.60% 

r109 16 1549.04 23.51% rc206 5 1720.88 46.35% 

r110 15 1464.86 28.64% rc207 4 1393.95 40.08% 

r111 15 1478.76 28.83% rc208 4 1203 40.27% 

Average  

Deviation  
      

36.96% 
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Table A.2. Obtained results for large sized instances by MCW 3 

MCW 3 

Instance m  Travel 

Distance 

λ Δ best  

(%) 

Instance m Travel 

Distance 

λ Δ best  

(%) 

c101 22 2060.86 2 64.66% r112 13 1302.71 1.6 23.72% 

c102 19 1799.51 1.9 55.06% r201 8 1513.98 1.4 31.65% 

c103 16 1668.01 1 49.91% r202 7 1258.37 1.1 23.44% 

c104 14 1386.63 1.1 37.21% r203 7 1175.85 1.8 30.54% 

c105 17 1760.24 1.3 51.99% r204 5 968.84 1.8 29.36% 

c106 15 1513.62 1.5 38.28% r205 5 1254.11 1.5 27.55% 

c107 15 1598.5 1 43.66% r206 5 1217.2 1.5 30.33% 

c108 15 1463.87 1.5 36.15% r207 4 1002.88 1.9 22.45% 

c109 13 1376.03 2 32.26% r208 2 924.44 2 26.68% 

c201 7 1044.77 1.2 47.54% r209 5 1084.64 2 23.55% 

c202 6 1026.06 1.1 45.58% r210 5 1059.02 1.1 23.88% 

c203 7 1173.98 1.7 58.17% r211 3 949.9 1.6 22.01% 

c204 5 935 1.3 38.00% rc101 23 2381.95 0.5 31.70% 

c205 6 971.39 2 40.96% rc102 20 2146 0.5 32.15% 

c206 5 882.48 1.1 32.13% rc103 18 1912.05 1.7 34.38% 

c207 5 886.66 1.1 32.59% rc104 14 1683.62 0.5 31.37% 

c208 5 858.9 1.4 29.49% rc105 19 1977.56 0.3 29.23% 

r101 27 2050.87 1.3 21.90% rc106 17 1841.99 0.5 26.22% 

r102 24 1906.08 0.5 26.04% rc107 14 1599.52 1.1 22.26% 

r103 20 1703.28 2 29.42% rc108 15 1605.59 1.9 28.24% 

r104 15 1405.25 0.7 26.91% rc201 8 1799.63 1.9 35.44% 

r105 21 1774.04 2 24.75% rc202 8 1636.54 1.4 35.58% 

r106 17 1572.87 1 20.82% rc203 7 1270.18 0.8 28.15% 

r107 15 1460.13 0.6 23.90% rc204 5 1019.9 2 20.56% 

r108 14 1335.32 1.9 23.92% rc205 7 1555.88 1.3 36.86% 

r109 17 1537.23 1.2 22.75% rc206 6 1521.62 1.6 34.55% 

r110 14 1428.15 1.1 26.15% rc207 4 1187.48 1.9 24.48% 

r111 14 1363.32 1.7 20.82% rc208 4 1123.43 1.4 33.66% 

Average 

Deviatio

n 

        32.16% 
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Table A.3. Obtained results for large sized instances by MCW 5 

MCW 5 

Instance m  Travel 

Distance 

Δ best  

(%) 

Instance m Travel 

Distance 

Δ best  

(%) 

c101 18 1783.83 51.45% r112 11 1089.12 5.92% 

c102 17 1470.15 35.91% r201 8 1510.93 31.45% 

c103 14 1340.39 28.91% r202 7 1226.98 20.94% 

c104 12 1208.21 23.77% r203 6 1156.54 28.92% 

c105 15 1485.97 35.88% r204 4 938.21 26.21% 

c106 14 1456.86 34.59% r205 5 1254.05 27.54% 

c107 14 1365.80 28.45% r206 5 1087.21 19.22% 

c108 13 1326.81 26.56% r207 4 1009.40 23.09% 

c109 12 1236.73 21.79% r208 3 853.32 18.78% 

c201 6 973.04 40.78% r209 5 1078.89 23.02% 

c202 5 951.88 38.41% r210 5 916.73 9.56% 

c203 6 1001.90 43.35% r211 3 903.13 17.01% 

c204 5 834.54 26.94% rc101 21 2293.21 27.98% 

c205 5 844.14 27.34% rc102 18 1783.42 13.90% 

c206 5 847.42 28.17% rc103 16 1747.21 25.57% 

c207 4 829.43 26.06% rc104 13 1497.01 19.82% 

c208 5 765.22 18.11% rc105 19 1843.79 22.34% 

r101 24 1993.90 19.11% rc106 15 1751.42 21.25% 

r102 21 1587.52 7.90% rc107 14 1411.96 9.88% 

r103 20 1670.81 27.53% rc108 14 1564.22 25.67% 

r104 14 1308.57 19.89% rc201 8 1584.58 22.99% 

r105 17 1555.53 11.72% rc202 8 1460.72 24.48% 

r106 17 1572.87 20.82% rc203 7 1252.94 26.81% 

r107 15 1363.42 17.12% rc204 5 998.00 18.41% 

r108 12 1173.46 11.10% rc205 7 1445.26 29.69% 

r109 15 1457.20 17.46% rc206 6 1369.92 24.28% 

r110 12 1187.79 7.87% rc207 4 1151.03 21.40% 

r111 14 1281.79 14.71% rc208 5 1070.46 28.95% 

Average 

Deviation 

            23.69% 
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Table A.4. Results by Large Neighborhood Search (Keskin & Catay, 2014) 

Instance m  Travel 

Distance 

Instance m Travel 

Distance 

c101 12 1053.83 r112 11 1026.52 

c102 12 1022.58 r201 7 1100.27 

c103 11 1001.81 r202 6 994.35 

c104 10 951.57 r203 5 864.32 

c105 12 1033.93 r204 3 720.82 

c106 12 1027.25 r205 6 950.45 

c107 12 1025.63 r206 5 896.61 

c108 11 1015.68 r207 4 800.48 

c109 11 993.77 r208 3 706.81 

c201 4 643.45 r209 4 856.13 

c202 4 645.16 r210 5 833.08 

c203 4 644.98 r211 3 761.56 

c204 4 636.43 rc101 17 1730.26 

c205 4 641.13 rc102 16 1551.61 

c206 4 638.17 rc103 13 1351.15 

c207 4 638.17 rc104 12 1227.05 

c208 4 638.17 rc105 14 1473.24 

r101 20 1646.07 rc106 14 1414.99 

r102 19 1466.94 rc107 12 1279.08 

r103 14 1266.45 rc108 12 1208.31 

r104 12 1071.89 rc201 9 1257.83 

r105 15 1383.29 rc202 7 1142.15 

r106 14 1276.33 rc203 6 956.78 

r107 12 1148.43 rc204 5 829.72 

r108 11 1050.04 rc205 6 1071.62 

r109 14 1223.17 rc206 6 1073.33 

r110 12 1097.89 rc207 6 928.52 

r111 12 1106.19 rc208 5 799.75 

 

 

 


