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ABSTRACT

In mathematics, an integrodifferential equation is an equation that involves both
integral and derivative of a function. These equations model many situation ranging
from science and engineering. A particular rich source is electrical circuit analysis.

Different techniques have been evolved for finding the solution of these differential
equations under certain conditions. One of them is to prove the existence and
uniqueness of mixed Volteraa-Fredholm type integral equation with the integral
boundary conditions in Banach Space. This has been worked on by some authors

such as S A Murad from Iraq, H J Zekri from Iraq, S Hadid from UAE.

Keywords: fixed point theorems; sequential fractional derivative; integral boundary

conditions; fractional differential equation
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Matematikte integrodifferansiyel denklem, bir fonksiyonun hem integralini hem de
trevini iceren bir denklemdir. Bu denklemler bircok durumu bilim ve
miithendislikten modiile eder. Bu diferansiyel denklemlerin belirli kosullar altinda
¢Ozlimiiniin bulunmasi i¢in farkli teknikler gelistirilmistir. Bunlardan biri, karigik
Volteraa-Fredholm tipi integral denkleminin Banach Uzayindaki integral sinir
kosullartyla varligini ve tekligini kanitlamaktir. Bu, Irak'tan S A Murad, yine Irak'tan

H J Zekri, Birlesik Arap Emirligi’nden S. Hadid gibi bazi yazarlarca ¢alisilmistir.

Anahtar Kelimeler: sabit nokta teoremleri, kesirli tiirev, integral sinir kosullart,

integrodiferansiyel kesirli denklemler
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Chapter 1

INTRODUCTION

Theoretical and practical approach of the fractional differential equations to solving
various mathematical problems has been extensively worked on. The theoretical part
has been investigated by Momani and Hadid in regards with local and global
existence theorom of both fractional differential equations and fractional integral

differential equations.

Integral differential equations with integral boundary conditins have been
successfully applied to various application such as population dynamics and cellular
systems. It involves the research work of various researchers who have been able to
investigate the behaviour of these equations in the different ways and have
successfully proved different phenomenon in relation with these equations under

various initial and boundary conditions, such as:

e Tidke has studied the existence of global solutions for non-linear mixed

Volteraa-Fredholm involving non-local conditions.

e Ahmed and Nieto have studied the results for boundary value problem for
non-linear integral differential equations of fractional order with integral

equation.

e N Guerekata has studied the existence of solution of fractional abstract

differential equations using non-local initial conditions.



So we will extract the relevant information from the work of these researchers and
apply them to study the existence and uniqueness theorem for non-linear fractional
mixed Volteraa-Fredholm integral differential equations with integral boundary
conditions in banach space using the banach fixed point and Krasnosel’skii fixed

point theorems for the case 1 <y < 2.



Chapter 2

REVIEW OF FRACTIONAL CALCULUS

Fractional Calculus is a modern and expanding domain of mathematical analysis.
This applies to any real number with operations similar to usual differentiation. The
order of the derivative may also be variable, distributed or complex.

Basically, Fractional Calculus includes more information in the model then offered
by the classical integer order calculus. Besides an essential mathematical interest, its
overall goal is general improvement of the physical world models for the purpose of
computer simulation, analysis, design and control in practical applications. In the last
four decades fractional calculus became an acceptable tool for a large number of
diverse scientific communities due to more adequate modelling in various fields of
mechanics, electricity, chemistry, biology, medicine, economics, control theory, as
well as signal and image processing. This list can be extended since Fractional
Community is still rapidly growing as can be seen at the websites of previous FDA

events.
2.1 Some Basic Concepts

The integer order differential equation is,

DPf(z)= mq_pzpl(_l),- {Tj f(z+(p-)a).

Where p e N. and,



For non-integer order differential equation, it becomes,
D" (1) =limg ™7} (-1’ m f(1+(r- D).
- =0 J
where y e R™ and in case of complex numbers Re(y) >0, and,

(7} _ T+
i) TG+ -j+D)

There are some properties that can be required to the fractional derivative such as,

D"/ £ (1) = D’D*f ().

where y, 8 €R" and in case of complex numbers, Re(y), Re(S) >0 . Also,

D7 (af (I +bg(1)) = aD” f (1) +bD’ g(l).

where a,b are arbitrary constants.

2.2 Exponentials

Let us consider the y — order derivative for e?? where a is arbitrary constant.

D”e* =lim q*?’i(_l)i (Z}a(zwnq)
0% j

az

=a’e™.
Similarly, we consider,

D7 cos(z) +iD” sin(z) = D’e"” =i’e”
b i(2+17)

—e2e’=¢ 2

=cos(z+5) +isin(z +%).

and

(2.1)



D7 cos(z)—iD” sin(z) =D’e ™ = (—i)’ e
/Zi i+ %)
=e2e"=e 2 (2.2)
=cos(z+5) —isin(z+%).
Solving (2.1) and (2.2) we get,
D’ sin(z) =sin(z +%).
D” cos(z) =coz(z +%).
The following rules can be proved in the same way,
D’ sin(az) = a’ sin(az + Z).
D’coz(az) =a” sin(az + ).
where a is any arbitrary constant.

Now consider the following function
f(z2)=> ae™.
p=—o0

it can be solved as follows,

D’ f(z) = i a,D’e™ —i a, (pi)’e™ = i a pes e —i apre ™

- p - pp - pp - pp :
p=—o0 p=—o0 p=—o0 p=—o0

2.3 Powers

Now consider

DPz? = 8Lz,
(@-p)!

Where p e N and in case of fractional order y, it can be generalized to,

758 _ I'a+1)

=———2_7%7 y>0.
I'a-y+1)

So it can be used to solve any function that can be expanded in power of z as follows,



Let f(z)= D az",then

D’f(z)=> a D’z'=> a _Tv+D) v-
V=—00 v V=—00 VF(V—}/-F].)

Expanding in Taylor series results in,

D/ f(zra)=3 D@

"7 y>0.
v=0 F(V 7/+1)

2.4 Binomial Formula

The exponential functions allow the substitution of binomial formula which requires
the following operator,

d,f(2)=f(z+q)
And for y e R™ ,
d; f(2)=f(z+yq).

Now for peN,

D"f(z)—llmq pZ( 1)] ( jdp f(2)

(2.3)

o (d, -1

:Ilm( d j f(2).
q—0 q

For fractional or complex number y >0, orRe(y) >0 it becomes,
o (d —1Y
D7f(z):llng 1 f(2)
RN (2.4)

I'(y+1)

mf(z"'(?/—j)Q)

_Ii -7 N Y
=limg 2( 1)
2.5 Functions of the Derivative

Equation (2.3) reveals that the derivative itself is

6



od -1
D=Ilim—2
gq—0 q

Let a function of the derivative can be expanded in power of z

0= a2’ = gD)f(2)= Y a,D’f(2).

p=—o0
then the result is a weighted sum of derivatives of various orders. These functions

are called formal differential operations.

Now let,

= alz!
f (z) =e¥such thate® =) —, then e®e™ =¥ ="+,

j=0 J

where a,b are arbitrary constants. .

Now consider the following functions.

g(z2)=> a,z".
n=0

f(2)=Y 2"
n=0

= g(D)f(2)=Ya,D S b7

n=0
= Zanib,D”zr => p2".
r=0

where

pn = lZ(n + r) b'ranrr
n! r=0

2.6 Grunwald-Letnikov Derivative

It is well known that,

Dpf(z)=Lingq_p_Zp:(—1)j (Tj f(z+(p-1a).

7



According to Grunwald-Letnikov derivative, if g = 0 as p = oo, then

pf(z)—llmq ”Z( 1)’ [ jf(z—Jq) peN.

where any value of a less than z can be chosen.

For non-integer y, it becomes,

Z-a

Dw(nzgmqﬂfy—ni d'ar)

——F——f(z-]q). y>0.
Iy -j+

Or equivalently,

Dyf(z)—l|m( jz( 1)~ klrr((yﬂl(l{rl)f(z_k(z;l'an

This is true for positive values of y and for negative values we have,

D1 (2)- mWyZ Do)

2.7 Riemann-Liouville Derivative

This is the one that is used widely. Let us consider,
|
D (1) = [k(w)da.
0

Then iteration yields,

DPf(l)= If(co)(l o) 'dw. peN.,

(p —1)'

In case of non-integer y it becomes,

e 1 1 f(o)
PO g

with the lower integration limit it becomes,



vemy . L f(w)
DO =5 [yt

So the derivative using binomial formula in (2.3) and (2.4) is equivalent to the
Reimann-Liouville derivative with infinity as starting limit provided the real part of

y IS negative.

vemop (G o8 1 f(e)
D f(|)_L|Lrg[ . J f(I)_F(_y)_J;(I_w)Mda)..

This kind of Riemann-Liouville derivative with a lower limit of negative infinity is
known as Weyl derivative.

2.8 Domain Transform

The transform of the vth derivative of the function f (1) is,

V—

L{D"f()}= pVL{f(I)}—Z p" (D' £)(0)..

If the all the terms in the sum above are 0, then it can written for non-integer values

as well,
D f() =Lt {sL{f()}}.

Thus we have,

Dyf(l)sz[ ! zﬂ]'iooe‘“"Te‘s'dsdlj

ﬁafioo 0
=L L{t()}}.
Where a is choosen such that it is greater than the real part of any of the singularities
of f(I).

Now the Fourier transforms and its inverse is,

o0

F{f)}= Ie*‘“f(l)dl.

—00



FHEW) =% T e  (1)dl.

which can be generalized in the same way to be used for the solution of fractional

differential equation of non-integer order y.

D/ £ (1) =7 H{(ity F{f()}}.
So we can observe that in case of laplace transform the generalized derivative is a
Riemann-Liouville derivative with the lower starting limit of zero and in case of

Fourier transform it is Weyl derivative.

2.9 Convolution

Convolution is a very important and simple process used to deal with the problems
involving frequency spaces with the help of Laplace and Fourier transform. The
derivative of a function is its convolution with certain function. For example let us

consider the following function

@, (x)* f (x) :j f()®, (x—1)dl = j (sz_');)l f(1ydl
=D ().

where

Now consider,

e} =T e ) =g{ o }:r«

|y+1

So we will have,

L{D7 T ()} = £{D, () * (0} = L{D, ()} L{ F ()} =17L{f (%)} (2.5)

10



So it proves the fact. If any function other than (2.5) is chosen then it would be
simply the function of derivative. For example consider the following function that

can be expanded in the power of |,

00

g)=> al'.

V=—0

=910 =Y aD 1= Y ad.,(9* f()=h(x)+f ()
where
h(x) =3 bx".

b =2
Y T(v+D)

Now consider the laplace transform.
£{g(D)F(x)} = £{h()* F(x)} = L{h(0} £{F (9} =g)L{ F (9)}.
So clearly,
g(D)f () =L {g)L{ f(x)}}. (2.6)
In case of Fourier transform
g(D) f (x) = F*{g(it)F { f (x)}}. (2.7)
(2.6) and (2.7) are very useful tools for calculating the functions of derivatives. For

example consider,

cos(D)sin(z) = F*{cos(it)F {sin(z)}} = F* {cos(it)7i(5(t +1) - 5(t - 1))}
= cosh(1)sin(z).

2.10 Fractional integral equations

11



Definition 2.10.1. Cauchy integral formula is also used to generalize derivative of
non-integral order that becomes very important rule in case of complex analysis. For

integer order ne N, it becomes,

0" ()= St

which in case of non-integral order becomes,

I(y+1) (1)
D f ( ) - 27” C(;?ﬁ) (I . Z)7+l

but we have to be careful in choosing the integration contour because there is an

isolated singularity for | = z.

Definition 2.10.2. The Cauchy formula for the fractional integral is

NERT()) =ﬁ£(l — )" f (0)d .

where | >0andqe N .
So using the gamma function we can define the fractional integral of order y in the

following way.

Jyf(l)_(—j(l 0) "L (w)dao. 2.8)
)0

where | >0and y e R,
This fractional integral has the following important properties.
373P ~ 37 P \where .8 > 0.
which implies the following commutative property,
3737 ~ 3837 where 7,8 > 0.
The fractional integral operator on power function is.

12



grya - e+ a+y
IMNa+y+1)

where
y>0, a>-1 v>0.
The proof is based on the Gamma and Beta functions

o0
r@) = | e Yutldu, r(t+1)=tr@). where Re(t)> 0.
0

and,

1 i .
Nt h=1, i1 TTG) o
B(h, J)_éu 1-u) du_—r(h+j) B(j,h).

where Re(h) and Re(j)>0.
Now consider the following notation.

171
® ()=—+—, wherey>0
Y I'(y)

where + sign is used to show that function vanishes at y > 0.
Therefore fractional integral of order y > 0 can be represented as the Laplace

convolution between @ (1) and f (I) as,

|
L 10-0) L w)de

iM)=d (N*f()=
0 cI>y() ) o,

and also,

®,()*®,()=®,.,() 7. >0,

Definition 2.10.3. Let DY denotes the derivative operator of order g then we have,

DYJ%=1, butJ'DY=1 whereqeN.

13



which means that DY is left operator on corresponding integral operator so let us

introduce integer p such that p—1<y < p , then we can write fractional derivative

of order y in the following way,

dr 1 ¢ f(o)
qre y+1-p J p_1<7<p
S0 y=p.

so we can easily recognize that,
D’ f(1)=DPIP7f(l). p-1l<y<p..

Hence the fractional derivative of order y on the power function can be defined as,

7|18 — F(,B+l) B-r —
D’ _F(ﬂ+1—;/)| , ¥>0, f>-1 1>0. (2.10)

One important fact of the fractional derivative of order y is that it is not zero in case
of constant function f (I)=1if y ¢ N. Let =0 in (2.10), then we have,

I—J/

D’1= ,
r@-y)

y20, 1>0.
which is of course zero if y e N Dbecause of the poles of gamma function in the

points 0, -1, -2........

Definition 2.10.4. Another definition of fractional derivative of order y has been

defined by Caputo called Caputo fractional derivative of order y . It is defined as

D/ f(H=J3""D°k(), p-1<y<p. (2.11)
1 j fP(w)
—dw, p-l<y<p
_ _ )P
o7ty T(P=7) 10-0)
d” f( =
dl—p () =0

14



provided that absolute integrability of derivative of order p is met. Now in general,
D'f()=DPI?P7f(1)#JP7D"f(1)=D/ ()
unless function vanishes at t=0" for the first (p—1) derivative because for

p-l<y<p and | >0, we have,

D" f(l)= Dyf(l)+z - ey f @M. (2.12)

Thus using (2.10), we can write

Dgf(l):m(f(l) pZ—f“1 (o+]

:0
Hence according to this definition, the fractional derivative of a constant is still 0,
V-
D;1=0, »>0.
Now as
D’z7t=0, y>0, z>0.

We thus recognize the following statements about functions which for | > 0admit the

same fractional derivative of order y with p-1<y<p. peN.

D' f(1)=D’g(l) f(l):g(l)+icy—‘.

i=1

D7 f(I)=D7g(l) = f(I)=g(I)+Zp:cin“.

i=1

where c; are arbitrary constants. So we observe that,

J’'D’I"* =0, but D7J’I ="
wherey >0, 1>0.
Now let ¥ — (p-21)", then from (2.9) ,

7= (p-1)" = D’ f(1) - D"Jf (1) = D" f ().

15



and from (2.11),
y—=>(p-1)"'=D/f(1)—>JIDPf(1)=D"*f () fP*(O").
We will now show that both (2.9) and (2.11) can be derived using convolution of

@®_ (I) with f(I) . For this purpose we will take Gel’s and Shilov functions into

count,

I -v-1

o_ ()= ﬂ =o6“(), v=01,....

where 5 (1) denotes the generalized derivative of order v of the Dirac delta

distribution. So,

jTme: PO =d_ (1) f(l)='j f (@5 (- w)dw, 1>0.

0

which is based on the following properties,

|+

If(a))d(p)(l—a))da):(—l)pf‘p)(l).

0
and
S (-w)=(-1)° 5P (w-1).
In the above equations the limits of integration are extended for the possibility of
impulse functions centred at extremes.

Then the formal definition of the fractional derivative of order y is given by,

1 '} f (@)

A e R A (i

dw, yeR"..

e
But the kernel @_ (1) is not locally absolutely integrable, and then the above integral

is divergent in general so we need to regularize the divergent integral in some way.

16



Letp—1<y<p, then we may writt—y =—p+(p—y)or —y=(p—y)—p, SO we
obtain,

[@_ )+, () ]*FQ)=d_,()x[D,_ ()= F(1)]=DPI*7 ().
Or,

(@, , ()@ () [+ f1)=d, O)x[® ()= F(1)]=I""D f().

which gives the two alternative definitions of (2.9) and (2.11).

Definition 2.10.5. Riemann has generalized the integral Cauchy formula starting at

I =0 and Liouville choose to start it at —o defined by,

|
[ (1-0) k@)do, yeRr". 2.13)

—Q0

J_cof(l)=$

sofor p—l<y<p, peN, D’ f(1)=DPJI"7f(l)., we have

p |
d 1 J.( f(a)) o, p_1<7/<p

_P _ _ y+1-p
o7 1y, LT(P=7) ~(0-0)

dp
RS

<
I
©

In case f (I) vanishes at | — —oo along with its first p—1 derivatives, then
DPIPTE(1)=307"D7 f(I).
The sufficient condition that (2.8) converges is that,
f()=0(°"), &>0,andl—>o0" (2.14)
and sufficient condition that (2.13) converges is,

f)=0(l| "), &>0, and | ——0.. (2.15)

17



Integrable functions which satisfy (2.14) and (2.15) are sometimes referred as

Riemann class and Liouville class respectively. For example power function 17 with

p>-1and | >0 are of Riemann class and on the other hand the functions with,

|I|_5 with 5>y >0and | <0 and exp(cl) withc>0 is of Liouville class. So we

have,
Ji/oo |I|—5 _ F(5_7/) |I|—5+y ’ DZOO |I|—5 _ r(5+7/) |I|—5—}/ '
(o) (o)
and
J7 e% =c7e¥, D e =c7e".

Now in case of jump discontinuities at t=0, it is worthwhile to write,

| |
j (.)dw= f (....)dw, forexample consider for 0 <y <1.

0

1 '} '@ 4 __ 17 for) et j-f’(a)) i
r-y) ~(l-w) rd-y) Fl-y) (-w)

o

I—i/

e f(07)+D7 f(1) =D f(I).

where we have used (2.12) with p=1.

Definition 2.10.6. Weyl has defined another complementary integral with respect to

usual Reimann-Liouville integral as follows,

ng(l):%y)ojo(a)—l)y_lf(w)da), yeR". . (2.16)
|

The relation between (2.13) and (2.16) is

| —|
| (|—w)7‘1k(a))da)=—ri) [(+a) L (o')do.

. () &%

JCOf(I):%

18



1 % y—1 / / /
=——[ (o -1y “f(-o')deo’ =W]g(l)
I'(y) |/
where g(I') = f (-1"),I’ ==I and we have also carried out change of variable as

w—>o =-wand 1" =-I.

Definition 2.10.7. The operation of integration and differentiation with respect to

laws of commutation and additivity are,
JPJO=J93P =3P DPDY=DIDP =DP,
where p,q=0,12,....
In general both D” and D/ do not satisfy either semi-group property or commutative
property.

D’D? f(I)=D’D’ f (1) = D"** £ (1).
D’D?g(l) = D’D”g(l) = D"**g(l).

|—1/2

For example let f (1) = and f=a =1/2. Then using (2.10), we get,

D2f(1)=0, D2D*2f(1) =0,
but

D272 (1) = Df (1) =2 ¥2/2.
Similary g(l) = Il/2 and y =1/2, #=3/2, then again using (2.10) we get,

D¥g(1) =+/z/2, D¥*’g(1) =0.
but
DY’ D¥%g(1) =0, D¥’D"?g(l) =-1¥?/4.

D1/2+3/2 — ng(l) _ _|3/2 /4

19



Chapter 3

FRACTIONAL INTEGRAL EQUATIONS

3.1 Abel integral equation of first kind

Let us consider Abel integral equation of first kind as follows.

|
L U@ 4o £0), 0<y<l.

T (- G
where f (1) is the given function. Its fractional integral form is,
J7u(l) = f(1).
which can be solved in terms of fractional derivative,
u(l)=D"f(I).
Now using the fact thatD”J” =1, we will solve (3.1) using Laplace transform. As
we know that
Ju) =@, (1) *u(l) =u(s)/s’.
where =+ denotes the Laplace transform pair and,
17
* O rey
So we have,
u(s) _ f(s)=u(s)=s’ f(s). (3.2)

S}’

Now we will follow two ways to get the inverse Laplace transform from (3.2) in the

following manner.

Our first approach is to use the standard rules, so we can write (3.2) as

20



u(s){ (S)]
st

|
u(y-—t 9 f(a))y
r-y) di§(-o)

Thus we obtain,

writing (3.2) in the following way, we get,

u(s) :s%[s f(is)— f(O*)} f(loy)
So we will have,
1! () NEE:
| dw+ £(0 y
0=t 7)1(,_ oy O

(3.3)

(3.4)

(3.5)

Hence (3.3) and (3.5) are the solution of (3.1) in view of fractional derivative

D’and D!.

Second approach needs that f(I) should be differentiable with Laplace

transformable derivative with 0<|f(0")

< oo, then from (3.4) it is noticeable that

u(0") is infinite if f(0")#0, beingu(l)=0(""), as| —0". Weaker condition is

needed for the 1% approach that the integral at R.H.S of (3.3) must vanish as | — 0*

which shows that with f (1) =0O(1™"),0<v <1—y as | - 0", can be infinite as

| - 0". So from (3.3) and the fact that®,  +®, , = we observe that u(0")

1-v = F2—y-v?
can be infinite if f(0") is infinite, as u(l) =0(1""*"), as| —»0".
3.2 Abel integral equation of second kind

Let us consider the Abel equation of second kind,

g |

u(ly+—2 U@ do=1(), >0, 9eC.

L) (-o)
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In terms of fractional integral operator, it becomes,

@+ 3I)u(l) = f(1). (3.7
which can be solved as follows,
u() =@+ :[1+i(—9)pyp] f (). (3.8)

using Laplace convolution, J”* can be written as,

|7pfl

IPE() =D, (1)* F(1) = F+7/p)

* £ (I).

So the formal solution is,
=) [Z( gp J 150, 750
u(l)= + , 1>0, y>0.
C(yp+1)
Now as we know

e (;0)=E, (-ol") = Z ( —a )1), >0, >0, 0eC.

where E, is Mittage-Leffler function of ordery, so we have

yp—l d

Z( 0)" +7) dIEy(—aV) e ,(1;9),

So the final solution is
u(l) = f(I)+e§(I;8)* f (). (3.9)
The result can also be obtained in the following way.

Applying Laplace transform to (3.6), we get,
o |- : - S
1+—ju(s) = f(s) = u(s) =—— f(s). (3.10)
s’ s"+0

Now using the following Laplace transform pair we will get the inverse Laplace

transform,
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4 57*1
e (;0)=E (-al")+ Y

Now we can choose two different ways to get the inverse Laplace transform.

According to the standard rule, (3.10) becomes,

L](S) = { il f(s)}.

s” +0

So we have,
u(l) = %j{[ f(l-w)e, (w;0)dw.

If we write (3.10) as,

-1 -1
S /4

[s f(s)— f(O*)} f0) o

SJ/
S +0

u(s) =

We obtain,

u(l) :Ij t/(1-w)e, (;0)da+ f (0)e, (1;0).

Now we can observe that e, (I;0) is a differentiable function w.r.t. I with
e (07,0)=E, (0") =1

Then there exists another possibility to write (3.10) as,

7-1

ﬂ(s):[s >

s +

a_l} f(s)+ f (5).
Then we write,
ull) = j f(l —a;)e;(a);a)daw f ().

which is in agreement with (3.9).
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3.3 Some Applications of Abel integral equation

Abel integral equations are very useful for the calculation of various physical
measurements, most of them deal with the radius of a circle or a sphere as
independent variable which gives J” after the change of variable usually y=1/2
and the equation becomes the first kind equation.
Another important field is inverse boundary value problems in partial differential
equations which involves Abel integral equations, in particular parabolic ones in
which the independent variable has the meaning of time. We will discuss the
problem of heating of a semi-infinite rod by influx or efflux across the boundary into
the internal side.
Let us consider the following heat equation

h—r,=0, r=r(xl).
The interval is semi-infinite 0<Xx<ooand O0<|<oo of space and time respectively
and r(x,l) means temperature.
Let the initial temperature of rod is 0,

r(x,00=0 for0< x<oo,
Assume the influx across the boundary x=0 fromx<0tox>0 isgiven by
—r(0,1) = p(l).
Then under the suitable regularity condition, we can find r'(X,1) using the following

formula,

Pl®) -®1s0-014, x>0and!>0. (3.11)

r(x1) = ! j
V7 3 (- )

We will deal with interior boundary temperature ¥'(I):=r(0",1) 1>0 which can be

evaluated using (3.11)
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w(l) =L [P d = 3¥2p(l), 1 > 0. (3.12)

\/;J. [ (-
This is Abel integral equation of first kind and can be used to find the unknown
influx p(l) if the internal boundary temperature W(I) is given by measurements or

can be determined by controlling the influx.

Using (2.9) withp=1 and y=1/2, we can have

V(o)

\/_dlj\/(li

p() =D"¥(l) =

Now consider the following special cases

(i) w)=1= p(l):%m

(i) ¥()=1= p(l) :%.

Both results have been achieved using (2.10). So the required influx is continuous
and increases from 0 — oo for the linear increase in internal boundary temperature
with unbounded derivative at | =0" but it decreases fromoo—0 as | —co.
Now we will modify the problem using Abel integral of second kind for which we
will assume that the given rod is just touching the source of a liquid in x<0 and the
external boundary temperature is strictly being controlled such that
r(0-, =01

Now according to Newton’s law of radiation, the influx of heat from 0 to 0" that is
proportional to the difference of internal and external temperature is given by

p(t) =o[Q()-¥()], o>0..
Putting this into (3.12), we get

0  Qw)-¥(w) do

R N
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which can be represented in terms of operator notation as follows,
1+a3"2)w(1) = 332Q(I). (3.13)
Now let the external boundary temperature is given but the internal boundary

temperature is unknown, then (3.13) is the Abel integral equation of second kind that

can be used to evaluate (1) .
Let us take y =1/ 2, then (3.13) becomes,
P() =o1+383"3) T IV20().

that is of the form (3.7) and by (3.8) its solution is as follows,
YY) = —Z(—a) P PHZOM),
p=0

Now we will consider the following case, withQ(l) =1.
then with « =0 and using the following relation, we obtain,

Jy|a_M|a+7 a>-1y>0,1>0.

[Na+y+1)
I(p+1)/2

320 = .

I[(p+1)/2+1]
Hence,

Q I 0 a o1 I(p+l)/2 . Iq/2
()__é(_) T[(p+)/2+1] _qzo( 2 T[a/2+1]

So that,

Q(l) =1-E,, (-01"?) =1-e,, (1;0).

3.4 Fractional Differential Equations

Now we will discuss simple fractional relaxation and Oscillation equations.

The relaxation differential equation is
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Vi) == +g().
g(l) is a continuous function and | >0.

Using initial condition v(0") =h,, the solution is,
|
v(l)=be™ + _[ g(l - w)e "d(w). (3.14)
0

Similarly the oscillation differential equation reads
11 _ /
vi()y=—v()+g).

The solution of the above equation under the initial condition v(0")=h,, and

V' (0") =h, is
v(l)=b, cosl+QsinI+jg(l—a))sincod(a)). (3.15)

Now consider,
D/v(l) =D’ (v(l) —f:(—k'v(k’(m)] =—v(D)+g() I>0. (3.16)

p is a positive integer such that p—1< y < p that provides the number of prescribed

initial values v (0%) =b,, where k =0,1,2,........, p—1. Now consider,
p-1 !
v(1) = X" by, () + [ gl - o), (@)d ().
k=0 0

v (=3, (1), v"(©*") =6, hk=012..p-1 (3.17)
v,()=—v;(1), 1>0.
where Vv, (I) represents those linearly independent solutions of the differential

equation of order p satisfying the initial conditions (3.17). The function v4(l) is

called impulse-response solution representing the particular solution of
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inhomogeneous equation with all b, =0 and with g(I)=o(l). So in case of the

ordinary relaxation and oscillation, we observe that

v,()=e" =v, ().

and,

v, (1) =cosl, v (1) =Jv,(l) =sinl =cos(l =7/ 2) = v,(l).

Now we will solve (3.16) by Laplace transform. We will first reduce the equation

with the given initial condition into an equivalent fractional integral equation and

then apply the Laplace transform. .

Apply J7 operator on both sides of (3.16), we have
p-1 Ik
_ - 17 b4
v(I)_[kZ_(;bk T J7v(l)+J g(I)J.
Then we apply the Laplace transform that will yield,
- & b 1- 1-
v(l) =[Zﬁ——7v(l)+—yg(l)}
=S S S

hence we have,

&a):(prk - é(l)}

- s”+1

Now we will introduce Mittag-Leffler functions

g7t
e(N=e (i) =E (-I")+ mal
S;kal
v (1) =3, (1) = T k=0,12..p-1.

From inverse Laplace transform of equation (3.18), we find,

() =(p2bkvk (-fg0 —w)vé(w)d(w)].
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where we have used the following fact with v, (0") =e, (07) =1.

ll :—(s il —1j+—v(’)(l):—e;(l).

s’ +1

That encompasses the solution (3.14) and (3.15) found for y =1,2 respectively.
3.5 The Mittag-Leffler Type Functions

The function E, (g) with y >0 is defined as,

v _ g°
E (@)=Y ——— y>0 geC. (3.19)
g pz-;F(7p+l)

For y — 0" , the entire complex plane will lose analyticity since,

- 1
Eo(9)=2.9"=— |g|<L.
’ pZ? 1-g o

The Mittag-Leffler function can be used to give the generalization of exponential

function,
vI=I(v+1), so(w)!=T(yv+1) veN.
The particular cases are,
E,(+g*)=coshg, E,(-g*)=cosg, geC.
and
E,,(+g"?) =¢’ [1+ erf (igl’z)] =e%rfc(¥g"¥?), geC. (3.20)

where erf (erfc) denotes the error function as follows,
erf(g) = 2 _Te‘vzdv erfc(g) =1—erf ()
ey '

Now we will prove (3.20). First we will use g instead of +g"?to avoid polidromy,

so we will write,

2b+1

IR N _
Ey.(9) —bZ:;,r(bH) +; 01372 =v(g) +w(g).
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where it can been recognized as,

& ¢ )
v(g)—bZ:;F(bH)—eXP(g )

and

B © g2b +l _ )
w(g)—;—r(b+3/2) =exp(g)erf (g).

It is given in the Bateman Project [70], the error function can be represented as the

following series,

2 ~ 2b+l
erf(g):T Z (2b+1)“ geC.

where
(2b+1)1'=1-3-5....(2b+1) = 2" (b +3/2)z.

Another proof can be given if w(g) satisfies the following differential equation.

1
w(g)= 2{ﬁ+ gw(g)}. w(0) =0.

whose solution can be immediately obtained as follows

g

w)=

e dv=eerf (9).

Now consider the following function

o gb
E ()= ———— >0, #>0,geC. (3.21)
= ;F(7b+ﬂ)
Particular cases are
ed -1 sinh(g"?)

El,z(g) :T1 E2,2(g)_ gl/z

Now we will discuss the general functional relations for generalized Mittage-Leffler

function (3.21) which involves both parameters y and g.
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E, 5(9)=——+0E, ,.,(9).

1"(/3’)

E%ﬂ(g) = ﬂEyﬁﬂ(g) +79 i

dg Ey,ﬂ+1(g)'

d Y- .. n
(@] [gﬁ’ 1E7ﬁ(gy)]=gﬂ lEy,ﬂ_m(gy), i

Now we will prove the following different relations,

(ijm E (t")=E_(t"), meN. (3.22)
dt
O ™) =B+ S = n-23.., (329
dem ™" min ~T(1-im/n)’ '
1 ~ mai2zj/m
Em,n(t)?; Eyo (t7eM). (3.24)
and
E, ") =e {1+2%} n=2,3,...., (3.25)

where a(a;t) = je‘x x**dx denotes the incomplete gamma function.

Now it is clear that the (3.22) and (3.23) can be easily derived from (3.19). So we
will prove (3.24).
We know that,

m ifk=0

m-1
ZeiZﬂjklm — -
& {o if k 0

So from (3.19) and using the above identity we have

m-1

D E, (te”"™) =mE, (t") meN.
j=0
Replacingy by »/m and t by t" in the above equation we get
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m71 . .
E, (t )=12Ey,m(t”me'2””m) meN. .
m4<3

Replacing y by m/n, we get the required equation (3.24).

Now we will prove (3.25)

In order to prove the required relation we will first consider (3.23) form=1. Then we
will multiply both sides by e™ to get the following relation.

i[e—tE (tlln] etri I
dt yn ~T@-j/n)

Integrating both sides and using the concept of incomplete gamma function, proves

the relation (3.25).
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Chapter 4

EXISTENCE AND UNIQUENESS THEOREM OF
FRACTIONAL MIXED VOLTERAA-FREDHOLM
INTEGRODIFFERENTIAL EQUATION WITH
INTEGRAL BOUNDARY CONDITIONS

Definition 4.1. Caputo fractional order derivative of the function f defined on the

interval (a, b) is given by

t _ e d° 1 —7-1¢(p)
aDyf(z)_J"7dt—pf(z)_r(p_7)£(z—u)py f ® (u)du.

Where y is complex number with >0 or Re(y)>0 and p=[y]+1, [y] is the

integer part of y .

Lemma 4.2. Let y is greater than O then
D7D ()= f(t)+hy +ht+ht®+...... +htP

Forsome h eR,i=01,....., p-1 p=[y]+1

Definition 4.3. If f is defined everywhere on the given interval (a, b) then,
1 b
D7 (t) = —— | (b—t) f (t)dt,
I'(y) !

provided that y >0 and the integral exists.

Theorem 4.4 (Krasnpsel’skii fixed point theorem). Let M be a non-empty, bounded
and closed-convex subset of a Banach space X and let A and B be the two operators

such that,
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1. Ax+ByeM, where x,y e M.

2. Alis continuous and compact.

3. B isa contraction mapping.
According to this theorem, we have z € M such that z= Az + Bz
Let X be a Banach space with the norm||.||. Let ¢ =([0,T], X) be the Banach space
of all the continuous functions such that,

¢:[0,T] > X,

with norm || @ ||=sup |l @(u) ||, u [0, T].

Now the fractional mixed Volttera-Fredholm integrodifferential equation is,
t T
D7y(t) = f [t, y(®), [k(t,u, y(u)du, [h(t,u, y(u))du]. . (4D
0 0
with the following boundary conditions,
T T
y(0)-y' @) =[g(yu)du, yT)-y'(T)=[h(y)du.. (4.2)
0 0

where 1< <2, D’ is the Caputo fractional derivative and the non-linear function
fi0TIxXxXxX = X,k,h:[0,T]x[0,T]xX - X andg,h: X — X.
with the following conditions satisfied,

(C1) there exists constants G, and G, such that |[h(y)|<G,, and || g(y) <G,
y e X.

(C2) there exists constants a, and a, such that || h(x,) =¥ (x,) I<a || X, —X, || and
19(x)—g(G) €@, [1% =% Il v, X, € X.

(C3) there exists D, ={y C:|Jy|<r} with the following condition statisfied,
Fo (N, +M,K())

C(y+nT>7 -~
where F, = 2T% +T + y(T +1)

<G A+T)+G,(T-1)+

(C4) there exists D, = {y eC:|y|= r} with the following condition statisfied,
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al+T)+a,(T-D+(dVCA+T)/(T(y+)T*7) <],
where C, =2T?+T + (T +1) and V" =sup{L(u)(1+ p(u) +q(u); ue[0,T1}

(C5) there exists a continuous function p:[0,T]— R*and p, :[0,T] - R"such that

<p(t)lly, -, Il and <p Oyl

j(k(t, u,y;) —k(t,u, y,))du

jk(t,u,y)du

vt,uel[0,T]landy,,y,,ye X.

(C6) there exists a continuous function q:[0,T]— R"and ¢, :[0,T]— R"such that

J(htu, y) —k(tu, y,)du

<a 1y, -, Il and | [h(t,u, y)duf <a,@]y],

vt,ue[0,T]landy,,y,,y e X.

(C7) there exists continuous functions L :[0,T]— R*and N, is positive constant
such that || f(t, X, ¥;,2,) = f(t. %,, ¥,, 2,)| < LK (||xl = %[+ |y, - Y2 |+
|z, - 2,]) and N, =sup, o | f (£,0,0,0)| Vte[0,TTand X, Y,, 2, X,,Y,,
z, € X and K:R" — (0,) is continuous non decreasing function satisfying
K(a(t)y) <a(t)K(y), where «:[0,T] > R" is a continuous function, y € X.

Lemma4.5. Let,
l<y<2and f:J xX xX — X whereJ =[0,T].

be acontinuous function, then the solution of fractional differential equation (4.1)

with the boundary conditions (4.2) is,

y(t) = (1%” Jhcyas +(1—(1Ti)j J oty

_(1+t)}(F—U)“f
T 0

) [u, y(u), ! k(u, A, y(1))d 4, ! h.(u, 4, y(z))dszu

+ (1;'[)‘(')'(1[(—7{); f (u, y(u),!k(u,ﬂ, y(i))d/’t,.([hl(u,}t, y()t))dﬂ]du

[ (t—u)* r T
+£ o) [”’ y(“)'l k.4 W»dﬂ,ghl(u, A y(ﬂ))dﬁjdu.
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Proof. Using lemma (4.2), we can solve (4.1) to get the following equation,

y(t) = ! %f (u, y(u),'c[ k(u, A, y(z))dz,l h.(u, 4, y(A))d ﬂ]du +B,+Bt.  (4.3)

Integrating both sides with respect to t , we get

(t- U)y

y' () = j (u, y(u), [k(u, 4, y()d 4, [h(u, 4, y(ﬂ,))d/inu +B,.

Now we will apply the boundary conditions given in (4.2) as follows
y(0)=B, andy'(0) =B,.

and,

y(T) = j(TF(“); [U,Y(U),_([k(uﬁ,y(l))dl,'c[hl(uﬂ”t,y(ﬂ))di]du+Bl+BzT.

y' (T)= j%f [u, y(u),.[k(u,/l, y(/l))dﬂ,,'[hl(u, A, y(;t))d/l}du +B,.
Now consider the following boundary conditions
y(0)-y' (0 =[g(y(u)du, y(T)-y'(T)=[h(y(u)du.

Using these boundary conditions we will get two equations solving which yields the

value for B, and B, given below

B, = I -2 oty

J(T uy™

0 [u, y(u), [k(u, 2, y(A)d 2, [h(u, 2, y(ﬂ,))d/ljdu

j “)y [u, y(u), [k(u, 4, y(A)d A, [h(u, 4, y(/l))dﬂjdu
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2,2 [y 1-1 |[ayenan

__'[(TF( ) f[u,Y(u),jk(u,/l, y(/”t))d/i,]'hl(u,g, Y(i))dxljdu

u)}/ u T
j U, y(), [k(u, 2, y()dZ [hy(u, 2, y(2))d 2 |du
0 0
Putting these values in (4.3), we will get the following result

y(t) = (1%‘) Jhcyas +[1—(1Ti)j J oty
_(1+t)}(r _uy?

f [u, y(u),j.k(u,/l, y(ﬂ))dl,]hl(u,/i, y(/l))d}LJdu

I'(y)
(1+t)_[ U)7 (u, Y(U),Tk(U,A, y(i))dﬂ,]hl(u,/l, y(/”t))dﬂ}du
= j %f (u, y(u), j k(u, 2, y(2))d 2, j hy(u, 2, y(ﬂ))dﬁ)du.

which completes the proof.

Theorem 4.6 If the conditions (C, to C,) are satisfied, then the equations (4.1) has a
unique solutiononJ =[0,T].

Proof. Let us consider an operator F:C —C, then for any y € C we have,

Fym) =2 Jhcyan +( (1“)] [aty@pdu

(1+t)j(f

) f [u, y(u), E[ k(u,4,y(4))dA, 1. h(u, 4, y(4))d }LJdu

(1+t).[(T LI);/ 2 [u, y(U),Tk(u,i, y(/t))d}t,j[hl(u,ﬂ, y(ﬂ))dﬂ]du

+J'(t u)y [u,y(u),.u[k(u,/l,y(/l))dﬂ,}hl(U,/l,y(/l))d;tJdU-
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Now we need to show that F has a fixed point on D, whereD, ={yeC{|y|<r}.
This fixed point will be the solution of fractional mixed Volttera-Fredholm
integrodifferential equation.

Let us first prove that F(D,) < D, . For this consider any ordinary y € D,, and then
we have,

(1 +

IFeyen)< &Y | j [h(y(u))] du +( ] Jlatyyldu

+(1+t)J~(T—u)7‘1 f[
I'(y)

N (1+t)T(T —u)’2
C(y-1)

j)-(t u)

u, y(u), j k(u, 4, y(A))dA4, j h.(u, 2, y(4))d A [|du

du

f (u, y(u),jk(u,ﬂ, y(ﬂ))dﬂ,jhl(u,/i, y(2))dA

[u, y(u), [k(u, 4, y(4))d 2, [h(u, 2, y(ﬁ,))d/lj du

IF (vl < 2 fincyyu +( j [laty@yldu

+(1+t)]{(T—U)7—1 f[u y(u), Jk(u A, y(A)d A, .[hl(u A, y(A)dA (|du

L(y)

+a+oja—uy4
0 F(}/_l)

du

f (u, y(u),jk(u,ﬂ, y(z))dﬂ,,jhl(u,ﬂ., y(A)dA

L(t—u)
+£ r()

f {u, y(u),_Tk(u,/l, y(/l))di,]'hl(u, A, y(l))dﬂ] du

IF o] < 2 eyl au {1—“%”] [laty@yldu

+(1+t)]-(T—u)“
I'(y)
—f(u,0,0,0)+ f (u,0,0,0)| du

.\ (1+t)]-(T —uy?
0 F(}/—l)

f [u, y(u), [k(u, 4, y(A))d 4, [h(u, 2, yu))dz]

f (u, y(u), fk(u, 2, y(4)d 4, [ hy(u, 4, y(ﬁ,))diJ
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—f(u,0,0, O)+ f (u,0,0,0)| du

(t
jr()

—f(u,0,0,0)+ f (u,0,0,0)|/du.

[u,y(u), [k, 2, y(2)d4 [h(u, 2, y(z»dzj

Let G, =|h(y(u))| and G, =||g(y(u))| . so the above takes the following form,

1+1) |

[Foy@]<= j||h(y(u))||du+( (L+1)

j [laCy(uy|du

N (1+t)](F —u)’
L(y)

(1+t) ¢ (T -
—f(u,0,0,0)] du + = !

f [u, y(u), j k(u, 4, y(2))d4, j hy(u, 4, y(ﬂ))dﬂ}

u)"*
f(t,0,0,0)|/d
s [CCLIER

. (1+t)](T —uy?
I(y-1)

f (u, y(u),jk(u,ﬂ, y(2))d4, [hy(u, 4, y(l))d/l)

~(1,0,0,0)|du + (1+t)I(F “)_ -11€000]d

(t—u)™
+! r)

f [u, y(u), j k(u, 2, y(A))d 2, j h(u, 4, y(/‘t))dﬂ,}

~(1,0,0,0)|du +i (t;é))y_l

| t.0,0,0)]du.

using C, we get,

< (1+1) GT +(1—MJG2T + (1+1) ]‘ (T-uy? L)
T T s T(r-1)

x K (||y(u)||+

jk(u,i, y(A)dA|+

, y(/l))dﬂH]du

L AON, ] (T-u™ @+t ] T-u™

oy T ey Y

x K (||y(u)||+

jk(u,i, y(A)dA|+

].hl(u, A, y(A)d AHJ du

+(l+t)N1](T—u)y‘1 J-(t u)“l_
I'() I'(7)
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<WHYeq +(1_@]GZT L4 } ooy W
T T

) T(r-1)

Jdu
Jdu
Jo

xK@wwm+

j'k(u,ﬂ, y(A)dA|+

L A+ON, j (T—uy” , @+1) I (T-u™

L
CT(y-) T I'(y) “

- j h,(u, 2, y(2))d2

j.k(u,/i, y(4))d4

xK@wwm+

L ArON, } T —uy™ J'(t u
'(y) L(y)
X K{

J- (t U)}/_l

Now re-arranging the terms and applying C,, we get,

s(1+t)Gl+( (1+t)jGT A+ON,
T T

X U-(T —u)” 2 J.—)y - J j.(t _—du)H u
F(;/—l) I'(y) » T()

(1+t)J-(T u)y’

= LK (]| + py@)[y]+ o) ]y du

“*”I“‘“’*quwﬁ+mwww+%wwqu

I'()

I(t “) LK (Iyl1+ P ]+ () [ du.

IF(y@®)| < @+1)G, +(1_ (11+_t)j o

(1+t)N1(T7‘1 T ] T

+ + +Nl—

T I(y) T(y+1) [(y+1)

(1+t) I(T u)”*
I(y-1

+(1+t)j(T —u)
L(y)

J- ) ) L(u)(L+ pl(u)+q1(U))K(||y”)du'

L(u)(@+ p,(u) + G (U)K (] )du

L(u)(L+ p, () + 0, ()K (]| )du
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Let V, =sup{L(u)(@+ p,(u)+0a,(u); uel0,T]} and (1—(1%}) < (1—%)

we get,

[F(y(®)] < @+t)G, *(1‘%szT .

N
T \If() T@E+)) T+l

@A+, 7 (T —u)? @A+, £ (T —u)™*
[T oy Kb SR Kk

r-1 7 4
(1+t)Nl[T LT j+ T

(t

. ;(“7))_ K(|y])du.

<@+1)G, + (1— le G, T+

(1+t)N1[T“ LT }N T
T |\ TE+)) T+l
+(1+t)V1K(r)T (T —U)y‘zdu+(1+t)V1K(r) (T-uy™ du
T s (-1 T ()
(t—u)

VK ~——du.
V) (r)l () u

71 Y I
£(1+t)Gl+[1—£szT+(1+t)N1[T + T }L T
T

N, —
T T T+)) "I+
+(1+t)V1K(r)(T7‘1+ T/ J+V1K(r)T7

T I'(y) T'(y+)) r(7+1).
<A+1)G, +(T-1)G,T +@(N1+M1K(r))[;(7;)+F(;I;:1)J
+(N1+M1K(r))r(;|::1)'

IF(y®)| < @+1G, +(T -1)G,T +

(1+T)(Nl+MIK(F))(V-l+ T” ]
T L(y) T(r+3)

T}’

+(N, +M,K(r)) oD

Fo(N, + M, K(r))

<G @A+T)+G -1+
1( ) Z(T ) 1_,(7/4_1).'_2,7

where F, =2T*+T + (T +1).

Now let x andy e C and lett €[0,T], then
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JFexn-F oy s 2 ||h(x)—h(y)||du+(1—‘1Tﬂjj 00— g(y)ldu

L@+t ] (T-uy™
T o IO

X

f (u, x(u),ik(u,ﬂ, x(ﬁ))dﬂ,]‘hl(u,/’t, x(/i))dxlj

du

~f (u, y(u), [k(u, 4, y(2)d 2, [ h(u, 2, y(z))dz]

4+ } (T-uy~*
T ¢ I'(y-1)

X

f [u,x(u),Tk(u,ﬂ,x(ﬂ))dl,}hl(u,/l,x(/i))d/lj

du

~f (u, y(u), [k(u, 2, y(4)d 4, [ hy(u, 4, y(/l))d/lJ

t (t—u)"
+£ ()

X

f [u,x(u),]{k(u,i, x(l))di,]m(u,i, x(/l))di]

du.

—f [u, y(u), [k(u, 4, y(2))d 4, [ hy(u, 4, y(/i))le

Now using C, to C,, we will get the following,

@+t
T

|F(x() - F(y@®)||< +@ [lox=y)|du+a, (1— j [lox=y)du

@+t) F (T -u)?
T !F(%l) -

x K {”x(u) —y(u)|+

_[(k(u, A, X(A))—k(u, 4, y(A)))dA

Jdu

+

J (b2, x(2) ~hy (U, 2, y(A))d 2
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L @+1) ] (T —u) L

L(y)
X K(
N T

0
XK[

.
+

Jdu + { %L(u)

, y(/l)))diHJdu-

1+t)a, | 1+1)
<E03 [y, (1- 822 ix-ynau
0 0

N <1+t) I U —UY) LK (J(x=y)l+ @ (x=y)]+ atu)(x-y))du

(1+t)I(Tr( ) LK ([(x=y)]+ p@)[(x—y)|+a()(x-y))du
+'([(t1:(uy)) L(u)K(H(X—y)H+ p(u)H(x—y)H+q(u)(x—y))du.

<0 [l yfaea, (12 -y

(1+t)j )y

L(u)(@+ p(u)+qu)K (|x - y|)du

+(1+t)J-(T —u) 7
L(y)

I )7 L(u)@+ p(u)+qu)K (x—y|)du

L(u)(@+ p(u) +q(u)K (|x—y|)du

Now let  Let V" =sup{L(u)(1+ p(u)+q(u); ue[0,T]} and let K (|x—y|)<

d|x—y| whered >0, then we have,
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”Fua»_F(ﬂomsﬁﬁgﬁhﬂp_ﬂmu+a4}_%)ﬂp_ﬂmu

* T -2
e S R SR Y
0

T (r-1
Laviasy ] (T —u)?
T o IOk

(Ix=y[)du.

(Ibx=yl)du

(t—u)*
L'(y)

+dV*.t[
0

Solving the integrals we get,

w}nx_ yi

[F (@) - Fy®)]|< {31(1”) +a,(T-1)+ T+ )TE

where M, =2T?+T +y(1+T).
Now as a (1+T)+a,(T —1)+(dV'C,(1+T))/ (T (y+)T>7) <1, so F is contraction

mapping which proves that the given integrodifferential equation has a unique

solution on [0, T].

Theorom 4.7 Let the conditions C, —C, hold for the following,

<o(t), where o(t) e L (J).

f [t, y(®), [K(t. 4, y(4)d 2, [hy(t. 2, y(/I))dAJ

Then the boundary value problem (4.1) — (4.2) has at least one element in [0,T]
Proof Let us consider D, :{yeC |y < r}, so we introduce operators E, and E,

as,

A(X(t)) = % j (t—u)*f (t, x(u), j k(u, 2, y(4))d A, j h.(u, 4, y(}t))dﬁJdu.
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Bx0) =2 [xty@hau +1- a*”jf txan + &0 | e .

x f (u, x(u), j k(u,4,x(1))dA, J‘ h(u, 4, x(ﬂ))dlj du

L@+ I(Tr( ) f[u,x(u),_u[k(é?,ﬂ,x(ﬂ))dﬂ,}h(U,l, x(/l))dﬂu)du

Now let us prove that if X,y € D,, then Ax+By e D,,

_ J‘(tl:iylf (u, X(u),]ik(u,/%, y(;t))d/I,.T[hl(u, A, y(l))dl)du

(L+1) | L+ (L+t) (T —u)~
+?£h(y(u))du+£1—?J£g(y(u))du+ T !r(y—l)

@+t)
T

X f [u, y(u),jk(u, A, y(ﬂ))dxl,}hl(u, A, y(/l))d}t]du +

j (T )y (u, y(u), k(0. 4, y(4)d A, [ hy(u, 4, y(z))dszu

Lt—u)
1550

820 JIncs] +(1—(1Ti)j Jlstynjon

. (1+t)]-(T —uy”?
0 I_‘(7/_1)

f (u, x(u), ]{ k(u, 4, x(4))d A4, } h (u, 4, x(}t))dij du

f [u, y(u), T k(u,4,y(4))d A, _T[ h,(u, 4, y(/l))d/I] du

L) ] T -u
I'()

f [u, y(u), T k(u,4,y(4))d A, ]. h,(u, 4, y(/l))d/IJ du
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<lol, [ S -du+ @i,

+(1—(1+‘)]GZT <1+t)||<o||Ll j“ —u)t
T I'(y-1

0l o,
L(y)

_lel, T
F(y+ 1)

@+OT"7 o], L lell,,
TI(y) TO(y+1)

+(1+1)G, ( _ﬂGZT+

_ el T . @+0)]e], T . @+0)ell, T
CT(y+1) TI'(p) TI(y+1)

+(1+T)G, + (T -1)G,.

<Q4TIG, + (T ~1G, + 2 |g] .
C(y+)" e
where F, =2T*+T(y+1)+T.

Now we need to prove that B(x) is a contraction mapping.

(1+1) ] (T —u)*

Bx, —BX, | <

f [u, xl(u),j‘k(u,ﬂ, xl(i))dﬂ,]m(u,i, xl(/”t))d/lJ

—f [u, X, (u),Tk(u,/t, X, (i))di,]‘hl(u, A, xz(ﬂ))diJ du

(1+t)j(T u)’?
-1

Lu, X, (u), j k(u, 4,x,(4))d 4, T[ h,(u, 4, % (4))d ;LJ

—f [u, X, (u),.[k(u,/l, X, (i))dz,]m(u, A, xz(/i))d/lj du

R U " @+ p(o) + (@)K (I = e l)du

I'(y-1)

+J'( —u)~

o) L(u)(1+p(9)+q(«9))K(lei—lel)dU}-

Let K ([x, —%,[|) <V[x —%,], we have,
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(1+t)vV (T —u)y™
- Oy [T T |

<M” ||{ T }
ST 2T To+D

WIA+T)(y+T)
< F( 1 2—y || _X2||'
y+)T

So B is a contraction mapping since x(t) is continuous, hence A(Xx) is continuous.

Now consider the following,

[Ax®)| :H%ﬂ [t—uyf [u, x(u), [K(, 2, x(A)d A, [hy(u, 4, x(/l))dﬂjdu

t r-1
<lol, [ =

_Tlol,
I'(y+1)

which clearly shows that A is uniformly bounded on D, Now we will prove that
AXx(t) is equicontinuous. For this purpose we take any two elements from [0,T] ,say

t,t, and xe D,. Thenas f is bounded on compact set J x D, thus,

=q. <o, S0 we have

SUP (¢ uyew Dy 0

f (u, x(u), T k(u,A,x(1))d A, } h,(u, 4, x(1))d /’LJ

| Ax(t) - Ax(t,)] =

! r(u)) (u,X(u),:[k(u,}t,x(}t))dﬂ.,:[m(u,/l,x(,i))dj,]du

—tJZ' %f (u, x(u), j' k(u,4,x(4))d 4, ]' h (u, 4, x(i))dﬂj du
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[(n Uy = (t, —u) |

F( Do
x f (u, x(u), Ju. k(u,A,x(A))d A, } h,(u, 4, x(4))d )LJ du

j(t —u)’ (u x(u), jk(u 2, X(A)d A, jhl(u A, x(}t))d/ij

f

(24

0 _ 7 v _t7
Sm[z(tz )"+ tz)]-

So A is relatively compact. By Arzela-Ascoli theorem, it is compact that concludes

the result of Krasnosel’skii theorem.

Example: 4.8

ly(s)e™
10+|y(s)|

1 +j y(s)|

y () =
10 10+|y(s)| 210e”C) 4t

ds+J.

And the integral boundary consitons are

1

y(0)-y'(0) = j T | S

YO-Y' O =] —\y<s>\ as.

So we have

1

la(y®)| = 10+]y@®]| 20

lg(x)—g(y)]|=< ﬁ x—y|.

1

1
IOl <

E .

||h(><)—h(y)||—<m||X Yl

1
vl
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1
10+t

1
10¢e!

<

[yl

<

[x=yl.

J (s -hy(t,s,y)ds J (hu(ts,y)ds

1

10+t (||X1 =X [+ [V = Yo +]z - 22”)'

” f (t, X Y Zl)_ f(t’ X51 Y2, Z2)” S

and f(t,0,0,0)=1/10. So all the conditions are stratified with G, =G, =0.1,
a,=a,=0.01,M; =012, =01, C,=6, N;=0.1, M"=0.12 andC, =6 ,therefore

we have,

oM *Cl(lf) 1o 0.012)+ (0.)0.12)6(2) _
Oy +1)T*7 ['(2.5)

1

al+T)+a,(T-D+

which proves that integrodifferential equation has a unique solution.
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CONCLUSION

It concludes that under the certain condition, there exists a unique solution for
integrodifferential equation with integral boundary values with 1<y <2 in Banach
space. Integrodifferential equations play an important role in developing various
applications such as cellular systems.

To reach this conclusion we have used the concept of Banach fixed point theorem
and Krasnosel’skii fixed point theorem. First we proved the existence and then
uniqueness of solution of given integrodifferential equation under the given integral

boundary conditions.
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