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ABSTRACT 

In mathematics, an integrodifferential equation is an equation that involves both 

integral and derivative of a function. These equations model many situation ranging 

from science and engineering. A particular rich source is electrical circuit analysis. 

Different techniques have been evolved for finding the solution of these differential 

equations under certain conditions. One of them is to prove the existence and 

uniqueness of mixed Volteraa-Fredholm type integral equation with the integral 

boundary conditions in Banach Space. This has been worked on by some authors 

such as S A Murad from Iraq, H J Zekri from Iraq, S Hadid  from UAE. 

Keywords: fixed point theorems; sequential fractional derivative; integral boundary 

conditions; fractional differential equation 
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ÖZ 

Matematikte integrodifferansiyel denklem, bir fonksiyonun hem integralini hem de 

türevini içeren bir denklemdir. Bu denklemler birçok durumu bilim ve 

mühendislikten modüle eder. Bu diferansiyel denklemlerin belirli koşullar altında 

çözümünün bulunması için farklı teknikler geliştirilmiştir. Bunlardan biri, karışık 

Volteraa-Fredholm tipi integral denkleminin Banach Uzayındaki integral sınır 

koşullarıyla varlığını ve tekliğini kanıtlamaktır. Bu, Irak'tan S A Murad, yine Irak'tan 

H J Zekri, Birleşik Arap Emirliği’nden S. Hadid gibi bazı yazarlarca çalışılmıştır. 

 

Anahtar Kelimeler: sabit nokta teoremleri, kesirli türev, integral sınır koşulları, 

integrodiferansiyel kesirli denklemler  
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Chapter 1 

INTRODUCTION 

Theoretical and practical approach of the fractional differential equations to solving 

various mathematical problems has been extensively worked on. The theoretical part 

has been investigated by Momani and Hadid in regards with local and global 

existence theorom of both fractional differential equations and fractional integral 

differential equations.  

Integral differential equations with integral boundary conditins have been 

successfully applied to various application such as population dynamics and cellular 

systems. It involves the research work of various researchers who have been able to 

investigate the behaviour of these equations in the different ways and have 

successfully proved different phenomenon in relation with these equations under 

various initial and boundary conditions, such as: 

 Tidke has studied the existence of global solutions for non-linear mixed 

Volteraa-Fredholm involving non-local conditions.  

 Ahmed and Nieto have studied the results for boundary value problem for 

non-linear integral differential equations of fractional order with integral 

equation.  

 N Guerekata has studied the existence of solution of fractional abstract 

differential equations using non-local initial conditions. 
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So we will extract the relevant information from the work of these researchers and 

apply them to study the existence and uniqueness theorem for non-linear fractional 

mixed Volteraa-Fredholm integral differential equations with integral boundary 

conditions in banach space using the banach fixed point and Krasnosel’skii fixed 

point theorems for the case 1 <     .  
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Chapter 2 

REVIEW OF FRACTIONAL CALCULUS 

Fractional Calculus is a modern and expanding domain of mathematical analysis. 

This applies to any real number with operations similar to usual differentiation. The 

order of the derivative may also be variable, distributed or complex. 

Basically, Fractional Calculus includes more information in the model then offered 

by the classical integer order calculus. Besides an essential mathematical interest, its 

overall goal is general improvement of the physical world models for the purpose of 

computer simulation, analysis, design and control in practical applications. In the last 

four decades fractional calculus became an acceptable tool for a large number of 

diverse scientific communities due to more adequate modelling in various fields of 

mechanics, electricity, chemistry, biology, medicine, economics, control theory, as 

well as signal and image processing. This list can be extended since Fractional 

Community is still rapidly growing as can be seen at the websites of previous FDA 

events. 

2.1 Some Basic Concepts 

The integer order differential equation is, 

                      -

0
0

( ) lim (-1) ( ( - ) ).
p

p p j

q
j

p
D f z q f z p j q

j


 
  

 
                                     

Where .p   and,  

                                                   
 

!
.

! !

p p

j j p j
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For non-integer order differential equation, it becomes, 

 
0

0

( ) lim ( 1) ( ( ) ).j

q
j

D f l q f l j q
j

 







 
    

 
    

where    and in case of complex numbers Re( ) 0,   and, 

                                               
( 1)

.
(( 1)( 1))j j j

 



   
 
    

  

There are some properties that can be required to the fractional derivative such as, 

 ( ) ( ).D f l D D f l       

where ,       and in case of complex numbers, Re( ),  Re( ) 0 .    Also,  

 ( ( ) ( )) ( ) ( ).D af l bg l aD f l bD g l       

where ,a b  are arbitrary constants.  

2.2 Exponentials 

Let us consider the         derivative for     where a  is arbitrary constant. 

 

( ( ) )

0
0

lim ( 1)

.

az j a z j q

q
j

az

D e q e
j

a e

  




  




 
   

 




   

Similarly, we consider, 

 
( )

2 2

2 2

cos( ) sin( )

cos( ) sin( ).

iz iz

i
i ziz

D z iD z D e i e

e e e

z i z

   

 

 



  

 

   

         (2.1) 

and  



  

5 

 

 
( )

2 2

2 2

cos( ) sin( ) ( )

cos( ) sin( ).

   

 

 

 


 

   

 

   

iz iz

i
i ziz

D z iD z D e i e

e e e

z i z

  (2.2) 

Solving (2.1) and (2.2) we get, 

 
2

sin( ) sin( ).D z z
       

 
2

cos( ) ( ).D z coz z
      

The following rules can be proved in the same way, 

 
2

sin( ) sin( ).D az a az
      

 
2

( ) sin( ).D coz az a az
     

where a is any arbitrary constant.   

Now consider the following function 

 ( )




  ipz

p

p

f z a e .   

it can be solved as follows, 

( )
2 2( ) ( ) .

i
i pzipz ipz ipz

p p p p

p p p p

D f z a D e a pi e a p e e a p e
 

    
   



   

          

2.3 Powers 

Now consider 

 ! .
( )!

p a a paD z z
a p




   

Where p  and in case of fractional order  , it can be generalized to,  

 
( 1)

.  0.
( 1)

a aa
D z z

a

  


 
 
  

   

So it can be used to solve any function that can be expanded in power of z as follows, 
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Let ( ) v

v

v

f z a z




  , then 

 
( 1)

( )
( 1)v v

v vvD f z a D z a z
v v v

  



 

 

  
 

  
   .  

Expanding in Taylor series results in, 

 
0

( )
( )    0.

( 1)

v
v

v

D f a
D f z a z

v











  
  

    

2.4 Binomial Formula 

The exponential functions allow the substitution of binomial formula which requires 

the following operator, 

 ( ) ( ) qd f z f z q    

And for R   , 

 ( ) ( )  qd f z f z q .   

Now for ,p   

 
0

0

0

( ) lim ( 1) ( )

1
lim ( ).

p
p p j p j

q
q

j

p

q

q

p
D f z q d f z

j

d
f z

q

 






 
   

 

 
  

 


  (2.3) 

For fractional or complex number 0,  or Re( ) 0     it becomes, 

 
0

0
0

1
( ) lim ( )

( 1)
lim ( 1) ( ( ) )

! ( 1)





 












 
  

 

 
   

  


q

q

j

q
j

d
D f z f z

q

q f z j q
j j

  (2.4) 

2.5 Functions of the Derivative 

Equation (2.3) reveals that the derivative itself is 
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0

1
lim





q

q

d
D

q
 .  

Let a function of the derivative can be expanded in power of z . 

 g(z) = ( ) ( ) ( ).p p

p p

p p

a z g D f z a D f z
 

 

     

 then the result is a weighted sum of derivatives of various orders. These functions 

are called formal differential operations. 

Now let, 

 ( )

0

( ) such that ,  then .
!






   
j j

az az aD bz ab bz b z a

j

a z
f z e e e e e e e

j
  

where ,  are arbitrary constants.a b .    

Now consider the following functions. 

 
0

( ) .n

n

n

g z a z




    

 
0

( ) n

n

n

f z b z




    

 
0 0

0 0 0

( ) ( )

.

n r

n r

n r

n r n

n r n

n r n

g D f z a D b z

a b D z p z

 

 

  

  

 

 

 

  
   

where 

 
0

1
( )!

!
n r n r

r

p n r a b
n







    

2.6 Grunwald-Letnikov Derivative 

It is well known that, 

 
0

0

( ) lim ( 1) ( ( ) )




 
    

 


p
p p j

q
j

p
D f z q f z p j q

j
.   
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According to Grunwald-Letnikov derivative, if            , then 

 
0

0

( ) lim ( 1) ( ).  .

z a

q
p p j

q
j

p
D f z q f z jq p

j








 
    

 
    

where any value of a  less than z can be chosen. 

For non-integer    it becomes, 

 
0

0

( 1)
( ) lim ( 1) ( ).  0.

! ( 1)

z a

q
p j

q
j

D f z q f z jq
j j

 











 
   

  
    

Or equivalently, 

 
0

( 1)
( ) lim ( 1) .

! ( 1)

j
k

j
k

j z a
D f z f z k

z a k k j



 




     
     

       
    

This is true for positive values of   and for negative values we have, 

 
0

0

( )
( ) lim ( ).

! ( )

z a

q

q
j

j
D f z q f z jq

j

  





 




 
 


    

2.7 Riemann-Liouville Derivative 

This is the one that is used widely. Let us consider, 

 1

0

( ) ( ) .

l

D f l k d       

Then iteration yields, 

 1

0

1
( ) ( )( ) .  .

( 1)!

l

p pD f l f l d p
p

     
  ,   

In case of non-integer   it becomes, 

 
1

0

1 ( )
( ) .

( ) ( )

l
f

D f l d
l








  

      

with the lower integration limit it becomes, 
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1

1 ( )
( ) .

( ) ( )

l

a l

a

f
D f l d

l








  

    .  

So the derivative using binomial formula in (2.3) and (2.4) is equivalent to the 

Reimann-Liouville derivative with infinity as starting limit provided the real part of 

  is negative. 

 
10

1 1 ( )
( ) lim ( ) .

( ) ( )

l
q

l
q

d f
D f l f l d

q l










 
 



 
  

   
  . 

This kind of Riemann-Liouville derivative with a lower limit of negative infinity is 

known as Weyl derivative.  

2.8 Domain Transform 

The transform of the vth derivative of the function      is, 

    
1

1

0

( ) ( ) ( )(0).
v

v v r v r

r

D f l p f l p D f


 



  .   

If the all the terms in the sum above are 0, then it can written for non-integer values 

as well, 

   1( ) ( ) .D f l s f l     

Thus we have, 

 

  1

0

( ) .

1
( )

2

a i

sl sl

a i

D f l D e e dsd

l

i

s

l

f

 





  



 



 
  

 



 
  

Where a is choosen such that it is greater than the real part of any of the singularities 

of ( )f l .   

Now the Fourier transforms and its inverse is, 

  ( ) ( ) .itlf l e f l dl
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  1 1
( ) ( ) .

2

itlf l e f l dl








     

which can be generalized in the same way to be used for the solution of fractional 

differential equation of non-integer order .   

   1 ( )( .) ( )i fD f t ll      

So we can observe that in case of laplace transform the generalized derivative is a 

Riemann-Liouville derivative with the lower starting limit of zero and in case of 

Fourier transform it is Weyl derivative. 

 2.9 Convolution 

Convolution is a very important and simple process used to deal with the problems 

involving frequency spaces with the help of Laplace and Fourier transform. The 

derivative of a function is its convolution with certain function. For example let us 

consider the following function 

 

1

0 0

( )
( ) ( ) ( ) ( ) ( )

( )

( ).

x x
x l

x f x f l x l dl f l dl

D f l



 










     

 



     

where 

                                      
1

( ) .
( )

x
x








 


                               

Now consider, 

    
1

1

( 1)

( )
.

x
x l

l


 












 
   











   

So we will have, 

         ( ) ( ) ( ) ( ) ( ) ( ) .D f x x f x x f x l f x 
 

       (2.5) 



  

11 

 

So it proves the fact. If any function other than (2.5) is chosen then it would be 

simply the function of derivative. For example consider the following function that 

can be expanded in the power of l, 

 ( ) .v

v

v

g l a l




  .   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ).v

v v v

v v

g D f x a D f x a x f x h x f x
 



 

           

where 

 ( ) .v

v

v

h x b x




     

 1 .
( 1)

v
v

a
b

v

 
 

   

Now consider the laplace transform. 

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .g D f x h x f x h x f x g l f x       

So clearly, 

   1( ) ( ( ) .) ( )g x gf t xD f   (2.6) 

In case of Fourier transform 

   1( ) ( ( ) .) ( )g itf x xg D f   (2.7) 

(2.6) and (2.7) are very useful tools for calculating the functions of derivatives. For 

example consider, 

 
    1 1cos( ) sin( ) cos(cos( )sin( ) ) ( ( 1) ( 1))

cosh(1)sin( ).

it z i i t tz tD

z

       


  

2.10 Fractional integral equations 
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Definition 2.10.1. Cauchy integral formula is also used to generalize derivative of 

non-integral order that becomes very important rule in case of complex analysis. For 

integer order n , it becomes,  

 
1

! ( )
( ) .

2 ( )

n

n

n f z
D f l dz

i z l 


    

which in case of non-integral order becomes, 

 
 

10

( , )0

1 ( )
( ) .

2 ( )
z z

C z z

f l
D f z dl

i l z







 



 


    

but we have to be careful in choosing the integration contour because there is an 

isolated singularity for .l z   

Definition 2.10.2.  The Cauchy formula for the fractional integral is 

 1

0

1
( ) ( ) ( ) .

( 1)!

l

q qJ f l l f d
q

   
     

where 0 and l q  . 

So using the gamma function we can define the fractional integral of order   in the 

following way. 

 
1 1

( ) ( ) ( ) .
( )

0

l
J f l l f d
 

  



 


                      (2.8) 

where 0 and l R   .  

This fractional integral has the following important properties. 

  where , 0.J J J
   

 


     

which implies the following commutative property, 

  where , 0.J J J J
   

      

The fractional integral operator on power function is. 



  

13 

 

 
( 1)

. 
( 1)

J v v
  

 

  

  

   

where 

       0,  1,  0    v . 

The proof is based on the Gamma and Beta functions  

 1( ) ,   ( 1) ( ).   where Re( ) 0.

0

u tt e u du t t t t


           

and, 

 
1 ( ) ( )11( , ) (1 ) ( , ). 

( )
0

h jjhB h j u u du B j h
h j

    
 

   

where Re( ) and Re( ) 0h j  . 

Now consider the following notation. 

 

1

( ) ,    where 0
( )

l
l




 


  


   

where + sign is used to show that function vanishes at      

Therefore fractional integral of order     can be represented as the Laplace 

convolution between ( ) and ( ) as,l f l   

 
1 1

( ) ( ) ( ) ( ) ( ) .
( )

0

l
J f l l f l l f d
 

  
 


    


   

and also, 

 ( ) ( ) ( )   , 0.l l l            

Definition 2.10.3.   Let qD  denotes the derivative operator of order q  then we have, 

 ,    but   where .q q q qD J I J D I q      
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which means that qD  is left operator on corresponding integral operator so let us 

introduce integer p  such that 1   p p  , then we can write fractional derivative 

of order   in the following way, 

 
1

0

1 ( )
,     1

( ) ( )
( )

( )                                            .

lp

p p

p

p

d f
d p p

dl p l
D f l

d
f l p

dl





 

 



 

  
    

     






  (2.9) 

so we can easily recognize that, 

( ) ( ).  1 .p pD f l D J f l p p       . 

Hence the fractional derivative of order   on the power function can be defined as, 

 
( 1)

,   0,   1,   0.
( 1 )

D l l l   
 

 

 
    
  

  (2.10) 

One important fact of the fractional derivative of order   is that it is not zero in case 

of constant function ( ) 1 if f l N  . Let 0 in (2.10)  , then we have, 

 1 ,    0,  0.
(1 )

l
D l


 





  
 

   

which is of course zero if     because of the poles of gamma function in the 

points 0, -1, -2,……. 

Definition 2.10.4.  Another definition of fractional derivative of order   has been 

defined by Caputo called Caputo fractional derivative of order . It is defined as 

 ( ) ( ),  1 .p pD f l J D k l p p  

              (2.11) 

 
1

0

1 ( )
,     1

( ) ( )
( )

( )                                            .

l p

p

p

p

f
d p p

p l
D f l

d
f l p

dl
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provided that absolute integrability of derivative of order p is met.  Now in general, 

 ( ) ( ) ( ) ( )p p pD f l D J f l J D f l D f l     

      

unless function vanishes at 0t  for the first ( 1)p  derivative because for 

1   and  0p p l    , we have, 

 
1

( )

0

( ) ( ) (0 ).
( 1)

qp
q

q

l
D f l D f l f

q


 










 
  

   (2.12) 

Thus using (2.10), we can write 

 
1

( )

0

( ) ( ) (0 ) .
!

qp
q

q

l
D f l D f l f

q

 








 
  

 
    

Hence according to this definition, the fractional derivative of a constant is still 0,  

 1 0,     >0.D





   

Now as  

 
1 0,     0,   0.D z z         

We thus recognize the following statements about functions which for 0l  admit the 

same fractional derivative of order   with 1 .  .p p p     

 
1

( ) ( ) ( ) ( ) .
p

i

i

i

D f l D g l f l g l c l   



       

 
1

( ) ( ) ( ) ( ) .
p

p i

i

i

D f l D g l f l g l c l  

 



       

where jc  are arbitrary constants. So we observe that, 

 
1 1 10,   but  J D l D J l l             

where 0,    0.l      

Now let ( 1)  p , then from (2.9) , 

 
1( 1) ( ) ( ) ( ).p pp D f l D Jf l D f l          
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and from (2.11), 

 1 1( 1) ( ) ( ) ( ) (0 ).p p pp D f l JD f l D f l f    

         

We will now show that both (2.9) and (2.11) can be derived using convolution of 

( )l  with ( )f l  . For this purpose we will take Gel’s and Shilov functions into 

count, 

 
1

( )( ) ( ),    0,1,......
( )

v
v

v

l
l l v

v


 


   

 
   

where 
( ) ( )v l  denotes the generalized derivative of order v   of the Dirac delta 

distribution. So, 

 ( ) ( )

0

( ) ( ) ( ) ( ) ( ) ( ) ,  0.

lp
p p

pp

d
f l f l l f l f l d l

dl
   







          

which is based on the following properties, 

 ( ) ( )

0

( ) ( ) ( 1) ( ).

l

p p pf l d f l   





      

and 

 
( ) ( )( ) ( 1) ( ).p p pl l          

In the above equations the limits of integration are extended for the possibility of 

impulse functions centred at extremes.  

Then the formal definition of the fractional derivative of order   is given by, 

 
1

0

1 ( )
( ) ( ) ,   .

( ) ( )

l
f

l f l d
l

 


 

 





 



   
   .   

But the kernel ( )l  is not locally absolutely integrable, and then the above integral 

is divergent in general so we need to regularize the divergent integral in some way. 
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Let 1   p p , then we may write ( ) or ( )           p p p p , so we 

obtain, 

                   
( ) ( ) ( ) ( ) ( ) ( ) ( ).p p

p p p pl l f l l l f l D J f l
 



   
                 

Or, 

                   
( ) ( ) ( ) ( ) ( ) ( ) ( ).p p

p p p pl l f l l l f l J D f l
 



   
                 

which gives the two alternative definitions of (2.9) and (2.11). 

Definition 2.10.5.  Riemann has generalized the integral Cauchy formula starting at 

0l   and Liouville choose to start it at   defined by, 

 
1 1

( ) ( ) ( ) ,   .
( )

l
J f l l k d 

   







  




           (2.13) 

so for 1 ,  ,   ( ) ( ).p pp p p N D f l D J f l  

      , we have 

          
1

1 ( )
,     1

( ) ( )
( )

( )                                            .

lp

p p

p

p

d f
d p p

dl p l
D f l

d
f l p

dl





 

 



 




  
    

     






   

In case ( )f l  vanishes at l   along with its first 1p    derivatives, then 

 ( ) ( ).p p pD J f l J D f l   

     

The sufficient condition that (2.8) converges is that, 

 
1( ) ( ),     0,  and f l O l l o       (2.14) 

and sufficient condition that (2.13) converges is, 

 ( ) ( ),     0,  and .f l O l l
 


 

   . (2.15) 
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Integrable functions which satisfy (2.14) and (2.15) are sometimes referred as 

Riemann class and Liouville class respectively. For example power function l   with 

1 and 0l     are of Riemann class and on the other hand the functions with,  

 with 0 and 0 and exp( ) with c 0l l cl


 


     is of Liouville class. So we 

have, 

 
( ) ( )

,   D .
( ) ( )

J l l l l
         

 

     

 

   
 

 
   

and 

 ,   D .cl cl cl clJ e c e e c e   

      

Now in case of jump discontinuities at t=0, it is worthwhile to write, 

0

(....) (....) ,    for example consider for 0 1.

l l

d d  


     

/ /

00

1 ( ) 1 ( )
(0 ) .

(1 ) ( ) (1 ) (1 ) ( )

l l
f l f

d f d
l l



 

 
 

    








 
          

                                     (0 ) ( ) ( ).
(1 ) 

l
f D f l D f l


 






  
 

   

where we have used (2.12) with 1p . 

Definition 2.10.6.  Weyl has defined another complementary integral with respect to 

usual Reimann-Liouville integral as follows, 

 
1 1

( ) ( ) ( ) ,   .
( )

W f l l f d

l

 
   










  


 . (2.16) 

The relation between (2.13) and (2.16) is 

/ / /1 11 1
( ) ( ) ( ) ( ) ( ) .

( ) ( )

l l
J f l l k d l f d  
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 / / / / /

/

1 1
( ) ( ) ( )

( )
l f d W g l

l


  







   


   

where 
/ / /( ) ( ),g l f l l l     and we have also carried out change of variable as        

                                      
/ / and l .l l          

Definition 2.10.7.  The operation of integration and differentiation with respect to 

laws of commutation and additivity are, 

 ,    .p q q p p q p q q p p qJ J J J J D D D D D        

where , 0,1, 2,....p q   

In general both  and  
D D  do not satisfy either semi-group property or commutative 

property. 

 
( ) ( ) ( ).

( ) ( ) ( ).

D D f l D D f l D f l

D D g l D D g l D g l

     

     





 

 
   

For example let
1/ 2( )  and 1/ 2f l l     . Then using (2.10), we get, 

 
1 1 1

2 2 2( ) 0,   ( ) 0,   D f l D D f l     

but 

 
1 1

3/22 2 ( ) ( ) /2. D f l Df l z
       

Similary 
1 2

( )  and 1 2, 3 2g l l     , then again using (2.10) we get, 

 1 2 3 2( ) 2,  ( ) 0.  D g l D g l     

but 

 
1 2 3 2 3 2 1 2 3 2( ) 0,   ( ) / 4.D D g l D D g l l      

 
1 2 3 2 2 3 2( ) / 4.D D g l l       
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Chapter 3 

FRACTIONAL INTEGRAL EQUATIONS 

3.1 Abel integral equation of first kind 

   Let us consider Abel integral equation of first kind as follows.   

 
1

1 ( )
( ),    0 1.

( ) ( )
0

l u
d f l

l 


 

  
  

 
  (3.1) 

where ( )f l  is the given function. Its fractional integral form is, 

 ( ) ( ).J u l f l     

which can be solved in terms of fractional derivative, 

 ( ) ( ).u l D f l    

Now using the fact that
  D J I , we will solve (3.1) using Laplace transform. As 

we know that  

 ( ) ( ) ( ) ( ) / .J u l l u l u s s 
      

where   denotes the Laplace transform pair and, 

                                                              
1

( ) .
( )

l
l








 


    

So we have, 

 
( )

( ) ( ) ( ).
u s

f s u s s f s
s




     (3.2) 

Now we will follow two ways to get the inverse Laplace transform from (3.2) in the 

following manner. 

Our first approach is to use the standard rules, so we can write (3.2) as 
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1

( )
( ) .

f s
u s s

s 

 
 
 
 

   

Thus we obtain, 

 
1 ( )

( ) .
(1 ) ( )

0

ld f
u l d

dl l 




 
 
  

  (3.3) 

writing (3.2) in the following way, we get, 

 
1 1

1 (0 )
( ) ( ) (0 ) .

f
u s s f s f

s s 





 

 
    

  (3.4) 

So we will have, 

 
/1 ( )

( ) (0 ) .
(1 ) ( ) (1 )

0

l f l
u l d f

l








  


 

    
 .  (3.5) 

Hence (3.3) and (3.5) are the solution of (3.1) in view of fractional derivative 

 .D and D 


  

Second approach needs that ( )f l  should be differentiable with Laplace 

transformable derivative with   0 (0 )f    , then from (3.4) it is noticeable that 

(0 )u 
 is infinite if (0 ) 0,  being u( ) ( ),  as 0f l O l l     .  Weaker condition is 

needed for the 1
st
 approach that the integral at R.H.S of (3.3) must vanish as 0l   

which shows that with ( ) ( ),0 1f l O l        as 0l  , can be infinite as 

0l  . So from (3.3) and the fact that 1 1 2         , we observe that (0 )u 
 

can be infinite if (0 )f 
 is infinite, as 

( )( ) ( ),  as 0u l O l l     . 

3.2 Abel integral equation of second kind 

Let us consider the Abel equation of second kind, 

 
1

( )
( ) ( ),    0,   .

( ) ( )
0

l u
u l d f l C

l 

 
  

  
   
 

        (3.6) 
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In terms of fractional integral operator, it becomes, 

 (1 ) ( ) ( ).J u l f l    (3.7) 

which can be solved as follows, 

 
1

1

( ) (1 ) ( ) 1 ( ) ( ).p p

p

u l J f l J f l  






 
     

 
   (3.8) 

using Laplace convolution, 
 pJ  can be written as, 

 
1

( ) ( ) ( ) ( ).
( )

p
p

p

l
J f l l f l f l

p









    


   

So the formal solution is, 

 
1

1

( ) ( ) ( ) ,   0,  >0.
( 1)

p
p

p

l
u l f l l

p



 







 
    

  
    

Now as we know 

 
0

( )
( ; ) : ( ) ,   0,  >0, .

( 1)

p

p

l
e l E l l

p




  







     

 
    

where E  is Mittage-Leffler function of order , so we have 

 
1

/

0

( ) ( ) ( ; ),   0.
( )

p
p

p

l d
E l e l l

p dl




 







     


    

So the final solution is  

 
/( ) ( ) ( ; ) ( ).u l f l e l f l      (3.9) 

The result can also be obtained in the following way. 

Applying Laplace transform to (3.6), we get, 

 1 ( ) ( ) ( ) ( ).
s

u s f s u s f s
s s



 

 
       

  (3.10) 

Now using the following Laplace transform pair we will get the inverse Laplace 

transform, 
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1

( ; ) : ( ) .
s

e l E l
s




  



   
 

   

Now we can choose two different ways to get the inverse Laplace transform. 

According to the standard rule, (3.10) becomes, 

 
1

( ) ( ) .
s

u s s f s
s





 
  

  
   

So we have, 

 
0

( ) ( ) ( ; ) .

l
d

u l f l e d
dl

        

If we write (3.10) as, 

 
1 1

( ) ( ) (0 ) (0 ) .
s s

u s s f s f f
s s

 

 

 
  

       
   

We obtain, 

 /

0

( ) ( ) ( ; ) (0 ) ( ; ).

l

u l f l e d f e l            

Now we can observe that ( ; )e l   is a differentiable function w.r.t. l  with 

 (0 ; ) (0 ) 1.e E 
       

Then there exists another possibility to write (3.10) as, 

 
1

( ) 1 ( ) ( ).
s

u s s f s f s
s





 
   

  
   

Then we write, 

 /

0

( ) ( ) ( ; ) ( ).

l

u l f l e d f l         

which is in agreement with (3.9). 
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3.3 Some Applications of Abel integral equation 

Abel integral equations are very useful for the calculation of various physical 

measurements, most of them deal with the radius of a circle or a sphere as 

independent variable which gives 
J  after the change of variable usually 1/ 2   

and the equation becomes the first kind equation.  

Another important field is inverse boundary value problems in partial differential 

equations which involves Abel integral equations, in particular parabolic ones in 

which the independent variable has the meaning of time. We will discuss the 

problem of heating of a semi-infinite rod by influx or efflux across the boundary into 

the internal side. 

Let us consider the following heat equation 

 0,   ( , ).l xxr r r r x l      

The interval is semi-infinite 0  and 0x l     of space and time respectively 

and ( , )r x l  means temperature.  

Let the initial temperature of rod is 0, 

 ( ,0) 0  for 0 .r x x       

Assume the influx across the boundary 0 from 0 to 0x x x     is given by 

 (0, ) ( ).r l p l     

Then under the suitable regularity condition, we can find ( , )r x l  using the following 

formula, 

  2 / 4( )

0

1 ( )
( , )     0 and 0.

( )

l
x lp

r x l e d x l
l




 

 
  


   (3.11) 

We will deal with interior boundary temperature ( ) : (0 , )  0l r l l    which can be 

evaluated using (3.11) 
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  1/2

0

1 ( )
( ) ( ),  0.

( )

l
p

l d J p l l
l




 
   


   (3.12) 

This is Abel integral equation of first kind and can be used to find the unknown 

influx ( )p l  if the internal boundary temperature ( )l  is given by measurements or 

can be determined by controlling the influx.  

Using (2.9) with 1  and  1/ 2 p , we can have 

 1/2

0

1 ( )
( ) ( ) .

( )

l
d

p l D l d
dl l




 


  


    

Now consider the following special cases 

 
1

( )   ( ) ( ) .
2

i l l p l l       

 
1

( )   ( ) 1 ( ) .ii l p l
l

       

Both results have been achieved using (2.10). So the required influx is continuous 

and increases from 0  for the linear increase in internal boundary temperature 

with unbounded derivative at 0l   but it decreases from 0  as  l  . 

Now we will modify the problem using Abel integral of second kind for which we 

will assume that the given rod is just touching the source of a liquid in 0x   and the 

external boundary temperature is strictly being controlled such that 

 (0 , ) : ( )r l l      

Now according to Newton’s law of radiation, the influx of heat from 0  to 0 
 that is 

proportional to the difference of internal and external temperature is given by 

  ( ) ( ) ( ) ,    0.p t l l      .   

Putting this into (3.12), we get 

 
0

( ) ( )
( ) .

l

l d
l
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which can be represented in terms of operator notation as follows, 

 
1/2 1/2(1 ) ( ) ( ).J l J l                 (3.13) 

Now let the external boundary temperature is given but the internal boundary 

temperature is unknown, then (3.13) is the Abel integral equation of second kind that 

can be used to evaluate ( )l . 

Let us take 1/ 2  , then (3.13) becomes, 

 
1/2 1 1/2( ) (1 ) ( ).l J J l        

that is of the form (3.7) and by (3.8) its solution is as follows, 

 1 1/2

0

( ) ( ) ( ).p p

p

l J l


 



        

Now we will consider the following case, with ( ) 1l  . 

then with 0   and using the following relation, we obtain, 

                               
( 1)

   1, 0,  0. 
( 1)

J l l l
    

 

  
    
  

  

                             
 

( 1)/2
1/2 ( ) .

( 1) / 2 1

p
p l

J l
p


  

  
   

Hence, 

 
   

( 1)/2 /2
1

0 0

( ) ( ) 1 ( ) .
( 1) / 2 1 / 2 1

p q
p q

p q

l l
l

p q

 


 

      
    

     

So that, 

  1/2

1/2 1/2( ) 1 1 ( ; ).l E l e l         

3.4 Fractional Differential Equations 

Now we will discuss simple fractional relaxation and Oscillation equations. 

The relaxation differential equation is 
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/ /( ) ( ) ( ).v l v l g l      

( )g l  is a continuous function and 0l  .  

Using initial condition 
0(0 ) , v b  the solution is, 

 0

0

( ) ( ) ( ).

l

lv l b e g l e d       (3.14) 

Similarly the oscillation differential equation reads 

 
/ / /( ) ( ) ( ).v l v l g l      

The solution of the above equation under the initial condition 
0(0 ) , v b  and 

/

1(0 ) , v b  is 

 0 1

0

( ) cos sin ( )sin ( ).

l

v l b l b l g l d        (3.15) 

Now consider, 

 
1

( )

0

( ) ( ) (0 ) ( ) ( )  0.
!

kp
k

k

l
D v l D v l v v l g l l

k

 








 
      

 
   (3.16) 

p is a positive integer such that 1   p p  that provides the number of prescribed 

initial values ( )(0 ) k

kv b , where 0,1,2,........, 1 k p . Now consider, 

 
1

0 0

( ) ( ) ( ) ( ) ( ).

lp

k k

k

v l b v l g l v d  




       

 
 

0( ) ( ),   (0 ) ,    , 0,1, 2,... 1
hk

k k khv l J v l v h k p      (3.17) 

 /

0( ) ( ),     0.v l v l l       

where ( )kv l  represents those linearly independent solutions of the differential 

equation of order p satisfying the initial conditions (3.17).  The function ( )v l  is 

called impulse-response solution representing the particular solution of 
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inhomogeneous equation with all 0  and with  ( ) ( )kb g l l  . So in case of the 

ordinary relaxation and oscillation, we observe that   

                                                       
0( ) ( ).lv l e v l

    

 and, 

                                  0 1 0( ) cos ,   ( ) ( ) sin cos( / 2) ( ).v l l v l Jv l l l v l        

 

Now we will solve (3.16) by Laplace transform. We will first reduce the equation 

with the given initial condition into an equivalent fractional integral equation and 

then apply the Laplace transform. .  

Apply 
J  operator on both sides of (3.16), we have 

 
1

0

( ) ( ) ( ) .
!

kp

k

k

l
v l b J v l J g l

k

 




 
   
 
    

Then we apply the Laplace transform that will yield, 

 
1

1
0

1 1
( ) ( ) ( ) .

p
k

k
k

b
v l v l g l

s s s 






 
   
 
    

hence we have, 

 
11

0

1
( ) ( ) .

1 1

kp

k

k

s
v l b g l

s s



 

 



 
  

  
   (3.18) 

Now we will introduce Mittag-Leffler functions 

 
1

( ) ( ;1) : ( ) .
1

s
e l e l E l

s




   



   


   

 
1

( ) : ( ) ,    0,1,2.... 1.
1

k
k

k

s
v l J e l k p

s



 

 

   


   

From inverse Laplace transform of equation (3.18), we find, 

 
1

/

0

0 0

( ) ( ) ( ) ( ) ( ) .

lp

k k

k

v l b v l g l v d  
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where we have used the following fact with 0 (0 ) (0 ) 1.
  v e   

 
1

/ /

0

1
1 ( ) ( ).

1 1

s
s v l e l

s s



 

 
      

  
   

That encompasses the solution (3.14) and (3.15) found for 1,2   respectively. 

3.5 The Mittag-Leffler Type Functions 

The function ( ) with 0E g    is defined as, 

 
0

( ) : ,    0,  .  
( 1)

p

p

g
E g g

p
 







  
 

   (3.19) 

For 0   , the entire complex plane will lose analyticity since, 

 0

0

1
( ) : ,    <1.

1

p

p

E g g g
g





 


    

The Mittag-Leffler function can be used to give the generalization of exponential 

function, 

    ! 1 ,    so ( )! 1  .v v v v v           

The particular cases are, 

 2 2

2 2( ) cosh ,   ( ) cos ,   g .E g g E g g C        

and 

 1/2 1/2 1/2

1/2( ) 1 ( ) ( ),  g .g gE g e erf g e erfc g C          (3.20) 

where erf (erfc) denotes the error function as follows, 

 
2

0

2
( ) ,    ( ) 1 ( ).

g

verf g e dv erfc g erf g


      

Now we will prove (3.20). First we will use 1/2g instead of g to avoid polidromy, 

so we will write, 

 
2 2 1

1/2

0 0

( ) ( ) ( ).
( 1) ( 3 / 2)

b b

b b

g g
E g v g w g

b b
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where it can been recognized as, 

 
2

2

0

( ) exp( )
( 1)

b

b

g
v g g

b





 
 

    

and 

 
2

2

0

1
( ) exp( ) ( ).

( 3 / 2)

b

b

g
w g g erf g

b






 

 
    

It is given in the Bateman Project [70], the error function can be represented as the 

following series,  

 
2 2 1

0

2 2
( )   .

(2 1)!!

b
g b

b

erf g e g g
b


 



 
 

    

where 

  1(2 1)!! 1 3 5....(2 1) 2 3 / 2 .bb b b            

Another proof can be given if ( )w g  satisfies the following differential equation. 

 / 1
( ) 2 ( ) ,   (0) 0.w g gw g w



 
   

 
  

whose solution can be immediately obtained as follows 

 
2 2 2

0

2
( ) ( ).

g

g v gw g e e dv e erf g


     

Now consider the following function 

 
 ,

0

( ) ,   0,   0,  .
b

b

g
E g g

b
   

 





   
 

   (3.21) 

Particular cases are  

 
1/2

1,2 2,2 1/2

1 sinh( )
( ) ,   ( ) .

ge g
E g E g

g g


     

Now we will discuss the general functional relations for generalized Mittage-Leffler 

function (3.21) which involves both parameters  and .    
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 , ,

1
( ) ( ).

( )
E g gE g    


 


   

 , , 1 , 1( ) ( ) ( ).
d

E g E g g E g
dg

            

 1 1

, ,( ) ( ),  .

m

m

m

d
g E g g E g m N

dg

   
   

  



 
      

 
   

Now we will prove the following different relations, 

 ( ) ( ),   .

m

m m

m m

d
E t E t m

dt

 
  

 
  (3.22) 

 
/1

/ /

/ /

0

( ) ( ) ,   2,3,....,
(1 / )

m im nn
m n m n

m n m nm
i

d t
E t E t n

dt im n





  
 

   (3.23) 

  
1

1/ 2 /

/ 1/

0

1
( ) .





 
m

m i j m

m n n

j

E t E t e
m

  (3.24) 

and 

 
1

1/

1/

0

(1 / , )
( ) 1   2,3,......,

(1 / )

n
n t

n

i

i n t
E t e n

i n





 
   

  
   (3.25) 

where 1

0

( ; )

t

x aa t e x dx     denotes the incomplete gamma function.  

Now it is clear that the (3.22) and (3.23) can be easily derived from (3.19). So we 

will prove (3.24). 

We know that, 

 
1

2 /

0

  if 0

0   if 0







 



m

i jk m

j

m k
e

k
   

So from (3.19) and using the above identity we have 

 
1

2 /

0

( ) ( )  .
m

i j m m

m

j

E te mE t m
 





     

Replacing  by / m  and t  by 
1/mt  in the above equation we get 
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1

1/ 2 /

/

0

1
( ) ( )  .

m
m i j m

m

j

E t E t e m
m


 





   .  

Replacing  by / m n , we get the required equation (3.24). 

Now we will prove (3.25) 

In order to prove the required relation we will first consider (3.23) for 1m . Then we 

will multiply both sides by 
te  to get the following relation.  

 
/1

1/

1/

1

( ) .
(1 / )


 



     


j nn
t n t

n

j

d t
e E t e

dt j n
   

Integrating both sides and using the concept of incomplete gamma function, proves 

the relation (3.25).  
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Chapter 4 

EXISTENCE AND UNIQUENESS THEOREM OF 

FRACTIONAL MIXED VOLTERAA-FREDHOLM 

INTEGRODIFFERENTIAL EQUATION WITH 

INTEGRAL BOUNDARY CONDITIONS 

Definition 4.1.  Caputo fractional order derivative of the function f defined on the 

interval (a, b) is given by 

 1 ( )1
( ) ( ) ( ) ( ) .

( )

zp
t p p p

a p

a

d
D f z J f z z u f u du

dt p

  



    
       

Where   is complex number with 0   or Re( ) 0   and [ ] 1 p , [ ]  is the 

integer part of . 

Lemma 4.2.   Let   is greater than 0 then 

 
2 1

0 1 2 1( ) ( ) ..........  

     t t p

a a pD D f t f t h h t h t h t    

For some , 0,1,......, 1, [ ] 1.ih i p p        

Definition 4.3.   If f is defined everywhere on the given interval (a, b) then, 

 11
( ) ( ) ( ) ,

( )

b

b

a

a

D f t b t f t dt 



  
     

provided that   > 0 and the integral exists. 

Theorem 4.4 (Krasnpsel’skii fixed point theorem). Let M be a non-empty, bounded 

and closed-convex subset of a Banach space X and let A and B be the two operators 

such that, 
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1. ,Ax By M   where , .x y M   

2. A is continuous and compact. 

3. B is a contraction mapping. 

According to this theorem, we have  such that zz M Az Bz     

Let X be a Banach space with the norm . . Let ([0, ], )c T X  be the Banach space 

of all the continuous functions such that, 

                                                  :[0, ] ,T X     

with norm sup ( ) ,  u [0, ]u T   . 

Now the fractional mixed Volttera-Fredholm integrodifferential equation is, 

 1

0 0

( ) , ( ), ( , , ( )) , ( , , ( )) .

t T

D y t f t y t k t u y u du h t u y u du
 

  
 

   . (4.1) 

with the following boundary conditions, 

 / /

0 0

(0) (0) ( ( )) ,      y( ) ( ) ( ( )) .

T T

y y g y u du T y T h y u du      . (4.2) 

 1 2,   is the Caputo fractional derivative and the non-linear function  where D  

            1:[0, ] , , :[0, ] [0, ]  and , : .f T X X X X k h T T X X g h X X         

with the following conditions satisfied,    

1 2 1 2( 1)  there exists constants  and  such that  ( ) ,  and (y)  

         .

C G G h y G g G

y X

 


  

1 2 1 2 1 1 2

1 2 2 1 2 1 2

(C2)  there exists constants  and  such that ( ) ( )  and 

         ( ) ( ) ,     , .

a a h x x a x x

g x g x a x x x x X

  

    
 

 ( 3)  there exists :  with the following condition statisfied,rC D y C y r  

                   

                                        

0 1 1
1 2 2

2

0

( ( ))
(1 ) ( 1)

( 1)

where 2 ( 1)

F N M K r
G T G T r

T

F T T T








     

 

       

 ( 4)  there exists :  with the following condition statisfied,rC D y C y r  
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2

1 2 1

2

1

(1 ) ( 1) ( (1 )) / ( ( 1) ) 1,

where C 2 ( 1) and sup ( )(1 ( ) ( );   [0, ]

a T a T dV C T T

T T T V L u p u q u u T





 



       

          

 

1

1 2 1 2 1

0 0

1 2

( 5)  there exists a continuous function :[0, ]  :[0, ]  that 

           ( ( , , ) ( , , )) ( )  and ( , , ) ( ) ,

           , [0, ] and , , .

t t

C p T and p T such

k t u y k t u y du p t y y k t u y du p t y

t u T y y y X

  

   

  

 
  

 

1

1 1 2 1 2 1 1

0 0

1 2

( 6)  there exists a continuous function :[0, ]  :[0, ]  that 

           ( ( , , ) ( , , )) ( )  and ( , , ) ( ) ,

           , [0, ] and , , .

t t

C q T and q T such

h t u y k t u y du q t y y h t u y du q t y

t u T y y y X

  

   

  

 
  





1

1 1 1 2 2 2 1 2 1 2

1 2 1 [0, ]

( 7)  there exists continuous functions :[0, ]   is positive constant

          such that ( , , , ) ( , , , ) ( ) +
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which completes the proof. 
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unique solution on [0, ]J T . 

Proof.  Let us consider an operator : F C C , then for any y C  we have, 

0 0

1

1

0 0 0

2

1

0 0 0

(1 ) (1 )
( ( )) ( ( )) 1 ( ( ))

(1 ) ( )
, ( ), ( , , ( )) , ( , , ( ))

( )

(1 ) ( )
, ( ), ( , , ( )) , ( , , ( ))

( 1)

T T

T u T

T u T

t t
F y t h y u du g y u du

T T

t T u
f u y u k u y d h u y d du

T

t T u
f u y u k u y d h u y d du

T





     


     






  
   

 

  
  

  

  
  

   



 

  

  

1

1

0 0 0

( )
, ( ), ( , , ( )) , ( , , ( )) .

( )

t u T
t u

f u y u k u y d h u y d du


     


  
 

  
  

   



  

38 

 

Now we need to show that F has a fixed point on rD  where { : }rD y C y r   . 

This fixed point will be the solution of fractional mixed Volttera-Fredholm 

integrodifferential equation. 
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Now we need to prove that ( )B x  is a contraction mapping. 
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Let  1 2 1 2 ,K x x v x x    we have, 
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So B  is a contraction mapping since ( )x t  is continuous, hence ( )A x  is continuous.  

Now consider the following, 
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which clearly shows that A  is uniformly bounded on rD  Now we will prove that 

( )Ax t  is equicontinuous. For this purpose we take any two elements from [0, ]T  ,say 

1 2,t t  and  rx D . Then as f  is bounded on compact set rJ D  thus, 
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So A  is relatively compact. By Arzela-Ascoli theorem, it is compact that concludes 

the result of Krasnosel’skii theorem.  

Example: 4.8 
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and ( ,0,0,0) 1/10f t  . So all the conditions are stratified with 1 2 0.1 G G , 

1 2 0.01 a a ,
1 0 10.12,  0.1,  6,  0.1,  0.12 M C N M      and 1 6C ,therefore 

we have, 
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which proves that integrodifferential equation has a unique solution. 
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CONCLUSION 

It concludes that under the certain condition, there exists a unique solution for 

integrodifferential equation with integral boundary values with 1 2   in Banach 

space. Integrodifferential equations play an important role in developing various 

applications such as cellular systems.  

To reach this conclusion we have used the concept of Banach fixed point theorem 

and Krasnosel’skii fixed point theorem. First we proved the existence and then 

uniqueness of solution of given integrodifferential equation under the given integral 

boundary conditions.  
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