
A New Logic-Based Approach for the Specification
and Discovery of Semantic Web Services

Omid Sharifi

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy
in

Computer Engineering

Eastern Mediterranean University
September 2014

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

—————————————————
Prof. Dr. Elvan Yılmaz

Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor
of Philosophy in Computer Engineering.

—————————————————
Prof. Dr. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate
in scope and quality as a thesis for the degree of Doctor of Philosophy in Computer
Engineering.

—————————————————
Assoc. Prof. Dr. Zeki Bayram

Supervisor

Examining Committee
——————————————————————————————————

1. Prof. Dr. Rashad Aliyev ——————————————

2. Prof. Dr. Yalçın Çebi ——————————————

3. Prof. Dr. Can Özturan ——————————————

4. Assoc. Prof. Dr. Zeki Bayram ——————————————

5. Assoc. Prof. Dr. Alexander Chefranov ——————————————

ABSTRACT

Matching Web services and client requirements in the form of goals is a significant

challenge in the discovery of Semantic Web services. The most common but unsat-

isfactory approach to matching is set-based, where both the client and Web service

declare what objects they require, and what objects they can provide. Matching then

becomes the simple task of comparing sets of objects. This approach is inadequate

because it says nothing about the functionality required by the client, or the function-

ality provided by the Web service. As a viable alternative to the set-based approach, in

this thesis we use the F-Logic language as implemented in the FLORA-2 logic system

to specify Web service capabilities and client requirements in the form of logic state-

ments, clearly define what a match means in terms of logical inference, and implement

a logic based discovery agent and matching engine using the FLORA-2 system. In or-

der to be able to specify Semantic Web elements such as Web services, goals, ontolo-

gies, we define a sub-language of FLORA-2, which we call FLOG4SWS. The result

is a practical, fully implemented matching engine and discovery agent based purely

on logical inference for Web service discovery, with direct applicability to Web Ser-

vice Modeling Ontology (WSMO) and Web Service Modeling Language (WSML),

since F-Logic is intimately related to both.

Before going to the implementation of new language (FLOG4SWS) and logical

inference based discovery agent we investigate the strong as well as weak aspects of

WSML in order to guide us in the search for a better alternative. In our studies into the

theory of F-Logic, we discovered a mistake in the unification algorithm for F-Logic

molecules, and we present a corrected version of the algorithm in this thesis as well.

iii

ÖZ

Ağ hizmetlerini ve hedefler şeklinde belirtilmiş kullanıcı gereksinimlerini eşleştirmek,

semantik ağ hizmetleri keşfinde yapılması kolay olmayan bir şeydir. Eşleştirmede

en çok kullanılan, ancak tatminkar olmayan yaklaşım, küme tabanlı olandır. Bu

yaklaşımda, hem kullanıcı, hem de ağ hizmeti istedikleri ve ihtiyaç duydukları nes-

neleri deklare ederler. Böylece, eşleştirme basit nesne kümeleri karşılaştırmasına

dönüşür. Bu yaklaşım, kullanıcının ihtiyacı olan işlevsellik, veya hizmetin sunduğu

işlevsellik hakkında hiç bir şey söylememesinden dolayı yetersizdir. Bu tezde, küme

tabanlı eşleştirmeye alternatif olarak, FLORA-2 mantık sisteminde gerçekleştirildiği

şekliyle F-Logic dilini kullanarak, hizmet yeteneklerini ve kullanıcı isteklerini mantık

ifadeleri şeklinde belirtip, eşleştirmenin mantıksal çıkarım açısından ne anlama geldi-

ğini açıkça tanımlayıp, FLORA-2 sistemini kullanan mantık tabanlı bir keşif ajanı ve

eşleştirme makinesi gerçekleştiriyoruz. Ağ hizmetleri, hedefler ve ontolojiler gibi se-

mantik ağ elemanlarını belirtebilmek için, FLOG4SWS adını verdiğimiz bir FLORA-

2 alt dili tanımlıyoruz. Sonuç olarak ortaya çıkan gerçekleştirilmesi tamamlanmış,

tamamen mantıksal çıkarıma dayalı, F-Logic ile olan yakın ilişkilerinden dolayı Web

Service Modeling Ontology (WSMO) ve Web Service Modeling Language (WSML)

diline doğrudan uyarlanabilen bir eşleştirme makinesi ve keşif ajanıdır.

Tezde ayrıca, yeni dil (FLOG4SWS) ve mantıksal çıkarım tabanlı keşif ajanının

gerçekleştirmesine geçmeden once, bize daha iyi bir alternatifin yolunu göstermesi

açısından, WSML’in kuvvetli ve zayıf yönlerini araştırdık. F-Logic kuramı araştırmalarımız

esnasında, F-Logic moleküllerinin birleştirme algoritmasında bir hata keşfettik ve bu

algoritmanın düzeltilmiş şeklini de sunuyoruz.

iv

ACKNOWLEDGMENT

First of all I would like to express my special and deepest appreciation to my su-

pervisor Assoc. Prof. Dr. Zeki Bayram for his advice and guidance over the past

five years. During this period I have benefited from his intelligent effort to shape my

thinking and working attitude. I would like to thank him one time more for encour-

aging my research; his advice on the research has been invaluable. I would like to

thank members of my PhD committee, Prof. Dr. Rashad Aliyev and Assoc. Prof.

Dr. Alexander Chefronov for their constructive and helpful comments, suggestions

and career advice on this thesis. Also many thanks go in particular to my parents for

their continuous support and prayers. Words can not express how grateful I am. I

would also like to thank to my beloved wife, Maryam, thank you for supporting me

for everything specially for encouraging me during this experience. To my beloved

son Radvin, I would like to express my thanks for being such a good boy always

cheering me up. I dedicate this thesis to my wife and our son for their support and

help. Finally, I would like to thank my sister and brothers for their love and their

thoughtful support.

v

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . iv

ACKNOWLEDGMENT . v

LIST OF TABLES . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xiii

1 INTRODUCTION . 1

2 THE WORLD WIDE WEB AND WEB SERVICES 5

2.1 The World Wide Web (WWW) . 5

2.2 Web Services and Web Service Technologies 6

2.3 Web Service Description Language (WSDL) 6

2.4 Simple Object Access Protocol (SOAP) 7

2.5 Universal Description, Discovery and Integration Protocol (UDDI) . . 7

2.6 Web Services Discovery . 8

2.7 Semantic Web Services . 8

2.8 Web Services Matching . 9

2.9 The Semantic Web and Ontologies 9

2.10 Semantic Web Service Technologies 10

2.11 Semantic Web Service Frameworks 12

2.12 OWL-S . 12

2.13 WSDL-S . 13

2.14 SAWSDL . 13

2.15 Discussion . 13

2.16 Conclusion . 13

3 WSMO AND WSML: A DETAILED INVESTIGATION 14

3.1 Motivation and Overview . 14

vi

3.2 The WSMO and WSML . 17

3.2.1 WSMO . 17

3.2.2 WSML . 19

3.3 E-health Semantic Web Service Specification in WSML-Rule 21

3.3.1 E-health Ontology . 21

3.3.2 E-health Web services . 27

3.3.3 E-health Goals: Making an Appointment 34

3.3.4 E-health Mediators . 34

3.4 Evaluation of WSMO and WSML 34

3.4.1 General Observations . 34

3.4.2 Deficiencies in Syntax . 34

3.4.3 Logical Basis of WSMO . 37

3.4.4 Lack of a Semantics Specification for Web Service Method-

s/Messages . 37

3.4.5 Implementation and Tool Support 38

3.4.6 Choreography in WSMO . 39

3.4.7 Orchestration in WSMO . 40

3.4.8 Goal Specification . 41

3.4.9 Reusing Goals through Specialization 41

3.4.10 Specialization Mechanism for Web Service Specifications . . . 41

3.4.11 Missing Aggregate Function Capability 42

3.4.12 Extra-logical Predicates . 42

3.4.13 Automatic Mapping between Attributes and Relations 43

3.4.14 Error Processing . 43

3.4.15 No Agreed-upon Semantics for WSML-Full 43

3.4.16 Discussion . 43

4 LOGICAL INFERENCE BASED DISCOVERY AGENT 44

4.1 The Intelligent Semantic Web Service Matchmaker Agent 44

4.1.1 Logical Components of Web Service and Goal Specifications . 44

vii

4.1.2 FLOG4SWS: A Sub-language of F-logic for Semantic Web

Services Specification . 45

4.1.3 Syntax of the Sub-language of F-logic used for Specification

of Goals, Web Services and Ontologies 46

4.1.4 Proof Commitments that must be Checked for Validity before

a Match is Successful . 48

4.1.5 Dealing with State Change and Non-monotonicity: Simulat-

ing Non-monotonicity inside First-order logic 49

4.1.6 The Intelligent Matchmaker Agent Architecture 50

4.2 Implementation of the Matchmaker Agent in FLORA-2 51

4.2.1 Overview of FLORA-2 . 51

4.2.2 How We Use FLORA-2 . 51

4.2.3 The Top-level Matcher Loop 52

4.2.4 Proving the Commitments for a Successful Match 53

4.2.5 Checking Constraints . 56

4.3 Specifying Web Services, Goals and Ontologies in FLORA-2 56

4.3.1 Sample Web Service Specification 57

4.3.2 Sample Goal for Consuming an Appointment Service 57

4.3.3 Common Ontology . 60

4.3.4 Running the Matchmaker Agent on a Set of Goals and Web

Service Specifications . 62

4.3.5 Performance Statistics for FLOG4SWS 62

4.4 Comparison with Related Work on Matching 64

4.5 Discussion . 68

5 UNIFYING F-LOGIC MOLECULES . 70

5.1 Motivation and Overview . 70

5.2 Faulty “Unification” Algorithm . 72

5.2.1 Tracing the “Unification” Algorithm on Two Unifiable Molecules 72

5.2.2 Tracing the “Unification” Algorithm on Molecules that Have

No Unifier . 73

viii

5.2.3 Problem with the Faulty “Unification” Algorithm 74

5.3 Correct Unification Algorithm for F-Logic Molecules 74

5.4 Discussion . 76

6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 77

REFERENCES . 91

ix

LIST OF TABLES

4.1 Matching time of one goal with different number of Web services in

FLOG4SWS . 63

4.2 FLOG4SWS versus other SWS languages 68

x

LIST OF FIGURES

2.1 Matchmaking concepts in semantic discovery 9

2.2 Layer cake of the Semantic Web according to Tim Berners-Lee 10

2.3 Conceptual models of OWL-S (taken from [87]) 12

3.1 WSML language hierarchy (taken from [65]) 16

3.2 WSML visualizer showing the concepts of e-health ontology 22

3.3 The Doctor concept . 22

3.4 The Hospital concept . 23

3.5 The Calendar and DateTime concepts 23

3.6 The RequestAppointment concept 23

3.7 The Appointment concept . 24

3.8 Some instances of concepts in the e-health ontology 24

3.9 WSML visualizer showing the axioms of e-health ontology 25

3.10 The “noDoctorClash” axiom . 25

3.11 The “appointmentWhenDoctorWorks” axiom (constraint) 26

3.12 The “noPatientClash” axiom (constraint) 26

3.13 The “appointmentMapperAxiom” axiom (mapping objects to relation

instances) . 27

3.14 The “freeTimeAxiom” axiom (mapping doctors to their free times) . 27

3.15 Axioms for validity of year, month and day 28

3.16 WSML visualizer showing the relations of e-health ontology 28

3.17 Relations in the e-health ontology 28

3.18 Prelude of the Web service for MTM 29

3.19 Capability Specification of the MTM Web Service: non-functional

properties and shared variables . 30

3.20 Precondition for MTM Web service capability 30

3.21 Assumption for MTM Web service capability 31

3.22 Postcondition for MTM Web service capability 31

xi

3.23 Effect for MTM Web service capability 32

3.24 WSMO specification of the appointment-making Web service for Yasam

Hastanesi . 33

3.25 Requesting an otolaryngology appointment for “alex” 35

3.26 Requesting a gynecology appointment for “sarah” 36

3.27 Syntax of rules in WSML-Full (taken from [65]) 38

4.1 EBNF grammar for FLOG4SWS . 47

4.2 The proposed Semantic Web service matchmaker intelligent agent ar-

chitecture . 50

4.3 Facts about goals, Web services and common ontology 52

4.4 Matching agent top-level predicates 54

4.5 Proving the commitments for a match 55

4.6 Checking constraints for violations 56

4.7 Web service specification for making appointments 58

4.8 Goal for consuming the appointment making Web service 59

4.9 Common ontology used by goals and Web services 61

4.10 Result returned by the matchmaker on some goals and Web services . 62

4.11 Timing when goal matches all Web services 63

4.12 Timing when goal does not match any Web service 64

4.13 Behavior of FLORA-2 with respect to unification, reification and logic

variables . 69

5.1 Tracing the faulty algorithm on two unifiable molecules 74

5.2 Tracing the faulty algorithm on two non-unifiable molecules 75

xii

LIST OF ABBREVIATIONS

ASM Abstract State Machines

DCE Distributed Computing Environment

EBNF Extended Backus Normal Form

HTTP Hypertext Transfer Protocol

OWL Web Ontology Language

RDF Resource Description Framework

RPC Remote Procedure Call

SOAP Simple Object Access Protocol

SW Semantic Web

SWS Semantic Web Service

W3C World Wide Web Consortium

WSDL Web Service Description Language

WSMF Web Service Modeling Framework

WSML Web Service Modeling Language

WSMO Web Service Modeling Ontology

WSMT Web Services Modeling Toolkit

WWW World Wide Web

XML Extensible Markup Language

xiii

Chapter 1

INTRODUCTION

Given a semantically rich enough description of Web service capabilities and client

requirements, Semantic Web service (SWS) discovery tries to determine which Web

service is in a position to satisfy best the requirements of the client. Matching is the

main operation performed during the discovery process, and takes two parameters:

a formal description of what the requester desires, and a formal description of what

a Web service provides as a service. Its job is to decide if the Web service can sat-

isfy the requirements of the requester. At the same time, the Web service may have

some preconditions before it can be called, so the matching operation must also check

whether the client and/or state of the world can satisfy these preconditions.

Among the existing several Semantic Web service frameworks, we take WSMO

[48] as our starting point in our discussion of Semantic Web service discovery, as

it allows us to formally distinguish between user requests (called “goals” is WSMO

terminology) and Web service specifications, and use the same formalism for specify-

ing both. WSMO itself is based on the Web Service Modeling Frame-work (WSMF)

[53] and has four main components, which are Ontologies, Web Services, Goals and

Mediators.

Web Service Modeling Language (WSML) [45] is a language used to describe

ontologies, Semantic Web Services (SWS) and goals in conformance to the WSMO

framework. It has a solid logic foundation, namely F-Logic [61]- a powerful logic

language with object modeling capabilities. WSML consists of five variants, which

are WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full. Each lan-

guage variant provides different levels of logical expressiveness, as explained in detail

in [45].

There are several discovery approaches used in WSML [71]. Keyword-based

1

discovery is based on simple syntactic matching of goals and Web services at the

non-functional level. Set-based “lightweight” discovery works over simple semantic

descriptions that takes into account the postcondition and effect of goals and Web ser-

vices. Set-based “heavyweight” discovery works over richer semantic descriptions by

taking into account precondition, assumption, postcondition and effect, and the rela-

tionships between them. Heavyweight discovery based on WSML-Flight uses query

containment reasoning tasks (where the results of one query are always guaranteed

to be a subset of some other query) for the matchmaking. Set based heavyweight

approach based on WSML first order logic (FOL) uses a theorem-prover for match-

making [92].

Different kinds of match have been defined for the the set based approach [71].

These are summarized below.

• Exact-Match happens when the items delivered by the Web service W match

perfectly the items specified in the goal G. No irrelevant objects are returned by

the service.

• Subsumption-Match happens when items returned by the service W is a subset

of the objects requested in the goal G.

• Plugin-Match happens when items delivered by the service W is a superset of

the objects requested in the goal G.

• Intersection-Match happens when the delivered items of the service W has

a nonempty intersection with the set of relevant objects for the requester as

specied in the goal G.

The problem with the set based approach, no matter what underlying logic is used

to represent sets of objects, is that even if the set of objects requested in the goal are

indeed returned by the service, there is no guarantee that the desired operation has

been performed to obtain these objects. Furthermore, what may be required by the

execution of a service may not be some new objects, but rather a change in the rela-

tionship status of some already existing objects. Alternatively, some new objects may

2

be desired by the goal, provided that certain relationships exist among these objects.

We should also not overlook the fact that before the Web service can be called, it is

usually not sufficient to only have certain parameters supplied to the service: some

other conditions may need to be true also, before the Web service can be reliably

called.

It is clear that the pure set based approach cannot answer these needs. What is

needed is at least a first-order logic-based formalism and methodology that utilizes

some form of inference. To perform a match between a request in the form of a goal

and Web service specifications, logical entailment should be carried out to determine

whether the Web service has all its requirements met before being called, and whether

the service provided by the Web service will satisfy the needs of the client, while

maintaining the relationships between input and output objects as required by the

client. The choice of logical formalism for specifying goals and Web services, on

the other hand, must (i) allow relatively uncomplicated specification of Web services

and goals (ii) permit efficient execution of inference engines during the matching

process, and (iii) be powerful enough to be effectively specify goals and Web service

capabilities.

Our work reported here achieves all these goals. We can summarize our contribu-

tion as follows:

1. We specify a sub-language of F-logic with implicit existential and universal

quantifiers (depending on where the formula is used) that permits efficient goal-

directed deduction, as in the case of logic programming,

2. We clearly state the proof commitments (in terms of logical entailment) neces-

sary for a successful match, and finally

3. We implement a logical entailment based (intelligent) matching agent using the

FLORA-2 system, demonstrating not only the feasibility of our approach, but

also its practicality.

We chose F-logic [74] as the starting point for the specification language of our

matching agent, since it is the underlying logical basis of WSML, and our semantic

3

descriptions of ontologies, goals and Web service capabilities can be easily translated

into the syntax of WSML in a straightforward manner. In our implementation of the

matching agent, we made use of the reification capability and transactional knowledge

base update feature of FLORA-2. Using F-Logic and its FLORA-2 implementation

allowed us to leverage the underlying inference capability of FLORA-2, and to con-

centrate on the higher-level inference tasks that are relevant to matching, rather than

the chores of implementing an inference engine from scratch.

Since WSML is based directly on F-Logic [74], our implementation is a showcase

for how WSML Web services and goals can be represented in FLORA-2, and how the

FLORA-2 system can be used to perform logical entailment based matching between

goals and Web services.

We outline the structure of the thesis below.

Chapter 2 represents the context of the thesis and denotes the main definitions

of the Semantic Web components, which are needed in specification, and discovery

of Semantic Web services. For this, the chapter reviews the existing Web service

technologies as well as the SWS languages and frameworks.

Chapter 3 presents in-depth the definition of WSMO, its formalism, the WSML,

its execution environment and modeling toolkit Web Service Modeling Toolkit (WSMT)

[30]. It contains an in-depth study of WSML and experimentation to identify its

strong points and areas in which improvement would be beneficial.

Chapter 4 contains the main contribution of this thesis. In this chapter, we define

a carefully selected sub-language of F-Logic for specifying Semantic Web services

that permits efficient inferencing to be carried out, a precise notion of matching based

on proof commitments, and proceed to describe an implementation of an intelligent

matchmaking agent for the discovery of Semantic Web services.

Chapter 5 presents a correct version to the original unification algorithm for unify-

ing F-Logic molecules that was discovered in our studies into the theory of F-Logic.

Finally, Chapter 6 summarizes the thesis and discusses the contributions, as well

as future research directions.

4

Chapter 2

THE WORLD WIDE WEB AND WEB SERVICES

This chapter presents the basic idea of Semantic Web and Semantic Web services

matching, along with other World Wide Web (WWW) technologies that our research

is based on.

2.1 The World Wide Web (WWW)

The WWW is a system of interlinked hypertext documents accessed via the Internet.

For the first time it was proposed by Tim Berners-Lee in 1989 at CERN (European

Organization for Nuclear Research) to use “HyperText ... to link and access informa-

tion of various kinds as a Web of nodes in which the user can browse at will” [16].

The first invented Web browser in 1990 was used for displaying Hypertext Markup

Language (HTML) documents. WWW changed the way information was published

and broadcast, however, information was not dynamic, being updated only by the

webmaster [21].

The early stage of the conceptual evolution of the WWW was Web 1.0, which only

supported published HTML Web pages containing static information. Users were just

able to receive the Web contents without interaction abilities with the websites to send

and receive feedback. After Web 1.0, a new version of the WWW, Web 2.0, was sug-

gested which allows users and websites to interact and communicate with each other

[22]. Finally, the new generation of WWW is Web 3.0, the most important features

of which are the Semantic Web and personalization [33]. It supports data transmis-

sion with the ability of unambiguous and shared meaning in computer systems. At

the same time, it provides semantic interoperability that enables machine computable

logic, knowledge discovery, inferencing and data federation between information sys-

tems [3].

5

2.2 Web Services and Web Service Technologies

The concept of Web services evolved from the Remote Procedure Call (RPC) mech-

anism in Distributed Computing Environments (DCE), a framework for software de-

velopment that emerged in the early 1990s but mostly developed in the late 1990s

[20]. A Web service is a method of communications between two electronic devices

over WWW. It is a software function provided at a network address over the Web or

the cloud; it is a service that is “always on” as in the concept of utility computing

[23].

The World Wide Web Consortium (W3C) defines a “Web service” as a software

system designed to support interoperable machine-to-machine interaction over a net-

work. It has an interface described in a machine-processable format (specifically Web

Services Description Language (WSDL) [24]). Other systems interact with the Web

service in a manner prescribed by its description using SOAP messages, typically con-

veyed using HTTP with an XML serialization in conjunction with other Web-related

standards [29].

Usually Web service frameworks are composed of four main elements, namely

communication protocols, service descriptions, service invocation, and service dis-

covery. Description of Web services are made available by service providers to service

consumers through WSDL. Service consumers obtain related Web services informa-

tion through UDDI, and detailed information about specific Web services through

their description in WSDL. Subsequently, interactions between service providers and

consumers can be established using SOAP [1], or more recently REST [8]. More

details about the three important components of Web service frameworks (WSDL,

SOAP, and UDDI) are presented in the subsequent sections.

2.3 Web Service Description Language (WSDL)

WSDL is an XML-based language for describing the functionality offered by a Web

service. A Web service specification in WSDL supplies a machine-readable de-

scription “of how the service can be called, what parameters it expects, and what

data structures it returns” [26]. Essentially, a WSDL description provides a set of

endpoints operating on messages including either procedure-oriented or document-

6

oriented information. The described abstractly operations and messages are bounded

to a message format and concrete network protocol to define an endpoint and the

related endpoints constitute abstract endpoints where the abstract endpoints form ser-

vices. WSDL provides the ability to define endpoints regardless of network protocols

or message formats [24].

A defined Web service in WSDL includes various elements. “Type” is a container

in order to define data type using some type system (such as XSD). “Message” is an

abstract typed definition for data communication. “Operation” provides an abstract

description of an action supported by the service. “Port Type” presents an abstract

set of operations supported by one or more endpoints. “Binding” supplies a concrete

protocol and data format specification for a particular port type. “Port” defines a

single endpoint as a combination of a binding and a network address , service, a

collection of related endpoints [27].”

2.4 Simple Object Access Protocol (SOAP)

SOAP is a lightweight protocol specification for exchanging structured information

in the implementation of Web Services in computer networks. It relies on XML Infor-

mation set for its message format, most notably Hypertext Transfer Protocol (HTTP)

or Simple Mail Transfer Protocol (SMTP), for message negotiation and transmission

and forms the foundation layer of other Application Layer protocols [13, 14]. In sum-

mary SOAP is a communication protocol, which is used for communication between

applications. Some important features of SOAP are platform independency, commu-

nication via Internet, language independency, simplicity, and extensibility [13].

2.5 Universal Description, Discovery and Integration Protocol (UDDI)

UDDI is a platform-independent, Extensible Markup Language (XML)-based registry

where businesses world wide can list themselves on the Internet. It provides a mecha-

nism to register and locate Web service applications to enable companies to find each

other on the Web and make their systems interoperable for e-commerce [19, 17]. In

other words, UDDI enables businesses to publish service listings using name, loca-

tion, product, or the Web services they offer. In addition, it enables businesses to

discover each other, and determines the procedure of services or software applica-

7

tions interaction over the Internet [19]. UDDI was originally aimed as a core Web

service standard to be investigated by SOAP messages in order to access to WSDL

documents presenting the protocol bindings and message formats needed to interact

with the Web services listed in its directory [19, 31].

2.6 Web Services Discovery

Web service discovery is the process of locating Web services that can be retrieved to

fulfill some users’ requests [78]. Software systems gain access to the published Web

services over the Internet using standard protocols [28]. In this area, two types of ser-

vice discovery are used namely, static and dynamic. In static discovery, the details of

services implementation are bound at design time and service retrieval is performed

on a service registry. In dynamic discovery, the service implementation details are

left unbound at design time, therefore the details determined could be postponed to

run time. In the dynamic approach, the Web service requesters determine their pref-

erences in order to invoke the application to infer/reason desired Web services [7].

2.7 Semantic Web Services

SWS (Semantic Web Services), like conventional Web services, are the server end of

a client-server system for machine-to-machine interaction via the WWW. Semantic

services are a component of the Semantic Web because they use markup which makes

data machine-readable in a detailed and sophisticated way where human-readable

HTML is not simply understood by computer programs [11].

In fact, the SWS goal is to overcome the deficiencies of the conventional tech-

nologies of Web service, particularly for the service detection and usability analy-

sis. It provides rich semantic annotation ability for Web service descriptions so that

inference-based techniques for automating the detection and usage of Web services

are provided [82, 53]. A wide range of research topics were developed on SWS

technologies in order to increase the discovery and reasoning techniques to detect

proper Web services. Also composition ability was developed to combine several

Web services to answer a more complex task, and mediation was developed to solve

the heterogeneity problem between the requester and the provider. Therefore, SWS

method develops descriptions of Web services in order to use ontologies instead of

8

Figure 2.1: Matchmaking concepts in semantic discovery

XML, apply functional along with non-functional information, define interface for

consumption to support automated compatibility, and apply aggregation Web services

to increase its functionality by combining several other Web services [62].

2.8 Web Services Matching

Matching is a very important process for discovery and retrieval of Web services.

Matching approaches help Web service discovery engines to match abstracted goal

description with semantic annotations of Web services.

In this area, matching goals and Web services is most important task in the Web

services discovery. Mostly in the matching process logical relationships between the

semantic capability descriptions of Web services and goals are considered. Different

degrees of logical relationships represent various levels of matching, which can be

categorized in five levels such as Exact Match, plugin Match, Subsumption Match,

intersection Match, and Non Match. Depending on the degree of the relationship,

suitable Web services are represented as answers. Figure 2.1 demonstrates the five

matching notions [55].

2.9 The Semantic Web and Ontologies

The Semantic Web (SW) is the extension of the current Web (WWW) that for the first

time was introduced by Tim Berners-Lee . Figure 2.2 represents “Semantic Web layer

cake” including core elements of overall structure of the Semantic Web, as proposed

by Tim Berners-Lee. The Semantic Web enables people to share content beyond the

boundaries of applications and websites. By including the semantic content in the

Web pages, Semantic Web converts the current Web, dominated by unstructured and

9

Figure 2.2: Layer cake of the Semantic Web according to Tim Berners-Lee

semi-structured documents into a “Web of data” [10, 12].

XML documents are not able to convey the meaning of data contained in the XML

documents. It is necessary for the parties to have agreement on the exact syntactical

format (expressed in XML Schema) in exchanging of data. In fact, Semantic Web en-

ables the representation and exchange of information in a meaningful way, facilitating

automated processing of descriptions on the Web.

In Semantic Web area, annotations state links between information resources on

the Web. Information resources are connected to formal terminologies called ontolo-

gies. Ontologies provide machine understanding of information by way of the links

between the information resources and the terms in the ontologies. In addition, they

enable interoperation between information resources through links to the same ontol-

ogy or links between ontologies. Concisely it can be stated that ontology is a formal

explicit specification of a shared conceptualization [55].

2.10 Semantic Web Service Technologies

Consideration of some techniques in SWS such as discovery to detect proper Web

services for a requested task, composition to combine several Web services in order

to fulfill more complex tasks, mediation to deal with heterogeneities, and automated

execution of Web services can represent most important means to detect services and

usability analysis phase. Discovery involves the detection of Web services that are

suitable for a requested goal. In this area, usually the base of Web service discovery

is on matching abstracted goal descriptions with semantic annotations of Web ser-

vices where this process is done on an ontological level. Composition is related with

10

combination of several Web services to achieve a more complex functionality to deal

with solving a client request at the time it is needed. The resources needed to process

the request may be heterogeneous, so that mediation can handle and solve the hetero-

geneities, which may hamper the interoperability between a requester and a provider.

Automated execution provides ability to execute Web services automatically in way

to minimize the need for human intervention after all the necessary Web services have

been discovered, composed, and mediated successfully [93, 70].

In Semantic Web services area some languages and frameworks were defined to

implement and develop Semantic Web Services. Here follows some of these frame-

works and languages [12]. The explanation of some the frameworks and languages

are represented in the following section.

Semantic Web languages:

- Ontology Inference Layer (OIL)

- DARPA Agent Markup Language (DAML)

- DAML+OIL

- Web Ontology Language (OWL)

- Resource Description Framework (RDF)

- Web Services Modeling Language (WSML)

- Web Services Semantics (WSDL-S)

- SAWSDL

- Rule Based Service Level Agreements (RBSLA based on RuleML)

Semantic Web Service frameworks:

- WSMF

- OWL-S

- QuASAR

- WSMO

- IRS-III

- METEOR-S

- HALEY

- BioMOBY (Bioinformatics)

11

Figure 2.3: Conceptual models of OWL-S (taken from [87])

- SSWAP

2.11 Semantic Web Service Frameworks

The Semantic Web Services Framework (SWSF) [37] is an early development in the

direction of a Semantic Web service annotation framework. WSMO, OWL-S [80],

SWSF [37], and WSDL-S [34] are some other existing frameworks to define com-

prehensive specifications for semantically describing Web services. Below, we give

an overview of the each conceptual SWS framework. In the next chapter, we give a

detailed exposition and evaluation of WSMO, since our research is closely related to

it.

2.12 OWL-S

OWL-S [80] as the first chronologically approach was defined to describe various

aspects of Web services. It is developed based on the DAML Service Ontology

(DAMLS), and is the first progressive attempt for semantic annotation of Web ser-

vices. In other words, It provides an upper ontology for semantically annotating Web

services which includes some elements as presented in Figure 2.3 (taken from [80]).

In the top of ontology “Service” concept is located and the three subontologies

of OWL-S, namely “Service Profile”, “Service Model”, and “Service Grounding”,

are defined. Service Profile prepares information for service advertisement, Service

Model states how the Web service works, and Service Grounding indicates the way

to access the service in detail.

12

2.13 WSDL-S

The WSDL-S [34] approach has been proposed based on a lightweight mechanism to

include Web service descriptions semantically in WSDL. It includes semantic anno-

tations to the XML data types, messages and operations in a WSDL description. The

WSDL document is contained with some extra tags to point to an external domain

ontology. Three types of annotations can be considered for WSDL-S independent of

the use ontology languages, such as WSDL types to refer to concepts of the domain

ontology, WSDL operations to be described by using preconditions and effects, and

defining a categorization of Web services based on the ontology taxonomy.

2.14 SAWSDL

To describe the interface of Web services at a syntactic level and invocation, gener-

ally WSDL is used. This description, as already mentioned, does not provide semantic

means to describe the actual service functionality, or other relevant aspects. The syn-

tactic description is concerned with the structure of input and output messages of an

interface and invocation of the services. Semantic annotations define some mecha-

nisms for WSDL and XML Schema (SAWSDL) in order to add semantic annotations

to WSDL components. The annotations can be used to classify, discover, match,

compose, and invoke Web services [35].

2.15 Discussion

The Semantic Web is widely seen as the new generation of the current Web, and new

technologies are constantly being introduced in accordance with the vision of Tim

Berners-Lee to make the Web comprehensible to machines.

2.16 Conclusion

In this chapter we introduced the reader to current Semantic Web service technologies.

13

Chapter 3

WSMO AND WSML: A DETAILED

INVESTIGATION

To complete the investigation of Semantic Web services technology, this chapter in-

troduces WSML language, based on WSMO framework that is a large and highly

complex framework designed for the specification of Semantic Web services. In this

chapter, we also perform an in-depth study of WSML and experiment with it in order

to critically evaluate it by identifying its strong points and areas in which improve-

ment would be beneficial. Our experimentation takes the form of the specification of

a Web service in the area of e-health.

3.1 Motivation and Overview

The goal of Web services is to allow normally incompatible applications to interop-

erate over the Web regardless of language, platform, or operating system [68]. Web

services are much like remote procedure calls, but they are invoked using Internet

and World Wide Web (WWW) [41] standards and protocols such as Simple Object

Access Protocol (SOAP) [1] and Hypertext Transfer Protocol (HTTP) [2]. In order to

use a Web service, it must first be discovered, and its member functions called in the

correct order and with the correct number and type of arguments.

Currently, the interface to a Web service is described in a Web Service Descrip-

tion Language (WSDL) [24] document. WSDL allows the specification of function

signatures so that methods of the Web service described by the WSDL document can

be called with the correct number and type of parameters. However, there is no formal

semantics in WSDL, i.e. what the Web service is for is not described in the WSDL

document in a formal way.

Discovery of Web services is made possible through Universal Description Dis-

covery and Integration (UDDI) [18], which allows organizations to describe their

14

businesses and services, to discover other businesses that offer desired services, and

to integrate with these other businesses [68]. Once a Web service is discovered and the

decision taken to make use of it, automated tools can read the corresponding WSDL

file and generate local classes that the programmer can use to invoke the Web methods

as if they were methods of local objects in the program.

Although some level of automation is available once a Web service is discovered,

the full process of discovery and invocation is still largely manual and is on the shoul-

ders of the programmer. This is due to the fact that the standards and technologies

mentioned above enable the description of Web services at the syntactic level only and

contain no formal semantic specification that is machine-processable. Any descrip-

tion of the semantics of a Web service has to be done using natural language, which

currently cannot be reliably processed by machines, and this necessitates the involve-

ment of programmer in the discovery and invocation of Web services. Semantic Web

services aim to rectify this drawback by making use of semantic Web standards such

as Resource Description Framework (RDF) [6], Web Ontology Language (OWL) [4]

as well as logic to provide machine processable semantic descriptions such that au-

tomatic discovery and invocation of Web services, with no or minimal programmer

involvement, becomes possible.

Web Service Modelling Ontology (WSMO) [25] is a comprehensive framework

for describing Web services, goals (high-level queries for finding Web services), me-

diators (mappings for resolving heterogeneities) and ontologies. Web Services Mod-

eling Language (WSML) [32] is a family of concrete languages based on F-logic

[74] that implement the WSMO framework. The variants of WSML are WSML-

core, WSML-Flight, WSML-Rule, WSML-DL, and WSML-Full. WSML is large,

relatively complex, and somewhat confusing, with different variants being based on

different formalisms. The complexity and confusion arise mainly from the many vari-

ants of the language, and the rules used to define the variants. The variants of WSML

form a hierarchy, shown in Figure 3.1 (taken from [65]), with WSML-Full being on

top (the most powerful) and WSML-core being at the bottom (weakest).

Our literature search has failed to reveal any significant industrial real-life ap-

15

Figure 3.1: WSML language hierarchy (taken from [65])

plication that uses WSML. We believe this is due to the inherent complexity of the

language, the “less-than-complete” state of WSML (e.g. the syntax of WSML-DL

does not conform to the usual description logic syntax, choreography specification

using Abstract State Machines (ASM) [51] seems unfit for the job due to the execu-

tion semantics of ASMs, goals, choreographies and Web services are not integrated

in the same logical framework etc.), as well as the lack of proper development tools

and execution environments. So WSML looks like it is still in a “work-in-progress”

state, rather than a finished product.

It is our conviction however that WSML has a strong basic foundation based on

F-logic which we can use to build a much smaller, reasonably simple, self-contained

logic based language with well-understood semantics for semantically describing

Web services. WSML-rule, which can be processed using (non-monotonic) rule rea-

soners, and is compatible with the Stable Model Semantics for logic programs [47]

is a promising place to start for the new language. Another advantage of WSML-rule

is that it has the “flavour” of Prolog [98] which has an established track record of

acceptance in the computing profession.

To achieve the goal of streamlining, and at the same time enhancing WSML to the

degree that it becomes a practical and usable language for the specification of Seman-

tic Web services, we need to first determine specific areas of weakness in WSML and

WSMO. We have done this in two ways: (i) through an in-depth study of the docu-

mentation provided for all parts of WSMO and WSML, and (ii) through the specifica-

tion of a semantic Web service in the e-health domain (making doctor appointments

16

in hospitals). These two activities have permitted us to be able to critically evaluate

the strengths and weaknesses of WSMO and WSML, and determine the areas of im-

provement that will result in a usable Semantic Web service specification language.

This is the main contribution of this work, which will be input to the next phase of

our research, the actual design and implementation of such a language.

The reminder of this chapter is organized as follows: Section 3.2 is a brief in-

troduction to WSMO and WSML. Section 3.3 semantically describes, using WSML-

Rule, a Web service for making appointments in hospitals for patients. Also included

are typical goals, and underlying ontologies. This section helps to introduce the reader

to the syntax and semantics of WSML-rule in an almost tutorial manner. Section 3.4

contains the main contribution of the chapter: a critical evaluation of WSMO and

WSML, including its strengths, weaknesses and deficiencies, discovered through our

detailed study of the documentation provided for WSMO and WSML, as well as the

specification of the e-health Web service described in section 3.3.

3.2 The WSMO and WSML

In this part we give a brief overview of WSMO and WSML.

3.2.1 WSMO

WSMO [25] is a framework for semantic description of Semantic Web services which

is based on the Web Service Modelling Frame-work (WSMF) [53]. WSMO has four

main components: Ontologies, Web Services, Goals and Mediators. WSMO itself

is a kind of meta-ontology that defines the four main components mentioned above.

Below we describe each of these components of WSMO.

3.2.1.1 Ontologies

Ontology is a core element in Semantic Web [40] area. An ontology provides a com-

mon understanding of terms for different applications to use. In practical terms, we

can think of an ontology as an intelligent information store where terms are defined

through concepts, concept hierarchies and logical statements. A concept - described

by a concept definition - provides attributes with names and types [77]. In general,

conceptualization defines knowledge about the domain, not about the particular state

of affairs in the domain [66].

17

In WSMO, ontologies that describe the relevant aspects of the domain of discourse

provide the terminology used by other WSMO elements [97]. A WSMO ontology is

defined using concepts, relations, functions, axioms, and instances of concepts and

relations, as well as non-functional properties, imported ontologies, and used media-

tors.

3.2.1.2 Goals

A goal specifies the desired functionality by a Web service client. It can be likened to

a query in the sense of databases. The requester states what inputs it can provide to

a Web service, and the results it wants from the Web service. Given a goal, it is the

job of a semantic matchmaker to determine Web services that can answer the goal. A

goal in WSMO is described by non-functional properties, imported ontologies, used

mediators, requested capability and requested interface.

3.2.1.3 Web Services

A Web service description is the mirror image of a goal in that it specifies the pro-

vided functionality to requesters. A WSMO Web service description consists of a

capability, which describes the functionality in the form of preconditions, assump-

tions, postconditions and effects, one or more interfaces which describe the possible

ways of interacting with the service, and non-functional properties, which describe

non-functional aspects of the service [25].

Preconditions specify the conditions on the input data that comes from the re-

quester. The Web service cannot be called if the preconditions are not met.

Assumptions specify the state of the world before the Web service execution can

begin. If the assumption does not hold, the successful execution of the service is not

guaranteed.

Postconditions specify conditions on the result data that are guaranteed to hold.

The result data is provided by the Web service as a consequence of its execution.

These conditions may relate inputs to the outputs as well.

Effects denote the state of the world after the successful execution of the Web

service i.e., if the preconditions and the assumptions of the service are satisfied, and

the Web service has finished it execution.

18

Capabilities can also have “shared variables,” which are universally quantified

logic variables with a scope that is the whole Web service capability. The logical inter-

pretation of a Web service capability is: for any values taken by the shared variables,

the conjunction of the precondition and of the assumption implies the conjunction of

the postcondition and of the effect [36].

“Choreography” is the name given to the specification of the interaction pattern

between the requester and service provider. In WSMO, choreographies are defined

using the formalism of Abstract State Machines [51]. State signature and the tran-

sition rules are the most important parts of the definition of the choreography. The

state signature describes the state ontology used by the service, together with the def-

inition of the types of modes the concepts and relations may have, which describes

the service’s and the requester’s rights over the instances [54]. The transition rules

express changes of states by changing the set of instances [60]. In practical terms, the

abstract state machine operates like a forward-chained expert system shell, where the

instances in a snapshot of the ontology plays the role of the contents of the working

memory at a given instant.

“Orchestration” describes how the overall function of the service is realized through

cooperation with other services. From a practical point of view, the requester may not

necessarily be interested in how the Web service providing the functionality the re-

quester desires does its job (i.e. what other services it makes use of in providing the

service it provides).

3.2.1.4 Mediators

Mediators provide the facility to solve terminology mismatches between different

components of a system. Four kinds of mediators exist in WSMO: ontology-ontology

mediators, Web service-Web service mediators, goal-goal mediators and Web service-

goal mediators.

3.2.2 WSML

The Web Service Modeling Language (WSML) [65] is a family of languages for de-

scribing semantic Web services in conformance to the WSMO framework. WSML

consists of its five variants, namely WSML-Core, WSML-DL, WSML-Flight, WSML-

19

Rule and WSML-Full. Each language variant provides different levels of logical ex-

pressiveness [65].

3.2.2.1 WSML-Core

WSML-core is the language at the intersection point of Description Logic and Horn

Logic, based on Description Logic Programs [64]. WSML-core has the least expres-

sive power among all the languages of the WSML family, but it has the most prefer-

able computational characteristics. Support for modelling classes, attributes, binary

relations and instances are the most important features of the language, which also

supports class hierarchies, relation hierarchies, datatypes and datatype predicates.

3.2.2.2 WSML-Flight

The extension of WSML-Core with features such as meta-modelling, constraints and

non-monotonic negation constitute WSML-flight. This language is based on a logic

programming variant of F-Logic [9] and is semantically equivalent to Datalog with

inequality and (locally) stratified negation.

3.2.2.3 WSML-Rule

WSML-rule is an extension of WSML-Flight in the direction of Logic Programming.

The language includes several extensions WSML-Flight such as function symbols

and unsafe rules. The semantics for negation is based on the Stable Model Semantics

of logic programs [59].

3.2.2.4 WSML-DL

WSML-DL is an extension of WSML-Core which fully captures the Description

Logic SHIQ(D) and a major part of the (DL species of the) Web Ontology Language

OWL [5]. The syntax of the language however has been left largely unspecified, and

for practical purposes, it is not a viable option for specifying semantic Web services.

3.2.2.5 WSML-Full

This language incorporates WSML-DL and WSML-Rule under a First-Order logic

with extensions to support the nonmonotonic negation of WSML-Rule. Since there is

no widespread consensus about what is the right formalism for combining Description

Logic ontologies with nonmonotonic rules, WSML does not specify a semantics for

its Full variant [32]. Furthermore, since it incorporates full first order logic, drawing

logical conclusions from WSML-Full programs is undecidable.

20

3.3 E-health Semantic Web Service Specification in WSML-Rule

In this section, we use WSML-Rule to define a semantic specification of a Web service

which implements an appointment-making use case scenario. In this scenario, doctors

specify their available times, and patients declare their choices with varying degrees

of precision (e.g. they may specify only a specialty, or give the name of a specific

doctor etc.), and the Web service tries to make an appointment for the patient.

Even though we had no prejudice for or against any variant of WSML when we

started, WSML-Rule turned out to have the right balance of expressivity and execu-

tion properties for this job. We implemented and published an e-banking scenario

based on WSML-Rule language [88]. We believe this is no coincidence, since it is

closely related to Horn Clause Logic programming, which itself is a “sweet spot”

between formal logic and implementability.

3.3.1 E-health Ontology

The e-health ontology works like an intelligent database, keeping track of the needed

data in the system, together with the necessary constraints on the data. It contains

concepts, relations, instances, relation instances as well as axioms related to the ap-

pointment activities.

3.3.1.1 E-health Ontology Concepts Used for Modelling Data

Figure 3.2 depicts graphical view of the e-health ontology concepts that are utilized

in setting up an appointment in the requested time. Below, we describe the major

concepts used in describing the appointment-making Web service.

• The Doctor Concept: The Doctor concept, depicted in Figure 3.3, inherits from

the Person concept, and as such has the “name” attribute by default. A doctor also has

attributes “hasFreetime,” which is a list of time/day combinations at which the doctor

is free, “hasSpecialty” which is the doctor’s field of specialty, and “worksAt,” the list

of hospitals the doctor works at (may be more than one).

• The Hospital Concept: The Hospital concept, shown in Figure 3.4, is a sub-

concept of MedicalCenter and inherits the “hasCity” and “hasCountry” attributes. Its

own attributes are “employsDoctor,” which is the inverse of the “worksAt” attribute

of the “Doctor” concept, and “hasDepartment” which is a list of departments in the

21

Figure 3.2: WSML visualizer showing the concepts of e-health ontology

�
c o n c e p t Doc to r subConceptOf P e r so n

worksAt i n v e r s e O f (employsDoc to r) ofType H o s p i t a l
h a s S p e c i a l t y ofType S p e c i a l t y
hasFreeTime ofType DateTime
� �

Figure 3.3: The Doctor concept

hospital.

3.3.1.2 Utility Concepts

Calendar and DateTime Concepts: These concepts, depicted in Figure 3.5, are used

for both specifying the available times of doctors, and also request times for appoint-

ments.

3.3.1.3 E-Health Ontology Concepts for Passing Parameters to and Returning

Values from the Web Service

• RequestAppointment Concept: Currently, this is the only concept, shown in Fig-

ure 3.6, used for passing parameters to the Web service for requesting an appointment.

It has attributes for doctor, hospital, datetime, speciality as well as patient. Depending

22

�
c o n c e p t H o s p i t a l subConceptOf M e d i c a l C e n t e r

hasDepa r tmen t ofType Depar tment
employsDoc to r i n v e r s e O f (worksAt) ofType Doc to r

c o n c e p t M e d i c a l C e n t e r
h a s C o u n t r y ofType (1 1) Count ry
h a s C i t y ofType (1 1) C i t y
� �

Figure 3.4: The Hospital concept

�
c o n c e p t C a l e n d a r

y e a r ofType (1 1) i n t e g e r
month ofType (1 1) i n t e g e r
day ofType (1 1) i n t e g e r
nameOfDay ofType (1 1) Day

c o n c e p t DateTime subConceptOf C a l e n d a r
hour ofType (1 1) i n t e g e r
� �

Figure 3.5: The Calendar and DateTime concepts

on the specificity of the request, some of these fields may be left empty. For example,

a patient may specify a speciality, whereas another patient may insist on a specific

doctor.

• Appointment Concept: Currently, this is the only concept used for returning

results to the requester. It has attributes for doctor, hospital, datetime, and patient.

Figure 3.7 gives its definition.�
c o n c e p t Reques tAppo in tmen t

s p e c i a l t y ofType S p e c i a l t y
p a t i e n t ofType P a t i e n t
onDateTime ofType DateTime
h o s p i t a l ofType H o s p i t a l
d o c t o r ofType Doc to r
� �

Figure 3.6: The RequestAppointment concept

23

�
c o n c e p t Appoin tment

da teTime ofType DateTime
d o c t o r ofType Doc to r
p a t i e n t ofType P a t i e n t
h o s p i t a l ofType H o s p i t a l
� �

Figure 3.7: The Appointment concept

3.3.1.4 E-health Instances

Instances in WSMO are used to describe the state of the world in the form of objects

and relations on the objects. Instances can be defined either explicitly by specifying

concrete values for attributes or parameters or by a link to an instance store, i.e., an

external storage of instances and their values [46, 36]. Inputs to Web services and

outputs of Web services are also in the form of instances. Figure 3.8 depicts three

different instances, each one of a different concept.

�
i n s t a n c e hurkan memberOf Doc to r

h a s S p e c i a l t y hasVa lue o t o l a r y n g o l o g y
worksAt hasVa lue magusaTipMerkezi

i n s t a n c e app1 memberOf Appoin tment
da teTime hasVa lue d t 2 0 1 2 5 4 1 2 f r i d a y
d o c t o r hasVa lue hurkan
p a t i e n t hasVa lue a l e x

i n s t a n c e magusaTipMerkezi memberOf H o s p i t a l
h a s C o u n t r y hasVa lue c y p r u s
h a s C i t y hasVa lue f a m a g u s t a
hasDepa r tmen t hasVa lue { c o c h l e a r d e p t , d e n t a l d e p t }
� �

Figure 3.8: Some instances of concepts in the e-health ontology

24

Figure 3.9: WSML visualizer showing the axioms of e-health ontology

�
axiom noDoc to rC la sh

de f inedBy
!− a p p o i n t m e n t (? dt , ? doc , ? p a t 1)
and a p p o i n t m e n t (? dt , ? doc , ? p a t 2)
and ? p a t 1 != ? p a t 2 .
� �

Figure 3.10: The “noDoctorClash” axiom

3.3.1.5 E-health Ontology Axioms

Axioms form the logical part of WSML. They are used both to specify computation

(in the same way Prolog clauses are used), and also to specify constraints on the state

of the ontology that should not be violated.

In this section, we describe in some detail the axioms used in the e-health ontol-

ogy. Figure 3.9 depicts a graphical view of the e-health axioms.

• E-health axiom “noDoctorClash”: Figure 3.10 depicts the constraint that a doc-

tor cannot be seeing two patients at exactly the same time slot. The notation “!-”

denotes a condition which should not ever hold (like a forbidden state). This is in

contrast to the database concept of constraints, where constraints are expected to al-

ways hold. The equivalent database constraint to “!- someCondition” would thus be

“not someCondition.”

• E-health axiom “appointmentWhenDoctorWorks”: This axiom, depicted in Fig-

ure 3.11, makes sure that a doctor is never assigned to a patient at a time and day when

25

�
axiom appointmentWhenDoctorWorks

de f inedBy
!− a p p o i n t m e n t (? dt , ? doc , ? p a t)
and ? d t [

nameOfDay hasVa lue ? nod ,
hour hasVa lue ? h

] memberOf DateTime
and n a f worksOn (? doc , ? nod , ? h) .
� �

Figure 3.11: The “appointmentWhenDoctorWorks” axiom (constraint)

�
axiom n o P a t i e n t C l a s h

de f inedBy
!− a p p o i n t m e n t (? dt , ? doc1 , ? p a t)
and a p p o i n t m e n t (? dt , ? doc2 , ? p a t)
and ? doc1 != ? doc2 .
� �

Figure 3.12: The “noPatientClash” axiom (constraint)

s/he is not working. The times and days a doctor works are represented explicitly in

the ontology.

• E-health axiom “noPatientClash”: This is the mirror image of the “noDoctor-

Clash” axiom. Through this axiom, given in Figure 3.12, we are forbidding a patient

having simultaneous appointments with doctors.

• E-health axiom “appointmentMapperAxiom”: Being able to treat objects as

instances of relations would have been very useful, but this functionality is not pro-

vided by default in WSML. In Figure 3.13 we define an axiom to do exactly this:

treat instances of the “Appointment” concept as instances of the “appointment” rela-

tion (excluding the “Hospital” attribute, since this is not needed in places where the

“appointment” relation is used). Now the predicate “appointment” can be used in

logical expressions in the style of Prolog.

• E-health axiom “freeTimeAxiom”: This axiom, depicted in Figure 3.14, defines

the predicate “free” which gives the times at which a doctor is free. It is similar to the

“appointmentMapperAxiom” in principle.

• Axioms for checking validity of dates: Figure 3.15 depicts axioms for making

26

�
axiom appointmentMapperAxiom

def inedBy
? a [da teTime hasVa lue ? dt ,

d o c t o r hasVa lue ? d o c t o r ,
p a t i e n t hasVa lue ? p a t i e n t

] memberOf Appoin tment
i m p l i e s a p p o i n t m e n t (? dt , ? d o c t o r , ? p a t i e n t) .
� �

Figure 3.13: The “appointmentMapperAxiom” axiom (mapping objects to relation
instances)

�
axiom freeTimeAxiom

def inedBy
? d [hasFreeTime hasVa lue ? d t] memberOf Doc to r
e q u i v a l e n t
f r e e (? dt , ? d) .
� �

Figure 3.14: The “freeTimeAxiom” axiom (mapping doctors to their free times)

sure that day, month and year values are all valid.

3.3.1.6 E-health Ontology Relations

Relations allow the specification of explicit relationships in the from of relation in-

stances between objects or simple data (such as integers). Relations can also be de-

fined implicitly through axioms. Figure 3.16 and Figure 3.17 depict the relations used

in the e-health ontology. These are

• “appointment,” which relates a “DateTime” value with a doctor and a patient,

• “worksOn,” which relates a doctor with the days and times s/he works, and

• “free” which records the current free times of a doctor.

3.3.2 E-health Web services

We have specified Web services of two hospitals for making appointments. They are

very similar to one another, differing only in small details. We describe one in detail,

and the second one only enough to point out the differences with the first. These

examples alert us to the need of having a mechanism/method to specialize generic,

published semantic Web service definitions to fit the needs of a specific Web service.

27

�
axiom v a l i d D a y

de f inedBy
!− ? c [day hasVa lue ? v] memberOf C a l e n d a r
and ? v > 3 1 .

axiom va l idMonth
de f inedBy

!− ? c [month hasVa lue ? v] memberOf C a l e n d a r
and ? v > 1 2 .

axiom v a l i d Y e a r
de f inedBy

!− ? c [y e a r hasVa lue ? v] memberOf C a l e n d a r
and ? v < 2012 .
� �

Figure 3.15: Axioms for validity of year, month and day

Figure 3.16: WSML visualizer showing the relations of e-health ontology

�
r e l a t i o n a p p o i n t m e n t (ofType DateTime , ofType Doctor , ofType P a t i e n t)

r e l a t i o n worksOn (ofType Doctor , ofType Day , ofType i n t e g e r)

r e l a t i o n f r e e (ofType DateTime , ofType Doc to r)
� �
Figure 3.17: Relations in the e-health ontology

28

�
wsmlVar ian t ” h t t p : / / www. wsmo . org / wsml / wsml−s y n t a x / wsml−r u l e ”
namespace { ” h t t p : / / cmpe . emu . edu . t r / omid / s e r v i c e s #” ,

omid ” h t t p : / / cmpe . emu . edu . t r / omid #” ,
dc ” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 # ” ,
wsml ” h t t p : / / www. wsmo . org / wsml / wsml−s y n t a x #” ,
d i s c o v e r y ” h t t p : / / w ik i . wsmx . org / i n d e x . php ?

t i t l e = D i s c o v e r y O n t o l o g y #” }

webServ ice ServiceDoctorAppointmentMTM
nfp

dc # t i t l e hasVa lue ” making an a p p o i n t m e n t
wi th a d o c t o r a t MTM(magusaTipMerkezi) ”

dc # t y p e hasVa lue
” h t t p : / / www. wsmo . org / 2 0 0 4 / d2 / # w e b s e r v i c e ”

wsml# v e r s i o n hasVa lue ” $ R e v i s i o n : 1 . 4 $ ”
endnfp

i m p o r t s O n t o l o g y
” h t t p : / / cmpe . emu . edu . t r / omid#e−h e a l t h−Onto logy ”
� �
Figure 3.18: Prelude of the Web service for MTM

Such a specialization method, which is currently lacking in WSMO, will also help

enormously in Web service discovery and execution.

3.3.2.1 E-health Web Service Specification for Magusa Tip Merkezi (MTM) Hos-

pital

Figure 3.18 depicts the first part of the WSMO specification for the appointment-

making Web service of MTM. It includes the variant of WSML used (in this case

WSML-Rule), namespace declarations to avoid writing fully qualified names in the

specification, the name of the Web service (“ServiceDoctorAppointmentMTM”), its

non-functional properties, as well as imported ontologies. Non-functional properties

are used to describe information which does not have direct effect on the functionality

of the component being described. Imported ontologies form the bridge between

goals and Web services, so that both refer to the same “state of the world.”

Figure 3.19 contains the beginning of the capability specification. Again it has

non-functional properties, followed by the shared variables ?onDateTime, ?patient,

?hospital, ?doctor, and ?specialty.

Figure 3.20 depicts the precondition for making an appointment. The precondition

simply requires the existence of an instance of the RequestAppointment concept in

the ontology. This instance contains all the necessary information for making an

29

�
c a p a b i l i t y D o c t o r A p p o i n t m e n t 2 C a p a b i l i t y

n o n F u n c t i o n a l P r o p e r t i e s
d i s c o v e r y # d i s c o v e r y S t r a t e g y hasVa lue

d i s c o v e r y # Heavywe igh tDi scove ry
d i s c o v e r y # d i s c o v e r y S t r a t e g y hasVa lue

d i s c o v e r y # N o P r e F i l t e r
e n d N o n F u n c t i o n a l P r o p e r t i e s

s h a r e d V a r i a b l e s {? onDateTime , ? p a t i e n t , ? d o c t o r , ? s p e c i a l t y }
� �
Figure 3.19: Capability Specification of the MTM Web Service: non-functional prop-
erties and shared variables

�
p r e c o n d i t i o n

n o n F u n c t i o n a l P r o p e r t i e s
dc # d e s c r i p t i o n hasVa lue ” t h e i n p u t i s S p e c i a l t y ;

The o u t p u t i s t h e an a p p o i n t m e n t a t t h e e a r l i e s t
t ime wi th a d o c t o r which has t h i s S p e c i a l t y . ”

e n d N o n F u n c t i o n a l P r o p e r t i e s
de f inedBy
? reqApp [

omid# s p e c i a l t y hasVa lue ? s p e c i a l t y ,
omid# p a t i e n t hasVa lue ? p a t i e n t ,
omid# onDateTime hasVa lue ? onDateTime ,
omid# h o s p i t a l hasVa lue magusaTipMerkezi ,
omid# d o c t o r hasVa lue ? d o c t o r

] memberOf Reques tAppo in tmen t .
� �
Figure 3.20: Precondition for MTM Web service capability

appointment. Depending on the level of specificity desired by the requester, some

attributes of this instance can be left empty though.

Figure 3.21 depicts the assumption for the appointment Web service. It states

that there must be a doctor at the MTM hospital whose specialty is the same as the

one in the request, and who is free at the time and date for which the appointment is

requested.

Figure 3.22 depicts the postcondition of the appointment making Web service. It

simply states the existence of an instance of the Appointment concept in the ontology

after the Web service has finished its execution. This instance contains information

about the patient, the doctor with whom the appointment was made, the hospital and

the date/time of the appointment.

Figure 3.23 depicts the definition of the effect element in the Web service speci-

30

�
a s s u m p t i o n

n o n F u n c t i o n a l P r o p e r t i e s

dc # d e s c r i p t i o n hasVa lue ”Make s u r e t h e d o c t o r

i s f r e e ”

e n d N o n F u n c t i o n a l P r o p e r t i e s

de f inedBy

? d o c t o r [

omid# h a s S p e c i a l t y hasVa lue ? s p e c i a l t y ,

omid# worksAt hasVa lue magusaTipMerkezi

] memberOf omid# Doc to r and

f r e e (? onDateTime , ? d o c t o r) .
� �
Figure 3.21: Assumption for MTM Web service capability

�
p o s t c o n d i t i o n

n o n F u n c t i o n a l P r o p e r t i e s

dc # d e s c r i p t i o n hasVa lue ”make an a p p o i n t m e n t ”

e n d N o n F u n c t i o n a l P r o p e r t i e s

de f inedBy

? a p p o i n t m e n t [omid# da teTime hasVa lue ? onDateTime ,

omid# d o c t o r hasVa lue ? d o c t o r ,

omid# p a t i e n t hasVa lue ? p a t i e n t ,

omid# h o s p i t a l hasVa lue magusaTipMerkezi

] memberOf omid# Appoin tment and

? d o c t o r [omid# h a s S p e c i a l t y hasVa lue ? s p e c i a l t y ,

omid# worksAt hasVa lue magusaTipMerkezi

] memberOf omid# Doc to r .
� �
Figure 3.22: Postcondition for MTM Web service capability

31

�
e f f e c t

n o n F u n c t i o n a l P r o p e r t i e s
dc # d e s c r i p t i o n hasVa lue ”make an a p p o i n t m e n t ”

e n d N o n F u n c t i o n a l P r o p e r t i e s
de f inedBy

n o t (f r e e (? onDateTime , ? d o c t o r)) .
� �
Figure 3.23: Effect for MTM Web service capability

fication where, as a consequence of the execution of the Web service, the date of the

appointment will be considered as a busy hour for the doctor involved in the appoint-

ment. A choreography specification would have been needed if there was a sequence

of activities that were needed between the requester and service provider. In our case,

this was not the case, so we did not attempt to give a choreography specification.

We have however studied in detail the proposed choreography specification mech-

anism in WSMO, and realized that practically it is useless for specifying the interac-

tion of the requester and the Web service. We have more to say on this in section

4.5.

Since our Web service made use of no other Web services to implement its func-

tionality, there was no need to specify orchestration for it. But even if we wanted to do

it, WSMO orchestration does not yet exist (an omission in the definition of WSMO)

and we would not have the means to do it.

3.3.2.2 E-health Web Service for Yasam Hastanesi(YH) Hospital

In this section we give the semantic specification of an appointment-making Web ser-

vice for Yasam Hastanesi (YH) Hospital. The specification, depicted in Figure 3.24

is very similar to the one for MTM, and quite self explanatory. We wrote this spec-

ification in order to experiment with different discovery strategies. It has however

demonstrated the need for a specialization mechanism for Web services, i.e. “de-

riving” a specific Web service specification from a more general one, much like the

“generic” or “template” mechanism of programming languages. We shall talk about

this more in section 4.5.

32

�
webServ ice S e r v i c e D o c t o r A p p o i n t m e n t Y a s a m H a s t a n e s i

i m p o r t s O n t o l o g y
” h t t p : / / cmpe . emu . edu . t r / omid#e−h e a l t h−Onto logy ”

c a p a b i l i t y D o c t o r A p p o i n t m e n t 2 C a p a b i l i t y
n o n F u n c t i o n a l P r o p e r t i e s

d i s c o v e r y # d i s c o v e r y S t r a t e g y hasVa lue d i s c o v e r y # Heavywe igh tDi scove ry
d i s c o v e r y # d i s c o v e r y S t r a t e g y hasVa lue d i s c o v e r y # N o P r e F i l t e r

e n d N o n F u n c t i o n a l P r o p e r t i e s

s h a r e d V a r i a b l e s {? onDateTime , ? p a t i e n t , ? d o c t o r , ? s p e c i a l t y }

p r e c o n d i t i o n
n o n F u n c t i o n a l P r o p e r t i e s

dc # d e s c r i p t i o n hasVa lue ” Data from r e q u e s t e r . ”
e n d N o n F u n c t i o n a l P r o p e r t i e s
de f inedBy

? reqApp [
omid# s p e c i a l t y hasVa lue ? s p e c i a l t y ,
omid# p a t i e n t hasVa lue ? p a t i e n t ,
omid# onDateTime hasVa lue ? onDateTime ,
omid# h o s p i t a l hasVa lue yasamHas t anes i ,
omid# d o c t o r hasVa lue ? d o c t o r

] memberOf Reques tAppo in tmen t .

a s s u m p t i o n
n o n F u n c t i o n a l P r o p e r t i e s

dc # d e s c r i p t i o n hasVa lue ”Make s u r e d o c t o r a v a i l a b l e and f r e e ”
e n d N o n F u n c t i o n a l P r o p e r t i e s
de f inedBy

? d o c t o r [omid# h a s S p e c i a l t y hasVa lue ? s p e c i a l t y ,
omid# worksAt hasVa lue y a s a m H a s t a n e s i]

memberOf omid# Doc to r and
f r e e (? onDateTime , ? d o c t o r) .

p o s t c o n d i t i o n
n o n F u n c t i o n a l P r o p e r t i e s

dc # d e s c r i p t i o n hasVa lue ” Appoin tment o b j e c t ”
e n d N o n F u n c t i o n a l P r o p e r t i e s
de f inedBy

? a p p o i n t m e n t [omid# da teTime hasVa lue ? onDateTime ,
omid# d o c t o r hasVa lue ? d o c t o r ,
omid# p a t i e n t hasVa lue ? p a t i e n t ,
omid# h o s p i t a l hasVa lue y a s a m H a s t a n e s i

] memberOf omid# Appoin tment and
? d o c t o r [omid# h a s S p e c i a l t y hasVa lue ? s p e c i a l t y ,

omid# worksAt hasVa lue y a s a m H a s t a n e s i
] memberOf omid# Doc to r .

e f f e c t
n o n F u n c t i o n a l P r o p e r t i e s
dc # d e s c r i p t i o n hasVa lue ”make an a p p o i n t m e n t ”

e n d N o n F u n c t i o n a l P r o p e r t i e s
de f inedBy

n o t (f r e e (? onDateTime , ? d o c t o r)) .
� �
Figure 3.24: WSMO specification of the appointment-making Web service for Yasam
Hastanesi

33

3.3.3 E-health Goals: Making an Appointment

In this section we give two goals for making appointments, each for a different person.

Figure 3.25 depicts the goal of making an otolaryngology appointment for “alex.” In

Figure 3.26 we have “sarah” requesting an appointment for gynecology at magusaTip-

Merkezi hospital. Note the similarity between the two goals. Just like in the case with

Web services, it is obvious that a mechanism for specifying goals at a more abstract

level and specializing this abstract specification to get different concrete goals would

be very desirable. More on this in section 4.5.

3.3.4 E-health Mediators

Given the simplicity of our application, no need has arisen for defining mediators.

Although it is a big challenge to define useful mediators in real life, the possibility of

being able to define them in WSMO is promising.

3.4 Evaluation of WSMO and WSML

In this section we discuss the strong and weak points of WSMO and WSML as dis-

covered through our studies of their specification and the practical experience gained

through the e-health use case scenario. We also suggest possible improvements wher-

ever possible. All suggested improvements can be the basis of future development of

WSMO and WSML.

3.4.1 General Observations

WSMO boasts a comprehensive approach that tries to leave no aspect of semantic

Web services out. These include ontologies, goals, Web services and mediators. In

the same spirit of thoroughness, designers of WSML have adopted the paradigm of

trying to provide everything everybody could ever want and let each potential user

chose the “most suitable” variant of the language for the job at hand. This approach

has resulted in a complex syntax (please refer to Figure 3.27,taken from[32], for the

syntax of WSML-Full logic rules), as well as a complex set of rules that differentiate

one version of the language form another.

3.4.2 Deficiencies in Syntax

WSML-DL and WSML-Full have no explicit syntax for the description logic compo-

nent [32], relying on a first-order encoding of description logic statements. Without

34

�
wsmlVar ian t ” h t t p : / / www. wsmo . org / wsml / wsml−s y n t a x / wsml−r u l e ”
namespace { ” h t t p : / / cmpe . emu . edu . t r / omid / g o a l s #” ,

omid ” h t t p : / / cmpe . emu . edu . t r / omid #” ,
dc ” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 # ” ,
wsml ” h t t p : / / www. wsmo . org / wsml / wsml−s y n t a x #” ,

d i s c o v e r y
” h t t p : / / w ik i . wsmx . org / i n d e x . php ? t i t l e = D i s c o v e r y O n t o l o g y #”}

g o a l Goal MakeAppointment2−a l e x
i m p o r t s O n t o l o g y ” h t t p : / / cmpe . emu . edu . t r / omid#e−h e a l t h−Onto logy ”

c a p a b i l i t y Goal MakeAppointment2−a l e x C a p a b i l i t y

n o n F u n c t i o n a l P r o p e r t i e s
d i s c o v e r y # d i s c o v e r y S t r a t e g y

hasVa lue d i s c o v e r y # Heavywe igh tDi scove ry
d i s c o v e r y # d i s c o v e r y S t r a t e g y

hasVa lue d i s c o v e r y # N o P r e F i l t e r
e n d N o n F u n c t i o n a l P r o p e r t i e s

s h a r e d V a r i a b l e s {? dateTime , ? h o s p i t a l , ? d o c t o r }

p r e c o n d i t i o n
de f inedBy

? reqApp [
omid# s p e c i a l t y hasVa lue o t o l a r y n g o l o g y ,
omid# p a t i e n t hasVa lue a l ex ,

] memberOf Reques tAppo in tmen t .

p o s t c o n d i t i o n
de f inedBy

? a p p o i n t m e n t [
omid# da teTime hasVa lue ? dateTime ,
omid# d o c t o r hasVa lue ? d o c t o r ,
omid# p a t i e n t hasVa lue a l ex ,
omid# h o s p i t a l hasVa lue ? h o s p i t a l

] memberOf omid# Appoin tment and
? d o c t o r [

omid# h a s S p e c i a l t y hasVa lue
o t o l a r y n g o l o g y ,

omid# worksAt hasVa lue ? h o s p i t a l
] memberOf omid# Doc to r and

? da teTime memberOf DateTime and
? h o s p i t a l memberOf H o s p i t a l .
� �

Figure 3.25: Requesting an otolaryngology appointment for “alex”

35

�
wsmlVar ian t ” h t t p : / / www. wsmo . org / wsml / wsml−s y n t a x / wsml−r u l e ”
namespace { ” h t t p : / / cmpe . emu . edu . t r / omid / g o a l s #” ,

omid ” h t t p : / / cmpe . emu . edu . t r / omid #” ,
dc ” h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 # ” ,
wsml ” h t t p : / / www. wsmo . org / wsml / wsml−s y n t a x #” ,

d i s c o v e r y
” h t t p : / / w ik i . wsmx . org / i n d e x . php ? t i t l e = D i s c o v e r y O n t o l o g y #” }

g o a l Goal MakeAppointment2−s a r a h
i m p o r t s O n t o l o g y

” h t t p : / / cmpe . emu . edu . t r / omid#e−h e a l t h−Onto logy ”

c a p a b i l i t y Goal MakeAppointment2−s a r a h C a p a b i l i t y
n o n F u n c t i o n a l P r o p e r t i e s
d i s c o v e r y # d i s c o v e r y S t r a t e g y hasVa lue d i s c o v e r y # Heavywe igh tDi scove ry
d i s c o v e r y # d i s c o v e r y S t r a t e g y hasVa lue d i s c o v e r y # N o P r e F i l t e r
e n d N o n F u n c t i o n a l P r o p e r t i e s

s h a r e d V a r i a b l e s {? dateTime , ? d o c t o r }

p r e c o n d i t i o n
de f inedBy

? reqApp [
omid# s p e c i a l t y hasVa lue gynecology ,
omid# p a t i e n t hasVa lue s a r a h ,
omid# h o s p i t a l hasVa lue magusaTipMerkezi

] memberOf Reques tAppo in tmen t .

p o s t c o n d i t i o n
de f inedBy

? a p p o i n t m e n t [
omid# da teTime hasVa lue ? dateTime ,
omid# d o c t o r hasVa lue ? d o c t o r ,
omid# p a t i e n t hasVa lue s a r a h ,
omid# h o s p i t a l hasVa lue magusaTipMerkezi ,

] memberOf omid# Appoin tment and
? d o c t o r [

omid# h a s S p e c i a l t y hasVa lue gynecology ,
omid# worksAt hasVa lue magusaTipMerkezi

] memberOf omid# Doc to r and
? da teTime memberOf DateTime .
� �
Figure 3.26: Requesting a gynecology appointment for “sarah”

36

proper syntax, it is not possible to use them in the specification of semantic Web

services in a convenient way.

3.4.3 Logical Basis of WSMO

The ontology component of WSMO is based on F-logic, which gives this component

a solid theoretical foundation. However, its precise relationship to F-logic has not

been given formally, and what features of F-logic have been left out are not specified

explicitly.

3.4.4 Lack of a Semantics Specification for Web Service Methods/Messages

In spite of all the effort at comprehensiveness, there are significant omissions in

WSMO, such as specification of the semantics of actual methods (messages) that

the Web service provides, which makes it impossible to prove that after a “match”

occurs between a goal and a Web service, the postcondition of the goal will indeed be

satisfied. Even worse, once matching succeeds and the Web service is called accord-

ing to the specified choreography, the actual results of the invocation may not satisfy

the postcondition of the goal! Below, we explain why.

In WSMO, matching between a goal and Web service occurs by considering the

pre-post conditions of the goal and Web service, and this is fine. The problem occurs

because of the lack of a semantic specification (for example, in the form of pre-post

conditions) for Web service methods/messages, and how these methods are actually

called through the execution of the choreography engine. Method calls are generated

according to availability of “data” in the form of instances, and the mapping of in-

stances to parameters of methods [15]. There is no consideration of logical conditions

which must be true before the method is called, and no guarantee of the state of the

system after the method is called, since these are not specified for the Web methods.

Instances of a concept can be parameters to more than one Web method. Assuming

two methods A and B have the same signature, it may be the case that an unintended

method call can be made to B, when in fact the call should have been made to A,

which results in wrong computation. Consequently, not only is it impossible to prove

that after a “match” occurs between a goal and a Web service, the post-condition of

the goal will be satisfied, but also once the Web service execution is initiated, the

37

Any atomic formula α which does not contain the
inequality symbol (!=) or the unification
operator (=) is in Head(V).

Let α ,β ∈ Head(V), then α and β is in Head(V).

Given two formulae α , β such that α , β do not
contain implies, impliedBy, equivalent
, the following formulae are in Head(V):

α implies β , if β ∈ Head(V) and α ∈ Head(V) or α ∈ Body(V)
α impliedBy β , if α ∈ Head(V) and β ∈ Head(V) or β ∈ Body(V)
α equivalent β if α ∈ Head(V) or α ∈ Body(V) and β ∈ Head(V) or β ∈ Body(V)

Any admissible head formula in Head(V) is a formula in L(V).
Any atomic formula α is in Body(V).
For α ∈ Body(V), naf α is in Body(V).
For α ,β ∈ Body(V), α and β is in Body(V).
For α ,β ∈ Body(V), α or β is in Body(V).
For α ,β ∈ Body(V), α implies β is in Body(V).
For α ,β ∈ Body(V), α impliedBy β is in Body(V).
For α ,β ∈ Body(V), α equivalent β is in Body(V).
For variables ?x1,...,?xn and α ∈ Body(V), forall ?x1,...,?xn (α) is in Body(V).

For variables ?x1,...,?xn and α ∈ Body(V), exists ?x1,...,?xn (α) is in Body(V).
Given a head-formula β ∈ Head(V) and a body-formula α ∈ Body(V), β :- α is a formula.

Figure 3.27: Syntax of rules in WSML-Full (taken from [65])

computation itself can produce wrong results, invalidating the logical specification of

the Web service.

Unfortunately, the interplay between choreography, grounding and logical specifi-

cation of what the Web service does (including the lack of the specification of seman-

tics for Web service methods) has been overlooked in WSMO. All these components

need development and integration in order to make them part of a coherent whole.

3.4.5 Implementation and Tool Support

Some developmental tools exist which make writing WSML specifications relatively

easy (e.g. WSMO ontologies, axioms), such as “Web Services Modelling Toolkit”

[30]. At the same time, implementations of WSMO and WSML rely on external

reasoner support, rather than having intrinsic reasoning capabilities. As such, de-

velopment and testing of semantic Web service specifications cannot be made in a

38

reliable manner. For example, no explanations are given when discovery fails for a

given goal.

3.4.6 Choreography in WSMO

We have already talked about how the interplay of choreography and grounding can

result in incorrect execution, invalidating the logical specification of a Web service.

In this section, we delve more deeply into the problems of WSMO choreography.

• WSMO choreography is purportedly based on the formalism of abstract state

machines [51], but in fact it is only a crude approximation. Very significantly,

evolving algebras are magically replaced with the state of the ontologies as de-

fined by instances of relations an concepts. This transformation seems to have

no logical basis, so the applicability of any theory developed for abstract state

machines to WSMO choreography specifications is questionable. The chore-

ography attempt of WSMO looks more like a forward-chained expert system

shell, where the role of the “working memory” is played by the current set of

instances in the ontologies. It probably would be more reasonable to consider

WSMO choreography in this way, rather than being based on abstract state ma-

chines.

• Both goals and Web services have choreography specifications, but there is no

notion of how the choreographies of goals and Web services are supposed to

match during the discovery phase. It is also not clear how the two are supposed

to interact during the execution phase. In the documentation of WSMO, only

the choreography of the service is made use of.

• Choreography grounding in WSMO tries to map instances to method parame-

ters of the Web service methods by relating concepts to the methods directly.

Methods are then called when their parameters are available in the current work-

ing memory. The firing of the rules are intermixed with the invocation of meth-

ods (with appropriate lowering/lifting of parameters), and changes to working

memory by actions on the right hand side are forbidden (presuming that any

changes will be made by the actual method call) [15]. This is a strange state of

39

affairs, since the client may itself need to add something to the working mem-

ory, and there is no provision for this.

• The choreography rule language allows nested rules [32]. Although this nesting

permits very expressive rules to be written, using the “if”, “forall” and “choose”

constructs in any combination in a nested manner, the resulting rules are pro-

hibitively complex, both to understand, and to execute.

• As mentioned before, in the grounding process, only the availability of in-

stances that can be passed as parameters to methods, and the predetermined

mapping between concepts and parameters, are considered, with no precondi-

tions for method calls. This is a major flaw, since it may be that two methods

have exactly the same parameter set, but they perform very different functions,

and the wrong one gets called.

• The choreography specification is disparate from the capability specification

(preconditions, postconditions), whereas they are in fact intimately related and

intertwined. The actions specified in the choreography should actually take

the initial state of the ontologies to their final state, through the interaction of

the requester and Web service. This fact is completely overlooked in WSMO

choreography.

• Choreography engine execution stops in WSMO when no more rules apply. A

natural time for it to stop would be when the conditions specified in the goal are

satisfied by the current state of the ontology stores. Again this is a design flaw,

which is due to the fact that the intimate relationship between the capability

specification and choreography has been overlooked.

3.4.7 Orchestration in WSMO

The orchestration component of WSMO is yet to be defined. The creators of WSMO

say it will be similar to choreography, and be part of the interface specification of a

Web service. At a conceptual level, however, we find the specification of orchestration

for a Web service somewhat unnecessary. Why would a requester care about how

40

a service provider provides its service? Composition of Web services to achieve a

goal would be much more meaningful, however. So the idea of placing orchestration

within a Web service specification seems misguided. Its proper place would be inside

the specification of a complex goal, which would help and guide the service discovery

component to not only find a service that meets the requirements of the goal, but also

mix-and-match and compose different Web services to achieve the requirements of

the goal.

3.4.8 Goal Specification

The goal specification includes the components “preconditions,” “assumptions,” “post-

conditions” and “effects,” just like the Web service specification. The logical cor-

respondence between the “preconditions,” “assumptions,” “postconditions” and “ef-

fects,” of goals and Web services is not specified at all. The usage of the same termi-

nology for both goals and Web services is also misleading. In reality, the Web service

requires that its preconditions and assumptions hold before it can be called, and guar-

antees that if it is called, the postconditions and effects will be true. On the other

hand, the goal declares that it guarantees a certain state, perhaps by adding instances

to the instance store, of the world before it makes a request to a Web service, and

requires certain conditions to be true as a result of the execution of the Web service.

The syntax of the goals should be consistent with this state of affairs.

3.4.9 Reusing Goals through Specialization

As we saw in our appointment-making semantic Web service, being able to reuse an

existing goal after specializing it in some way would be very beneficial. The template

mechanism of programming languages, or “prepared queries with parameters” in the

world of databases are concepts which can be adapted to goals in WSMO to achieve

the required specialization. Such a functionality is currently missing.

3.4.10 Specialization Mechanism for Web Service Specifications

Developing a Web service specification from scratch is a very formidable task. Just

like in the case of specializing goals, a mechanism for taking a “generic” Web ser-

vice specification in a domain, and specializing it to describe a specific Web service

functionality would be a very useful proposition. To take this idea even further, a

41

hierarchy of Web service specifications can be published in a central repository, and

actual Web services can just declare that they implement a pre-published specification

in the hierarchy or, they can grow the hierarchy by specializing an existing specifica-

tion, and “plugging” their specification into the existing hierarchy. Such an approach

will help in service discovery as well. A specialization mechanism for Web services

does not exist in WSMO, and would be a welcome addition to it.

3.4.11 Missing Aggregate Function Capability

The logic used in WSML (even in WSML full) does not permit aggregate functions

in the sense of database query languages (sum, average etc.). For example, it was

not possible to impose the restriction (in a convenient way) that a doctor should see

at least 15 patients per day, or a specific doctor A should work less hours per week

than another doctor B (for some reason) etc. Such an addition however would require

moving away from first order logic into higher order logic, with corresponding loss of

computational tractability. Still, it may be worthwhile to investigate restricted classes

of aggregate functionality which lend themselves to practical implementation. For

example, a built-in set of predicate could be used to implement aggregate functions.

3.4.12 Extra-logical Predicates

The ability to check whether a logic variable is bound to an object, or whether it

is in an unbound state (the var predicate of Prolog [98])is missing. At the same

time, a “molecule” such as ?x[att1 hasValue ?y, att2 hasValue ?z]

memberOf SomeConcept unifies with an instance of SomeConcept only if it

has values for attributes att1 and att2. Although this is sound from a logic point

of view, it is very restrictive. We may want to have it also unify with objects which,

for example, have no value for the att1 attribute. In the WSMO specification for the

appointment application, such a need arises, since the appointment may be requested

with differing level of detail specified in the goals. The ability to specify “optional

variables” (i.e. variables that are allowed to not be bound to some object during

unification) and then checking whether a variable is bound or not is an important

feature, currently lacking in WSML.

An alternative to being able to check the “bounded” property of a variable would

42

be to provide default “null” values in attributes for which no value has been specified,

and then checking whether a variable has “null” in it or not.

3.4.13 Automatic Mapping between Attributes and Relations

Although we can define an axiom for mapping each attribute to a binary relation, as

we have done in our e-health SWS specification, this is cumbersome when done man-

ually. Having it done automatically would be nice, a feature currently not available in

WSML.

3.4.14 Error Processing

There is currently no mechanism specifying how to handle errors when they arise. For

example, what should be done when a constraint is violated in some ontology? There

should be a way of communicating error conditions to the requester when they arise.

This could be the counterpart of the exception mechanism in programming languages.

3.4.15 No Agreed-upon Semantics for WSML-Full

WSML-Full, which is a combination of WSML-DL and WSML-rule, has no agreed-

upon semantics yet [47] yet. With no semantics available, it is hard to imagine how

WSML-Full specifications could be processed at all.

3.4.16 Discussion

Our investigation has revealed several deficiencies and flaws with WSMO and WSML.

Most notably, the choreography component needs to be re-thought over and made

to fit better into the remaining framework. Other important weaknesses include the

overall complexity and size of WSML (in all its variants), the lack of a specializa-

tion mechanism for goals and Web services, semantics for Web service methods, ag-

gregate function capability, extra-logical predicates, mapping between attributes and

relations, error processing, and an agreed-upon semantics for WSML-Full.

43

Chapter 4

LOGICAL INFERENCE BASED DISCOVERY

AGENT

The most common but unsatisfactory approach to matching is set-based, where both

the client and Web service declare what objects they require, and what objects they

can provide. Matching then becomes the simple task of comparing sets of objects.

This approach is inadequate because it says nothing about the functionality required

by the client, or the functionality provided by the Web service. As a viable alterna-

tive to the set-based approach, we use the F-Logic language as implemented in the

FLORA-2 logic system to specify Web service capabilities and client requirements in

the form of logic statements, clearly define what a match means in terms of logical

inference, and implement a logic based discovery agent using the FLORA-2 system.

The result is a practical, fully implemented matching engine based purely on log-

ical inference for Web service discovery, with direct applicability to Web Service

Modeling Ontology (WSMO) and Web Service Modeling Language (WSML), since

F-Logic is intimately related to both.

4.1 The Intelligent Semantic Web Service Matchmaker Agent
4.1.1 Logical Components of Web Service and Goal Specifications

In our model of Web service and goal specification in F-logic, the desired computa-

tion by a requester can be specified in the form of inputs and relations on these inputs

(goal.pre), as well as outputs and relations on these outputs (goal.post). The inputs

and outputs may be required to be in a certain relationship as well after the compu-

tation. Furthermore, the requester may desire a new state of the world (goal.e f f ect)

once the execution of a Web service is completed. On the service provider side, the ca-

pability provided by a Web service is specified in the form of preconditions (ws.pre),

which must be true before the Web service can be called, postconditions (ws.post),

44

which the Web service guarantees will be true once its execution is completed, as-

sumptions about the the state of the world before the Web service can be reliably

called (ws.assumption), as well as the changes to the state of the world that are guar-

anteed to be in existence when the Web service completes its execution (ws.e f f ect).

There is also the state of the world before the Web service is called (worldBe f ore).

Lastly, we assume the existence of a common ontology (co) that contains definitions

of concepts, constraints and logic rules that can be used in the goal or Web service

description, as well as local ontologies of each goal and Web service, containing def-

initions and logic rules (which we shall denote by goal.ont and ws.ont) that are local

to the goal or Web service. We can safely assume there is no naming conflict between

local ontologies and other ontologies, since each ontology can be assigned a unique

namespace in the Web environment.

4.1.2 FLOG4SWS: A Sub-language of F-logic for Semantic Web Services Speci-

fication

Although it would be desirable to use a specification language that is as powerful as

possible, one has to be careful about (i) efficient implementability of logical inference

needed to verify the validity of the proof commitments derived from the specifica-

tions, and (ii) understandability of the specifications. Even in the case of first order

logic, unrestricted first order formulas can easily become very complicated, hard to

understand, verify and test. Furthermore, efficiently proving logical entailment in full

first order logic (when a proof exists), even when using the resolution principle [57] or

some of its derivatives, is not an easy proposition. What is needed is a compromise: a

“clean” and concise subset of first order formulas that are easily understood, and can

efficiently be used in determining the validity of certain implications that will guar-

antee a satisfactory match, but is at the same time expressive enough in the context of

Web service discovery.

We use a sub-language of F-logic in our Web service and goal specifications.

Formulas used for goal.pre and ws.post are implicitly universally quantified con-

junctions of positive molecules and predicates. Formulas in ws.pre and goal.post on

the other hand are implicitly existentially quantified logic statements that can involve

45

conjunction, disjunction and negation connectives. In our implementation of match-

ing, this allows us to verify the proof commitments (given in the next section) by

temporarily by inserting antecedents of implications into the logic system database

(as well as the common ontology and local ontologies), and use the FLORA-2 logic

system itself to prove the consequent, effectively establishing the logical entailment

relation between the two.

Ontologies can contain any facts and rules that are allowed in F-Logic. Further-

more, using the reserved predicates constraints and constraint one can specify con-

straints. The matchmaker agent verifies that no constraints are violated in any stage

of the matching process.

Our choice of sub-language allows us to have a powerful, yet practical logic based

matching algorithm and strikes a fine balance between expressiveness and efficient

implementation. The proof commitments are verified with the same kind of efficiency

that logic programs are executed in a logic programming framework.

4.1.3 Syntax of the Sub-language of F-logic used for Specification of Goals, Web

Services and Ontologies

In Figure 4.1 we have the Extended Backus Normal Form (EBNF) grammar for the

sublanguage of F-logic we used for specifying goals, Web services and ontologies.

This grammar should be considered in conjunction with the full grammar of Flora-2

given in [83]. In Flora-2 “Rule” defines a rule with or without a right hand side. Left

hand sides of rules are either inheritance relationships, membership relationships, or

object declarations. “Body” stands for a rule body. Note that we allow any valid

Flora-2 rule in the ontology, since Flora-2 is used to represent knowledge that is com-

mon to goals and Web services. A constraint rule belongs to our sublanguage, and

should have on its left side the predicate “constraint” and the id the constraint as its

parameter. Constraints are verified at various stages in the matchmaking process. A

“Fact” is either a predicate or an object with an id that is an anonymous variable. The

nonterminal “Term” is used to define both predicates and terms. Finally, an “atom” is

any symbol without any internal structure.

46

�
Goal := GoalID ‘ [i n p u t s−>${ s t a r t G [pre−>${ ’ F a c t L i s t ‘} ’ ‘ , ’

‘ pos t −>{’ Query ‘} ’ ‘] ’ ‘} ’ ‘] ’ ‘ . ’

WebService := Webserv iceID ‘ [i n p u t s−>${ s t a r t W [pre−>{’ Query ‘} ’ ‘ , ’
‘ pos t−>${ ’ F a c t L i s t ‘} ’ ‘] ’ ‘} ’ ‘] ’ ‘ . ’

Onto logy := (Rule | C o n s t r a i n t R u l e)∗

C o n s t r a i n t R u l e := ‘ c o n s t r a i n t ’ ‘ (’ C o n s t r a i n t I D ‘) ’ ‘:− ’ Body ‘ . ’

F a c t L i s t := F a c t (‘ , ’ F a c t)∗

F a c t := ‘${ ’ O b j e c t S p e c i f i c a t i o n 2 ‘} ’ | Term

O b j e c t S p e c i f i c a t i o n 2 := ‘? ’ ‘ [’ SpecBody ‘] ’

Query := F a c t | QueryNega t ive | QueryConjunc t | Q u e r y D i s j u n c t

QueryNega t ive := ‘ not ’ ‘ (’ Query ‘) ’

QueryConjunc t := ‘ and ’ ‘ (’ Query ‘ , ’ Query ‘) ’

Q u e r y D i s j u n c t := ‘ or ’ ‘ (’ Query ‘ , ’ Query ‘) ’

C o n s t r a i n t I D := atom

GoalID := atom

Webserv iceID := atom
� �
Figure 4.1: EBNF grammar for FLOG4SWS

47

4.1.4 Proof Commitments that must be Checked for Validity before a Match is

Successful

The proof commitments or obligations (i.e. what must be proven before a match can

succeed) required for our logical inference based matching are as follows:

1. co
∧

goal.ont
∧

ws.ont
∧

goal.pre |= ws.pre: The precondition of the Web

service should be logically entailed by the common ontology, local ontologies

of the goal and Web service, and what is provided/guaranteed by the goal (i.e.

goal.pre).

2. co
∧

goal.ont
∧

ws.ont
∧

goal.pre
∧
(ws.pre⇒ ws.post) |= goal.post: If the

conditions for the Web service call are satisfied, then the requirements of the

goal should be satisfied. Note how we assume that the execution of the Web

service guarantees the validity of the implication in ws.pre⇒ ws.post.

3. worldBe f ore |= ws.assumption: The assumptions the Web service makes about

the world must be true before it can be called. These assumptions are indepen-

dent of what the client supplies to the Web service (e.g. flights canceled due to

weather conditions etc.)

4. worldBe f ore
∧

(ws.assumption⇒ ws.e f f ect) |= goal.e f f ect: The state of

the world after the Web service is called, as required by the goal, should be

guaranteed. Again note how we assume that the Web service execution guaran-

tees the validity of the implication ws.assumption⇒ ws.e f f ect.

In the WSMO framework, assumptions and effects need not be checked, since they

are supposed to represent real world conditions. However, even if they represent real

world conditions, there is no reason why real world conditions could not have some

internal representation in the computer domain that reflects the state of the world. We

thus assume that the state of the world is represented in some externally accessible,

global knowledge base. Then we can interpret “effects” as changes to the state of

this global knowledge base. Assumptions can also be checked against this global

knowledge base. Preconditions/postconditions of a Web service or goal, on the other

48

hand, refer to relationships among objects interchanged between the goal and Web

services.

4.1.5 Dealing with State Change and Non-monotonicity: Simulating Non-monotonicity

inside First-order logic

Of special interest is the way the computation of a Web service is treated above: as

an implication from its precondition to its postcondition (ws.pre⇒ ws.post), and

an implication from its assumption to its effect (ws.assumption⇒ ws.e f f ect). In the

presence of state change caused by the execution of the Web service, however, this can

be problematic. What was true in the precondition of the Web service may suddenly

become false after the Web service is executed due to the state change caused by the

execution itself. So the entailments given in the proof commitments above should not

be proven using inference rules for first order logic alone (F-logic can be mapped to

first-order logic and is thus equivalent to it [73]) if they involve change of the internal

state of objects, or if some fact known to be true (false) before the Web service is

called becomes false (true) after the Web service is called.

While it is true that we cannot directly reason about non-monotonic changes in

the state of the world, or internal states of objects, using first order logic alone, and

that more specialized logics, such as transaction logic [42] or temporal logic [58], are

required to reason with non-monotonic changes caused by the execution of the Web

service, we can get around this problem by writing our specifications that use only

monotonic changes to the state, but simulate non-monotonicity. For state changes in-

side an object, we can return information about scheduled activity regarding changes

to the object. For example, the postcondition of the Web service can contain a predi-

cate scheduledU pdate(?x,4) instead of ?x= 4 for some variable that was supposed to

have some other value in the precondition. The goal postcondition then can query the

scheduledU pdate(?x,4) predicate. Similarly, an object can be marked for deletion,

e.g. scheduledDelete(someOb ject) may be part of the post condition instead of the

object actually being deleted. After all, in the Web service discovery phase, we are

not concerned about real changes actually happening, but rather the knowledge that

such changes will take place if the Web service is called.

49

Web Service

Providers

Customers

Output

Semantic Web

Service Matchmaker

Intelligent Agent

F-logic Engine

Flora-2

Mediator

Services

Common Ontology

Ws2

Local ontology

of ws2

Ws1

Local ontology

of ws1

Ws3

Local ontology

of ws3

Goal1

Local Ontology

of Goal1

Local Ontology

of Goal2

Goal2

Local Ontology

of Goal3

Goal3

Local Ontology

of Goal4

Goal4

Figure 4.2: The proposed Semantic Web service matchmaker intelligent agent archi-
tecture

4.1.6 The Intelligent Matchmaker Agent Architecture

Figure 4.2 depicts the architecture of our intelligent matchmaker agent. At the center

of the figure sits the agent itself. It has access to Web service specifications, goal

specifications, the common ontology, and mediation services. Since it is implemented

in FLORA-2, it has access to all the underlying functionality of the FLORA-2 engine

as well. The agent verifies proof commitments one by one for each goal-Web service

pair, keeping track of both the successful matches and the unsuccessful ones, and

reports the result at the end. There is no “degree of match” computed, since we are

interested only in Web services that satisfy the requirements of a goal completely.

“Mediation” is a broad term used to describe transformations that ensure compati-

bility among components of a system. At the simplest level, mediation can be carried

out between different terminologies, so that equvalencies between terms are estab-

lished (e.g. “car” is the same thing as “automobile” etc.). Although our architecture

50

includes a mediation component, in our actual implementation we concentrated on

the logical reasoning part, and left the mediation part out altogether. The mediation

component can be incorporated into the implementation later on in a straight-forward

manner.

4.2 Implementation of the Matchmaker Agent in FLORA-2
4.2.1 Overview of FLORA-2

The proposed intelligent agent for Semantic Web service matching uses the FLORA-2

reasoning engine. FLORA-2 is considered as a comprehensive object-based knowl-

edge representation and reasoning platform. The implementation of FLORA-2 is

based on a set of run-time libraries and a compiler to translate a unified language of

F-logic [9], HiLog [4], and Transaction Logic [43, 42] into tabled Prolog code [83].

Basically, FLORA-2 supports a programing language that is a dialect of F-logic in-

cluding numerous extensions, that involves a natural way to do meta-programming in

the style of HiLog, logical updates in the style of Transaction Logic, and a form of de-

feasible reasoning described in [96]. FLORA-2 provides strong support for modular

software development through its unique feature of dynamic modules. Some impor-

tant extensions, such as the versatile syntax of Florid path expressions, are borrowed

from Florid [81].

4.2.2 How We Use FLORA-2

Our implementation of the Semantic Web service matchmaker makes use of many

of the unique features of FLORA-2. Goals and Web service specifications are rep-

resented as objects with reified internal parts. Modules and the transactional logic

capabilities of FLORA-2 are used to temporarily insert facts into the database in an

isolated environment and verify the proof commitments for each goal-Web service

pair. Higher order features are also used for verifying the proof commitments.

In the following sections, we give the implementation for our matcher in FLORA-

2. The program is instructive, and its relative conciseness allows us to present it in

full in the main body of this chapter. Note that the program does not implement

the proof commitments regarding the assumptions and effects of Web services, but

they are similar in essence to implemented proof commitments for preconditions and

51

�
1
2 WebService (ws1 , ‘C:\ User s /OMID/ Desktop / t e s t / ws1 ’ , W1):− t r u e , ! .
3 WebService (ws2 , ‘C:\ User s /OMID/ Desktop / t e s t / ws2 ’ , W2):− t r u e , ! .
4 WebService (ws3 , ‘C:\ User s /OMID/ Desktop / t e s t / ws3 ’ , W3):− t r u e , ! .
5
6 Goal (goa l1 , ‘C:\ Users /OMID/ Desktop / t e s t / goa l1 ’) :− t r u e , ! .
7 Goal (goa l2 , ‘C:\ Users /OMID/ Desktop / t e s t / goa l2 ’) :− t r u e , ! .
8 Goal (goa l3 , ‘C:\ Users /OMID/ Desktop / t e s t / goa l3 ’) :− t r u e , ! .
9 Goal (goa l4 , ‘C:\ Users /OMID/ Desktop / t e s t / goa l4 ’) :− t r u e , ! .

10
11 CommonOntology (‘C:\ Users /OMID/ Desktop / t e s t / CommonOntology ’) :− t r u e , ! .
12
13 WebServ ices ([ws1 , ws2 , ws3]) .
14 Goals ([goa l1 , goa l2 , goa l3 , g o a l 4]) .
� �

Figure 4.3: Facts about goals, Web services and common ontology

postconditions, and extending our program to deal with them is straightforward.

4.2.3 The Top-level Matcher Loop

Figure 4.3 has predicates that contain information about the files containing goals,

Web services and the common ontology. Due to a syntactic glitch in the implemetna-

tion of FLORA-2, the cut (!) operator is not allowed directly after the implication (:−)

operator, so we had to use the true predicate before the cut operator. Each Webservice

predicate contains information about a specific Web service, a Goal predicate contains

information about a specific goal, and CommonOntolgy contains information about

the common ontology. The predicates WebServices and Goals describe which goals

and Web services should be included in the match operation.

Note that unlike Prolog, in FLORA-2 predicates can start with capital letters, and

variables must start with the question mark (?).

Figure 4.4 contains the top-level predicates of the matcher. run retrieves the names

of Web services and goals, and returns a list which has information about which

Web service matches which goal. run2 pairs goals and Web services, and checks

by calling main whether a goal matches a Web service. main takes a goal name and a

Web service name, loads the goal and Web service data, local ontologies of the Web

service and goal (they are in the same file as the Web service or goal respectively),

as well as the common ontology data into a module that is unique to the current Web

service, and calls matchh which does the proof commitment verification for the goal

52

and Web service.

In lines 24 and 37 of Figure 4.4, the current module is forced to empty its contents

by loading a file called “empty” (which naturally contains nothing inside) into it, so

that the same module can be used to test whether some other goal matches the Web

service that “owns” the module.

4.2.4 Proving the Commitments for a Successful Match

In Figure 4.5 we have the code that tries to prove the commitments specified in section

4.1. The predicate matchh retrieves the precondition of goal and inserts it temporarily

into the module that was given to it. Then prove is called, which verifies the proof

commitments. Specifically, in line 6, the proof commitment [co
∧

goal.ont
∧

ws.ont∧
goal.pre |= ws.pre] is verified, and in line 8, the proof commitment [co

∧
goal.ont∧

ws.ont
∧

goal.pre
∧
(ws.pre⇒ ws.post) |= goal.post] is verified.

Note that the predicate check constraints is called at various points where actions

can lead to violation of constraints.

The prove/1 predicate takes only one parameter, i.e. only the precondition of a

Web service, and tries to prove it in the module associated with the Web service. The

assumptions of the proof commitment [co
∧

goal.ont
∧

ws.ont
∧

goal.pre |= ws.pre]

(i.e. co
∧

goal.ont
∧

ws.ont
∧

goal.pre) have already been temporarily inserted into

the module, and all that is left is to verify the proof commitment ws.pre.

We could not use the exact same approach for the second proof commitment [co∧
goal.ont

∧
ws.ont

∧
goal.pre

∧
(ws.pre⇒ws.post) |= goal.post], however, since

FLORA-2 does not allow temporary insertion of rules (of the form lhs : −rhs) in a

module. What we needed was the ability to insert into the module ws.post :−ws.pre

(ws.post is a set-valued attribute, and logical variables get instantiated to each mem-

ber of the set one at a time according to the semantics of FLORA-2). To get around

this restriction, we devised the prove/3 predicate which takes three parameters (post-

condition of a goal, postcondition of a Web service, and precondition of the same

Web service). In lines 16-17 of Figure 4.5, the objective of using the implication

(ws.pre⇒ ws.post) is achieved operationally by unifying the postcondition of the

53

�
1
2 run (? R e s u l t):−
3 WebServ ices (?WSS) ,
4 Goals (?GS) ,
5 run2 (?GS , ?WSS, ? R e s u l t) .
6
7 run2 ([] , ? , []) : −
8 t r u e , ! . / / g o a l s f i n i s h e d
9

10 run2 ([? Goal | ? R e s t G o a l s] , [] , ? R e s u l t):−
11 t r u e , ! ,
12 WebServ ices (?WSS) ,
13 run2 (? Res tGoa l s , ?WSS, ? R e s u l t) .
14
15 run2 ([? Goal | ? R e s t G o a l s] , [?WS| ? Res tWebServ i ces] ,
16 [[? Goal , ‘ MATCHES ’ , ?WS] | ? R e s t R e s u l t]) :−
17 main (? Goal , ?WS) , ! ,
18 run2 ([? Goal | ? R e s t G o a l s] , ? Res tWebServ ices , ? R e s t R e s u l t) .
19
20 run2 ([? Goal | ? R e s t G o a l s] , [?WS| ? Res tWebServ i ces] ,
21 [[? Goal , ‘ DOES NOT MATCH ’ , ?WS] | ? R e s t R e s u l t]) :−
22 t r u e , ! ,
23 WebService (?WS, ? , ?WsModule) ,
24 [‘C:\ Users /OMID/ Desktop / t e s t / empty ’>>?WsModule] ,
25 run2 ([? Goal | ? R e s t G o a l s] , ? Res tWebServ ices , ? R e s t R e s u l t) .
26
27 main (? GoalName , ? WsName):−
28 WebService (? WsName , ? WsPath , ?WsModule) ,
29 Goal (? GoalName , ? Goa lPa th) ,
30 CommonOntology (? O n t o l o g y P a t h) ,
31 [+ ‘C:\ Users /OMID/ Desktop / t e s t / matcher ’>>?WsModule] ,
32 [+? WsPath>>?WsModule] ,
33 [+? Onto logyPa th >>?WsModule] ,
34 [+? GoalPath>>?WsModule] ,
35 matchh (? GoalName , ?WsName , ?WsModule)@?WsModule ,
36 ?FoundWs=?WsName ,
37 [‘C:\ Users /OMID/ Desktop / t e s t / empty ’>>?WsModule] , ! .
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 ∗
� �

Figure 4.4: Matching agent top-level predicates

54

�
1 matchh (? Goal , ? WebService , ?WsModule):−
2 c h e c k c o n s t r a i n t s ,
3 ? WebService [i n p u t s−>${ s t a r t W [pre−>?WsPre , pos t−>?WsPost] }] ,
4 ? Goal [i n p u t s−>${ s t a r t G [pre−>?GoalPre , pos t−>?G o a l P o s t] }] ,
5 t i n s e r t {? Goa lPre }@?WsModule ,
6 p rove (? WsPre) ,
7 c h e c k c o n s t r a i n t s ,
8 p rove (? GoalPos t , ? WsPost , ? WsPre) ,
9 c h e c k c o n s t r a i n t s .

10
11 prove (and (?X, ?Y)) :− ! , p rove (?X) , p rove (?Y) .
12 prove (o r (?X, ?Y)) :− ! , p rove (?X) ; p rove (?Y) .
13 prove (n o t (?X)) :− ! , n a f (p rove (?X)) .
14 prove (?X):− ?X@?WsModule .
15
16 prove (? GoalPos t , ? WsPost , ? WsPre):−
17 ? G o a l Po s t = ? WsPost , ! , p rove (? WsPre) .
18
19 prove (and (?X, ?Y) , ? WsPost , ? WsPre):− ! ,
20 prove (?X, ? WsPost , ? WsPre) , p rove (?Y, ? WsPost , ? WsPre) .
21
22 prove (o r (?X, ?Y) , ? WsPost , ? WsPre):− ! ,
23 prove (?X, ? WsPost , ? WsPre) ; p rove (?Y, ? WsPost , ? WsPre) .
24
25 prove (n o t (?X) , ? WsPost , ? WsPre):− ! ,
26 n a f (p rove (?X, ? WsPost , ? WsPre)) .
27
28 prove (?X, ? WsPost , ? WsPre):− ?X@?WsModule .
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 ∗
� �

Figure 4.5: Proving the commitments for a match

55

�
1 c h e c k c o n s t r a i n t s :−
2 c o n s t r a i n t s (?C) ,
3 c h e c k c o n s t r a i n t s (?C , ? R) ,
4 v e r i f y r e s u l t s (?R) .
5
6 c h e c k c o n s t r a i n t s ([] , []) .
7
8 c h e c k c o n s t r a i n t s ([?H | ? T] , [? F | ? R]) :−
9 c h e c k c o n s t r a i n t (?H, ? F) ,

10 c h e c k c o n s t r a i n t s (? T , ? R) .
11
12 c h e c k c o n s t r a i n t (? Cons , s u c c e s s f u l (? Cons)) :− c o n s t r a i n t (? Cons) .
13
14 c h e c k c o n s t r a i n t (? Cons , f a i l u r e (? Cons)) :−
15 n a f c o n s t r a i n t (? Cons) .
16
17 v e r i f y r e s u l t s ([]) .
18 v e r i f y r e s u l t s ([s u c c e s s f u l (?C) | ? T]) :−
19 w r i t e l n (s u c c e s s f u l (?C)) @ plg ,
20 v e r i f y r e s u l t s (? T) .
21
22 v e r i f y r e s u l t s ([f a i l u r e (?C) | ? T]) :−
23 w r i t e l n (f a i l u r e (?C)) @ plg ,
24 v e r i f y r e s u l t s (? T) .
� �

Figure 4.6: Checking constraints for violations

goal with the postcondition of the Web service, and then proving the precondition of

the Web service, thereby implementing backward reasoning manually, and achieving

the same result as if ws.post :−ws.pre was inserted into the module.

4.2.5 Checking Constraints

Figure 4.6 contains the code for checking constraint violations. When a constraint

in an ontology (whether local or common) is violated, an error message is printed,

although no action is currently taken to invalidate the match. Furthermore, successful

constraint checks are also shown in the output.

This behavior can easily be changed and a match can be made to fail in case of a

constraint violation by removing the clause in lines 22-24.

4.3 Specifying Web Services, Goals and Ontologies in FLORA-2

In this section, we give a representative example of (i) a Web service specification for

making appointments in hospitals, (ii) a goal for consume the appointment service,

and (iii) the common ontology used by the Web service and goal.

56

4.3.1 Sample Web Service Specification

Figure 4.7 depicts the specification of a Web service for making doctor appointments.

The precondition requires an object of concept RequestAppointment to be provided by

the goal, containing the request information. ?DS,?PN,?Date,?HN and ?X are logic

variables that will be bound to the corresponding values that should be provided by

the requester. Before the match is successful, it must be verified that the age of the

patient is more than 18 (for some reason!), there is a hospital in the same country that

the patient lives in, and there is a doctor with the correct specialization area in that

hospital.

The postcondition of the Web service specification makes available an Appoint-

ment object containing information about the appointment date, doctor name, patient

name and hospital name.

The local ontology used by the Web service specification, also given in Figure 4.7,

represents an abstraction of an actual local database that might be used by the Web

service that is being semantically described by the specification.

4.3.2 Sample Goal for Consuming an Appointment Service

We have in Figure 4.8 a goal for consuming an appointment making service. The

goal gives specific information about the appointment, such as the required specialty,

hospital name, and age of the patient. The appointment date field is left empty, which

might mean that any date is fine. However, in the postcondition of the goal, the actual

date returned by the Web service is checked to be in the range 20 to 22, so any other

date will cause a mismatch.

As part of the precondition, the fact that the patient (philip) lives in Paris is given.

This fact will be used to deduce that philip lives in France and can only make an

appointment at a hospital in France through using the Web service whose specification

is given in Figure 4.7.

We note how logic variables link the preconditions and postconditions of both

goals and Web services. In fact, the usual scenario is that information “flows from”

the precondition of the goal “into” the precondition of the Web service, then “into”

the postcondition of the Web service, and finally “into” the postcondition of the goal.

57

�
ws2 [i n p u t s−>

${ s t a r t W [
pre−>{and (

${? [
s p e c i a l t y −>?DS ,
pa t ien tName−>?PN ,
appo in tmen tDa te−>?Date ,
hosp i t a lName−>?HN,
age−>?X] : Reques tAppo in tmen t

} ,
and (

and (g r e a t e r (?X , 1 8) ,
and (

l i v e s i n c o u n t r y (?PN , ? Count ry) ,
h o s p i t a l (?HN, ? Count ry)

)
) ,

${? d o c t o r [
doctorName−>?DN,
s p e c i a l t y −>?DS ,
hosp i t a lName−>?HN,
a v a i l a b l e D a t e −>?Date

] : Doc to r
}

)
)

} ,

pos t−>${
? [

appo in tmen tDa te−>?Date ,
doctorName−>?DN,
pa t ien tName−>?PN ,
hosp i t a lName−>?HN

] : Appoin tment
}

]
}

] .
d o c t o r 1 [doctorName−>r o b e r t ,

s p e c i a l t y −>op tha lmology ,
hosp i t a lName−>M o n t p e l l i e r H o s p i t a l ,
a v a i l a b l e D a t e −>{20, 21 , 22 , 23 , 24 , 25}

] : Doc to r .
d o c t o r 2 [doctorName−>omid ,

s p e c i a l t y −>o t o l a r y n g o l o g y ,
hosp i t a lName−>M o n t p e l l i e r H o s p i t a l ,
a v a i l a b l e D a t e −>{13, 14 , 15 , 16}

] : Doc to r .
d o c t o r 3 [doctorName−>mar t i n ,

s p e c i a l t y −>gyneco logy ,
hosp i t a lName−>M o n t p e l l i e r H o s p i t a l ,
a v a i l a b l e D a t e −>{3, 4 , 5 , 6}

] : Doc to r .
h o s p i t a l (M o n t p e l l i e r H o s p i t a l , F r an ce) .
� �

Figure 4.7: Web service specification for making appointments

58

�
g o a l 2 [i n p u t s−>

${ s t a r t G [

pre−>${

? [

s p e c i a l t y −>op tha lmology ,

pa t ien tName−>p h i l i p ,

appo in tmen tDa te−>? ,

hosp i t a lName−>M o n t p e l l i e r H o s p i t a l ,

age−>22

] : Reques tAppoin tment ,

l i v e s i n c i t y (p h i l i p , P a r i s)

} ,

pos t−>{

and (

${ reqApp

[appo in tmen tDa te−>?Date ,

doctorName−>?DN,

pa t ien tName−>p h i l i p ,

hosp i t a lName−>M o n t p e l l i e r H o s p i t a l

] : Appoin tment

} ,

o r (g r e a t e r (? Date , 1 9) , l e s s (? Date , 2 3))

)

}

]

}

] .
� �
Figure 4.8: Goal for consuming the appointment making Web service

59

4.3.3 Common Ontology

The common ontology, given in Figure 4.9, contains constraints that must hold true to

have a valid knowledge base, utility predicates (such as the appointment predicate that

converts Appointment objects into a relation), factual information about which city is

in which country, as well as a rule which relates people to their countries, based on

the city they live in.

Constraints are checked by the constraint handling component of the matcher, as

already explained. The noPatientClash constraint makes sure that a patient is not

given appointments in the same time slot to different doctors. The noDoctorClash

guarantees that a doctor will not see two patients in the same time slot. The appoint-

mentWhenDoctorWorks constraint checks that a doctor is given a patient only during

his working hours. The constraints validDay, validMonth and validYear have obvious

meaning. The predicate appointment generates a relation from Appointment objects.

Obviously, where information will be placed (local or common ontology) is a

design decision, and some information placed in the common ontology here could

have been put inside the local ontologies of Web services. However, it is common

sense to place rules that can be used by more than one Web service specification, or

by both goals and Web service specifications, inside an “outside” ontology that can

act as a common ontology.

60

�
/ / CommonOntology . f l r

c o n s t r a i n t (n o P a t i e n t C l a s h):−
\+ ((a p p o i n t m e n t (? pa t , ? doc1 , ? d t) ,

a p p o i n t m e n t (? pa t , ? doc2 , ? d t) ,
? doc1 != ? doc2)) .

c o n s t r a i n t s ([n o P a t i e n t C l a s h , noDoc to rC la sh]) .

c o n s t r a i n t (noDoc to rC la sh):−
\+ ((a p p o i n t m e n t (? pa t1 , ? doc , ? d t) ,

a p p o i n t m e n t (? pa t2 , ? doc , ? d t) ,
? p a t 1 != ? p a t 2)) .

c o n s t r a i n t (appointmentWhenDoctorWorks):−
\+ ((a p p o i n t m e n t (? dt , ? doc , ? p a t) ,

? d t [
nameOfDay−>?nod ,
hour−>?h

] : DateTime ,
\+ worksOn (? doc , ? nod , ? h))) .

? d [d a t e D o c t o r F r e e−>?d t] : Doc to r :−
f r e e (? dt , ? d) .

f r e e (? dt , ? d):−
? d [d a t e D o c t o r F r e e−>?d t] : Doc to r .

c o n s t a i n t (v a l i d D a y):−
n a f (? d [day−>?v] : Ca lendar , ? v > 3 1) .

c o n s t r a i n t (va l idMonth):−
n a f (?m[month−>?v] : Ca lendar , ? v > 1 2) .

c o n s t r a i n t (v a l i d Y e a r):−
n a f (? y [year−>?v] : Ca lendar , ? v < 2 0 1 3) .

a p p o i n t m e n t (? p a t i e n t , ? d o c t o r , ? d t):−
? a [

p a t i e n t −>?p a t i e n t ,
d o c t o r−>?d o c t o r ,
dateTime−>?d t

] : Appoin tment .

g r e a t e r (?X, ?Y):− ?X > ?Y.
l e s s (?X, ?Y):− ?X < ?Y.
i s e q u a l (?X, ?Y):− ?X = ?Y.

l i v e s i n c o u n t r y (? Man , ? Count ry):−
l i v e s i n c i t y (? Man , ? C i t y) ,
c i t y c o u n t r y (? Ci ty , ? Count ry) .

c i t y c o u n t r y (London , England) .
c i t y c o u n t r y (I s t a n b u l , Turkey) .
c i t y c o u n t r y (P a r i s , F r a nc e) .
� �

Figure 4.9: Common ontology used by goals and Web services

61

�
? R e s u l t = [

[goa l1 , ‘ DOES NOT MATCH ’ , ws1] ,
[goa l1 , ‘ DOES NOT MATCH ’ , ws2] ,
[goa l1 , ‘ MATCHES ’ , ws3] ,
[goa l2 , ‘ DOES NOT MATCH ’ , ws1] ,
[goa l2 , ‘ MATCHES ’ , ws2] ,
[goa l2 , ‘ DOES NOT MATCH ’ , ws3] ,
[goa l3 , ‘ MATCHES ’ , ws1] ,
[goa l3 , ‘ DOES NOT MATCH ’ , ws2] ,
[goa l3 , ‘ DOES NOT MATCH ’ , ws3] ,
[goa l4 , ‘ DOES NOT MATCH ’ , ws1] ,
[goa l4 , ‘ DOES NOT MATCH ’ , ws2] ,
[goa l4 , ‘ DOES NOT MATCH ’ , ws3]

]
� �
Figure 4.10: Result returned by the matchmaker on some goals and Web services

4.3.4 Running the Matchmaker Agent on a Set of Goals and Web Service Speci-

fications

Figure 4.10 contains the output of the matcher when used to match one set of goals

against a set of Web service specifications. Due to space limitations, the goals and

Web service specifications are not included in this part, but are available for down-

loading at [89].

4.3.5 Performance Statistics for FLOG4SWS

Table 4.1 depicts the time it took to match goal2 against two different sets of Web

service specifications, one where it matched all the Web services, and another where it

matched none of the Web services. Figures 4.11 and 4.12 depict the same information

graphically. As can be seen, there is a linear relationship between the number of Web

services, and the time it took to perform the match in either case. The graph for the

matching case can be described by the formula t = 0.52s− 0.22 and the graph for

the non-matching case can be described by the formula t = 0.28s−0.098 (t=time in

seconds, s=number of Web services), as found by the curve-fitting function of Matlab.

62

Table 4.1: Matching time of one goal with different number of Web services in
FLOG4SWS

Number
of Web
services

1 2 3 4 5 6 7 8 9

Goal
(matched)

0.407 0.860 1.437 1.828 2.203 2.734 3.265 3.703 4.891

Goal (not
matched)

0.312 0.500 0.766 0.890 1.312 1.453 1.813 2.000 2.750

Figure 4.11: Timing when goal matches all Web services

63

Figure 4.12: Timing when goal does not match any Web service

4.4 Comparison with Related Work on Matching

Matching request specifications against Semantic Web service capability has recently

been an active area of research. Below we review some of the most relevant work in

this area.

As already mentioned in the introduction, authors in [71] describe in detail sev-

eral set-based approaches to discovery, but they also propose a discovery method

using proof commitments in transactional logic. Their proposal however is so gen-

eral that its efficient implementation is practically impossible. They place no restric-

tions on the logic statements that can take part in the preconditions and postcondi-

tions of Web service capabilities or goal specifications, making the use a full-fledged

transaction logic reasoner necessary to prove their commitments. Furthermore, their

proof commitments involve an existential quantifier for Web service specifications,

so that discovery of a suitable Web service is delegated to the deduction process (i.e.

computation carried out for the satisfaction of the proof commitment) completely.

In our case, our proof commitments are logical entailments in F-logic, with well-

64

defined restrictions on goal and Web service specifications in order to have efficient

goal-directed proofs of the proof commitments. Specifically, our Web service pre-

conditions and goal postconditions are implicitly existentially quantified statements

involving conjunction, disjunction and negation operators, and act like queries in the

logic programming FLORA-2. Goal preconditions and Web service postconditions

are implicitly universally quantified, contain only positive statements and involve

only the conjunction operator. These restrictions allow us to efficiently check the

proof commitments, much like queries are answered in a top-down manner in logic

programming languages. To make our matching agent even more efficient, our proof

commitments involve only one goal and one Web service: individual goals and Web

services are checked iteratively to see if the proof commitments holds between them.

Consequently, we have been able to build an actual, practical implementation for our

matching agent, whereas our literature search has failed to uncover a real transaction-

logic based matcher that checks the proof commitments specified in [71]. Incidentally,

we do use the transactional logic capabilities of FLORA-2 in our implementation, but

only as a tool.

In [85, 94, 90, 91, 69], the authors describe a matching algorithm for automatic

dynamic discovery, selection and interoperation of Web services based on DAML-S.

They show a representation for service capabilities in the Profile section of a DAML-

S description and a way to semantically match advertisements and requests. In related

work, a way to map DAML-S service profiles into UDDI records and using the en-

coded information to perform semantic matching is described in [84]. The actual

matching is performed by the “Matching Engine” component, which makes use of

the “DAML=OIL Reasoner” to compute the level of the match. Since the approach

used in DAML-S is fundamentally set-based, it suffers from the same drawbacks as

other set-based methods of discovery.

The matchmaking method described in [39] assigns matchmaking scores to con-

dition expressions in OWL-S documents written in SWRL. It uses a reasoner to de-

termine subsumption relationships and compute scores for each advertisement. This

approach is also a set-based and does not specify any proof commitments explicitly.

65

The authors in [95] consider matchmaking between service provider agents and

service requester agents. Middle agents perform the matchmaking between the re-

quester and service provider agents. They present the agent description language

LARKS, and discuss the matchmaking process using LARKS. A specification in

LARKS is a frame which includes slots “context,” “input,” “output,” “inconstraints,”

“outconstraints.” Their matchmaking algorithm determines the relationship among

two semantic descriptions by computing the respective subsumption relationship, and

is again set-based.

[86] is a high-level survey and ranking of Web service discovery methods and does

not give any details regarding the specific matching algorithm used by the surveyed

methods.

In [91] the authors propose OWL-S/UDDI matchmaker. They embed OWL-S

profile information inside UDDI advertisements before performing a match. Their

algorithm matches the outputs/inputs of the request against the inputs/outputs of the

published advertisements. The match between the inputs or outputs depends on the

relationship between the OWL concepts to which the objects belong. So the pro-

posal is a set-based approach using OWL-S. Any reasoning done is for determining

subsumption realtionships.

A matchmaking algorithm based on bipartite graphs for Semantic Web services

specifies in OWL-S is presented in [67]. The approach carries out semantic simi-

larity assignment using subsumption, properties, similarity distance annotations and

WordNet. No logical inference is carried out, except for subsumption.

In [50], the authors formalize the matching problem in general using Descrip-

tion Logics, and devise “Concept Abduction” and “Concept Contraction” as non-

monotonic inferences in Description Logics for modeling matchmaking in a logical

framework. They also give algorithms for semantic matchmaking based on the de-

vised inferences as well. Similary, in [63] a framework for annotating Web services

using description logics (DLs) is used and it is shown how to realise service discov-

ery by matching semantic service descriptions, applying DL inferencing. Description

Logics is a very limited form of logic, compared to the first order logic, and matching

66

based on DL specifications is not directly comparable to our work, which deals with

F-logic specifications.

In [49] authors implement in F-Logic a matching mechanism that relies on Web

service-goal mediators . They use FLORA-2 in the matching procedure to evaluate the

similarity rules embedded in the description of each mediator and return references

to the discovered Web services and the degree of matching (exact, subsumed, plug-

in and intersection). It is clear that their approach is strictly set-based and does not

involve logical inference.

The WSMO-MX service matchmaker, described in [75], uses different matching

filters to retrieve Semantic Web services written in a dialect of WSML-Rule. WSMO-

MX recursively computes “logic-based and syntactic similarity-based matching de-

grees and returns a ranked set of services that are semantically relevant to a given

query. The matching filters perform ontology-based type matching, logical constraint

matching, and syntactic matching.” The proposed system is “aproximative” and does

not guarantee with 100% certainty the suitability of the discovered services to satisfy

the needs of the requester. This is in line with the authors’ belief that Semantic Web

research has started to shift towards “more scalable and approximative rather than

computationally expensive logic-based reasoning with impractical assumptions.” Our

work disproves this belief: it is possible to have logic-based reasoning that is not pro-

hibitively expensive, provided that an appropriate subset of logic which is expressive

enough to practically specify goal requirements and Web service capabilities is used.

In other related work, [44] describes a new algorithm for matching Web services

in YASA4WSDL. The matching algorithm consists of three variants based on three

different semantic matching degree aggregations. Their method uses an algorithm us-

ing extended semantic annotation, based on Web service standards. The critical prob-

lems in Web service discovery such as how to locate Web services and how to select

the best one from large numbers of functionally similar Web services are explained

in [52]. In [76], a graded relevance scale for Semantic Web services matchmaking

is proposed as measurements to evaluate SWS matchmakers based on such graded

relevance scales.

67

Table 4.2: FLOG4SWS versus other SWS languages
OWL-S WSML (All variants) FLOG4SWS

Dedicated matching engine - - +
Matching based on logical
implication - - +

Logic language included - + +
Efficient goal-directed ****
reasoning for matching - - +

**

Table 4.2 depicts a high-level comparison of FLOG4SWS with two of the most well-

known semantic Web service frameworks, namely OWL-S and WSMO (as imple-

mented through WSML).

4.5 Discussion

Although we found FLORA-2 to be a very powerful logic system with frames, its

behavior with respect to logical variables inside objects was somewhat different from

our expectations, and we had to experiment with reification at different levels (includ-

ing reification of the components of objects) to make the system behave as we desired.

In Figure 4.13 we give some examples demonstrating the behavior of FLORA-2 with

respect to unification, reification and logic variables. The result of the query and its

result are given in the comments below the code (the dollar sign $ is used to reify a

component).

We should also note that the matching agent matches a goal to each Web service

specification sequentially, so that issues of atomicity of access to the ontologies do

not come up in the implementation.

68

�
1
2 pred1 (f [b−>?x , c−>?x]) .
3 / / que ry : p red1 (f [b−>1,c−>?y]) .
4 / / Ans : ? y unbound
5
6 a [b−>${c [d−>?x]} , k−>${e [f−>?x] }] .
7 / / que ry : a [b−>${c [d−>1]} ,k−>${e [f−>?x] }] .
8 / / Ans : ? x unbound .
9

10 pred3 (${ f [b−>?x , c−>?x] }) .
11 / / que ry : p red3 (f [b−>1,c−>?x]) .
12 / / Ans : NO
13 / / que ry : p red3 (${ f [b−>1,c−>?x] }) .
14 / / Ans : ? x=1
15
16 id12 (${o5 [a−>?x]} , ${o6 [b−>?x] }) .
17 / / que ry : i d12 (${o5 [a−>1]} ,${o6 [b−>?z] })
18 / / Ans : ? z=1
19
20 p r o j e c t 2 (${ a2 [b2−>?z]} , ? z) .
21 / / que ry : p r o j e c t 2 (? x , ? y) .
22 / / Ans : ? x = ${ a2 [b2 −> ? h2209]}
23 / / ? y = ? h2209
24 / / que ry : p r o j e c t 2 (a2 [b2−>1] ,? z)@m1.
25 / / Ans : No
26 / / que ry : p r o j e c t 2 (${ a2 [b2−>1]} ,? z) .
27 / / Ans : ? z = 1
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 ∗
� �

Figure 4.13: Behavior of FLORA-2 with respect to unification, reification and logic
variables

69

Chapter 5

UNIFYING F-LOGIC MOLECULES

In this chapter we present a correct unification algorithm for unifying F-Logic molecules.

The original unification algorithm for F-Logic molecules presented by Kifer et al.

contains a mistake. We identify the mistake and demonstrate it through two exam-

ples, suggest a solution to the problem in the original algorithm and prove that the

resulting algorithm correctly unifies F-Logic molecules. The results presented here

have been accepted for publication by Oxford journals [38].

5.1 Motivation and Overview

F-Logic [74] attempts to combine first order logic with object-oriented concepts. It

has been used as the formal basis of deductive object oriented databases [79] and also

forms the underlying logic of WSML [45], a language for semantically describing

Web services, as well as the foundation of the Rule Interchange Format (RIF) [9]

from W3C. F-Logic introduces the concept of an id-term, which syntactically is the

same as a normal first order term, and is used as an abstract object identifier. Two

different id-terms can denote the same object.

In F-Logic, there are classes, class hierarchies, objects, as well as scalar and mul-

tivalued methods. Objects can play the role of classes, so the distinction between

classes and instances of classes is blurred.

The proof theory of F-Logic makes use of a unifier for F-Logic molecules, which

is presented in [74] (Appendix C, Fig. C1, p. 837). This “unifier” is incorrect. It

is meant to return the “complete set of unifiers from a molecule m1 into some other

molecule m2,” however the so-called “complete set of unifiers” may not be unifiers

at all. In cases of non-unifiability of the two molecules, the presented algorithm can

give a non-empty set as well, implying that the molecules are unifiable, when they

are not. Our literature search has failed to discover any correction to the proposed

70

“unification” algorithm in [74], and since unification is such an important aspect of

automated deduction, we decided to rectify the algorithm and present a correct version

of this algorithm.

We show the incorrect working of the proposed unification algorithm in [74] by

giving two simple unification problems and tracing the given algorithm on them. We

then suggest a modification to the proposed algorithm and prove that the modified

version indeed is correct.

Below, we give some definitions (taken directly from [74]) that are made use of in

the algorithm, either directly or indirectly.

The constituent atoms of a molecule a[b1@Q1, . . . ,Qk1→ c1; b2@Q1, . . . ,Qk2→

c2; . . . ; bn@Q1, . . . ,Qkn → cn] are a[b1@Q1, . . . ,Qk1 → c1], a[b2@Q1, . . . ,Qk2 →

c2], . . . , a[bn@Q1, . . . ,Qkn → cn]. We can replace → with any other arrow type

allowed in F-Logic (namely •→,→→,⇒,⇒⇒ or •→→), and the definition still is valid.

The specific type and meaning of the arrows in a molecule has no bearing on the

correctness or functioning of the unification algorithm, however, and a discussion on

arrows is left out of the presentation.

In F-Logic, the notion of unifying two terms is replaced by “asymmetric unifica-

tion of object molecules.” The idea is that an instance of one object may be contained

in (an instance of) another object, and the two objects should be considered unifiable.

Formally, let L1 = S[...] and L2 = S[...] be a pair of object molecules with the same

object id, S. L1 is said to be a sub-molecule of L2, denoted L1 v L2, if and only if

every constituent atom of L1 is also a constituent atom of L2. A substitution σ is a

unifier of L1 into L2 if and only if σ(L1)v σ(L2).

Let ϕ be an atom of either of the following forms:

1. P[Method@Q1, . . . ,Qk R], where denotes any one of the six types of

arrows allowed in method expressions (i.e. →, •→,→→,⇒,⇒⇒,•→→);

2. P[Method@Q1, . . . ,Qk {}], where denotes→→ or •→→;

3. P[Method@Q1, . . . ,Qk ()], where denotes⇒ or⇒⇒.

71

Then,

id(ϕ) = P

method(ϕ) = Method

argi(ϕ) = Qi, f or i = 1, . . . ,k

val(ϕ) =

 R i f ϕ is o f the f orm (1) above

/0 i f ϕ has the f orm (2) or (3) above

If T is a molecule, then atoms(T) denotes the constituent atoms of T. If T1 and T2

are molecules, then Map(T1,T2) denotes the collection of mappings {λ : atoms(T1)−→

atoms(T2)} that preserve method arities and the type of the method expression (i.e.

the type of the arrow used in those expressions).

5.2 Faulty “Unification” Algorithm

The “unification” algorithm of [74] is replicated in ALGORITHM 1. The function

“UNIFY” is assumed to be any standard unification algorithm for terms, which also

works on tuples of terms, and returns the most general unifier of its two parameters.

Here, it is used to unify term-ids or tuples of term-ids.

5.2.1 Tracing the “Unification” Algorithm on Two Unifiable Molecules

We now trace the execution of the faulty ALGORITHM 1 on a simple case of uni-

fication. We use it to unify a[b → c,d → e] into a[b → X ,d → Y]. Obviously,

the only unifier is {X\c,Y\e}, and the unification algorithm is supposed to return

{{X\c,Y\e}}. Due to the fact that atoms of a molecule can be selected in any or-

der, the given algorithm can return more than one answer. One possible answer is

{{X\c},{Y\e},{X\c,Y\e}}. {X\c} and {Y\e} obviously are not unifiers, but they

are returned in the result as well.

In Figure 5.1 we have a (partial) trace of the algorithm. We use indices to distin-

guish the values loop variables take in each iteration. For example, α[i] is supposed

to mean the value of α in iteration i. The “line numbers” column refers to the line

numbers of the algorithm.

72

Algorithm 1: Faulty unification algorithm for F-Molecules
Input: A Pair of molecules, T1 and T2
Output: Ω- a complete set of mgu’s of T1 and T2

1 if id(T1) and id(T2) are unifiable then
2 Θ :=UNIFY (< id(T1)>,< id(T2)>)
3 else
4 Stop: T1 and T2 are not unifiable
5 end
6 if T1 is of the form S[] (a degenerated molecule) then
7 Stop: Θ is the only mgu
8 end
9 Ω := {}.

10 foreach mapping λ ∈Map(T1,T2) do
11 σλ := Θ.
12 foreach atom ϕ in atoms(T1) do
13 Let ψ be λ (ϕ).
14 Unify tuples σλ (

−→
S1) and σλ (

−→
S2), where

15
−→
S1 =< method(ϕ),arg1(ϕ), . . . ,argn(ϕ),val(ϕ)> and

16
−→
S2 =< method(ψ),arg1(ψ), . . . ,argn(ψ),val(ψ)>.

/* if val(ϕ) or val(ψ) is /0, they are treated as
constant /0 for the unification purposes */

17 if σλ (
−→
S1) and σλ (

−→
S2) unify then

18 σλ :=UNIFY (σλ (
−→
S1),σλ (

−→
S2))◦σλ

19 else
20 Discard this σλ and jump out of the inner foreach to select another

λ .
21 end
22 Ω := Ω∪{σλ}.
23 end
24 end
25 return Ω, a complete set of mgu’s of T1 into T2

**

It is obvious that Ω that is supposed to be the complete set of unifiers of T1 into T2

possibly contains the substitutions {X\c} and {Y\e}, which are not unifiers at all.

Hence the presented algorithm is incorrect.

5.2.2 Tracing the “Unification” Algorithm on Molecules that Have No Unifier

In Figure 5.2, although a[b→ c,d→ e] and a[b→ X ,d→ f] are obviously not unifi-

able, the algorithm returns {{X\c}} as the complete set of unifiers. Again, this is one

of the possibilities, since the order in which atoms of a molecule are selected in line

12 is not specified. With a different selection order, it is possible that /0 is returned as

the result as well.

73

Line no variables explanation

None T1 = a[b→ c,d→ e] Input molecule 1
None T2 = a[b→ X ,d→ Y] Input molecule 2
2 Θ = /0 Heads unifiable
9 Ω = {} Initialize Ω

10 λ [1](a[b→ c]) = a[b→ X],
λ [1](a[d→ e]) = a[d→ Y]

4 possible mappings:
λ [1],λ [2],λ [3],λ [4].

11 σλ [1] = /0 Current solution
12 ϕ[1] = a[b→ c] Get atom
13 ψ = a[b→ X] Get corresponding

atom
15

−→
S1 =< b,c >

16
−→
S2 =< b,X >

18 σλ [1] = {X\c} Two atoms unify
22 Ω = {{X\c}} Problem! Partial result

saved.
12 ϕ[2] = a[d→ e] Get atom
13 ψ = a[d→ Y] Get corresponding

atom
15

−→
S1 =< d,e >

16
−→
S2 =< d,Y >

18 σλ [1] = {X\c,Y\e} Two atoms unify
22 Ω = {{X\c},{X\c,Y\e}} Contains non-unifier
10 λ [2](a[b→ c]) = a[b→ X],

λ [2](a[d→ e]) = a[b→ X]
Choose another
mapping.

. Continue . . .
25 Ω = {{X\c},{Y\e},{X\c,Y\e}} Return result

Figure 5.1: Tracing the faulty algorithm on two unifiable molecules

5.2.3 Problem with the Faulty “Unification” Algorithm

The problem is the position of Ω in the algorithm. It accumulates partial results as the

possible unifier is incrementally constructed, rather than just the unifiers themselves,

due to its wrong position in the algorithm. Specifically, Ω should be updated in the

outer foreach loop, not the inner one.

5.3 Correct Unification Algorithm for F-Logic Molecules

ALGORITHM 2 is the corrected unification algorithm for F-Logic molecules. The

reader can verify that this algorithm does not suffer from the “saving” of substitutions

which are not unifiers in Ω.

Theorem 1 (Correctness) ALGORITHM 2 correctly computes the complete set of

74

Line no variables explanation

None T1 = a[b→ c,d→ e] Input molecule 1
None T2 = a[b→ X ,d→ f] Input molecule 2
2 Θ = /0 Heads unifiable
9 Ω = {} Initialize Ω

10 λ [1](a[b→ c]) = a[b→ X],
λ [1](a[d→ e]) = a[d→ f]

4 possible mappings:
λ [1],λ [2],λ [3],λ [4].

11 σλ [1] = /0 Current solution
12 ϕ[1] = a[b→ c] Get atom
13 ψ = a[b→ X] Get corresponding atom
15

−→
S1 =< b,c >

16
−→
S2 =< b,X >

18 σλ [1] = {X\c} Two atoms unify
22 Ω = {{X\c}} Problem! Partial result saved.
12 ϕ[2] = a[d→ e] Get atom
13 ψ = a[d→ f] Get corresponding atom
15

−→
S1 =< d,e >

16
−→
S2 =< d,Y >

20 Two atoms do not unify
10 λ [2](a[b→ c]) = a[b→ X],

λ [2](a[d→ e]) = a[b→ X]
Choose another mapping.

. Continue . . .
25 Ω = {{X\c}} Return result

Figure 5.2: Tracing the faulty algorithm on two non-unifiable molecules

unifiers from T1 into T2.

PROOF (Outline). ALGORITHM 2 utilizes any standard term unification algorithm

of first order logic (implemented by the assumed function “UNIFY”) to unify id-

terms, as in the original algorithm. The object ids, method names, method parameters

and values of methods are all id-terms, so any standard term unification algorithm can

be used to unify them. Nested objects (e.g. a[b→ c[d→ e]]) are not handled by the

algorithm, but as explained in [74] such expressions are just syntactic sugar for “flat”

expressions (e.g. a[b→ c]∧ c[d → e]). The algorithm effectively unifies one list of

id-terms, i.e. object ids, method names, method parameters and values of the first

molecule with a corresponding list of id-terms of the second molecule, composing

the partial unifiers to get the final result (lines 11 and 18). The only complication is

that atoms of the first molecule need to be mapped to atoms of the second molecule

75

Algorithm 2: Correct unification algorithm for F-Molecules
Input: A Pair of molecules, T1 and T2
Output: Ω- a complete set of mgu’s of T1 and T2

1 if id(T1) and id(T2) are unifiable then
2 Θ :=UNIFY (< id(T1)>,< id(T2)>)
3 else
4 Stop: T1 and T2 are not unifiable
5 end
6 if T1 is of the form S[] (a degenerated molecule) then
7 Stop: Θ is the only mgu
8 end
9 Ω := {}.

10 foreach mapping λ ∈Map(T1,T2) do
11 σλ := Θ.
12 foreach atom ϕ in atoms(T1) do
13 Let ψ be λ (ϕ).
14 Unify tuples σλ (

−→
S1) and σλ (

−→
S2), where

15
−→
S1 =< method(ϕ),arg1(ϕ), . . . ,argn(ϕ),val(ϕ)> and

16
−→
S2 =< method(ψ),arg1(ψ), . . . ,argn(ψ),val(ψ)>.

/* if val(ϕ) or val(ψ) is /0, they are treated as
constant /0 for the unification purposes */

17 if σλ (
−→
S1) and σλ (

−→
S2) unify then

18 σλ :=UNIFY (σλ (
−→
S1),σλ (

−→
S2))◦σλ

19 else
20 Discard this σλ and jump out of the inner foreach to select another

λ .
21 end
22 end
23 Ω := Ω∪{σλ}.
24 end
25 return Ω, a complete set of mgu’s of T1 into T2

** ***

and unifiers for each different mapping need to be collected. This is achieved through

the outer loop, starting at line 10. Finally, line 23 collects all unifiers for different

mappings inside Ω. Critically, only real unifiers from T1 into T2 are collected in Ω.

5.4 Discussion

Implementations of F-Logic include the Florid system [56] and the Flora-2 system

[72]. Flora-2 does not use the unification algorithm presented in [74], but Florid

probably does. However, we have not detected any problems with the unification of

molecules in Florid, and if it does actually use the algorithm, its implementors seem

to have fixed it.

76

Chapter 6

CONCLUSION AND FUTURE RESEARCH

DIRECTIONS

Using a sublanguage of F-logic (which we called FLOG4SWS) to specify ontologies,

Web services and goals, and FLORA-2 as the implementation tool, we built an in-

telligent matchmaker agent for matching Semantic Web services and goals using a

purely logical inference based approach. We specified explicitly in terms of logical

entailment the proof commitments that must be verified before a match between a

goal and Web service can succeed. Our sublanguage of F-logic has implicit existen-

tial and universal quantifiers (depending on where the formula is used) that permits

efficient goal-directed deduction as in the case of logic programming, allows rela-

tively uncomplicated specification of Web services and goals, and is powerful enough

to effectively specify goals and Web service capabilities as desired. We explained in

some detail our implementation of the matchmaker agent, which makes use of the

higher-order capabilities, transactional logic extensions, reification and module facil-

ities of FLORA-2, as well as its built-in inference engine. Since ontologies are part

of the matchmaking process, and integrity of knowledge contained in the ontologies

must be guaranteed, our matchmaker has a constraint verification part as well. We

illustrated the use FLOG4SWS through the specification of Web services, goals and

ontologies in an appointment making scenario, where the goal is to make a doctor

appointment for a patient.

Our approach stands out among all other approaches to Semantic Web service

matchmaking due to its purely logical basis, unambiguous definition of what a match

means in terms of proof commitments, and efficient implementation made possible

through diligent selection of a sublanguage of F-logic for specifying goals, Web ser-

vices and ontologies.

77

In our research, in order to obtain the necessary background to understand the

issues related to Semantic Web service specification, matching and discovery, we

also evaluated the WSMO Semantic Web service framework, and the WSML lan-

guage through an in-depth study of the WSMO and WSML documentation and the

specification of an e-health appointment-making Web service in WSML-Rule. Our

investigation has revealed several deficiencies and flaws with WSMO and WSML,

and guided us in the design of FLOG4SWS and the implementation of the intelligent

matchmaker agent for Semantic Web services. Our studies into F-Logic led to the

discovery of a mistake in the original unification algorithm for F-Logic molecules,

and we presented a corrected version of the algorithm in this thesis as well.

Future research to continue the work presented in this thesis includes the speci-

fication of a variant of WSML based on FLOG4SWS as well as the implementation

of a matcher using this new variant. Such a development would, in our opinion, help

make WSML a practical language and gain wider acceptance in industry.

78

REFERENCES

[1] “D14v1.0. ontology-based choreography, WSMO final draft 15 february 2007,”

http://www.w3.org/TR/soap/. Last visited: 13 August 2012.

[2] “HTTP - hypertext transfer protocol overview,” http://www.w3.org/Protocols/.

Last visited: 13 August 2012.

[3] “Ncoic: Network centric operations industry consortium,”

https://www.ncoic.org/home. Last visited: 14 April 2014.

[4] “OWL web ontology language overview,” http:www.w3.org/TR/owl-features/.

Last visited: 13 August 2012.

[5] “Owl web ontology language reference, w3c recommendation,”

http://www.w3.org/TR/2004/REC-owl-ref-20040210/. Last visited: 10 Septem-

ber 2012.

[6] “RDF - semantic web standards,” http://www.w3.org/RDF/. Last visited: 13 Au-

gust 2012.

[7] “Registering and discovering web services,”

http://www.cs.colorado.edu/k̃ena/classes/7818/f08/lectures/lecture 4 uddi.pdf.

Last visited: 17 April 2014.

[8] “Restful web services: The basics,” http://www.ibm.com/developerworks/library/ws-

restful/. Last visited: 1 August 2014.

79

[9] “RIF rif basic logic dialect, w3c working draft,” http://www.w3.org/TR/rif-bld/.

Last visited: 10 September 2012.

[10] “Semantic web,” http://semanticweb.org/wiki/Main Page. Last visited: 21 April

2014.

[11] “Semantic web services,” http://en.wikipedia.org/wiki/Semantic Web Services.

Last visited: 17 April 2014.

[12] “Semantic web services,” http://en.wikipedia.org/wiki/Semantic Web Services.

Last visited: 21 April 2014.

[13] “Soap introduction,” http://www.w3schools.com/webservices/ws soap intro.asp.

Last visited: 14 April 2014.

[14] “Soap: Simple object access protocol,” http://en.wikipedia.org/wiki/SOAP. Last

visited: 14 April 2014.

[15] “SOAP specifications,” http://wsmo.org/TR/d24/d24.2/v0.1/d24-

2v01 20070427.pdf. Last visited: 13 August 2012.

[16] “Tim berners-lee,” http://en.wikipedia.org/wiki/Tim Berners-Lee. Last visited:

10 April 2014.

[17] “Uddi (universal description, discovery, and integration),”

http://searchsoa.techtarget.com/definition/UDDI. Last visited: 14 April

2014.

80

[18] “UDDI version 3.0.2,” http://uddi.org/pubs/uddi v3.htm. Last visited: 13 Au-

gust 2012.

[19] “Universal description discovery and integration,”

http://en.wikipedia.org/wiki/Universal Description Discovery and Integration.

Last visited: 14 April 2014.

[20] “A very short history of web services,”

http://my.safaribooksonline.com/book/web-development/web-

services/9780596157708/beyond-the-flame-wars/i sect17 d1e16314. Last

visited: 14 April 2014.

[21] “Web 1.0,” http://en.wikipedia.org/wiki/Web 1.0. Last visited: 8 April 2014.

[22] “Web 3.0,” http://en.wikipedia.org/wiki/Web 2.0#Web 3.0. Last visited: 8 April

2014.

[23] “Web service,” http://en.wikipedia.org/wiki/Web service#cite note-1. Last vis-

ited: 14 April 2014.

[24] “Web service definition language (WSDL),” http://www.w3.org/TR/wsdl. Last

visited: 13 August 2012.

[25] “Web service modeling ontology,” http://www.wsmo.org/. Last visited: 13 Au-

gust 2012.

[26] “Web services description language,” http://en.wikipedia.org/wiki/Web Services Description Language.

Last visited: 14 April 2014.

81

[27] “Web services description language (wsdl) 1.1,” http://www.w3.org/TR/wsdl.

Last visited: 14 April 2014.

[28] “Web services discovery,” http://en.wikipedia.org/wiki/Web Services Discovery.

Last visited: 17 April 2014.

[29] “Web services glossary,” http://www.w3.org/TR/2004/NOTE-ws-gloss-

20040211/#webservice. Last visited: 14 April 2014.

[30] “Web services modelling toolkit,” http://wsmt.sourceforge.net. Last visited: 13

August 2012.

[31] “Workshop on web services,” http://www.w3.org/2001/03/WSWS-

popa/paper08. Last visited: 14 April 2014.

[32] “WSML language reference,” http://www.wsmo.org/TR/d16/d16.1/v1.0/. Last

visited: 13 August 2012.

[33] A. Agarwal, “Web 3.0 concepts explained in plain english,” Retrieved Sept,

vol. 7, p. 2009, 2009.

[34] R. Akkiraju, J. Farrell, J. A. Miller, M. Nagarajan, A. Sheth, and K. Verma,

“Web service semantics-wsdl-s,” 2005.

[35] R. Akkiraju and B. Sapkota, “Semantic annotations for wsdl and xml schema

usage guide,” Working group note, W3C, 2007.

82

[36] S. Arroyo, E. Cimpian, J. Domingue, C. Feier, D. Fensel, B. Knig-Ries,

H. Lausen, A. Polleres, and M. Stollberg, “Web service modeling ontology

primer,” W3C Member Submission, 2005.

[37] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,

D. Martin, S. McIlraith, D. McGuinness et al., “Semantic web services frame-

work (swsf) overview,” World Wide Web Consortium, Member Submission

SUBM-SWSF-20050909, 2005.

[38] Z. Bayram and O. Sharifi, “Unifying f-logic molecules: a rectification to the

original unification algorithm,” in Journal of Logic and Computation (Accepted

for publication), 2014.

[39] A. B. Bener, V. Ozadali, and E. S. Ilhan, “Semantic matchmaker with precondi-

tion and effect matching using swrl,” Expert Systems with Applications, vol. 36,

no. 5, pp. 9371–9377, 2009.

[40] T. Berners-Lee and J. Hendler, “Scientific publishing on the semantic web,” Na-

ture, vol. 410, pp. 1023–1024, 2001.

[41] T. Berners-Lee, R. Cailliau, J.-F. Groff, and B. Pollermann, “World-wide web:

the information universe,” Internet Research, vol. 2, no. 1, pp. 52–58, 1992.

[42] A. J. Bonner and M. Kifer, “An overview of transaction logic,” Theoretical Com-

puter Science, vol. 133, no. 2, pp. 205–265, 1994.

[43] A. J. Bonner and M. Kifer, “A logic for programming database transactions,” in

Logics for databases and information systems. Springer, 1998, pp. 117–166.

83

[44] Y. Chabeb, S. Tata, and A. Ozanne, “Yasa-m: A semantic web service match-

maker,” in Advanced Information Networking and Applications (AINA), 2010

24th IEEE International Conference on. IEEE, 2010, pp. 966–973.

[45] J. de Bruijn, “Wsml language reference, deliverable d16. 1v1. 0,” WSML Final

Draft, pp. 08–08, 2008.

[46] J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B. König-

Ries, J. Kopecky, R. Lara, E. Oren et al., “Web service modeling ontology

(wsmo),” Interface, vol. 5, p. 1, 2005.

[47] J. de Bruijn, “Wsml deliverable d16.3 v1.0, wsml abstract syntax and semantics

wsml final draft,” Tech. Rep., 2008.

[48] J. De Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp, M. Kifer, B. König-

Ries, J. Kopecky, R. Lara, E. Oren et al., “Web service modeling ontology

(wsmo),” Interface, vol. 5, p. 1, 2006.

[49] E. Della Valle and D. Cerizza, “Cocoon glue: a prototype of wsmo discovery

engine for the healthcare field,” in Proceedings of 2nd WSMO Implementation

Workshop WIW, vol. 2005, 2005.

[50] T. Di Noia, E. Di Sciascio, and F. M. Donini, “Semantic matchmaking as non-

monotonic reasoning: A description logic approach,” Journal of Artificial Intel-

ligence Research, vol. 29, no. 1, pp. 269–307, 2007.

[51] R. S. Egon Börger, Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer-Verlag, 1984.

84

[52] J. Fan, B. Ren, and L.-R. Xiong, “An approach to web service discovery based

on the semantics,” in Fuzzy Systems and Knowledge Discovery. Springer, 2005,

pp. 1103–1106.

[53] D. Fensel and C. Bussler, “The web service modeling framework wsmf,” Elec-

tronic Commerce Research and Applications, vol. 1, no. 2, pp. 113–137, 2002.

[54] D. Fensel, F. Facca, E. Simperl, and I. Toma, Semantic web services. Springer-

Verlag New York Inc, 2011.

[55] D. Fensel, H. Lausen, A. Polleres, J. d. Bruijn, M. Stollberg, D. Roman, and

J. Domingue, Enabling Semantic Web Services: The Web Service Modeling On-

tology. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[56] J. Frohn, R. Himmeröder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst,

“Florid: A prototype for f-logic,” in Proceedings of the Thirteenth

International Conference on Data Engineering, ser. ICDE ’97. Washington,

DC, USA: IEEE Computer Society, 1997, pp. 583–. [Online]. Available:

http://dl.acm.org/citation.cfm?id=645482.653427

[57] J. H. Gallier, Logic for computer science: foundations of automatic theorem

proving. Harper & Row Publishers, Inc., 1985.

[58] A. Galton, “Temporal logic,” http://plato.stanford.edu/archives/win2002/entries/logic-

temporal/.

[59] M. Gelfond and V. Lifschitz, “The stable model semantics for logic program-

ming,” in Proceedings of the 5th International Conference on Logic program-

ming, vol. 161, 1988.

85

http://dl.acm.org/citation.cfm?id=645482.653427

[60] J. Gillies and R. Cailliau, How the Web was born: The story of the World Wide

Web. Oxford University Press, USA, 2000.

[61] O. GmbH, “How to write f-logic-programs,” Electronically available from

http://www.semafora-systems.com/documents/tutorial flogic.pdf.

[62] N. Griffiths and K.-M. Chao, Agent-based service-oriented computing.

Springer, 2010, vol. 1.

[63] S. Grimm, B. Motik, and C. Preist, “Matching semantic service descriptions

with local closed-world reasoning,” in The Semantic Web: Research and Appli-

cations. Springer, 2006, pp. 575–589.

[64] B. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs:

Combining logic programs with description logic,” in Proceedings of the 12th

international conference on World Wide Web. ACM, 2003, pp. 48–57.

[65] W. W. Group et al., “D16. 1v1. 0. wsml language reference,” WSML Working

Draft, 2008.

[66] T. Gruber et al., “Toward principles for the design of ontologies used for knowl-

edge sharing,” International journal of human computer studies, vol. 43, no. 5,

pp. 907–928, 1995.

[67] E. Ilhan and A. Bener, “Improved service ranking and scoring: Semantic ad-

vanced matchmaker (sam) architecture,” Evaluation of Novel Approaches to

Software Engineering (ENASE 2007), Barcelona, 2007.

86

[68] M. S. S. M. James McGovern, Sameer Tyagi, Java Web Services Architecture.

Morgan Kaufmann, 2003.

[69] T. Kawamura, J.-A. De Blasio, T. Hasegawa, M. Paolucci, and K. Sycara, “Pre-

liminary report of public experiment of semantic service matchmaker with uddi

business registry,” in Service-Oriented Computing-ICSOC 2003. Springer,

2003, pp. 208–224.

[70] U. Keller, R. Lara, H. Lausen, and D. Fensel, “Semantic web service discovery

in the wsmo framework,” Semantic Web: Theory, Tools and Applications. Idea

Publishing Group, 2006.

[71] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and D. Fensel, “Wsmo web

service discovery,” WSML Working Draft D, vol. 5, 2004.

[72] M. Kifer, “Nonmonotonic reasoning in flora-2,” in Proceedings of the 8th

international conference on Logic Programming and Nonmonotonic Reasoning,

ser. LPNMR’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 1–12.

[Online]. Available: http://dx.doi.org/10.1007/11546207 1

[73] M. Kifer and G. Lausen, “F-logic: a higher-order language for reasoning about

objects, inheritance, and scheme,” in ACM SIGMOD Record, vol. 18, no. 2.

ACM, 1989, pp. 134–146.

[74] M. Kifer, G. Lausen, and J. Wu, “Logical foundations of object-oriented and

frame-based languages,” Journal of the ACM (JACM), vol. 42, no. 4, pp. 741–

843, 1995.

87

http://dx.doi.org/10.1007/11546207_1

[75] M. Klusch and F. Kaufer, “Wsmo-mx: A hybrid semantic web service match-

maker,” Web Intelligence and Agent Systems, vol. 7, no. 1, pp. 23–42, 2009.

[76] U. Küster and B. König-Ries, “Evaluating semantic web service matchmaking

effectiveness based on graded relevance,” in The 7th International Semantic Web

Conference, 2008, p. 35.

[77] R. Lara, D. Roman, A. Polleres, and D. Fensel, “A conceptual comparison of

wsmo and owl-s,” Web Services, pp. 254–269, 2004.

[78] R. Lara and D. Olmedilla, “Discovery and contracting of semantic web ser-

vices,” in W3C Workshop on Frameworks for Semantic in Web Services, Inns-

bruck, Austria, 2005.

[79] S.-L. Lee, “How to derive a new deductive and object-oriented database system

from a well-defined f-logic database,” Ph.D. dissertation, Evanston, IL, USA,

1992, uMI Order No. GAX92-29947.

[80] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “Owl-s: Semantic markup

for web services,” W3C member submission, vol. 22, pp. 2007–04, 2004.

[81] W. May, “How to write f-logic programs in florid,” Technical report, Institut für

Informatik, Universität Freiburg, Tech. Rep., 2000.

[82] S. A. McIlraith, T. C. Son, and H. Zeng, “Semantic web services,” IEEE intelli-

gent systems, vol. 16, no. 2, pp. 46–53, 2001.

88

[83] H. W. C. Z. Michael Kiefer, Guizhen Yang, “Flora-2:

Users’ manual (version 0.99.3),” Electronically available from

flora.sourceforge.net/docs/floraManual.pdf, 2013.

[84] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Importing the semantic

web in UDDI,” in Web Services, E-Business, and the Semantic Web. Springer,

2002, pp. 225–236.

[85] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic matching of

web services capabilities,” in The Semantic WebSWC 2002. Springer, 2002,

pp. 333–347.

[86] M. Rambold, H. Kasinger, F. Lautenbacher, and B. Bauer, “Towards autonomic

service discovery a survey and comparison,” in Services Computing, 2009.

SCC’09. IEEE International Conference on. IEEE, 2009, pp. 192–201.

[87] J. Scicluna, R. Lara, A. Polleres, and H. Lausen, “D4. 2v0. 1 formal mapping

and tool to owl-s,” 2004.

[88] O. Sharifi and Z. Bayram, “Specifying banking transactions using web services

modeling language (WSML),” in Accepted to The fourth International Confer-

ence on Information and Communication Systems (ICICS 2013), Irbid,Jordan,

23-25 April 2013.

[89] O. Sharifi and Z. Bayram, “Sharifi-bayram SWS goals matchmaker,”

https://sourceforge.net/projects/sws-goal-matchmaker/files/.

[90] N. Srinivasan, M. Paolucci, and K. Sycara, “Adding OWL-S to UDDI, imple-

mentation and throughput,” Proceeding of Semantic Web Service and Web Pro-

89

cess Composition 2004, 2004.

[91] N. Srinivasan, M. Paolucci, and K. Sycara, “An efficient algorithm for OWL-S

based semantic search in UDDI,” in Semantic Web Services and Web Process

Composition. Springer, 2005, pp. 96–110.

[92] N. Steinmetz, “Navigation (discovery wg): Discovery,”

http://wiki.wsmx.org/index.php?title=Discovery.

[93] M. Stollberg, “Scalable semantic web service discovery for goal-driven service-

oriented architectures,” Ph.D. dissertation, PhD thesis, Faculty of Mathematics,

Computer Science and Physics Leopold-Franzens University Innsbruck, Austria

(March 2008), 2008.

[94] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated discovery,

interaction and composition of semantic web services,” Web Semantics: Science,

Services and Agents on the World Wide Web, vol. 1, no. 1, pp. 27–46, 2003.

[95] K. P. Sycara, M. Klusch, S. Widoff, and J. Lu, “Dynamic service matchmaking

among agents in open information environments,” Sigmod Record, vol. 28, no. 1,

pp. 47–53, 1999.

[96] H. Wan, B. Grosof, M. Kifer, P. Fodor, and S. Liang, “Logic programming with

defaults and argumentation theories,” in Logic Programming. Springer, 2009,

pp. 432–448.

[97] H. Wang, N. Gibbins, T. Payne, and D. Redavid, “A formal model of the seman-

tic web service ontology (wsmo),” Information Systems, 2011.

90

[98] C. W.F.Clocksin, Programming in Prolog. Springer-Verlag, 1984.

91

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENT
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	THE WORLD WIDE WEB AND WEB SERVICES
	The World Wide Web (WWW)
	Web Services and Web Service Technologies
	Web Service Description Language (WSDL)
	Simple Object Access Protocol (SOAP)
	Universal Description, Discovery and Integration Protocol (UDDI)
	Web Services Discovery
	Semantic Web Services
	Web Services Matching
	The Semantic Web and Ontologies
	Semantic Web Service Technologies
	Semantic Web Service Frameworks
	OWL-S
	WSDL-S
	SAWSDL
	Discussion
	Conclusion

	WSMO AND WSML: A DETAILED INVESTIGATION
	Motivation and Overview
	The WSMO and WSML
	WSMO
	WSML

	E-health Semantic Web Service Specification in WSML-Rule
	E-health Ontology
	E-health Web services
	E-health Goals: Making an Appointment
	E-health Mediators

	Evaluation of WSMO and WSML
	General Observations
	Deficiencies in Syntax
	Logical Basis of WSMO
	Lack of a Semantics Specification for Web Service Methods/Messages
	Implementation and Tool Support
	Choreography in WSMO
	Orchestration in WSMO
	Goal Specification
	Reusing Goals through Specialization
	Specialization Mechanism for Web Service Specifications
	Missing Aggregate Function Capability
	Extra-logical Predicates
	Automatic Mapping between Attributes and Relations
	Error Processing
	No Agreed-upon Semantics for WSML-Full
	Discussion

	LOGICAL INFERENCE BASED DISCOVERY AGENT
	The Intelligent Semantic Web Service Matchmaker Agent
	Logical Components of Web Service and Goal Specifications
	FLOG4SWS: A Sub-language of F-logic for Semantic Web Services Specification
	Syntax of the Sub-language of F-logic used for Specification of Goals, Web Services and Ontologies
	Proof Commitments that must be Checked for Validity before a Match is Successful
	Dealing with State Change and Non-monotonicity: Simulating Non-monotonicity inside First-order logic
	The Intelligent Matchmaker Agent Architecture

	Implementation of the Matchmaker Agent in FLORA-2
	Overview of FLORA-2
	How We Use FLORA-2
	The Top-level Matcher Loop
	Proving the Commitments for a Successful Match
	Checking Constraints

	Specifying Web Services, Goals and Ontologies in FLORA-2
	Sample Web Service Specification
	Sample Goal for Consuming an Appointment Service
	Common Ontology
	Running the Matchmaker Agent on a Set of Goals and Web Service Specifications
	Performance Statistics for FLOG4SWS

	Comparison with Related Work on Matching
	Discussion

	UNIFYING F-LOGIC MOLECULES
	Motivation and Overview
	Faulty ``Unification'' Algorithm
	Tracing the ``Unification'' Algorithm on Two Unifiable Molecules
	Tracing the ``Unification'' Algorithm on Molecules that Have No Unifier
	Problem with the Faulty ``Unification'' Algorithm

	Correct Unification Algorithm for F-Logic Molecules
	Discussion

	CONCLUSION AND FUTURE RESEARCH DIRECTIONS
	REFERENCES

