Role of Education on Economic Growth: the Quality and Quantity Measures.

Ehigocho Peace Ogbeba

Submitted to Institute of Graduate Studies and Research in Partial fulfillment of requirement for the degree of

Masters of Science in Economics

Eastern Mediterranean University February, 2015 Gazimağusa, North Cyprus Approval of the Institute of Graduate Studies and Research

Prof. Dr. Serhan Çiftçioğlu Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master of Science in Economics

Prof. Dr. Mehmet Balcilar Chair, Department of Economics

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality as a thesis for the degree of Master of Science in Economics

Assist. Prof. Dr. Çağay Coşkuner Supervisor

Examining Committee

1. Assoc. Prof. Dr. Sevin Uğural

2. Asst. Prof. Dr. Kemal Bağzibağli

3. Asst. Prof. Dr. Çağay Coşkuner

ABSTRACT

Over the years most of the countries in the world have been faced with several socioeconomic problems that have retard rapid economic growth. In an attempt to find a permanent solution to this problem studies have shown that the educational sector of every country is a leading instrument for promoting economic growth. The study analyses the role of the quality and quantity of education in promoting economic growth. The study further examines this impact on economic growth using the generalized least square (GLS) panel regression techniques and using annual data for 2000, 2003, 2006, 2009, and 2012 for 23 OECD member countries. The findings show that both government expenditure, school attainment and the quality of education measured by the PISA test scores has significant effects on economic growth. This study recommends that both the public and private sector should collectively revamp the education sector through increase in capital expenditure on education, and a good salary scheme and other incentives should implement to motivate teachers performance, as teachers have a significant role to play in improving the performance of the student.

Keyword: Economic growth, Education, High School Enrollment, Gross Domestic Product per Capita, Government Expenditure, and PISA test score. Uzun yıllardır dünya üklelerinin birçoğu ekonomik büyümelerini yavaşlatan sosyoekonomik problemlerleüzleşmektedirler. Birçok çalışma, bu sorunun köklü bir şekilde çözülmesi için eğitim sektörünün ekonomik büyümedeki rolüne vurgu yapmaktadırlar. Bu çalışma eğitimdeki miktar ve kalite verilerinin ekonomik büyümeye etkilerini incelemektedir. Bu amaçta, bu çalışma Generalized Least Squares (GLS) panel regresyon teknikleri ve 23 OECD ülkesinin yıllık 2000, 2003, 2006, 2009 ve 2012 yılı verilerini kullanmıştır. Sonuçlar eğitime ayrılan devlet harcamaları, okullaşma oranları ve PISA test sonuçlarıyla ölçülen eğitimdeki kalite verilerinin tümünün de ekonomik büyümeye positif ve önemli etkileri olduğunu göstermiştir. Çalışma hem develet hem de özel sektörün eğitime yatırım yapmasını, öğretmenlerin performanslarını artırmaya yönelik motivasyon artırıcı uygulamalar uygulanmasına vurgu yapmaktadır.

Anahtar Kelimeler: Ekonomik büyüme, Eğitim, Orta öğrenime katılım oranı, Kişi başı gayrı safi yurtiçi hasıla, hükümet harcamaları, ve PISA test sonuçları.

I dedicate this work to my entire Family

ACKNOWLEGMENT

I give all glory to God almighty who has been my strength and provider throughout this master programme.

My profound appreciation goes to my Dad who has been so supportive, my Brothers and Sister, I just want to say thank you all for the encouragement all through this journey.

My heartfelt gratitude goes to my amiable and supportive supervisor Asst. Prof. Dr. Çağay Coşkuner for his support, advice encouragement and immense assistance which led to the timely completion of this thesis. Also, to all my instructors and faculty members for their wonderful assistance, guidance and support that facilitated a smooth completion of my master's programme.

TABLE OF CONTENTS

ABSTRACTiii
ÖZiv
ACKNOWLEGMENTvi
LIST OF TABLES
LIST OF FIGURESxi
LIST OF ABBREVIATIONSxii
1 INTRODUCTION
1.1 Problem of study
1.2 Aim of the Study
1.3 Organizational Structure
2 LITERATURE REVEIW7
2.1 Introduction
2.2 Empirical Literature focusing on the Quality of Education an Economic
Growth7
2.3 Empirical Works that Found Significant Impact of Education Expenditures on
Economic Growth11
2.4 Empirical Works focusing on the effect of Average Years of School, and High
School Attainment on Economic Growth12
2.5 Empirical Paper that Found a Positive Effect of both the Quantity and Quality
of Education on Economic Growth13
3 THEORITICAL FRAMEWORK
3.1 Human Capital14
3.2 Proxies Used In Measuring Input and Output of Educational Performance 15

3.2.1 Input	15
3.2.2 Output – Quantity	15
3.2.3 Output-Quality	16
3.3 Sources of Human Capital	16
3.3.1 Schooling	16
3.3.2 Innate ability	16
3.3.3 Training	16
3.3.4 Pre-labour market influence	16
3.4 Economic Growths	17
3.5 Basic Theory of Human Capital	17
3.5.1 Solow Growth Model	17
3.5.2 Solow – Swan Model with Human Capital, Mankiw, Romer	and Weil 19
(M-R-W)	19
4 EMPERICAL SPECIFICATION	23
5 DATA	
5.1 Variables and Source	
5.2 The Program for International Student Assessment (Pisa)	
6 ESTIMATION TECHNIQUES	45
· ·	
6.1 Panel Data Estimation Techniques	45
6.1 Panel Data Estimation Techniques	
6.1 Panel Data Estimation Techniques6.1.1 Fixed Effect	45 46
6.1 Panel Data Estimation Techniques6.1.1 Fixed Effect6.1.2 Random Effects Models	45 46 47
 6.1 Panel Data Estimation Techniques 6.1.1 Fixed Effect 6.1.2 Random Effects Models 6.2 Pooled- OLS Models 	45 46 47 47

7.2 Discussions	. 54
8 CONCLUSION AND RECOMMENDATION	. 56
8.1 Conclusion	. 56
8.1.1 The Quality of Education	. 56
8.1.2 Spending on Education and Student Outcome	. 57
8.2 Recommendation	. 58
REFERENCES	. 60

LIST OF TABLES

Table 1: The variables and their economic expected signs	24
Table 2: The OECD member countries selected for econometric analysis	29
Table 3: Descriptive statistics for all variables used for econometric analysis	32
Table 4: Pooled Panel Model Estimation Results	50

LIST OF FIGURES

Figure 3.1: Graphical Illustration of the Solow Model when Population Growth	
Decreases	18
Figure 3.2: An Increase in the Investment Rate in Human Capital	22
Figure 3.3: Trend of GDP/Capita and PISA math's score for the selected countrie	s 43

LIST OF ABBREVIATIONS

WDI	World Development Indicator
GDP	Gross Domestic Product
EFA	Education for All
FTE	Full Time Equivalent
OECD	Organization for Economic Cooperation and Development
PISA	Programme for International Student Assessment
OLS	Ordinary Least Square
UNESCO	United Nation's Educational Scientific and Cultural Organization
DEIES	U.S, Department of the Education Institute of Education Sciences
FE	Fixed Effect
RE	Random Effect
HSE	High School Enrollment
Obsv	Observation
Min	Minimum
Max	Maximum
Std. dev	Standard Deviation

Chapter 1

INTRODUCTION

There is a great diversity among the countries of the world in terms of their income per person (prosperity) and also in their economic growth rates. According to the World Bank Development Indicators (WDI) report of 2011, the GDP per capita of the United States of America was about \$ 45335.89 (U.S Dollars) in 2012, while that of Nigeria was \$ 2295.26 (U.S dollars), Japan's GDP per capita in the year 2012 was \$ 36942.20 (U.S dollars) and that of Germany was \$ 38219.83 (U.S dollars). This evidence reflects that there is a strong difference among countries income per person.

The contemporary issues of variation among countries have become a puzzle to unravel by the world economists, which have long searched for the causes and factors that prompt this variations. There have been various growth literatures on the study, which this research is building on, to investigate the impact of education on economic growth.

Human capital plays an important role as one of the factors impacting the economic growth. Indeed there is also a big diversity among the education level attained by the world countries and this may very well be one of the main causes of diversity in economic performance. Base on the data from the World Bank development indicator (2011), countries like Singapore, Finland, New Zealand, Norway, Sierra Leone and Togo with similar sizes of population but they have diverse levels of

educational attainment and differences in their economic performance respectively. Most literature review shows that the level of human educational attainment is itself a Secondary effect of academic achievement. That is, if schools do a better job of teaching their students, then the students are more likely to complete high school, more likely to go on to college, and this will lead to human capital accumulation and economic growth in the long run.

The literature which included education usually uses the following variables as proxies for human capital level of a country:

- High school enrollment
- Budget spent for education
- Average years of schooling

The choice of these variables as explanatory variables is due to two (2) reasons:

- 1. They are a good proxy for education level
- 2. They are really easily available. In particular, majority of the countries in the world have available and easily accessible data on these three variables.

Research findings from Education for all (EFA) global monitoring report (2005) established the fact that the distribution of personal income on society is basically associated with the years of schooling an individual has attained. Literally, this means that individuals with more years of schooling will have higher life time income.

From several other empirical works, like research finding by Anthonia T. (2012) shows that recurrent expenditure on education has significant effects on economic

growth. It is clear that countries around the world are investing a significant amount in education to enhance economic growth.

On the other hand, the quality of education which should definitely impact on how people get and thus impact on economic growth often have been ignored due to lack of data.

1.1 Problem of study

Eric et al, (2007), offered a new insight on the fact that the expenditure on education per person or years of schooling by individuals does not guarantee economic growth. Rather the quality of education determined by cognitive skill is related to individual earnings as well as economic growth than mere years of schooling.

A general assumption is mostly made with shape policy debate centering on the contribution of education to economic growth in both developed and developing countries. This debate assumes that increases in expenditure on education in the form of improvements in school size, teachers' salaries, class size etc. will automatically lead to improvement in educational quality as well as economic growth. We note that the significance of any budgetary finance or investment in education depends on the productivity of the investment itself.

Some economists are of the opinion that positive educational quality will lead to increase in productivity of individuals which will further translate to increase in overall economic productivity and stimulate economic growth.

According to Stephen and Ethan (2008), there exist concrete evidence that the quality of human resources, measured by Academic achievement (e.g., test scores)

or by the Level of education (e.g., high school graduation). The quality of the skills acquired by individuals is positively correlated to the income of individuals, productivity and economic growth. The gap in literature with respect to the aforementioned conclusion is as follows; how does the quantity and quality of education impact positively on economic growth?

In summary to what extent does a country where students have higher student test scores and high school attainment which measures quality of education, grow faster than other countries with low quality education? Most empirical work utilized the standard student test scores to measure quality of education among different countries, while others identified cognitive skill as the important dimension for measuring the quality of education.

1.2 Aim of the Study

This study tries to fill the gap in literature stated in the problem from the previous section by using relatively new data from Program for International Student Assessment (PISA) education testing performance as a proxy for quality of education.

Research evidence indicates that the advanced developed nations like the United States invest more capital per person in education compared to less developed countries. The national center for education statistics reports that in 2010 the United States spent about \$11,826 per full time equivalent (FTE) on students in both elementary and secondary levels of education. This amount is higher than that of the Organization for Economic Cooperation and Development (OECD) average of \$8,501. Despite the amount expanded per student, evidences from the Programme for International Student Assessment (PISA) test result shows that students test score performance grades in mathematics and science seem to be low compared to that of other developed countries like Finland -which spends about \$6, 84728 on education. Also, some developing countries like China which spends far less amount compared to other developed countries on education have been able to achieve greater success in terms of exam scores and quality of education.

It is very difficult to ascertain if it is the amount of money spent on education or the years of schooling or the quality of education that students get out of schooling that matters most for economic growth. Therefore, this research aims to investigate how the quantity and quality of education impacts economic growth. This is because some countries may have same budgetary expenditure devoted to education per person annually with equal years of schooling but might still differ in terms of the quality of education delivered- reflected in exam scores per candidates.

Panel data of 23 OECD member countries was used to make an empirical analysis on the impact of the quality of education on economic growth. The data will be that of the standardized test of student's performance in cognitive skills in the PISA science literacy examination for year 2000, 2003, 2006, 2009, and 2012. This data will be used as a proxy for the quality of education.

1.3 Organizational Structure

This thesis is categorized into eight (8) chapters.

The first chapter sets the background of the study of the impact of educational outcome on economic growth. It further entails the problem of the study, the aim of the study, which the study tried to fill the gap in this literature by using relatively

new data from PISA education testing performance as a proxy for quality of education. Finally the detail of the methodology used and the organizational structure is entailed in this chapter.

Chapter (2) highlights and reviews similar literature works on the subject matter. It reviewed parallel cases for countries with significant outcome in their drive towards economic growth. Examples of these countries are OECD member countries namely; USA, East Germany, West Germany, Finland and Sweden etc.

Chapter (3) highlights some of the major theoretical works, Solow growth model and the augmented Solow growth relating to the impact of human capital in enhancing economic growth Romer, and Mankiw.

Chapter (4) highlights a brief description the empirical specification; the estimated regression model and the economic expected signs for each of the variables used in the model.

Chapter (5) highlights the various types of data used for the empirical analysis which includes the number of countries and the explained and explanatory variables used.

Chapter (6) highlights the estimated techniques which is the panel data technique.

Chapter (7) reveals the estimation results.

Finally chapter (8) highlights the conclusions and recommendations based on the study.

Chapter 2

LITERATURE REVEIW

2.1 Introduction

Over the years various works have examined the relationship between the quality gotten from the outcome of education and economic growth. Some economists have emphasized different means through which quality of education may affect economic growth. Some economists claim that it is increase in government expenditure on education that leads to economic growth. Some others have stressed the level of school attainment obtained by individuals as the driving force to economic growth.

2.2 Empirical Literature focusing on the Quality of Education an

Economic Growth

The following empirical works have found significant positive effect of the outcome of education measured by the quality on economic growth.

Barbara and John (2000), reviewed some empirical macro econometric literature on productivity and education, focusing on the UK policy. The study used pooled samples of developing countries and OECD countries between the period of 1978 and 1998. They used a panel regression analysis, to investigate the correlation between human capita which is generally measured by formal education and economic performance. The results obtained showed that there is convincing evidence that the quality of human capital increases productivity in the economy, and hence leads to economic growth. The empirical study by Andrea and Stefano (2001), investigated the causal impact of a qualitative labor force gotten through education on economic growth in 21 OECD member countries over a period of 1971 to 1998. The authors made use of a crosssection regression analysis and pooled cross- section time series regression to determine the long-run relationship between growth and human capital. The human capital augmented growth equation was estimated using a consistent econometric technique (PMG), the average number of formal education of the working age population was used as a proxy for human capital. The results obtained showed that there is a positive and significant impact of qualitative human capital accumulation on economic growth.

Lee (2010) examined the importance of education in enhancing economic growth of 75 countries between the periods 1960-2000. The study used conditional dummy and educational attainment for the age group of 15 and above in the population in 1960. The results revealed that education helps to accelerate growth in a cross-section of economies once continental dummies are being controlled for.

Using the Generalized Methods of Moments (GMM), Zhang and Zhuang (2011) examined the impact of the accumulation of human capital on economic growth in China the results reflects that tertiary education had played a significant role than primary and secondary levels of education on economic growth. Moreover, the role of the human capital composition on regional economic growth is very relevant to the level of development. The provinces that are more developed benefit more from tertiary education, while underdeveloped provinces depend more on primary and secondary education.

Eric and Ludger (2007) both theoretically and empirically examined the role of education in promoting economic performance, placing much emphasis on the role of educational quality, rather than just the school attainment. The study uses a cross-country panel regression analysis covering 14 OECD countries between a period of 1960 and 2000 and estimate the model by OLS. The study made use of performance from the PISA international test as a proxy to measure the quality of education. The results obtained showed that the quality of education, which is measured base on the knowledge obtained as depicted in tests of cognitive skills, is more important in achieving economic growth than mere quantity of education.

Eldridge (2011) study the role of the quality of education of the labour market as a driving force for economic growth in South Africa. The study used a cross- country panel regression technique for the period between 1965 to 1975, 1975 to 1985 and 1985 to 1995. The result obtained showed that the level of school attainment as a proxy for educational quality contributes about 0.4% to the annual GDP in South Africa. The results also showed that the quality of the educational outcome basically the ability of the school system to impact cognitive skill is a basic determinant of the performance of the labour, force which in turn enhances economic growth.

Simon and Francis (1998) explained Africa's achievements over the years in the formation and accumulation of human capital through education and the impact on economic growth. The study used a cross- country panel regression of the top 10 leading economies in Africa between periods of 1960 to 1995. The result obtained shows that the quality of human capital accumulated acquired through education remains the major factor in accounting for the disparity in growth rate across countries in Africa. The study considered the complexity of the role of the quality of

human capital in Africa's growth and development, which is as a result of inadequacy in the investment in education and health. The study suggested that Africa's earlier investment in education will enhance the welfare of the future generation and in turn lead to long-run economic growth.

Dowrick (2002) theoretically and empirically reviewed some studies that explained the relationship between educational quality and economic growth and (research and development) RD. The authors found out that research and development are sources that enhance economic performance. Public expenditure and participation in education has increased drastically during 19th and 20th centuries, GDP has also increased spuriously within this time period.

The study by Eric (2013) examined the role of the human capital as a drive to economic growth in developing countries with much emphasis on school attainment. Over the years there has been this wide gap between developed and developing countries, the developing countries have tries to cover this gap through level of school attainment. The authors concluded that developing countries can only improve their economic performance and close the gap between them and developed countries by improving the school quality, not just school attainment. The authors highlighted the determinants of skill to include school inputs, neighborhoods, peers, or general institutional structures which in turn improve the human capital and lead to improvement in individual productivity as well as economic productivity.

2.3 Empirical Works that Found Significant Impact of Education

Expenditures on Economic Growth

On the other hand, several authors used government spending on education as an explanatory variable to explain educations impact on growth. Below are some literature reviewed;

Antonia (2012) analyzes the impact of education on economic growth in Nigeria between periods of 1985 to 2007. The author used primary and secondary data for the analysis, the analysis incorporates regression of Ordinary Least Square (OLS) using the sample years 1985 to 2007. The estimated regression results show a positive relationship between gross capital formation recurrent expenditure and real economic growth. The study finding and conclusion shows that it is the increase in recurrent expenditure on education that impacts on economic growth. The academic qualification of teachers also has a role to play in the academic performance of students. Generally, the author advocated for an increase in government expenditure on education in the form of construction of new school structures, subsidies for school fees for all individuals, good salary for teachers, this will foster economic growth.

Ernest (2011) presents and examines the direct and indirect effect of public expenditure on economic growth. The integrated sequential dynamic computable general equilibrium (CGE) model was adopted to examine the effect of an increase in government expenditure on education on the economic performance of Africa. The study explored the effect of different policies on the long run growth and poverty reduction in leading Africa economies over the period of 2004 and 2015. The study concluded that the impact of government spending is best analyzed within a computable general equilibrium micro simulation framework given the wide nature of the economy.

Ararat (2007) carried out an empirical analysis to investigate the role of education on the economic growth in Ukraine and Russian federation which are the two largest economies of the former soviet bloc. The paper estimated the importance of educational level basically secondary and tertiary education for enhancing substantial economic growth in these countries. The study employed the model of endogenous economic growth and system of log-linear and linear equations accounting for different time lags. The estimates reveal that there is little or no significant effect of education attainment on economic performance. The results gotten from the system equation proves that a 1% increase in the access of the population to education which can only be possible through increase in government expenditure on education, will in the long run lead to an increase in the GDP per capita growth.

2.4 Empirical Works focusing on the effect of Average Years of

School, and High School Attainment on Economic Growth

The following are examples of empirical work that found out that it is the level of school attainment that determines human capital accumulation and impacts on the economic growth.

Dawn et al. (2013) examine the relationship between high education and economic growth in the United Kingdom within 1982 to 2005. The authors highlight the long term benefits of attaining a degree- level education and the impact on the economic performance. The authors adopted the integration and correction model (ECM)

approach to estimate the GDP growth model. They also made a replicate of the Gemmell (1996) model of over 15 countries within 1982 and 2005. The evidence from the results proves that a percentage increase in the share of the labour force with high education increases the GDP in the long run by about 0.2-0.5%. The accumulation of the graduate skills contributes about 20% to the GDP growth rate in the UK within this time period.

2.5 Empirical Paper that Found a Positive Effect of both the

Quantity and Quality of Education on Economic Growth

Menbere and Marek (2011) empirically examined the extent to which investment in human capital accumulation contributes to growth dynamics of the European Union between the periods of 1995 to 2009. The authors used a panel data set covering 21 European Union member countries and estimated the model by OLS. The study used school enrolment, labour force with primary, secondary and tertiary education and research and development expenditures as proxies to measure human capital accumulation. The result from the study reveals that all the education variables have positively significant impact on GDP per capita growth rate.

Chapter 3

THEORITICAL FRAMEWORK

3.1 Human Capital

According to Mankiw (2003), human capital is the skill and knowledge that individuals acquire through means like education from early childhood, programs such as head start to on- the job training for adults in the labour force. Human capital raises the ability to produce goods and services in the economy, human capital is also an important tool in explaining differences in international standard of living.

Loosely speaking, human capital refers to stock of characteristics and knowledge a worker possesses which can be innate or acquired through education that contributes to his or her productivity.

This research work focuses on education as a fundamental of human capital; education plays a vital role in determining the growth rate of any country. Through education countries absorb and use modern technology, and develop the capacity for self-sustaining growth and development. In the section below I present some of the variables used for measuring level of education.

3.2 Proxies Used In Measuring Input and Output of Educational

Performance

3.2.1 Input

3.2.1.1 Expenditure on Education

This can be either public (government expenditure) or private expenditure by individuals on education. Public expenditure is significant in improving the education system in any economy of the world. Increase in government expenditure on education leads to increase in the quality and quantity of human capital, comparable to social and physical capital, which contributes significantly in the economic performance. Public expenditure can be in form of increase in school facilities, increase in school size, increase in teacher's salary, and more scholarship for students, subsidization of student fees.

3.2.2 Output – Quantity

3.2.2.1 School Enrolment

According to United Nations (UN) education indexes the gross enrolment index is used as a proxy to measure the number of student enrolled in school at several different grade levels (tertiary, secondary and primary schools). The gross enrollment ratio is calculated by most countries by dividing the number of individuals who are actually enrolled by the number of children who are of the corresponding school enrolment age.

3.2.2.2 School Attainment

According to the US census bureau glossary educational attainment is a term commonly used to refer to the highest degree of education an individual has completed.

3.2.3 Output-Quality

3.2.3.1 Educational quality

The educational quality is used to determine the outcome student gets from education, most empirical studies have used international standardized test like the PISA test of student's performance as a proxy to measure educational quality.

3.3 Sources of Human Capital

3.3.1 Schooling

Investment in schooling is very important in human capital formation. Through schooling workers can learn and absorb information, ideas, and new technologies.

3.3.2 Innate ability

Workers can have different amount of skills/human capital base on innate differences. Biological research have proven that some component of IQ are generic in origin, as a result of this component even when individuals have the same access to investment opportunities and same economic constraint they may have different amount of skill.

3.3.3 Training

This is a form of human capital acquired after schooling; it is basically associated with some set of skill that is necessary for certain industry or useful with a particular set up technologies. Most firms invest in the training of workers and most workers invest in specific technologies that firms will use in the future.

3.3.4 Pre-labour market influence

Sociologically, pee groups affects individuals basically before they join the labour market for instance the decision on where to live made by parents will be a deciding factor of whether the children will be exposed to a good or bad pre-labour market influence.

3.4 Economic Growths

Economic growth as defined by Mankiw (2007) as an increase in the market value of the goods and services produced by an economy over time. Economic growth is the increase in national output which is a result of improved technology, formulation and accumulation of human and physical capital, and increase in in quality and quantity of resources.

3.5 Basic Theory of Human Capital

3.5.1 Solow Growth Model

The Solow – Swan (1956) closed economy neoclassical model is a model that explain the relationship between growth, saving and investment. It was an extension of the Harrod-Domar model. It introduces labor and technology into the growth equation inclusive with capital accumulation. The model describes the influence of saving, population growth and technology on economic growth. The Solow model revealed that, capital accumulation is dependent on saving rate which leads to higher level of output and faster growth. The model used a Cobb-Douglas production function in which growth is a function of labor, capital and technology. This is given by the equation below; $Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha}$

The model built an equation for capital accumulation, which is given by;

$$K^* = Sy - \delta k$$

Where δ represents depreciation rate,

Sy depicts saving rate as a fixed proportion of income, and *k* represent capital stock.

The relationship between population growth, saving and capital of the Solow model can be illustrated with the help of a diagram.

The diagram below illustrates a situation when population growth decreases and its impact on capital stock and output.

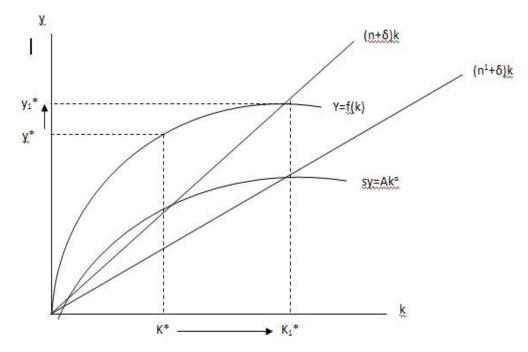


Figure 3.1: Graphical Illustration of the Solow Model when Population Growth Decreases.

In the above diagrammatic illustration, when there is a decrease in population growth rate from (n) to (n^1) the $(n + \delta)$ curve will rotate to the right $(n^1 + \delta)$, this change resulted to a higher level of capital stock k* which eventually increases the level of output from y* to y_{*1}. This pushes up the level of capital stock, which at the end resulted in increase in growth rate. The same analysis can be done for saving (s) and technology (A) respectively

3.5.2 Solow – Swan Model with Human Capital. Mankiw, Romer and Weil (M-R-W)

The Solow growth model show how growth in the capital stock, advancement in technology and growth in the labour force interact and affect economic growth. The main weakness of the Solow-swan model in its original form is that it does not acknowledge the impact of human capital on economic output.

Gregory Mankiw, David Romer and David Weil (1992) tested Solow model with empirical data. They saw that it performed well, but they suggested that it would fit the data even better if they modify the model to include human capital. In the MRW human capital augmented model, marginal product and output are minimal (lower) in the poor countries, since they have less human capital than the richer ones. They changed the production function into:

$$Y = AK^{\alpha} H^{\beta} L^{1-\alpha-\beta} \tag{1}$$

Where $\alpha + \beta < 1$, because there is decreasing returns to capital inputs. K = physical capital, H = human capital level of skills that a worker, L = labour *A* is again technological progress.

The production equation (1) assumes constant returns in variables H, K and L. With a level of technology (A), Production can be doubled if inputs are doubled, therefore instead of hiring L amount of labour 2L workers can be hired and each supplied with $k = \frac{K}{L}$ of physical labour meaning the physical capital input doubles, and each is been endowed with $h = \frac{H}{L}$ defines human capita level of skills per worker, same amount of *h* of human capital, so human capita as an input to production doubles. The capital accumulation equation still remain the same as before in the original solow model:

$$\dot{K} = S_K Y - \delta_K K \tag{2}$$

And the human capital accumulation equation becomes

$$\dot{H} = S_H Y - \delta_H K \tag{3}$$

The production function in per capita terms is written as,

$$y = \frac{Y}{L} = y = k^{\alpha} (Ah)^{1-\alpha}$$
 where $h = \frac{H}{L} =, k = \frac{K}{L}$

from the original Solow model the saved fraction of income at each period (sY), which the MRW human capital augmented model break it up, and partly invested some part of the income saved in human capital (S_H) and other in physical capital (S_K), in a way that;

$$S = S_h - S_K \tag{4}$$

Thus, these leave us with two basic dynamic equations:

$$\dot{k} = S_K Y - (n + \delta_K)k \tag{5}$$

$$\dot{h} = S_H Y - (n + \delta_H)h \tag{6}$$

In the steady state $\frac{\dot{k}}{k} = 0$ and $\frac{\dot{h}}{h} = 0$

and

$$\frac{k}{k} = \frac{S_K y}{k} - (n + \delta_k) = SAk^{\alpha - 1} h^\beta - (n + \delta_k) = 0$$
⁽⁷⁾

From the above equation (7) we arrive at the steady state human capital stock per person (h_{ss})

$$h = \left(\frac{n+\delta}{SA}\right)^{\frac{1}{\beta}} k^{\frac{1-\alpha}{\beta}}$$
(8)

where $\alpha < 1-\alpha$

and

$$\frac{\dot{h}}{h} = \frac{S_H y}{h} - (n + \delta_h) = SAk^{\alpha} h^{\beta - 1} - (n + \delta_h) = 0$$
⁽⁹⁾

And the steady state capital per person (k_{ss}) will be:

$$k = \left(\frac{n+\delta}{SA}\right)^{\frac{1}{\alpha}} h^{\frac{1-\beta}{\alpha}}$$
(10)

since $1 - \beta > \alpha$

Since in the steady state $\frac{k}{k} = 0$ and $\frac{h}{h} = 0$ the equation (7) and (9) are equated together which gives:

$$SAk^{\alpha-1}h^{\beta} - (n+\delta_k) = 0 = \frac{S_H y}{h} - (n+\delta_h) = SAk^{\alpha}h^{\beta-1} - (n+\delta_h)$$

With the use of mathematical techniques, putting together the steady state value of k and h, we have:

$$h = \frac{n + \delta_k}{n + \delta_h} k \frac{S_H}{S^K} \tag{11}$$

This proofs that in the steady state $\frac{k}{k} = 0$ and $\frac{h}{h} = 0$.

Therefore, in steady state:

 $y^{ss} = (k^{ss})^{\alpha} (h^{ss})^{\beta}$

The implication of the MRW constructed human capital augmented model is that rich countries are rich because they have a high saving rate (s), low population growth rate (n), high level of technology (A), and they allocate a larger amount of their time to accumulating new skills, this means they have a larger human capital. Loosely speaking countries with more educated labor force will be richer with this extension of theSolow model.

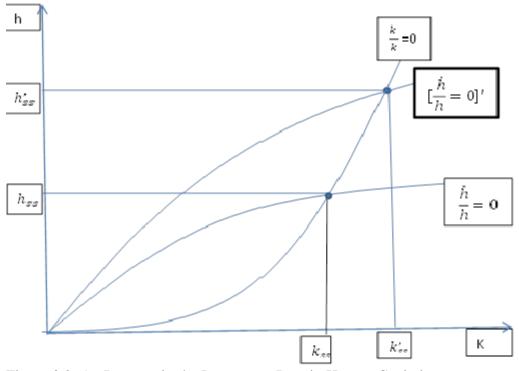


Figure 3.2: An Increase in the Investment Rate in Human Capital

Source: Hans J and Whitta J, lecture note 7 on Solow Model with Human capital.

In the above diagrammatic illustration, when there is an increase in S_H which means more accumulation of human capital, but as a result of the increase in stock of human capital this generates an increase in output an increase in physical capital accumulated. The physical capital will increases because of the constant rate of investment on physical capital, this explains the reason why k_{ss} and h_{ss} increases to k_{ss} ' and $h^{ss'}$ as seen in figure 3.2. Since the physical capital stock per person (k_{ss}) and the human capital stock per person (h_{ss}) increases during the transition to the new steady state, therefore $y_{ss} = (k_{ss})$ (h_{ss}) must be increasing.

Chapter 4

EMPERICAL SPECIFICATION

As mentioned from the previous chapters, the interest of the study is to capture the effects of education on economic growth, where both the quality and quantity measures of education are used. Over the sample period, we can assume that country specific characteristics are time- invariant, so we had to control for such factors to get an unbiased estimators.

The assessment of the impact of education on economic growth; we have conducted with (both quality and quantity measures) the pooled panel model technique, formulated as:

Model (1) GDPcap_{it} = $\alpha_0 + \alpha_1$ MATHS_{it} + α_2 HSE_{it} + α_3 LF_{it} + α_4 GNS_{it} + α_5 TGE_{it} + U_{it} Model (2) GDPcap_{it} = B₀ + B₁ MATHS_{it} + B₂GEE_{it} + B₃LF_{it} + B₄GNS_{it} + B₅TGE_{it} + U_{it} Model (3) GDPcap_{it} = B₀ + B₁ MATHS_{it} + B₂ HSEit + B₃GEE_{it} + B₄LF_{it} + B₅GNS_{it} + B₆TGE_{it} + U_{it} i -country and t -year GDPcap = Gross Domestic Product per capita

LF = Labour force

MATHS = average combined PISA mathematics literacy score

HSE = high school enrollment, (% gross)

GEE= government spending on education (% of total government expenditure)

GNS = Gross National Savings

TGE= General government total expenditure (% of GDP)

 $B_1 B_2 B_3 B_4 B_5 B_6$ = are the parameters to be estimated

 U_{it} = is the error term that varies over cross- section units time.

Based on literature reviewed the signs of the variables in the model are expected as follow

Table 1: The variables an	nd their economic expe	cted s	signs
DEPENDENT	-	GD	P PER CAPITA
VARIABLE			
INDEPENDENT	EXPECTATED		EXPLANATION
VARIABLE	SIGN		
PISA	+		Is a system of
MATHEMATICS			international assessment
SCORE			that measures 15-years
			olds capability
			mathematics literacy. The
			aim of PISA is to
			evaluate education
			systems worldwide by
			testing the knowledge and
			skills of student within

d thai . . . nantad si Table 1. Th

		this age group. It is
		expected to have a
		positive effect on GDP
		per capita, countries with
		high PISA scores have
		good educational
		standard and thus
		increase in economic
		well-being.
PUBLIC SPENDING	+	Increase in public
ON EDUCATION		spending on education is
		a form of investment in
		education, which leads to
		the formation of human
		capital, and that makes a
		very important
		contribution to economic
		growth. The expected
		positive relationship
		shows that the
		reallocation of
		government expenditure
		to education sector is
		significant in explaining

		economic growth.		
LABOUR FORCE	+	It is expected that labour		
		force should have a		
		positive effect on GDP		
		per capita. i.e. the greater		
		the number of individuals		
		and their efficiency of		
		labour force the higher		
		the level of productivity		
		in an economy		
GROSS NATIONAL	+	More savings results in		
(DOMESTIC)		more investment in		
SAVINGS		both human and		
		physical capital which		
		ultimately results in		
		higher economic		
		growth.		
SCHOOL	+	The gross enrollment		
ENROLLMENT,		ratio is calculated by most		
SECONDARY		countries by dividing the		
		number of individuals		
		who are actually enrolled		

		by the number of children
		who are of the of the
		corresponding school
		enrolment age. It is
		expected that a direct
		relationship should exist
		between school
		enrollment and GDP per
		capita.
GENERAL	+	Keynesian view that the
GOVERNMENT		growth of government
TOTAL		expenditure results in the
EXPENDITURE		growth of GDP. It is
(% of GDP)		expected that increase in
		government expenditure
		will lead to increase in
		GDP per capita.

Chapter 5

DATA

There is a need to investigate the impact of education on economic growth across countries of the world; basically the OECD member countries have achieved a reasonable level of economic growth with the help of education. The objective of this study is to review and analyses the role of education in promoting economic wellbeing. This section will lay out the detail about the data used for the empirical analysis.

Twenty three (23) countries which are members of the organization for economic cooperation and development (OECD) are selected for this study because they provide sufficient data for the analysis (table 1). The data covers the period 2000, 2003, 2006, 2009, 2012. The analysis is started as from 2000; because this was the first year that the program international student assessment test PISA was conducted. The PISA test is administered every 3 year since 2000, the observation on all variables are complete for all of the countries selected therefore the panel data is a balanced panel data set.

The other OECD member countries such as Estonia, Slovenia, Israel, Turkey, Germany, Netherlands, Slovak, Chile, were not included in the analysis, because they didn't take part in the PISA assessment in some years that the exam was conducted. Greece and Australia were not included into the analysis due to lack or insufficient observation for dependent variable.

Austria	Ireland
Czech public	Italy
Finland	Japan
France	Korea
United kingdom	Mexico
Hungary	New Zealand
Portugal	Denmark
Sweden	Norway
United state	Canada
Switzerland	Belgium
Spain	Poland
Iceland	

Table 2: The OECD member countries selected for econometric analysis

Source: national center for education statistics, PISA 2000 results.

5.1 Variables and Source

The dependent variable is the GDP per capita of each of the 23 OECD member countries used for the econometric analysis, over the sample period. The GDP per capita growth rate data are taken from world development indicator (WDI) of World Bank (2014) with the national accounts constant U S dollars which is base recently to year 2005. The Log of real GDP per capita is used for the calculation of the growth rate.

The independent variable: public spending on education, total (% of government expenditure) data which measures government spending on education was gotten from the world development indicators. The data on high school enrolment (% gross) was collected from the world development indicator; it is calculated by the United Nations educational, scientific and cultural organization (UNESCO) institute for statistics. The data on total labor force has been calculated by the international labour organization and the labour market data base, for all the countries in the study, the source of this data is the world development indicators.

Data on the gross national savings are collected from the national statistical office data of the World Bank. Data on general government total expenditure are collected from central bank latest actual data.

Finally the set of data that were used to measure the quality of education which are PISA average math's literacy score are collected from the national center for education statistics based on the calculation of the U.S, department of education institute of education science.

5.2 The Program for International Student Assessment (PISA)

According to the U.S, department of the education institute of education sciences (DEIES) report in 2013, the program for international student assessment (PISA), which was first implemented in 2000 and is conducted every 3 years by the organization for economic cooperation and development (OECD), is a system of

international assessment that measures 15-years olds capability in reading, literacy, science literacy, and mathematics literacy. The aim of PISA is to evaluate education systems worldwide by testing the knowledge and skills of student within this age group. About 70 economies have participated in the assessment program by PISA, representing about 28 million 15- year's old students globally. Basically, the PISA test is designed to assess the academic capability of students at the end of compulsory education, and to find out how these students apply their knowledge to real- life situations and be equipped for full participation in society.

The information gathered from the PISA triennial survey helps the countries and economies participating in the surveys to compare their students' performance over time and assess the impact of education policy decision. The students, their principals and teachers also answer questionnaires to provide information about the student's backgrounds, schooling environment, and learning experiences and about the broader school system and learning environment.

This research work makes use of the PISA mathematics literacy average score for analysis because of the availability of data, and the PISA test score is computed for the 23 OECD member countries. In order to avoid the problem of multi co-linearity this research work excludes the use of other PISA scores such as science literacy scores, and the reading literacy scores. Below I present some descriptive statistic about the variables included in this study for each selected country.

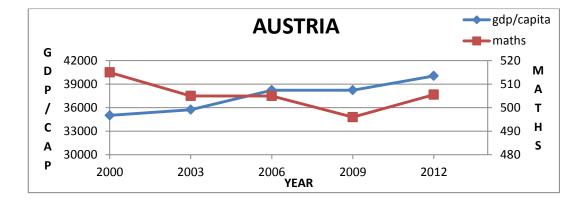
CZECH REPULIC I FINLAND	Variable GDP/CAP HSE LF TGE MATHS GEE GNS GDP/CAP HSE LF TGE MATHS GEE GNS	Obsv 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Mean 37462.17 98.86203 4145862 51.328 505.4 11.03765 24.5058 12697.93 94.11879 5206328 44.56	Std. dev 2050.516 1.127626 220727.7 1.314185 6.730527 .2091938 .6839463 1701.754 3.096483	Min 35027.3 97.69036 3854452 49.141 496 10.77088 23.743 10378.63 89.12342	Max 40058.38 100.309 4388773 52.613 515 11.35712 25.127 14235.02
CZECH REPULIC I FINLAND	HSE LF TGE MATHS GEE GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98.86203 4145862 51.328 505.4 11.03765 24.5058 12697.93 94.11879 5206328	1.127626 220727.7 1.314185 6.730527 .2091938 .6839463 1701.754	97.69036 3854452 49.141 496 10.77088 23.743 10378.63	100.309 4388773 52.613 515 11.35712 25.127
CZECH REPULIC I FINLAND	HSE LF TGE MATHS GEE GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98.86203 4145862 51.328 505.4 11.03765 24.5058 12697.93 94.11879 5206328	1.127626 220727.7 1.314185 6.730527 .2091938 .6839463 1701.754	97.69036 3854452 49.141 496 10.77088 23.743 10378.63	100.309 4388773 52.613 515 11.35712 25.127
CZECH REPULIC I FINLAND	LF TGE MATHS GEE GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5 5 5 5 5 5 5	4145862 51.328 505.4 11.03765 24.5058 12697.93 94.11879 5206328	220727.7 1.314185 6.730527 .2091938 .6839463 1701.754	3854452 49.141 496 10.77088 23.743 10378.63	4388773 52.613 515 11.35712 25.127
CZECH (CREPULIC)	TGE MATHS GEE GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5 5 5 5 5	51.328 505.4 11.03765 24.5058 12697.93 94.11879 5206328	1.314185 6.730527 .2091938 .6839463 1701.754	49.141 496 10.77088 23.743 10378.63	52.613 515 11.35712 25.127
CZECH (CREPULIC)	MATHS GEE GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5 5 5	505.4 11.03765 24.5058 12697.93 94.11879 5206328	6.730527 .2091938 .6839463 1701.754	496 10.77088 23.743 10378.63	515 11.35712 25.127
CZECH (REPULIC] I FINLAND (GEE GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5 5	11.03765 24.5058 12697.93 94.11879 5206328	.2091938 .6839463 1701.754	10.77088 23.743 10378.63	11.35712 25.127
CZECH (REPULIC] I I I I I I I I I I I I I I I I I I I	GNS GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5 5 5	24.5058 12697.93 94.11879 5206328	.6839463 1701.754	23.743 10378.63	25.127
CZECH REPULIC	GDP/CAP HSE LF TGE MATHS GEE	5 5 5 5 5	12697.93 94.11879 5206328	1701.754	10378.63	
REPULIC]]] [] []]]]]]]]]]]]]]	HSE LF TGE MATHS GEE	5 5 5 5	94.11879 5206328			14235.02
FINLAND (LF TGE MATHS GEE	5 5 5	5206328	3.096483	80 12212	
FINLAND (TGE MATHS GEE	5 5			07.12342	96.58527
FINLAND (TGE MATHS GEE	5 5		59822.71	5133561	5280696
FINLAND (MATHS GEE	5	44.56	3.346585	41.647	49.998
FINLAND (GEE		503.2	9.471008	493	516
FINLAND (9.532428	.6967398	8.64954	10.52872
FINLAND (5	23.07	2.225326	20.979	25.583
	0110	5	25.07	2.223520	20.979	25.505
I 1	GDP/CAP	5	36498.06	2354.39	33217.07	38815.53
J	HSE	5	118.8652	9.828849	107.3339	131.7543
]	LF	5	2670670	48366.59	2613986	2719678
	TGE	5	50.153	3.679755	46.972	54.798
	MATHS	5	541	5.196152	536	548
	GEE	5	12.41396	.2690097	12.13969	12.775
	GNS	5	26.6922	4.30627	20.969	31.522
	0110	5	20.0722	4.30027	20.909	51.522
FRANCE (GDP/CAP	5	33482.25	865.6977	32392.16	34412.63
]	HSE	5	108.5152	1.899852	106.4092	110.228
]	LF	5	2.89e+07	1118008	2.73e+07	3.01e+07
r	TGE	5	53.9708	2.590478	51.128	56.761
	MATHS	5	503.2	10.1094	495	517
	GEE	5	10.76107	.2793654	10.39341	11.05125
	GNS	5	21.7602	1.526619	20.008	23.794
	0110	5	21.7002	1.520017	20.000	23.174
UNITED (GDP/CAP	5	36945.28	1884.489	34058.66	39213.8
-	HSE	5	101.1378	1.599191	98.44738	102.6237
	LF	5	3.11e+07	1245028	2.95e+07	3.26e+07
	TGE	5	40.9832	5.092843	34.005	46.818
	MATHS	5	503.6	15.53383	492	529
	GEE	5	10.76107	2793654	10.39341	11.05125
(GNS	5	17.5378	2.418763	2.418763	20.606
	GDP/CAP	5	10390.75	1018.215	8810.077	11380.89
]	HSE	5	98.05995	2.531957	95.90943	102.2401
]	LF	5	4275229	79471.24	4178897	4387408
	TGE	5	50.2506	1.46643	48.909	52.165
	MATHS	5	487.2	5.80517	477	491
	GEE	5	10.59632	0.7807138	9.94992	11.91482
	GNS	5	18.1986	1.956926	16.688	21.472
		-				<i></i>

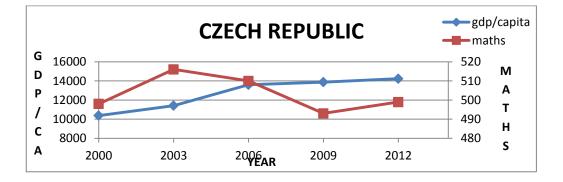
 Table 3: Descriptive statistics for all variables used for econometric analysis

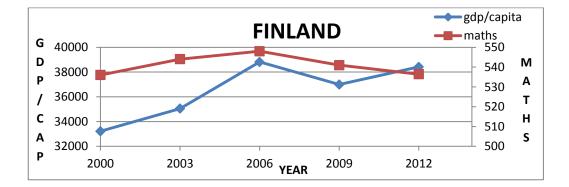
IRELAND	GDP/CAP	5	45696.19	2866.435	41953.95	50005.42
	HSE	5	110.1597	5.332606	104.5557	118.3294
	LF	5	2033709	199090.9	1756229	2216357
	TGE	5	36.6416	6.694171	30.56	46.487
	MATHS	5	500	7.483315	487	40.487 506
	GEE	5 5	13.43366	0.2524227	13.09395	13.76119
	GNS	5	21.7842	4.888758	15.744	26.485
ITALY	GDP/CAP	5	29773.05	886.1482	28807.54	30972.3
	HSE	5	97.62654	2.538576	93.23074	99.16486
	LF	5	2.45e+07	779451.6	2.33e+07	2.51e+07
	TGE	5	52.451	2.605709	49.034	55.658
	MATHS	5	470.6	12.66096	457	485
	GEE	5	9.56919	0.303214	9.05051	9.8189
	GNS	5	19.1498	1.706907	16.914	20.624
	GNS	5	19.1490	1.700907	10.914	20.024
JAPAN	GDP/CAP	5	35326.87	1277.114	33956.81	36942.2
	HSE	5	101.4248	0.4684809	100.9359	101.9487
	LF	5	6.65e+07	852708.5	6.53e+07	6.76e+07
	TGE	5	37.5264	2.389628	34.489	39.982
	MATHS	5	535.8	12.87245	523	557
	GEE	5	9.982662	0.1086187	9.85045	10.15117
	GNS	5	24.905	2.635086	21.783	27.866
KOREA	GDP/CAP	5	18016.36	2780.488	14428.75	21562.26
	HSE	5	97.53795	0.8147073	96.72483	98.88523
	LF	5	2.41e+07	1188477	2.27e+07	2.58e+07
	TGE	5	26.868	0	26.868	26.868
	MATHS	5	547.2	4.32435	542	554
	GEE	5	4.544874	0.313544	4.21764	5.04985
	GNS	5	33.7924	1.224499	32.19	35.158
MEXICO		5	7047 225	400.0054	7404 275	9545 292
MEAICO	GDP/CAP		7947.225	409.0954	7494.375	8545.382
	HSE	5	77.6211	4.826658	70.03662	82.87976
	LF	5	4.62e+07	4848396	4.08e+07	5.28e+07
	TGE	5	23.6084	2.151421	21.648	26.244
	MATHS	5	402	15.32971	385	419
	GEE	5	20.75998	1.48177	19.18616	23.05553
	GNS	5	21.9256	0.7321402	20.745	22.663
NEW-	GDP/CAP	5	39397.84	1617.254	37546.79	40699.9
ZELAND	HSE	5	118.07	4.960525	110.6408	124.6113
	LF	5	8660309	356763.9	8157730	9020726
	TGE	5	35.2182	1.516558	33.322	37.074
	MATHS	5	520.3	13.28345	500	537
	GEE	5	19.05332	1.152968	18.05889	20.7599
	GNS	5	19.05332	1.152968	18.05889	20.7599

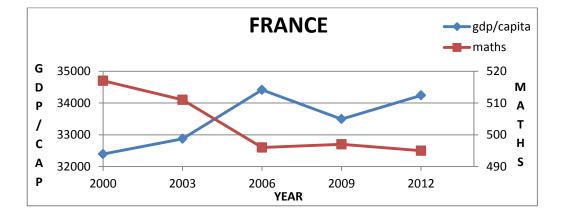
PORTUGAL	GDP/CAP	5	18106.35	276.3665	17891.38	18496.58
TORTOGAL	HSE	5	104.1033	3.852361	97.57503	107.2291
	LF	5	54526825	119612.9	5253013	5546703
	TGE	5	45.5594	3.117408	41.615	49.76
	MATHS	5	472	14.54304	454	487
	GEE	5	11.90608	0.4120781	11.43944	12.51559
	GNS	5	14.136	3.379822	9.414	17.732
POLAND	GDP/CAP	5	8553.791	1582.385	6789.837	10575.78
	HSE	5	99.75663	3.270546	97.24561	105.2439
	LF	5	1.77e+07	542883.2	1.72e+07	1.85e+07
	TGE	5	20.1482	0.173397	18.903	21.488
	MATHS	5	493.64	17.08649	470	518
	GEE	5	11.98117	0.3536514	11.41325	12.3421
	GNS	5	17.1204	1.031812	16.218	18.811
	GIND	5	17.1201	1.031012	10.210	10.011
UNITED	GDP/CAP	5	43334.39	1882.928	40965.03	45335.9
	HSE	5	43534.39 93.77971	.8625968	92.3248	43333.9 94.43402
STATES	LF	5	1.54e+08	5060800	1.47e+08	1.59e+08
~ ~ ~	TGE	5	40.3842	8.329712	33.919	1.39e+08 54.106
	MATHS	5	40.3842 483.58		474	493
				7.059179		
	GEE	5	14.80198	1.329424	13.00392	16.0739
	GNS	5	17.5378	2.418763	14.374	20.606
ICELAND	GDP/CAP	5	51725.07	3784.515	46985.73	56136.45
	HSE	5	110.0094	3.021023	107.4036	115.0943
	LF	5	178461.2	9990.943	165913.3	188184.2
	TGE	5	45.4958	3.922458	41.641	50.959
	MATHS	5	507.02	8.826205	493	515.1
	GEE	5	16.25867	1.102985	15.25892	18.12376
	GNS	5	9.8124	4.817834	2.306	14.923
BELGIUM	GDP/CAP	5	35628.62	1236.429	34008.54	36728.8
	HSE	5	124.5548	25.50009	104.8371	159.1477
	LF	5	4634527	216398	4411565	4902331
	TGE	5	51.49	2.886291	48.475	55.117
	MATHS	5	519.86	5.839344	515	529.3
	GEE	5	12.22268	0.2731154	11.79999	12.5459
	GNS	5	22.3636	3.305584	18.963	26.601
			10000		0.05	10000
SWEDEN	GDP/CAP	5	40395.26	2950.152	36576.19	43830.57
	HSE	5	123.0545	22.11505	99.60414	151.9077
	LF	5	4799216	216130.3	4552000	5082428
	TGE	5	54.1064	1.582592	52.116	55.672
	MATHS	5	498.6	13.18332	478	510
	GEE	5	12.99541	0.1486485	12.79998	13.21636
	GNS	5	24.5408	1.814134	22.705	27.42

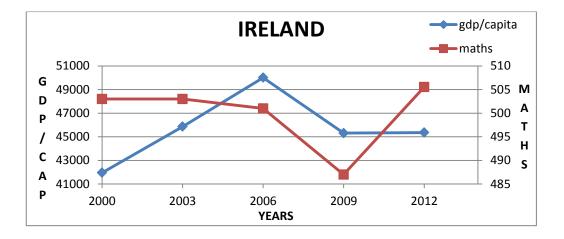
SPAIN	GDP/CAP	5	25158.36	946.9848	23920.93	26508.19
SFAIN	HSE	5	118.6233	7.617573	111.4109	130.8067
	LF	5	2.13e+07	2332892	1.82e+07	2.36e+07
	TGE	5	41.984	4.628802	1.82e+07 38.35	2.30e+07 47.805
		5			38.33 476	47.805 485.1
	MATHS GEE	5	481.62	3.670424		
	GEE GNS	5 5	11.00309	.1249949 2.277116	10.8343 18.545	11.13163 23.899
	GNS	5	21.1658	2.277110	18.545	25.899
SWITZER-	GDP/CAP	5	52399.55	2267.42	49843.38	54995.91
	HSE	5	92.23719	1.018151	90.58457	93.24352
LAND	LF	5	4299343	259968	3997815	4640316
	TGE	5	54.1064	1.582592	52.116	55.672
	MATHS	5	509.72	48.10709	424	538
	GEE	5	15.481	0.5038332	14.77138	16.15013
	GNS	5	33.4	2.50998	30	37
	0110	5	5511	2.00770	50	51
CANADA	GDP/CAP	5	34557.79	1498.648	32497.23	36122.79
Childh	HSE	5	102.0497	0.5586879	101.4625	102.608
	LF	5	1.79e+07	1186607	1.62e+07	1.93e+07
	TGE	5	47.332	0	47.332	47.332
	MATHS	5	527.5	6.041523	518	533
	GEE	5	12.61727	0.2158552	12.34043	12.89435
	GNS	5	22.4872	1.776967	20.925	24.67
	UNS	5	22.4072	1.770907	20.925	24.07
DENMARK	GDP/CAP	5	46413.89	1484.036	45339.69	48999.36
	HSE	5	122.8924	3.947435	117.9646	127.0543
	LF	5	2907398	38066.58	2864614	2952487
	TGE	5	55.659	3.004733	51.749	59.203
	MATHS	5	508.86	6.818942	500	514.3
	GEE	5	15.21862	0.1537307	15.06539	15.40043
	GNS	5	19.572	2.457258	16.93	22.714
NORWAY	GDP/CAP	5	64124.89	2466.264	60726.25	66739.18
	HSE	5	113.8019	1.623825	111.5191	116.0869
	LF	5	2498830	130627.7	2374610	2674543
	TGE	5	43.8716	3.099503	39.959	47.905
	MATHS	5	494.24	4.559387	489	499
	GEE	5	15.91615	0.1995491	15.76094	16.25732
	GNS	5	35.1622	4.961275	28.503	40.561
			55.1022		20.000	10.201
L	1	I	I	1	t	

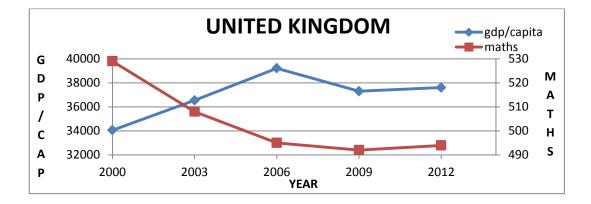

The results from the descriptive statistics for the 23 OECD member countries used for the econometric analysis contains the mean, the standard deviation, the maximum and minimum of each variable used in the model. A quick glance at the PISA math's score average (mean) for each of the countries shows that Korea has the highest Math's score average of 547.2, Finland has an average math's score of 541 and japan has a mean score of 535.8. Mexico has the lowest PISA math's score average of 402.

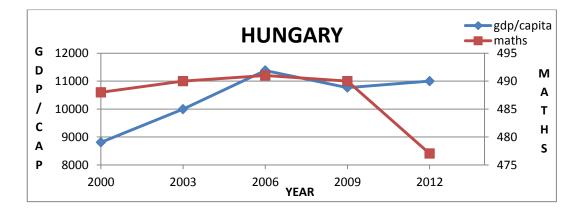

From the results in the table above the government of Mexico spends an average of 20.75998 percent of the total government expenditure on education; this is the highest average government expenditure on education as compared to the other countries. The total government expenditure on education of New Zealand is about 19.05332 percent of the total government expenditure within this period used for the analysis, This is slightly below Mexico average total expenditure on education; While Korea has the lowest average total expenditure on education of 4.544874 percent.

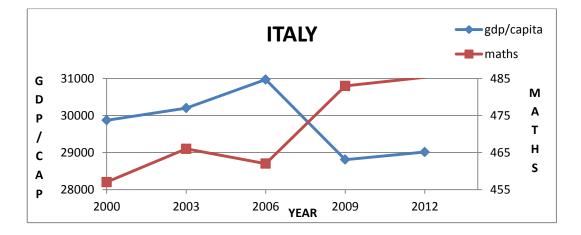

Also, in comparing the GDP per capita among these countries, Norway has the highest average GDP per capita of \$64124.89 (US Dollars); while Mexico has the lowest GDP per capita of an average of \$7947.225(U.S Dollars).

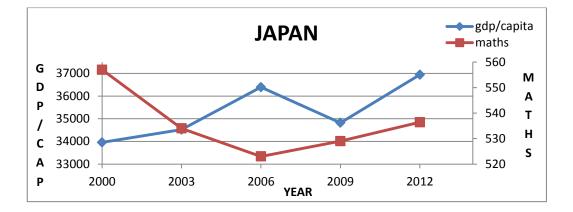

According to the results, Belgium has an average high school enrollment level of about 124.5548 percent, followed by Sweden with an average of 123.0545 percent.

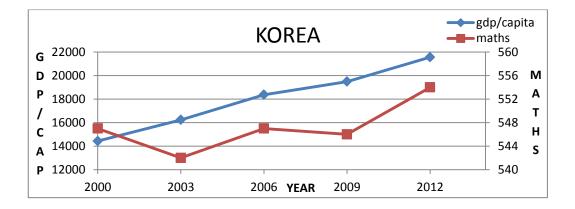

The graphs below shows the distribution trend for the 23 OECD countries used for this econometric analysis in this research work, it displays the trend of GDP per capita and the PISA Mathematics score averages in each country for the sample period. The primary axis (left side) measures the GDP per capita and the secondary axis (right side) measures the PISA mathematics test score average.

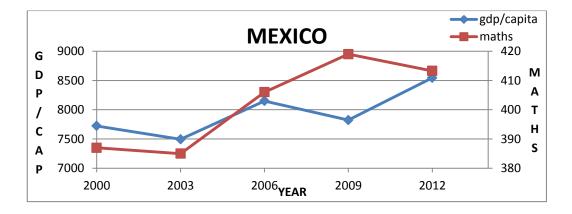


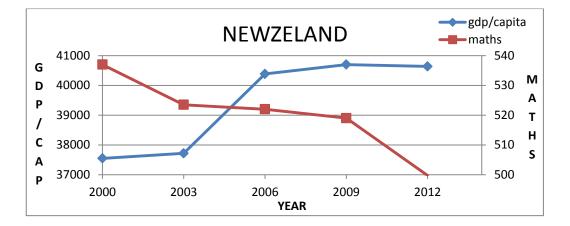


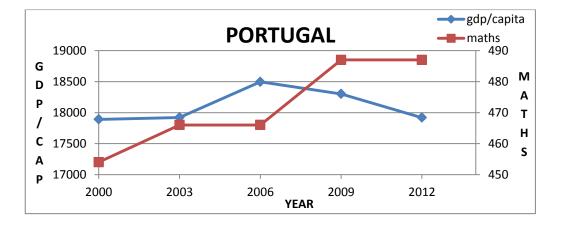


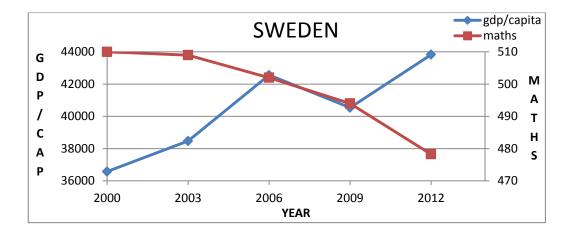


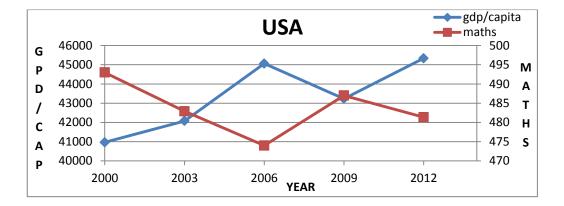


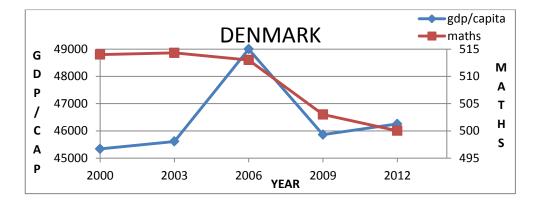


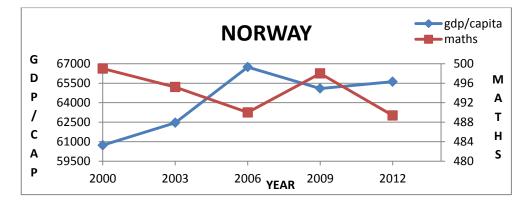


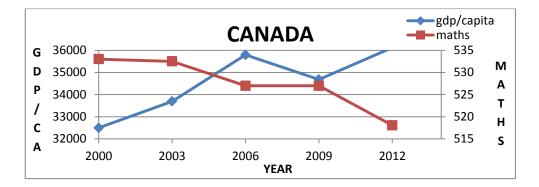


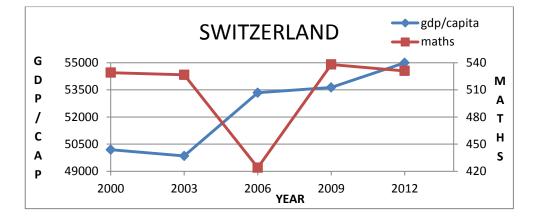


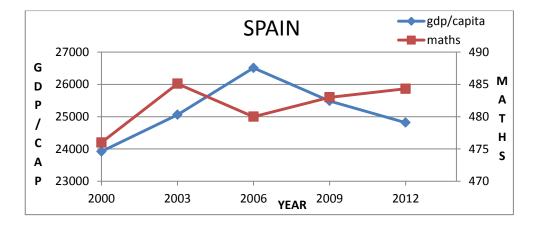


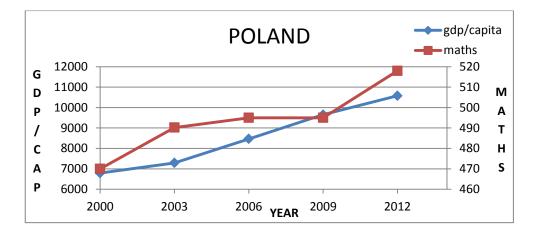


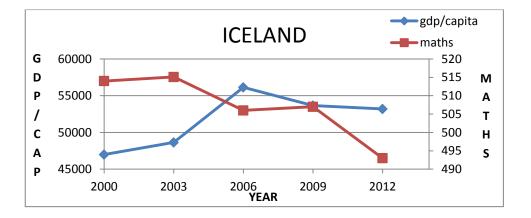












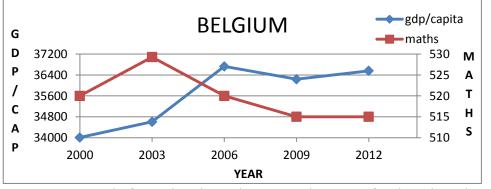


Figure 3.3: Trend of GDP/Capita and PISA math's score for the selected countries

The trend shows how the PISA mathematics tests score and the GDP per capita varies over the sample period for each country. The graphs help one get familiar with the averages of the PISA test score and GDP per capita for each country and how they varied over time. As we can see, for some countries, there is a uni-directional

movement for both the test score and GDP per capita, for many countries though there is no such relationship. Nevertheless the test has an explanatory power of a cross-sectional data.

Chapter 6

ESTIMATION TECHNIQUES

The basic issues to be addressed in this chapter are Stationarity, unit root, and cointegration test of panel data, as well as issues of Hetero-scedasticity, cross-sectional correlation, and within-group correlation in panel data estimation.

The data used for the analysis in this study is a balanced panel data with 23 countries covering 5 years. Panel data is also referred to as cross-sectional time series data; this means that a panel data has both cross-sectional data and time series data components.

6.1 Panel Data Estimation Techniques

Whenever we deal with panel data, we have to first choose between modeling the regression for fixed or random effect. These two types of analyses make conceptually contrasting assumptions about effect as either random or fixed:

6.1.1 Fixed Effect

Fixed-effects (FE) are used only when the researcher is interested in analyzing the impact of variables that vary over time. If the data comes from a limited cross-sectional population with longer time series, then fixed effect model will be the correct choice. Fixed effect model is a method of pooling cross-section and time series data. In such models, the variables for each unit can vary over time while the unobserved variables specific to each unit do not change overtime. This model takes into consideration the heterogeneity or individuality in the data by allowing each

individual (in this case each country) to have its own intercept value, that is each individual has a different intercept term but same slope parameter.

The equation for the fixed effects model becomes:

$$Y_{it} = \alpha_i X_{it} + \beta_1 + u_{it} \qquad [eqn \ 6.1]$$

Where

 α_i (i=1....n) is the unknown intercept for each entity (n entity-specific intercepts).

 Y_{it} is the dependent variable (DV) where i = entity and

t = time.

X_{it} represents one independent variable (IV),

 β_1 is the coefficient for that independent variable (IV),

u_{it} is the error term

On the other hand, if the data is from a large cross-sectional population, then one can view individual effects as randomly distributed across cross-sectional units.

6.1.2 Random Effects Models

In the random effects model, individual differences are also captured by intercept, but it is also assumed that the differences across units are random and uncorrelated with the explanatory variables. The model is expressed as:

$$Y_{it} = \alpha + \beta X_{it} + u_i + \varepsilon_{it}$$
 [eqn 6.2]

Here α is individual-specific effect while u_i is the normal error term. For randomeffects models, α_i is included in the error term and each individual has the same slope parameter and a composite error term with 2 parts. Here, as mentioned above, error term has two components: u_i , individual error and ε_{it} , random element that vary both over time and across units. The composite is the sum of two error terms. The basic distinction between the fixed and random effects is whether the unobserved individual effect embodies elements that are correlated with the regressors in the model, not whether these effects are stochastic or not. (Borenstein, Hedges and Rothstein, 2007)

One advantage of random effects is that it allows for inclusion of time invariant variables (i.e. gender). In the fixed effects model these variables are absorbed by the intercept.

6.2 Pooled- OLS Models

In the pooled- OLS model all observations are given an equivalent treatment as well as the OLS, in this case the error term captures "everything" Naive, ignores time and space because it also ignores the heterogeneity or individuality that may exist in the data as is the case in this study. The pooled model specifies constant coefficients which is the usual assumption for a cross-sectional analysis. The model in general is described thus:

$$Y_{it} = \beta_1 + \beta_2 X_{2it} + \beta_3 X_{3it} + u_{it}$$
 [eqn 6.3]

Where

Y= dependent variable

 X_2, X_3 = independent variables

i stands for the i $_{th}$ cross-sectional unit, i = 1, ..., N

t stands for the $t_{:th}$ time period, i = 1, ..., T

6.3 Fixed or Random

• Hausman Test:

Given a model and data in which fixed effects estimation would be appropriate, a Hausman tests whether random effects estimation would be almost as good. Hausman test is carried out to determine. The test is carried out to determine whether there is significant difference between Fixed and Random effects estimators. When there is no significant difference between them, the Random effects estimator is preferable since it is more efficient, but if they differ significantly, then the fixed effects estimator is preferable.

	H₀ is true	H ₁ is true
b_1 (RE estimator)	Consistent Efficient	Inconsistent
b_0 (FE estimator)	Consistent Inefficient	Consistent

• Breusch-Pagan Langrange multiplier test (LM):

The Breuch-Pagan Langrange multiplier test is used to test for the Randomeffects model based on the OLS residual. The test is used to decide between simple OLS regression and random-effects regression. The null hypothesis in the LM test is that variances across entities are zero. This means that there is no significant difference across units (i.e. no panel effect).

In the case of this study, nether of this test will be used because the pooled panel data model was used for the analysis, and another limiting factor is time constraint, thus implementation of the fix or random effect will not be efficient.

Chapter 7

ESTIMATION RESULTS AND DISCUSSION

7.1 Results

This chapter contains the interpretation of the results obtained from the OLS regression analysis, the regression were conducted using STATA 11 statistical software. As previously introduced, three econometric models were formulated. The main difference between the three econometrics models is that the first model includes the HSE [high school enrollment, (% gross)] variable. The HSE variable is calculated by most countries by dividing the number of individuals who are actually enrolled in high school by the number of children who are of the corresponding school enrollment age.

Model two on the other hand includes the GEE variable (government spending on education) which is a percentage of the total government expenditure. Finally model three contains both the high school enrollment variable and government spending on education variable. The models are restated here as follows:

Model (1)

 $LGDPcap_{it} = \alpha_0 + \alpha_1 LMATHS_{it} + \alpha_2 HSE_{it} + \alpha_3 LLF_{it} + \alpha_4 GNS_{it} + \alpha_5 TGE_{it} + U_{it}$ Model (2)

 $LGDPcap_{it} = \beta_0 + \beta_1 MATHS_{it} + \beta_2 GEE_{it} + \beta_3 LLF_{it} + \beta_4 GNS_{it} + \beta_5 TGE_{it} + U_{it}$

Model (3)

```
LGDPcap_{it} = \beta_0 + \beta_1 MATHS_{it} + \beta_2 HSE_{it} + \beta_3 GEE_{it} + \beta_4 LLF_{it} + \beta_5 GNS_{it} + \beta_6 TGE_{it} + \beta_6 TGE_{it
```

U_{it}

Where:

LGDPcap = log of GDP per capita

 $LLF = \log of labour force$

LMATHS= log of PISA Mathematics score

HSE = high school enrollment (% gross)

GNS = log of gross national savings

TGE = total government expenditure

GGE= government spending on education

DEPENDENT VARIABLE: LGDPPC							
INDEPENDENT VARIABLES	MODEL 1	MODEL 2	MODEL 3				
LMATHS	1.933077	4.587659	3.870037				
	(0. 5971694)***	(0.6932826)***	(0.6657623)***				
LLF	4.87e-09	3.97e-09	4.78e-09				
	(1.12e-09)***	(8.59e-10)***	(8.67e-10)***				
HSE	0.0128048 (0.0042919)***		0.0083467 (.0033032)***				
GNS	0.015776	0.0176945	.0195348				
	(0.0089554)**	(0.006643)***	(0.0066378)***				
TGE	0.024731.	0.0292667	0.0268947				
	(0.0042857)***	(0.0034077)***	(0.0034965)***				
GGE		0.0869747 (0.0115316)***	.0803397 (0 .0103879)***				
CONSTANT	-4.622682	-21.10507	-17.3954				
	(3.379458)	(4.299981)***	(4.033729)***				

Table 4: Pooled Panel Model Estimation Results

Number of	115	115	115
observations			
R-squared (R^2)	0.46670	0.6322	0.6322
Adjusted (R ²)	0.44730	0.6104	0.6206
F- stat (p-value)	0.0000	0.0000	0.0000

Robust Standard errors in parentheses below the estimated coefficient *** (p<0.01), ** (p<0.05), * (p<0.1)

The empirical Results obtained from the first model exhibit high conformity with economic expectations, the key independent variables which are, PISA mathematics literacy score and the high school enrollment variable have a positive impact on gross domestic product per capita. The result shows that a 1% increase in the high school enrollment causes gross domestic product per capita to increase by about 1.3%. The result is significant at 1%. Furthermore, the estimated results show that a 1 point increase in the PISA mathematics score causes the gross domestic product per capita to increase by 1.93%, which is also significant at 1%. This indicates that log of PISA mathematics score has a greater effect on log of gross domestic product per capita than high school enrollment.

The impact of gross national savings on log of gross domestic product per capita is also positive. The result indicates that if the annual percentage of gross national savings in a country is raised by 1%, gross domestic product per capita will rise by about 1.58%. The result is significant at 1%.

Log of labour force have positive effects on log of gross domestic product per capita, a 1% increase in the size of the labour force leads to a 4.9% increase in gross domestic product per capita. In the case of total government expenditure as obtained in the result, a 1% increase in the share of total government expenditure of the total GDP leads to a 2.5% increase in gross domestic product per capita. The Both results are significant at 1%.

The Adjusted R^2 result for model one shows that the pooled OLS estimator can explain about 44.73% of the variation in log of gross domestic product per capita.

The second model also reports empirical findings that conform significantly to expected outcomes. In this model, log of PISA mathematics test score has a positive effect on log of gross domestic product per capita. For a 1 point increase in the log of PISA mathematics test score this leads to 4.6% increase in the gross domestic product per capita. This result is significant at 1%. Moreover, the positive coefficient on the total government expenditure on education shows that, a 1% increase in the total government expenditure spent by the government on education out of the total government expenditure increases gross domestic product per capita by 8.69%.

The estimated results also show a positive relationship between gross national savings and log of gross domestic product per capita. A 1% increase in gross national savings results in a 1.8% increase in gross domestic product per capita. The result is significant at 1%.

The impact of both log of labour force on the log of gross domestic product per capita is likewise positive. While a percentage increase in log of labour force yields a 3.97% increase in gross domestic product per capita, the result is significant at 1%.

Just like the case in model one, total government expenditure shows a positive relationship with log of gross domestic product per capita, and the result is strongly significant at 1%. A 1% increase in total government expenditure results in 2.7% increase in gross domestic product per capita.

The adjusted R^2 results show that the pooled OLS estimator is successful in explaining 61.04% of the total variation in log of gross domestic product per capita.

The third (3) model captures at the same time the effect of the two quantitative variables of education on the log of gross domestic product per capita. This model includes both the high school enrollment variable and total government expenditure on education.

The third model also conforms to economic expectation, just like the case in model one and two, the log of PISA mathematics score shows a positive relationship with the log of gross domestic product per capita, and the result is strongly significant at 1%. It shows that a 1 point increase in the PISA mathematics score increases the log of gross domestic product per capita by 3.87%

The impact of both log of the high school enrollment and the total government expenditure on education are likewise positive. While holding all other variables constant a percentage increase in the high school enrollment yields a 0.83% increase in gross domestic product per capita, and holding the high school enrolment constant a percentage increase total government expenditure on education leads to a 8.0 percentage rise in gross domestic product per capita. This result is significant at 1%.

The estimated results also show a positive relationship between log labour force and log of gross domestic product per capita. A 1% increase in log of labour force leads to a 4.78% increase in gross domestic product per capita. The result is significant at 1%.

Moreover, the positive coefficient on the gross national savings shows that the greater the amount of savings accumulated annually the greater the gross domestic product per capita, the result shows that a 1% increase in the gross national saving leads to a 1.95% increase in the log of gross domestic product per capita.

A quick view of the estimated results show that in model 3 when the high school enrolment and government expenditure variable was included in the model, there was no high degree of correlation between supposedly independent variables being used to estimate the GDP per capita variable. Although there was a significant change in the adjusted R^2 in model (1) and (2) when the quantitative variables where included independently, but no significant change between the adjusted R^2 in model (2) and (3) when the two variables where included at the same. The estimated results show that there is no case of Multicollinearity in the third model.

7.2 Discussions

The result from this work shows that increase in the PISA mathematics test score, the high school enrollment rate, and the increase in government expenditure on education drives improvements in economic performance. It however further shows that the impact of the PISA mathematics test score on economic performance is higher in the second model as compared to model one and two. As earlier stated in the previous chapters the PISA mathematics test is a proxy that is used to measure the quality of education, the result from the three models shows that the increase in the quality of education which is the PISA mathematics test score will improve the economic performance. It can also be deduced from the fact that the coefficient of Log of PISA maths score increased significantly from 1.933077 in model one to 4.587659 in model two when total government expenditure on education was introduced into the regression equation. This shows that the impact of PISA mathematics test score increases more with the presence of total government expenditure on education. These findings are in tandem with previous empirical findings. See Barbara and John Van (2000), Eric & Ludger (2007), Gregory Mankiw, David Romer and David Weil (1992).

Also, results on gross national savings, labour force lend credence to growth theories such as Harrod-Domar model, Solow-Swan model and M-R-W model. They all show positive relationships with gross domestic product per capita.

The Adjusted R^2 results from the three models show that the pooled OLS estimator explains the variation in gross domestic product per capita within each country over time quite well. The adjusted R^2 in model (3) is bigger than that of model (1) and (2) and The Adjusted R^2 result for model (3) shows that the pooled OLS estimator can explain about 62.06% of the variation in log of gross domestic product per capita.

Chapter 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

This research work is motivated by doubts which have risen about the role of the quality and quantity of economic growth. This variety of doubts emanates from different points of view ranging from whether research work has been able to provide concrete evidence of the impact of education on economic growth to whether the improvement in other institutional sectors of the economy might be more effective in fostering economic growth.

8.1.1 The Quality of Education

The quality of education which is measured by what people know has a significant effect on the income of individuals, on the income distribution in the country and on the economic performance (growth). Most of the earlier studies on education have concentrated on school attainment or schooling quantity as the main determinants of education in relation to economic growth, but this focus rather distorted analysis and policy discussion from analysis. Accounted evidence shows that economic growth is strongly affected by the skill of individuals, and the cognitive skill of individuals is a significantly determined by the quality of education acquired through schooling or training. Individual earnings are systematically related to cognitive skills; likewise the distribution of skills in an economy is strongly related to income distribution and economic growth. Although other factors also contribute to economic growth like having a functional economic institutions such as open labour market well established property rights, and trade openness. These factors will not just contribute to economic outcome but may also magnify the benefits of quality education.

Moreover, this research provides concrete evidence to prove that the quality of education is causally related to economic growth. The quality of education may come from the formal system of schooling, from influence from friends, peer group and other students and from parents. A developed economy is basically characterized with a more skilled population, which almost certainly includes a large population of educated individuals with high level of skills and productivity.

8.1.2 Spending on Education and Student Outcome

Any economy that desires to achieve economic growth most give a very high preference to education, by ensuring that a large portion of its population have easy access to education. Mainly the educational sectors contribute immensely to the increase in the output per worker as well as economic growth.

The empirical evidence from this study shows that, developed countries mostly members of the OECD accords a reasonable amount of its budgetary allocation to the educational sector of the economy, it also shows a strong causal impact of skills on the growth outcome of an economy.

This research shows that there is a strong relationship between government spending on education and student outcome. It also reveals the international association between spending levels and the PISA mathematical literacy test performance conducted mainly by OECD member countries.

57

From the evidence of the analysis it is a well-known fact that funding of educational sectors like building of class rooms and laboratories, increment in teachers' salaries and improvement in their welfare, helps in enhancing knowledge of students and increase the economic productivity or economic growth. It is a well-known fact that if individuals have good condition and environment for learning they will enjoy and assimilate knowledge faster.

8.2 Recommendation

Evidence has shown that funding of education is a burden that is becoming too much on the shoulders of the government across countries of the world. It is also true that to revamp the educational sector there is need for a collective effort from both the private and public sector. Therefore the private sector should be motivated to contribute more in improving and achieving educational goals.

There is mounting evidence that the quality of teachers is an important input to student performance. The major problem that is faced in most countries in terms of schooling policy is lack or inadequate incentive for improved student performance. Neither the school personnel nor the students are significantly motivated for high performance. Without out this incentives one may be amazed to find out that added resources does not consistently derive an improvement in student outcome.

The study shows increase in resource put into education and the student performance plays a significant role in economic growth across countries of the world. The following are some recommendations and policies that can improve the overall student performance. The private sectors can contribute to education by organizing mentorship programs, seminars, career development programs. Some commercial firms and multinational firms can go into partnership with the educational sector and government to finance scholarships for individuals, to finance some research works and to aid teachers to embark on further studies and research work at all levels. Increase in scholarship opportunity and training grants can also be provided by the government for individuals studying within and outside the country.

As earlier stated that teachers contribute massively to student performance, teachers can be motivated to perform better if their working condition is is pleasant enough. Good salary schemes and other incentives should be implemented by both the public and private sector to increase teacher's morale; this will make teachers more efficient in their duties because teachers serve as catalyst for socio- economic and intellectual development of individuals and the economy as a whole.

Reliable accountability system that measures student performance is necessary, when schools have accurate record of student performance they will have the ability to make appropriate decision that will lead to better outcome in the future.

In an attempt to find out how education policies in developing countries can create the competencies and learning achievement required for citizens to prosper in the future, one will find out that the main constraint is the institutional reform and not an increase in the resource in the current institutional system. Basically for investment in education to transmit into student learning all the individuals involved most be given the appropriate incentives that will make them act in the right way to advance student performance.

REFERENCES

- Alaba, S. O. (2010). Improving the standard and Quality of Primary Education inNigeria: A case study of Oyo and Osun States. International Journal for cross-Disciplinary Subjects in Education, 1(3).
- Andrea, B. & Stefano, S. (2001) Does Human Capital Matter for Growth in OECD
 Countries? Evidence from pooled mean-group estimates, OECD Economics
 Department Working Papers, No. 282,
- Anthonia, T. (2012). Education and Economic Growth in Nigeria: A ComparativeAnalytical Approach. European Journal of Globalization and DevelopmentResearch, Vol. 5, (1)
- Ararat, O. (2007). Role of Education in Economic Growth in the Russian Federation and Ukraine Retrieved from <u>http://mpra.ub.uni-muenchen.de/7590. 01 January</u> <u>2007</u>.
- Barbara, S & John, V. (2000). The Returns to Education: A Review of the MacroEconomic Literature. Centre for the Economics of Education, London School ofEconomics and Political Science.
- Barro, R. J. & Jong-Wha, L. (2010). "A new data set of educational attainment in the world, 1950-2010." NBER Working Paper 15902. Cambridge, MA: National Bureau of Economic Research (April).

- Dawn, H. Iana, L. Cinzia, R. & David, W. (2013). The relationship between graduates and economic growth across countries, Department for business innovation and skill, BIS research paper No. 110.
- Dowrick, C. (2002). The contribution of innovation and education to economic growth. Paper presented in melbourne institute economic and social outlook conference.
- EFA global monitoring report (2005). Education for all the quality imperative. united nations educational, scientific and cultural organization.
- Eldridge, M. (2011). Quality of education and the labour market: A conceptual and literature overview. Stellenbosch Economic Working Papers: 07/11
- Eric, A. & Ludger, W. (2007). The Role of Education Quality in Economic Growth. World Bank Policy Research Working Paper 4122.
- Eric, H.(2013). Economic Growth in Developing Countries: The Role of Human Capital. Research Working Paper 4182.
- Ernest, S. (2011). Government Spending on Education, Economic Growth and Long Waves in a CGE Micro-Simulation Analysis: The Case of Nigeria. British Journal of Economics, Finance and Management Sciences

- Filmer, D. (2006). Educational Attainment and Enrollment around the World. Development Research Group. The World Bank. Available fromecon.worldbank.org/project/edattain.
- Gregory, M. (2007). macroeconomics. 6th edition. Worth publishers 41 madison Avenue, New York
- Hanushek, E, A & Lei, Z. (2006). "Quality Consistent Estimates of International Returns to Skill." National Bureau of Economic Research, WP12664, Cambridge, MA, NBER November.
- Lee, J & Byoung, G. (2010). An endogenous growth model approach to Korean growth factors.
- Lee ,C.G. (2010). Education and Economic Growth: Further Empirical Evidence European Journal of Economics, Finance and Administrative Sciences, ISSN 1450-2275 Issue 23 (2010)
- Mankiw, N. G, Romer, D., & Weil, D. R. (1992). A contribution to the empirics of economic growth. Quarterly Journal of Economics, 107, 407–438.
- Mariam, G. Edith, P. & David, A. (2004) a discipline apart: the challenges of "fostering a community of learners" in a mathematics classroom. Journal curriculum studies.

- Michaelowa, K. (2001). "Primary Education Quality in Francophone Sub-Saharan Africa: Determinants of Learning Achievement and Efficiency Considerations." *World Development* 29, no. 10:1699-1695.
- Menbere, W. & Marek, R. (2011) The Contribution of Human capital to European Economic Growth: An empirical exploration from a panel data. Institute of Economic Research, Slovak Academic of Sciences, Bratislava.
- National center for education statistics, PISA 2000 results (2010). Office of
 Educational Research and Improvement U.S. Department of Education OECD (1998), 'Returns to Investment in Human Capital', ch.4 in Human Capital
 Investment– An International Comparison, Paris: OECD, Centre for Educational
 Research and Innovation.
- Organisation for Economic Co-operation and Development. 2010. PISA 2009 Results: What Students Know and Can Do – Student Performance in Reading, Mathematics and Science (Volume I).Paris: OECD
- Stephen, J. C. & Ethan, S. (2008). The Impact of Educational Quality on the Community. Department of education, RAND Corporation.
- Simon, A. & Francis, T. (1998), Human Capital and Economic Development, A background paper prepared for the African Development Report 1998.
- Todaro, M & Smith, C. (2007). Economic Development, (11th Ed), Singapore: Pearson

- Zhang ,C. & Zhuang, L. (2011). The composition of human capital and economic growth: Evidence from China using dynamic panel data analysis. Journal of Ocean University of China, Volume 10, Issue 4
- UNDP (various years), Human Development Report, Oxford: Oxford University Press.

World Bank (1993), World Development Report, Washington DC: World Bank.

World Bank (2011) World Development Indicators (WDI), Washington DC: World Bank.