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ABSTRACT 

In this thesis, we collect some results on sufficient conditions for the existence and 

unique of solutions for various classes of initial and boundary value problem for 

fractional differential equations involving the Caputo fractional derivative.  Although 

the tools of fractional calculus have been available and applicable to various fields of 

study, the investigation of the theory of fractional differential equations has only 

been started quite recently. The differential equations involving Caputo differential 

operators of fractional order, appear to be important in modeling several physical 

phenomena and therefore seem to deserve an independent study of their theory 

parallel to the well-known theory of ordinary differential equations. 

In this thesis, we shall study systematically the basic theory of fractional differential 

equations involving Caputo differential operators. We follow the method of deducing 

the basic existence and uniqueness results from the fixed point theory. 

Keywords: Boundary Value Problems, Fractional Differential Equation, Fractional 

Calculus 
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ÖZ 

Bu tezde, Caputo fraksiyonel türevli fraksiyonel diferansiyel denklemler için 

başlangıç ve sınır değer probleminin çeşitli sınıflar için varlığı ve tekliği 

araştırılmıştır. Kesirli analizin araçları, çalışmanın çeşitli alanlarda kullanılabilir ve 

uygulanabilir olmasına rağmen, fraksiyonel diferansiyel denklemlerin teorisi sadece 

çok yakın zamanda araştırılmaya başlanmıştır. Fraksiyonel düzenin Caputo 

diferansiyel operatörleri kapsayan diferansiyel denklemler, çeşitli fiziksel olguları 

modelleme de önemli gibi görünmektedir ve bu nedenle adi diferansiyel 

denklemlerin tanınmış teoriye kendi teorisi paralel bağımsız bir çalışma yı 

haketmekte gibi görünüyor. 

Bu tezde, sistematik olarak Caputo diferansiyel operatörleri kapsayan fraksiyonel 

diferansiyel denklemlerin temel teorisini incelenecektir.  

Anahtar Kelimeler: Sınır değer problemi, Fraksiyonel diferansiyel denklemler, 

Fraksiyonel kalkulus 
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Chapter 1 

INTRODUCTION 

This thesis collects recent results for different classes of initial value problems  and 

boundary value problems (BVP) for fractional differential equations. Fractional 

differential equations (FDE) have recently proved to be valuable instruments  in  the 

modeling of many phenomena in different fields of  engineering and science.   

There has been a considerable development in differential equations involving 

Caputo fractional derivatives in recent years; see the monographs of Kilbas et al. , 

Kiryakova , Miller and Ross , Samko et al. and the papers in the references. 

On the other hand BVP  with nonlocal boundary conditions define an important class 

of Fractional Boundary Value Problems. This class include multipoint initial value 

problems and Boundary Value Problem as special cases. 
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Chapter 2 

FIXED POINT THEOREMS 

2.1 Fractional Calculus 

Definition 2.1[28, 29]: Let α ∈    and h ∈   ([a,b],   ). The fractional order 

integral of h  of order α is introduced as follows:  
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  for s > 0, and 

  ( )    for s ≤ 0, and ( )s   case 0  , where    is the gamma function. 

Definition 2.2 [28,29]: Let h is a function given one then interval [a, b], the  th 

Riemann-Liouville fractional-order derivative of function is defined by  
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where n= [ ] + 1 and [ ] represents then integer parts of  . 

Definition 2.3 [28]: Let h be a function given one then interval [a, b]. The Caputo 

fractional-order derivative of h, is defined by  
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Lemma 2.1 [32]: Assume that   is positive. Consider the following FDE 

     ( )    . 

This equation has solutions in the following form: 

h(s) = 
1

0

n
i

i

i

c s




     
,   ∈   , [ ] 1n    . 

Lemma 2.2 [32]: Assume that   is positive, then  
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for some   ∈   ,  [ ] 1n    . 

 We will utilize the result which is an outcome of Lemma2.2.  

Lemma 2.3 [27]: v is a function and it is a solution of the fractional integral 

equation. Let (0,1)  and assume  h : C[0, S ] →  . is defined as follows 

 ( )     
 

1

0

( )
,                                                 (2.1)

( )

s
h t

dt
s t





 
  

if and only if v is a solution of the IVP for then FDE 

     v(s) = h(s),  ∈ [0, S ]   ,                                                2.2   

   ( )                                                                                   (2.3) 

2.2 Some Fixed Points Theorems 

Theorem 2.1 [27]: (Non-linear alternative of Leray-Schauder type): Let B be a 

nonempty convex subset of Banach space X. Assume Z is a nonempty open set of B 

with 0 ∈ Z and X: Z→B continuous and compact. Then neither  

(1) X has a fixed point  

(2)   z Z and [0,1]  with ( )z X z  .  
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Theorem 2.2 [22] (The Schaefer Fixed Point Theorem): Assume Y is a Banach space 

and M:Y→Y is completely continuous.  If the sets 

( )   {    :                  [0,1  ]}E M y Y y yMy for any       

is bounded, then M has fixed point. 

Theorem 2.3 [19, 22]: Assume (
1 and 

2 ) are two operators and 
1 2,  :    . If X 

is a Banach space, 1  is a contraction and 2  is completely continuous, then either 

(1) equality 1 2( ) ( ) y y y  has a solution, or  

(2) the set E = {    ∈  X : z 1 2  ( /  )   ( )}z z      is bounded four 1( )0, . 
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Chapter 3 

BOUNDARY VALUE PROBLEM FOR ORDINARY 

DIFFERENTIAL EQUATION 

 

3.1 Introduction 

In this chapter, we study the existence and uniqueness of solutions of some classes of 

BVP for FDE. More accurately, we investigate the following BVPs. 

   c D
v(s) = f( s, v) for all s J   [0, S ], …. …. … 0 1               .…(3.1)  

a v (0) + b v( S ) = c ,                                                                  (3.2)  

where            is a continuous function, an       is the Caputo fractional 

derivative,        are real constants with a + by ≠ 0,  

     ( ) ( , ),      c D s f s vv       for all   s   [0, ],  2 3               (3.3)SJ      

a   *

0 0(0)  ,             ' 0  ,         ”( )                                        (3.4)
S

v v v v y vS    

where            is a continuous function, an       is the Caputo fractional 

derivative,    
    

        ̅ are real constants,   

     ( )   (   )                 ∈      S                                (   ) 

 ( )     ( )                                                                                            (   ) 

where           is a continuous function, an       is the Caputo fractional 

derivative, and continuous function. :  0( ), ,C Sg     , 

     ( )   (   )                 ∈      S                         (   ) 

 ( )     ( )                    ( S )     
S

                                                        (   ) 
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where               is a continuous function,        is the Caputo fractional 

derivative and continuous function  :g   and  
S

v   , 

     ( )   (   )                 ∈      S                         (   ) 

 ( )    ∫  (   )   
 

 

                                                                          (    ) 

 ( S )    ∫  (   )   
S

 

                                                                          (    ) 

where            is a continuous function, and       is the Caputo fractional 

derivative, and  ,  :g h J    are continuous, 

     ( )   (   )                 ∈      S                         (    ) 

 ( )     ́( )    ∫  (   )   
S

 

                                                               (    ) 

 ( S )     ́ ( S )    ∫  (   )   
S

 

                                                              (    ) 

where             is a continuous function, and      is the Caputo fractional 

derivative and g, h : J ×  →  are continuous. 

3.2 Boundary Value Problem of Order (0,1]    

The following definitions are used while solving the problem (3.1)-(3.2). 

Definition 3.1 [1]: Suppose that v is a continuously differentiable function on an 

open interval J, then v is a solution of (3.1)-(3.2) if v satisfies 

     ( )   (   )                 ∈      S                                (   ) 

  ( )      ( S )                                                                                         (   ) 

The Lemma 3.1 will be used to solve the problem (3.1)-(3.2). 
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Lemma 3.1: Assume that 0 < α < 1,       S     is a continuous function. A 

function v is  a solution of Fractional Integral Equation (FIE) 

 ( )   
 

 ( )
 ∫ (   )    ( )  

 

 

 

 
 

   
 [

 

 ( )
∫ ( S   )   

S

 

 ( )    ]                 (    ) 

if and only if v is a solution of the following FBVP. 

     ( )   ( )                 ∈    S                             (    ) 

   ( )      ( S )                                                             (    ) 

Proof: Let v be a solutions of (    )   Integrating (3.16) we get 

 ( )  
 

 ( )
 ∫ (   )    ( )  

 

 

                   ∈    S                           (    ) 

where d is constant. To find d, we use boundary condition (3.17), 

       (
 

 ( )
 ∫ ( S   )

   

 ( )  
S

 
  )                                                        

It follows that 

   
 

   
 [

 

 ( )
∫ ( S   )   

S

 

 ( )    ]                   

Inserting the value of d into (3.16), we get the desired formula. 

Banach Fixed Points Theorems is used to prove the Theorem3.1. 
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Theorem 3.1: Suppose that  

(A1) 0L   such that 

  (   )   (   ̅)     –  ̅                 ∈               ̅  ∈   . 

Moreover, assume that 

                  
   S

 
(  

   
     

)

 (   )
                                                                (    ) 

Then the FBVP (3.1)-(3.2) has one solution on [0, S ]. 

Proof: To start to prove the theorem we transform the problem (3.1)-(3.2) into a 

fixed point problem. To this end we introduce the following operator 

F : C ([0, S ] , ) → C ([0, S ], ), 

where F is defined by 

 ( )( )     
 

 ( )
 ∫ (   )    (    ( ))  

 

 

 

 
 

   
 [

 

 ( )
∫ ( S   )   

S

 

 (   ( ))    ]                  (    ) 

We are aimed to show the existence of a unique fixed point of F in C[0, S ]. To do 

this we need to show that F is contraction mapping. Indeed, for every [0, ]s S  we 

have

           

       

0 0 0 0

0 0

( ) ( ) , ( ) , ( ) , ( ) , ( )

, ( ) , ( ) , ( ) , ( )

b b
Fx s Fv s I f s x s I f s v s I f S v S I f S x S

a b a b

b
I f s x s f s v s I f S x S f S v S

a b

   

 

   

 

    
 

   


       1 1

0 0

1 1
( ) , ( ) , ( ) ( ) , ( ) , ( ) .

( ) ( )

t Sb
s t f t x t f t v t dt S t f t x t f t v t dt

a b

 

 

      
     

By (A1), 
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1 1

0 0

1 1

0 0

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1
( 1)

s S

s S

Fx s Fv s

bL L
s t x t v t dt S t x t v t dt
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bL L
x v s t dt x v S t dt

a b

bL L
s x v S x v dt

a b

bLS
x v
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By (3.18) 

1 1
( 1)

bLS

a b





 
      

 

Then, : [0, ] [0, ]F C S C S  is a contraction mapping and by the Banach Fixed Point 

Theorem F has a unique fixed point in 0,C S   , which is a unique solution of FBVP.  

Schaefer’s fixed point theorem is used in Theorem3.2 given below. 

Theorem 3.2 Assume that the following assumptions hold:  

(A2) The function      S          is continuous. 

(A3)   a non-negative constant M such that 

    (     )               ∈     ̅             ∈      

Then the FBVP (3.1)–(3.2) has one or more solution one     ̅   

Proof: Firstly, it needs to be shown that     (   S     )     (   S     ) is 

completely continuous. Secondly, the set D defined below is bounded  

       ∈   (   )        ( )           ∈ (   )   
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F described as in (3.19) has a fixed point by Schaefer’s Fixed Point Theorem. Hence 

it is the solution of BVP (3.1)–(3.2).  

The proof is based on the Schaefer’s FPT, :F Y Y   

i- F is continuous and compact operator. 

ii-  ( ) ;  for some [0,1]F y Y y Fy       is unbounded , 

So that F has one or more fixed points. 

Step 1: F is continuous in C[0, S ];  

Step 2: F maps bounded sets into bounded set in 0,C S    . i.e :[0, ] [0, ];F S S   

Step 3: F maps bounded sets into equicontinuous sets of [0, ];C S   

Step 4: ( )F   is bounded. 

 Hint: Step 2 and 3 together is Arzela Ascoli Theorem then F  is compact. 

Step 1: Let   [0, ], [0, ]nv C S v C S    

lim 0 lim 0 .n n
n n

v v Fv Fv
  

      

Indeed, 

1

0

1
( )( ) ( )( ) ( ) ( , ( )) ( , ( ))

( )

t

n nF v s F v s s t f t v t f t v t dt



   
 

 

     

1

0

1
( ) ( , ( )) ( , ( ))

( )

S

n

b
S t f t v t f t v t dt

a b





  
    

        

1 1

0 0

0

1 1
( ) ( )

( ) ( )

sup ( , ( )) ( , ( ))

s S

n
t S

b
s t dt S t dt

a b

f t v t f t v t
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0

sup ( , ( )) ( , ( ))  .   
( ) ( )

n
t S

bS S
f t v t f t v t

a b

 

     

 
       

 

take lim 0, f is continuous
n

  

0 when, nnFv Fv


        F is continuous. 

Step 2: It needs to be shown that for any 0N  ,   a non-negative constant P such 

that for all  (0, ) [0, ]: ,v B N v C S v P


     we have ( )F v P

 , then 

1 1

0 0

1 1
( ) ( ) ( , ( )) ( ) ( , ( ))  .

( ) ( )

s Sb c
Fv s s t f t v t dt S t f t v t dt

a b a b

 

 

     
       

 By (A3) 

1 1

0 0

( ) ( ) ( )
( ) ( )

s Sb cM M
Fv s s t dt S t dt

a b a b
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b cM M
S S P

a b a b

 

   
   

   

 
                                                

 .Fy P


   

Step 3: Let 
1 2, [0, ],s C Ss   1 2s s  , (0, )v B N  . Then  

2 1

1 1

2 1 2 1

0 0
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M M
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1 2 2 1( ) 0     as      s  .
( 1)

M
s s s 
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Step 1, 2 and 3 together are Arzela Ascoli theorem, then F is continuous and 

compact. 

Steps 4: 

                    ( ) [0, ]: ( ),0 1  F v C S v F v        is bounded. 

Assume ( )v F  , then ( )v F v  , We need to show that 0L   such that .v P

   

Indeed (see step 2), 

( ) ( )  .
( ) ( )

b cM M
v F v F v P S S

a b a b

 
     

     
   

 

By the Schaefer’s Theorem F has at least one fixed point in 0,C S   . 

Remark 3.1: The results of the BVP (3.1)–(3.2) are applied for IVP (a = 1, b = 0), 

terminal value problems (a = 0, b = 1) and the anti-periodic solutions (a = 1,b = 1, c 

= 0). 

Example 3.1: As an application of Theorem3.1, we consider the following FBVP  

 
 

    
          ,            0,1 ,                         3.20

9 1

s

c

s

e v
D t s

e

s
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sv






 

 

        0     1    0 .                                                                    3.21v v    

Assume that 

( , ) ,   ( , ) [0,1] [0, ] .
(9 )(1 )

s

s

e x
f s x s x

e x



   
 

  

For             and s          such that 

  (   )   (   )   
   

(    )
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(    )(   )(   )
 

                   
   

(    )
      

           
 

  
       

Thus (A1) satisfied with    
 

  
 .  It is clear that a = b = S = 1. Then inequality 

(3.18) is satisfied if  

  

  (   )
      (   )  

  

 
                                                 (    ) 

Applying Theorem 3.1, the FBVP (3.20)-(3.21) has               on [0, 1] for values 

of α satisfying (3.22).  For example 

         
 

 
       (     )    ( 

 

 
 )            

  

 
 

 

 (   )
  

    

    
           

         
 

 
       (     )     ( 

 

 
 )             

  

 
 

 

 (   )
  

    

    
           

3.3 Boundary Value Problem of Orders α ∈ (2,3]  

From this part we study the following fractional BVP. 

     ( ) ( , ),      c D s f s vv       for all      [0, ], 2 3               (3.23)S     

  *

0 0(0)    ,              ' 0   ,          ( )                                          (3.24)
S

Sv v v v v v    

where            is a continuous function, and      is the Caputo fractional 

derivative,        
      

S
v   are real constants. 
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Definition 3.2[1]: Suppose that v has a three times continuously differentiable 

function on    S   with its α-derivatives exists on[0, ]S .  We say that v is a solution 

of (3.3),(3.4) if v satisfies       ( )      (     ( ) ) , with the boundary conditions 

   ( )      ,   ́ (0) =   
  ,   ( S ) =

S
v  .  

To solve (3.3)–(3.4), we need to use the following lemma. 

Lemma 3.2: Assume 2       3    and assume that :   g J   is a continuous. So that 

v is a solution of the FIE. 

  
 

  
1

0

  ( )   

s g
v s ds

s t

t






 
  

 
 

2
3 * 2

0 0

0

  ( )           (3.23),
2 2

S

St g dt v v s
vs

S t s



    
     

if and only if v is the solution of the FBVP. 

   ( )    (  ),            ,                                                                         (3.24) c D s g s s Jv                                    

v(0) =   ,       v (0) =   
 ,            ( )     .                                  (3.25)

S
v vS   

The Banach fixed point theorem is used to prove unique and unique results. 

Theorem 3.3: Suppose that (A1) holds. Moreover, assume that 

1 1
    1.                                               (3.26) 

( 1) 2 ( 1)
LS 

 

 
  

    
  

The n there exists unique solution of the FBVP (3.3)–(3.4). 

Proof: We transform FBVP (3.3)-(3.4) into a Fixed Points Problem. To this end, we 

introduce F1  
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    (   )   (   )  

de fined by 

  (v)(s)
 

 
1

0

, )  ( ( )
1

s

s t f t v t dt





 
     

 
  

2
3 * 2

0 0

0

( )   ,
2 2 2

.

S

St f t v t dt v v
vs

S s s



    
      

Repeating the proof of Theorem 3.1 we can see that    is a contraction. Then the 

fixed point of the operator    is the solution of the FBVP (3.3)–(3.4).  

The Schaefer fixed points theorem is used to prove existence result. 

Theorem 3.4 FBVP (3.3)–(3.4) has at least one solution on 0, S   , provided that  

(A2)-(A3) hold.  

Proof: It is clear that 1 :  0, , 0( ) ( ), ,SF C S C        is continuous and compact 

and the set 

E ={v ∈ C( J, ): v 1    ( ) for some 0      1 }F v      

is bounded.  By the Schaefer Fixed Point Theorem, FBVP (3.3)–(3.4) has at least one 

solution on ( )0, ,SC    . 

In the Theorem 3.5 we apply the non-linear alternative of Leray-Schauder typed in 

which (A3) is debilitated. 
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Theorem 3.5: Suppose (A2) is satisfied. Moreover the conditions (A4) and (A5) 

hold. 

(A4)   
1

  ( , ) f L J 
 
and    : [0, )   (0, )    is continuous and non-decreasing 

function such that 

     ,       ff w t wt   ,         s J  and      w  . 

 (A5)   a non-negative  constant  0M   such that 

    1

2
2 * 2

0 0

              1  .                   (3.27)

ψ M
2 2

f f

S

L

S
S S

M

y
I I y y S 



     

 

Then there is a one or more solution on J for FBVP (3.3)-(3.4). 

Proof: define the operator  

    (   )   (   )  

as 

  (v)(s)
 

    
1

0

1
   ,  

s

s t t v t df t





 
    

 

2
3

0

( ) , ))
2

(  (
2

S
s

S tt f v t dt



 
    * 2

0 0
2

.Sv v t
v

t    

We may show that F1 is continuous and compact. For    [0,1  ] , for all s ∈ J, we have  

v(s)   ( )( ),Fy s  

then (A4) and (A5) hold for all t ∈ J  and we get, 

      1

2
2 * 2

0 0

                    1  .           

ψ ψ
2 2

S

f fL

v

vS
S v vv SI v SI 





 



     

 

So that via case (3.27),    non-negative M such t hat             
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Assume that 

{ ( , ):   }.Z v C J v M  
 

In the definition of Z, there is non v ∈ ∂Z, such that v= λF1(v) for some λ ∈ (0,1). 

Now, we may apply the non-linear alternative of Leray-Schauder [27]. Applying this, 

we deduce that    has a fixed point v in Z. This fixed point is a solution of the BVP 

(3.3)–(3.4). This finishes then proof. 

Example 3.12: Assume that equation (3.20), where      2,3   with the boundary 

condition (3.28) 

 
 

    
          ,            0,1 ,                         3.20

9 1

s

c

s

e v
D t s

e

s
v

sv






 

 

(0) 0       ,     (0) 1   ,   '' (1) 0                                                     (3.28)v v v    

        s J                Then we will get 

   
1

      , ,                     .     
10

f s x f s v x v    

Since then (A1) applies with L = 
 

  
 . We find out the case (3.26) which is fulfilled 

with 1S  , Indeed 

1 1 1 1
  L 1            10 ,            (3.29) 

( 1) 2 ( 1) ( 1) 2 ( 1)
S 

   

 
     

        
  

then 

                                
 

 
   

 

 (   )
 

 

 
                                                                (    ) 

                  
 

 
   

 

  (   )
                                                               (    ) 

to fix constant c  , case (    )– (    ) imply that 
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 (   )
 

 

  (   )
  

 

 
                                                  (    ) 

In case (36), we get  

   
  

 
   

From (35), we find out 

 (   )  
 

  
                                                                  (    ) 

By Theorem 3.3, Equation (3.20) and boundary condition, (3.28) has a unique 

solution on [0,1] which is fulfilled for some      2, 3 , for values of α satisfying 

(3.33). 

3.4 Boundary Value Problem of Orders with Nonlocal Condition 

The following definitions are used while solving the FBVP (3.5)-(3.6). 

Definition 3.3: Suppose that v is a continuously differentiable function on [0, S ] 

with its α-derivatives exists one [0, S ]. Then v is a solution of the FBVP (3.5)-(3.6), 

if v satisfies the equation      ( )   cD v s  ( ),   ( )f vs s   with the nonlocal BVP 

0(0)   ( )    .v g v v    

 We need to give some properties of the function g. 

(A6) There exist a non-negative constant  0M   such t hat 

| ( ) |      g v M   four each      ([0, ], ).Su C   

(A7) There exist a non-negative constant   0 a   such that 
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| ( )  ( ) |       |    |,  g v g v a v v    for each ,      ([0, ], )Sv v C . 

Theorem 3.6: Let (A1) and (A7) hold. If 

  
        1  ,                                                                 (3.34)

( 1)

Sk
a




 
 

  

then the nonlocal problem (3.5)-(3.6) has one solution on [0, S ]. 

Proof6: We transform BVP (3.5),(3.6) into the fixed points problem. To this end, we 

consider   

2  : F C ([0, ], )S C ([0, ], ),S  

defined by 

F2   v s   =      (v)
 

  
1

0

, ( )
     .

s f t v t
dt

s t






 
  

Then it is easily seen that F2 is a contraction mapping, so that Banach fixed points 

theorem can be applied. 

Theorem 3.7: Let (A2), (A3) and (A6) hold. Then the nonlocal FBVP (3.5), (3.6) 

has one or more than one solution on [0, S ].   

Proof: Since 
2  :  ([0, ], ) ([0, ], )F S C SC   is completely continuous, then the seat 

D = {v ∈ C ( J,   ) : v 2    ( )   F v  for some  0      1 }   

is bounded.  

Then Definition 3.4 will be used while solving the problem (3.7)-(3.8). 
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Definition 3.4: Suppose that v has a continuous second derivative on the open 

interval ( ),J  with its α-derivatives exists one J , if v  holds then equation     ( )cD v t  

= f ( s, v(s)) . .  a e J , with the boundary value problem    S
v S v

 
and     0v vg . 

To solve the BVP (3.7),(3.8), we can use the results of Lemma 2.1 and Lemma 2.2. 

Lemma 3.3: Assume that  1     2     and let           be continuous then v  is a 

solution of the FIE  given as 

 

  
1

0

 ( )( )   

s h
v s dt

s t

t






 
  

 
 1

0

        ( ) 1 g( )                  (3.35)

S

S

s s s
S t

S
t h

S S
dt v y



  
     
  

  

if and only if v is a solution of the FBVP. 

          ,             0, ,                                                 (3.36)c D v h v where ss s S       

v(0)     ( ) , g v
            

 v( S )                                                       (3.37)
S

v   

Then Banach Fixed Point Theorem is a base for first consequence. 

Theorem 3.8: Apply (A1 and (A7). If 

1 2  
                         1 ,                                                       (3.38)

( 1)

k
k

S S 





 
 

  

then, there is one solution on [0, S ] for the BVP (3.7)-(3.8). 

Proof: We transform BVP (3.7)-(3.8) into the fixed point problem. To this end, we 

consider 
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3  :  ([0, ], ) ([0, ], )SF C C S  

defined by  

    ( s )
 

  
1

0

, ( )
   

s f t v t
dt

s t






 
  

 

 
1

0

, ( )
        1 g( )

( )
 .

S

S

f t v ts s s

S
dt

tS S
v v

S 

 
    
   

   

The operator F3 is contraction and Schaefer’s FPT is used for second consequence. 

Then the fixed point of the operator 3F  is the solution of the BVP (3.7)-(3.8). 

Theorem 3.9: Assume that (A2),(A3) and (A6) hold. Then there is one or more than 

one solution on [0, S ] for the BVP (3.7)-(3.8). 

Proofs: we can show that F3: C ([0, ], )S C ([0, ], )S  is compact and continuous 

and we show also the seat   

D 3{ ( , ):     ( )     0    1 }v C J F v for some       

is bounded. 

3.5 Boundary Value Problem of Orders with Integral Problem 

The following definitions are used while solving the problem (3.9)-(3.11) 

Definition 3.5: Suppose v has a continuous second derivative on the open interval 

( ),J   with its α-derivatives exists on J is said to be a solution of (3.9)-(3.11) if v 

holds the equation   ( )c vD s  f(s, v(s)) . . ,a e J   with the boundary value problem

0
 ( )   ( , ( ))dt

S

v h t v tS   and  
0

(0)   g( , ( ))dt
S

v t v t   

To solve the BVP (3.9)–(3.11), we need to use Lemma 3.4. 
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Lemma 3.4: Assume that 1    2    and let 
1 2 , ,  :   J     be continuous. 

The function v  is a solution of the FIE,  

 
 

  
1

0

σ 
  ( )    

s t
v s dt

s t






 
  

 

 
1

0

σ 
 

( )

S ts

S
t

tS
d

 

    

   1 2

0 0

  1 ρ ρ  ,                                 (3.39)

S S
s s

t d t
S

t
S

dt
 

   
 

   

if and only if v is a solution of the FBVP. 

c
 D

α 
v( s )= ( )s .    s J   ,                                                        (3.40)   

   1

0

0   ρ                                                                       (3.41)

S

tv dt    

   2

0

  ρ   .                                                                    (3.42)

S

tv dS t    

The Banach Fixed Point Theorem is used for the consequence. 

Theorem 3.10: Let (A1) hold and the below case applied; 

(A8) * 0  k     such that; 

*( , ) ( , ) ,g s w g s w k w w    for all  s J, and ,w R.w   

(A9) ** 0 k     such that; 

**| ( ,  )    ( ,  ) |    |     |, h s w h s w k w w    for each s   J,  and  ,     R .w w   

If 

* ** 2
                                  ( )  1  ,                                                     (3.43)

( 1)

kS
S k k




  

 
  

then there is one solution on J for the BVP (3.9)–(3.11). 
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Proof: We transform BVP (3.9)-(3.11) into the fixed point problem To this end, we 

consider  

4  :  ( , ) ( , )F C J C J  

which is defined by 

 

  
4 1

0

f , ( )
( )( )   

s t v t
F v s dt

s t






 
  

 

 
1

0

f , ( )
                       

( )

S
s

S S

t v t
dt

t  

    

     
0 0

                                           1 g , , . 

S S
s s

tt v dt h t v dtt
S S

 
   
 

   

 The fixed point of 4F
 
is the solution of the BVP (3.9)-(3.11). Then 4F is contraction 

mapping.  

 The Schaefer’s Fixed Point Theorem is a base for secondary consequence. 

Theorem 3.11: Let (A1), (A2) hold and the below case applied: 

(A10)    a non-negative constant  N1>0 such that:  

  1,       ,          ,     .g s v N s J v      

(A11)   non-negative constant    such that 

2| ( ,  ) |       ,    ,    .h s v N s J v       

Then the BVP (3.9)-(3.11) has one or more than one solution one  J . 

Consider the Theorem(3.12), the settings (A2), (A10), (A11) are debilitated. 
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Theorem 3.12: Let (A1) hold then  

(A12)    1  ,  f L J  
 

and the continuous and increasing function 

    :  0, 0,    such that 

|  ( , ) |    ( ) (| |)   ff s w s w for each
 
       s J and for all      .w   

(A13)   1   ,  g L J    and the continuous and increasing function 

   *  :  0, 0,     such that 

*| ( , ) |    ( )  (| |) gg s w s w for each     s J and  for all   .w  

(A14)   1  ,  h L J    and the continuous and increasing function 

    :  0, 0,     such that 

| ( ,  ) |     ( )  (| |)  ,          ,   .hh s w s w s J w        

(A15)   a non-negative constant N1 > 0 such that 

          1

1

*

1 1 1 1

1              (3.44)   
ψ ψ ψ ψf fL

N

N SI a bN N NI 


    
 

     where  

   g

0 0

   ,                 .

S S

ha dt bt t dt      

Then the FBVP (3.9) - (3.11) has at least one solution on J. 

Proof: F4 is determined in Theorems (3.10) and (3.11). Clearly F1 is continuous and 

compact. For    [0,1  ] , for all   ∈   , we have v(s) 4  ( )( ) ,F v s  then (A12) and 

(A15) hold for all s ∈ J  , and we get, 

          1

*
                    1  .           

ψ ψ ψ ψf fL

v

v I I v a vS b v 



   


    

 



25 
 

Then by case (3.44),   a non-negative constant  N1 such
1that  v N‖ ‖  . 

Then  

1   {Z     vCr(J, ) 1:     } .v M

   

In the definition of Z1, there is non v ∈ ∂Z1 such that v= λF4(v) for some λ ∈ (0,1). 

Now, we may apply the non-linear alternative of Leray-Schauder, applying this, we 

deduce that    has a fixed point v in Z1. This fixed point is a solution of the BVP 

(3.9)–(3.11). This finishes then proof. 

Example 3.3: Assume the equation (3.20) with the boundary conditions (3.45), 

(3.46) 

  1 2 3

0

0   ( ) ,              0       ...   1                            (3.45)i i

i

y vc s s s s




        

 
0

1   ( ) ,                                                                         (3.46)j j

j

y d v s




   

whereas, 0 < 0s < 1s < 2s < … < 1, ,i jc d  , i , j=0,1,2… are given non-negative  

constants within 

0 0

                         ,       , i j

i j

c d
 

 

     

also 

0 0

4
        ,    

5
i j

i j

c d
 

 

     

where (1,2]  and 0   ,  v x   and  s J , Then  

   
1

, ,     .
10

f s x f s v x v     



26 
 

Since (A1) occurred with   
 

  
. if α ∈ (0, 1] with *

1 0

1,  iS k c




  and **

0

,j

i

k d




  

then equation (3.44) will be  

   * **

0 0

 2 1
          1        1 1  . (3.47)

( 1) 5 ( 1)
i j

i j

kS
S k k c d




 

 

 

         
   

 

 

It is applied for each α ∈ (1, 2]. Then via Theorem (3.10), there is one solution on 

[0,1] for the equation (20) and boundary conditions (3.45), (3.46). 

Remark 3.2: One can select the constants and   asi jc d   

    
 

 
 (

 

 
)
 

          
 

 
 (

 

 
)

 

  

and then  

∑   

 

   

  
 

 
                 ∑    

 

   

 
 

 
   

The following definitions are used while solving the problem (3.12)–(3.14). 

Definition 3.6: Suppose that v has a continuous second derivative on the open 

interval ( ),J  with its α-derivatives exists one J , if v  holds the equation

  ( ) ( , ( ))   . . cD s f s v s a e Jv  , with the BVP,
0

( ) ( ) ( , ( ))
S

v S v S h t v t dt    
and  

0
(0) (0) ( , ( ))

S

v v g t v t dt   . Then v is a solution of (3.12)-(3.14). 

To solve the problem (3.12)–(3.14), we use the results of Lemma3.5. 

Lemma 3.5: Assume 1 2   and let 1 2, ,   :   J     be continuous. Then v  be 

the solution of the FIE. 
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0

  ,   ,                                 (3.48)

S

v G s t ds s t t     

when 

     1 2

0 0

1 ( 1)
  ρ ρ    ,                    (3.49)

2 2

S S
S s s

dts t t dt
S S


   

  
  

    

And the Green function 

 

  
   

  
   

  
   

  
   

1 2
1

1 2

1 1( )
 ,    0

( ) 2 2 1
,        (3.50)

1 1
  ,                   

2 2 1

s S t s S ts t
t s

S S
G s t

s S t s S t
s t S

S S

 


 

  

 

 


 

        
      


    
   

    

 

                v is a solution of the FBVP. 

  ( )   ( ) ,           ,                                                           (3.51)c D s s s Jv    

   1

0

0 '( )   ρ                                                                       (3.52)

S

v v s dtt    

   2

0

'( )   ρ  .                                                                     (3.53)

S

v S v S dtt    

     : By Lemma3.1, we get 

  
 

   
1

0 1

0

1
       .                                        (3.54)

s

v cs s tc s t dt






   

    

From (3.52) and (3.53), we have 

 0 1 1

0

    ρ                                                                (3.55)

S

c c dtt     

 
 

   
1

0 1

0

1
  1    

S

c c S S t dtt







   
   

 
     

2

2

0 0

1
                                          (3.56)

1

S S

S t dt t dt t
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Then, we get 

   1 2 1

0 0

1 1
     

2 2

SS

c dt dt t t
T S

  
     

   
   

1

0

1
   

2

S

S t t dt
S








 
 

  

   
   

2

0

1
   ,                               (3.57)

2 1

S

S t
S

t dt







 
  

  

      

   0 1 2

0 0

1 1
  ρ   ρ  

2 2

S S
S

c dt dt
S

t t
S


 

     

     
 1

0

1 1
 

2

S

dt
S S

t
t








  

   

     
 2

0

1
   .                                 (3.58)

2 1

1
S

dt
S S t

t







   

  

In (3.54), (3.57), (3.58) and apply this fact ∫   ∫  ∫      
S

 

 

 

S
 

  get   

        
0

    , σ  ,                                     (3.59)

S

Gv s ss t dtt    

where
 

                  

     1 2

0 0

( 1 ) ( 1)
ρ ρ   ,                           (3.60)

2 2

S S
S s s

dt dts t t
S S


  

 
     

    

 

  
   

  
   

  
   

  
   

1 2
1

1 2

1 1( )
 ,    0

( ) 2 2 1
,    (3.61)

1 1
  ,                         

2 2 1

s S t s S ts t
t s

S S
G t s

s S t s S t
s t S

S S

 


 

  

 

 


 

        
      


    
   

    

 

since we gain (3.48). If v applies (3.48), then (3.51)–(3.53) hold.  
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The Banach Fixed Point Theorem is a base for the consequence. 

Theorem 3.13: Let (A1), (A8) and (A9) hold. If  

* **( 1) ( 1)
1 ,                                            (3.62)

2 2

S S S S
k k Sk

S S


  
   

  
  

where

 

( , )

sup ( , )
s t J J

G s t


  

Then there is a one solution on J for the BVP (3.12)–(3.14). 

Proof13: We transform BVP (3.12)-(3.14) into the fixed point BVP. To this send, we 

consider 

5  :  ( , ) ( , ),F C J C J  

which is given by 

    5

0

  ( , ) ( , ( )) ,

S

F G s t f t v tv s ts d    

where   

     
0 0

( 1 ) ( 1)
G , ( ) , ( )  .

2 2

S S
S s s

t v t dt h t v t dt
S

s
S


  

 
    

The function   (    )  is defined by (3.50). Then fixed point of the operator F5 is the 

solution of the BVP (3.12)–(3.14), then F5 is contraction mapping. 

So that Schaefer’s Fixed Point Theorem is a base for the second consequence. 

Theorem 3.14 Let (A2), (A3), (A10) and (A11) hold, then there is one or more 

solution on J for the BVP (3.12.)–(3.14.). 
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Consider the Theorem s(3.15), the settings (A10), (A11) are debilitated. 

Theorem 3.15 Let (A2), (A12), (A13), (A14) hold and the below case holds:  

(A16) 2 0N   such that 

   
2

*

2 2 2

     1,                                    (3.63)
 ψ    ψ( ) ψ

N

Na NN b c


 
  

whereas    g

0 0

1 1
     ,                             

2 2

S S

h

S S
a dt b dt

S S
t t

 
   

     

    

0

( ) .

S

fc t dt    

Then the BVP (3.12) – (3.14) has one or more solution on J. 

Proof: F5, which is determined in Theorems (3.13) and (3.14) clearly F5 is 

continuous and compact. four    [0,1  ] , for all s ∈ J, we have v(s) 5  ( )( )F v s . Then 

(A13) and (A14) hold for all   ∈    we get, 

   *
                    1  .           

 ψ    ψ( ) ψ

v

a v b v c v



  


 

 

For all s J  so that (6.8), 2M  such that     v ‖ ‖   ≠ M2. 

Assume 

2 2   {     ( , ):   }.v C J v MZ


     

In the definition of Z2, there is non v ∈ ∂Z2 such that v= λF5(v) for some λ ∈ (0,1). 

Now, we may apply the non-linear alternative of Leray-Schauder [27], applying this, 

we deduce that    has a fixed point v in Z2. This fixed point is a solution of the BVP 

(3.12)–(3.14). This finishes then proof. 
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There is another existence consequence for the BVP (3.12)–(3.14) depend one then 

                     [19].  

Theorem 3.16 Let (A8), (A9.) and (A12) hold.  

 2

** * (  ) 1                                                    (3.64)
2

S S
k k

S


 


  

Since 

 

 
 

2 * **

* *
 

(  )
1

2
lim sup   1                                            (3.65)

1 ( g )
ψ

2

u

S S k k
u

S

S S h
c u

S




  
 
 
  

 




  

where * sup  ( ,0)
t J

g g t


  and  * sup ( ,0)
t J

h h t


  , so that BVP (3.12)-(3.14) has at least 

one solution on J . 

Proof: Suppose the operators    1 2,   ;  , ,C J C J    given by 

     
 

  1

0 0

11
  g , h ,      

2 2

S SsS s
v t v dt t v dt

S
s t

S
t

  
  

  
   

    

  2

0

  ( , ) ( , ( ))

S

v G s t f t v t ts d    

G(s,t) is given as formula (3.50). From (3.62) it is shown that 1  is a contraction 

mapping. the operator 2  is continuous and completely continuous by (A12). By 

Theorem 2.3 the set D is bounded. 

Assume v D  , so that ,s J    
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      1 2
. 

u
v s sus  



 
  

 
  

In (A8), (A9), (A12) we get 

 
       

0 0

λ 1 λ 1
g , h ,

2 λ 2 λ

S SS Sv v
v t dt t dt

S S

t t
s

    
    

    
   

   
0

   λ G , f , ( )

S

s t t v t dt   

 
 

 
 *

0 0

1 1
                                         g ,0

2 2

S SS S
k v dt t dt

S S
t

 
 

     

 
 

 
 **

0 0

1 1
                                                  ,0

2 2

S SS S
k v dt h t d

S
t t

S

 
 

     

  
0

     ( )ψ ( )

S

f t v t dt   

     
 

* ** * *1   1  g
        .  

2 2

S S k k S S h
y c v

S S


 

   
  

 
  

Thus, 

 

 
 

* **

* *

1 (  )
1

2
    1.                                    (3.66)

1 ( g )
ψ

2

S S k k
v

S

S S h
c v

S






  
 
 
  

 




 

In (3.65),  0R   such that Dv   and    v  ‖ ‖  by (3.64). Therefor      ,v R ‖ ‖

for all  .v D , Clearly D is unbounded. 

Example 3.4 [1]: Assume the equation (3.20) with boundary conditions (3.67), 

(3.68) 

 
 

    
          ,            0,1 ,                                  3.20

9 1s

s

c
s

v
e v

D t s
e v s
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0

0   ' 0   ( ) ,                                                                      (3.67)i i

i

v v c sv




    

   
0

1 ' 1   ( ) ,                                                                          (3.68)j j

j

v v d sv




    

where 

0 1 2 0 1 2   0               · · ·  1  ,    0                  · · ·  1  ,   ,  ,  ,     0, . . . ,i js s s s s s c d i j            are 

given non-negative  constants with 

0 0

 ,                           i j

i j

c c
 

 

      

Where (1,2]  ,  0 ,v x    and  s J  . So that 

   
1

, ,      .
10

f s x f s v x v     

Since The condition (A1) occur with 
1

  
10

k   . We need to show the problem (3.54), 

it is applied with * **

0 0
1,  ,ii jj

S k c k d
 

 
       and by (3.50) G is defined by 

 

  

 

  

 

  

   

  

 

1 21

1 2

1 1 1 1( )
 ,    0

( ) 3 3 1
,                 (3.69)

1 1 1 1
  ,                          1

3 12

s t s ts t
t s

G s t
s t s t

s t
S

 

 

  



 

 

    
   

   


   
      

  

Additionally by (3.69), 

4 2
,

3 ( ) 3 ( 1)


 
 

  
 

      

          

   2 2

* ** *

2 2

S S S S
k k SkG

S S

 
 

 
 

0 0

2 2 1
  1.             (3.70)

3 15 ( ) 15 ( 1)
i j

i j

c d
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It is applied for fit figures  of ,   and 1,  2i jc d   . Then by Theorem (3.13) the 

equation (3.20) with boundary conditions (3.67)–(3.68) has a unique solution on 

 0,  1   for such figures of  1,  2   .  

Remark 3.3: We select the constants an d i jc d  as 

2 1 2 1
    ,                  .

15 3 45 3

i j

i ic d
   

    
   

  

Therefore  

∑  

 

   

  
 

  
                ∑    

 

  

 

   

        

By (3.62), 

 

   ( )
 

 

   (   )
 

  

  
   

It is applied for   1,  2   . By numerical calculations 

2 1 37
g( )   

15 ( ) 15 ( 1) 45


 
  

  
  

takes negative values on the interval (1, 2]. 
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Chapter 4 

NEW CLASS OF FRACTIONAL BOUNDARY VALUE 

PROBLEM 

 

4.1 Boundary Value Problem of Order α ∈ (0, 1] 

Definition 4.1 [28,29]:  For all   ∈                ∈  + 

1

( )
( )  .

( )( )

t

a

a

h t
I h s dt

s t



 


   

Definition 4.2 [28,29]: Let h is a function given one then interval [a, b], the   th 

Riemann-Liouville fractional-order derivative of function is defined by  

 
 

1

  

1   
( )    ( )   ,

( ) ( )
a n

s

n

a

hd
D h dt

n ds

t
s

s t




  


      

where n= [ ] + 1 and [ ] represents then integer parts of  . 

Definition 4.3 [28]: Let h be a function given one then interval [a, b]. The Caputo 

fractional-order derivative of h, is defined by  

 
 

1

  

    
( )    ,

( )( )

c

s

a n

a

h
D h dt

n

t
s

s t




  


     

where   1n   . 

Lemma 4.1: Assume that   > 0, the differential equation ( ) 0c

aD h s


   has a 

solution  

2 1

0 1 2 1( ) ... n

nh s c c s c s c s 

       , ci∈  , i=0,1,2,…,n-1 ; n = 1+ α . 
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Lemma 4.2: Assume   > 0, so that 

 
1

0

( ) ( )
n

c i

a iI D h s h s c s 





   

For some ci∈  , i=0,1,2,…,n-1 ; n=[α]+1. 

We consider 

( ) ( , ( )),     [0, ],0 1

(0) ( ) ,      a+b 0,

                                  a,b,c

c

aD v s f s v s s S

av b Sv c

 


  
  

   
 
  

     

 Lemma 4.3: Let 0 1  , 0 .,h C S    The solution of the Fractional Integral 

Equation is given as follows, 

 
   

1

0

0

1
( ) ,

s

v s v s t h t dt





  

   

 if and only if v is a solution of the IVP. 

0

0

( ) ( );     s [0, ]

  (0)  .

c SD v s h s

v v




 


 

Lemma 4.4: Let  0 1   , 0 .,h C S    The solution of the Fractional Differential 

Equation is given as follows,  

 
1 1

0 0

1 1
( ) ( ) ( ) ( ) ,

( ) ( )

s S
b

v s s t h t dt t h t dt c
a b

S
 

 

 
 

     
    

   

if and only if v is a solution of the BVP. 

0 ( ) ( ),     s [0, ]

(0) ( )

c S

S

D v s h s

av bv c




   
 

   

 

Proof: Let v be a solution of  

0 ( ) ( ).c D v s h s


                                  take 0I  
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Then                                  0 0 0( ) ( )cI D v s I h s  

   

0( ) ( )   v s k I h s
      where k is constant ; 

By Lemma 4.3,  

 
   

1

0

1
( )

s

v s k s t h t ds





  

   

 
   

1

0

1
( ) ,

s

v s k s t h t dt





    

             ∈                     (4.1) 

We need to find k . By using  (0) ( )av bv S c   , let’s find v(0) and v( S ) in such a 

way that  

(0) ( )     andv k      
   

1

0

1
( )  .

S

v k t dS S h t t






   
                    

Now, we have 

  
 

   
1

0

1
( )  ,

S

a k b k t h t dt cS




 
        

  

 
   

1

0

( )

S

S
b

k a b c t h t dt






    
     

 
   

1

0

1
                                                    ....(4.2)

S
c b

k t h t dt
a b a b

S






   
     

Substitute the value of k , to equation (4.1) and (4.2)  

To get 

 
1 1

0 0

1 1
( ) ( ) ( ) ( )  .

( ) ( )

Ss
b

v s s t h t dt t h t dt c
a b

S
 

 

 
 

     
    

   

Theorem 4.1: Let  

(H1)  f: [0, S ] ×   →   is continuous. 
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(H2)    L > 0 such that ( , ) ( , ) ;  s [0, ];   ,  .f s u f s v L u v u vS       

(H3) Let 1 1
( 1)

bL

a

S

b





 
      

 , so that the BVP has one solution in C[0,T] . 

Proof: To start to prove the theorem we transform the problem (3.1)-(3.2) into a 

fixed point problem. To this end we introduce the following operator 

F : C ([0, S ] , ) → C ([0, S ], ), 

where F is defined by 

     0 0( ) , ( ) , ( )  .
b c

Fv s I f s v s I f v
a

S S
b a b

 

   
 

 

 [0, ]If v C S  then [0, ]Fv C S  , then : [0, ] [0, ]F C S C S  is Banach space and 

complete. We need to show F is a contraction mapping, To show this, let 

, [0, ]x v C S . Then for every [0, ]s S  we have, 

           

       

0 0 0 0

0 0 0

( ) ( ) , ( ) , ( ) , ( ) , ( )

, ( ) , ( ) , ( ) , ( )

b b
Fx s Fv s I f s x s I f s v s I f v I f x

a b a b

b
I f s x s I

S S S S

S S Sf s v s I f x f v
a b

S

   

  

   

  

    
 

   


 

       1 1

0 0

1 1
( ) , ( ) , ( ) ( ) , ( ) , ( )

( ) ( )

t Sb
s t f t x t f t v t dt t f t x t f t v t dt

a b
S 

 

      
     

By (H2), 

1 1

0 0

1 1

0 0

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1  .
( 1)

s

s

S

S

bL L
s t x t v t dt t x t v t dt

a b

bL L
x v s t dt x v t dt

a b

bL L
s x v x v dt

a b

bL
x v

a

S

S

S

S

b
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By (H3) 

1 1.
( 1)

bL

a

S

b





 
      

 

Then, : [0, ] [0, ]F C S C S  is a contraction mapping and by the Banach Fixed Point 

Theorem F has a one fixed point in 0,C S    , which is a unique solution of BVP.  

Theorem 4.2: Let 

(H1)  f: [0, S ] ×   →   is continuous. 

(H2)    P > 0 such that ( , ) ( , ) ;  s [0, ];   ,f s z f s v P z Sv z v      . 

(H3) 1 1
( 1)

bP

a

S

b





 
      

 

(H4) there exist M > 0 such that ( , )f s z M  , [0, ]Ss   , z   . 

Then there is one or more than one solution in [0, ]C S  for the BVP.  

Proof: The proof is created on the Schauder Fixed Point Theorem, :F X X , 

where X is Banach space, and   

iii- F is continuous and compact function. 

iv-  ( ) ;  for some [0,1]F x X x Fx       is bounded , 

Then F has at least one fixed point. 

Step 1: F is continuous in C[0, S ].  

Step 2: F maps bounded sets into bounded set in 0,C S    . i.e :[0, ] [0, ]SF S  . 

Step 3: F maps bounded sets into equicontinuous sets of [0, ]C S  . 

Step 4: ( )F   is bounded. 
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Hint: Step 2 and 3 are Arzela Ascoli theorem then   is compact. 

Step 1: Let   [0, ], [0, ]nv C v CS S    

lim 0 lim 0.n n
n n

v v Fv Fv
  

      

Indeed 

1

0

1
( )( ) ( )( ) ( ) ( , ( )) ( , ( ))

( )

s

n nF v s F v s s t f t v t f t v t dt



   
 

 
1

0

1
( ) ( , ( )) ( , ( ))

( )

S

n

b
t f t v t f t v t dt

a b
S 



  
    

        1 1

0
0 0

1 1
( ) ( ) sup ( , ( )) ( , ( ))

( ) ( )

S

n
S

s

t

b
Ss t dt t dt f t v t f t v t

a b

 

 

 

 

 
         

   

                  
0

sup ( , ( )) ( , ( ))     
( ) ( ) S

n
t

b
f t v t f t v t

a

S S

b

 

     

 
       

 

Taking limit as n  , the above expression tends to zero and continuity of f,  

Thus 0 as nnFv Fv


       F is continuous. 

Step 2: We need to show that for any 0T  ,   a non-negative constant P such that 

four all  (0, ) [0, ]:v B T v C PS v


     , we have ( )F v P

 , then 

1 1

0 0

1 1
( ) ( ) ( , ( )) ( ) ( , ( ))

( ) ( )

Ss b c
Fv s s t f t v t dt t f t v t dt

a b a b
S 

 

     
      . 

 By (H4) 

1 1

0 0

( ) ( ) ( )
( ) ( )

s Sb cM M
Fv s s t dt t dt

a a
S

b b

 

 

     
    

 

( ) ( )

b cM M
P

a b a b
S S 
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That is .Fv P

  

Step 3: Let 
1 2, [0, ],s Cs S  1 2s s  , (0, )v B N  . Then  

2 1

1 1

2 1 2 1

0 0

1 1
( ) ( ) ( ) ( , ( )) ( ) ( , ( ))

( ) ( )

s s

Fv s Fv s s t f t v t dt s t f t v t dt 

 

     
  

 

 
1 2

1

1 1 1

2 1 2

0

1 1
( ) ( ) ( , ( )) ( ) ( , ( ))

( ) ( )

s s

s

s t s t f t v t dt s t f t v t dt  

 

       
  

 
               

 2 1 1 2 2 1( ) ( ) ( )
( ) ( )

M M
s s s s s s   

   
     

 

 
               

1 2 2 1( ) 0     as      s .
( 1)

M
s s s 


   
 

 

Step 1, 2 and 3 and using the Arzela Ascoli theorem, we prove that F is continuous 

and compact. 

Step 4:    ( ) [0, ]: ( ),0 1F v C v F vS        is bounded. 

Assume ( )v F  , then ( )v F v  , we need to show that  

0L   such that .v P

   

Indeed (see step 2) 

( ) ( ) ,
( ) ( )

S S
b cM M

v F v F v P
a b a b

 
     

     
   

 

By the Schauder Fixed Point Theorem F has at least one fixed points in 0,C S   . 

Remark 4.1: Consider  0 ( ) ( , ( ))c D v s f s v s

    Assume that 0a b       

             (0) ( ) .av bv S c   

1-  =1 , b=0, If a  then initial value problem  (IVP) 

2-  0,  1If a b   boundary value problem BVP 
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3-  1,  0 (0) ( )If a b c v Sv       is called anti periodic BVP  

4-  1, 1 (0) ( )If a b v v S      is called periodic BVP. 

4.2 Non-Linear Fractional Differential of Order α ∈ (1,2] 

Throughout this section. We assume the following;  

 

1 1

2 2

1 2

 ( ) , ( ), ( ) ,   1 2,   0 r 1,

 (0) ( ) ;     0 1

 (0)  ( ) ;     s [0, ]

 :[0, ]   is continuous.

 1 0, 0,       is caputo derivative.

c c r

c p c p

c

D x s f s x s D x s

x M x p

D x M D x

f

M

S S

M D

S

S











     

    

   

   

   

             boundary condition (1) 

Lemma 4.5: 

For each ( ) [0, ],g s C S  the unique solution of the linear FBVP. 

1 1

2 2

( ) ( )

(0) ( )

(0)   ( )

c

p c pc

D x s g s

x M x

D x M Sx

S

D









 

 

                    boundary condition  (2) 

   
 

   
 

1 2

0

11 1 1

11

1

1

1 1

1 1

1

1 1

( ) ( , ) ( ) ;  where G(s,t) is the Green funtion.

( )
(2 ) ( )1

;0
( ) 1  ( )( , )

(2 ) ( )

(1 ) ( ) 1

S

p

p

p

x s G s t g t dt w w s

M
s t t

M t s tM
t s

M pG s t

M t M s s t

S
S S

S
S

S S

M

S

SM




 



 






 



  



  

  
          

   

        
  



 ,

;0
 ( )p

Ss t
p

 
 
 
 
 
 
   
   

  

2 1 1 2 2
1 2 1

2 1 2

(2 ) (2 )
 ;            .

(1 )

p

p

M M p p
w w

M

S S

SM M
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Proof: We know that 

0 0 1 2( ) ( )  ( ) ( )c D x s g s apply I x s I g s b b s  

        

1 21

0

1 ( )
( ) .

( ) ( )

s
g t

x s dt b b s
s t  

  
   

To find 
1 2 and b b  we use the boundary conditions in (2) 

1

0 2( ) ( )
(2 )

p
c p pD x s I g s b

p

S




 
 

                      (4.3) 

Since 

 

and           

 

Insert the above equation in (2) 

1 1 0 1 2 1

1

2 0 2 2 2

( ( ) )

( )
(2 )

p
p

S S

S

b M I g b b

I g M
p

SM







 








     
  
 

  
   

                (4.4) 

By (4.3) 

2 2 0 21

2

2
2 1

2

(2 )
( ( ) )

(2 )
( ) .

p

p

p

p
b M I g S

SM

p
b I g

M
S

S















 
 

  
   

 

 

And by (4.4) 

1

0 1 2

1

0 2

(0) ,

( ) ( )

(0) 0,

( ) (

,

) ,
(2 )

pc

p
p pc

S S

S
S

x b

x T I g b b

D x

D x I g s b
p
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2 1 1 0 1
1

1

1 1 1
1 2 0

1 1 1

1 2 1 1
1 01

1 2 1 1

( )

1

( )
1 1 1

(2 )
( ) ( ) .

1 1 1

p

p

b M M I g
b

M

M M
b b I g

M M M

S S

S
S

M Mp
b

S
S SI g g

M M MS
I

M





 





 









 
 



    
  

  
      

   

 

  Then 

 

1 21

0

1 1 2
0 1

1 2 1

1 1 2
0 01

1 1 2

1 ( )
( )

( ) ( )

(2 )
      ( ) ( ) (2 )

1 1

(2 )
      ( ) ( )  .

1 1

p

s

p p

p

p

g t
x s dt b b s

s t

M Mp
I g s I g p

M M M

M p
I g I g s

M M M

S
S S

S

S S
S





 







 





 

 

  
 

 
    

 

  
    

   



 

The Green function becomes 

1 1 11 1

1

1 1

11

1

1

1 1 11 1

1 1

11 1

1

1 1

1 1 (2 ) 1
( ) ( ) ( )

( ) 1 ( ) 1 ( )

( ) ,
1

( , )
1 1

( ) ( ) ( )
( )(1 ) ( ) 1 ( )

(2 ) 1
( )

1 ( ) 1

p

p

p

p

p

p

M M p
s t t t

M M p

M s
s t s

M
G t s

M M
t s t t

M M

M Mp s
t

M p M

S
S S

S

S
S

S S

S
S

S S

  



  



  

  



   



 



  

 



 
    

     

  




      
    

 
 

   

1

1
( ) ,p

p
t s tS  



 
 
 
 
 
 
 
 
 
 
  
  

 

We find out,  

1 2 1 2

0

( ) ( , ) ( ) ,      where  and  are constant.

S

x s G s t g t dt w w s w w     

Lemma 4.6: Existence and uniqueness. 

Assume  

 0 1;   0, : 0, :   0,c r

rr C x C D xS SCS                
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  ( )     

    S

      ( )  

(  [  S ]       )               

(  )( )  ∫
(   )   

 ( )
 (   ( )      ( ))  

 

 

 
  

    
∫

( S   )
   

 ( )
 (   ( )      ( ))  

S

 

  

 (   ) [  ( S   )   ]

(    ) S
   ∫

( S   )
     

 (   )
 (   ( )      ( ))  

S

 

         

Then there is one solution on [0, ]rC S  for the BVP (1), If and only if 

: [0, ] [0, ]r rF C S C S  has a unique fixed point. Let          

   
S

 
(           )  (     )   (   ) (   ) 

(    ) (   ) (     )
 

   
S

   
  (     ) (   )   (     ) (   ) 

 (     ) (   ) (     )
   

Theorem 4.3: Let  

i) :[0, ]  f S     be continuous. 

ii) ( , , ) ( , , ) ( ),f s x x f s v v L x v x v             [0, ];   , , ,L S x v x v    . 

iii)       ,   where  (          ) 

Then BVP (1) has a unique solution.  

Proof: It is shown that : [0, ] [0, ]r rF C CS S  . We need to show that  

r r
Fx Fv L x v    . Take derivative of (Fx)(s) 
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1

21

0

1 ( , ( ),  ( ))
( )

( ) ( ) (2 )

s c r r
c r

r

f t x t D x t s
D Fx s dt w

r s t r



 
  

      , 

then 

0 0
max ( )( ) ( )( ) max ( )( ) ( )( )c r c r

r s S s S
Fx Fv Fx s Fv s D Fx s D Fv s

   
    

  

( )( ) ( )( )Fx t Fv t

 

                 
1

0

1 1
( , ( ),  ( )) ( , ( ),  ( ))

( ) ( )

t

c r c rf t x t D x t f t v t D v t dt
s t  

 
   

1

1

1

0

1 1
( , ( ),  ( )) ( , ( ),  ( ))

( ) ( )1

S

c r c rf t x t D x t f t v t D v t dt
S t

M

M  


 
 

 

          

1

(1 )

1

1

0

(2 ) ( ) 1
( , ( ),  ( )) ( , ( ),  ( ))

( ) (1 )

S

c r c r

pp

p S s s
f t x t D x t f t v t D v t dt

S

M

p SM t   

   
 

     

             

1

1

1

(1 )

1

1 1

0 0

1

0

1 1 1 1

( ) ( ) ( ) ( )

(2 ) ( ) 1

( ) ( )

1

1

s S

S

p

r

p

dt dt
s t S t

L x v
p S s s

dt
S pM S

M

M

t

M

 



 



 

 

 
 

    
   

    
    





 



            

        11

(1 )

1 1

1

(2 ) ( )

1 1( ) ( ) ( 1)

p

r rp

p S s s SS S
L x v L x v

p

M

S

M

M M

 


    



 

    
      
     
 

(4.5)

   

 

 

In a like manner 

2( )( ) ( )( )c r c r

r
D Fx s D Fv s L x v    .        (4.6) 

Now from (1) and (2) we get the following, 

1 2

0 0

1 2 1 2

( )

max ( )( ) ( )( ) max ( )( ) ( )( )

( )

r r

c r c r

r t T s S

r r r r

Fx Fv L x v

Fx Fv Fx s Fv s D Fx s D Fv s

L x v L x v L x v L x v

 

    

   

    

     

        

 

Thus F is a contraction. 
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Theorem 4.4: Let,  

i- : 0,  f S      be continuous. 

ii-    ( ) 0, ;SV s C       such that  

( , , ) ( ); 0, , ,f s x v V s s S x v         

Then there is at least one solution for the (BVP) (1). 

Proof:  

Step 1: : 0, 0,r rF C S C S        is continuous.    

Step 2: F is compact ; for any bounded set 0,rA C S     ( )F A  is compact in 

0,rC S    . 

Step 3: The set  0, ; ( );0 1ry x C S x F x         . 

Now start by Step 1: 

step 1: {xn}, 0, ,rx C S     assume that 0n r
x x   as n   

Define {xn} 

0n r
Fx Fx    as n   

1

1

0

1

1

1

0

1

1
( )( ) ( )( ) ( ) ( , ( ),  ( )) ( , ( ),  ( ))

( )

1
                       ( ) ( , ( ),  ( )) ( , ( ),  ( ))

( )

1 1
                   ( )

( ) ( )

s

c r r

n n n

S

c r c r

n n

Fx s Fx s s t f t x t D x t f t x t D x t dt

S t f t x t D x t f t x t D x t dt

M s
p S t

M

M

 















   


  


  

 





 
1

(1 )

1

0

( , ( ),  ( )) ( , ( ),  ( ))

(2 ) ( )
wh

1
ere ( ) :  

( )

S

c

p

r c r

p
f t x t D x t f t y t D y t dt

p S s s
M t

M p

M

S








    








 



48 
 

Take max 0; ( ) (0),s M t M   

F is continuous and lim 0n rn
x x


   . 

lim ( , ( ),  ( )) ( , ( ),  ( )) 0c r c r

n n
n

f s x s D x s f s x s D x s


    take max of x then r    

It follows that 

1

1

1

1

0

0

1

0

( )( ) ( )( )

1
( )

( )

1
( , ( ),  ( )) ( , ( ),  ( )) ( )

( )

( ) 1

( ( )

1

)

n

s

S

c r c r

n n

S

p

Fx s Fx s

s t dt

f s x s D x s f s x s D x s S t dt

M s
dt

p S t

M

M



















 

 

 
 

 
 
    
 
 
 
    









 

 0 as nFx Fx n


      

Similarly, 

 0 as 

 0 as 

c r c r

n

n r

D Fx D Fx n

Fx Fx n


   

   

  

Step 1: [0, ]rA C S   is bounded 
1 ( ) is bounded

2 ( ) is equicontinuous

F A

F A

 
 

 
  

By Arzela Ascoli theorem 
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( 1) ( 1) ( 1)1
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Similarly, 

1 1

0 0

1

2 2

2

2

1 1
( )( ) ( ) ( ) ( )

( ) ( )

                   .
(2 )
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c r

D Fx s V s t dt D M s V S t dt
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w M
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   holds

 

From (1) and (2) we get, 

1 2 :
r

Fx M M M    then F  is bounded.  

2-  F(A) is equicontinuous if and only if  , ( )( ),  ( )( )c rx A Fx s D Fx s   are 

uniformly continuous. 

Now, for 
1 2; , [0, ]x A s s S   and 1 2s s  , we have  



50 
 

 

2

1

1

2 1 2

0

1

1

0

1

2 1

1

1
( )( ) ( )( ) ( ) ( , ( ),  ( ))

( )

1
                                   ( ) , ( ),  ( )

( )

(2 )( ) ( )
                                   ,

( )

s

c r

s

c r

p

p

Fx t Fx t s t f t x t D x t dt

s t f t x t D x t dt

p s s S t
f t

S p

















 



  


 


   


 





  2 2 1

0

( ),  ( ) ( )

S

c rx t D x t dt w s s 

 

 

1

2

1

1 1

2 1

0

1

2

1

2 1 2 2 11

0

1
( ) ( ) ) ( , ( ),  ( ))

( )

1
( ) , ( ),  ( )

( )

(2 ) ( )
, ( ),  ( )

( )

s

c r

s

c r

s

S p
c r

p

s t s t f t x t D x t dt

s t f t x t D x t dt

p S t
s s f t x t D x t dt w s s

S p

 











 



 



     

 


  
   

 







 

where 
2 1 2

1

1 2

0 0

 , 0

t t t
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f f f t t       . 
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1 2 1 2 1

2 1 2 2 1
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(4.7) 
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(4.8)  

Since the functions 

                                1, , ,  (1< 2,  0)r rs s s s r           

are uniformly continuous on [0, S ], from (1) and (2) 

2 1

2 1 2 1

( ) ( ) 0

( )  ( ) 0     as    sc r c r

Fx s Fx s

D Fx s D Fx s s
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Since, Via Arzela Ascoli Theorem the sets F(A) and  ( ) :c r c rD F A D Fx x A   are 

relatively compact in C[0, S ], then is F(A) is relatively compact in [0, ].rC S   

Step 3:  0, : ,0 1rV x C S x Fx         is bounded [0, ]rx C S   , we have 

1

2

1 2

( ) ( ) ( )

( ) ( ) ( )

 is bounded

c r c r c r

r

x s Fx s Fx s M

D x s D Fx s D Fx s M

x M M

V





  

  

  



  

Therefore, by Leray-Schauder Theorem F has at least one fixed point in [0, ].rC S   
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