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ABSTRACT

In this thesis, we collect some results on sufficient conditions for the existence and
unique of solutions for various classes of initial and boundary value problem for
fractional differential equations involving the Caputo fractional derivative. Although
the tools of fractional calculus have been available and applicable to various fields of
study, the investigation of the theory of fractional differential equations has only
been started quite recently. The differential equations involving Caputo differential
operators of fractional order, appear to be important in modeling several physical
phenomena and therefore seem to deserve an independent study of their theory

parallel to the well-known theory of ordinary differential equations.

In this thesis, we shall study systematically the basic theory of fractional differential
equations involving Caputo differential operators. We follow the method of deducing

the basic existence and uniqueness results from the fixed point theory.

Keywords: Boundary Value Problems, Fractional Differential Equation, Fractional

Calculus



Oz

Bu tezde, Caputo fraksiyonel tirevli fraksiyonel diferansiyel denklemler icin
baslangic ve simir deger probleminin ¢esitli smiflar i¢in varligi ve tekligi
arastirilmistir. Kesirli analizin araglari, ¢calismanin gesitli alanlarda kullanilabilir ve
uygulanabilir olmasina ragmen, fraksiyonel diferansiyel denklemlerin teorisi sadece
¢ok yakin zamanda arastirilmaya baslanmistir. Fraksiyonel diizenin Caputo
diferansiyel operatorleri kapsayan diferansiyel denklemler, gesitli fiziksel olgular
modelleme de o©nemli gibi gorinmektedir ve bu nedenle adi diferansiyel
denklemlerin taninmis teoriye kendi teorisi paralel bagimsiz bir c¢alisma Y1

haketmekte gibi gdriiniyor.

Bu tezde, sistematik olarak Caputo diferansiyel operatorleri kapsayan fraksiyonel

diferansiyel denklemlerin temel teorisini incelenecektir.

Anahtar Kelimeler: Sinir deger problemi, Fraksiyonel diferansiyel denklemler,

Fraksiyonel kalkulus



DEDICATION

This study is respectfully dedicated to my family, specifically my parents who

provided me with sufficient help and encouragement that let me to reach this level.



ACKNOWLEDGMENT

First of all, I would like to thank Almighty and Gracious God for giving me the

ability and patience to complete this work.

My heartfelt thanks due to my research supervisor Prof. Dr. Nazim Mahmudov for

his guidance, help and encouragement.

Many thanks are presented to my family, specifically my parents who provided me

with sufficient help and encouragement that let me to reach this level.

Finally, I am in debt to all of my friends for their encouragement.

Vi



TABLE OF CONTENTS

ABSTRACT . ae e i
OZ ettt iv
DEDICATION. .ttt et b e e st e b e e e nnnre e v
ACKNOWLEDGMENT ...ttt Vi

2FIXED POINT THEOREMS. ... 2
2.1 Fractional Calculus...........oooiiiiiiiiii e 2
2.2 Some Fixed POINtS ....oo.oiuiiiiii i 3

3 BOUNDARY VALUE PROBLEM FOR ORDINARY DIFFERENTIAL

EQUATION . ..ot e 5
3L INtrodUCION. . ..eue i D

3.2 Boundary Value Problem of Orders ¢ €(0,1] ...........ceviiiiiiiiiiinnenn 6

3.3 Boundary Value Problem of Orders ¢ €(2,3] ....coevvvviviiiiniiiiiiieenn 13

3.4 Boundary Value Problem of Orders with nonlocal condition ...................... 18
3.5 Boundary Value Problem of Orders with Integral Problem..............c.......... 21
4 NEW CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEM................ 35

4.1 Boundary Value Problem of Orders ¢ (0,1] ...........cccviiiiiiiiiienenn35
4.2 Non-linear Fractional Deferential Equation ¢ €(0,2] ......coeovviviievninnne. 42

REFERENCES . .. .ot 52

vii



Chapter 1

INTRODUCTION

This thesis collects recent results for different classes of initial value problems and
boundary value problems (BVP) for fractional differential equations. Fractional
differential equations (FDE) have recently proved to be valuable instruments in the

modeling of many phenomena in different fields of engineering and science.

There has been a considerable development in differential equations involving
Caputo fractional derivatives in recent years; see the monographs of Kilbas et al. ,

Kiryakova , Miller and Ross , Samko et al. and the papers in the references.

On the other hand BVP with nonlocal boundary conditions define an important class
of Fractional Boundary Value Problems. This class include multipoint initial value

problems and Boundary Value Problem as special cases.



Chapter 2

FIXED POINT THEOREMS

2.1 Fractional Calculus

Definition 2.1[28, 29]: Let & € R, and h € L([a,b], R,). The fractional order

integral of h of order « is introduced as follows:

an(s)=_1 [ N(t)
Iah(s)_r(a)j(s_t)la

a

while a = 0, I%h(s) = h(s) * @4(s), where ¢ (s)= for s > 0, and

1
T(a)s™

9q(s) =0fors<0,and ¢, — y(s) case « —0, where y is the gamma function.

Definition 2.2 [28,29]: Let h is a function given on the interval [a, b], the ath

Riemann-Liouville fractional-order derivative of function is defined by

1 (d)nj h(t)

e R L

where n= [a] + 1 and [a] represents the integer parts of a.

Definition 2.3 [28]: Let h be a function given on the interval [a, b]. The Caputo

fractional-order derivative of h, is defined by

h(t)

(Dxh)(s)= j a6 dt

where n=a+ 1.



Lemma 2.1 [32]: Assume that « is positive. Consider the following FDE
‘D*h(s) =0.

This equation has solutions in the following form:

n-1
h)= D cs' . ER, n=[a]+1.
i=0

Lemma 2.2 [32]: Assume that «a is positive, then
n-1 .
1°°D*h(s) =h(s) + D_c;s',
i=0

forsomec; € R, n=[a]+1.
We will utilize the result which is an outcome of Lemma2.2.

Lemma 2.3 [27]: v is a function and it is a solution of the fractional integral

equation. Let « €(0,1) and assume h: C[0,S ] — R. is defined as follows

v(s) = vy + ! ﬁdt, (2.0)

if and only if v is a solution of the I\VP for then FDE
°D*v(s)=h(s),s €[0,S], (2.2)
v(0) = v,. (2.3)
2.2 Some Fixed Point Theorems

Theorem 2.1 [27]: (Non-linear alternative of Leray-Schauder type): Let B be a
nonempty convex subset of Banach space X. Assume Z is a nonempty open set of B
with 0 € Z and X: Z—B continuous and compact. Then either

(1) X has a fixed point

(2) 3 zeoZand 4 <[0,1] withz=1X(z) .
3



Theorem 2.2 [22] (The Schaefer Fixed Point Theorem): Assume Y is a Banach space
and M:Y—Y is completely continuous. If the sets
E(M)={yeY :y=yMy for any 1< [0,1]}

is bounded, then M has fixed point.

Theorem 2.3 [19, 22]: Assume (& and &,) are two operators and &,&,: X —» X. If X
is a Banach space, & is a contraction and &, is completely continuous, then either

(1) equality y=¢(y)+<,(y) has a solution, or

(2)thesetE={ z € X:z =4&(z/ 1)+ A<&,(2)} is bounded four A <(0,1).



Chapter 3

BOUNDARY VALUE PROBLEM FOR ORDINARY
DIFFERENTIAL EQUATION

3.1 Introduction

In this chapter, we study the existence and uniqueness of solutions of some classes of

BVP for FDE. More accurately, we investigate the following BVPs.
°D“ v(s) =f(s, v) forall seJ =[0,5], O<a<l (3.1)
av()+bv(S)=rc, (3.2)
where f: j X R — Ris a continuous function, and ¢D% is the Caputo fractional
derivative, a, b, c are real constants witha+b #0,
‘Dev(s) = f(s,v), forall seJ=[0,S], 2<a<3 (3.3)
V(0)=V,, v'(0)=v,, y’(S)=V; (3.4)
where f: j X R— Ris a continuous function, and D¢ is the Caputo fractional
derivative, v,, vy and vs are real constants,
°D*(s) = f(s,v), foreachs€]J=1[0,S],0<a<1 (3.5)
v(0) + g(v) = vy, (3.6)
wheref : j X R — Ris a continuous function, and D% is the Caputo fractional

derivative, and continuous function. g:C ([O, S_],R) ->R,

°D*v(s) = f(s,v), foreachs€]=1[0,S],1<a<2 (3.7)

v(0) = g(v), v(S) = Ve (3.8)

o1



wheref : j X R — Ris a continuous function, ¢D%is the Caputo fractional

derivative and continuous function g :R - R andv;e R ,

°D*v(s) = f(s,v), foreachs€]=[0,S],1<a<?2 (3.9)
s
v(0) = f g(t,v)ds, (3.10)
0
S
v(S) = f h(t,v)ds, (3.11)
0

where f: j X R - Ris a continuous function, and D% is the Caputo fractional

derivative, and g,h :J xR — R are continuous,

°D*v(s) = f(s,v), foreachs€]=[0,S],1<a<?2 (3.12)
S
v(0) — v(0) = f g(t,v)ds, (3.13)
0
S
v(§) - v(5) = f h(t, v)ds, (3.14)
0

where f: j X R — Ris a continuous function, and D% is the Caputo fractional
derivative and g, h : J x R—R are continuous.

3.2 Boundary Value Problem of Order o < (0,1]

The following definitions are used while solving the problem (3.1)-(3.2).

Definition 3.1 [1]: Suppose that v is a continuously differentiable function on an

open interval J, then v is a solution of (3.1)-(3.2) if v satisfies
°D*vy(s) = f(s,v), foreachs€]=1[0,S],0<a<1 (3.1)

av(0) + bv(S) = ¢ (3.2)

The Lemma 3.1 will be used to solve the problem (3.1)-(3.2).



Lemma 3.1: Assume that 0 < oo < 1, g:[0,S] = R is a continuous function. A

function v is a solution of Fractional Integral Equation (FIE)

1 S
v(s) = @) fo (s —t)* 'g(t)dt

1 b
a+b |I'(a)

if and only if v is a solution of the following FBVP.
°D*v(s) = g(s), foreachs€][0,S],

av(0) + bv(S_)z c.

Proof: Let v be a solution of (3.16). Integrating (3.16) we get

v(s) = js(s — )% lg(t)dt +d, foreachte€[0,S],
0

1
I'(a)
where d is constant. To find d, we use boundary condition (3.17),

1 S (= a-1
ad + b <@ ) (s —t) g(t)dt+d>: c.
It follows that

1 b

S_ —
d:—m mj;) (S—t) g(t)dt—c.

Inserting the value of d into (3.16), we get the desired formula.

Banach Fixed Point Theorem is used to prove the Theorem3.1.

S
f (S —t)*1g(t)dt —c
0

(3.15)

(3.16)

(3.17)

(3.16)



Theorem 3.1: Suppose that

(A1) 3L >0 such that

|f(s,z) —f(s,Z)] < L|z-Z|, foreachs€ J,andallz z € R.
Moreover, assume that
_«a |b|
LS (1+ T+ bl)
I'a+1)

< 1 (3.18)

Then the FBVP (3.1)-(3.2) has one solution on [0, S ].

Proof: To start to prove the theorem we transform the problem (3.1)-(3.2) into a
fixed point problem. To this end we introduce the following operator
F:C([0,S],R)— C ([0,S ],R),

where F is defined by

F(w)(s) = a )f (s —O)*1f(t,v(t))dt
1
Ta+b r(@f (s -0 /(6 v(t))dt—c] : (3.19)

We are aimed to show the existence of a unique fixed point of F in C[0,S ]. To do
this we need to show that F is contraction mapping. Indeed, for every se[0,S] we

have

I(Fx)(s)—(Fv)(s)| =|!

(5,X(5)) - 15 T (s,(s)) + ﬁmf (S_,V(S_))—%Igif (5.x9))

f(s,x(s)) - (s,v(5))|+ o

<12 ml& F(S.x(5))-f (S.v))

b S
Tt j(s O f (t,x(1) - f (t,v(t)) |dt+| i (Lj (S -t |f (t,x())- f (t,v(D) .
By (A1),



|Fx(s) - Fv(s)|

[ S —t)*Hx(t t)[dt
F() ja+ bIF()J( /OO
-1 |b| L _ )
r() dt+|a bIF() v||w£(S t)*dt
L o
aF(a)S [x=vl. |a|+|b| aF(a)S =, at
LS“ b
SF(a+1)£ |a|+|b|J”X_ .
By (3.18)

LS” 1+ |b| <1
I'a+1) |a+b|

Then, F:C[0,S]— C[0,S] is a contraction mapping and by the Banach Fixed Point

Theorem F has a unique fixed pointin C [O, S_] , Which is a unique solution of FBVP.

Schaefer’s fixed point theorem is used in Theorem3.2 given below.

Theorem 3.2 Assume that the following assumptions hold:
(A2) The function f : [0, S ] X R — R is continuous.
(A3) 3 a non-negative constant M such that
| f(s,z)|< M, foreachs €[0,S]and all z € R.

Then the FBVP (3.1)—(3.2) has one or more solution on [0, S].

Proof: Firstly, it needs to be shown that F:C([0,S ],R) — C([0,S ],R) is
completely continuous. Secondly, the set D defined below is bounded

={v € C(J,R):v = AF(v)for some A€ (0,1).



F described as in (3.19) has a fixed point by Schaefer’s Fixed Point Theorem. Hence

it is the solution of BVP (3.1)—(3.2).

The proof is based on the Schaefer’s FPT, F:Y Y

i- F is continuous and compact operator.
ii- e(F)={yeY;y=AFy for some 1 <[0,1]} is bounded ,

So that F has one or more fixed points.

Step 1: F is continuous in C[0,S J;

Step 2: F maps bounded sets into bounded set in C[O, S_} .i.e F:[0,S]—[0,S];

Step 3: F maps bounded sets into equicontinuous sets of C[0,S];

Step 4: g(F) is bounded.

Hint: Step 2 and 3 together is Arzela Ascoli Theorem then F is compact.

Step 1: Let {v,} =C[0,S],veC[0,5]
lim||v, —v|_ =0=> lim||Fv, - Fv|_=0.

N—o0 n—oo

Indeed,

[F(v,)(s) = F(v)(s)| <

I, (1) - f(t ()| dt

b
4 |a|+|b| M)y 6 -0 1w 0)- T Vo

(F( )I(s t)**d 14 | .S[ t)aldt]

xsup [ f (t,v, (1) - f(t’V(t))|

0<t<S

10



§* o _S§°
) (oﬂa) "a+b] ar<a>J§!ﬂ£| FtwO)- F V) -

take lim — 0O, f is continuous

n—oo

= |Fv, —Fv|_ —0when, n—>o = Fis continuous.

Step 2: It needs to be shown that for any N > 0, 3 a non-negative constant P such

that for all ve B(0,N) ={veC[0,S]:|v|, <P}, we have |F(v)|, <P, then

- b] i
||Fv(s)||< j(s ) | f(t, v(t))|dt+| b T(@ )j(s t) |f(t,v(t))|dt+|a+b| :
By (A3)

i a-1 |b| _+)el | |
[Fus)]=< - !s £)*dt + T T )j(s t) dt+| v
<M _ga, M S« + o _
ol () la+b| ol () la+b|
=|Fy|| <P.
Step 3: Let s,,s, €C[0,S], s,<5S,, ve B(O,N) . Then
Fv(s,) — Fu(s,)| = ‘ j (s, —t)“*f(t, v(t))dt—— j (s, —t)“ ™ f (t, v(t))dt

‘LT ((5, =0 — (s, —t)**) F (L, (O + E (¢ (D)t

()

M (5, - )" + (57 —5,))+ —o— (5, -5,)"

<
ol () ol («)
M

= §5“-s8Y—>0 as Ss,—>S, .
F((Z-l'l)(l 2) 2 1

11



Step 1, 2 and 3 together are Arzela Ascoli theorem, then F is continuous and

compact.

Step 4:

&(F)={veC[0,S]:v=1F(v),0<A<1} isbounded.
Assumev e &(F) , then v=AF(v) , We need to show that 3L >0 such that |v|_ <P.
Indeed (see step 2),

ca

M
+ S“+ .
al (o) la+b| oI () la+b|

a

IV, = A|F )|, <|FW)|, <P= bl M < |

By the Schaefer’s Theorem F has at least one fixed pointinC[0,S |.

Remark 3.1: The results of the BVP (3.1)—(3.2) are applied for IVP (a =1, b = 0),
terminal value problems (a = 0, b = 1) and the anti-periodic solutions (a=1b =1, c

=0).

Example 3.1: As an application of Theorem3.1, we consider the following FBVP

e |v(s)
CD"’v(t)z - ,  Se[0,1], 3.20
oo (220
v(0)+v(1)=0. (3.21)
Assume that
e~°x
f (S, X) = m, (S, X) S [O,l]X[0,00] .

For 0 <x,v <o andse[0,1] such that

e’ s X v

(9+é)1+x_1+v

|f(S,X) —f(S,U)l =

12



B e *|lx —v|
9+ eHA+x) +v)

)

e
< |y —
S@reny
< 1| |
= 10x V.

Thus (A1) satisfied with L = 1—10 . Itis clear that a = b = S = 1. Then inequality

(3.18) is satisfied if

3L

3L
m<1 < F(a+1)>7—0,15. (3.22)

Applying Theorem 3.1, the FBVP (3.20)-(3.21) has one solution on [0, 1] for values

of a satisfying (3.22). For example
1 6
e Ifa = T thenl'(a + 1) = F(E) = 0.92 and

3L 1 0.15

= = =0.16 < 1.
2 T(a+1) 092

2 5
e Ifa = §then1"(a: + 1) = F(g) = 0.89 and

3L 1 0.15

= = =0.168 < 1.
2 T(a+1) 089

3.3 Boundary Value Problem of Orders a € (2,3]
From this part we study the following fractional BVP.
*Dv(s) = f (s, V), forall s<[0,5],2<a<3 (3.23)
v(0)=V,, v'(0)=v,, V'(S)=v, (3.24)
where f:[0,T] X R = R is a continuous function, and D% is the Caputo fractional

derivative, vy, vy and v are real constants.

13



Definition 3.2[1]: Suppose that v has a three times continuously differentiable

function on [0, S ] with its a-derivatives exists on[0,S]. We say that v is a solution

of (3.3),(3.4) if v satisfies ‘D% v(s) = f (s,v(s)) , with the boundary conditions
v(0) = v, 9 (0)=vg,v"(S)=v; .

To solve (3.3)—(3.4), we need to use the following lemma.

Lemma 3.2: Assume 2<a<3 and assume that g: J — R is a continuous. So that

v is a solution of the FIE.

v(s):j‘Lt)ds

F(a)(s-t)

s e . Ve
—m!(s —1) 3g(t)dt+vo+vos+?ss"’, (3.23)

if and only if v is the solution of the FBVP.
‘D*v(s)=g(s), sel, (3.24)

v(0) = vy, v’ (0) = g, V'(S)=v; . (3.25)
The Banach fixed point theorem is used to prove unigque and unique result.

Theorem 3.3: Suppose that (A1) holds. Moreover, assume that

LS_“{ t 1 }1. (3.26)
INa+l) 2I'(ax-1)

Then there exists unique solution of the FBVP (3.3)—(3.4).

Proof: We transform FBVP (3.3)-(3.4) into a Fixed Points Problem. To this end, we

introduce F;

14



Fl - C(],R) — C(]'R)'

defined by
FL(vV)(s) = ﬁj(s —t)“ (¢, v())dt

SZ

S
_ .
_mg(s —t) 3f(t,v(t))dt+vo+vos+?ssz_

Repeating the proof of Theorem 3.1 we can see that F; is a contraction. Then the

fixed point of the operator F; is the solution of the FBVP (3.3)—(3.4).

The Schaefer fixed point theorem is used to prove existence result.

Theorem 3.4 FBVP (3.3)-(3.4) has at least one solution on [O,S_], provided that

(A2)-(A3) hold.

Proof: It is clear that F,: C((0,S |, R)—>C([0,S |,R) is continuous and compact

and the set
E ={ve C(J,R): v=AF(v)for someO<A<1L}
is bounded. By the Schaefer Fixed Point Theorem, FBVP (3.3)—(3.4) has at least one

solution on C([O, S_] R).

In the Theorem 3.5 we apply the non-linear alternative of Leray-Schauder type in

which (A3) is debilitated.

15



Theorem 3.5: Suppose (A2) is satisfied. Moreover the conditions (A4) and (A5)

hold.
(A4) 3 &, el'(J,R+) and y :[0,00)— (0,0)is continuous and non-decreasing
function such that

[f(tw) <D, ()w(W) . Vsel and VweR,

(A5) 3 anon-negative constant M >0 such that

— M >1 . (3.27)

2 —
(172, ) (8w )+l S+ s

Then there is a one or more solution on J for FBVP (3.3)-(3.4).

Proof: define the operator
Fl = C(]']R) - C(]' R)'

as

S

() == f s—t)"" f(t, v(t))dt

0

SZ

S
— V-
————— (S —1)* 2 f(t, v(t))dt +v, +Vit+t2
21“(05—2)!( )R VO +p v+

We may show that F; is continuous and compact. For A< [0,1], for all s € J, we have

v(s) =A(Fy)(s),

then (A4) and (A5) hold for all t € J and we get,

. .

S2 (Ia2® )( ) (”V”) VARS ‘V‘S+|S|S_2

v(iM, )12

So that via case (3.27), 3 non-negative M such that ||yl # M.

16



Assume that

Z={veC@J,R):v, <M}
In the definition of Z, there is no v € 0Z, such that v= AF;(v) for some A € (0,1).
Now, we may apply the non-linear alternative of Leray-Schauder [27]. Applying this,
we deduce that F; has a fixed point v in Z. This fixed point is a solution of the BVP

(3.3)—(3.4). This finishes the proof.

Example 3.12: Assume that equation (3.20), where « e(2,3] with the boundary

condition (3.28)

g v(s)\
‘Dv(t) = - ., se[01], (3.20)
(9+€°)(1+v(s)))
v(0)=0 ,v'(0)=1 ,v"()=0 (3.28)

Suppose seJ and 0 < v,x < oo, Then we will get
[T (s, x)—f(s,v) < i|x—v| .
10

Since then (A1) applies with L = 11 We find out the case (3.26) which is fulfilled

0"

with S =1, Indeed

LS t 1 <1 & t 1 <10, (3.29)
INa+1) 2I'(e-1) INa+1) 2I'(a-1
then
! < ! < ! 3.30
6  TI(a+1) 2° (330)
1 1
(3.31)

< —— <,
2 = 2la-D °°

to fix constant ¢ , case (3.29)- (3.31) imply that

17



1 1 1
- 10. 32
Fa+D T oar@—1 <zt ¢ <10 (332)
In case (36), we get
< 19
c <.
From (35), we find out
ra-—1) > ! =0 3.33
a 9 =0 (3.33)

By Theorem 3.3, Equation (3.20) and boundary condition, (3.28) has a unique
solution on [0,1] which is fulfilled for some ae(2,3], for values of a satisfying
(3.33).

3.4 Boundary Value Problem of Orders with Nonlocal Condition

The following definitions are used while solving the FBVP (3.5)-(3.6).

Definition 3.3: Suppose that v is a continuously differentiable function on [0,S ]
with its a-derivatives exists one [0, S ]. Then v is a solution of the FBVP (3.5)-(3.6),

if v satisfies the equation °D“v(s)= f(s, v(s))  with the nonlocal BVP

v(0)+g(V)=V,.

We need to give some properties of the function g.

(A6) There exist a non-negative constant M >0 such t hat

lg(v)|< M foureachueC([0,S],R).

(A7) There exist a non-negative constant a >0 such that
18



|lg(V)-g(v)| <a|v-v|, foreach v,veC([0,S], R)

Theorem 3.6: Let (Al) and (A7) hold. If

kS “
I'a+1)

a+

<1, (3.34)

then the nonlocal problem (3.5)-(3.6) has one solution on [0, S ].

Proof: We transform BVP (3.5),(3.6) into the fixed point problem. To this end, we

consider
F, : C([0,S],R) - C([0,S],R),
defined by

f(t,v(t))
L(a)(s-t)"

Then it is easily seen that F; is a contraction mapping, so that Banach fixed point

Fa(v)(s) =vo — g(V)+ j dt .

theorem can be applied.

Theorem 3.7: Let (A2), (A3) and (A6) hold. Then the nonlocal FBVP (3.5), (3.6)

has one or more than one solution on [0,S ].

Proof: Since F, :C([0,S],R) — C([0,S],R) is completely continuous, then the set
D={veC(J,R):v=AF(v) forsomeO<A<1}

is bounded.

Then Definition 3.4 will be used while solving the problem (3.7)-(3.8).
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Definition 3.4: Suppose that v has a continuous second derivative on the open

interval (J,IR) with its a-derivatives exists one J , if v holds then equation ‘D“ v(t)

=1 (s, v(s)) ae. J, with the boundary value problem v(S)=v; and v(0)=g(v).

To solve the BVP (3.7),(3.8), we can use the results of Lemma 2.1 and Lemma 2.2.

Lemma 3.3: Assume that 1<a <2 and let h: [0, S] — R be continuous then v isa

solution of the FIE given as

v)(s) :i r(a)h((s?t)” a

S

(S-t)“*h(t) dt+(——1jg(v)+ — vy (3.35)

0

if and only if v is a solution of the FBVP.
“Dv(s)=h(v(s)), where se[0,5], (3.36)

v(0) =g(v), v(S)=vg (3.37)

Then Banach Fixed Point Theorem is a base for first consequence.

Theorem 3.8: Apply (Al and (A7). If

2kS“ 'S

+k <1, (3.38)
I'(a+1)

then, there is one solution on [0, S ] for the BVP (3.7)-(3.8).

Proof: We transform BVP (3.7)-(3.8) into the fixed point problem. To this end, we

consider
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F, :C([0,S],R) - C([0,S],R)

defined by

The operator F; is contraction and Schaefer’s FPT is used for second consequence.

Then the fixed point of the operator F, is the solution of the BVP (3.7)-(3.8).

Theorem 3.9: Assume that (A2),(A3) and (A6) hold. Then there is one or more than

one solution on [0, S ] for the BVP (3.7)-(3.8).

Proof: we can show that F3: C([0,S],R) — C([0,S],R) is compact and continuous
and we show also the set
D={veC(J,R): =AF;(v) for some0<A <1}
is bounded.
3.5 Boundary Value Problem of Orders with Integral Problem

The following definitions are used while solving the problem (3.9)-(3.11)

Definition 3.5: Suppose v has a continuous second derivative on the open interval

(J,R) with its a-derivatives exists onJ is said to be a solution of (3.9)-(3.11) if v

holds the equation “D“v(s) =f(s, v(s))ae.J, with the boundary value problem

V)= [, hit.vv)dtand vo)= [ gt veoet

To solve the BVP (3.9)—(3.11), we need to use Lemma 3.4.
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Lemma 3.4: Assume that 1 < o < 2 andlet o,p, p,: 3 — R be continuous.

The function v is a solution of the FIE,

v(s) JS'F dt
§ G
! S(S- t)l-

S : s
_(g—ljipl(t)dt+§£p2 (t)dt,
if and only if v is a solution of the FBVP.

‘D*v(s)=aw(s). sed ,

S
S)=[p, (t)dt
0

The Banach Fixed Point Theorem is used for the consequence.

Theorem 3.10: Let (A1) hold and the below case applied;

(A8) 3 k" >0 such that;

lg(s,w)—g(s,W)|<k"|w—Ww], forall seJ,and vw,weR.

(A9) 3k™ >0 such that;

| h(s,w)—h(s,W) |<k™ |w—w|, foreach se J,and Yw,w € R.

2kS*
IN'a+1)

+S(k"+kM)<1 ,

then there is one solution on J for the BVP (3.9)—(3.11).
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Proof: We transform BVP (3.9)-(3.11) into the fixed point problem To this end, we

consider
F, :CJ,R)>C@J,R)

which is defined by

The fixed point of F, is the solution of the BVP (3.9)-(3.11). Then F, is contraction

mapping.

The Schaefer’s Fixed Point Theorem is a base for secondary consequence.

Theorem 3.11: Let (A1), (A2) hold and the below case applied:

(A10) 3 anon-negative constant N;>0 such that:
lg(s.v)|<N, ,Vsed ,weR

(Al1l) 3 non-negative constant N, such that

[h(s,v)|< N, ,Vseld ,vvelR.

Then the BVP (3.9)-(3.11) has one or more than one solution on J .

Consider the Theorem(3.12), the settings (A2), (A10), (Al11) are debilitated.
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Theorem 3.12: Let (A1) hold then
(A12) 3 QfeLl(J, R+) and the continuous and increasing function
w @ [0,00) > (0,00)such that

| f(s,w) |<D; (S)w(w|) foreach seJ andforall we R.
(A13) 3 &, el’(J, R+) and the continuous and increasing function
w : [0,00) —>(0,0) such that

|9(s,W) |[<D, (s)w (|w|) foreachseJ and forallweR.
(Al4) 3 @heLl(J, R+) and the continuous and increasing function
w @ [0,00) —>(0,0) such that

[h(s,w) |< &, (S)w(w|) ,Vsed , VweR.

(A15) 3 anon-negative constant N; > 0 such that

N
1< —! - — (3.44)
1D [, w(N)+(1°D )(S ) w(N) +ay” (N, ) +by(N,)
where
S S
a=|g,(t)dt, b= |, (t)dt
0 0

Then the FBVP (3.9) - (3.11) has at least one solution on J.

Proof: F, is determined in Theorems (3.10) and (3.11). Clearly F; is continuous and
compact. For Ae[0,1], for all s € J, we have v(s)=A(F,v)(s), then (Al2) and

(A15) hold for all s € J , and we get,

VL.
2+ (1D0)(S)w (ML) av'(

<l

w(v. )

1“D,

V.. )+bw (V. )
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Then by case (3.44), 3 a non-negative constant N;suchthatll vIl =N, .
Then
Z, ={ve COR)|V| <M.}.
In the definition of Z;, there is no v € 6Z; such that v= AF4(v) for some A € (0,1).
Now, we may apply the non-linear alternative of Leray-Schauder, applying this, we

deduce that F, has a fixed point v in Z;. This fixed point is a solution of the BVP

(3.9)—(3.11). This finishes the proof.

Example 3.3: Assume the equation (3.20) with the boundary conditions (3.45),

(3.46)
y(0)=>rcv(s), 0 <§,<8,<8;<..< 1 (3.45)
i=0
y(1)=>dv(s)), (3.46)
j=0
where, 0 < §< §< §< ... <1, ¢,d; ,i,]J=012.. are given non-negative

constants with

i=0 j=0
also
= = 4
2C+2di=C,
i=0 j=0 S

where a € (1,2] and 0<v,x<oo and seJ, Then

1
‘f (s,x)— f (s,v)‘s E|X_V| .
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Since (A1) occurred with k = % if o € (0, 1] with S=1, k"= ciand k" =>"d,,
1-0 i=0
then equation (3.44) will be

ZkS_a — * S 1 0 )
2O L S(K 4K )= +36+3d, <1 & I(a+l)>1.(3.47
e S K) S 0 TG < < Dlaxl)>1. (3.47)

It is applied for each a € (1, 2]. Then via Theorem (3.10), there is one solution on

[0,1] for the equation (20) and boundary conditions (3.45), (3.46).

Remark 3.2: One can select the constants ¢, and d; as

2 1\ 2 /1
«=5G) - 4=50

and then

3 = 1
Ci=§ , Zdj= g

[o.0]
i=0 j=0

The following definitions are used while solving the problem (3.12)—(3.14).

Definition 3.6: Suppose that v has a continuous second derivative on the open

interval (J,R) with its o-derivatives exists oneJ, if v holds the equation

‘Dv(s) = f(s,v(s)) ae.J, with the BVP,v(S)+V'(S) :_[jh(t,v(t))dt and

v(0)-Vv'(0) = jj g(t,v(t))dt. Then v is a solution of (3.12)-(3.14).

To solve the problem (3.12)—(3.14), we use the results of Lemma3.5.

Lemma 3.5: Assume 1<a <2 andlet w, p, p, : J — R be continuous. Thenv be
the solution of the FIE.
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v(s):5(s)+ZG(s,t)w(t)dt ,
when

(s +1)

5(s)= [S” S}j (t)dt+ S j (t)dt |
And the Green function
(- (1+s)(S-t)" (1+s)(S-1)"

G(st)=

s)(S - )‘1 (1+s)(5-t)
2)T(a) (S+2)T(a-1)

If and only if v is a solution of the FBVP.

1+
(§

‘Dv(s)=w(s), seJ,

v(0)-vi(s) =p, (t)dt

V(S_)+V'(S_) =ip2 (t)dt

Proof: By Lemma3.1, we get

1 at
(v(s))=c, +C1$+F(a ! (s—t)

From (3.52) and (3.53), we have

+F(:_1)I(s_—t)“‘2 o(t)dt :sz (t)dt

27
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(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)



Then, we get

1 3 1 5
— 1 (o () dt——=— [o (t)dt
“ T+2»([p2() S+2;['01()

ST Z(§—t)alw(t)dt

_ _1)5(3‘4)“‘2 o(t)dt, (3.57)

while

S+1% 1 %
C, =——2£91 (t)dt+= _([pz (t)dt

S + S+2

1 s 1
_(§+2)r(a)£(s—_t)1a w(t)dt

1 T
Tl (559

In (3.54), (3.57), (3.58) and apply this fact fOS = f;+fss we get

(v)(s):5(S)+_TG(s,t)cs(t)dt, (3.59)
where
S+1-9)¢ 1) %
5(3):%&1(0(1“(;;!pz(t)dt , (3.60)
and

(-0 (@s)(S-7 (es)(S-4)
S(ts)= F(a)_ (E_Sl +2)F(a)_ (i: Z)F(a—l) (3,60
C(1+s)(S-t) (1+s)(S-t)

(S_+2)F(a) (S_+2)F(a—1) ’

since we gain (3.48). If v applies (3.48), then (3.51)—(3.53) hold.
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The Banach Fixed Point Theorem is a base for the consequence.

Theorem 3.13: Let (A1), (A8) and (A9) hold. If

SE+D - SO g <1, (362)
S+2 S+2
where

x = sup |G(s,t)|

(s,t)edI=xJ

Then there is a one solution on J for the BVP (3.12)—(3.14).

Proof: We transform BVP (3.12)-(3.14) into the fixed point BVP. To this end, we
consider
K, :C(J,R)—>C(@,R),

which is given by
(Fv)(5)=5(5)+ [G(s,0) f (t (D)t

where

5(s) :%!G(t,v(t))dtwL (S_f:lz) E[h(t,v(t))dt _

The function {G (s, t )} is defined by (3.50). Then fixed point of the operator Fs is the

solution of the BVP (3.12)—(3.14), then Fs is contraction mapping.
So that Schaefer’s Fixed Point Theorem is a base for the second consequence.

Theorem 3.14 Let (A2), (A3), (A10) and (All) hold, then there is one or more

solution on J for the BVP (3.12.)—(3.14.).
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Consider the Theorem(3.15), the settings (A10), (A11) are debilitated.

Theorem 3.15 Let (A2), (A12), (A13), (Al14) hold and the below case holds:

(A16) 3N, >0 such that

N,

_ _ >1, (3.63)
ay” (N,)+by(N,)+cry(N,)
S+1% S+1%
h == a_(t)dt, b== . (t)dt
where a S+2-([ . (1) 52 o (1)
and

c =}@f (t)dt.

Then the BVP (3.12) — (3.14) has one or more solution on J.

Proof: Fs which is determined in Theorems (3.13) and (3.14) clearly Fs is

continuous and compact. for A< [0,1], for all s € J, we have v(s)=A(FV)(s). Then

(Al13) and (A14) hold for all s € ] we get,

[vIL,
ay’ (v, ) +bw (VL) +czw (v,

Forall seJ sothat (6.8), 3M, suchthat | vl A #M,.
Assume
Z,={veC(J,R)|v| <M,}.
In the definition of Z,, there is no v € 0Z; such that v= AFs(v) for some A € (0,1).
Now, we may apply the non-linear alternative of Leray-Schauder [27], applying this,

we deduce that Fs has a fixed point v in Z,. This fixed point is a solution of the BVP

(3.12)—(3.14). This finishes the proof.
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There is another existence consequence for the BVP (3.12)—(3.14) depend on the

Burton and Kirk FPT [19].

Theorem 3.16 Let (A8), (A9.) and (A12) hold.

+k” (S +S_) 1 3.64
( )ﬁ< (3.64)
Since
S2+S (K +k™
[1< +_)( ! )}u
S+2

lim s — 1 3.65
mew s(S+1)(g*+h*)> (365)

Crv(u)+ S+2

where g” =sup|g(t,0)] and h* =sup|h(t,0)| , so that BVP (3.12)-(3.14) has at least
ted ted

one solutionon J.

Proof: Suppose the operators &,¢, ;C(J,R) —C(J,R) given by

(@0 2252 oty E D v o)a

o +2

and
(&V)(s) =[G(s,t) f (t,v(t)dt

G(s,t) is given as formula (3.50). From (3.62) it is shown that & is a contraction
mapping. the operator &, is continuous and completely continuous by (A12). By

Theorem 2.3 the set D is bounded.

Assumev e D , sothat VseJ,
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v(e) =25 (L)) + 25 (W)(S),

In (A8), (A9), (A12) we get

&

(S_+1)
S+2

v(t)|dt+

|g(t,0)|dt

O Ly )|

Thus,

S(S +1)(k"+k™)
(1— (5+) }uvnw

§(§+1)(g*+h*) -
S+2

(3.66)

cxv(|vl, )+

In (3.65), 3R >0 such that Ywe D and| vl _> R by (3.64). Therefor | Ml _ < R,

forall veD., Clearly D is bounded.

Example 3.4 [1]: Assume the equation (3.20) with boundary conditions (3.67),

(3.68)

oty L ey (3.20)

(9+¢°)(1+[v(s)])
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v(0)-v'(0) :Zciv(si) : (3.67)

V(1) +v' (1) =Y V() (3.68)

where
O<sy<s <5, < --<1, 0<§<§<§,<---<L¢ ,d;,i,j=0,..., are

given non-negative constants with

> <o, Y <o
i=0 j=0
Where e e(1,2] , 0<v,x<ow and seJ . So that
|f(s,x)— f (s,v)|§ i|x—v| .
10
Since The condition (A1) occur with k =% . We need to show the problem (3.54),

itis applied withS =1,k =>"" ¢ k™ = Z;dj and by (3.50) G is defined by

=0 1’

(s-t** (1+ s)(1-t)"" (14 s)(1-t)"° D<t<s
I'(a) 3 () A(a-1) a
G(s,t)= » » (3.69)
_(1+s)(1—t) _(1+s)(1—t) c<t<l
(S_+2)F(a) A(a-1) o
Additionally by (3.69),
< 4 + 2
Y 3@ Aa-1
then
(S_+S)k*+(s_+s)k**+s_kG*
S+2 S+2
1
[ZC +,Z;dj 15T () 15F(a 1) <L (3.70)
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It is applied for fit figuresofc, d,and a €(1, 2] . Then by Theorem (3.13) the

equation (3.20) with boundary conditions (3.67)—(3.68) has a unique solution on

[0, 1] for such figures of (1, 2] .

Remark 3.3: We select the constants ¢, and d; as

43 <(3)
c=—|=| . d=—|=1.
1513 45\ 3

Therefore

By (3.62),

2, 1 37
15'(a) 15T (a—1) 45

It is applied for vV « (1, 2] . By numerical calculations

2 1 37

9 =T5r@) 1M (a1 45

takes negative values on the interval (1, 2].
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Chapter 4

NEW CLASS OF FRACTIONAL BOUNDARY VALUE
PROBLEM

4.1 Boundary Value Problem of Order a € (0, 1]

Definition 4.1 [28,29]: Forall h € L'[a,b] , a € R+

ey [
O -

Definition 4.2 [28,29]: Let h is a function given on the interval [a, b], the a th

Riemann-Liouville fractional-order derivative of function is defined by

s L dyt h(t)
(Bh (S)_F(n—a) (ds) I(s—t)“-n+l a

a

where n=[a] + 1 and [a] represents the integer parts of «a.

Definition 4.3 [28]: Let h be a function given on the interval [a, b]. The Caputo

fractional-order derivative of h, is defined by

-[F(n a)(s )«

a

where n=a+ 1.

Lemma 4.1: Assume that « > 0, the differential equation ° D h(s)=0 hasa
solution
h(s)=c,+cs+c,s* +..+¢C, 8" , ci€ R i=0,1,2,....,n-1;n=1+a.
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Lemma 4.2: Assume « > 0, so that

1“(°Dgh)(s) = h(s)+nicis‘

For some cie R i=0,1,2,...,n-1; n=[a]+1.

°Dyv(s)=f(s,v(s)), se[0,5],0<a<1

We consider { av(0)+bv(S)=c, a+tb=0,
abceR

Lemma 4.3: Let O<a <1, heC[O, S_J. The solution of the Fractional Integral

Equation is given as follows,

1 a1
v(s):vo+r(a)£(s-t) h(t)dt,

if and only if v is a solution of the IVP.

°Dy v(s)=h(s); se[0,S]
v(0)=v, .

Lemmad.4: Let O<a<l, he C[O, S_]. The solution of the Fractional Differential

Equation is given as follows,

v(s):%jf(s t)“lh(t)dt_i{ﬁj'(s t)*h(t)dt — c}

if and only if v is a solution of the BVP.

"Dy v(s)=h(s), se[0,S]
av(0)+bv(S)=c

Proof: Let v be a solution of
“Dg v(s) = h(s). take 1.
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Then 15, (D5 v(s)) = 15, h(s)

=Vv(s)+k =1;.h(s) where K is constant ;
By Lemma 4.3,

1 a-1
v(s) +k :m‘([(s—t) h(t)ds

1

:v(s):—k+r(a)

[s-0"h(t)st,  keR 4.1)

We need to find k. By using av(0)+bv(S)=c , let’s find v(0) and v(S ) in such a

way that

— 1 5 - a-1
v(0)=(-k) and v(S):-k+F(a)£(s—t) h(t)dt .

Now, we have

7

1 ts et e
a(—k)+b(—k+ (a)l(S—t) h(t)dtJ— :

_k(a+b)=c—r(ba)j(s_—t)“‘lh(t)dt
k=S b 1 )i(§—t)alh(t)dt - (42)

“a+b a+b I'(a
Substitute the value of k to equation (4.1) and (4.2)
To get

v(s)=ﬁj(s—t)“‘lh(t)dt—a—ib %I(S_—t)“h(t)dt—c .

Theorem 4.1: Let

(H1) f:[0,S ] x R — R is continuous.
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(H2) 3 L>0suchthat |f(s,u)—f(s,v)|<Lu-v|; s€[0,S]; uveR.

S« b ..
(H3) Let LS 1+ | | <1, so that the BVP has one solution in C[0,T] .
Fa+1)|  |a+b|

Proof: To start to prove the theorem we transform the problem (3.1)-(3.2) into a

fixed point problem. To this end we introduce the following operator
F:C([0,S].,R)— C([0,S]R),

where F is defined by

a b a 3 c
(Fv)(s)=I¢ f (s,v(s))—ﬁlmf (s,v(S))+m .

If veC[0,S] then FveC[0,S] , then F:C[0,S]—C[0,S] is Banach space and
complete. We need to show F is a contraction mapping, To show this, let

X,V € C[0,S]. Then for every s [0,S] we have,

b b e e (5 &
f(s,x(s))-1 (s,v(s))+ﬁ 5 F(S.v(S))- £(5.x(5))

|( FX)(S) +b 0+

a
5 |0+

b
f(s,x(s))-1¢. f (S’V(S))h% l5.

£(5.x(8))- f (S.v(S))

FxO)- Ot LIS P

1 a1
_J(s—t) A+b (@)

“T(a)}

(t.x(1))- f ()t

By (H2),

o Li(s_ —t)“|x(t) - v(t)|dt

1"(06) a+

a-1 |b| L a-1
T )||x v, j(s t) dt+|a bIF() XV, j(s t)*dt
=——s%|x-v|, +ﬂ S“|x—v]|_dt
ol (a) |a+ b| ol (a)

<57 (1 Bl huy
I'a+1) |a+b| ®
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By (H3)

LS 1+ |b| <1
Ca+1)|  |a+b|

Then, F:C[0,S]— CI[0,S] is a contraction mapping and by the Banach Fixed Point

Theorem F has a one fixed pointin C [O, S_] , which is a unique solution of BVP.

Theorem 4.2: Let
(H1) :[0,S ] x R — R is continuous.

(H2) 3 P>0suchthat |f(s,z)— f(s,v)|<P|z—V|; s€[0,S]; zveR .

. b
H3) PS5 (1, oL )4

Fa+1)|  |a+b|
(H4) there exist M > 0 such that | f(s,z)|<M , ¥s<[0,S], VzeR .

Then there is one or more than one solution in C[0,S] for the BVP.

Proof: The proof is created on the Schauder Fixed Point Theorem, F: X — X

where X is Banach space, and

iii-F is continuous and compact function.
iv- £(F) = {x e X; x = AFx for some 1 €[0,1]} is bounded ,

Then F has at least one fixed point.

Step 1: F is continuous in C[0,S ].
Step 2: F maps bounded sets into bounded set in C[O, S_] .i.e F:[0,S]—[0,S] .
Step 3: F maps bounded sets into equicontinuous sets of C[0,S] .

Step 4: ¢(F) is bounded.
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Hint: Step 2 and 3 are Arzela Ascoli theorem then F is compact.

Step 1: Let {v,} =C[0,5],veC[0,5]
lim|v, —v|| =0= lim|Fv, —Fv|_=0.

N—o0 N—o0

Indeed

F(v,)(s) - F(v)(s)|<

Vo (D) = T (8 v(D))[dt

jn

[a+b| T(a )I(S —t)* | (t,v, (1)) - f (¢, V()| dt

1 a—l |b| a-1 _
(F( )j(s D I )j(s ) dt]ggglf(tv(t» ft V)

S )
- (df (@) a+D] aF(a)J()SgP MOALEICIL)

Taking limitas n — oo , the above expression tends to zero and continuity of f,

Thus |Fv, —Fv| —0asn—o = Fis continuous.

Step 2: We need to show that for anyT >0, 3 a non-negative constant P such that

forall ve B(0,T)={veC[0,5]:|v], <P} , we have |F(v)|, <P, then

IFv@l= 1 f (s (t, v(t))|dt+| |b|b| o) j (S -ty (t, v(t))|dt+| [c |b|
By (H4)
M Fo arg, 1Bl Cveay . ld]
e o [ e
M s Bl M &

< + S“+ =
al (o) la+b| ol () la+b|
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Thatis |Fv| <P.

Step 3: Let s,,s, €C[0,S], s,<5S,, ve B(O,N) . Then

1 7 ad 1 % o
|Fv(sz)—Fv(sl)|:‘@ ! (s, —t) f(t,v(t))dt—%.! (s, —t)“* f (t, v(t))dt

1} a-1 a-1 1 % o
< (@) !((52 -1 —(s, 1) ) f(t,v(t))dt|+ @;‘;(32 —1)* f (t, v(t))dt
<& T s g e
= M (s“-s,)—>0 as s,—>s.
[ +1)

Step 1, 2 and 3 and using the Arzela Ascoli theorem, we prove that F is continuous

and compact.

Step 4: £(F)={veC[0,5]:v=4F(v),0< A <1} is bounded.
Assumev e ¢(F) , then v=AF(v) , we need to show that
L >0 such that |v| <P.

Indeed (see step 2)

ca |b| M Qa |C|

M
+ S“+ ,
al () la+b| oI () la+b|

V. = 2[F M, <|FW), <P=

By the Schauder Fixed Point Theorem F has at least one fixed points inC[O, S_} .

Remark 4.1: Consider °Dg v(s) = f(s,v(s)) Assume that a+b==0
av(0)+bv(S)=c.
1- If a=1,b=0, then initial value problem (IVP)

2- If a=0, b=1= boundary value problem BVP
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3- If a=b=1, c=0=v(0)=—Vv(S) is called anti periodic BVP
4- If a=1,b=-1=v(0)=V(S) is called periodic BVP.

4.2 Non-Linear Fractional Differential of Order a € (1,2]

Throughout this section. We assume the following;

e ‘Dx(s)=f (s,x(s),c Drx(s)), l<a<2, 0<r<l,

e x(0)+Mx(S) =0o,;

O<p<l

e °D"x(0)+ M, °D°x(S) = o,;

se[0,5]

boundary condition (1)

ef:[0,S]xRxR — R is continuous.

el1+M,; #0,M, =0,

Lemma 4.5:

°D” is caputo derivative.

For each g(s) € C[0, S], the unique solution of the linear FBV/P.

"Dx(s) = 9g(s)

x(0)+ M. x(S) = o,

boundary condition (2)

°DPx(0)+M, °D"x(S)=o,

S
X(s) = jG(s,t)g(t)dt +W, +w,s; where G(s,t) is the Green funtion.
0

Ml

s—t)“ "'~
(5=1) 1+ M,

(5-t)"

a-p-1

. F2-a)[M,(S-t)-s](S-t)

I'a)
M, (S -t)

G(s,t) =

a-1

(1+M,)S*" T'(a - p)
1“(2—05)[M1(S_—s)—s](s_—t)a*p*l

(1M, ()

0<s<t<

(1+M,)S*? T(a-p)

0

S

<

t

<

S

<

S

_ Mzo'l—l\/llazs_p(Z— p) .

W, =

M,(1+M,)
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Proof: We know that

“D*x(s) =g(s) = apply lg, = x(s) = 15,9(s) —b, —b,s

[
x(s)—r(a) ! o dt—b, —h,s.

To find b, and b, we use the boundary conditions in (2)

g
‘DP =14" 4.3
K9 = 157905 =0, (4.3)
Since
X(0) = b,
and x(T) =15.9(5)~b, ~bS,
‘DP"x(0) =0,
— gLe
‘Dx(S)=15" -b, :
K8) = 16" 9(8) by
Insert the above equation in (2)
_b1+M1(|g+g(S_)_b1_bzs_):O_1
M, 1279(5) = Mo, — = o
21, "9(S) - 2%@‘%
By (4.3)
r'@2-p)
b2 MSJ__ (M2|0+g(s) 02)
_F(Z p) a-p
:>b2_—Slp LI 9(S)- MJ
And by (4.4)
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b,SM, —-M,1£.9(S) + o,

b=~ 1+ M,
_Sm, M,
=h= 1+M, 2 1+M, |v|
S_Ml 1—‘(2_p) a— c
=— — 1“7Pg(S -
:>b1 1+Ml Slﬁp ( g( ) ] 0+g( ) +M1
Then
1t 9
X(s) = -b —b,s
) F(a);[(s—t)l‘“ S
" SM, T(2-p) 00 .= M.o _
=15.9(s)+ (i [“Pg(S)—-—=2—_S°T(2-
OO g I S ST
Ml a Q % F(Z p) Q o
- I S)+—L I S)——%|s.
1+M1 O+g( ) 1+M1 Sj_,p [ 0+ g( ) sz
The Green function becomes
( _ )a—l M ( )a—1+ SM:L F(E]: p) 1 (S__t)a—p—l
F(a) 1+M, F( ) 1+M;, S7° T(a-p)
M, S & upa
- — (S =s)* P t<s
1+M151‘p( )
Glt.s)= M 1 M,
e (S (s M 15y
[(a)1+M,) ['(a) 1+ M, I'(a)
S_Ml r(z_ p) 1 c a—-p-1 M S '3 a-p-1
- S—t) P —— S—t)* P s<t
| 1+M, S*° F(a—p)( ) 1+M181’p( )
We find out,

X(s) = }G(s, t)g(t)dt +w, +w,s,

Lemma 4.6: Existence and uniqueness.

Assume

0<r<1 C[05]={xeC[0S]: ‘D'xeC[0,5]}
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llxll; = sup |x(s)| + sup |“D"x(s)I
0<t<T OsssS_

(Cr [0, S_] il IIr) ~ Banach space

(Fx)(s) = (;()) £(,x(®), °D"x(D))dt
0

f(t,x(t), <DTx(t))dt +

f(t, x(t), °DTx(t))dt + wy + wys.
Then there is one solution onC, [0, S] for the BVP (1), If and only if
F:C,[0,S]—C,[0,S] has a unique fixed point. Let p = p; + p,

S (M + 114 MD[T(a —p+ 1) + T (@ + DI — p)]
A+M)T'(a+Dl(a—p+1)

P1 =

5 Ma—p+DIr@—r)+T(a—r+ DI - p)]
N(a—r+1DIrrR2-nrMNlfa—p+1) '

P2 =

Theorem 4.3: Let

i) f:[0,S]xRxR—R be continuous.
i) [f(s,xX)—f(s,v,V)| <L(x=Vv[+|x'=V]), VLe[0,S]; xv,X,veR .

i) Lp<1, where ( p=p;+p2)

Then BVP (1) has a unique solution.

Proof: It is shown that F:C [0,S]—C.[0,S] . We need to show that

|Fx—Fv|| <Lp|x—V| . Take derivative of (FX)(s)
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r _ 1 S f(t,X(t), cDrX(t)) Slfr
D (Fx)(s)—r(a_r)l‘ GogeT LTy

then

|Fx—Fv|, = EQ%KFX)(S)—(FV)(SN max|® D" (Fx)(s) - Dr(Fv)(s)‘

|(FX)(©) — (FV)(V)|

1 0 l Cc r Cc r
SF(a) ! A LG D'X(t)) - f (t,v(t), *D"v(t))|dt

M, 1}
|1+M1|F(a 0(S t)l“

f(t, (1), “D'x(t) - f (t,v(t), “D'v(t))|dt

(2-p)|M,(S - s)+s\I 1
1+ M,|S“PT(a-p) 5 (S-t)

(L x(1), “D"x() - f (t.v(), “D'v(v)|dt

1 I 1 M| 1 T
()3 (s— t)l‘ |1+M1|F(a 2 (S - t)l‘
L re- p)|M, (S - s)+s\I 1
L1+M|S“PT(a-p) 3 (S -ty

<Ljx-]

ga S« TQ-p)|M,(S- S
U |5 M| §° I p)|—f( $)+s| ~ Lp,|x~v| (4.5)
"a(@) 1+M,|al(@) [L+M|S“PI(a-p+1) '

In a like manner

~D'(FV)(s)|<Lp,[x-V], .  (4.6)

Now from (1) and (2) we get the following,

= |Fx- Fv||r <L(p +p2)||x—v||r

= |Fx-Fv| = @g|(Fx)(s)—(Fv)(s)| max *D"(Fx)(s) -° Dr(Fv)(s)‘

<L, + Loy xv], = Lo+ o], = Lol

Thus F is a contraction.
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Theorem 4.4: Let,

i- f:[O,S_]xRxR—)R be continuous.
ii- 3 V(s)eC([O,§];R+) such that

|f(s,x,V)|<V(s);Vs€[0,5], vxveR

Then there is at least one solution for the (BVP) (1).

Proof:

Step 1:F:C,[0,5 ] >C,[ 0,5 | is continuous.
Step 2: F is compact ; for any bounded set Ac C, [O, S_] F(A) is compactin
c[05].

Step 3: The set y ={xeC,[0,5 ];x=AF(x);0< A <1} .

Now start by Step 1:
step 1: {x,}, xeC, [0, §], assume that ||x, — x| —0 as n—oo
Define {xn}

=||Fx,—Fx| >0asn—ow

S

J‘(S _t)a—l

0

|(FX,)(8) = (FX)(s)| <

e F(t %, (1), “D"%, (1) - f(t, x(t), “Dx(t))|dt

L S P
|1+M1|F(a)J(S g

F(tx,(1), °D",() - F(t.x(t), °D"x())]ct

0

1 i 1
a—p)g(S—t)yrP

F(2-p)[My(S-5)+s]
(1+M,)S“Pr(az- p)

+|M(s)| o

f(tx(), ‘D)~ f (& y(E), ‘Dy(t)|dt

where M (t) ==
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Take max s =0; M (t) <M (0),

F is continuous and [[im||xn -x|. =0.
:>!im”f(s,xn(s), "D'X,(s)) - F(5,X(s), *D'x(s))|, =0 take max of x then r — oo

It follows that

|(Fx,)(8) = (FX)(s)| <

1
I'(a)
M 1
1+M,| T(a)

N M (s)] j _ 11_
Fla-p)y (S-t)~°

j(s —t)“*dt

<[ f(s,%,(s), “D'x,(s))~ f (5,X(s), ‘DX(S))| | + j(s‘ —t)*Ldt

=|Fx,—Fx| —0asn—w
Similarly,

=

‘D'FX, — °DrFwa —>0asn—o
= |Fx, - Fx| »0asn— o

X 1— F(A) is bounded
Step 1: AcC[0,5] is bounded{ (A) is bounde }

2—F(A) is equicontinuous
By Arzela Ascoli theorem
F(A) is compact (F(A) is relatively compact)

1- F(A) is bounded <>3M >0 such that Vx e A |Fx|| <M

1
I'(x)

(P < ——[(s—t)"

f(t, x(t), “D"x(t))|dt

M| 1
+ _
|1+ M1| I'(a)

i(s_ —t)* | f (t, x(t), °Drx(t))‘dt

1
[(a~p)

+|M(s)| j(s‘—t)“-p-l\ f(t,x(t), “D"X(t))|dt
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S -
U (T(@+) +M| T(a+1)

5ot
+|M (O)|m] = Ml'

VX e A,

= |FX||, <M,

Similarly,
D" (Fx)(s)| < F(al_ SV, [s—tydt+|'DME)|V], % [ -ty
ST
‘r@e-n| %

dM, > 0 such that Vx € A

"D'FX| <M, @) holds
From (1) and (2) we get,

|Fx|. <M, +M, =M then F is bounded.

2- F(A) is equicontinuous if and only if vx e A,((Fx)(s), °D"(Fx)(s)) are
uniformly continuous.

Now, for xe A;s,s, €[0,S] and s, <s, , we have
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(FO(E,) - (L) = % [(s, -0 . x(0), “DxO)et

1 S
~ [ (s~ £ (tx(), “Dx(t)) et

T(e)y
L(2-p)(s,—s) F (S - " ¢
_ S If(a— 3 f(t,X(t), “D'X(t))dt+w,(s, -s,)

<

1 % et - T
< Fe) ![(sz—t) — (s, =1)“ M) ]| f (t. x(¥), ‘Dx(t))|dt

+%I(s2 £ (6 x(0), “D"x(t))|ot

1" 2 $ S_—t a-pl cHr
s z—slllﬁ\f (t:x(@), “D'x())|dt-+w[s, s

where_[f—>.[f+.[f o<t <t, .

0 4

2 _Sl|a n 1—‘(2_ p)|52 _51|S_0[71

(F)(t,) - (F)(®)| <V IIm[ > +|w[s, Sllj (4.7)

(o +1) I'a—p+l)
Similarly
a r_ a—r +2 5. —5 a-r T(2- Sl—r _Sl—r S_a—l
cD (FX)(S )‘ ”V” |2 1| n ( p) 2 1
[(a-r+1]) INa-p+l)
(4.8)

r(2- ]
+ —
ST 2N

Since the functions
5,5%,8*",s"" (1<a <2, a—r>0)
are uniformly continuous on [0, S ], from (1) and (2)

= |Fx(s,) — Fx(s,)| >0

))— ‘D'FxX(s)| >0 as s,
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Since, Via Arzela Ascoli Theorem the sets F(A) and °D"F(A)={°D'Fx:x< A} are

relatively compact in C[0, S ], then is F(A) is relatively compact in C,[0,S].

Step 3: V :{XGC, [O,S_]:x:lFx,O<ﬂ<l} is bounded Vx eC,[0,5] , we have

()| = A|Fx(s)| < |[Fx(s)| < M,

°Drx(s)‘=ﬁ

“D'Fx(s)| <

“DFx(s)| < M,
:>||x||r <M, +M,
=V is bounded

Therefore, by Leray-Schauder Theorem F has at least one fixed point in C,[0,S].
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