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ABSTRACT

This thesis is aimed to study the g-analogue of the class of so called Appell polynomials
from different aspects and using various algebraic as well as analytic approaches. To
achieve this aim, not only many new results are found based on a proposed general
generating function for all members belonging to the aforementioned family of polynomials,
but also various relations between famous members of this family are derived. 2D g-Appell
polynomials as the g-Appell polynomials in two variables can be considered as another new
achievement of this thesis. In addition to the definition of the class of g-Appell polynomials
by means of their generating function, a determinantal representation, for the first time, is
proposed for indicating different members of the class of g-Appell polynomials. Moreover,
it is shown that how easy some results can be proved by using the new proposed linear
algebraic indication and applying basic properties of determinant. In the sequel, this family
of g-polynomials are studied also from g-umbral point of view and many interesting results

are found based on this algebraic approach.

Keywords: g-Appell, g-Calculus, Determinatal, g-Umbral, g-Polynomilas, g-Apostol, g-

Bernoulli, g-Euler, g-Genocchi, g-Hermite.



Oz

Bu tez farkli agilardan ve ¢esitli cebirsel yani sira analitik yaklagimlar kullanarak g-Appell
polinomlarin sinifinin incelenmesini amaglanmaktadir. Bu amaca ulasmak i¢in, yukarida
belirtilen g-Appell polinomlar ailesine ait tiim iiyeler liyeleri arasinda gesitli iliskiler elde
edilmektedir. Iki degiskenli g-Appell polinomlar: olarak 2D g-Appell polinomlar1 bu tezin
yeni bir basari olarak kabul edilebilir. Ayrica, bazi sonuglar yeni onerilen lineer cebirsel
gosterge kullanilarak ve determinantin temel Ozelliklerini uygulanarak ispat edilebilir.
Ayrica, bu tezde g-polinomlarin bircok ilging 0Ozellikleri g-umbral acgisindan da

incelenmistir.

Anahtar Kelimeler: g-Appell, g-Matematik, gq-Umbral, g-Polynomlar, g-Apostol, g-

Bernoulli, g-Euler, g-Genocchi, g-Hermite.
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Chapter 1

INTRODUCTION

Over the last centuries the study on various kinds of polynomials has been a significant
part of mathematical research. Polynomials are important since not only they can
be considered as some algebraic objects, but also they can be looked as functions in
one or more variables. Among all various types of polynomials, the class of Appell
polynomials has attracted the notice of many mathematicians because of their interesting
characteristics. Since 1880, when Paul mile Appel for the first time defined a new class
of polynomials which later became famous upon his name until the present day, a wide
range of research has been conducted on the various members of the family of Appell
polynomials as well as their g-analogues. The vast literature in this subject consists
of various definitions, relations, properties, as well as extensions and generalizations.
The study on these polynomials not only is vital in different mathematical branches
such as theory of orthogonal polynomials and special functions, analytic number theory,
combinatorics, probability and so on, but also they have many applications in some other
research fields such as mathematical physics, signals and image processing, as well as

electrical and computer engineering.

This research is basically purposed to study the class of ¢g-Appell Polynomials. To
do this, the first section in chapter two is provided in order to make the general reader

familiar with the frequently used definitions and notations in this thesis. Moreover. the

second section of chapter two gives a brief information about the classical Appell



and Sheffer polynomials.

In chapter three 2D g¢-Appell polynomials are introduced as the class of g-Appell
polynomials in two variable. As some famous examples of this family, 2D ¢-Bernoulli
polynomials, 2D g-Euler polynomials, and 2D g-Genocchi polynomials are introduced
and a various important properties and relations such as the explicit relation between
g-Bernoulli and ¢-Euler polynomials as well as g-Genocchi and the g-Bernoulli Polyno-
mials are obtained. Indeed, all the obtained facts in this section can be considered as the

generalization of the formerly defined ¢-Appell polynomials.

In chapter four, the main attempt is to specify the characteristics and to show the
properties of a family involving the g-analogue of Apostol type polynomials. The
g-analogue of the Luo-Srivastava addition theorem is one of the most important results of

this chapter.

In chapter five, a determinantal representation is proposed for indicating the family
of g-Appell polynomials. Next, it is shown that this new representation how well
coincides with the original definition of the aforementioned family of polynomials. Based
on this new linear algebraic approach, also, it shown that many interesting results can be
obtained easily, only by applying the elementary properties of determinant. At the end
of this chapter, the coefficients used for writing the determinantal representation of some

specific families of ¢-Appell polynomials, as some examples, are calculated.

Eventually, in chapter six, ¢-Appell polynomials are viewed from ¢g-Umbral per-spective.
Inspired by this algebraic approach, some obtained properties of ¢g-Appell polynomials in

the previous chapters are recast. Also, using ¢g-Umbral techniques some new interesting



results are obtained for the family of g-Genocchi polynomials. Indeed, similar results can
be derived for the other members of the class of ¢-Appell polynomials. The essence of
the results in this part of the study is concealed behind the fact that any arbitrary

polynomial can be written based on a linear combination of g-Genocchi polynomials.



Chapter 2

PRELIMINARIES AND DEFINITIONS

2.1 Introduction

The main aim of this chapter is to make the general reader familiar with the expres-
sions and notations which will appear quite frequently in the following chapters. One of
the simple but important sections of this chapter is devoted to introduce g-Calculus related
notations and miscellaneous g-formulas. Next, as the foundation of the ¢g-Appell polyno-
mials and their generalizations, the corresponding definitions of the classical polynomials

to them will be introduced.

2.2 g-Calculus and its Commonly Used Notations

Since the first attempts in the appearance of g-calculus, the eighteenth century, while
Leonard Euler defined the number ¢ in his book, [1], up to the nowadays broad range
of researches, ¢-Calculus has attracted a great interest of mathematicians as well as
physicists because of its wide domain of application not only in mathematics, but also in
some other fields such as theoretical physics, engineering, computer sciences, and so on,
[2], [3], [4]. Nonetheless, the work on g-calculus day by day is progressing, there is still

much to do in this arena and g-calculus has the capacity to be developed more.

The theory of g-calculus is embedded in the theory of g-analysis and g¢-special
functions. As the result, before starting the main discussion, which is clearly related
to various members of the family of ¢g-Appell polynomials and lies in g-analysing and

studying g-analogues of them, in the following a brief introductory about the ¢-numbers



g-notations is given. For all the definitions related to this section the interested readers are
referred to [5], [6].

Definition 2.1. The g-number « is defined as

laly=——-, ¢€C\{l1},aeC,q¢"# 1. (2.2.1)

Particularly, for n € N, the above definition changes to

n

I—gq

¢ =14+q+¢+..+q¢" " (2.2.2)

[n]y =

In this case as lim, ;[n], = lim,,1(1 4+ ¢+ ¢* + ... + ¢"') = n, [n], is called the

g-analogue of n.

Definition 2.2. The g-factorial is defined as

o0 =1, [nl!=[1,2,...[nl, neN, (2.2.3)

also,

2n),!! = [2n],[2n — 2], 2], (2.2.4)

Remark 2.3. Clearly,

: _ : L
(lll_rg[a]q a, (lzl_rg[n]q. nl. (2.2.5)

Definition 2.4. The g-shifted factorial is defined as

n—1

(@il =1, (a:9)n=]](1-¢a), neN, (2.2.6)
7=0
and
(@;9) = [[(1 = a), lgl<laeC. (2.2.7)
7=0

Definition 2.5. The ¢g-binomial coefficient is defined as

[n] :WL k.oneN (2.2.8)



Proposition 2.6. The following facts hold true for the q-binomial coefficient

T I U
k], @GO k(@G
[ n | n

Pl = [n—k] !
| k], .

c) For k<l<n
[n [Z}_[n} [n_k]
[ E| |k n—1 |
q q q q

Definition 2.7. The g-analogue of the function (x + y)", is defined as

n k(k—1) n—
(@+y)r =Y { H ¢ TRk peN,. (2.2.9)
q

k=0
Definition 2.8. The g-binomial formula is known as
n—1 n
(1—a) = gu — o) = kzzo { . Lq'“('“z”(—n’fa’f. (2.2.10)
Definition 2.9. In the standard approach to the ¢-calculus, the two following g-exponential

functions are used:

> 2" 1 1
= = 0< <1 < 2.2.11
oo qn(n;l)zn 00
By(z) =) T [[a+@-9d2), o0<lg<1, z€C. (2.2.12)
n=0 k=0

Definition 2.10. The g-derivative of a function f at point 0 # z € C is defined as

D,f (2) = % 0<lql <1. (2.2.13)



Proposition 2.11. Consider two arbitrary functions f(z), and g(z). The following rela-

tions hold true for their q-derivatives, [6]:

a) if f is differentiable,

df (z)
dz '

limg_1Dyf (2) =
where d% indicates the ordinary derivative defined in Calculus.

b) D, is a linear operator, that is for arbitrary constants a and b
D,(af(z)+bg(2)) = aD,(f(2)) + bDy(g(2)),
¢) Dy(f(2)9(2)) = f(gz)Dyg(2) + g(2) Dy f(2),

9(42) Dy f(2) — flaz)Dyg(2)

9 Dyl 9(=)9(a2)

Remark 2.12. As the direct result of definition (2.9) we have e,(z)E,(—z) = 1. More-

over, from the definition (2.10), it can be seen easily that

Dyeq(2) = e, (2), Dby (z) = E,(qz).

(2.2.14)

Definition 2.13. The g-analogue of Taylor series expansion of an arbitrary function f(z)

for 0 < q < 1, is defined as, [7]

Z D"f a)(z — a)y,
n=0 7 n

f(a) is the n* g-derivative of the function f at point a.

Definition 2.14. Jakson integral of an arbitrary function f(x) is defined as

where D" /f(:v)dqa: =(1—-gq) qujf(aqu), 0<qg<l1.
=0

(2.2.15)

(2.2.16)



2.3 The Main Classical Appell Polynomials

The study on various classes of polynomials has been a significant part of researches in

algebra as well as other related mathematical branches such as real and complex analysis,
orthogonal polynomials and special functions. Polynomials are important since not only
they can be considered as some algebraic objects, but also they can be looked as functions
in one or more variables. Generally, when we talk about polynomials we mean a linear

n ;
combination ) a;x", for real or complex coefficients a; and arbitrary variable z. The
=0

purpose of this section is to introduce some of the classical polynomials such as Bernoulli,
Euler, Genocchi, Apostol type, and Hermite polynomials as famous members of the class
of Appell and Sheffer polynomials and some of their basic generalizations and properties,

in order to give a bird’s-eye view to the general readers for a better understanding of the

concepts of the next chapters.
2.3.1 Classical Bernoulli, Euler, and Genocchi Polynomials

Since the seventeenth century until the present day a wide range of research has been
conducted on the classical Bernoulli, Euler and Genocchi as well as Hermite numbers and
polynomials. Among the vast publications in this subject, various definitions, relations,
properties, as well as generalizations can be found. These polynomials not only are
important in the theory of orthogonal polynomials and special functions, but also they
have various applications in many other mathematical fields such as analytic number

theory, combinatorics, probability and so on.

Definition 2.15. Classical Bernoulli polynomials B, (x), and numbers B, = B,(0) are

defined by means of the following generating functions, [8]-[12]



o0 ’fL

Z —', It| < 2, (2.3.1)

_1_2 A ,, It| < 2, (2.3.2)

respectively.

Definition 2.16. Classical Euler polynomials £, (z), and numbers £,, = E,(0) are defined

by means of the following generating functions, [8]-[12]

2 . e n > tn
e —;En(x)a, It| <, ; v M<m @33
respectively.

Definition 2.17. Classical Genocchi polynomials G,,(x), and numbers GG, = G,,(0) are
defined by means of the following generating functions, [10],[12], [13]

’T'L

- Z _‘, It] < (2.3.4)

= Gn—, |t <m, (2.3.5)
l
respectively.

Remark 2.18. As the direct results of the above definitions, for the classical Bernoulli,

Euler, and Genocchi numbers we have

Ba(0) = Bu = (~1)"Bu(1) = (2" = 1) B,(3),

1
E,(0)=E, = 2”En(§),

Gn(O):Gn,Gl:1,G3:G5:G7:...:O, and

Gon = 2(1 — 2°™)By,, = 2nF,,_1(0).

respectively, [8], [14], [15].



Remark 2.19. The classical Bernoulli, Euler, and Genocchi numbers also can be defined

by the following recurrence relations, [16], [17]

n+1
By=1, (n+1)B,=—> B, (2.3.6)
k=0
n—1 n E,
n— k
E,+2 12(1{:)?:1, n>1, (2.3.7)
k=0
n—1
2G, + > Z )G =0, n>2, (2.3.8)
k=0

, respectively.

Proposition 2.20. The following relations hold true for the classical Bernoulli, Euler, and

Genocchi polynomials, respectively.
Bu(z+1) = By(z) = na" !,
E.,(z+1)+ E,(z) = 2",
Gu(z+1)+Gu(z) = 2na™ .

Proof. Since in the proofs the same technique is applied, only the proof of the third relation

is given. The proof is based on the following identity

. tr 2t 2t
Gn 1 Gn Lo = t(x+1) et
7;( (2t D)+ Gu(@) oy = =7+ e
2t
= a5 lem(et +1) = 2te™”
= 2t i et i 2nx”’1ﬁ
N “ nl N - n!’
Comparing the coefficients of % gives the desired result. [

2.3.2 Apostol Type Polynomials

In 1951, Apostol introduced an analogue for the classical Bernoulli polynomials and
numbers and obtained some interesting relations for them including their elementary prop-

erties as well as the recursion formula for the Apostol-Bernoulli numbers, [18]. Later this

10



analogue appeared in a wide range of mathematical publications as Apostol-Bernoulli

polynomials, [19]-[22].

Definition 2.21. The Apostol-Bernoulli polynomials B, (x; A), and numbers B, (0; \) =

B, (\) are defined by means of the following generating functions, [18]

T = N
me —;Bn<x7)\)ma

|t] < 2w, when A = 1; |t| < |log A|, when A # 1,
(2.3.9)

t| < 2w, when A = 1; |t| < |log A|, when A # 1,
(2.3.10)

respectively.

In 2005, inspired by the Apostol’s analogue for the Bernoulli polynomials, Luo introduced
Apostol-Euler polynomials, [23]. Next, Luo and Srivastava generalized these definitions
to the Apostol-Bernoulli and Apostol Euler polynomials of order «, [24], [25]. In 2009,
Luo gradually, defined Apostol-Genocchi polynomilas and numbers and developed his
definition to order «, [26]. Recently, many interesting results and generalizations have
been obtained for the Apostol-Bernoulli and Apostol-Euler polynomials as well as
Apostol-Genocchi polynomials, [27], [29], [30]-[33]. In the following the corresponding

definitions to the above mentioned polynomials are given.

Definition 2.22. The Generalized Apostol-Bernoulli polynomials By («; A), and numbers

B2(0; \) = B2(\) of order « are defined by means of the following generating functions,

[18]

11



(Aet_1> ZB“x)\

|t| < 2w, when \ = 1; |t| < |log A|, when \ # 1,
2.3.11)

(=) =X o

|t| < 2w, when A = 1; |t| < |log A|, when A # 1,
(2.3.12)

respectively.

Definition 2.23. The Generalized Apostol-Euler polynomials E%(x;\), and numbers

E2(0; \) = EY(\) of order « are defined by means of the following generating functions,

[23]
ZEQ ; A o [t < [log(=A)[;1% =1, (2.3.13)
()\et + 1) —
<A6t+1) Z —,, t] < |log(=A)|; 1% =1, (2.3.14)
= !
respectively.

Definition 2.24. The Generalized Apostol-Genocchi polynomials G (z; A), and numbers

G&(0; \) = G%(\) of order « are defined by means of the following generating functions,

[26]
2t
(Aet + 1) ZG“ (2; A [t < [log(—=A)[; 1% := 1, (2.3.15)
Z [t < [log(=A)[;1% =1, (2.3.16)
(Aet + 1) — !
respectively.

Remark 2.25. Indeed, taking « = 1, A = 1, and = = 0, in the definitions of the Gener-
alized Apostol-Bernoulli, Apostol-Euler, and Apostol-Genocchi polynomials of order «,
we obtain

By (0;1) = B,, E;(0;1)=E,, G;(0;1)=G,,

respectively.

12



2.3.3 Appell Polynomials

In 1880, Appell defined a set of interesting polynomials which later was called the set of

Appell polynomials upon his name.

Definition 2.26. The set of any n-degree polynomials {A,(x)} -, are called the set of

Appell polynomials if they satisfy the following recurrence relation, [34].

d
ﬁAn(w) =nA,—1(x), n=1,2, .. (2.3.17)

Remark 2.27. Appell polynomials also can be defined by means of the following gener-

ating function
X G tn
At)e™ = ZA”@)E’ (2.3.18)
n=0
where A(t) =3 >, An%, with real coefficients A,,,n =0,1,2,... and Ag # 0, [34].

Remark 2.28. Based on the different selections of A(%) in the above definition various

Appell type polynomials are obtained. In the following table some of them are mentioned.

Table 2.1: Various members of the family of Appell polynomials
Number  A(t) Ap(x) Polynomials
T

1 P Bn(x) Classical Bernoulli Polynomilas
2 eti— T En(z) Classical Euler Polynomilas
3 efj_ T Gn(z) Classical Genocchi Polynomilas
4 < Aef_ I “ B&(z;\) The generalized Apostol-Bernoulli polynomials
B& (x; A) of order «
[e3
5 </\ef'2+1) E&% (x5 \) The  generalized  Apostol-Euler  polynomials
B& (x; A) of order «
[e3
6 < )\e%’;_l G%(z; ) The generalized Apostol-Genocchi polynomials
B& (x; A) of order o
[e3
7 ﬁ The new Generalized Apostol-Bernoulli polynomials
ety ol o B& (; A) of order o
° @
8 ﬁ The new generalized Apostol-Euler polynomials
B o B&%(x; \) of order o
° @
9 % The new generalized Apostol-Genocchi polynomials
et o B (x; \) of order

13



2.3.4 Sheffer Polynomials

In 1939, Sheffer generalized the definition of Appell polynomials and as the result in-
troduced and studied a new family of polynomials, under the title the set of polynomials of
type zero. Later, some other mathematicians introduced this class of polynomials in dif-
ferent ways and showed that their definitions coincide exactly with the original definition
proposed by him. One of these novel definitions is proposed in a creative way by Roman

and Rota, which will be explained in Chapter six.

Definition 2.29. Sheffer A-type zero polynomials, S, (z), by means of generating function

are defined as, [35]

)e ) = Z S (2.3.19)

where A(t) and H (t) are in the form of the two following formal series

oo tn
A(t) = Z_;Ana, Ay #0, (2.3.20)
and
oo t”
=Y Hy—, H, #0, (2.3.21)
n=1 ’
respectively.

Remark 2.30. Based on different choices of A(t) and H (¢) in the above definition various
Sheffer type polynomials are obtained. As one of the most important members of this
family, Hermite polynomials can be considered by taking A(t) = e~** and H(t) = 2t,

[36].

Definition 2.31. Hermite polynomials H,(z) can be defined by means of the following

generating function

Z H,( 2=t (2.3.22)

14



Chapter 3

THE CLASS OF GENERALIZED 2D ¢-APPELL
POLYNOMIALS

3.1 Introduction

Carlitz, for the first time, extended the classical Bernoulli and Euler numbers and poly-
nomials, introducing them as ¢g-Bernoulli and ¢g-Euler numbers and polynomials [37]-[39].
There are numerous recent investigations on this subject by, among many other authors,
Cenki et al. ([40]-[42]), Choi et al. ([43] and [44]), Kim et al. ([45]-[48]), Ozden and
Simsek [49], Ryoo et al. [50], Simsek ([51]-[53]), and Luo and Srivastava [54], Srivas-
tava et al. [55], Mahmudov [56], [57]. Recently, Natalini and Bernardini [58], Bretti et
al.[59],[60] Kurt [61], [62], Tremblay et al [63], [64] studied properties of the following

generalized Bernoulli and Euler polynomials.

[0}

tm tr = [m—1,0] "
£| - Sarn, =
t m—1 n=0
€ — Zk:o g
2™ e — iE[m—l,a] (z) & acC, 1:=1 (3.1.2)
mo1 ¥ B n n!’ ’ o o
et + > i 7l =0

Applying the same approach which is used in the definitions (3.1.1) and (3.1.2), the clas-

sical Genocchi polynomials can be generalized as follows.

gt Ca
2mgm S tr
tk etm — Z GE;TL_LOC] (x) E’ o € C’ 10c = 1 (3.1.3)
e+ i o "= |
k!

Motivated by the generalizations in (3.1.1), (3.1.2), and (3.1.3) of the classical Bernoulli,

Euler, and Genocchi polynomials, we introduce and investigate here the so-called
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generalized two dimensional g-Bernoulli, g-Euler, and g-Genocchi polynomials which
are definedas follow.

Definition 3.1. Let g, € C, m € N, 0 < |¢q| < 1. The generalized two dimensional
g-Bernoulli polynomials %m—m] (x,y) are defined, in a suitable neighborhood of ¢t = 0,

by means of the generating function:

tm “ t"
plm—tel , 3.1.4
(eq @) — T g <t>) Z Ve O

——
where T,,, 1, (1) = S0 N

q

Definition 3.2. Let g,a € C, 0 < |¢| < 1, m € N. The generalized two dimensional

[m la](

g-Euler polynomials &, x,y) are defined, in a suitable neighborhood of ¢t = 0, by

means of the generating functions:

n

om o _— .
<eq () + Tr-14 (t)) Z ¢, [ a1 (3.1.5)

Definition 3.3. Let g, € C, 0 < |¢| < 1, m € N. The generalized two dimensional

[m 104](

q-Genocchi polynomials &, x,y) are defined, in a suitable neighborhood of ¢t = 0,

by means of the generating functions:

o0 n

2mtm « t
— [m—1,0]
<eq O+ T (t)) eq (tx) By (ty) = _ ol (z,y) oph (3.1.6)

n=0

Remark 3.4. It is obvious that
lim Bl (z,y) = B el (z 4y, Bln el = Lol (0,0),

q—1-

lim %[m l,a] B[mfl,a}
q—1— "

Y

lim Qz[m 1,a] <x7y) E[m 1,qa] ([L’ + y> e[m l,a] e[m—l,a] (O, O),

g—1- n,q n,q

lim Qf[m la) Er[lm—l,oa],

q—1— 4

lim @177 (2,y) = Gt (o + ), B = (0,0,

q—1— nd

limg,-®mel = glm=tel,

16



and also

lim Bl (z,0) = BI" el (2),  lim BI" 10l (0,y) = Bimel (y)

q—1— ’ q—1—

lim ¢Mm=tel (g 0) = EMm=tel(z) lim em=bel (0, y) = Emhel (y)

q—1— ™4 q—1— ™4

lim &m=tael (z 0) = GIm=1d (), lim &lm-Lel (0 y) = GIm=Lal ().

q—1— ma " q—1— 4 "

Here BI" " (z), EI" " (z), and GI" ") (y) denote the generalized Bernoulli,
Euler and Genocchi polynomials defined in (3.1.1), (3.1.2), and (3.1.3). Notice that
B 1) (1) was introduced by Natalini [58], and By " (2) and GE" ") (2)were in-
troduced by Kurt [61], and [62].

In fact, Definitions (3.1), (3.2), and (3.3) define the two different types ’Bm_l’a] (z,0)
and B 1(0,y) of the generalized g-Bernoulli polynomials, €% " (z,0) and
¢l (0,y) of the generalized g-Euler polynomials, and &% " (z,0) and
@1[%—1@} (0,y) of the generalized ¢-Genocchi polynomials. Both polynomials
‘B,[fol’a] (x,0) and %[%71@] (0,y), QE%*LO‘] (x,0) and Qf%ﬁl’a] 0,y), Qimfl’o‘] (7,0) and
Q5£Tq_1’a} (0,y) coincide with the classical higher order generalized Bernoulli, Euler, and

Genocchi polynomials in the limiting case ¢ — 17, respectively.

3.2 Generalized 2D ¢-Appell polynomials

Inspired by the above definitions, we define 2D g-Appell polynomials {4, ,(z, y)}5>,

by means of the following generating function

o0 tn
A (z,y;t) = Ag(t)e,(tx) Ey(ty) = ZA,W(L Y) ok (3.2.1)
n=0 q
where
o tn
Ag(t) =" Ang T A, (t) #0, (3.2.2)
n=0 q

is an analytic function at ¢ = 0, and A, ,(0,0) := A, ,.

17



3.3 Preliminaries and Lemmas

In this section some basic formulae are provided for the generalized ¢-Bernoulli and ¢-
Euler polynomials to obtain the main results of this part of the study in the next section.
The following result is g-analogue of the addition theorem for the classical Bernoulli and

Euler polynomials.

Lemma 3.5. Forall x,y € C we have

m—1,x & n m—1,a n—
Bl (z,y) =) [ . ] B (@ ) (3.3.1)
k=0 q
m—1,x & n m—1,a n—
glmbel (z,y) = Z { I } @L,q ! ](:Jc+y)q . (3.3.2)
k=0 q
-1, - n m—1,a n—
el el (z,y) = [ L ] S (@ ) (3.3.3)
k=0 q

and also

m—1.c - n (n—k)(n—k—1) m—1,a n—
%L,q Lol ('T?y) = [ k :| q 2 %l[ﬂ,q ] (1],0) Yy k—
k=0 q

> { Z ] B (0,y) 2", (33.4)
q

m—1,a - n (n=k)(n=k=1) _[m—1,« n—
Qiz,q Lel (:U,y) = |: L :| q 2 Qil[c,q ] ((L’,O) Yy k—
k=0 q

3 [ Z } el (0,y) 0" *, (33.5)
q

la (n] eomeeken -
@;7(] 1, ] (:U, y) { k :| q 2 @Lﬁq 1, ] (x’ O) y k =
k= q

[en]

3 { Z } Bl (0,y) 2" F. (3.3.6)
q

k=0

Proof. Because of applying the same technique in the proofs, only the relations (3.3.3)
and (3.3.6) are proved. To show the identity (3.3.3), starting from the definition (3.3) we

have

00 1.0} tn B ( omym )a
2 ®n,q (.73', y) [n}q| - eq (t) + Tmfl,q (t) eq (tl’) Eq (ty) ' (337)

18



Using the definitions of two exponential functions in (2.2.11) and (2.2.12), we can con-

tinue as

B 2mm At o gz thy
a (eq () + D14 (t)> Z [n],! Z [kl

Using Cauchy product for series we obtain

omgm RN ) ] o)) g g T
= qg 2z =" %y .
(eq (t) + Tm—l,q (t)) Z |: k q [n]q'

n=0 k=0

Clearly, the first part of the obtained coincides with the generalized two dimensional g-
Genocchi numbers (’5%71“], and the second part is exactly the definition of (z +y); given

in (2.2.9). So we have

- m—1,x tn - n
= ;@w b ]W D (x+y)y,

4" n=0

once more applying Cauchy product for series we get

_ [Z] S (@ )i (3.3.8)
k=0 q

Consequently, comparing the coefficient of #n, in the left hand side of relation (3.3.7)

with relation (3.3.8), leads to obtain the desired result.

To show the first part of identity (3.3.6), starting from the definition (3.3), we

have

" otmtal (g ) U ( 2ne )a
;Gﬁmq o =Gt m) @t (33.9)

Using the definition of exponential function E, (ty) given in (2.2.12), we can continue as

k(k—1
RO ko,

2me ¢ — ¢ y
- (eq () + Trn-1,4 (t>> € (1) Z Kl 7

k=0

where equivalently can be written as




Applying Cauchy product for series we obtain

(3.3.10)

(n—k)(n—k—1) tTL
Al E 2w [m—1,a] n—k
Sy ] e ot

n=0 k=0

Comparing the coefficients of #", in the left hand side of relation (3.3.9) with relation

(3.3.10), leads to obtain the desired result.

To show the second part of identity (3.3.6), we follow a similar procedure to the

above, starting from the definition below

n omym @
Z“m e g = (eq(t)+T 1q<t)) Faleafta), G310
q m—1,

i (t)>a E, (ty) and e, (tz) with &% (0, y)

and replacing the expressions <eq(t)+T—1
m—1,q

and > > f:]?, respectively. O

Remark 3.6. In particular, setting + = 0 and y = 0 in (3.3.4), (3.3.5) and (3.3.6), we

get the following formulae for the generalized g-Bernoulli and ¢-Euler and ¢-Genocchi

polynomials,
By Y (2,0) = By, e, (33.12)
k=0 *- -9
m—1,a " 1 (k) (n=k=1) _Im—1,a] pn—
By (0,y) =) ¢ = Bl (3.3.13)
k=0 *- -q
ey b (@ 0) = e, (3.3.14)
k=0 *~ -q
et (,y) =) ¢ e ek, (33.15)
k=0 * -q
& (2,00 = &gk, (3.3.16)
k=0 *- -q
&l (0,y) = ¢ ey (3.3.17)
k=0 -q
respectively.
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Remark 3.7. Setting y = 1 and x = 1 in (3.3.4), (3.3.5) and (3.3.6), we obtain

n - -

Blrtel @) = | [ B (,0), (3.3.18)
k=0 * 4q
m—1,a — [ n | m—1,«
Bltel (1y) => L %k,q 2 (0,y), (3.3.19)
k=0 * 4q
glm-tal (7 1) = Z ¢ e (x,0), (3.3.20)
k=0 " 44q
m—1,a =~ [ n | m—1,a
emtel (1y) =) & ¢ 0,y), (3.3.21)
k=0 " 44q

m—1,a ~[n] omokD  mia
®L7q 1,a] (g;7 1) = Z i q 2 ®L,q ] ($7 O) ’ (3.3.22)
k=0 * -q
6[71’171,(1] (1 ) o n n 1 6[WLfl,Oz] (0 ) (3 3 23)
n,q 7y - k k,q 73/ 9 .
k=0 * -q

respectively.

Clearly relations (3.3.18), (3.3.20) and (3.3.22) are the generalization of g-analogues of

the following identites

By (z+1)= ( Z ) By (z), (3.3.24)
k=0

Ey(z+1)=Y < Z ) By (7)), (3.3.25)
k=0

Gn(z+1) = Z ) Gy (2), (3.3.26)
k=0

respectively.

Lemma 3.8. The generalized q-Bernoulli, q-Euler and q-Genocchi polynomials satisfy the

following relations

Bt () =S| T | B (2,00 B L (0,y), (3327)
k=0 - -q

e ) =30 | | T @0 e o), (3.3.28)
k=0 - -q

Sl (ay) =Y | (60 @ 0) 6 (0.y), (3.3.29)
k=0 L

respectively.
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Proof. Because of applying the same technique in the proofs, only the last relation is

proved. To prove, we start from the following summation

m—1 a+5] " omym a+p
Z 6 ) n| ! B e (t) + T, 1 (t) €q (t[E) E, (ty) ) (3.3.30)
: q m—1,q

which, clearly, can be written as

B (eq (1) in;f:m (t))CY ¢q () (eq t) in;f:m (t))ﬂ E, (ty). (3.3.31)

According to definition (3.3), we obtain

[e.9]

tn
m 1 a] [m—1 5]
=> o] ©.0) o ,ZQS it (3.332)
n=0 q" n=0 q
Using Cauchy product for series we can write
= - m— a m tTL
=22 . & (2,0) & (0,y) ——. (3.3.33)
K [n],!
n=0 k=0 q

Comparing the coefficients of [t} in the left hand side of relation (3.3.30) with relation

(3.3.33), leads to obtain the desired result. [l

Lemma 3.9. The following identities hold true for the q-derivatives of the q-Bernoulli,

q-Euler and q-Genocchi polynomials with respect to the two variables x, and y

Dy, Bl (2, y) = [n], B (2,y), (3.3.34)
Dy B (2, y) = [n], B0 (2, qy) (3.339)
Dy @bl (z,y) = [n], €0 (2,y), (3.3.36)
Dy €Lt (z,y) = [n], €0 (2, qy) | (3.337)
D@l (2,y) = [n], &7 (2, y) (3.3.38)
Dy & (,y) = [n], 6770 (2, qy), (3.3.39)

respectively.
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Proof. Because of applying a similar technique in the proofs, only the last two relations
are proved. To prove the first relation in (3.3.39), we consider the g-derivative of the

following summation with respect to variable x

- m—1l,x tn
Dy (2; elnbel (2, y) W) (3.3.40)

as mentioned in part (c) of proposition (2.11), D, , is a linear operator. So, we may write

t’n

nl,!

- o (o tw) ), ).

eq(t)f;—:ilq(t)> and E, (ty) are independent from variable x, we only take

(3.3.41)

I
NE

Dy, (81l (z,y)) [

n7q

3
I
o

Clearly, since (

g-derivative of e, (tz) with respect to z. So, we have

omm “
- (eq 0 (t)) Fa (t9) Dy (¢4 (12))

+ Tm—l,q
omgm « = "t
- E,(ty) Do | STE1 ).
(eq (t) + Tin-1,4 (t)) ! ! (; [n]q!>

Again, because of linear property of D, , mentioned in part (c) of proposition (2.11), we

can continue as

gmym o o N
“Gainm) B (Rome W)

gmgm o <
(Tt tm) B (e W)

n=1

2mtm o ° ntn—i-l
B (eq(t)+Tm_1,q(t)> Eq (ty) ;”” [n}q!>

© n+1
- Z @m_l""] (z,y) t—,7
n=0 ’ [n]q
S mta t"
=> [0, 0 (@) (3.3.42)
n=1 [n]q
Comparing the coefficient of #n, in the left hand side of relation (3.3.41) with relation

(3.3.42), leads to obtain the desired result.
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Similar to the proof above, to show the second relation in (3.3.39), we consider the

g-derivative of the following summation with respect to the variable y

- m—1,x tn
Dq,y (ZO @Lﬂ 1,¢] (Qj7y) [n_L'> .

As it is mentioned in part (c) of proposition (2.11), D, is a linear operator. So, we can

write

tn

[n],!
! ( (eq (t) in;f:_lyq ® ) o) E, (ty)) (3.3.44)

) and e, (tx) are independent from variable y, we only take

NE

Dy (&1l (2, y)) (3.3.43)

3
I
o

|
S

. 2mgm
clearly since (m

g-derivative of E, (ty) with respect to y. So, we have

- (eq (t) in;f:l q (Tf)) “a (t:p) Dq’y (Eq (ty))

omym a e qin(";l) 2fnyn
= e, (tx D —_— .
(Gaetm) P (Z il )

Again because of the linear property of D, ,,, which is mentioned in part (c) of proposition

(2.11), we may continue as

< T (tx) non o 877

- (& X qQ 2y

€q (1) + Tin-14 (1) ! — [n],!

2mm ¢ S NTCEI R

= eq (tz 2 g"y"
(o mmm) @ 20y wq')
o [ 1.a] tn+1

— ®m «
2o )
S m-la t

=3 " [nl, & (@, qy) EnE (3.3.45)
n=1 q’

Comparing the coefficients of - in the left hand side of the relation (3.3.43) with relation

[n],!

(3.3.45), leads to obtain the desired result. [l

24



Lemma 3.10. The generalized q-Bernoulli, q-Euler and q-Genocchi polynomials satisfy

the following relations:

min(n,m—1)
m—1.« n mfl,a
EBLL,q L ](1,y) — Z { I 1 SBL_k,q ](O,y) =
k=0 q

n| |
L%{m*’a*” (0,9), n>m, (3.3.46)

2melnterll(0,y), (3.3.47)

— 4 __gm=le=llg o) n>m, (3.3.48)

—q'|f,3[m‘ Mg, ~1), n>m, (3.3.49)

n7q

n ] e[m—l,a] ({E, _1) _
q

gmeln-te=ll(z 1), (3.3.50)

min(n,m—1)
m—1.« n m—l,a
05,[“1 L ](x,O) + Z { I } @L_k’q ](:c,—l)
k=0 q

n—m,q

nl ! "
_om [ ]q '®[m—1,a—1] (ZE, _1) T N >m. (3.3.51)
[n —m],! [n],!

Proof. We prove only the relations (3.3.48) and (3.3.51). The proof of relation (3.3.48) is

based on the following equality

00 min(n,m—1) n

[m—1,q] n [m—1,q] t
So(emtwy+ Y {k] O 0.0) | oo (3352)
n=0 k=0 q q
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which is equivalent to the following identities

2mem

2mtm e o
(Tt tm) OB T (o) B
2mtm o
o <€q (t) ( )) Ey (ty) (eq (t) + Thn-1,4 (1))

1)+ Toprq (t
thm a—1
= Qmm E. (t
( O+ Toia <t>) +(#9)

n+m
n+mq%[m l,a— 1}(0?/) t
" n+m])!

DI

t
m [m 1,a—1]
_ E ) TN el (0, ) o (3.3.53)

Comparing the coefficients of #n, in relation (3.3.52) with relation (3.3.53), leads to obtain

the desired result.

Here we used the following relation

thm « "
Tm—l, (t) < ) E’ (ty @[m la]
1 eq (t) + D14 (1) HZO [n],! nzo [ n],!
tn tn+1 tn+2 thrmfl
=) & + o+ S —
Z [n]q! [n]q! [n]q! [Z]q! [n]q! [m — 1]q!
— [m 1 a] - [m—1,a] "
Z QS q + Z Q5n 1,q9 0 y) [n] I
n=0 q
- [n]q [n - ]q [m—1,q] tm
PSRl aglmotal gy T
; [Q]q! “ [”}q!
=[], [n=m+2], ., } 4
+ e (N)
2 ey S
oo min(n,m—1) n o i
=33 |G emien g
n=0 k=0 q q
In order to prove the relation (3.3.51), we start from the following equality
0o min(n,m—1) n [ i
[m—1,a] m—1,a] _
n=0 k=0 q q

which is equivalent to the following relation

- (eq 0 i?:_l,q ) > ey (1) 4 T () <€q 0 i?:_l’q 0 ) ey (t2) By (~1).
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Noting to the fact that £, (—t) = %, which is mentioned in remark(2.12), we obtain

-(oins, @) ot (1 )

mam 2mgm a-l
e () B

n+mj ! ntm

which is equivalent to write

= Z 2m e @Tml;“ Yz, —1) N (3.3.55)

q q’

Comparing the coefficient of ﬁn, in (3.3.54) with (3.3.55) leads to obtain the desired

result. u

Corollary 3.11. Taking ¢ — 1~ we have the following results

plm=tel (4 1) — Z

min(n,m—1) |:
k=0

n m—1,«
Lk } %L—kl ! (I) =
q

min(n,m—1)
et @)+ Y {Z} et (z) =
q

k=0
omelm=Le=ll 3y ' n >m,

min(n,m—1) |:

Slrel (x4 1) + Z ’” el (z) =
q

min(n,m—1)
m—1,« n m—1,«
D SR OV
k=0 q

n—1

n—1 m—1,« —

", { ] } By (0,y) B, (3356)
q
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Proof. Indeed, we know that

9] min(n,m—1)
m—1L,a n m—1,« "
> (o - 3 ] s ew)
k=0 g n,!

tm

(GoTmm) @ OB -Teut (=7 ) B
( — T 1q(t))aEq(ty) —
-yl

A g+t

D3] I

n,q

[m— 1a]

= TRP=

3

which is equivalent to write

q O . 7q »q [n]q'

n:l k=

]

Remark 3.13. Note to the fact that taking limit in relation (3.3.56) as ¢ — 17, leads to

obtain

min( -1)

m—1,«x n m—1L,x

Bt (y 4+ 1) - ()=o)
k=0

It is a correct form of formula (2.7) from [63] for A = 1.

Lemma 3.14. We have

n ~[n [k] ! [m—1,1]
. _g{k} [k:—l—m] %n kyq (2,0), (3.3.57)
|
_ [m—1,1]
- n(n 1) Z |i :| m%n kq ( 7y)7 (3.3.58)
1 n n o min(n,m—1) n L
T = o { k } e @+ Y { I ] e (z,0) |, (3.3.59)
k=0 q =0 q

min(n,m—1)

n 1 . n m—1, n m—
vy = m n(n—1) |: k :| egc,q b (07 y) + Z |: k :| QEL,q L] (07 y)
k=0 q q

(3.3.60)
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Proof. To prove relation (3.3.57) consider the following statement

tm
(eq (t) — Tr-14 (t)) eq (t2) (eq (t) = Tn-1,4 (1)), (3.3.61)

which is, clearly, equal to the summation below

> tn—l—m
Z (3.3.62)
According to the Definition (3.1), statement (3.3.61) can be written as
n=0 7 [n]q‘ n=0 [n]q' n=0 [n]q‘
S0 Ty
n=0 7 [n]Q‘ [n}q'
0 : . 1] frtm
nzg "l [n], 'Z [n+m],
Starien
22 Pnba WU T e ml TR )]
which is equivalent to write
> “ n [k]q' [m—1,1] tn+m
= —B " 7 (z,0) ) (3.3.63)
o <kz:% [ k L [k:—l—m]q! ka [n]q!

Comparing the coefficients of % in relation (3.3.62) with relation (3.3.63), leads to
obtain the desired result.

To prove relation (3.3.58), we start with the following statement

tm
<eq (t) = T4 (t)) Ey (ty) (eq (1) = T4 (1)),

which is clearly equal to the summation below

According to the Definition (3.1), relation above can be written as

o0

Z m 11] " .
n=0 [n]q' n=0 [n + m]q'

e tn—l—m
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Applying a similar process to the proof of relation (3.3.57), makes this part of the proof

complete.

In order to prove relation (3.3.59), we consider the following identity

N om
2n - eq (tx) (eg (1) + Thpe1.q (L

; [n],! (eq (t) + T4 (t)> ¢ (tz) (eq (1) 14 (1))

= 0 m—1
— @Efm—l,l} (x, 0) < + >

nzzo ! [n],! RZ:O n],! nz:% [n],!

00 n n . min(n,m—1) n . "
= Zlk} in[zz_’]@’,())-l- [k’} @L’Z‘v](‘r’O) T
=0 \k=0 1 k=0 q n g

The rest of proof will be similar to the proof of relation (3.3.57). Also, because of applying

a similar technique in the proof of relation (3.3.60), we pass its proof. ]

Remark 3.15. From Lemma (3.14) we obtain the list of generalized ¢-Bernoulli and

g-Euler polynomials as follows

m—1,1
B, " (@,0) = [m],,
m—1,1
%[l,q ] (I,O) = [m]q' Tr — m s ,
[m—1,1] 9 [2,Im])! (2],q™ ! [m], !
Brg (@,0)= 2" — Lo 4 e
m—1,1
B 0,y) = [m],),
m—1,1
B0 0,y) = Il (v- ) - ,
[m—1,1] . o [2gm],! (2],q™ " [m] !
By, " 0y)= qy [n:jJrl]Z [mil}z[m+2(}zq'
et (2,00 = 2mt,
e 0 = ar o
1,q ) - )

ez 0)= 2m iz —1), m>2

) = 22% — 2[2]z — 2+ 2[2],,
€ (2,0)= 4o — 42z — 44402,
e (2,00 = 2m (@2 — [2]x + [2],), m > 3.
e (0,y) = 2m L,

ey = 2y-2

e 0,y = 27y 1), m>2,

Qf[z(f;” 0,y) = 2qy* — 2[2]qy + 2[2] — 2,

el (0,y) = 4dqy® — 420y + —4[2], — 4,

et 0,y) = 27 g2 — 2y + 2, — 1), m >3,

respectively.
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3.4 Explicit relationship between the ¢-Bernoulli and ¢g-Euler polynomials

mials

In this section, some generalizations of the Srivastava-Pint’er addition theorem are de-
rived. Also, some new formulae and some of their special cases are given. These results
are the natural g-extensions of the main results of the researches which can be found in the

references [65], [66].

Theorem 3.16. The following relationships hold true between the generalized q-Bernoulli

polynomials and q-Euler polynomials.

Bl (z,y) = (3.4.1)

n k
1 n 1 [m—1 a] [m—1,a]
5 Z |: ] :| [n—k [%k q + Z |: ] :| lk_JSB (f, 0) enfk,q (07 ly) )
k=0 q Jj=

BImbel (z,y) = (3.4.2)

I<~[n 1 ol el (1
52 { k ] Jn—k [%Eﬂq bl (0, y) + SBEW Lol (jy)} € pq (12,0).
k=0 q

Proof. First, we prove (3.4.1). Using the following identity

[0}

tm
Lt eq (tz) Eq (ty) =
W)~ 07 o
q
9 " AN | tm
~—— X By (_ly) X = (l) X m—1 i €q ().
eq () +1 l 2 e (t) =220 [
We have
G t
%[m 0] 1 an Oly %[m 1,0] xo
Z KRR nq!zl’f Z 5
tn
+z Zekq()ly .Z‘Bmla] [n]l
q n=0 @
=1 + L.
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It is clear that

L=5» Brtl(z,0) €y (0,1y)
2 HZ:O ‘ ]! g “ )]
_ 1 — n k—nqam—1,0] t"
= 5 Z { I } l ‘B,w (1:,0) kg (0, ly) [n] T
n=0 k=0 q q
On the other hand
1 00 m 00 tk 0o 4
L=2-) sm-tel g 0) €y (0,1y) —
PR 2 O O T 2
o) 00 k
1 t" k tk
=) mim=lal g ) { } ¢;,(0,1y)
2 ,; ! [n],! ;; Jl, I+ K],
o) n n—=k
1 n [m—1,a] n—Fk t"
n=0 k=0 q §=0 q q
1. n n—j n—j 1 m—1.0] tn
n=0 j=0 q k=0 q q
Therefore,
ol La t
EE:SBLQ ! ](x7y)__T_
n=0 q
] = — 1
- 5 Z |: 7 :| lnfk
n=0 k=0 q

k
m—1,a k 1 m—1,« t
x [%L,ql o+ | b i Wm;@)] €1mtq (0.19)
j q

Next, we prove relation (3.4.2) using the following identity

o

C e (t2) Ey (ty)

m—1 ¢
Cq (t) - Zz‘:o ﬁq'

n

]!

t eq () +1 tm

= X eq <—lx) X X — E, (ty)

€q (%) +1 ! 2 eq (1) Zizol ﬁqv !
We have

C " 1o "o t
B ) = 5 2 € 1.0 5 S ()

% I [n],! 2 % " [n]! &= ™ l [

IS e 1 0) S Bl (0,

2 k.q ’ lk [k?] I n,q Y [ ]

k=0 9 n=0 q

=L+
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It is clear that

1 & [— th
[2 =3 %gn—l,a] (Oa y) Gk, (lﬂf, 0) TR
2 RX% 4 [n]q! kz:% 1 lk [k}q!
1 co n n - ) mn
—_ _ lk; n [m 704 _ l .
2 nz% kz:% |: k :|q %]Qq (07 y) €n k,q ( x? O) [’I’L]q'
On the other hand
1 o0
I == %L’Lﬂla](,> € g (l2,0) —
2 2B Txp TR
Iens=[ 7] inealm-tal (1 tn
- [Engglm=tel [ - ke (12,0 .
2;k:0|:k}q ‘Bk,q (l’y)qE kﬂl(xa )[n]q|
Therefore
o0 tn
Bl (2, y)
; 9 [n]q!
1 o n k—n [m 1,a] [m—1,a] 1 "
:522 P bt (0,y) + B, 7Y )| Cnrg (lx,O)W.
n=0 k=0 q q’

Next, we discuss some special cases of Theorem (3.16).

Theorem 3.17. The following relationship holds true between the generalized q-Bernoulli

polynomials and the q-Euler polynomials.

min(n,m—1)

m—1,x 1 n m—1,o n m—1,a
I R I I LSRN L Sl
k=0 q q

k Tl—k,q

1
E—1 m—1,a 0,—1
+ [, Z { ; ] q%g’q 10, y) %L_ljjvq] Eig (2,0).

Remark 3.18. Taking ¢ — 1~ in Theorem 3.17, we obtain Srivastava—Pintér addition

theorem for the generalized Bernoulli and Euler polynomials

n

min(n,m—1)
me1.o 1 n m—1,a n L
gl ](33+y)252( k) B )+ Y (k )%&-k} ()
k

= k=0

k—1
+ kZ( ) plmtel (y )%Efjlljj] Eop (7). (3.4.3)

J=
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Notice that Srivastava—Pintér addition theorem for the generalized Apostol-Bernoulli
polynomials and the Apostol-Euler polynomials was given in [63]. The formula (3.4.3) is

a correct version that of Theorem (3) in the reference [63] for A = 1.

3.5 Explicit Relation between ¢g-Genocchi and ¢g-Bernoulli Polynomials
Theorem 3.19. The following relation holds true between the generalized q-Genocchi and

the generalized q-Bernoulli polynomials

ot =3[} ] e,

k=0

k+1 -1 .
S ] B[] ey
0 q j q
— mP S (2,0))B, kg (0,my) . (3.5.1)

Proof. The proof is based on the following identity

07

2l

-1 30 €q (tx) E, (ty)
eq () + Zi:(l) ﬁqv
oLl e, (L) —1 L t
= S ey (tr) x 2 (mt) X = x E, (—my) .
()+ZZOz]l m eq(E)_l m

Consequently,

oo e g
;QS%QI ] (‘/E’y) [n]q'
(Z@[l 1,a] n ' Z mk
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Z ¢ (0,my) [n]q!

‘1 =0

n+1
n+1 l—17OL ’Vl l 10(
S [ el - “@LHq](m,m)
q

B, (0
nln+1 'Z a(0,my) []q

q

oo n k+1
k+1 j g5 ll— Lo -1«
Sy ([t }mﬂes;;ux,m wa;qux,m)
q

n=0 k=0 7=0
tk tnfk
X o Bk (0,my) ———————
[k +1], [K],! I mnk[n — k] !
o n k+1
n 1 {lﬁ-l] jxli—1a]
- B L] el (4,0
;kolk]qm[k#—l]q(; J q 24
X —mk+1®Z+iZ (,0) | Bp_kq(0,my) '
[n]q'

Now, we use relation (3.3.51) from Lemma (3.10); that is

il -1 .
el oy ot el e i1 i
o) (0.0 =220l V- - X | ] el .
i q

[+ 1,0 | —id
So, we have
®[l 1,a]( y)
n k+1 Ol
n 1 {k—i—l} irol i1,! L]
= 1 - m! (2 ———&._ (x,—1)
;hkm”[k’ﬂ%]q(; i, i+, 7
-1 ¢ .
-1, 1 a
) M @Biﬂl‘*”) S (2, 0))B kg (0,m9)
1=0 q
n k1
n 1 k+1} sz —1,a—1]
= T | el (@ - 1)
;%{kkm“[kﬂ]q(;[ A P T T
E+1 -1 ¢ .
| w ] et 1>)
Jj=0 J q i=0 q
-1,
— S (2,0)) B, (0,my)
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which can be written as

S [4] e (B [ ] e e

k+1 -1 .
[ el S
q =0 q

— S (2,0)B 4 (0,my).

]

Lemma 3.20. The following relation holds true for the generalized q-Genocchi polynomi-

als
kE 1-1 j 1 k—j
[l 1,a] [l—1,0]
ol () 22 5], L], ), o -
7=0 =0 q q q
om (k] | kb _ 1 k—j—1
. [l]q‘ lk: l} (__1> li-tel (o)
k=)=l 7 J,\m .
(3.5.2)
Proof. From relation (3.3.48) of Lemma (3.10), for 0 < 57 < k we have
[l—la —[j l la UR [I-1,0—1]
G +Z (O,y) =2 - l] 95] » 0,9). (3.5.3)

Multiplying both sides of the relation (3.5.3) by [ ;C } (% — 1)’; 7 for 0<j<k and then
q

adding the k + 1 obtained equalities together, will lead to obtain

B[ e B () e

q q

-1 .
J -1,
X l 7 :| 6g‘—i,q } (07 y)
0 q

k :| ( 1 >k_j 1 [l]q' [[—-1,0—1]
- I R R S e (0] (3.5.5)
‘O{J  \m 1] 1 it

q




which can be written as

i ( T <t>>a o 0Byt 1) B0

© ll(l—l)(_t)l
=2 8 > Z : ~
Ly mk
n=0 [ q' =0 " q' 1=0 [l]q!
It is equivalent to write that
9] © k (k=D(k—1-1)
tn 1 tl qf(_l)kfltkfl
=) sl —
Z nq (79)[n]!zzmz ]! k—1] !
n=0 9 k=0 [=0 q q

> la A— F k 1 k- 1R
Z@[l I,y )[n] ,ZZ{ I LW(—I)k lq( G )W
k

n=0 9 k=0 [=0 q’
o0 (o]
tn 1 tk
=Sl oS (5 -1)
= Pl \m ) K]
which leads to obtain
oo n—k n—k n—
Y Y el a y) (l_1) "
o [ ]q! m [n — k]q!
oo n—k n n—k n
= &, (1,y) (- —~ 1)
n=0 k=0 |: k :|q ?q q [n]q'

This means that

n—k : 1 n—k 1
{ } e (1,y) (— - 1) — @l 1ol (-, y) . (3.5.6)
m m
k=0 q q

From another hand we have

sz{ |G [nmnlﬂ & 0

q

— o i I (i - 1)k_j &l (0,y)
]q =t \m e R

J:l

from which it can be written that

mk [k]q' 1 k- I-1,a—1
:2§[k—j1!' w(ﬁ‘l) O 0

[7—1! .

— ¢ 1 I ctan)
——1 &, " (0y)
S Gy, o

QJ: q

om | k-l k—j—1
k — 1 “la—
q [[—1,0—1]
2 G, e
=0 q

q q

M
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This means that

=2 [5], G, woager o

q q

om (k] | & 1 S (—1,0—1]
= — =1 e . 3.
=0 ,Z{ } (m ) el 0,y). 35.7)

Substituting the results (3.5.6) and (3.5.7) in the identity (3.5.5) gives the desired result.

]

Theorem 3.21. For n € Ny, the following relation holds true between the generalized

q-Genocchi and the generalized g-Bernoulli polynomials:

@[l 1,a] (l’ y)
- om k-1 bt
n 1 q' Z { } ( 1 ) Itam1]
Z " ——1 & B 7 (an)
kzo[k]m kl[k+1 q|30 , \m . i
Eo1-1 . | -
I—1,« -1,a
- Z Z |: :| |: :| (_ a 1) ng;i’q | (O’ ) QSLJrl q] (Oa y))%n—k,q (me, 0) .
j=0 =0 q q m q
(3.5.8)
Proof. Using the following identity
2l
; e, (tz) B, (ty) =
() + iy )
2l 1) _1 t ;
=1 g E, (ty) x — (mt) X 7 X €q <_mx) )
()"‘Zzol]r m eq(ﬁ)_l m
we have
i@lla A i®lla] t——iﬁ[llo‘] "
[n],! [ ]!
q n=0 s q
B, ,0
XZ o lme )m" n],!
= e 1
— [l 1a - . [l—l,a
mz (&, ( ) G Z‘qu max,0) [k]
‘1 k=0 q
l 10é 1—1704
mz Q5£L+lq ( ) —@L+17q}( Y T lz:%kq ma,0) [k]
n=0 q P J
o n 1 [1—1,0] 1 [(—1,0]
— ; — { }q mn—k—1 [k‘ T 1]q <Q5k+1,q (m ) Q§]€+lq (O,y)>

n

X B_kq (Mmx,0)

[n],"
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Finally, applying Lemma (3.20), leads to obtain the desired result.

Corollary 3.22. For n € Ny, and m € N the following relations hold true between the

generalized q-Genocchi and the generalized q-Bernoulli polynomials

n k—1+4+1 .
(2] e (5[ 513 e
| k| mr k1, el A L, j+21,!

k+1,q

_ § { k+1 ] mi S [ J ] gLl (x,—1)) — mF+1gl L1 (x 0))
j ; J—1,q ’ ’
j q 0 q

(3.5.9)

I—1,1 o
Q§LL,q ] (C(f,y) -
n om (L] | k-l . k—j—l1 i1y
1] e (] (2
— M [k‘+1]q [k;—l]q. = J g, \1m .

o[ R]TI) (L) e —1.0
-1« -1«
ERLLLLE ) e ctin) esm

(3.5.11)
Proof. For o = 1, substituting
1-1,0 ;
S (@, 1) = (z — 1)
and
-1, iG=y
B 0,y) = ¢ 7y
inside theorems (3.19) and (3.21) respectively, leads to obtain the desired results. O]
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Chapter 4

PROPERTIES AND RELATIONS INVOLVING
GENERALIZED ¢-APOSTOL TYPE POLYNOMIALS

4.1 Introduction

Recently, Luo and Srivastava [23], [24] introduced and studied the generalized Apostol-
Bernoulli polynomials B,* (x; \) and the generalized Apostol-Euler polynomials £, (;
A) . Kurt [62] gave the generalization of the Bernoulli polynomials Bl (x) of order
a and studied their properties. They also studied these polynomials systematically, see
[23]-[26], [30], [66]-[75]. There are numerous recent investigations on this subject by
many other authors, see [20], [58], [62]-[66], [76]-[85]. More recently, Tremblay,
Gaboury and Fug'ere further gave the definition of pl,m e (x; A) and studied their
properties, [63] . On the other hand, Mahmudov and Eini studied various two dimensional
g-polynomials,[57], [86]. Motivated by these papers we define generalized Apostol type ¢-

polynomials as follow.

Definition 4.1. Let g, € C, m € N, 0 < |¢| < 1. The generalized ¢-Apostol-Bernoulli

7 ]

numbers B,[ZZ and polynomials B[ Lol (z,y; A) in x,y of order « are defined, in a

suitable neighborhood of ¢ = 0, by means of the generating functions:

¢m S r
Gow-mnm) LI Oy
( ¢m )a ZB[’” Lol (2,3 M) b ) @.1.D
)\eq (t) - Tm—Lq (t) [n]q‘
m—1
where T,,,_1 4 () = kZ::o ﬁ
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Definition 4.2. Let ¢, € C, 0 < |¢q| < 1, m € N. The generalized ¢-Apostol-Euler

numbers % and polynomials ELS ) (2, y; A) in 2,y of order a are defined, in a

suitable neighborhood of ¢ = 0, by means of the generating functions:

2m (e o tn
— [m—1,0] v
(/\eq (t) + Th-14 (t)) Z Bl N [n] K 4.1.2)

n=0

n

2m « t
[m 1,a] .
()\eq (t) + Tm—l,q (t)) Z E x Y )\) [n]q‘ . (4.1.3)

Definition 4.3. Let ¢, € C, 0 < |g| < 1, m € N. The generalized ¢-Apostol-Genocchi

17a}

numbers Gm_ and polynomials Gm_l’a] (z,y; ) in z, y of order « are defined, in a

suitable neighborhood of ¢ = 0, by means of the generating functions:

Gm 1 a] _’ 4.14

(Aeqmwmlq ) Z Vi, o

( =5 > ey (12) By (1) = 3Gl ) U @)
)\eq (t) + Tmfl,q <t> ! ! n=0 . o [n]q'

Remark 4.4. Clearly, for m = 1 we have

B (@, y; A) = B (x5 M)

n7q
BP0 (2, y;0) = B (2,1, 0),

Gl (2,43 0) = GE) (2,43 0) |

n?q

Also, form = 1 and A = 1 we have

B (2,y;1) = BY) (2,y),

n7q

EL) (2,y;1) = B (2,y),

Gl (z,y;1) = GY) (z,y) .
Finally, for x = y = 0 we have

B[m 1,a] (O 0 )\) m 1,a] ()\)7

”(1

EI=1l(0,0; M) = EIhl ()

n7q

GIm=1el (0,05 A) = GImbel (A).

n7q
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4.2 Properties of the Apostol type g-polynomials

In this section, we show some basic properties of the generalized g-polynomials. We
only prove the facts for one of them. Obviously, by applying the similar technique other

ones can be proved.

Proposition 4.5. The generalized g-polynomials By " (z,y; \), EIY (2, y; \) and

Gmfl’a] (x,y; A) satisfy the following relations:

Bl Py ) = | | Bl @0 0By, @2
k=0 L " da

En iy ) =30 | L | B @ 00BN 0,5 ),
k=0 - -4

Gl ey ) =30 | | G NG 0, )
k=0 = -4

Proof. We only prove the second identity. By using definition (4.2), we have

n om a+p
Z E[m LatBl (45 ) ( )> eq (tx) E, (ty)

! <)\eq () + Ton14 (t

- (Aeq G f;m e >) (é) (Aeq< e <t>)BEq (&)

[e.9] o0 n

t
_ E[m 1,a] m 1,8] O y’)\)
25 i 2 % oK
n B tn
- [Z] B (@, 0,0 BP0,y )

q

B :
e o nl,!

8

Comparing the coefficients of the term —— [n] ; in both sides gives the result. ]

[m—1,a]

Corollary 4.6. The generalized q-polynomials B ~1el (x,y; A), Eng “(x,y;\) and

Gm_l’a] (x,y; \) satisfy the following relations:
m—1,x - [ n m—1,a _
Bl ) =3 | | BE 0,502, 4.2.2)
k=0 - dg
m—1,x - [ n | m—1,a —
Bt a, ) =D | | By 0,502,
k=0 - dq
m—1L,x - [ n ] m—1,a n—
Gl iy ) =D | | G0 g )

B

Il

o
r

-q
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n7q

Proposition 4.7. The generalized q-polynomials B[ b }(:p, U A), pim=tel (xz,y; \) and

Gmfl’a] (x,y; A) satisfy the following relations:

m—1,a . m—1,a .
)\B"[%q ](17 Y; )‘> - B'r[z,q ](07 Y; )‘>

- H} [Klg By (0,4; VBRI, for n>1, (423)
k=0 q

m—1,a . m—1,« .
ABIm=Lel(1, 4 0) 4 BImbal(0, 45 \)

=2 {”} B0, VER I, (4.2.4)
q

AGITLel(1 g A) 4+ GEmbel(0, y; M)

:223[] Gl 0, NG, for =10 (42.5)

Proof. We only prove (4.2.4). By using definition (4.2), and starting from the left hand

side of the relation(4.2.4) we have:

n

WE

m—1,a . m—1,a .
(MBI (1, 53 A) + EL299(0, 43 1))

[n],!

i
o

(Mq>fa~q@>2“”@“”+<mgwf%nmuﬁa@“w

+ﬂnm 75) Ealtn) ey 0+ 1)

A
( -1
+Tm lq ) ( (f)+1)
n m
7, 4

e

— f: [m— la]oy’ -
22
n=0

ZE[U 1

=0 q

m—1,a t
Z[ 1 By 0,y N E: EJ(MW-
k= q q’

Comparing the coefficients of the term —— N ] ; in both sides gives the result. [

4.3 g-analogue of the Luo-Srivastava addition theorem

In this section we state and prove a g-generalization of the Luo-Srivastava addition

theorem.
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Theorem 4.8. The following relation holds between generalized q-Apostol-Euler and q-

Apostol-Bernoulli polynomials:

Bz, y;0) =
i 1 [n+1 } VNl [n—j+1 ] gimtag )
g n+1], J . p n+ 1], k , kg Y
- A—1 (27 \°
— B0,y /\)> Bya(w 0:3) + p (A+ 1) Buyig(z,0;0).  (43.1)

Proof. We take aid of the following identity to prove identity (4.3.1):

t t te, (tx)

A e (tr) ey (t) — N (=17 (tr) = Ny (0 —1

Aeg (1) — 1 (Aeg (t) — 1) = teg (tx) .

Therefore, we can write:

AZZ{ }qux())\ ' ZB

n=0 k=0

from that we can conclude:

)\Z{ } Biog(,0: X) — By g(2,0;\) = [n],2" ",

that is

n 1 = n+1
T, (AZ[ k LB’“W’O’A)‘BnH,q(fcaO,A) L 332
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Substituting identity (4.3.2) into the right hand side of relation (4.2.2), we obtain:

- _ 1
E[mfl,a} ) = n E[m L] 0.\
e =30 | || B0 N

n—k+1
X <>\ |: e k +1 :| Bj,q(ilf, 0, )\) — Bn_k+17q(1’, O, )\))
j q

J
- n [m—1,a] 1
=> E; (0,9: \)
k=0 |: k 1(] I [ - k + 1](1
En—k+1
X (AZ { . } B;o(2,0;A) + (A = 1) Bp_j414(,0 )\))
=0 J a
“[n X n k: +1
m—1,a -
= [ I } El[ﬁ,q ](O,y; - k 1 { } B, ,(z,0;X)
k=0 q 7 j=0 q
- n [m—1,a] A—1
=+ { } Ek’ (0,y; \) ————Bn—k+1,4(2,0; \)
k=0 K a [n—k+1,
=1+ I
Thus, from one hand we can write
- n ok n k +1
m—1,« X - .
n=3 (0] e "y > Bt
k=0 q 7 j=0 q
- n ”Z—f A n+1 n—k+1 E[mfl’a](o N B; (2, 0: \)
= : [n + 1]q n— l{ + 1 ] k,q 73/7 7,9 » )
7=0 k=0 q q

According to the part (c) of the Proposition (2.6), we know that

[ n n m —1 ’ ’
q q q q

S0, we may continue as

_y A { _
= 1l =0 i
Qi n+l m—1,0] m—1,0]

=X oo || B0 (B (g n) = Bl 0,m0)
j=0 4 q
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From another hand for I, we can write:

=~ [ n m—1,a A—1
12 = Z I :| El[c,q }(07 Y, )\)mBn,kJﬂ’q(l‘, 0, )\)
k=0 - q q
- [ n + ]_ ‘| )\ - 1 [mfl a]
=2 T Bk, 0 VB (0,5
k=0 " & q [n - 1]4 !
n+1l r
_ n+1 A—1 . [m—1,a] .
o 1 o, ket O By 0. 5)
A—1 .
— By, 0; N ET(0, 45 A
[77/ + 1]q 07‘1(‘%7 ’ ) k,q ( » Y )7

and as By ,(z,0; A) = 0, we have:

1 ¢

S
+

n+1] A—1
k _q[n+1]q

Bn—k+17q($a Oa A)E][;Z_l’a} (07 Y; >‘)

S =

+
= O
r

(n+1] A—1

By (2, 0, N BN (0, 5 A
j _q[n+1]q (T ) (0,45 A)

‘M

3 |

(n+1] A—1
j _q[n+1]q

m—1,«
Bjq(z,0; )‘)ET[L—j—l-l,l](Oa y; A)

A—1 m—1,a
+ [n+ 1] BnJrLQ(xao;)‘)E([),q ](an; )\)
q

.
o

Adding I, to I; we obtain:

Embel(@, g ) =1 + I, =

—)\ n + 1 [m_lva} [m—l,a}
Z [n+ 1](] |: ] :| Bjﬂl(xao; )\) (En7j+17q(1,y; )\) — En*j+l,q(07y; )\)>
Jj=0 q

n n+1 )\_1 [mfla]
; B; 0:- MVE™ YN0 4\
" j;o [ J L [n+ 1], ],q(:c, S A) TL—]—H,q( LY )+

A—1

2B, 0; \)E 1y \).
[n+1]q +1,Q<x7 ) ) 0,9 (7y7 )
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Consequently

n

m—1,« ]' 7’L—|—1
B e =3 e |1
j=0 q

[n+1], J

) (ABD (L s A) = B 0,5 0) + (= DEI (0,55 0)) By, 0; )
A—1

+[n+1] n+1q<l’0)\Em 10‘](0 Y; )

)
n+1 m « m @
_ Z n+1 [ } /\EL @y ) — B 0.y /\)> Bj (2,05 \)
7=0

A-1 m-la
+ ﬁf}mq(;ﬁ 03 M) By (0,5 \)
q

_ i 1 [ n+1 ]
j:0 [n+ 1]q ] q
"S-+l
- m—1,« m—1,a
(A Z { k } E7[l J+111(0>y3 A) — Er[z g+11](073/; A)) B o(z,0; X)
q

(A—1) ( om

+
n+1], \A+1

) Bn+l,‘]($a 07 )‘)7
whence the result. [

Taking m = 1 in Theorem 4.3.1 , we get a g-generalization of the Luo-Srivastava

addition theorem [25].

Corollary 4.9. The following relation holds between generalized q-Apostol-Euler and q-

Apostol-Bernoulli polynomials:

n

ot 2 n a—
Bl (y;0) =Y — { } <E§+1,1q)(0,y;k)
q

=0 [] + 1]‘] J

A—1 2\

(a) : . )

- EJH q(07y7 >‘)> Bijq(z,0;0) + n+ 1], ()\ I 1) Byi1,4(z, 05 N).
(4.3.3)

Letting ¢ 1T 1, we get the Luo-Srivastava addition theorem (see [77]):

E(z+y; ) :Z? ( j ) (EJ(H "(y; )
=07

() . A—1/ 2 \° .
— Ej%i(y A)) B jq(x; M) + ] ()\—H> Bryi(z; A).

Next theorem gives relationship between E ! (z,y; \) and G, 4(x,0).
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Theorem 4.10. The following relation holds between generalized q-Apostol-Euler and

q-Apostol-Genocchi polynomials:

n

_ 1 1 = n J 1
Emtel(@ g ) =23 DN B0, ;A
n,q9 (‘T7y7 ) 2 [k+1]q ( ' |:] :| |:k-:| n—754 (0,% )
k=0 ]:k q q

- n m—1,«
k=0

Proof. The proof follows from the following identity:

om a
<)‘6q (t)+ T, (t)) e, (to) By (ty) =
! e () +1

om «a
(Aeq<t>+Tm_1,q <t)) Ealty) o1 (0 =5

O

Theorem 4.11. The following relation holds between generalized q-Apostol-Euler and
q-Stirling polynomials S, (i, j)of the second kind:
m—1,a] m—1,a .
Bl = [ | A 0086 Hae)
k=0 j=k
Proof. The ¢-Stirling polynomials S,(n, k) of the second kind are defined by means of

the following generating function:

2" =Y S,(n, k)ze(x), (4.3.4)

where z,(z) = z(x — [1],)(z — [2],) - .. (x — [k — 1],), [87]. Replacing identity ( 4.3.4)
in the right hand side of (4.2.2), we have:

n

n—k
R CNTIVEDY { H Bl 050 D Sy(n — by b))
q k=0

k=0

B { iy } B0, )8, . o).
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Theorem 4.12. The relationship

holds between the polynomials E,%_l’o‘] (z,y; \) and the q-Hermite polynomials defined

by, see [88],

e, (t2) B (—é—]) =S H, (@) t"‘.

Proof. Indeed,

S Bl (g, 45) [;L! (o) B W

2m “ t? t?
(et BB ( mq) “ ([21)
N el " " o
= XZ:O E?L,q ] (07y7 )‘) [ ]q| Z:; qu (l’) [n]q| — [Q]Z [n]q2|
N[ ] gt IR o S
—2.2 K }E O Homs (0) o D el
00 [%] n—2k
o [n]q' n — 2k [m—1,q] . ' T t"
=2 2 G2, " ]E (053 2) Hnatmg ()
0o [%] n—2k
n n — 2k [k]q! m—1,a t"
= ; 2 2 { i }q { i ]q [2]3 [k]qg!EJ[q ] (0,y; X) Hy—ok—jq () [n]q‘
]
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Chapter S

A DETERMINANTAL REPRESENTATION FOR THE
CLASS OF ¢-APPELL POLYNOMIALS

5.1 Introduction

Appell polynomials for the first time were defined by Appell in 1880, [34]. Inspired by
the work of Thorne [89], Sheffer [35], and Varma [90], Al-Salam, in 1967, introduced the
family of ¢-Appell polynomials {A,, ,(z)}>°,, and studied some of their properties [91].
According to his definition, the n-degree polynomials A,, ,(x) are called ¢-Appell if they
hold the following ¢-differential equation

Dyu(Any(2) = [n]yAn_14(z), n=0,1,2,... (5.1.1)

Note to the fact that Ay ,(x) is a non zero constant let say Ay, To begin with the

relation(5.1.1) forn = 1, 1. e.
Dy o(Ar4()) = [1gA0q(z) = Aoy
Using Jackson integral for the ¢-differential equation above, we get

ALq(CIZ) = A07q.f17 -+ Al#]?

where A; , is an arbitrary constant. We can repeat the method above to obtain A, ,(x), as
below by starting from the property(5.1.1) for g-Appell polynomials

Dy2(Azq(x)) = [2]4A147 = [2]gA0 4T + [2]4 AL

Now take Jackson integral

Agy(z) = Agg® + [2)4A14 + Aay,
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where A, , is an arbitrary constant.
By using induction on n and applying similar method to the methods used for finding
A 4(x), As () and continuing taking Jackson integrals we have

n —

—1 1
An1q(x) = An1g + [ " 1 ] Ap_o 47 + { 9 ] An_g,me + ...+ onqx”_l.
q q

Considering the fact that forn = 1,2,3,..., every A, ,(z) satisfies the relation (5.1.1),

we can write

Dya(An (@) = [1lgAn-rq + [y [ nt LAqu

-1 .
+[n]q{”2 } An_s02% + .+ [n]Ag ™.
q

Now, taking the Jackson integral of the g-differential equation above can lead to

n -1
Amq(x) =Ang+ [n]qAn_qu + & [ ! 1 } A”—quxQ
q

2]
], { n—1

n
2 :| An,37ql’3 + ...+ &A()’ql’n,
q

[n]q

where A, , is an arbitrary constant. Since

[n]q{n_l}{n}
[/L]q 2_1 q Z q7
soforn =0,1,2,..., we have

n

Aue) = At iAo+

:| An_27ql‘2+|: g :| An_g,q$3+. . .+Ao’qIn. (512)
q q

It is worthy of note that according to the discussion above there exists a one to one cor-
respondence between the family of g-Appell polynomials { A4, ,(x)}7, and the numerical
sequence {A, ,}5°,, A,, # 0. Moreover, every A, ,(x) can be obtained recursively
from A,,_; 4(x) forn > 1.

Also, g-Appell polynomials can be defined by means of generating function A,(t), as

follows
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Ag(z,t) == A (t)ey(tz) = ZAn,q(x)[;—T', 0<q<1,

¢

where

00 m
AQ(t) = ;%Amq [n]q!7 AQ(t) 7& 07

is an analytic function at t = 0, A, ,(0) := A, ,, and e,(t) = > >0 | L

n=0 [n}q! :

(5.1.3)

(5.1.4)

Based on different choices of A,(t), which is called the determining function for the set of

{A, ()}, different families of g-Appell polynomials can be obtained. In the following

we mention some of them:

a) Taking A,(t) = [1], = 1 leads to obtain the family including all increasing integer

powers of x starting from 0,

{1,2,2%,2°, .. .}.

b) Taking A,(t) = (eq(t)+> , leads to obtain the family of generalized ¢-

Trn—1,q(t)

Bernoulli polynomials B (z, 0), [86].

c) Taking A,(t) = (L@J , leads to obtain the family of generalized ¢-Euler

eq(t)+Tm—1,9

polynomials &% (2, 0), [86].

d) Taking A,(t) = <#> , leads to obtain the family of generalized ¢-

€q (t)+Tm—1,q(t)

Genocchi polynomials 6%—1@} (x,0), [86].

e) Taking A,(t) = (WM) , leads to obtain the family of generalized ¢-

Apostol Bernoulli polynomials Bm_l’a] (x,0; \) of order a, [92].

f) Taking A,(t) = </\eq($>a, leads to obtain the family of ¢-Apostol-Euler

t)JFTm—l,q(t)

polynomials E% ! (z,0; \) of order a, [92].

g) Taking A,(t) = </\eq(2n—t>a, leads to obtain the family of ¢-Apostol-

)+ Tm—1,4(t)

Genocchi polynomials G%ﬁl’a] (x,0; A) of order a, [92].
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h) Taking A,(t) = Hy(t) = > (=1)"¢"™ DL leads to obtain the family of ¢-

2n]11
= 2n]

Hermite polynomials H,, , (x), [88].

Later, in 1982, Srivastava specified more characterizations of the family of ¢-Appell
polynomials, [93]. Over the past decades, g-Appell polynomials have been studied from
different aspects in [94], [95], using different methods such as operator algebra their prop-
erties are found in [96]. Also, recently, the g-difference equations satisfied by sequence of
g-Appell polynomials have been derived by Mahmudov, [97]. In this paper, inspired by
the Costabile et al.’s determinantal approach for defining Bernoulli polynomials as well as
Appell polynomials, for the first time, we introduce a determinantal definition of the well
known family of ¢g-Appell polynomials, [98], [99]. This new determinantal definition, not
only allows us to benefit from algebraic properties of determinant to prove the existing
properties of g-Appell polynomials simpler, but also helps to find some new properties.
Moreover, this approach unifies all different families of g-Appell polynomials some of

which are mentioned in a)-h)and expresses them by using one single representation.

In the following sections, firstly we introduce the determinantal definition of ¢-Appell
polynomials and then we show that this definition matches with the classical definitions.
Next we prove some classical and new properties related to this family in the light of the

new definition and by using the related algebraic approaches.
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5.2 g-Appell polynomials from determinantal point of view

Assume that P, ,(x) is an n-degree ¢g-polynomial defined as follows

Whereﬁo,ﬂl,...,ﬁnER,ﬁo#O, n:1,2,3,....

Then we can obtain the following results.

P07q(x):5—10
1 =z x? ! x"
50 61 62 ﬁn—l ﬂn
0 o [T A e [T A [T e
q ) q q
n— n
Pn,q@) _ (é;)lg:l 0 0 50 |: 9 :|qﬂn5 |: 9 :|qﬁn2
| 0 o m L]

Lemma 5.1. Suppose that A, ,(x) is a matrix including elements a;;(x) which are first

order q-differentiable functions of variable x. Then the q-derivative of det( A, xn(z)) can

be calculated by the following formula.

Dy (det(Anxn(2))) = Dy (|ai;(2)])

a11(qz) a12(qx) .. a1a(q)

n .al-,m(qx) 'al-,m(qa:) . 'al-,lm(qx)
=Y | Dyalan(z)) Dyalan(x)) ... Dgalam(x))
i=1 | aj411() air12(7) e Qi1 n(T)

i (2) s (2) o (@)

Proof. The proof can be done by induction on n.

Theorem 5.2. P, ,(z), satisfies the following identity

Dq,x(P’mq(x)) = [n]qpn—17q<$), n=12...
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Proof. Taking the g¢-derivative of determinant (5.2.1) with respect to x by using

formula(5.2.2), given in Lemma 5.1 , we obtain

0 1 2],x [n]ga" !
Bo B Ba Bn
0 fy [ﬂqﬁl HL@H
— =D" 10 o0 Bo [ K } Br—2
Dyz(Prg(z)) Gy 2 : : (5.2.3)
0 0 { . " X L B
Expanding the determinant(5.2.3) above along with the first column, we have
(-1
D T an =
g2 (Fnq(7)) G
1 [2]g [n — 1gaz"~? [n]gz" ™
o [f]qﬁl [”[lkﬁm H]qﬁm
—1
0 B { " L Bus { ) L Bz |, (5.2.4)
0 wo L
Now, considering the fact that
[i_l]q[ J } _ [i_l]qmq! _ [j_l]q! :[j_l]
mq i—1 q [j]q[i_l]q![j_i+1]q [i_Q]q![j_i"‘l]q i =2 q7

L a5 well as the i*" row

and multiplying the j** column of the determinant(5.2.4) by 7o

by [i — 1], we obtain
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(0"t ! (2l [n]q
Dy .(Pq(x)) = X X 1= XX X
R (Bo)™ [0]g!  [1]q [n—1]q
1z .. .. "2 !
Bo Bi o Br—2 Bn-1
-2 -1
Ca o [ e [ ] e
q q , (5.2.5)
n—1
0 0 .. Bo |:n_2]qﬁl
which is exactly the desired result. [
Theorem 5.3. The q-polynomials P, ,(x), defined in (5.2.3), can be expressed as
Py =3[ " 7
() = ;| om=i®s (5.2.6)
=0 q
where
1
¢ ap = B
Bo B B2 Bi-1 Bi
2 J—1 J
o s | o [TT] s 4] 0
q . 1 q . q
J— J
ey |00 B { 2 } Pis { 2 } s
Qj = [Boyitt q .q
| 0 o a0 e
(5.2.7)
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Proof. Expanding the determinant(5.2.1) along the first row, we obtain

51 BZ /Bn—l ﬁn
50 |:§:|q61 |:n11:|qﬂn—2 |:T:|qﬁn—1
(_1)n+2 0 ﬁ() |: n ; 1 } 571_3 [ g :| ﬁn_g
Prg(z) = W q q
/60 52 Bn—l 571
0 |:?:|q61 |:n11:|qﬂn—2 |:71L:|q6n—1
(_1)n+3 0 ﬂo |: n g 1 :| 671—3 [ ;L :| ﬁn—2
+—(50)"+1 T 4 :q
Bo B B2 Br-1
0 b [f] Bi o [”;1} s
_1\2n ! -1 !
+ ...+ —((53i;2 " 0 0 Bo [ " 9 }qﬂn—;’» . (5.2.8)
0 0 Bo

Clearly, according to the given definition for «; in relation (5.2.7), the first determinant
leads to obtain «,, which is the coefficient of z°. Also, the last determinant, which is the
determinant of an upper triangular n x n matrix, will lead to obtain the coefficient of z"

as follows

S Dl

(Bo)m+t B

To calculate the coefficient of 27 for 0 < j < n, consider the following determinant
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(Bo)"*1
Bo B Bi-1 '5j+1 B
0 B [Jll]@_z {ﬁl]ﬁ] [Tf]ﬁn_l
oo [ e P - 2]
0 j—l—i n
Bo i1 q52 o | Bn—jmr
Jj+1 n
0 [ j Lﬁl {] lﬂn—J
n
0 0 0 0 : {n—l} B
+ 1 -1
|:]ji]_ :|qﬁl |:n] :|q6n—j—1 |:;L:|qﬁn—]
o (_1)n+j (5 )j ﬁo
~ (Bo)tt 0 ‘ . . .
v a [
Now multiplying the first column of the last determinant by #, we obtain
!
j+2 n
51 |: j 1qﬁ2 |:] :|q5nj
J+2 n
[]—:1]60 {j—f—l}qﬁl . {j—i—l}qﬁn_j_l
o (_1>n+j 1 ‘7 q
~ By [J'Jrl} Bo
i, .
n
0 [ n—1 Lﬁl

Further similar calculations to get coefficients 1 for the first elements of each column

in determinant above leads to
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(—1)mtd 1 1 1 1

:(@Wlﬁlx[j+1} X{j+2] X””<{n—1} X{n} X
7, i, i, il,
ﬁl ﬁz ﬁnfj—l anj
{j+2} [n—l} { n }
Jj+1 , Jj+1 , j+1 ,
{j—il] 60 l:j-f—?] 61 Wﬁn—j—Z Wﬁn_j_l
7, i, i, il,
Bo
0 Bo {nT—Ll} Ioh

In order to create coefficient 1 for the term [, placed in the second row of the above

1
J j ] . As we are aware of the fact that

el
Lt

determinant, multiply this row by {

and also

Thus we have

G N S L
— (Bo)ritt {j+2] ' [n—l] [n]
7o, J q Jl,
61 ﬁQ s .ﬂnfjfl @nfj
Bo {?] B [n_{_l] Br—j—2 {HI]} Br—j-1
; /Boq q q
0 b L] e
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We continue this method for each row. As the number of coefficients in

1 1 1 1
: X - X ... X
[]+1} {j+2}
‘7 q ‘7 q

is n— 7, so it is equal to the number of rows. Moreover, in each step one of the coefficients
above will be cancelled by the corresponding inverse which will be multiplied later by

each row. Therefore, we are sure that at the end we obtain

ﬁl 52 s .Bn—j—l @n—j
BO |:?:| 51 |:n_{_11 5717]‘72 |:an:| 5717]'71
q q q
(—1)mti Bo

o (ﬁ())n—j—&-l
0 Bo [ nﬁ 1 } P

= Qn—j,

whence the result. O

Corollary 5.4. The following identity holds true for the q-polynomials P, ,(z)

&A@ZE:[@}Rwﬂmﬂ,nzasz (5.2.9)
oo L g
Proof. According to the definition(5.2.1), for j = 0,1, ..., n, P;,(z) = «;, since O
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(Bo)7+!
1 0 0 0 0
Bo B B2 . Bi1 '5j
0 Bo {?Lﬁl e [‘711}(153‘—2 |:{:|qﬂj—1
0 0 o {j;ﬂ@j—:’» {g}ﬁj—z
J
0 0 o {j_ 1 Lﬂl
B B e e B 8
Wt P e (] e
B (_1)] 0 ﬁg . |: J ; L :|q/6j—3 |: ; :|q/8j—2
B (Bo)i+1 :
0 Bo [ jz 1 L51

= Oéj.

Replacing P,_; ,(0), instead of «,_; in relation (5.2.6), gives the expected result.

Corollary 5.5. The following relations hold true for ojs in relation (5.2.6)

0= 5 (5.2.10)
LI

aj = ‘EZ “ } Bj—ici, j=1,2,...n.
0 =0 q

Proof. The proof is done by expanding «; , defined in relation(5.2.7), along with the first

row and also applying a similar technique to the proof of theorem 5.3. ]

Theorem 5.6. Suppose that {A,, ,(x)} be the sequence of q-Appell polynomials with gen-

erating function A,(t), defined in the relations (5.1.3) and (5.1.4). If By, B4, --., Bng,
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with By , # 0 are the coefficients of q-Taylor series expansion of the function A;(t) intro-
q

duced in relation (2.2.15), then for n =0,1,2,... we have

[ Agg(z) = ﬁ
Apgl) = e
1 T x? 1 "
By, B, B, B, 1, B,
2 n—1 n
0 BOq |: 1 :| qu |: 1 :| Bn 2,q |: 1 :| Bn—l,q
q 1 q q
n— n
0 0 By, o { 9 } B3, [2} B2,
q q
n
\ 0 0 By, { no 1 } By,
(5.2.11)
Proof. According to the relations (5.1.3) and (5.1.4), we have
. 2 "
:ZAM = A+ At + Aggo + o A+, (5.2.12)
" nl,! 2],! “[n],!
n=0 q’ q
and also
t? tn
t)eq(tz) ZAM — Agq(z )+A1,q(x)t+A2,q(x)W+...+Amq(m)W+....
q q’ q’
(5.2.13)

Let B,(t) = m. Thus, considering the hypothesis of the theorem and also noting the
definition of ¢-Taylor series expansion of B, () at a = 0 given in relation (2.2.15) we have

2 n

t t
B,(t) = Boy+ Big==— + Bagrm—+ ... + Bpg()— + ... (5.2.14)
I 7 1], “12],! T ],

By using Cauchy product rule for the series production A,(t) B,(t), we obtain

1= Ay(t)B,y(1)
00 n o0 n
=Y A, B
2 Anay 2 oy
o n n tn
=> { . } Ak,an,k,qW.
n=0 k=0 q q



Consequently,

“In 1 forn =0,
{ k LAk’qB"k’q o { 0 forn > 0.

no | m 5.2.15
By = =%k { A } AkgBn_rg), n=1,23, ... ( )

q

Now, multiply both sides of identity (5.2.13) by B,(t) = and then replace e, (tx)

_1_
Aq(t)?

o0
: : . tn .
by its g-Taylor series expansion, i. e. ,;) 2" [nla! | Therefore we obtain

= e,(tx)
t) ZAW(J;)W => Bug N > A i
n=0 q n=0 9 n=0 q

Using Cauchy product rule in the last part of relation above leads to

e

Comparing the coefficients of ﬁ in both sides of equation(5.2.16), we have

ZZ{ ] n— k,qu,q(x)[;]q!. (5.2.16)

‘1' n=0 k=0

3 { Z } Bo_rqArg(z) = 2", n=0,1,2,.... (5.2.17)
k=0 q

Writing identity (5.2.17) for n =0,1,2,... leads to obtain the following infinite system

in the parameter A, ,(x)

O,qAO,q(@ =,

(5.2.18)
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As it is clear the coefficient matrix of the infinite system (5.2.18) is lower triangular.

So this property helps us to find A, ,(z) by applying Cramer’s rule to only the first n + 1

equations of this system. Hence we can obtain

Bo, 0 0 - 0 1
Bl,q BO,Q 0 cee 0 T
2
ng |i 1 :| Bl,q BO,q NN 0 .’L'Q
q
n—1
anl,q |: 1 ] Bn72,q BOq xn—l
q
n n
Bnq |: 1 :| anl,q |: n—1 :| qu x"
Apg(x) = 4 4
a(®) By, 0 0 0 0
Bi, Bo, 0 0 0
2
B2q |: 1 :| qu Boq 0 0
q
n—1
Bn—lq [ 1 :| Bn—Qq BOq 0
q
n n
Bnq |: 1:| Bn—l,q |:n_1:| qu BOq
q
Bo, 0 0 0 1
qu Bqu 0 0 T
2
B { 1 } B4 By 4 0 x?
o (BO q)n—H
’ n—1
Bn—l,q |: 1 :| Bn—2,q B()q l‘nil
q
n n n
Bnq |:1:| Bn—l,q |:n_1:| qu i
q

Now, take the transpose of the last determinant and then interchange i'® row of the
obtained determinant with ¢ + 1** row, i = 1,2,...,n. This leads to obtain the desired

result that is exactly relation(5.2.11).

Theorem 5.7. The following facts are equivalent for the q-Appell polynomials:
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a) q-Appell polynomials can be expressed by considering the relations (5.1.1) and

(5.1.2).

b) g-Appell polynomials can be expressed by considering the relations (5.1.3) and

(5.1.4).

¢) q-Appell polynomials can be expressed by considering the determinantal relation

(5.2.11).

Proof. (a = b) Suppose that relations (5.1.1) and (5.1.2) hold. Construct an infinite series
Yoo An,q#nq! form all constants A,, , used for defining A, ,(x) in relation (5.1.2). Now

find the following Cauchy product

Z An’q[;—]lleq (tx)

n=0

-N"4, n
; ’q[n]q'zg [n],!

o n tn

DD Ankgr ]|

From relation (5.1.2) we know that

Z Ay g™ = Apg(),
k=0
So we find that

o tn
Ang eq(tr) = Ang(),
2 Ay

whence the result.
(b = ¢) The proof follows directly from Theorem 5.6.

(¢ = a) The proof follows from Theorems 5.2 and 5.6.

As the consequence of discussion above and particularly Theorem 5.7, we are allowed to
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introduce the determinantal definition of ¢g-Appell polynomials as follows

Definition 5.8. The family of ¢-Appell polynomials {A,, ,(x)}>°, are defined as

Bo(
7177'
Anq(ﬂf) = B 1(1))”_‘_1 X
1 x x? ik x"
Byy, DBig B, B, 1, B, ,
2 n—1 n
e [ [P ] e [2] B
q . q q
n — n )
0 0 Bo,, B { ) }Bn_qu {2} Bos,
q q
n
| o 0 Bo, {n—J By,

(5.2.19)

where BO,qa B17q, Bqu, RN qu eR, BO,q 7& Oandn =1,2,3,....

5.3 Basic Properties of ¢-Appell polynomials from determinantal

point of view

In this section by using Definition 5.8, we review the basic properties of ¢-Appell

polynomials.

Theorem 5.9. For q-Appell polynomials the following identities hold

1 n—1

(2" =) { Z ] BrkgArg(2)), n=1,2,3, ... (5.3.1)
q

An,q(ﬂv) = a
»q

Proof. Start from expanding the determinant in the Definition 5.8 along with the n + 1"

Trow
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(=" n
A, = —" B
7‘1('1.) (Bo7q)n+1 n—1 . 1,q><
1 T x? "l
BO,q Bl,q B2,q Bn—l,q
2 n—1
0 BO,q 1 :| Bl,q |: 1 :| Bn72,q (_1)n+1
q q + =By 4 X
n—1 (BO, )n+1 )
0 0 BO,q |: 2 :| Bn73,q q
q
n—1
0 0 BO,q |: n—2 :| Bl,q
q
1 T x? a2 "
BO,q Bl,q B2,q Bn—Z,q Bn,q
2 n—2 n
ol [ [ (1]
n—2 n
0 0 BO,q |: ) :| Bn—4,q |: ) :| Bn—2q
q q
n—1
0 By 4 { n—_9 } B4
q
—1 n (—1)”+1
—_— B A, _
Bo, { n—1 } vadnoal) S
1 x x? "2 "
BO,q Bl,q B2,q Bn72,q Bn,q
2 n—2 n
N
n—2 n
0 0 BO,q |: 2 :| Bn—4,q |: 2 :| Bn—2q
q q
n—1
0 BO,q |: n—2 :| BQ(I
q
Now repeat the same method for the last determinant
-1 n :| (_1)n+1 n—1
= —_-— BL An—l, (CL’) + — BQ’ X
Boq [ n—1 q ! ! (BO,q)n n—2 q !
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1 T x? "3

BO,q Bl,q B2,q Bn—?),q
2 n—3

0 Bog { ]qu { :|Bn4,q
1 1

q q
0 0 Bog {"53] Bos.,
q
0 Bo,
(2
B
" (BO,q)n 0%

1 T x?
Bqu Bl,q B2,q
2
0 DBy { 1 ] By,
q
0 0 By,
0
—1 n
- [ o } BryAy 1)
1 x x?
BO,q Bl,q B2,q
2
0 BO,(] |: 1 :| qu
q
0 0 By,
0

(=" [ n—1 } (Bo,g)"™
By ,——A,,_2.(x
(Bog)" n—2], 2 (—1)n—2 24()
xn—3 "
Bn—S,q Bn,q
n—3 n
|: 1 :| Bn—4:q |: 1 :| Bn—lq
57" !
n — n
3 [3] e
q q
n—1
0 BO,q [n—Q:| B2,q
q
1 n—1 (—1)n2
- — Bs A, _
By L) Baeeeaale) + (g
xn—?) "
Bn—3,q Bn,q
n—3 n
3 e [3] e
37" !
n — n
3 [3] e
q q
n—1
0 By, { n_ 9 } Bs,
q
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Continue a similar method to arrive at

1 n 1 [n—-1
= E |: n—1 ]qu,qAn—l,q<x) - E |: n—?9 :|qBQ7qAn_27q(x)

_ ot 1o
(BO,q)2 BO7q Bn,q
-1 [ n ] 1 n—1
= — Bl, Anfl, (l’) —_ |: 1 BQ7 1471,27 (33)
BO,q n—1 . q q BO,q n— 2 . q q
1
- = B, ,— By,z"
(Bqu)g ( d 0,9 )
-1 n 1 n—1
= Bo, [ n—1 }qu gAn—1 q(x) - Bog { n—29 } B2,qAn—2,q(x)
1 1
- B, Ay (x) + —2a"
BO,q q Oa‘]( ) Bo7q
1 . n—1 n
=5 ("~ > | BrokaArg(T))
0.9 k=0 q
[]
Corollary 5.10. Powers of x can be expressed based on q-Appell polynomials as
n - n
=y { L ] B kqArq(z), n=1,2,3, ... (5.3.2)
k=0 q
Proof. The proof is the direct result of relation(5.3.1) in Theorem 5.9. O

Notation 5.11. Suppose P,(x) and Q),,(z) are two polynomials of degree n. Let P, (x) be

defined as in relation(5.2.1). Then for n=1,2,3,..., we have

(PQ)(2)(PQ)(x) i= ((ﬁ_)l,ffl ><
Qo(z) Qi(z) Qaofz) .. .. Qn—1(7) Qn()
By B By Bos B,
0 Bo HL@ [HIIL@"LQ HL@LI
0 0 By e [”51 Lﬁm HL@H 533
0 0 Bo {nL] By
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Theorem 5.12. Suppose that { A, ,(2)}2, and { A, ,(x)}°2, are two families of q-Appell

polynomials. Then

a) For every o and 8 € R, {aA, J(z) + BA ,.,(2)},>_, is also a family of ¢-Appell

polynomials.

b) {(AA),,(x)}>2, is also a family of ¢-Appell polynomials.

Proof. a) The proof is the direct consequence of linear properties of determinant.

b) According to the determinantal definition of ¢-Appell polynomials given in Theorem

5.6 relation(5.2.11) and also notation(5.3.3), we have

(="

(AA)mq(I) = An,q(Anﬂ(x)) = WX
Aoglz) Arglw)  Aggy(w) An-14(2)
BO q Bl q B2,q Bn—l,q
2 n—1
0 Boq |: 1 :| qu |: 1 :| Bn—Q,q

q 1 q

0 0 Boy [ " } By s, [
q
0 0 Bo,

Using formula(5.2.2) given in Lemma 5.1 we have
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Dq(AOq(l')) Dq(Al q(x)) Dq(;llq(x)) Dq(‘zln—l q(x)) D (Anq(iv))
BO q Bl q BQ,q Bn—l q Bn,q
2 -1
S S A
q . q q
n — n
0 0 BOq |i ) :| ani’),q |i 2 :| Bn72q
q q
0 0 Bo, { " ] Bi,

Since { A, ,(x)}22, is a family of ¢g-Appell polynomials, according to relation(5.1.1)
we have

Dyo(A,o(2) = [n),An_14(z), n=0,1,2,....

Therefore we can continue as

D,((AA),  ( X
(AA)(0) = s
0 Agy(z) [Q]q;ll,q@) n —1]gAn—g4(z) [n]q;lnfl ¢(T)
BO q Bl q BQ,q Bn—l q Bn,q
2 n—1 n
N S P (]
q 1 q q
n — n
0 0 BOq |: 2 :| Bn—3q |:2:| Bn—2q
q q
n q
0 0 Bo, { T } Bi,

Now, expand the last determinant along with the first column as follows

(=D"

= W X —Bo7q><
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= [n]q(AA%—l,q(m)’

AO,q(x) [2]q12117q($)
2
By, 1} By,
q
0 By 4

which means that {(AA ), ,(z)},>_, belongs to the family of g-Appell polynomials

too.

]

Definition 5.13. 2D ¢-Appell polynomials {4, ,(x, y)}>,, which was defined sooner in

Section (3.2) by means of the relation (3.2.1), can be represented, also, as below

Ag(z,y, 1) = Ag(t)ey(tx) Eq(ty) = ZAn,q(xay)_

or equivalently

( A(),q(I',y) = ﬁq

"

An,q(xvy) = Bog) 1 X
1 z+y (z+y)
By, B, B,
2
0 By, {11 By,
q
0 0 By,
0

Remark 5.14. From the Definition 5.13, it is clear that

Apg(2,0) = A, 4(x).
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Theorem 5.15. The following fact holds for 2D q-Appell polynomials { A, 4(x,y)}7,

~[n]| ooy _
Anglz,y) = [ i } g Apg(@)y™*. (5.3.7)
k=0 q
Proof. Proof is simple and based on properties of determinant. ]

Corollary 5.16. The following difference identity holds for q-Appell polynomials

{Ang(®) 1720

n—1
Apg(w,1) { 1 RGN AL (@), n=0,1,2,...  (53.8)
k=1 q

Proof. Using relations (5.3.6) and also (5.3.7) for y = 1 and y = 0 and replacing the

results in the left side of relation(5.3.8) leads to reach to the right side of this relation. [

Theorem 5.17. For every t € R, the following facts are equivalent for q-Appell polyno-
mials { A, q(x)}0,
Cl) A”#I('r7 _y) = (_1)nAn,q(07y)7

b) Ang(w) = (=1)"Ang(0).
Proof. (a = b) The proof is done using part (a) for x = 0.

(b = a) We apply the relation(5.3.7) for the left hand side of part (a) as follows

(n—k)(n—k—1) Ic)(n k—1)

q Arg(@,0)(=y)" "

> 3

i3]

_ (-1)“& {
- (-1)

(n=k) (k1) .
} Ap g, 0) (= 1)y

q
q
K
q

> 3

k

g2

[e=]

S

k(k—l) n—
T Ay g(z,0)(—1) kyk.

> 3

I
o

Using part (b), we have



Now, using Definition 5.13 leads to obtain

AH,Q(x7 _y) = (_1>nAn*k,(J(0> y)?

whence the result. O]

Lemma 5.18. In relation(5.2.15) for the coefficients A,, , and B,, , we have

Appirg =04 Bopi1g =0, n=0,1,2,.... (5.3.9)

Proof. (=)We have already known the following fact from relation(5.2.15) for n =

0,1,2,... O
( Bl,q = _ALOAl,qBO,qa
2n +1
B2n+1,q = _ALO |: k :| ALqBQn,q
q

n 2n+1 2n+1
+ — A%, (Zkzl ({ o) 1 Aok qBon—kt1, + [ % + 1 } A2k+1,q32nk+1,q>> -
\ q q

Since Agpy14, =0 forn=0,1,2,..., then

BLq — O
n 2n+1
BQn-l—l,q = _ALO Zkz:l |: 2k :| AQk,qBQn—k’-l-l,qa n = 1a 27 37 s
q

Consequently, we should have By, 1, =0, forn=0,1,2,....

(<) In a similar way to the above we can prove it.

Theorem 5.19. The following facts are equivalent for q-Appell polynomials { A, ,(x)}52,
a) Ang(—x) = (=1)"Apq(x),
b) Bopy14=0, forn=20,1,2,....

Proof. According to Theorem 5.17, we know that

Apg(—) = (=1)" Ay o (x) & Apg(t) = (—1)" A 4(0)
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So using Lemma5.18, we have

<~ A2n+1,q(0) = (_1)nA2n+17q(0) g A2n+1,q =0 B2n+1,q =0.

]

Theorem 5.20. For every n > 1, g-Appell polynomials { A, ,(x)}22, satisfy the following

identities

[ Analtrdt - (Aus1a(2) = Auy(0)) (53.10)

f 1 s +1 k(k—1)
/ Apq(t)dgt = Z { " I ] ¢ 7 An_pq(0) (5.3.11)
0 q

Proof. Relation(5.3.10) is the direct result of property(5.1.1) for g-Appell polynomials
{A,4(2)}22,. To prove equality(5.3.11), we start from relation(5.3.10) for x = 1 as
follows

1
[n+1],

/An,q(t)dqt = (An+1,q(1) - An,q(o)) .

Now, find A, 11 4(1) using relation(5.3.7) by assuming z = Oand y = 1

an, n+1 k(k—1)
An+17q(1) - Z { k :| q 2 An—k,q<0)'
q

Therefore, we obtain

[nil] n {”4‘1

1
/ Ay (B)d t =
0

Q

e
Il

o
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5.4 Determinantal representation for Some ¢-Appell polynomials

5.4.1g-Bernoulli polynomials

The ¢-Bernoulli polynomials B, ,(x) are defined by means of the generating function,

[37]
Byet) = ey(tr) = 3 Bugla) L (54.1)
x,t) (= ———e,(tx) = (T . 4.
! e (t) —171 £~ ) |
From this definition and also using Lemma (10) of [57], it is easy to achieve that
o= i { i } L B ). (5.4.2)
k=0 q [k + 1]‘1

2 2
BQ’q(I)—ZE — T+ [2];]T]q’

_ 3 2[3] By [2] 2
By g(x) = o* — ta® — fgpte + St — g

24

Based on the discussion above and noting to the relation (5.2.11), given in Theo-

rem 5.6, we obtain

(5.4.3)

B, ,= n=123,...

_1
[n+1]q°

5.4.2 Generalized ¢-Bernoulli polynomials

m—1,a]

Based on the definition of 2D ¢-Bernoulli polynomials SB[n,q three, (x,y) in chapter

we have

B (2,00 = [m],)!

m—1,1
By (2,00 = ! (o - k)

[m—1,1] _ 2 [2l,0m],! 2,4 [m],!
%Z,q (,0)= = [ni‘ﬂ]z T+ [mil]z[erﬁq'
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Therefore, for the generalized ¢-Bernoulli numbers Bm_l’l] corresponding to

‘B[TZZ_I’H (x,0) in the relation(5.3.5), given in Definition 5.13, we may write

1
Poa = [ml!”
Bnq:ﬂ, n=123,...meN. (5.4.4)
’ [0+ m]!

5.4.3 g-Euler polynomials

The g-Euler polynomials E, ,(z) are defined by means of the generating function,
[37], [86], [33]

E,(z,1) = #eqm) _ ; En,q(x)[ft—;,. (5.4.5)

Based on this definition it is easy to see that

Based on the discussion above and noting to the relation (5.2.11), given in Theo-

rem 5.6, for the coefficients B,, , we obtain

Bo, = 1 (5.4.6)
1
Bnq = _27 n= 17 27

5.4.4 g-Hermite polynomials

¢-Hermite polynomials H,, , () are defined by means of the generating function, [88]

F,(z,t):

F, (t) e, (tx) Z

n:O

q

According to Theorem 10 in [88], we have
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Hyq(2) =a' — (1 + q2) [3]q$2 - [3]11 ¢
Based on the discussion above and notting to the ralation(5.2.11), given in Theorem 5.6,
for the coefficients B,, , we obtain

Bong = 1, (5.4.7)
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Chapter 6

THE ¢-UMBRAL PERSPECTIVE OF THE CLASS OF ¢-
APPELL POLYNOMIALS

6.1 An Introduction to g-Umbral Calculus

1978, Roman and Rota viewed the classical umbral calculus from a new perspective
and proposed an interesting approach based on a simple but innovative indication for the
effect of linear functionals on polynomials, which Roman later called it the modern clas-
sical umbral calculus, [111], [112]. Using this new umbral calculus, they defined the se-
quence of Sheffer polynomials whose their characteristics proved that this new proposed
family of polynomials is equivalent to the family of polynomials of type zero which was
previously introduced by Sheffer, [35]. Roman, also, proposed a similar umbral approach
under the area of nonclassical umbral calculus which is called g-umbral calculus, [112],
[113], [114]. Inspired by his work, in the following, we recast the obtained results of um-

bral calculus for ¢-Appell polynomials.

Let C be the field of complex numbers and F set of all formal power g-series in the vari-

able t over C. In other words, f(¢) is an element of F if

f(t) = Z%t’“, 6.1.1)
k=0 T

where ay, is in C.

Let P be the algebra of all polynomials in variable z over C. Let P* be the vector space of

all linear functionals on P. The action of a linear functional L on an arbitrary polynomial
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p(x) is denoted by (L|p(x)). We remind that the vector space addition and scalar
multiplication operations on P* are defined by (L + M|p(x)) = (L|p(x)) + (M|p(x)), and
(cL|p(z)) = c¢(L|p(x)), for any constant ¢ € C.The formal power g-series in (6.1.1)

defines the following functional on P
(f(2)]z") = an, foralln > 0. (6.1.2)

Particularly, according to (6.1.1) and (6.1.2) we have

{t*|2™) = [n]y0nr n,k >0, (6.1.3)

where 6, 5, is the Kronecker’s symbol.

Assume that f(t) = i %tk. Since (f1(t)|x™) = (L|2*), so f.(t) = L. Hence, it is
k=0 [Flg'

clear that the map L — f;(t) is a vector space isomorphism from P* onto F. Therefore,
F not only can be considered as the algebra of all formal power g-series in variable ¢, but
also it is the vector space of all linear functionals on P. This follows the fact that each
member of F can be assumed as both a formal power gseries and a linear functional. F is

called the g-umbral algebra and studying its properties is called g-umbral calculus.

Remark 6.1. For the g-exponential function e, (), it can be easily observed that

(€4 (yt) |x™) = y™ and consequently

(eq (yt) [p()) = p(y), (6.1.4)
and

(eq (yt) £ 1|p(x)) = p(y) = p(0). (6.1.5)

Remark 6.2. For f(t) in F we have

ft) = i wtk, (6.1.6)

k=0 Klq!
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and for all polynomials p(x) in P we have
Z ’p 2. (6.1.7)
k=0 kly!

Proposition 6.3. For f(t) and g(t) € F we have

{(F()g(@)lp(x)) = (f(B)]g(t)p(x))- (6.1.8)

Proposition 6.4. For f(t) and g(t) € F we have
sl =3[ 1] ol ©.19)

Proposition 6.5. For fi(t), f2(t), ..., fo(t) € F we have

- Y [ant | s o,

i1+io+...+ig=n

_ [r],!
[il]q![iﬂq!---[ik]q! ’

n
where | . . )
11,22, .,0 q

We use the notation ¢* for the k-th ¢-derivative operator, Dqk, on P as follows

<
thgn — { At k=, 6.1.11)

Consequently, using the notation above, each arbitrary function in the form of (6.1.1) can

be considered as a linear operator on P defined by

ft)z"=>" [ Z ] apz" " (6.1.12)
q

k=0

Now, consider an arbitrary polynomials p(x) € P. Then, according to the relation (6.1.7)

for its k-th g-derivative we have

Dyp() Z |p — g [ — k412" " (6.1.13)
j=k 7la!
As the result of the fact above we obtain
t*p(z) = Dyp(z) = p™(2), 6.1.14)
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and, also,
p™(0) = (t*|p(x)) = (1[p™ (). (6.1.15)

The immediate conclusion of the relations (6.1.1), (6.1.2) and (6.1.12) is that each
member of F plays three roles in the g-umbral calculus; a formal power g-series, a linear

functional and a linear operator.

The order of a non-zero power g-series f(t) in (6.1.1) is denoted by O( f(¢)) and is defined
as the smallest integer £ for which the coefficient of t* is non-zero, that is ay #0. A ¢-
series f(t) with O(f(t)) = 0 is called invertible and in case that O(f(t)) = 1 it is called a

delta g-series.

Theorem 6.6. Let f(t) be a delta q-series and ¢(t) be an invertible series. Then there

exists a unique sequence Sy, ,(x) of q-polynomials satisfying the following conditions
(g(&)f(£)*[Snq(2)) = [n]g!dn . for all n,k > 0.

Definition 6.7. In Theorem (6.6), { S, ()} is called the g-Sheffer sequence for the

pair (g(t), f(t)). Moreover, the g-Sheffer sequences for (g(t), ) is the g-Appell sequence

for g(t).

Theorem 6.8. Let A, ,(x) be g-Appell for g(t). Then

a) (The Expansion Theorem) for any h(t) in F

pla) = > O A, o)
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Theorem 6.9. The following facts are equivalent

a) A, q(x) is g-Appell for g(t).

b) tA, () = [n]gAn—_14(x), where tA, ,(x) = D,(A,4(x)).

1 _ o~ A a(®) 1k
c) Forally € C meq(m) = kgo Fk]q! ¢

k=0

X | n
@ A0 =% | 1] a0l
q
e) A, (z) =g (t)z".
Remark 6.10. Based on different selections for g(¢) in part (c) of Theorem (6.9), we

obtain various families of ¢g-Appell polynomials. For instance, it is clear from Definitions

, leads to construct the

(3.1), (3.2) and (3.3) that taking g(t) as eq(tt)fl, Eq('gﬂ or eq%i“

families of ¢-Bernoulli, ¢g-Euler or ¢-Genocchi polynomials, respectively.

Theorem 6.11. (The Recurrence Formula for q-Appell Sequences) Suppose that A, ,(x)

is q-Appell for g(t). Then we have

Dq,tg(t)
g9(qt)

An-s-l,q(qI) = |qgr —q" ]An,q(x)'

Proof. We prove this theorem in the light of the technique which is applied in the proof of
Theorem 2 in [97]. Since A,, 4(x) is g-Appell for g(¢) we can write

1 = tn
——eq(t = A, —_— 6.1.16

83



Take = A,(t). According to (3.2.2), A,(t) is analytic. So, differentiating equation

1
g(t)
(6.1.16) and multiplying both sides of the obtained equality by t, we get

o0

;[n]qz‘ln,q(qr) [Zq! = Aq(qt)eq(th)[ W ¥ i)) +th], (6.1.17)
so it follows that
;[N]qz‘lnq gr) — Zq”Anq . [ lilqiég) + gz, (6.1.18)
This means that
;[n]qAnq qr) & ; " A, ( >%§;E§)
+ quAn_1,4( )] [:LL!, (6.1.19)
which is equivalent to write
f:[n]qAnq qa: i ()) +qr | Ap_1 4(2) [tn (6.1.20)
n=0 n=1 nlq!
Comparing both sides of identity(6.1.20), we have
Anglgr) = |q 1 DeAl0) Ap14(), (6.1.21)
Ay(qt)
whence the result. U

6.2 A ¢-Umbral Study on ¢-Genocchi numbers and polynomials, an
example of ¢g-Appell sequences

Over the past decades, many results have been derived using Umbral as well as g¢-
Umbral methods for different members of the family of Appell and ¢-Appell polynomials.
In this section, we look at the characteristics and properties of ¢g-Genocchi numbers and
polynomials, as an example of the family of ¢-Appell polynomials, from g-umbral point of
view. Indeed, it is possible to derive similar results to the obtained results here for the ¢-
Bernoulli and g-Euler polynomials. The interested readers may see, for instance [100]-

[110].
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6.2.1 Various results regarding ¢-Genocchi polynomials

According to the relation (b) of Theorem (6.9) for the sequence of g-Genocchi polyno-

mials, {G,, ,(z)}52,, this family is g-Appell for g(t) = e“(;ﬁ Therefore, relation (6.6)

e

for the sequence of ¢-Genocchi polynomials, {G),, ,(2)}, can be expressed as follows

<eq(t2)t—|— 1tk‘Gn7q($)> 0O ik >0, (6.2.1)

Remark 6.12. As direct corollaries of Theorems (6.9) and (6.11) we have

a) tGn (1) = DyGhg(z) = [n]¢Gno1,4(7),

ZL‘nk>[Ek,

b) Gn,q(x) = Z |: Z :| <eq(§§+l
q

k=0

c) Gn,q(x) = eq(?ﬁxn’

d) Gpii4(qe) = [qw —q”‘(%) Gng(z).

Proposition 6.13. For n € N we have

n+1
Gog=1, > [ b1 ] kg = —[n+1],(1+ G,y).
q

k=1

tx"+1> L
2[n+1],

Proof. According to the relations (2.11), (6.1.3) and (6.2.1) we can write
<€q(t) +1

2t “’ﬂ> - 2[ni1]q<eq<t1+1

1 /1
:—/ x"dg.
2 )y

Therefore, for an arbitrary polynomial p(x) € P we can conclude

(A b)) = 3( [ ot +500)). 622
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Now, from one hand if we take p(z) = G, ,(z), then we have

1/ [ t)+1
5( [ Guatortie + Gu©) = (L0260
2\ Jo 2t
— <1 (3"(752)—16+1Gn7q(1:)> = <t0‘x"> = [n]4!0n0- (6.2.3)
From another hand, considering the fact that
Gglz) = { Z } Grig”, (6.2.4)
k=0 q

we can conclude that

1 n 1
/ Ghq(v)d,x = [ Z 1 Gnhq/ a*d,x
0 k=0 q 0
N { " 1 Cintal®) (6.2.5)
k=0 K q [k + 1
Comparing identity (6.2.3) with (6.2.5), we obtain
1 n
n | Gnoggq(x) 2—Gpe(0) n=0
n d,x = — = 4 , 6.2.6
A G ,Q(I) ql’ % [ k :|q [k‘ + 1]q { —G07q(0) n ?é 0 ( )
whence the result. O

Remark 6.14. According to part (b) of Theorem (6.8), for an arbitrary polynomial p(z) €

P we can write

=52 ([ ot )
k=0 q: 0

Remark 6.15. We know that
(eq()t*|(z — 1)) = [n]g10n .

Therefore, according to part(b) of Theorem (6.8), for G,, ,() as a polynomial chosen from

P we can obtain




Proposition 6.16. For n € N we have

(@1 (ZZ[ | "7 ot

l

Proof. From the binomial relation(2.2.10), we obtain

n

(x -1 = (-1 g =l (6.2.7)

=0

Now, taking k-th g-derivative from both sides of identity(6.2.7), we have

the—1p=> 1=k [ Z L:m[ﬁ—]i]q!(x—mg—k (6.2.8)

According to part(b) of Theorem (6.8), we can write

(@ =105 = 32 i LG = D) G o)

Now, using relation (6.2.8) for the integral in the last relation above, will lead to obtain the

desired result. ]

Theorem 6.17. Let P,, = {p(x) € P|deg(p(z)) < n}. Then for an arbitrary p(x) € P,

and a constant ¢, 5, we may assume that p(x) = >\ ¢; ,G; 4(x). Then for any constant

k, the coefficient cy 4 is equal to ﬁq&%@(m (x)>, and it can be obtained from the

following relation

where p*)(z) = Dkp(x).

Proof. For any polynomial p(z) = > ¢; ;G ,(x) in P, we may write

(D)) = e D i o). (629)

2t , 2t
=0
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So, according to the relation (6.2.1), we obtain

= ciglilg!din = [Klylcnq, (6.2.10)
i=0
which means that
1 e (t)+1
= t ) 2.11

According to the relation (6.1.14), this is equivalent to write

Chg = [kl! <€q(t2)t+ 1 |tkp(:(:)> _ [qu! <€q(t2)t+ 1 |p(k) (m)> 62.12)

1
cha = 377 ( /0 P (@)dgz + p9(0)). (6.2.13)

]

6.2.2 Some results regarding ¢-Genocchi polynomials of higher order

Let ¢ €C, meNAnd 0 <| g| <1. The ¢-Genocchi Aolynomials G, ,™(x) in z, of order m
in A Auitable neighborhood of ¢ =0, Are Aefined Ay means of the Aollowing Aenerating

function, [97]

T — = [m]
(eq(t) n 1) eq(tr) = nZ:; Grg () s (6.2.14)

In case that z = 0, Gm] (0) = Gm} is called the n-th g-Genocchi number of order m.
From the above definition, it is clear that the class of g¢-Genocchi polynomials,
{Gm] (2)}52,, of order m is g-Appell for g(t) = <%) . Thus, according to the

relation (6.6), for the sequence of g-Genocchi polynomials, Gm (x), of order m, we can

write

t)+ 1\m
<<eq(2)t ) tk\Gm(x)> = [n)g!0nr, nyk>0. (6.2.15)
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Lemma 6.18. For any n € Ny, the following identity holds for the n-th q-Genocchi num-

ber of order m

[m] _ n . . .
Gn,q - il 7:2 7 Glthlz,q e leuq
Y )y ' m q

i1+i2+. . Fim=n

Proof. From one hand, according to the relation (6.2.14), it is obvious that

<(eq(t) n 1) 'l > = ; [k—}j@k\x ) =G, (6.2.16)

From another hand, according to the Proposition (6.5), we have

[m] _ n
Gn,q Lo Z {i17i2a"-7im} %
11+22+...+im=n q

2t , 2t

. 2t
<eq(t) i ><eq(t) 1

|z") ... <W

lz"™). (6.2.17)

Based on the definition of ¢g-Genocchi polynomials and also noting relation (6.1.3) for

each (i |2"), 1€ {L,2,...,m} we can write
2t . .G, .
—|z") = wd (ki) = @G, 6.2.18
<€q(t)+]_|x > P [k’]' < ’l‘ > 11,9 ( )
whence the result. [

Theorem 6.19. For any n € N, the following identity holds for the n-th q-Genocchi

polynomial of order m

1 —[n m—
= oo { . } Gl Gy (2).
k=0 q

Proof. According to the relation (6.2.14), it is clear that

EVIOEDY { L } G, . (6.2.19)
q

k=0

Therefore, we may assume that Gm () =D 7 ckqGrq(z) is a polynomial with degree
n in P,. Since GLTq] (x) is a g-Appell polynomial, according to part(b) of Theorem (6.9)

for its k-th g-derivative we can write

DEGI(2) = [nyn — 1. [n — k + 1,62,

_ [l
(x) = = k]q!G"_k’q(aC)' (6.2.20)
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Now, according to the relation (6.2.12), we may continue as

1 oeg(t) +1 5 im 1 e (t)+1 .
Ck,qg = [k;]q!< ! o |th£Lq}($)> = [k:]q!< 4 of |D§Gg7q}(x)>
H+1
= { i L<GQ(—Q)t G (@) 6.2.21)

According to part(e) of Theorem (6.9), it is clear that the g-Appell polynomial GZ@IQ’ q ()

is equal to (%) "%, As the result of this fact and noting to the relation (6.1.15),

we obtain from the last identity in (6.2.21)

n o 2t e (t) +1\m 1 n (m—1]
Ck,q |: k :|q < qu(t) + 1 < 2t > z > 2m71 k . n—k,q’ (6 )

whence the result. ]

Theorem 6.20. For any arbitrary polynomial p(x) € P, the following identity holds

n m [m] T
ple) = 3 { (0 ") Ft)

k=0

Proof. Assume that p(z) = Y "', ci,qGE’Z] (x). Therefore, noting to the relation (6.2.15)

for the ¢g-Appell polynomial GETZ] (x), we may conclude that

((45) i) = S (45) W00 csa
= ZXZ; Civqlilg!0ik = crg[K]g!
Thus,
o= (5 ) o)

Substituting ¢, , in the summation assumed in the beginning of the proof, leads to obtain

the desired result. L]
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Theorem 6.21. For any n € Ny and any m € N, the n-th q-Genocchi polynomial can be

expressed based on the following relation

DD SR PR A v

=0 l1+12+...+li=l

Grim—k-1g }Gm (2)

q
- " l n+m—k
{Z 2 {zl,zz,...,zil{ z LX

=0 1=0 ly+lot...+1;=l
Gn—k+m—l,q }GE::;] (.’E)
Proof. In Theorem (6.20), take p(x) to be the n-th ¢-Genocchi polynomial G,, ,(z), that

1S

n

Grg(®) = crgGil (), (6.2.25)
k=0
where
1 eq(t) + 1N™ 4
o = T {( o ) [ Gnale)). (6.2.26)
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Then, for k¥ < m, we have

1 ] <(eq(t) +1)™ |Gn,q(x)>

Rt = omlg] I\ gk
1 m-k .
T Tntm— k '< ( ) g G”+m—’w(x)>
[m],! [m k !

= S, om —H < rm = L _m[n+1]q!<(eq(t>+1)myen+mk,q(x)>

_ [ k L y [m — k]! <i[ } VG kq(:r)>

2m (m]y![n +m — k]! P .

H

- ntm— k] <i[ } )"|Grtnetal®))

O Rl I LY

Applying relation (6.2.4) to G,,4.,—r (), we may continue as

i,

Ci,qg = X
R
q
m n+m—=k
> LT (R )

Using Proposition (6.5) and considering Remark (6.1), we obtain

A

- % 6.2.27

Chk,q - Tntm—k ( )

2n(ml! m—k

q
m n+m—k

m ! n+m—k
Z |: Z :| Z Z |: ll, l2, P 7l7; :| |: l :| Gn+m—]€—l,q-
=0 q =0 l1+12++11:l q q

Now, assume that £ > m. Then starting from the relation (6.2.26), we have

1 e (t)+1
2t

— ((eg(t) + 1) [t "G g ()

2m k]q!.[n +m — l{?]q! o n+ l]q! <<€Q(t) T 1)m|Gn—k+m,q(x)>

1 [n],![k —m],!

- 1 Tl <(eq(t) + 1)m|Gn_k+m,q(:c)>

)"t Grg(2))




Finally, we obtain

Chg = < x (6.2.28)

SO L] [nemek]
ll,lg,...,li ‘ l . n—k+m—l,q-

=0 =0 l1+la+...+1;=1

Replacing identities (6.2.27) and (6.2.28) in the assumed sum in (6.2.25), completes the

proof. []

Remark 6.22. According to the proof of Theorem (6.21), for any n € Ny and any m € N,

the n-th ¢-Appell polynomial, A,, ,(z), can be expressed based on the following relation

(018 2 Ll ]

4 1=0 ULi+la+...+l=l

An+mfkfl,q } GE:;] (m)

[l

),

k=m 9Qm |
it [

l n+m-—=k [m]
Z [ liyloy .oyl L { l LA”_ker_lvq}Gk,q ()

=0 =0 li+lo+...+1;=1
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