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ABSTRACT 

This thesis is aimed to study the q-analogue of the class of so called Appell polynomials 

from different aspects and using various algebraic as well as analytic approaches. To 

achieve this aim, not only many new results are found based on a proposed general 

generating function for all members belonging to the aforementioned family of polynomials, 

but also various relations between famous members of this family are derived. 2D q-Appell 

polynomials as the q-Appell polynomials in two variables can be considered as another new 

achievement of this thesis. In addition to the definition of the class of q-Appell polynomials 

by means of their generating function, a determinantal representation, for the first time, is 

proposed for indicating different members of the class of q-Appell polynomials. Moreover, 

it is shown that how easy some results can be proved by using the new proposed linear 

algebraic indication and applying basic properties of determinant. In the sequel, this family 

of q-polynomials are studied also from q-umbral point of view and many interesting results 

are found based on this algebraic approach. 

Keywords: q-Appell, q-Calculus, Determinatal, q-Umbral, q-Polynomilas, q-Apostol, q-

Bernoulli, q-Euler, q-Genocchi, q-Hermite. 
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ÖZ 

Bu tez farklı açılardan ve çeşitli cebirsel yanı sıra analitik yaklaşımlar kullanarak  q-Appell 

polinomların sınıfının incelenmesini  amaçlanmaktadır. Bu amaca ulaşmak için, yukarıda 

belirtilen q-Appell polinomlar ailesine ait tüm üyeler üyeleri arasında çeşitli ilişkiler elde 

edilmektedir. İki değişkenli q-Appell polinomları olarak 2D q-Appell polinomları bu tezin 

yeni bir başarı olarak kabul edilebilir. Ayrıca, bazı sonuçlar yeni önerilen lineer cebirsel 

gösterge kullanılarak ve determinantın temel özelliklerini uygulanarak ispat edilebilir.  

Ayrıca, bu tezde q-polinomların birçok ilginç özellikleri q-umbral açısından da 

incelenmiştir. 

Anahtar Kelimeler: q-Appell, q-Matematik, q-Umbral, q-Polynomlar, q-Apostol, q-

Bernoulli, q-Euler, q-Genocchi, q-Hermite. 
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INTRODUCTION

Over the last centuries the study on various kinds of polynomials has been a significant

part of mathematical research. Polynomials are important since not only they can

be considered as some algebraic objects, but also they can be looked as functions in

one or more variables. Among all various types of polynomials, the class of Appell

polynomials has attracted the notice of many mathematicians because of their interesting

characteristics. Since 1880, when Paul mile Appel for the first time defined a new class

of polynomials which later became famous upon his name until the present day, a wide

range of research has been conducted on the various members of the family of Appell

polynomials as well as their q-analogues. The vast literature in this subject consists

of various definitions, relations, properties, as well as extensions and generalizations.

The study on these polynomials not only is vital in different mathematical branches

such as theory of orthogonal polynomials and special functions, analytic number theory,

combinatorics, probability and so on, but also they have many applications in some other

research fields such as mathematical physics, signals and image processing, as well as

electrical and computer engineering.

This research is basically purposed to study the class of q-Appell Polynomials. To 

do this, the first section in chapter two is provided in order to make the general reader 

familiar  with  the frequently  used definitions and notations  in this  thesis. Moreover. the

1

Chapter 1

second section  of chapter two gives a brief information about the classical Appell



In chapter three 2D q-Appell polynomials are introduced as the class of q-Appell

polynomials in two variable. As some famous examples of this family, 2D q-Bernoulli

polynomials, 2D q-Euler polynomials, and 2D q-Genocchi polynomials are introduced

and a various important properties and relations such as the explicit relation between

q-Bernoulli and q-Euler polynomials as well as q-Genocchi and the q-Bernoulli Polyno-

mials are obtained. Indeed, all the obtained facts in this section can be considered as the

generalization of the formerly defined q-Appell polynomials.

In chapter four, the main attempt is to specify the characteristics and to show the

properties of a family involving the q-analogue of Apostol type polynomials. The

q-analogue of the Luo-Srivastava addition theorem is one of the most important results of

this chapter.

In chapter five, a determinantal representation is proposed for indicating the family

of q-Appell polynomials. Next, it is shown that this new representation how well

coincides with the original definition of the aforementioned family of polynomials. Based

on this new linear algebraic approach, also, it shown that many interesting results can be

obtained easily, only by applying the elementary properties of determinant. At the end

of this chapter, the coefficients used for writing the determinantal representation of some

specific families of q-Appell polynomials, as some examples, are calculated.

2

Eventually, in chapter six, q-Appell polynomials are viewed from q-Umbral per-spective. 

Inspired by this algebraic approach, some obtained properties of q-Appell polynomials in 

the  previous  chapters are  recast.  Also, using q-Umbral techniques some new interesting 

and Sheffer polynomials.



be derived for the other members of the class of q-Appell polynomials. The essence of 

the results in this part of the study is concealed behind the fact that any arbitrary 

polynomial can be written based on a linear combination of q-Genocchi polynomials.

3

 results are obtained for  the family of  q-Genocchi polynomials. Indeed, similar results can 



PRELIMINARIES AND DEFINITIONS

2.1fIntroduction

The main aim of this chapter is to make the general reader familiar with the expres-

sions and notations which will appear quite frequently in the following chapters. One of 

the simple but important sections of this chapter is devoted to introduce q-Calculus related 

notations and miscellaneous q-formulas. Next, as the foundation of the q-Appell polyno-

mials and their generalizations, the corresponding definitions of the classical polynomials 

to them will be introduced.

2.2fq-Calculus and its Commonly Used Notations

Since the first attempts in the appearance of q-calculus, the eighteenth century, while 

Leonard Euler defined the number q in his book, [1], up to the nowadays broad range 

of researches, q-Calculus has attracted a great interest of mathematicians as well as 

physicists because of its wide domain of application not only in mathematics, but also in 

some other fields such as theoretical physics, engineering, computer sciences, and so on,

[2], [3], [4]. Nonetheless, the work on q-calculus day by day is progressing, there is still 

much to do in this arena and q-calculus has the capacity to be developed more.

4

Chapter 2

The theory of q-calculus is embedded in the theory of q-analysis and q-special 

functions. As the result, before starting the main discussion, which is clearly related 

to various members of the family of q-Appell polynomials and lies in q-analysing and 

studying  q-analogues of them,  in the following  a brief introductory about  the  q-numbers 



referred to [5], [6].

Definition 2.1. The q-number a is defined as

[a]q =
1− qa

1− q
, q ∈ C\{1}, a ∈ C, qa 6= 1. (2.2.1)

Particularly, for n ∈ N, the above definition changes to

[n]q =
1− qn

1− q
= 1 + q + q2 + ...+ qn−1. (2.2.2)

In this case as limq→1[n]q = limq→1(1 + q + q2 + ... + qn−1) = n, [n]q is called the

q-analogue of n.

Definition 2.2. The q-factorial is defined as

[0]! = 1, [n]q! = [1]q[2]q . . . [n]q, n ∈ N, (2.2.3)

also,

[2n]q!! = [2n]q[2n− 2]q...[2]q (2.2.4)

Remark 2.3. Clearly,

lim
q→1

[a]q = a, lim
q→1

[n]q! = n!. (2.2.5)

Definition 2.4. The q-shifted factorial is defined as

(a; q)0 = 1, (a; q)n =
n−1∏
j=0

(1− qja), n ∈ N, (2.2.6)

and

(a; q)∞ =
∞∏
j=0

(1− qja), |q| < 1, a ∈ C. (2.2.7)

5

n
k

Definition 2.5. The q-binomial coefficient is defined as

[ ]
q

=
[n]q!

[k]q![n− k]q!
, k, n ∈ N (2.2.8)

q-notations is given. For all the definitions related to this section the interested readers are



Proposition 2.6. The following facts hold true for the q-binomial coefficient

a)
[
n
k

]
q

=
(q; q)n

(q; q)n−k(q; q)k
,

b)
[
n
k

]
q

=

[
n

n− k

]
q

,

c) For k < l < n[
n
l

]
q

[
l
k

]
q

=

[
n
k

]
q

[
n− k
n− l

]
q

.

Definition 2.7. The q-analogue of the function (x+ y)n, is defined as

(x+ y)nq :=
n∑
k=0

[
n
k

]
q

q
k(k−1)

2 xn−kyk, n ∈ N0. (2.2.9)

Definition 2.8. The q-binomial formula is known as

(1− a)nq =
n−1∏
j=0

(1− qja) =
n∑
k=0

[
n
k

]
q

q
k(k−1)

2 (−1)kak. (2.2.10)

Definition 2.9. In the standard approach to the q-calculus, the two following q-exponential

functions are used:

eq(z) =
∞∑
n=0

zn

[n]q!
=
∞∏
k=0

1

(1− (1− q)qkz)
, 0 < |q| < 1, |z| < 1

|1− q|
, (2.2.11)

Eq(z) =
∞∑
n=0

q
n(n−1)

2 zn

[n]q!
=
∞∏
k=0

(1 + (1− q)qkz), 0 < |q| < 1, z ∈ C. (2.2.12)

Definition 2.10. The q-derivative of a function f at point 0 6= z ∈ C is defined as

Dqf (z) :=
f (qz)− f (z)

qz − z
, 0 < |q| < 1. (2.2.13)

6



Proposition 2.11. Consider two arbitrary functions f(z), and g(z). The following rela-

tions hold true for their q-derivatives, [6]:

a) if f is differentiable,

limq→1Dqf (z) =
df(z)

dz
,

where d
dz

indicates the ordinary derivative defined in Calculus.

b) Dq is a linear operator; that is for arbitrary constants a and b

Dq(af(z) + bg(z)) = aDq(f(z)) + bDq(g(z)),

c) Dq(f(z)g(z)) = f(qz)Dqg(z) + g(z)Dqf(z),

d) Dq(
f(z)

g(z)
) =

g(qz)Dqf(z)− f(qz)Dqg(z)

g(z)g(qz)
.

Remark 2.12. As the direct result of definition (2.9) we have eq(z)Eq(−z) = 1. More-

over, from the definition (2.10), it can be seen easily that

Dqeq (z) = eq (z) , DqEq (z) = Eq (qz) . (2.2.14)

Definition 2.13. The q-analogue of Taylor series expansion of an arbitrary function f(z)

for 0 < q < 1, is defined as, [7]

f(z) =
∞∑
n=0

(1− q)n

(q; q)n
Dn
q f(a)(z − a)nq , (2.2.15)

where Dn
q

f(a) is the nth q-derivative of the function f at point a.

Definition 2.14. Jakson integral of an arbitrary function f(x) is defined as

∫
f(x)dqx = (1− q)

∞∑
j=0

xqjf(xqj), 0 < q < 1. (2.2.16)

7



2.3fThe Main Classical Appell Polynomials

The study  on various classes  of polynomials has been a  significant part  of researches  in

algebra as well as other related mathematical branches such as real and complex analysis,

orthogonal polynomials and special functions. Polynomials are important since not only

they can be considered as some algebraic objects, but also they can be looked as functions

in one or more variables. Generally, when we talk about polynomials we mean a linear

combination
n∑
i=0

aix
i, for real or complex coefficients ai and arbitrary variable x. The

purpose of this section is to introduce some of the classical polynomials such as Bernoulli,

Euler, Genocchi, Apostol type, and Hermite polynomials as famous members of the class

of Appell and Sheffer polynomials and some of their basic generalizations and properties,

in order to give a bird’s-eye view to the general readers for a better understanding of the

concepts of the next chapters.

2.3.1 Classical Bernoulli, Euler, and Genocchi Polynomials

Since the seventeenth century until the present day a wide range of research has been 

conducted on the classical Bernoulli, Euler and Genocchi as well as Hermite numbers and 

polynomials. Among the vast publications in this subject, various definitions, relations, 

properties, as well as generalizations can be found. These polynomials not only are 

important in the theory of orthogonal polynomials and special functions, but also they 

have various applications in many other mathematical fields such as analytic number 

theory, combinatorics, probability and so on.

Definition 2.15. Classical Bernoulli polynomials Bn(x), and numbers Bn = Bn(0) are

8

defined by means of the following generating functions, [8]-[12]



t

et − 1
etx =

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π, (2.3.1)

t

et − 1
=
∞∑
n=0

Bn
tn

n!
, |t| < 2π, (2.3.2)

respectively.

Definition 2.16. Classical Euler polynomialsEn(x), and numbersEn = En(0) are defined

by means of the following generating functions, [8]-[12]

2

et + 1
etx =

∞∑
n=0

En(x)
tn

n!
, |t| < π,

2

et + 1
=
∞∑
n=0

En
tn

n!
, |t| < π, (2.3.3)

respectively.

Definition 2.17. Classical Genocchi polynomials Gn(x), and numbers Gn = Gn(0) are

defined by means of the following generating functions, [10],[12], [13]

2t

et + 1
etx =

∞∑
n=0

Gn(x)
tn

n!
, |t| < π, (2.3.4)

2t

et + 1
=
∞∑
n=0

Gn
tn

n!
, |t| < π, (2.3.5)

respectively.

Remark 2.18. As the direct results of the above definitions, for the classical Bernoulli,

Euler, and Genocchi numbers we have

Bn(0) = Bn = (−1)nBn(1) = (21−n − 1)−1Bn(
1

2
),

En(0) = En = 2nEn(
1

2
),

Gn(0) = Gn, G1 = 1, G3 = G5 = G7 = . . . = 0, and

G2n = 2(1− 22n)B2n = 2nE2n−1(0).

respectively, [8], [14], [15].

9



Remark 2.19. The classical Bernoulli, Euler, and Genocchi numbers also can be defined

by the following recurrence relations, [16], [17]

B0 = 1, (n+ 1)Bn = −
n+1∑
k=0

Bk, (2.3.6)

En + 2n−1
n−1∑
k=0

(
n
k
)
Ek
2k

= 1, n ≥ 1, (2.3.7)

2Gn +
n−1∑
k=0

(
n
k
)Gk = 0, n ≥ 2, (2.3.8)

, respectively.

Proposition 2.20. The following relations hold true for the classical Bernoulli, Euler, and

Genocchi polynomials, respectively.

Bn(x+ 1)−Bn(x) = nxn−1,

En(x+ 1) + En(x) = 2xn,

Gn(x+ 1) +Gn(x) = 2nxn−1.

Proof. Since in the proofs the same technique is applied, only the proof of the third relation

is given. The proof is based on the following identity

∞∑
n=0

(Gn(x+ 1) +Gn(x))
tn

n!
=

2t

et + 1
et(x+1) +

2t

et + 1
etx

=
2t

et + 1
etx(et + 1) = 2tetx

= 2t
∞∑
n=0

tnxn

n!
=
∞∑
n=1

2nxn−1
tn

n!
.

Comparing the coefficients of tn

n!
, gives the desired result.

2.3.2 Apostol Type Polynomials

In 1951, Apostol introduced an analogue for the classical Bernoulli polynomials and 

numbers and obtained some interesting relations for them including their elementary prop-

erties as well as the recursion formula for the Apostol-Bernoulli numbers, [18]. Later this

10



analogue appeared in a wide range of mathematical publications as Apostol-Bernoulli

polynomials, [19]-[22].

Definition 2.21. The Apostol-Bernoulli polynomials Bn(x;λ), and numbers Bn(0;λ) =

Bn(λ) are defined by means of the following generating functions, [18]

t

λet − 1
etx =

∞∑
n=0

Bn(x;λ)
tn

n!
,

|t| < 2π, when λ = 1; |t| < | log λ|, when λ 6= 1,
(2.3.9)

t

λet − 1
=
∞∑
n=0

Bn(λ)
tn

n!
,

|t| < 2π, when λ = 1; |t| < | log λ|, when λ 6= 1,
(2.3.10)

respectively.

In 2005, inspired by the Apostol’s analogue for the Bernoulli polynomials, Luo introduced 

Apostol-Euler polynomials, [23]. Next, Luo and Srivastava generalized these definitions 

to the Apostol-Bernoulli and Apostol Euler polynomials of order α, [24], [25]. In 2009, 

Luo gradually, defined Apostol-Genocchi polynomilas and numbers and developed his 

definition to order α, [26]. Recently, many interesting results and generalizations have 

been obtained for the Apostol-Bernoulli and Apostol-Euler polynomials as well as 

Apostol-Genocchi polynomials, [27], [29], [30]-[33]. In the following the corresponding 

definitions to the above mentioned polynomials are given.

Definition 2.22. The Generalized Apostol-Bernoulli polynomials Bα
n (x;λ), and numbers

Bα
n (0;λ) = Bα

n (λ) of order α are defined by means of the following generating functions,

11

[18]



(
t

λet − 1

)α
etx =

∞∑
n=0

Bα
n (x;λ)

tn

n!
,

|t| < 2π, when λ = 1; |t| < | log λ|, when λ 6= 1,
(2.3.11)(

t

λet − 1

)α
=
∞∑
n=0

Bα
n (λ)

tn

n!
,

|t| < 2π, when λ = 1; |t| < | log λ|, when λ 6= 1,
(2.3.12)

respectively.

Definition 2.23. The Generalized Apostol-Euler polynomials Eα
n (x;λ), and numbers

Eα
n (0;λ) = Eα

n (λ) of order α are defined by means of the following generating functions,

[23] (
2

λet + 1

)α
etx =

∞∑
n=0

Eα
n (x;λ)

tn

n!
, |t| < | log(−λ)|; 1α := 1, (2.3.13)(

2

λet + 1

)α
=
∞∑
n=0

Eα
n (λ)

tn

n!
, |t| < | log(−λ)|; 1α := 1, (2.3.14)

respectively.

Definition 2.24. The Generalized Apostol-Genocchi polynomials Gα
n(x;λ), and numbers

Gα
n(0;λ) = Gα

n(λ) of order α are defined by means of the following generating functions,

[26] (
2t

λet + 1

)α
etx =

∞∑
n=0

Gα
n(x;λ)

tn

n!
, |t| < | log(−λ)|; 1α := 1, (2.3.15)(

2t

λet + 1

)α
=
∞∑
n=0

Gα
n(λ)

tn

n!
, |t| < | log(−λ)|; 1α := 1, (2.3.16)

respectively.

Remark 2.25. Indeed, taking α = 1, λ = 1, and x = 0, in the definitions of the Gener-

alized Apostol-Bernoulli, Apostol-Euler, and Apostol-Genocchi polynomials of order α,

we obtain

Bα
n (0; 1) = Bn, Eα

n (0; 1) = En, Gα
n(0; 1) = Gn,

respectively.

12



2.3.3 Appell Polynomials

In 1880, Appell defined a set of interesting polynomials which later was called the set of 

Appell polynomials upon his name.

Definition 2.26. The set of any n-degree polynomials {An(x)}∞n=0 are called the set of

Appell polynomials if they satisfy the following recurrence relation, [34].

d

dx
An(x) = nAn−1(x), n = 1, 2, ... (2.3.17)

Remark 2.27. Appell polynomials also can be defined by means of the following gener-

ating function

A(t)ext =
∞∑
n=0

An(x)
tn

n!
, (2.3.18)

where A(t) =
∑∞

n=0An
tn

n!
, with real coefficients An, n = 0, 1, 2, ... and A0 6= 0, [34].

Remark 2.28. Based on the different selections of A(t) in the above definition various

Appell type polynomials are obtained. In the following table some of them are mentioned.

Table 2.1: Various members of the family of Appell polynomials
Number A(t) An(x) Polynomials
1 t

et−1
Bn(x) Classical Bernoulli Polynomilas

2 2
et+1

En(x) Classical Euler Polynomilas
3 2t

et+1
Gn(x) Classical Genocchi Polynomilas

4
(

t
λet−1

)α
Bαn (x;λ) The generalized Apostol-Bernoulli polynomials

Bαn (x;λ) of order α

5
(

2
λet+1

)α
Eαn (x;λ) The generalized Apostol-Euler polynomials

Bαn (x;λ) of order α

6
(

2t
λet+1

)α
Gαn(x;λ) The generalized Apostol-Genocchi polynomials

Bαn (x;λ) of order α

7

 t

et−
∑m−1

k=0

tk

k!


α

The new Generalized Apostol-Bernoulli polynomials
Bαn (x;λ) of order α

8

 2

et+
∑m−1

k=0

tk

k!


α

The new generalized Apostol-Euler polynomials
Bαn (x;λ) of order α

9

 2t

et+
∑m−1

k=0

tk

k!


α

The new generalized Apostol-Genocchi polynomials
Bαn (x;λ) of order α

13



2.3.4 Sheffer Polynomials

In 1939, Sheffer generalized the definition of Appell polynomials and as the result in-

troduced and studied a new family of polynomials, under the title the set of polynomials of 

type zero. Later, some other mathematicians introduced this class of polynomials in dif-

ferent ways and showed that their definitions coincide exactly with the original definition 

proposed by him. One of these novel definitions is proposed in a creative way by Roman 

and Rota, which will be explained in Chapter six.

Definition 2.29. Sheffer A-type zero polynomials, Sn(x), by means of generating function

are defined as, [35]

A(t)exH(t) =
∞∑
n=0

Sn(x)
tn

n!
, (2.3.19)

where A(t) and H(t) are in the form of the two following formal series

A(t) =
∞∑
n=0

An
tn

n!
, A0 6= 0, (2.3.20)

and

H(t) =
∞∑
n=1

Hn
tn

n!
, H1 6= 0, (2.3.21)

respectively.

Remark 2.30. Based on different choices ofA(t) andH(t) in the above definition various

Sheffer type polynomials are obtained. As one of the most important members of this

family, Hermite polynomials can be considered by taking A(t) = e−t
2 and H(t) = 2t,

[36].

Definition 2.31. Hermite polynomials Hn(x) can be defined by means of the following

generating function
∞∑
n=0

Hn(x)
tn

n!
= e2xt−t

2

. (2.3.22)
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THE CLASS OF GENERALIZED 2D q-APPELL 
POLYNOMIALS

3.1fIntroduction

Carlitz, for the first time, extended the classical Bernoulli and Euler numbers and poly-

nomials, introducing them as q-Bernoulli and q-Euler numbers and polynomials [37]-[39]. 

There are numerous recent investigations on this subject by, among many other authors, 

Cenki et al. ([40]-[42]), Choi et al. ([43] and [44]), Kim et al. ([45]-[48]), Ozden and 

Simsek [49], Ryoo et al. [50], Simsek ([51]-[53]), and Luo and Srivastava [54], Srivas-

tava et al. [55], Mahmudov [56], [57]. Recently, Natalini and Bernardini [58], Bretti et 

al.[59],[60] Kurt [61], [62], Tremblay et al [63], [64] studied properties of the following 

generalized Bernoulli and Euler polynomials. tm

et −
∑m−1

k=0

tk

k!


α

etx =
∞∑
n=0

B[m−1,α]
n (x)

tn

n!
, (3.1.1)

 2m

et +
∑m−1

k=0

tk

k!


α

etx =
∞∑
n=0

E[m−1,α]
n (x)

tn

n!
, α ∈ C, 1α := 1. (3.1.2)

g t c

Applying the same approach which is used in the definitions  (3.1.1) and  (3.1.2), the clas-

sical Genocchi polynomials can be generalized as follows. 2mtm

et +
∑m−1

k=0

tk

k!


α

etx =
∞∑
n=0

G[m−1,α]
n (x)

tn

n!
, α ∈ C, 1α := 1. (3.1.3)

Motivated by the generalizations in (3.1.1), (3.1.2), and (3.1.3) of the classical Bernoulli,

Euler,  and   Genocchi  polynomials,  we    introduce  and  investigate  here  the  so-called 
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Definition 3.1. Let q, α ∈ C, m ∈ N, 0 < |q| < 1. The generalized two dimensional

q-Bernoulli polynomials B[m−1,α]
n,q (x, y) are defined, in a suitable neighborhood of t = 0,

by means of the generating function:

(
tm

eq (t)− Tm−1,q (t)

)α
eq (tx)Eq (ty) =

∞∑
n=0

B[m−1,α]
n,q (x, y)

tn

[n]q!
, (3.1.4)

where Tm−1,q (t) =
∑m−1

k=0

tk

[k]q!
.

Definition 3.2. Let q, α ∈ C, 0 < |q| < 1, m ∈ N. The generalized two dimensional

q-Euler polynomials E
[m−1,α]
n,q (x, y) are defined, in a suitable neighborhood of t = 0, by

means of the generating functions:

(
2m

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) =

∞∑
n=0

E[m−1,α]
n,q (x, y)

tn

[n]q!
. (3.1.5)

Definition 3.3. Let q, α ∈ C, 0 < |q| < 1, m ∈ N. The generalized two dimensional

q-Genocchi polynomials G[m−1,α]
n,q (x, y) are defined, in a suitable neighborhood of t = 0,

by means of the generating functions:

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) =

∞∑
n=0

G[m−1,α]
n,q (x, y)

tn

[n]q!
. (3.1.6)

Remark 3.4. It is obvious that

lim
q→1−

B[m−1,α]
n,q (x, y) = B[m−1,α]

n (x+ y) , B[m−1,α]
n,q = B[m−1,α]

n,q (0, 0) ,

lim
q→1−

B[m−1,α]
n,q = B[m−1,α]

n ,

lim
q→1−

E[m−1,α]
n,q (x, y) = E[m−1,α]

n (x+ y) , E[m−1,α]
n,q = E[m−1,α]

n,q (0, 0) ,

lim
q→1−

E[m−1,α]
n,q = E[m−1,α]

n ,

lim
q→1−

G[m−1,α]
n,q (x, y) = G[m−1,α]

n (x+ y) , G[m−1,α]
n,q = G[m−1,α]

n,q (0, 0) ,

limq→1−G
[m−1,α]
n,q = G[m−1,α]

n ,
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and also

lim
q→1−

B[m−1,α]
n,q (x, 0) = B[m−1,α]

n (x) , lim
q→1−

B[m−1,α]
n,q (0, y) = B[m−1,α]

n (y) ,

lim
q→1−

E[m−1,α]
n,q (x, 0) = E[m−1,α]

n (x) , lim
q→1−

E[m−1,α]
n,q (0, y) = E[m−1,α]

n (y) ,

lim
q→1−

G[m−1,α]
n,q (x, 0) = G[m−1,α]

n (x) , lim
q→1−

G[m−1,α]
n,q (0, y) = G[m−1,α]

n (y) .

Here B[m−1,α]
n (x), E[m−1,α]

n (x), and G
[m−1,α]
n (y) denote the generalized Bernoulli,

Euler and Genocchi polynomials defined in (3.1.1), (3.1.2), and (3.1.3). Notice that

B
[m−1,α]
n (x) was introduced by Natalini [58], and E[m−1,α]

n (x) and G[m−1,α]
n (x)were in-

troduced by Kurt [61], and [62].

In fact, Definitions (3.1), (3.2), and (3.3) define the two different types B
[m−1,α]
n,q (x, 0)

and B
[m−1,α]
n,q (0, y) of the generalized q-Bernoulli polynomials, E

[m−1,α]
n,q (x, 0) and

E
[m−1,α]
n,q (0, y) of the generalized q-Euler polynomials, and G

[m−1,α]
n,q (x, 0) and

G
[m−1,α]
n,q (0, y) of the generalized q-Genocchi polynomials. Both polynomials

B
[m−1,α]
n,q (x, 0) and B

[m−1,α]
n,q (0, y), E[m−1,α]

n,q (x, 0) and E
[m−1,α]
n,q (0, y), G[m−1,α]

n,q (x, 0) and

G
[m−1,α]
n,q (0, y) coincide with the classical higher order generalized Bernoulli, Euler, and

Genocchi polynomials in the limiting case q → 1−, respectively.

3.2 Generalized 2D q-Appell polynomials

Inspired  by  the  above  definitions,  we  define 2D q-Appell polynomials {An,q(x, y)}∞n=0

by means of the following generating function

Aq(x, y; t) := Aq(t)eq(tx)Eq(ty) =
∞∑
n=0

An,q(x, y)
tn

[n]q!
, (3.2.1)

where

Aq(t) :=
∞∑
n=0

An,q
tn

[n]q!
, Aq(t) 6= 0, (3.2.2)

is an analytic function at t = 0, and An,q(0, 0) := An,q.
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3.3 Preliminaries and Lemmas

In this section some basic formulae are provided for the generalized q-Bernoulli and q-

Euler polynomials to obtain the main results of this part of the study in the next section. 

The following result is q-analogue of the addition theorem for the classical Bernoulli and 

Euler polynomials.

Lemma 3.5. For all x, y ∈ C we have

B[m−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (x+ y)n−kq , (3.3.1)

E[m−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (x+ y)n−kq , (3.3.2)

G[m−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

G
[m−1,α]
k,q (x+ y)n−kq , (3.3.3)

and also

B[m−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 B
[m−1,α]
k,q (x, 0) yn−k =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (0, y)xn−k, (3.3.4)

E[m−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 E
[m−1,α]
k,q (x, 0) yn−k =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y)xn−k, (3.3.5)

G[m−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 G[m−1,α]
n,q (x, 0) yn−k =

n∑
k=0

[
n
k

]
q

G[m−1,α]
n,q (0, y)xn−k. (3.3.6)

Proof. Because of applying the same technique in the proofs, only the relations (3.3.3)

and (3.3.6) are proved. To show the identity (3.3.3), starting from the definition (3.3) we

have

∞∑
n=0

G[m−1,α]
n,q (x, y)

tn

[n]q!
=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) . (3.3.7)
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Using the definitions of two exponential functions in (2.2.11) and (2.2.12), we can con-

tinue as

=

(
2mtm

eq (t) + Tm−1,q (t)

)α ∞∑
n=0

tnxn

[n]q!

∞∑
k=0

q
k(k−1)

2 tkyk

[k]q!
.

Using Cauchy product for series we obtain

=

(
2mtm

eq (t) + Tm−1,q (t)

)α ∞∑
n=0

n∑
k=0

[
n
k

]
q

q
k(k−1)

2 xn−kyk
tn

[n]q!
.

Clearly, the first part of the obtained coincides with the generalized two dimensional q-

Genocchi numbers G[m−1,α]
n,q , and the second part is exactly the definition of (x+y)nq given

in (2.2.9). So we have

=
∞∑
n=0

G[m−1,α]
n,q

tn

[n]q!

∞∑
n=0

(x+ y)nq ,

once more applying Cauchy product for series we get

=
n∑
k=0

[
n
k

]
q

G
[m−1,α]
k,q (x+ y)n−kq . (3.3.8)

Consequently, comparing the coefficient of tn

[n]q !
in the left hand side of relation (3.3.7)

with relation (3.3.8), leads to obtain the desired result.

To show the first part of identity (3.3.6), starting from the definition (3.3), we 

have

∞∑
n=0

G[m−1,α]
n,q (x, y)

tn

[n]q!
=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) (3.3.9)

Using the definition of exponential function Eq (ty) given in (2.2.12), we can continue as

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

∞∑
k=0

q
k(k−1)

2 tkyk

[k]q!
,

where equivalently can be written as

=
∞∑
n=0

G[m−1,α]
n,q (x, 0)

tn

[n]q!

∞∑
k=0

q
k(k−1)

2 tkyk

[k]q!
.
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Applying Cauchy product for series we obtain

∞∑
n=0

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 G[m−1,α]
n,q (x, 0) yn−k

tn

[n]q!
. (3.3.10)

Comparing the coefficients of tn

[n]q !
in the left hand side of relation (3.3.9) with relation

(3.3.10), leads to obtain the desired result.

To show the second part of identity (3.3.6), we follow a similar procedure to the

above, starting from the definition below

∞∑
n=0

G[m−1,α]
n,q (x, y)

tn

[n]q!
=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty) eq (tx) , (3.3.11)

and replacing the expressions
(

2mtm

eq(t)+Tm−1,q(t)

)α
Eq (ty) and eq (tx) with G

[m−1,α]
n,q (0, y)

and
∑∞

n=0
xntn

[n]q !
, respectively.

Remark 3.6. In particular, setting x = 0 and y = 0 in (3.3.4), (3.3.5) and (3.3.6), we

get the following formulae for the generalized q-Bernoulli and q-Euler and q-Genocchi

polynomials,

B[m−1,α]
n,q (x, 0) =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q xn−k, (3.3.12)

B[m−1,α]
n,q (0, y) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 B
[m−1,α]
k,q yn−k, (3.3.13)

E[m−1,α]
n,q (x, 0) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q xn−k, (3.3.14)

E[m−1,α]
n,q (0, y) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 E
[m−1,α]
k,q yn−k, (3.3.15)

G[m−1,α]
n,q (x, 0) =

n∑
k=0

[
n
k

]
q

G
[m−1,α]
k,q xn−k, (3.3.16)

G[m−1,α]
n,q (0, y) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 G
[m−1,α]
k,q yn−k, (3.3.17)

respectively.
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Remark 3.7. Setting y = 1 and x = 1 in (3.3.4), (3.3.5) and (3.3.6), we obtain

B[m−1,α]
n,q (x, 1) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 B
[m−1,α]
k,q (x, 0) , (3.3.18)

B[m−1,α]
n,q (1, y) =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (0, y) , (3.3.19)

E[m−1,α]
n,q (x, 1) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 E
(α)
k,q (x, 0) , (3.3.20)

E[m−1,α]
n,q (1, y) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y) , (3.3.21)

G[m−1,α]
n,q (x, 1) =

n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 G
[m−1,α]
k,q (x, 0) , (3.3.22)

G[m−1,α]
n,q (1, y) =

n∑
k=0

[
n
k

]
q

G
[m−1,α]
k,q (0, y) , (3.3.23)

respectively.

Clearly relations (3.3.18), (3.3.20) and (3.3.22) are the generalization of q-analogues of 

the following identites

Bn (x+ 1) =
n∑
k=0

(
n
k

)
Bk (x) , (3.3.24)

En (x+ 1) =
n∑
k=0

(
n
k

)
Ek (x) , (3.3.25)

Gn (x+ 1) =
n∑
k=0

(
n
k

)
Gk (x) , (3.3.26)

respectively.

Lemma 3.8. The generalized q-Bernoulli, q-Euler and q-Genocchi polynomials satisfy the

following relations

B[m−1,α+β]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (x, 0)B

[m−1,β]
n−k,q (0, y) , (3.3.27)

E[m−1,α+β]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (x, 0)E

[m−1,β]
n−k,q (0, y) , (3.3.28)

G[m−1,α+β]
n,q (x, y) =

n∑
k=0

[
n
k

]
G

[m−1,α]
k,q (x, 0)G

[m−1,β]
n−k,q (0, y) , (3.3.29)

respectively.
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Proof. Because of applying the same technique in the proofs, only the last relation is

proved. To prove, we start from the following summation

∞∑
n=0

G[m−1,α+β]
n,q (x, y)

tn

[n]q!
=

(
2mtm

eq (t) + Tm−1,q (t)

)α+β
eq (tx)Eq (ty) , (3.3.30)

which, clearly, can be written as

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

(
2mtm

eq (t) + Tm−1,q (t)

)β
Eq (ty) . (3.3.31)

According to definition (3.3), we obtain

=
∞∑
n=0

G[m−1,α]
n,q (x, 0)

tn

[n]q!

∞∑
n=0

G[m−1,β]
n,q (0, y)

tn

[n]q!
. (3.3.32)

Using Cauchy product for series we can write

=
∞∑
n=0

n∑
k=0

[
n
k

]
G

[m−1,α]
k,q (x, 0)G

[m−1,β]
n−k,q (0, y)

tn

[n]q!
. (3.3.33)

Comparing the coefficients of tn

[n]q !
in the left hand side of relation (3.3.30) with relation

(3.3.33), leads to obtain the desired result.

Lemma 3.9. The following identities hold true for the q-derivatives of the q-Bernoulli,

q-Euler and q-Genocchi polynomials with respect to the two variables x, and y

Dq,xB
[m−1,α]
n,q (x, y) = [n]qB

[m−1,α]
n−1,q (x, y) , (3.3.34)

Dq,yB
[m−1,α]
n,q (x, y) = [n]qB

[m−1,α]
n−1,q (x, qy) , (3.3.35)

Dq,xE
[m−1,α]
n,q (x, y) = [n]q E

[m−1,α]
n−1,q (x, y) , (3.3.36)

Dq,yE
[m−1,α]
n,q (x, y) = [n]q E

[m−1,α]
n−1,q (x, qy) , (3.3.37)

Dq,xG
[m−1,α]
n,q (x, y) = [n]qG

[m−1,α]
n−1,q (x, y) , (3.3.38)

Dq,yG
[m−1,α]
n,q (x, y) = [n]qG

[m−1,α]
n−1,q (x, qy) , (3.3.39)

respectively.
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Proof. Because of applying a similar technique in the proofs, only the last two relations

are proved. To prove the first relation in (3.3.39), we consider the q-derivative of the

following summation with respect to variable x

Dq,x

(
∞∑
n=0

G[m−1,α]
n,q (x, y)

tn

[n]q!

)
(3.3.40)

as mentioned in part (c) of proposition (2.11), Dq,x is a linear operator. So, we may write

=
∞∑
n=0

Dq,x

(
G[m−1,α]
n,q (x, y)

) tn

[n]q!
(3.3.41)

= Dq,x

((
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty)

)
.

Clearly, since
(

2mtm

eq(t)+Tm−1,q(t)

)α
and Eq (ty) are independent from variable x, we only take

q-derivative of eq (tx) with respect to x. So, we have

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty)Dq,x (eq (tx))

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty)Dq,x

(
∞∑
n=0

xntn

[n]q!

)
.

Again, because of linear property of Dq,x mentioned in part (c) of proposition (2.11), we

can continue as

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty)

(
∞∑
n=0

Dq,x(x
n)

tn

[n]q!

)

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty)

(
∞∑
n=1

[n]qx
n−1 tn

[n]q!

)

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty)

(
∞∑
n=0

xn
tn+1

[n]q!

)

=
∞∑
n=0

G[m−1,α]
n,q (x, y)

tn+1

[n]q!
,

=
∞∑
n=1

[n]qG
[m−1,α]
n−1,q (x, y)

tn

[n]q!
. (3.3.42)

Comparing the coefficient of tn

[n]q !
in the left hand side of relation (3.3.41) with relation

(3.3.42), leads to obtain the desired result.
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Similar to the proof above,  to show  the  second relation in (3.3.39),  we consider the

q-derivative of the following summation with respect to the variable y

Dq,y

(
∞∑
n=0

G[m−1,α]
n,q (x, y)

tn

[n]q!

)
.

As it is mentioned in part (c) of proposition (2.11), Dq,y is a linear operator. So, we can

write

=
∞∑
n=0

Dq,y

(
G[m−1,α]
n,q (x, y)

) tn

[n]q!
(3.3.43)

= Dq,y

((
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty)

)
(3.3.44)

clearly since
(

2mtm

eq(t)+Tm−1,q(t)

)α
and eq (tx) are independent from variable y, we only take

q-derivative of Eq (ty) with respect to y. So, we have

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Dq,y (Eq (ty))

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Dq,y

(
∞∑
n=0

q
n(n−1)

2 tnyn

[n]q!

)
.

Again because of the linear property of Dq,y, which is mentioned in part (c) of proposition

(2.11), we may continue as

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

(
∞∑
n=0

q
n(n−1)

2 Dq,y(y
n)

tn

[n]q!

)

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

(
∞∑
n=1

q
n(n−1)

2 [n]qy
n−1)

tn

[n]q!

)

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

(
∞∑
n=0

q
n(n+1)

2 yn
tn+1

[n]q!

)

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

(
∞∑
n=0

q
n(n−1)

2 qnyn
tn+1

[n]q!

)

=
∞∑
n=0

G[m−1,α]
n,q (x, qy)

tn+1

[n]q!

=
∞∑
n=1

[n]qG
[m−1,α]
n−1,q (x, qy)

tn

[n]q!
. (3.3.45)

Comparing the coefficients of tn

[n]q !
in the left hand side of the relation (3.3.43) with relation

(3.3.45), leads to obtain the desired result.
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Lemma 3.10. The generalized q-Bernoulli, q-Euler and q-Genocchi polynomials satisfy

the following relations:

B[m−1,α]
n,q (1, y)−

min(n,m−1)∑
k=0

[
n
k

]
q

B
[m−1,α]
n−k,q (0, y) =

[n]q!

[n−m]q!
B

[m−1,α−1]
n−m,q (0, y) , n ≥ m, (3.3.46)

E[m−1,α]
n,q (1, y) +

min(n,m−1)∑
k=0

[
n
k

]
q

E[m−1,α]
n,q (0, y) =

2mE[m−1,α−1]
n,q (0, y) , (3.3.47)

G[m−1,α]
n,q (1, y) +

min(n,m−1)∑
k=0

[
n
k

]
q

G
[m−1,α]
n−k,q (0, y) =

2m
[n]q!

[n−m]q!
G[m−1,α−1]
n,q (0, y) , n ≥ m, (3.3.48)

B[m−1,α]
n,q (x, 0)−

min(n,m−1)∑
k=0

[
n
k

]
q

B[m−1,α]
n,q (x,−1) =

[n]q!

[n−m]q!
B

[m−1,α−1]
n−m,q (x,−1) , n ≥ m, (3.3.49)

E[m−1,α]
n,q (x, 0) +

min(n,m−1)∑
k=0

[
n
k

]
q

E[m−1,α]
n,q (x,−1) =

2mE[m−1,α−1]
n,q (x,−1) , (3.3.50)

G[m−1,α]
n,q (x, 0) +

min(n,m−1)∑
k=0

[
n
k

]
q

G
[m−1,α]
n−k,q (x,−1)

= 2m
[n]q!

[n−m]q!
G

[m−1,α−1]
n−m,q (x,−1) tn

[n]q!
, n ≥ m. (3.3.51)

Proof. We prove only the relations (3.3.48) and (3.3.51). The proof of relation (3.3.48) is

based on the following equality

∞∑
n=0

G[m−1,α]
n,q (1, y) +

min(n,m−1)∑
k=0

[
n
k

]
q

G
[m−1,α]
n−k,q (0, y)

 tn

[n]q!
, (3.3.52)
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which is equivalent to the following identities

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (t)Eq (ty) + Tm−1,q (t)

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty)

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty) (eq (t) + Tm−1,q (t))

= 2mtm
(

2mtm

eq (t) + Tm−1,q (t)

)α−1
Eq (ty)

=
∞∑
n=0

2m
[n+m]q!

[n]q!
B[m−1,α−1]
n,q (0, y)

tn+m

[n+m]q!

=
∞∑
n=m

2m
[n]q!

[n−m]q!
G[m−1,α−1]
n,q (0, y)

tn

[n]q!
. (3.3.53)

Comparing the coefficients of tn

[n]q !
in relation (3.3.52) with relation (3.3.53), leads to obtain

the desired result.

Here we used the following relation

Tm−1,q (t)

(
2mtm

eq (t) + Tm−1,q (t)

)α
Eq (ty) =

m−1∑
n=0

tn

[n]q!

∞∑
n=0

G[m−1,α]
n,q (0, y)

tn

[n]q!

=
∞∑
n=0

G[m−1,α]
n,q (0, y)

(
tn

[n]q!
+
tn+1

[n]q!
+

tn+2

[n]q! [2]q!
+ ...+

tn+m−1

[n]q! [m− 1]q!

)

=
∞∑
n=0

G[m−1,α]
n,q (0, y)

tn

[n]q!
+
∞∑
n=0

[n]qG
[m−1,α]
n−1,q (0, y)

tn

[n]q!

+
∞∑
n=0

[n]q [n− 1]q
[2]q!

G
[m−1,α]
n−2,q (0, y)

tn

[n]q!
+ . . .

+
∞∑
n=0

[n]q ... [n−m+ 2]q
[m− 1]q!

G
[m−1,α]
n−m+1,q (0, y)

tn

[n]q!

=
∞∑
n=0

min(n,m−1)∑
k=0

[
n
k

]
q

G
[m−1,α]
n−k,q (0, y)

tn

[n]q!
.

In order to prove the relation (3.3.51), we start from the following equality

∞∑
n=0

G[m−1,α]
n,q (x, 0) +

min(n,m−1)∑
k=0

[
n
k

]
q

G
[m−1,α]
n−k,q (x,−1)

 tn

[n]q!
(3.3.54)

which is equivalent to the following relation

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx) + Tm−1,q (t)

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)Eq (−t) .
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Noting to the fact that Eq (−t) = 1
eq(t)

, which is mentioned in remark(2.12), we obtain

=

(
2mtm

eq (t) + Tm−1,q (t)

)α
eq (tx)

(
1 +

Tm−1,q (t)

eq (t)

)
= 2mtm

(
2mtm

eq (t) + Tm−1,q (t)

)α−1
eq (tx)Eq (−t)

=
∞∑
n=0

2m
[n+m]q!

[n]q!
G[m−1,α−1]
n,q (x,−1) tn+m

[n+m]q!
,

which is equivalent to write

=
∞∑
n=m

2m
[n]q!

[n−m]q!
G

[m−1,α−1]
n−m,q (x,−1) tn

[n]q!
. (3.3.55)

Comparing the coefficient of tn

[n]q !
in (3.3.54) with (3.3.55) leads to obtain the desired

result.

Corollary 3.11. Taking q → 1− we have the following results

B[m−1,α]
n (x+ 1)−

min(n,m−1)∑
k=0

[
n
k

]
q

B
[m−1,α]
n−k (x) =

[n]q!

[n−m]q!
B

[m−1,α−1]
n−m (x) , n ≥ m,

E[m−1,α]
n (x+ 1) +

min(n,m−1)∑
k=0

[
n
k

]
q

E[m−1,α]
n (x) =

2mE[m−1,α−1]
n (x) , n ≥ m,

G[m−1,α]
n (x+ 1) +

min(n,m−1)∑
k=0

[
n
k

]
q

G
[m−1,α]
n−k (x) =

2m
[n]q!

[n−m]q!
G[m−1,α−1]
n (x) , n ≥ m.

Lemma 3.12. The generalized q-Bernoulli polynomials satisfy the following relations

B[m−1,α]
n,q (1, y)−

min(n,m−1)∑
k=0

[
n
k

]
q

B
[m−1,α]
n−k,q (0, y) =

[n]q

n−1∑
k=0

[
n− 1
k

]
q

B
[m−1,α]
k,q (0, y)B

[0,−1]
n−1−k,q. (3.3.56)
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Proof. Indeed, we know that

∞∑
n=0

B[m−1,α]
n,q (1, y)−

min(n,m−1)∑
k=0

[
n
k

]
q

B
[m−1,α]
n−k,q (0, y)

 tn

[n]q!

=

(
tm

eq (t)− Tm−1,q (t)

)α
eq (t)Eq (ty)− Tm−1,q (t)

(
tm

eq (t)− Tm−1,q (t)

)α
Eq (ty)

=

(
tm

eq (t)− Tm−1,q (t)

)α
Eq (ty)

eq (t)− Tm−1,q (t)
t

t

=
∞∑
n=0

B[m−1,α]
n,q (0, y)

tn

[n]q!

∞∑
n=0

B[0,−1]
n,q

tn+1

[n]q!
,

which is equivalent to write

=
∞∑
n=1

[n]q

n−1∑
k=0

[
n− 1
k

]
q

B
[m−1,α]
k,q (0, y)B

[0,−1]
n−1−k,q

tn

[n]q!
.

Remark 3.13. Note to the fact that taking limit in relation (3.3.56) as q → 1−, leads to

obtain

B[m−1,α]
n (y + 1)−

min(n,m−1)∑
k=0

(
n
k

)
B

[m−1,α]
n−k (y)

= n
n−1∑
k=0

(
n− 1
k

)
B

[m−1,α]
k (y)B

[0,−1]
n−1−k.

It is a correct form of formula (2.7) from [63] for λ = 1.

Lemma 3.14. We have

xn =
n∑
k=0

[
n
k

]
q

[k]q!

[k +m]q!
B

[m−1,1]
n−k,q (x, 0) , (3.3.57)

yn =
1

q
n(n−1)

2

n∑
k=0

[
n
k

]
q

[k]q!

[k +m]q!
B

[m−1,1]
n−k,q (0, y) , (3.3.58)

xn =
1

2m

 n∑
k=0

[
n
k

]
q

E
[m−1,1]
k,q (x, 0) +

min(n,m−1)∑
k=0

[
n
k

]
q

E
[m−1,1]
k,q (x, 0)

 , (3.3.59)

yn =
1

2mq
n(n−1)

2

 n∑
k=0

[
n
k

]
q

E
[m−1,1]
k,q (0, y) +

min(n,m−1)∑
k=0

[
n
k

]
q

E[m−1,1]
n,q (0, y)

 .

(3.3.60)
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Proof. To prove relation (3.3.57) consider the following statement

(
tm

eq (t)− Tm−1,q (t)

)
eq (tx) (eq (t)− Tm−1,q (t)), (3.3.61)

which is, clearly, equal to the summation below

=
∞∑
n=0

xn
tn+m

[n]q!
. (3.3.62)

According to the Definition (3.1), statement (3.3.61) can be written as

=
∞∑
n=0

B[m−1,1]
n,q (x, 0)

tn

[n]q!

(
∞∑
n=0

tn

[n]q!
−

m−1∑
n=0

tn

[n]q!

)

=
∞∑
n=0

B[m−1,1]
n,q (x, 0)

tn

[n]q!

∞∑
n=m

tn

[n]q!

=
∞∑
n=0

B[m−1,1]
n,q (x, 0)

tn

[n]q!

∞∑
n=0

tn+m

[n+m]q!

=
∞∑
n=0

n∑
k=0

B
[m−1,1]
n−k,q (x, 0)

[k]q! [n]q!

[n− k]q! [k +m]q! [k]q!
× tn+m

[n]q!
,

which is equivalent to write

=
∞∑
n=0

(
n∑
k=0

[
n
k

]
q

[k]q!

[k +m]q!
B

[m−1,1]
n−k,q (x, 0)

)
tn+m

[n]q!
. (3.3.63)

Comparing the coefficients of tn+m

[n]q !
in relation (3.3.62) with relation (3.3.63), leads to

obtain the desired result.

To prove relation (3.3.58), we start with the following statement

(
tm

eq (t)− Tm−1,q (t)

)
Eq (ty) (eq (t)− Tm−1,q (t)),

which is clearly equal to the summation below

=
∞∑
n=0

q
n(n−1)

2 yn
tn+m

[n]q!
.

According to the Definition (3.1), relation above can be written as

=
∞∑
n=0

B[m−1,1]
n,q (0, y)

tn

[n]q!

∞∑
n=0

tn+m

[n+m]q!
.
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Applying a similar process to the proof of relation (3.3.57), makes this part of the proof

complete.

In order to prove relation (3.3.59), we consider the following identity

2m
∞∑
n=0

xn
tn

[n]q!
=

(
2m

eq (t) + Tm−1,q (t)

)
eq (tx) (eq (t) + Tm−1,q (t))

=
∞∑
n=0

E
[m−1,1]
k,q (x, 0)

tn

[n]q!

(
∞∑
n=0

tn

[n]q!
+

m−1∑
n=0

tn

[n]q!

)

=
∞∑
n=0

 n∑
k=0

[
n
k

]
q

E
[m−1,1]
k,q (x, 0) +

min(n,m−1)∑
k=0

[
n
k

]
q

E
[m−1,1]
k,q (x, 0)

 tn

[n]q!
.

The rest of proof will be similar to the proof of relation (3.3.57). Also, because of applying

a similar technique in the proof of relation (3.3.60), we pass its proof.

Remark 3.15. From Lemma (3.14) we obtain the list of generalized q-Bernoulli and

q-Euler polynomials as follows

B
[m−1,1]
0,q (x, 0) = [m]q!,

B
[m−1,1]
1,q (x, 0) = [m]q!

(
x− 1

[m+1]q

)
,

B
[m−1,1]
2,q (x, 0) = x2 − [2]q [m]q !

[m+1]q
x+

[2]qq
m+1[m]q !

[m+1]2q [m+2]q
.

,

B
[m−1,1]
0,q (0, y) = [m]q!,

B
[m−1,1]
1,q (0, y) = [m]q!

(
y − 1

[m+1]q

)
,

B
[m−1,1]
2,q (0, y) = qy2 − [2]q [m]q !

[m+1]q
y +

[2]qq
m+1[m]q !

[m+1]2q [m+2]q
.

,

E
[m−1,1]
0,q (x, 0) = 2m−1,

E
[0,1]
1,q (x, 0) = 2x− 2,

E
[m−1,1]
1,q (x, 0) = 2m−1(x− 1), m ≥ 2,

E
[0,1]
2,q (x, 0) = 2x2 − 2[2]qx− 2 + 2[2]q,

E
[1,1]
2,q (x, 0) = 4x2 − 4[2]qx− 4 + 4[2]q,

E
[m−1,1]
2,q (x, 0) = 2m−1(x2 − [2]qx+ [2]q), m ≥ 3.

,

E
[m−1,1]
0,q (0, y) = 2m−1,

E
[0,1]
1,q (0, y) = 2y − 2,

E
[m−1,1]
1,q (0, y) = 2m−1(y − 1), m ≥ 2,

E
[0,1]
2,q (0, y) = 2qy2 − 2[2]qy + 2[2]q − 2,

E
[1,1]
2,q (0, y) = 4qy2 − 4[2]qy +−4[2]q − 4,

E
[m−1,1]
2,q (0, y) = 2m−1(qy2 − [2]qy + [2]q − 1), m ≥ 3,

respectively.
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3.4 Explicit relationship between the q-Bernoulli and q-Euler polynomials

mials

In this section, some generalizations of the Srivastava-Pint´er addition theorem are de-

rived. Also, some new formulae and some of their special cases are given. These results 

are the natural q-extensions of the main results of the researches which can be found in the 

references [65], [66].

Theorem 3.16. The following relationships hold true between the generalized q-Bernoulli

polynomials and q-Euler polynomials.

B[m−1,α]
n,q (x, y) = (3.4.1)

1

2

n∑
k=0

[
n
j

]
q

1

ln−k

[
B

[m−1,α]
k,q (x, 0) +

k∑
j=0

[
k
j

]
q

1

lk−j
B

[m−1,α]
j,q (x, 0)

]
En−k,q (0, ly) ,

B[m−1,α]
n,q (x, y) = (3.4.2)

1

2

n∑
k=0

[
n
k

]
q

1

ln−k

[
B

[m−1,α]
k,q (0, y) +B

[m−1,α]
k,q

(
1

l
, y

)]
En−k,q (lx, 0) .

Proof. First, we prove (3.4.1). Using the following identity tm

eq (t)−
∑m−1

i=0

ti

[i]q!


α

eq (tx)Eq (ty) =

2

eq
(
t
l

)
+ 1
× Eq

(
t

l
ly

)
×
eq
(
t
l

)
+ 1

2
×

 tm

eq (t)−
∑m−1

i=0
ti

[i]q !

α

eq (tx) .

We have

∞∑
n=0

B[m−1,α]
n,q (x, y)

tn

[n]q!
=

1

2

∞∑
n=0

En,q (0, ly)
tn

ln [n]q!

∞∑
k=0

tk

lk [k]q!

∞∑
j=0

B
[m−1,α]
j,q (x, 0)

tj

[j]q!

+
1

2

∞∑
k=0

Ek,q (0, ly)
tk

lk [k]q!

∞∑
n=0

B[m−1,α]
n,q (x, 0)

tn

[n]q!

=: I1 + I2.
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It is clear that

I2 =
1

2

∞∑
n=0

B[m−1,α]
n,q (x, 0)

tn

[n]q!

∞∑
k=0

Ek,q (0, ly)
tk

lk [k]q!

=
1

2

∞∑
n=0

n∑
k=0

[
n
k

]
q

lk−nB
[m−1,α]
k,q (x, 0)En−k,q (0, ly)

tn

[n]q!
.

On the other hand

I1 =
1

2

∞∑
n=0

B[m−1,α]
n,q (x, 0)

tn

[n]q!

∞∑
k=0

Ek,q (0, ly)
tk

lk [k]q!

∞∑
j=0

tj

lj [j]q!

=
1

2

∞∑
n=0

B[m−1,α]
n,q (x, 0)

tn

[n]q!

∞∑
k=0

k∑
j=0

[
k
j

]
q

Ej,q (0, ly)
tk

lk [k]q!

=
1

2

∞∑
n=0

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (x, 0)

n−k∑
j=0

[
n− k
j

]
q

1

ln−k
Ej,q (0, ly)

tn

[n]q!

=
1

2

∞∑
n=0

n∑
j=0

[
n
j

]
q

Ej,q (0, ly)

n−j∑
k=0

[
n− j
k

]
q

1

ln−k
B

[m−1,α]
k,q (x, 0)

tn

[n]q!
.

Therefore,

∞∑
n=0

B[m−1,α]
n,q (x, y)

tn

[n]q!

=
1

2

∞∑
n=0

n∑
k=0

[
n
j

]
q

1

ln−k

×

[
B

[m−1,α]
k,q (x, 0) +

k∑
j=0

[
k
j

]
q

1

lk−j
B

[m−1,α]
j,q (x, 0)

]
En−k,q (0, ly)

tn

[n]q!
.

Next, we prove relation (3.4.2) using the following identity tm

eq (t)−
∑m−1

i=0
ti

[i]q !

α

eq (tx)Eq (ty)

=
2

eq
(
t
l

)
+ 1
× eq

(
t

l
lx

)
×
eq
(
t
l

)
+ 1

2
×

 tm

eq (t)−
∑m−1

i=0
ti

[i]q !

α

Eq (ty) .

We have

∞∑
n=0

B[m−1,α]
n,q (x, y)

tn

[n]q!
=

1

2

∞∑
n=0

En,q (lx, 0)
tn

ln [n]q!

∞∑
n=0

B[m−1,α]
n,q

(
1

l
, y

)
tn

[n]q!

+
1

2

∞∑
k=0

Ek,q (lx, 0)
tk

lk [k]q!

∞∑
n=0

B[m−1,α]
n,q (0, y)

tn

[n]q!

=: I1 + I2.
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It is clear that

I2 =
1

2

∞∑
n=0

B[m−1,α]
n,q (0, y)

tn

[n]q!

∞∑
k=0

Ek,q (lx, 0)
tk

lk [k]q!

=
1

2

∞∑
n=0

n∑
k=0

[
n
k

]
q

lk−nB
[m−1,α]
k,q (0, y)En−k,q (lx, 0)

tn

[n]q!
.

On the other hand

I1 =
1

2

∞∑
n=0

B[m−1,α]
n,q

(
1

l
, y

)
tn

[n]q!

∞∑
k=0

Ek,q (lx, 0)
tk

mk [k]q!

=
1

2

∞∑
n=0

n∑
k=0

[
n
k

]
q

lk−nB
[m−1,α]
k,q

(
1

l
, y

)
En−k,q (lx, 0)

tn

[n]q!
.

Therefore,

∞∑
n=0

B[m−1,α]
n,q (x, y)

tn

[n]q!

=
1

2

∞∑
n=0

n∑
k=0

[
n
k

]
q

lk−n
[
B

[m−1,α]
k,q (0, y) +B

[m−1,α]
k,q

(
1

l
, y

)]
En−k,q (lx, 0)

tn

[n]q!
.

Next, we discuss some special cases of Theorem (3.16).

Theorem 3.17. The following relationship holds true between the generalized q-Bernoulli

polynomials and the q-Euler polynomials.

B[m−1,α]
n,q (x, y) =

1

2

n∑
k=0

[
n
k

]
q

B[m−1,α]
k,q (0, y) +

min(n,m−1)∑
k=0

[
n
k

]
q

B
[m−1,α]
n−k,q (0, y)

+ [k]q

k−1∑
j=0

[
k − 1
j

]
q

B
[m−1,α]
j,q (0, y)B

[0,−1]
k−1−j,q

]
En−k,q (x, 0) .

Remark 3.18. Taking q → 1− in Theorem 3.17, we obtain Srivastava–Pintér addition

theorem for the generalized Bernoulli and Euler polynomials.

B[m−1,α]
n (x+ y) =

1

2

n∑
k=0

(
n
k

)B[m−1,α]
k (y) +

min(n,m−1)∑
k=0

(
n
k

)
B

[m−1,α]
n−k (y)

+ k
k−1∑
j=0

(
k − 1
j

)
B

[m−1,α]
j (y)B

[0,−1]
k−1−j

]
En−k (x) . (3.4.3)
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Notice that Srivastava–Pintér addition theorem for the generalized Apostol–Bernoulli

polynomials and the Apostol–Euler polynomials was given in [63]. The formula (3.4.3) is

a correct version that of Theorem (3) in the reference [63] for λ = 1.

3.5 Explicit Relation between q-Genocchi and q-Bernoulli Polynomials

Theorem 3.19. The following relation holds true between the generalized q-Genocchi and

the generalized q-Bernoulli polynomials

G[l−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

1

mn [k + 1]q

× (
k−l+1∑
j=0

[
k + 1
j + l

]
q

mj+l2l
[j + l]q!

[j + 2l]q!
G

[l−1,α−1]
j,q (x,−1)

−
k+1∑
j=0

[
k + 1
j

]
q

mj

l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (x,−1))

−mk+1G
[l−1,α]
k+1,q (x, 0))Bn−k,q (0,my) . (3.5.1)

Proof. The proof is based on the following identity 2ltl

eq (t) +
∑l−1

i=0
ti

[i]q !

α

eq (tx)Eq (ty)

=

 2ltl

eq (t) +
∑l−1

i=0
ti

[i]q !

α

eq (tx)×
eq
(
t
m

)
− 1

t
m

×
t
m

eq
(
t
m

)
− 1
× Eq

(
t

m
my

)
.

Consequently,

∞∑
n=0

G[l−1,α]
n,q (x, y)

tn

[n]q!

=
m

t

(
∞∑
n=0

G[l−1,α]
n,q (x, 0)

tn

[n]q!

∞∑
k=0

1

mk
× tk

[k]q!

−
∞∑
n=0

G[l−1,α]
n,q (x, 0)

tn

[n]q!

)
∞∑
n=0

Bn,q (0,my)
tn

mn [n]q!

=
m

t

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

1

mn−kG
[l−1,α]
k,q (x, 0)

−G[l−1,α]
n,q (x, 0)

)
tn

[n]q!

∞∑
n=0

Bn,q (0,my)
tn

mn [n]q!
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=
∞∑
n=1

(
n∑
k=0

[
n
k

]
q

1

mn−k−1G
[l−1,α]
k,q (x, 0)

−mG[l−1,α]
n,q (x, 0)

)
tn−1

[n]q!

∞∑
n=0

Bn,q (0,my)
tn

mn [n]q!

=
∞∑
n=0

(
n+1∑
k=0

[
n+ 1
k

]
q

mkG
[l−1,α]
k,q (x, 0)−mn+1G

[l−1,α]
n+1,q (x, 0)

)

× tn

mn [n+ 1]q!

∞∑
n=0

Bn,q (0,my)
tn

mn [n]q!

=
∞∑
n=0

n∑
k=0

(
k+1∑
j=0

[
k + 1
j

]
q

mjG
[l−1,α]
j,q (x, 0)−mk+1G

[l−1,α]
k+1,q (x, 0)

)

× tk

[k + 1]q [k]q!
Bn−k,q (0,my)

tn−k

mn−k [n− k]q!

=
∞∑
n=0

n∑
k=0

[
n
k

]
q

1

mn [k + 1]q

(
k+1∑
j=0

[
k + 1
j

]
q

mjG
[l−1,α]
j,q (x, 0)

×−mk+1G
[l−1,α]
k+1,q (x, 0)

)
Bn−k,q (0,my)

tn

[n]q!
.

Now, we use relation (3.3.51) from Lemma (3.10); that is

G
[l−1,α]
j,q (x, 0) = 2l

[j]q!

[j + l]q!
G

[l−1,α−1]
j−l,q (x,−1)−

l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (x,−1) .

So, we have

G[l−1,α]
n,q (x, y)

=
n∑
k=0

[
n
k

]
q

1

mn [k + 1]q

(
k+1∑
j=0

[
k + 1
j

]
q

mj(2l
[j]q!

[j + l]q!
G

[l−1,α−1]
j−l,q (x,−1)

−
l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (x,−1)

)
−mk+1G

[l−1,α]
k+1,q (x, 0))Bn−k,q (0,my)

=
n∑
k=0

[
n
k

]
q

1

mn [k + 1]q

(
k+1∑
j=l

[
k + 1
j

]
q

mj2l
[j]q!

[j + l]q!
G

[l−1,α−1]
j−l,q (x,−1)

−
k+1∑
j=0

[
k + 1
j

]
q

mj

l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (x,−1)

)
−mk+1G

[l−1,α]
k+1,q (x, 0))Bn−k,q (0,my) ,
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which can be written as

=
n∑
k=0

[
n
k

]
q

1

mn [k + 1]q

(
k−l+1∑
j=0

[
k + 1
j + l

]
q

mj+l2l
[j + l]q!

[j + 2l]q!
G

[l−1,α−1]
j,q (x,−1)

−
k+1∑
j=0

[
k + 1
j

]
q

mj

l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (x,−1)

)
−mk+1G

[l−1,α]
k+1,q (x, 0))Bn−k,q (0,my) .

Lemma 3.20. The following relation holds true for the generalized q-Genocchi polynomi-

als

G
[l−1,α]
k,q

(
1

m
, y

)
+

k∑
j=0

l−1∑
i=0

[
k
j

]
q

[
j
i

]
q

(
1

m
− 1

)k−j
q

G
[l−1,α]
j−i,q (0, y) =

2m [k]q!

[k − l]q!

k−l∑
j=0

[
k − l
j

]
q

(
1

m
− 1

)k−j−l
q

G
[l−1,α−1]
j,q (0, y) .

(3.5.2)

Proof. From relation (3.3.48) of Lemma (3.10), for 0 ≤ j ≤ k we have

G
[l−1,α]
j,q (1, y) +

l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (0, y) = 2l

[l]q!

[j − l]q!
G

[l−1,α−1]
j−l,q (0, y) . (3.5.3)

Multiplying both sides of the relation (3.5.3) by
[
k
j

]
q

(
1
m
− 1
)k−j
q

, for 0≤j≤k and then

adding the k + 1 obtained equalities together, will lead to obtain

k∑
j=0

[
k
j

]
q

(
1

m
− 1

)k−j
q

G
[l−1,α]
j,q (1, y) +

k∑
j=0

[
k
j

]
q

(
1

m
− 1

)k−j
q

(3.5.4)

×
l−1∑
i=0

[
j
i

]
q

G
[l−1,α]
j−i,q (0, y)

=
k∑
j=0

[
k
j

]
q

(
1

m
− 1

)k−j
q

2l
[l]q!

[j − l]q!
G

[l−1,α−1]
j−l,q (0, y) . (3.5.5)

From one hand we have

∞∑
n=0

G[l−1,α]
n,q

(
1

m
, y

)
tn

[n]q!

=

(
2ltl

eq (t) + Tl−1,q (t)

)α
eq

(
t
1

m

)
Eq (ty) ,
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which can be written as

=

(
2ltl

eq (t) + Tl−1,q (t)

)α
eq (t)Eq (ty) eq

(
t
1

m

)
Eq (−t)

=
∞∑
n=0

G[l−1,α]
n,q (1, y)

tn

[n]q!

∞∑
k=0

1

mk
.
tk

[k]q!

∞∑
l=0

q
1
2
l(l−1)(−t)l

[l]q!
.

It is equivalent to write that

=
∞∑
n=0

G[l−1,α]
n,q (1, y)

tn

[n]q!

∞∑
k=0

k∑
l=0

1

ml
.
tl

[l]q!

q
(k−l)(k−l−1)

2 (−1)k−ltk−l

[k − l]q!

=
∞∑
n=0

G[l−1,α]
n,q (1, y)

tn

[n]q!

∞∑
k=0

k∑
l=0

[
k
l

]
q

1

ml
(−1)k−lq

(k−l)(k−l−1)
2

tk

[k]q!

=
∞∑
n=0

G[l−1,α]α
n,q (1, y)

tn

[n]q!

∞∑
k=0

(
1

m
− 1

)k
q

tk

[k]q!
,

which leads to obtain

=
∞∑
n=0

n−k∑
k=0

G
[l−1,α]
k,q (1, y)

tk

[k]q!

(
1

m
− 1

)n−k
q

tn−k

[n− k]q!

=
∞∑
n=0

n−k∑
k=0

[
n
k

]
q

G
[l−1,α]
k,q (1, y)

(
1

m
− 1

)n−k
q

tn

[n]q!
.

This means that

n−k∑
k=0

[
n
k

]
q

G
[l−1,α]
k,q (1, y)

(
1

m
− 1

)n−k
q

= G[l−1,α]
n,q

(
1

m
, y

)
. (3.5.6)

From another hand we have

2m
k∑
j=0

[
k
j

]
q

(
1

m
− 1

)k−j
q

[n]q!

[n−m]q!
G

[m−1,α−1]
j−l,q (0, y)

= 2m
k∑
j=l

[k]q!

[k − j]q! [j]q!
[j]q!

[j − l]q!

(
1

m
− 1

)k−j
q

G
[l−1,α−1]
j−l,q (0, y) ,

from which it can be written that

= 2m
k∑
j=l

[k]q!

[k − j]q! [j − l]q!

(
1

m
− 1

)k−j
q

G
[l−1,α−1]
j−l,q (0, y)

= 2m
[k]q!

[k − l]q!

k−l∑
j=0

[k − l]q!
[k − j − 1]q! [j]q

(
1

m
− 1

)k−j−l
q

G
[l−1,α−1]
j,q (0, y)

=
2m [k]q!

[k − l]q!

k−l∑
j=0

[
k − l
j

]
q

(
1

m
− 1

)k−j−l
q

G
[l−1,α−1]
j,q (0, y) .
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This means that

2m
k∑
j=0

[
k
j

]
q

(
1

m
− 1

)k−j
q

[n]q!

[n−m]q!
G

[m−1,α−1]
j−l,q (0, y)

=
2m [k]q!

[k − l]q!

k−l∑
j=0

[
k − l
j

]
q

(
1

m
− 1

)k−j−l
q

G
[l−1,α−1]
j,q (0, y) . (3.5.7)

Substituting the results (3.5.6) and (3.5.7) in the identity (3.5.5) gives the desired result.

Theorem 3.21. For n ∈ N0, the following relation holds true between the generalized

q-Genocchi and the generalized q-Bernoulli polynomials:

G[l−1,α]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

1

mn−k−1 [k + 1]q
(
2m [k]q!

[k − l]q!

k−l∑
j=0

[
k − l
j

]
q

(
1

m
− 1

)k−j−l
q

G
[l−1,α−1]
j,q (0, y)

−
k∑
j=0

l−1∑
i=0

[
k
j

]
q

[
j
i

]
q

(
1

m
− 1

)k−j
q

G
[l−1,α]
j−i,q (0, y)−G

[l−1,α]
k+1,q (0, y))Bn−k,q (mx, 0) .

(3.5.8)

Proof. Using the following identity 2ltl

eq (t) +
∑l−1

i=0
ti

[i]q !

α

eq (tx)Eq (ty) = 2ltl

eq (t) +
∑l−1

i=0
ti

[i]q !

α

Eq (ty)×
eq
(
t
m

)
− 1

t
m

×
t
m

eq
(
t
m

)
− 1
× eq

(
t

m
mx

)
,

we have

∞∑
n=0

G[l−1,α]
n,q (x, y)

tn

[n]q!
=
m

t

( ∞∑
n=0

G[l−1,α]
n,q

(
1

m
, y

)
tn

[n]q!
−
∞∑
n=0

G[l−1,α]
n,q (0, y)

tn

[n]q!

)
×
∞∑
n=0

Bn,q (mx, 0)
tn

mn [n]q!

= m

∞∑
n=1

(G[l−1,α]
n,q

(
1

m
, y

)
−G[l−1,α]

n,q (0, y))
tn−1

[n]q!

∞∑
k=0

Bk,q (mx, 0)
tk

mk [k]q!

= m

∞∑
n=0

(G
[l−1,α]
n+1,q

(
1

m
, y

)
−G

[l−1,α]
n+1,q (0, y))

tn

[n+ 1]q!

∞∑
k=0

Bk,q (mx, 0)
tk

mk [k]q!

=
∞∑
n=0

n∑
k=0

[
n
k

]
q

1

mn−k−1 [k + 1]q

(
G

[l−1,α]
k+1,q

(
1

m
, y

)
−G

[l−1,α]
k+1,q (0, y)

)
×Bn−k,q (mx, 0)

tn

[n]q!
.
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Finally, applying Lemma (3.20), leads to obtain the desired result.

Corollary 3.22. For n ∈ N0, and m ∈ N the following relations hold true between the

generalized q-Genocchi and the generalized q-Bernoulli polynomials

G[l−1,1]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

1

mn [k + 1]q

( k−l+1∑
j=0

[
k + 1
j + l

]
q

mj+l2l
[j + l]q!

[j + 2l]q!
(x− 1)jq

−
k+1∑
j=0

[
k + 1
j

]
q

mj

l−1∑
i=0

[
j
i

]
q

G
[l−1,1]
j−i,q (x,−1))−mk+1G

[l−1,1]
k+1,q (x, 0)

)
×Bn−k,q (0,my) , (3.5.9)

G[l−1,1]
n,q (x, y) =

n∑
k=0

[
n
k

]
q

1

mn−k−1 [k + 1]q

( 2m [k]q!

[k − l]q!

k−l∑
j=0

[
k − l
j

]
q

(
1

m
− 1

)k−j−l
q

q
j(j−1)

2 yj

−
k∑
j=0

l−1∑
i=0

[
k
j

]
q

[
j
i

]
q

(
1

m
− 1

)k−j
q

G
[l−1,α]
j−i,q (0, y)−G

[l−1,α]
k+1,q (0, y)

)
(3.5.10)

×Bn−k,q (mx, 0) . (3.5.11)

Proof. For α = 1, substituting

G
[l−1,0]
j,q (x,−1) = (x− 1)jq

and

G
[l−1,0]
j,q (0, y) = q

j(j−1)
2 yj

inside theorems (3.19) and (3.21) respectively, leads to obtain the desired results.
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PROPERTIES AND RELATIONS INVOLVING 
GENERALIZED q-APOSTOL TYPE POLYNOMIALS

4.1fIntroduction

Recently, Luo and Srivastava [23], [24] introduced and studied the generalized Apostol-

Bernoulli polynomials Bn
α (x; λ) and the generalized Apostol-Euler polynomials Enα (x; 

λ) . Kurt [62] gave the generalization of the Bernoulli polynomials B[
n
m−1,α] 

(x) of order 

α and studied their properties. They also studied these polynomials systematically, see 

[23]-[26], [30], [66]-[75]. There are numerous recent investigations on this subject by 

many other authors, see [20], [58], [62]-[66], [76]-[85]. More recently, Tremblay, 

Gaboury and Fug`ere further gave the definition of B[
n
m−1,α] 

(x; λ) and studied their 

properties, [63] . On the other hand, Mahmudov and Eini studied various two dimensional 

q-polynomials,[57], [86]. Motivated by these papers we define generalized Apostol type q-

polynomials as follow.

Definition 4.1. Let q, α ∈ C, m ∈ N, 0 < |q| < 1. The generalized q-Apostol-Bernoulli

numbers B[m−1,α]
n,q and polynomials B[m−1,α]

n,q (x, y;λ) in x, y of order α are defined, in a

suitable neighborhood of t = 0, by means of the generating functions:(
tm

λeq (t)− Tm−1,q (t)

)α
=
∞∑
n=0

B[m−1,α]
n,q (λ)

tn

[n]q!
,(

tm

λeq (t)− Tm−1,q (t)

)α
eq (tx)Eq (ty) =

∞∑
n=0

B[m−1,α]
n,q (x, y;λ)

tn

[n]q!
, (4.1.1)

where Tm−1,q (t) =
m−1∑
k=0

tk

[k]q!
.
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Definition 4.2. Let q, α ∈ C, 0 < |q| < 1, m ∈ N. The generalized q-Apostol-Euler

numbers E[m−1,α]
n,q and polynomials E[m−1,α]

n,q (x, y;λ) in x, y of order α are defined, in a

suitable neighborhood of t = 0, by means of the generating functions:(
2m

λeq (t) + Tm−1,q (t)

)α
=
∞∑
n=0

E[m−1,α]
n,q (λ)

tn

[n]q!
, (4.1.2)(

2m

λeq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) =

∞∑
n=0

E[m−1,α]
n,q (x, y;λ)

tn

[n]q!
. (4.1.3)

Definition 4.3. Let q, α ∈ C, 0 < |q| < 1, m ∈ N. The generalized q-Apostol-Genocchi

numbers G[m−1,α]
n,q and polynomials G[m−1,α]

n,q (x, y;λ) in x, y of order α are defined, in a

suitable neighborhood of t = 0, by means of the generating functions:(
2mtm

λeq (t) + Tm−1,q (t)

)α
=
∞∑
n=0

G[m−1,α]
n,q (λ)

tn

[n]q!
, (4.1.4)(

2mtm

λeq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) =

∞∑
n=0

G[m−1,α]
n,q (x, y;λ)

tn

[n]q!
. (4.1.5)

Remark 4.4. Clearly, for m = 1 we have

B[0,α]
n,q (x, y;λ) = B(α)

n,q (x, y;λ) ,

E[0,α]
n,q (x, y;λ) = E(α)

n,q (x, y;λ) ,

G[0,α]
n,q (x, y;λ) = G(α)

n,q (x, y;λ) .

Also, for m = 1 and λ = 1 we have

B[0,α]
n,q (x, y; 1) = B(α)

n,q (x, y) ,

E[0,α]
n,q (x, y; 1) = E(α)

n,q (x, y) ,

G[0,α]
n,q (x, y; 1) = G(α)

n,q (x, y) .

Finally, for x = y = 0 we have

B[m−1,α]
n,q (0, 0;λ) = B[m−1,α]

n,q (λ) ,

E[m−1,α]
n,q (0, 0;λ) = E[m−1,α]

n,q (λ) ,

G[m−1,α]
n,q (0, 0;λ) = G[m−1,α]

n,q (λ) .
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4.2 Properties of the Apostol type q-polynomials

In this section, we show some basic properties of the generalized q-polynomials. We 

only prove the facts for one of them. Obviously, by applying the similar technique other 

ones can be proved.

Proposition 4.5. The generalized q-polynomials B[m−1,α]
n,q (x, y;λ), E

[m−1,α]
n,q (x, y;λ) and

G
[m−1,α]
n,q (x, y;λ) satisfy the following relations:

B[m−1,α+β]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (x, 0;λ)B

[m−1,β]
n−k,q (0, y;λ), (4.2.1)

E[m−1,α+β]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (x, 0;λ)E

[m−1,β]
n−k,q (0, y;λ),

G[m−1,α+β]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

G
[m−1,α]
k,q (x, 0;λ)G

[m−1,β]
n−k,q (0, y;λ).

Proof. We only prove the second identity. By using definition (4.2), we have

∞∑
n=0

E[m−1,α+β]
n,q (x, y;λ)

tn

[n]q!
=

(
2m

λeq (t) + Tm−1,q (t)

)α+β
eq (tx)Eq (ty)

=

(
2m

λeq (t) + Tm−1,q (t)

)α
eq (tx)

(
2m

λeq (t) + Tm−1,q (t)

)β
Eq (ty)

=
∞∑
n=0

E[m−1,α]
n,q (x, 0;λ)

tn

[n]q!

∞∑
n=0

E[m−1,β]
n,q (0, y;λ)

tn

[n]q!

=
∞∑
n=0

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (x, 0;λ)E

[m−1,β]
n−k,q (0, y;λ)

tn

[n]q!
.

Comparing the coefficients of the term tn

[n]q !
in both sides gives the result.

Corollary 4.6. The generalized q-polynomials B[m−1,α]
n,q (x, y;λ), E

[m−1,α]
n,q (x, y;λ) and

G
[m−1,α]
n,q (x, y;λ) satisfy the following relations:

B[m−1,α]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

B
[m−1,α]
k,q (0, y;λ)xn−k, (4.2.2)

E[m−1,α]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)xn−k,

G[m−1,α]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

G
[m−1,α]
k,q (0, y;λ)xn−k.
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Proposition 4.7. The generalized q-polynomials B[m−1,α]
n,q (x, y;λ), E

[m−1,α]
n,q (x, y;λ) and

G
[m−1,α]
n,q (x, y;λ) satisfy the following relations:

λB[m−1,α]
n,q (1, y;λ)−B[m−1,α]

n,q (0, y;λ)

=
n∑
k=0

[
n
k

]
q

[k]qB
[m−1,α]
k,q (0, y;λ)B

[0,−1]
n−k,q(λ), for n ≥ 1, (4.2.3)

λE[m−1,α]
n,q (1, y;λ) + E[m−1,α]

n,q (0, y;λ)

= 2
n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)E

[0,−1]
n−k,q(λ), (4.2.4)

λG[m−1,α]
n,q (1, y;λ) +G[m−1,α]

n,q (0, y;λ)

= 2
n∑
k=0

[
n
k

]
q

[k]qG
[m−1,α]
k,q (0, y;λ)G

[0,−1]
n−k,q(λ), for n ≥ 1. (4.2.5)

Proof. We only prove (4.2.4). By using definition (4.2), and starting from the left hand

side of the relation(4.2.4) we have:

∞∑
n=0

(
λE[m−1,α]

n,q (1, y;λ) + E[m−1,α]
n,q (0, y;λ)

) tn

[n]q!

= λ

(
2m

λeq (t) + Tm−1,q (t)

)α
eq (t)Eq (ty) +

(
2m

λeq (t) + Tm−1,q (t)

)α
Eq (ty)

=

(
2m

λeq (t) + Tm−1,q (t)

)α
Eq (ty) (λeq (t) + 1)

= 2

(
2m

λeq (t) + Tm−1,q (t)

)α
Eq (ty)

(
2

λeq (t) + 1

)−1
= 2

∞∑
n=0

E[m−1,α]
n,q (0, y;λ)

tn

[n]q!

∞∑
n=0

E[0,−1]
n,q (λ)

tn

[n]q!

= 2
∞∑
n=0

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)E

[0,−1]
n−k,q(λ)

tn

[n]q!
.

Comparing the coefficients of the term tn

[n]q !
in both sides gives the result.

4.3 q-analogue of the Luo-Srivastava addition theorem

In this section we state and prove a q-generalization of the Luo-Srivastava addition 

theorem.
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Theorem 4.8. The following relation holds between generalized q-Apostol-Euler and q-

Apostol-Bernoulli polynomials:

E[m−1,α]
n,q (x, y;λ) =

n∑
j=0

1

[n+ 1]q

[
n+ 1
j

]
q

(
λ

n−j+1∑
k=0

1

[n+ 1]q

[
n− j + 1

k

]
q

E
[m−1,α−1]
k,q (0, y;λ)

− E
[m−1,α]
n−j+1,q(0, y;λ)

)
Bj,q(x, 0;λ) +

λ− 1

[n+ 1]q

(
2m

λ+ 1

)α
Bn+1,q(x, 0;λ). (4.3.1)

Proof. We take aid of the following identity to prove identity (4.3.1):

λ
t

λeq (t)− 1
eq (tx) eq (t)−

t

λeq (t)− 1
eq (tx) =

teq (tx)

λeq (t)− 1
(λeq (t)− 1) = teq (tx) .

Therefore, we can write:

λ
∞∑
n=0

n∑
k=0

[
n
k

]
q

Bk,q(x, 0;λ)
tn

[n]q!
−
∞∑
n=0

Bn,q(x, 0;λ)
tn

[n]q!

=
∞∑
n=0

xn
tn+1

[n+ 1]q!
[n+ 1]q

=
∞∑
n=0

[n]qx
n−1 tn

[n]q!
,

from that we can conclude:

λ
n∑
k=0

[
n
k

]
q

Bk,q(x, 0;λ)−Bn,q(x, 0;λ) = [n]qx
n−1,

that is

xn =
1

[n+ 1]q

(
λ

n+1∑
k=0

[
n+ 1
k

]
q

Bk,q(x, 0;λ)−Bn+1,q(x, 0;λ)

)
. (4.3.2)
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Substituting identity (4.3.2) into the right hand side of relation (4.2.2), we obtain:

E[m−1,α]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

1

[n− k + 1]q

×

(
λ
n−k+1∑
j=0

[
n− k + 1

j

]
q

Bj,q(x, 0;λ)−Bn−k+1,q(x, 0;λ)

)

=
n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

1

[n− k + 1]q

×

(
λ

n−k∑
j=0

[
n− k + 1

j

]
q

Bj,q(x, 0;λ) + (λ− 1)Bn−k+1,q(x, 0;λ)

)

=
n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

λ

[n− k + 1]q

n−k∑
j=0

[
n− k + 1

j

]
q

Bj,q(x, 0;λ)

+
n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

λ− 1

[n− k + 1]q
Bn−k+1,q(x, 0;λ)

:= I1 + I2.

Thus, from one hand we can write:

I1 =
n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

λ

[n− k + 1]q

n−k∑
j=0

[
n− k + 1

j

]
q

Bj,q(x, 0;λ)

=
n∑
j=0

n−j∑
k=0

λ

[n+ 1]q

[
n+ 1

n− k + 1

]
q

[
n− k + 1

j

]
q

E
[m−1,α]
k,q (0, y;λ)Bj,q(x, 0;λ),

According to the part (c) of the Proposition (2.6), we know that

[
m
l

]
q

[
l
n

]
q

=

[
m
n

]
q

[
m− n
m− l

]
q

, for m ≥ l ≥ n,

so, we may continue as

I1 =
n∑
j=0

n−j∑
k=0

λ

[n+ 1]q

[
n+ 1
j

]
q

[
n− j + 1

k

]
q

E
[m−1,α]
k,q (0, y;λ)Bj,q(x, 0;λ)

=
n∑
j=0

λ

[n+ 1]q

[
n+ 1
j

]
q

Bj,q(x, 0;λ)

n−j∑
k=0

[
n− j + 1

k

]
q

E
[m−1,α]
k,q (0, y;λ)

=
n∑
j=0

λ

[n+ 1]q

[
n+ 1
j

]
q

Bj,q(x, 0;λ)
(
E

[m−1,α]
n−j+1,q(1, y;λ)− E

[m−1,α]
n−j+1,q(0, y;λ)

)
.
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From another hand for I2, we can write:

I2 =
n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

λ− 1

[n− k + 1]q
Bn−k+1,q(x, 0;λ)

=
n∑
k=0

[
n+ 1
k

]
q

λ− 1

[n+ 1]q
Bn−k+1,q(x, 0;λ)E

[m−1,α]
k,q (0, y;λ)

=
n+1∑
k=0

[
n+ 1
k

]
q

λ− 1

[n+ 1]q
Bn−k+1,q(x, 0;λ)E

[m−1,α]
k,q (0, y;λ)

− λ− 1

[n+ 1]q
B0,q(x, 0;λ)E

[m−1,α]
k,q (0, y;λ),

and as B0,q(x, 0;λ) = 0, we have:

=
n+1∑
k=0

[
n+ 1
k

]
q

λ− 1

[n+ 1]q
Bn−k+1,q(x, 0;λ)E

[m−1,α]
k,q (0, y;λ)

=
n+1∑
j=0

[
n+ 1
j

]
q

λ− 1

[n+ 1]q
Bj,q(x, 0;λ)E

[m−1,α]
n−j+1,q(0, y;λ)

=
n∑
j=0

[
n+ 1
j

]
q

λ− 1

[n+ 1]q
Bj,q(x, 0;λ)E

[m−1,α]
n−j+1,q(0, y;λ)

+
λ− 1

[n+ 1]q
Bn+1,q(x, 0;λ)E

[m−1,α]
0,q (0, y;λ).

Adding I2 to I1 we obtain:

E[m−1,α]
n,q (x, y;λ) = I1 + I2 =

n∑
j=0

λ

[n+ 1]q

[
n+ 1
j

]
q

Bj,q(x, 0;λ)
(
E

[m−1,α]
n−j+1,q(1, y;λ)− E

[m−1,α]
n−j+1,q(0, y;λ)

)
+

n∑
j=0

[
n+ 1
j

]
q

λ− 1

[n+ 1]q
Bj,q(x, 0;λ)E

[m−1,α]
n−j+1,q(0, y;λ)+

λ− 1

[n+ 1]q
Bn+1,q(x, 0;λ)E

[m−1,α]
0,q (0, y;λ).
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Consequently

E[m−1,α]
n,q (x, y;λ) =

n∑
j=0

1

[n+ 1]q

[
n+ 1
j

]
q

×
(
λE

[m−1,α]
n−j+1,q(1, y;λ)− E

[m−1,α]
n−j+1,q(0, y;λ) + (λ− 1)E

[m−1,α]
n−j+1,q(0, y;λ)

)
Bj,q(x, 0;λ)

+
λ− 1

[n+ 1]q
Bn+1,q(x, 0;λ)E

[m−1,α]
0,q (0, y;λ)

=
n∑
j=0

1

[n+ 1]q

[
n+ 1
j

]
q

(
λE

[m−1,α]
n−j+1,q(1, y;λ)− E

[m−1,α]
n−j+1,q(0, y;λ)

)
Bj,q(x, 0;λ)

+
(λ− 1)

[n+ 1]q
Bn+1,q(x, 0;λ)E

[m−1,α]
0,q (0, y;λ)

=
n∑
j=0

1

[n+ 1]q

[
n+ 1
j

]
q(

λ

n−j+1∑
k=0

[
n− j + 1

k

]
q

E
[m−1,α]
n−j+1,q(0, y;λ)− E

[m−1,α]
n−j+1,q(0, y;λ)

)
Bj,q(x, 0;λ)

+
(λ− 1)

[n+ 1]q

(
2m

λ+ 1

)α
Bn+1,q(x, 0;λ),

whence the result.

Taking m = 1  in Theorem  4.3.1  , we get a q-generalization of the Luo-Srivastava 

addition theorem [25].

Corollary 4.9. The following relation holds between generalized q-Apostol-Euler and q-

Apostol-Bernoulli polynomials:

E(α)
n,q (x, y;λ) =

n∑
j=0

2

[j + 1]q

[
n
j

]
q

(
E

(α−1)
j+1,q (0, y;λ)

− E
(α)
j+1,q(0, y;λ)

)
Bn−j,q(x, 0;λ) +

λ− 1

[n+ 1]q

(
2

λ+ 1

)α
Bn+1,q(x, 0;λ).

(4.3.3)

Letting q ↑ 1, we get the Luo-Srivastava addition theorem (see [77]):

E(α)
n (x+ y;λ) =

n∑
j=0

2

j + 1

(
n
j

)(
E

(α−1)
j+1 (y;λ)

− E
(α)
j+1(y;λ)

)
Bn−j,q(x;λ) +

λ− 1

n+ 1

(
2

λ+ 1

)α
Bn+1(x;λ).

Next theorem gives relationship between E[m−1,α]
n,q (x, y;λ) and Gn,q(x, 0).
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Theorem 4.10. The following relation holds between generalized q-Apostol-Euler and

q-Apostol-Genocchi polynomials:

E[m−1,α]
n,q (x, y;λ) =

1

2

n∑
k=0

1

[k + 1]q

(
λ

n∑
j=k

[
n
j

]
q

[
j
k

]
q

E
[m−1,α]
n−j,q (0, y;λ)

+
n∑
k=0

[
n
k

]
q

E
[m−1,α]
n−k,q (0, y;λ)

)
Gk+1,q(x, 0).

Proof. The proof follows from the following identity:

(
2m

λeq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty) =(

2m

λeq (t) + Tm−1,q (t)

)α
Eq (ty)

2t

eq (t) + 1
eq (tx)

eq (t) + 1

2t
.

Theorem 4.11. The following relation holds between generalized q-Apostol-Euler and

q-Stirling polynomials Sq(i, j)of the second kind:

E[m−1,α]
n,q (x, y;λ) =

n∑
k=0

n∑
j=k

[
n

n− j

]
q

E
[m−1,α]
n−j,q (0, y;λ)Sq(j, k)xk(x).

Proof. The q-Stirling polynomials Sq(n, k) of the second kind are defined by means of

the following generating function:

xn =
n∑
k=0

Sq(n, k)xk(x), (4.3.4)

where xk(x) = x(x − [1]q)(x − [2]q) . . . (x − [k − 1]q), [87]. Replacing identity ( 4.3.4 )

in the right hand side of (4.2.2), we have:

E[m−1,α]
n,q (x, y;λ) =

n∑
k=0

[
n
k

]
q

E
[m−1,α]
k,q (0, y;λ)

n−k∑
k=0

Sq(n− k, k)xk(x)

=
n∑
k=0

n∑
j=k

[
n

n− j

]
q

E
[m−1,α]
n−j,q (0, y;λ)Sq(j, k)xk(x).
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Theorem 4.12. The relationship

E[m−1,α]
n,q (x, y;λ) =

[n2 ]∑
k=0

n−2k∑
j=0

[
n
k

]
q

[
n− 2k
j

]
q

[k]q!

[2]nq [k]q2 !
E

[m−1,α]
j,q (0, y;λ)Hn−2k−j,q (x)

holds between the polynomials E[m−1,α]
n,q (x, y;λ) and the q-Hermite polynomials defined

by, see [88],

eq (tx)Eq2

(
− t2

[2]q

)
=
∞∑
n=0

Hn,q (x)
tn

[n]q!
.

Proof. Indeed,

∞∑
n=0

E[m−1,α]
n,q (x, y;λ)

tn

[n]q!
=

(
2m

λeq (t) + Tm−1,q (t)

)α
eq (tx)Eq (ty)

=

(
2m

λeq (t) + Tm−1,q (t)

)α
Eq (ty) eq (tx)Eq2

(
− t2

[2]q

)
eq2

(
t2

[2]q

)

=
∞∑
n=0

E[m−1,α]
n,q (0, y;λ)

tn

[n]q!

∞∑
n=0

Hn,q (x)
tn

[n]q!

∞∑
n=0

t2n

[2]nq [n]q2 !

=
∞∑
n=0

n∑
j=0

[
n
j

]
q

E
[m−1,α]
j,q (0, y;λ)Hn−j,q (x)

tn

[n]q!

∞∑
n=0

t2n

[2]nq [n]q2 !

=
∞∑
n=0

[n2 ]∑
k=0

[n]q!

[2]nq [k]q2 ! [n− 2k]q!

n−2k∑
j=0

[
n− 2k
j

]
q

E
[m−1,α]
j,q (0, y;λ)Hn−2k−j,q (x)

tn

[n]q!

=
∞∑
n=0

[n2 ]∑
k=0

n−2k∑
j=0

[
n
k

]
q

[
n− 2k
j

]
q

[k]q!

[2]nq [k]q2 !
E

[m−1,α]
j,q (0, y;λ)Hn−2k−j,q (x)

tn

[n]q!
.
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A DETERMINANTAL REPRESENTATION FOR THE 
CLASS OF q-APPELL POLYNOMIALS

5.1fIntroduction

Appell polynomials  for  the  first time were defined by Appell in 1880,  [34].  Inspired by

the work of Thorne [89], Sheffer [35], and Varma [90], Al-Salam, in 1967, introduced the

family of q-Appell polynomials {An,q(x)}∞n=0, and studied some of their properties [91].

According to his definition, the n-degree polynomials An,q(x) are called q-Appell if they

hold the following q-differential equation

Dq,x(An,q(x)) = [n]qAn−1,q(x), n = 0, 1, 2, . . . (5.1.1)

Note to the fact that A0,q(x) is a non zero constant let say A0,q. To begin with the 

relation(5.1.1) for n = 1, i. e.

Dq,x(A1,q(x)) = [1]qA0,q(x) = A0,q.

Using Jackson integral for the q-differential equation above, we get

A1,q(x) = A0,qx+ A1,q,

where A1,q is an arbitrary constant. We can repeat the method above to obtain A2,q(x), as

below by starting from the property(5.1.1) for q-Appell polynomials
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Dq,x(A2,q(x)) = [2]qA1,qx = [2]qA0,qx+ [2]qA1,q.

Now take Jackson integral

A2,q(x) = A0,qx
2 + [2]qA1,q + A2,q,



where A2,q is an arbitrary constant.

By  using induction on  n  and  applying  similar method to the methods used for finding

A1,q(x), A2,q(x) and continuing taking Jackson integrals we have

An−1,q(x) = An−1,q +

[
n− 1
1

]
q

An−2,qx+

[
n− 1
2

]
q

An−3,qx
2 + . . .+ A0,qx

n−1.

Considering the fact that for n = 1, 2, 3, . . . , every An,q(x) satisfies the relation (5.1.1),

we can write

Dq,x(An,q(x)) = [n]qAn−1,q + [n]q

[
n− 1
1

]
q

An−2,qx

+ [n]q

[
n− 1
2

]
q

An−3,qx
2 + . . .+ [n]qA0,qx

n−1.

Now, taking the Jackson integral of the q-differential equation above can lead to

An,q(x) = An,q + [n]qAn−1,qx+
[n]q
[2]q

[
n− 1
1

]
q

An−2,qx
2

+
[n]q
[3]q

[
n− 1
2

]
q

An−3,qx
3 + . . .+

[n]q
[n]q

A0,qx
n,

where An,q is an arbitrary constant. Since

[n]q
[i]q

[
n− 1
i− 1

]
q

=

[
n
i

]
q

,

so for n = 0, 1, 2, . . . , we have

An,q(x) = An,q+[n]qAn−1,qx+

[
n
2

]
q

An−2,qx
2+

[
n
3

]
q

An−3,qx
3+. . .+A0,qx

n. (5.1.2)
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It  is  worthy  of note  that according to the  discussion  above there exists a one to one cor-

respondence between the family of q-Appell polynomials {An,q(x)}∞n=0 and the numerical

sequence {An,q}n∞=0, An,q 6= 0. Moreover, every An,q(x) can be obtained recursively

from An−1,q(x) for n > 1.

Also, q-Appell polynomials can be defined by means of generating function Aq(t), as 

follows



Aq(x, t) := Aq(t)eq(tx) =
∞∑
n=0

An,q(x)
tn

[n]q!
, 0 < q < 1, (5.1.3)

where

Aq(t) :=
∞∑
n=0

An,q
tn

[n]q!
, Aq(t) 6= 0, (5.1.4)

is an analytic function at t = 0, An,q(0) := An,q, and eq(t) =
∑∞

n=0
tn

[n]q !
.

Based on different choices of Aq(t), which is called the determining function for the set of 

{An,q(x)}, different families of q-Appell polynomials can be obtained. In the following 

we mention some of them:

a) Taking Aq(t) = [1]q = 1 leads to obtain the family including all increasing integer

powers of x starting from 0,

{1, x, x2, x3, . . .}.

b) Taking Aq(t) =
(

tm

eq(t)−Tm−1,q(t)

)α
, leads to obtain the family of generalized q-

Bernoulli polynomials B[m−1,α]
n,q (x, 0), [86].

c) Taking Aq(t) =
(

2m

eq(t)+Tm−1,q(t)

)α
, leads to obtain the family of generalized q-Euler

polynomials E[m−1,α]
n,q (x, 0), [86].

d) Taking Aq(t) =
(

2mtm

eq(t)+Tm−1,q(t)

)α
, leads to obtain the family of generalized q-

Genocchi polynomials G[m−1,α]
n,q (x, 0), [86].
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e)
(

Taking Aq(t) = tm

λeq(t)−Tm−1,q(t)

)α
, leads to obtain the family of generalized q-

Apostol Bernoulli polynomials B[
n,q
m−1,α]

(x, 0;λ) of order α, [92].

f)
(
λeq(t)+Tm−1,q(t)

)α
2m , leads to obtain the family of q-Apostol-EulerTaking Aq(t) =

polynomials E[
n,q
m−1,α]

(x, 0;λ) of order α, [92].

g)
(

Taking Aq(t) = 2mtm

λeq(t)+Tm−1,q(t)

)α
Genocchi polynomials G[

n,q
m−1,α]

, leads to obtain the family of q-Apostol-

(x, 0;λ) of order α, [92].



h) Taking Aq(t) = Hq(t) =
∞∑
n=0

(−1)nqn(n−1) t2n

[2n]!!
, leads to obtain the family of q-

Hermite polynomials Hn,q (x), [88].

Later, in 1982, Srivastava specified more characterizations of the family of q-Appell 

polynomials, [93]. Over the past decades, q-Appell polynomials have been studied from 

different aspects in [94], [95], using different methods such as operator algebra their prop-

erties are found in [96]. Also, recently, the q-difference equations satisfied by sequence of 

q-Appell polynomials have been derived by Mahmudov, [97]. In this paper, inspired by 

the Costabile et al.’s determinantal approach for defining Bernoulli polynomials as well as 

Appell polynomials, for the first time, we introduce a determinantal definition of the well 

known family of q-Appell polynomials, [98], [99]. This new determinantal definition, not 

only allows us to benefit from algebraic properties of determinant to prove the existing 

properties of q-Appell polynomials simpler, but also helps to find some new properties. 

Moreover, this approach unifies all different families of q-Appell polynomials some of 

which are mentioned in a)-h)and expresses them by using one single representation.

In the following sections, firstly we introduce the determinantal definition of q-Appell 

polynomials and then we show that this definition matches with the classical definitions. 

Next we prove some classical and new properties related to this family in the light of the 

new definition and by using the related algebraic approaches.
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5.2 q-Appell polynomials from determinantal point of view

Assume that Pn,q(x) is an n-degree q-polynomial defined as follows



P0,q(x) =
1
β0

Pn,q(x) =
(−1)n
(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−1 xn

β0 β1 β2 ... ... βn−1 βn

0 β0

[
2
1

]
q

β1 ... ...

[
n− 1
1

]
q

βn−2

[
n
1

]
q

βn−1

0 0 β0 ... ...

[
n− 1
2

]
q

βn−3

[
n
2

]
q

βn−2

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(5.2.1)

where β0, β1, . . . , βn ∈ R, β0 6= 0, n = 1, 2, 3, . . . .

Then we can obtain the following results.

Lemma 5.1. Suppose that An×n(x) is a matrix including elements aij(x) which are first

order q-differentiable functions of variable x. Then the q-derivative of det(An×n(x)) can

be calculated by the following formula.

Dq,x(det(An×n(x))) = Dq,x(|aij(x)|)

=
n∑
i=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11(qx) a12(qx) . . . a1n(qx)
...

... . . . ...
ai−1,1(qx) ai−1,2(qx) . . . ai−1,n(qx)
Dq,x(ai1(x)) Dq,x(ai2(x)) . . . Dq,x(ain(x))
ai+1,1(x) ai+1,2(x) . . . ai+1,n(x)
...

... . . . ...
an1(x) an2(x) . . . ann(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.2.2)

Proof. The proof can be done by induction on n.

Theorem 5.2. Pn,q(x), satisfies the following identity

Dq,x(Pn,q(x)) = [n]qPn−1,q(x), n = 1, 2, . . .
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Proof. Taking the q-derivative of determinant (5.2.1) with respect to x by using

formula(5.2.2), given in Lemma 5.1 , we obtain

Dq,x(Pn,q(x)) =
(−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 [2]qx ... [n]qx
n−1

β0 β1 β2 ... βn

0 β0

[
2
1

]
q

β1 ...

[
n
1

]
q

βn−1

0 0 β0 ...

[
n
2

]
q

βn−2

...
... . . . ...

...
...

...

0 0 ... ...

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.2.3)

Expanding the determinant(5.2.3) above along with the first column, we have

Dq,x(Pn,q(x)) =
(−1)n−1

(β0)n
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 [2]qx ... ... [n− 1]qx
n−2 [n]qx

n−1

β0

[
2
1

]
q

β1 ... ...

[
n− 1
1

]
q

βn−2

[
n
1

]
q

βn−1

0 β0 ... ...

[
n− 1
2

]
q

βn−3

[
n
2

]
q

βn−2

...
...

...
...

...
...

0 ... ... β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.2.4)

Now, considering the fact that

[i− 1]q
[j]q

[
j

i− 1

]
q

=
[i− 1]q[j]q!

[j]q[i− 1]q![j − i+ 1]q
=

[j − 1]q!

[i− 2]q![j − i+ 1]q
=

[
j − 1
i− 2

]
q

,

and multiplying the jth column of the determinant(5.2.4) by 1
[j]q

, as well as the ith row

by [i− 1]q we obtain
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Dq,x(Pn,q(x)) =
(−1)n−1

(β0)n
× [1]q!

[0]q!
× [2]q

[1]q
× ...× [n]q

[n− 1]q
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x ... ... xn−2 xn−1

β0 β1 ... ... βn−2 βn−1

0 β0 ... ...

[
n− 2
1

]
q

βn−3

[
n− 1
1

]
q

βn−2

...
...

...
...

...

0 0 ... β0

[
n− 1
n− 2

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (5.2.5)

which is exactly the desired result.

Theorem 5.3. The q-polynomials Pn,q(x), defined in (5.2.3), can be expressed as

Pn,q(x) =
n∑
i=0

[
n
j

]
q

αn−jx
j, (5.2.6)

where

α0 =
1
β0

αj =
(−1)j
(β0)j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 ... ... βj−1 βj

0 β0

[
2
1

]
q

β1 ... ...

[
j − 1
1

]
q

βj−2

[
j
1

]
q

βj−1

0 0 β0 ... ...

[
j − 1
2

]
q

βj−3

[
j
2

]
q

βj−2

...
...

... . . . ...
...

...
...

... . . . ...
...

0 ... ... ... 0 β0

[
j

j − 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.2.7)
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Proof. Expanding the determinant(5.2.1) along the first row, we obtain

Pn,q(x) =
(−1)n+2

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 ... ... βn−1 βn

β0

[
2
1

]
q

β1 ... ...

[
n− 1
1

]
q

βn−2

[
n
1

]
q

βn−1

0 β0 ... ...

[
n− 1
2

]
q

βn−3

[
n
2

]
q

βn−2

...
... . . . ...

...
...

... . . . ...
...

0 ... ... 0 β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)n+3

(β0)n+1
x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β2 ... ... βn−1 βn

0

[
2
1

]
q

β1 ... ...

[
n− 1
1

]
q

βn−2

[
n
1

]
q

βn−1

0 β0 ... ...

[
n− 1
2

]
q

βn−3

[
n
2

]
q

βn−2

...
... . . . ...

...
...

... . . . ...
...

0 ... ... 0 β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ ...+
(−1)2n+2

(β0)n+1
xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 β2 ... ... βn−1

0 β0

[
2
1

]
q

β1 ... ...

[
n− 1
1

]
q

βn−2

0 0 β0 ... ...

[
n− 1
2

]
q

βn−3

... . . . ...

... . . . ...
0 ... ... ... 0 β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.2.8)

Clearly, according to the given definition for αi in relation (5.2.7), the first determinant

leads to obtain αn, which is the coefficient of x0. Also, the last determinant, which is the

determinant of an upper triangular n × n matrix, will lead to obtain the coefficient of xn

as follows

α0 =
(−1)2n+2

(β0)n+1
(β0)

n =
1

β0
.

To calculate the coefficient of xj for 0 < j < n, consider the following determinant

57



=
(−1)n

(β0)n+1
(−1)j+2×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 β1 ... βj−1 βj+1 ... βn

0 β0 ...

[
j − 1
1

]
q

βj−2

[
j + 1
1

]
q

βj ...

[
n
1

]
q

βn−1

0 0

[
j − 1
2

]
q

βj−3

[
j + 1
2

]
q

βj−1 ...

[
n
2

]
q

βn−2

...
...

...
...

...

0 . . . β0

[
j + 1
j − 1

]
q

β2 . . .

[
n
2

]
q

βn−j−1

... . . . 0

[
j + 1
j

]
q

β1 . . .

[
n
j

]
q

βn−j

...
...

... . . . ...

0 0 0 0 . . .

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)n+j

(β0)n+1
(β0)

j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[
j + 1
j

]
q

β1 . . .

[
n− 1
j

]
q

βn−j−1

[
n
j

]
q

βn−j

β0

... . . . ...
...

0 . . . β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now multiplying the first column of the last determinant by 1 j + 1
j


q

, we obtain

=
(−1)n+j

(β0)n−j+1
× 1[

j + 1
j

]
q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1

[
j + 2
j

]
q

β2 . . .

[
n
j

]
q

βn−j

1 j + 1
j


q

β0

[
j + 2
j + 1

]
q

β1 . . .

[
n

j + 1

]
q

βn−j−1

β0

... . . . ...

0 . . .

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Further similar calculations to get coefficients 1 for the first elements of each column

in determinant above leads to
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=
(−1)n+j

(β0)n−j+1
× 1[

j + 1
j

]
q

× 1[
j + 2
j

]
q

× ...× 1[
n− 1
j

]
q

× 1[
n
j

]
q

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 . . . βn−j−1 βn−j

1 j + 1
j


q

β0

 j + 2
j + 1


q j + 2

j


q

β1 . . .

 n− 1
j + 1


q n− 1

j


q

βn−j−2

 n
j + 1


q n

j


q

βn−j−1

β0

... . . . ...
...

0 . . . β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In order to create coefficient 1 for the term β0 placed in the second row of the above

determinant, multiply this row by
[
j + 1
j

]
. As we are aware of the fact that

[
j + 2
j + 1

]
q[

j + 2
j

]
q

.

[
j + 1
j

]
q

=

[
2
1

]
q

,

and also

[
n

j + 1

]
q[

n
j

]
q

[
j + 1
j

]
q

=

[
n− j
1

]
q

.

Thus we have

=
(−1)n+j

(β0)n−j+1
× 1[

j + 2
j

]
q

× ...× 1[
n− 1
j

]
q

× 1[
n
j

]
q

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 . . . βn−j−1 βn−j

β0

[
2
1

]
q

β1 . . .

[
n− j − 1

1

]
q

βn−j−2

[
n− j
1

]
q

βn−j−1

β0

... . . . ...
...

0 . . . β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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We continue this method for each row. As the number of coefficients in

1[
j + 1
j

]
q

× 1[
j + 2
j

]
q

× ...× 1[
n− 1
j

]
q

× 1[
n
j

]
q

,

is n−j, so it is equal to the number of rows. Moreover, in each step one of the coefficients

above will be cancelled by the corresponding inverse which will be multiplied later by

each row. Therefore, we are sure that at the end we obtain

=
(−1)n+j

(β0)n−j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 . . . βn−j−1 βn−j

β0

[
2
1

]
q

β1 . . .

[
n− j − 1

1

]
q

βn−j−2

[
n− j
1

]
q

βn−j−1

β0

... . . . ...
...

0 . . . β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= αn−j,

whence the result.

Corollary 5.4. The following identity holds true for the q-polynomials Pn,q(x)

Pn,q(x) =
n∑
j=0

[
n
j

]
q

Pn−j,q(0)x
j, n = 0, 1, 2, .... (5.2.9)

Proof. According to the definition(5.2.1), for j = 0, 1, ..., n, Pj,q(x) = αj , since
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Pj,q(0) =
(−1)j

(β0)j+1
×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 ... ... 0 0
β0 β1 β2 ... ... βj−1 βj

0 β0

[
2
1

]
q

β1 ... ...

[
j − 1
1

]
q

βj−2

[
j
1

]
q

βj−1

0 0 β0 ... ...

[
j − 1
2

]
q

βj−3

[
j
2

]
q

βj−2

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 β0

[
j

j − 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)j

(β0)j+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β1 β2 ... ... βj−1 βj

β0

[
2
1

]
q

β1 ... ...

[
j − 1
1

]
q

βj−2

[
j
1

]
q

βj−1

0 β0 ... ...

[
j − 1
2

]
q

βj−3

[
j
2

]
q

βj−2

. . . ...
...

. . . ...
...

... ... ... 0 β0

[
j

j − 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= αj .

Replacing Pn−j,q(0), instead of αn−j in relation (5.2.6), gives the expected result.

Corollary 5.5. The following relations hold true for αjs in relation (5.2.6)

α0 =
1

β0
, (5.2.10)

αj = −
1

β0

j−1∑
i=0

[
j
i

]
q

βj−i αi, j = 1, 2, ..., n.

Proof. The proof is done by expanding αj , defined in relation(5.2.7), along with the first

row and also applying a similar technique to the proof of theorem 5.3.

Theorem 5.6. Suppose that {An,q(x)} be the sequence of q-Appell polynomials with gen-
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erating function Aq(t), defined in the relations (5.1.3) and (5.1.4). If B0,q, B1,q, ..., Bn,q,



with B0,q 6= 0 are the coefficients of q-Taylor series expansion of the function 1
Aq(t)

intro-

duced in relation (2.2.15), then for n = 0, 1, 2, ... we have



A0,q(x) =
1

B0,q

An,q(x) =
(−1)n

(B0,q)n+1×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−1 xn

B0,q B1,q B2,q ... ... Bn−1,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.2.11)

Proof. According to the relations (5.1.3) and (5.1.4), we have

Aq(t) =

∞∑
n=0

An,q
tn

[n]q!
= A0,q + A1,qt+ A2,q

t2

[2]q!
+ ...+ An,q

tn

[n]q!
+ ..., (5.2.12)

and also

Aq(t)eq(tx) =
∞∑
n=0

An,q(x)
tn

[n]q!
= A0,q(x)+A1,q(x)t+A2,q(x)

t2

[2]q!
+...+An,q(x)

tn

[n]q!
+....

(5.2.13)

Let Bq(t) = 1
Aq(t)

. Thus, considering the hypothesis of the theorem and also noting the

definition of q-Taylor series expansion of Bq(t) at a = 0 given in relation (2.2.15) we have

Bq(t) = B0,q +B1,q
t

[1]q!
+B2,q

t2

[2]q!
+ ...+Bn,q(x)

tn

[n]q!
+ .... (5.2.14)

By using Cauchy product rule for the series production Aq(t)Bq(t), we obtain
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1 = Aq(t)Bq(t)

=
∑∞
n=0

An,q
tn

[n]q!

∑∞
n=0

Bn,q
tn

[n]q!

=
∑∞
n=0

∑n
k=0

[
n
k

]
q

Ak,qBn−k,q
tn

[n]q!
.



Consequently,

n∑
k=0

[
n
k

]
q

Ak,qBn−k,q =

{
1 for n = 0,
0 for n > 0.

This means that


B0,q =

1
A0

Bn,q = − 1
A0
(
∑n

k=1

[
n
k

]
Ak,qBn−k,q), n = 1, 2, 3, ....

(5.2.15)

        q

Now,  multiply both  sides  of  identity (5.2.13) by Bq(t) = 1
Aq(t)

, and then replace eq(tx)

by its q-Taylor series expansion, i. e.
∞∑
k=0

xn tn
[n]q ! . Therefore we obtain

∞∑
k=0

xn
tn

[n]q!
= eq(tx)

= Bq(t)
∞∑
n=0

An,q(x)
tn

[n]q!
=
∞∑
n=0

Bn,q
tn

[n]q!

∞∑
n=0

An,q(x)
tn

[n]q!
.

Using Cauchy product rule in the last part of relation above leads to

∞∑
k=0

xn
tn

[n]q!
=
∞∑
n=0

n∑
k=0

[
n
k

]
q

Bn−k,qAk,q(x)
tn

[n]q!
. (5.2.16)

Comparing the coefficients of tn

[n]q !
in both sides of equation(5.2.16), we have

(5.2.17)

Writing identity (5.2.17) for   n = 0, 1, 2, ...   leads to obtain the following infinite system

in the parameter An,q(x)
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∑n
k=0

[
n
k

]
q

Bn−k,qAk,q(x) = xn, n = 0, 1, 2, ....



B0,qA0,q(x) = 1,
B1,qA0,q(x) + [B0,qA]0,q(x) = x,

B2,qA0,q(x) +
2
1

q

B1,qA1,q(x) +B0,qA2,q(x) = x2,

...

Bn,qA0,q(x) +

[
n
1

]
q

Bn−1,qA1,q(x) + . . .+B0,qAn,q(x) = xn,

....

(5.2.18)



As it is clear the coefficient matrix of the infinite system (5.2.18) is lower triangular.

So this property helps us to find An,q(x) by applying Cramer’s rule to only the first n + 1

equations of this system. Hence we can obtain

An,q(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 1
B1,q B0,q 0 · · · 0 x

B2,q

[
2
1

]
q

B1,q B0,q · · · 0 x2

... . . . ...

Bn−1,q

[
n− 1
1

]
q

Bn−2,q · · · · · · B0,q xn−1

Bn,q

[
n
1

]
q

Bn−1,q · · · · · ·
[

n
n− 1

]
q

B1,q xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 0
B1,q B0,q 0 · · · 0 0

B2,q

[
2
1

]
q

B1,q B0,q · · · 0 0

... . . . ...

Bn−1,q

[
n− 1
1

]
q

Bn−2,q · · · · · · B0,q 0

Bn,q

[
n
1

]
q

Bn−1,q · · · · · ·
[

n
n− 1

]
q

B1,q B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

(B0,q)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 · · · 0 1
B1,q B0,q 0 · · · 0 x

B2,q

[
2
1

]
q

B1,q B0,q · · · 0 x2

... . . . ...

Bn−1,q

[
n− 1
1

]
q

Bn−2,q · · · · · · B0,q xn−1

Bn,q

[
n
1

]
q

Bn−1,q · · · · · ·
[

n
n− 1

]
q

B1,q xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Now, take the transpose of the last determinant and then interchange ith row of the 

obtained determinant with i + 1th row, i = 1, 2, ..., n. This leads to obtain the desired 

result that is exactly relation(5.2.11).

Theorem 5.7. The following facts are equivalent for the q-Appell polynomials:



b) q-Appell polynomials can be expressed by considering the relations (5.1.3) and

(5.1.4).

c) q-Appell polynomials can be expressed by considering the determinantal relation

(5.2.11).

Proof. (a⇒ b) Suppose that relations (5.1.1) and (5.1.2) hold. Construct an infinite series∑∞
n=0An,q

tn

[n]q !
form all constants An,q used for defining An,q(x) in relation (5.1.2). Now

find the following Cauchy product

∞∑
n=0

An,q
tn

[n]q!
eq(tx)

=
∞∑
n=0

An,q
tn

[n]q!

∞∑
n=0

xn
tn

[n]q!

∞∑
n=0

n∑
k=0

An−k,qx
k tn

[n]q!
.

From relation (5.1.2) we know that

n∑
k=0

An−k,qx
k = An,q(x),

So we find that
∞∑
n=0

An,q
tn

[n]q!
eq(tx) = An,q(x),
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whence the result.

(b⇒ c) The proof follows directly from Theorem 5.6.

(c⇒ a) The proof follows from Theorems 5.2 and 5.6.

a) q-Appell polynomials can be expressed by considering the relations (5.1.1) and

(5.1.2).

As the consequence of discussion above and particularly Theorem 5.7, we are allowed to 



Definition 5.8. The family of q-Appell polynomials {An,q(x)}∞n=0 are defined as



A0,q(x) =
1

B0,q

An,q(x) =
(−1)n

(B0,q)n+1×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−1 xn

B0,q B1,q B2,q ... ... Bn−1,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(5.2.19)

where B0,q, B1,q, B2,q, . . . , Bn,q ∈ R, B0,q 6= 0 and n = 1, 2, 3, ....

5.3 Basic Properties of q-Appell polynomials from determinantal 

In this section by using Definition 5.8, we review the basic properties of q-Appell 

polynomials.

Theorem 5.9. For q-Appell polynomials the following identities hold

An,q(x) =
1

B0,q

(xn −
n−1∑
k=0

[
n
k

]
q

Bn−k,qAk,q(x)), n = 1, 2, 3, .... (5.3.1)

Proof. Start from expanding the determinant in the Definition 5.8 along with the n + 1th

row
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 introduce the determinantal definition of q-Appell polynomials as follows

 point of view



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−1

B0,q B1,q B2,q ... ... Bn−1,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

... . . . ...

0 0 . . . . . . B0,q

[
n− 1
n− 2

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
(−1)n+1

(B0,q)n+1
B0,q×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−2 xn

B0,q B1,q B2,q ... ... Bn−2,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 2
1

]
q

Bn−3,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 2
2

]
q

Bn−4,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

0 . . . . . . B0,q

[
n− 1
n− 2

]
q

B2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x) +
(−1)n+1

(B0,q)n
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−2 xn

B0,q B1,q B2,q ... ... Bn−2,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 2
1

]
q

Bn−3,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 2
2

]
q

Bn−4,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

0 . . . . . . B0,q

[
n− 1
n− 2

]
q

B2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Now repeat the same method for the last determinant

=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x) +
(−1)n+1

(B0,q)n

[
n− 1
n− 2

]
q

B2,q×
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An,q(x) =
(−1)n

(B0,q)n+1

[
n

n− 1

]
q

B1,q×



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... xn−3 xn−2

B0,q B1,q B2,q ... Bn−3,q Bn−2,q

0 B0,q

[
2
1

]
q

B1,q ...

[
n− 3
1

]
q

Bn−4,q

[
n− 2
1

]
q

Bn−3,q

0 0 B0,q ...

[
n− 3
2

]
q

Bn−5,q

[
n− 2
2

]
q

Bn−4,q

...
...

...

0 . . . . . . B0,q

[
n− 2
n− 3

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+
(−1)n+2

(B0,q)n
B0,q×

=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x) +
(−1)n−1

(B0,q)n

([
n− 1
n− 2

]
q

B2,q
(B0,q)

n−1

(−1)n−2
An−2,q(x)

)

+
(−1)n−2

(B0,q)n−1
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−3 xn

B0,q B1,q B2,q ... ... Bn−3,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 3
1

]
q

Bn−4,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 3
2

]
q

Bn−5,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

0 . . . . . . 0 B0,q

[
n− 1
n− 2

]
q

B2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x)−
1

B0,q

[
n− 1
n− 2

]
q

B2,qAn−2,q(x) +
(−1)n−2

(B0,q)n−1
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 ... ... xn−3 xn

B0,q B1,q B2,q ... ... Bn−3,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 3
1

]
q

Bn−4,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 3
2

]
q

Bn−5,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

0 . . . . . . 0 B0,q

[
n− 1
n− 2

]
q

B2,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x)−
1

B0,q

[
n− 1
n− 2

]
q

B2,qAn−2,q(x)

− . . .− 1

(B0,q)2

∣∣∣∣ 1 xn

B0,q Bn,q

∣∣∣∣
=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x)−
1

B0,q

[
n− 1
n− 2

]
q

B2,qAn−2,q(x)

− . . .− 1

(B0,q)2
(Bn,q −B0,qx

n)

=
−1
B0,q

[
n

n− 1

]
q

B1,qAn−1,q(x)−
1

B0,q

[
n− 1
n− 2

]
q

B2,qAn−2,q(x)− . . .

− 1

B0,q

Bn,qA0,q(x) +
1

B0,q

xn

=
1

B0,q

(xn −
n−1∑
k=0

[
n
k

]
q

Bn−k,qAk,q(x)).

Corollary 5.10. Powers of x can be expressed based on q-Appell polynomials as

xn =
n∑
k=0

[
n
k

]
q

Bn−k,qAk,q(x), n = 1, 2, 3, .... (5.3.2)

Proof. The proof is the direct result of relation(5.3.1) in Theorem 5.9.

Notation 5.11. Suppose Pn(x) and Qn(x) are two polynomials of degree n. Let Pn(x) be

defined as in relation(5.2.1). Then for n=1,2,3,..., we have

(PQ)n(x)(PQ)(x) :=
(−1)n

(β0)n+1
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q0(x) Q1(x) Q2(x) ... ... Qn−1(x) Qn(x)
β0 β1 β2 ... ... βn−1 βn

0 β0

[
2
1

]
q

β1 ... ...

[
n− 1
1

]
q

βn−2

[
n
1

]
q

βn−1

0 0 β0 ... ...

[
n− 1
2

]
q

βn−3

[
n
2

]
q

βn−2

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 β0

[
n

n− 1

]
q

β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.3.3)
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Theorem 5.12. Suppose that {An,q(x)}∞n=0 and {Ãn,q(x)}∞n=0 are two families of q-Appell

polynomials. Then

a) For every α and β ∈ R, {αAn,q(x) + βA˜n,q(x)}n∞=0 is also a family of q-Appell

polynomials.

b) {(AÃ)n,q(x)}∞n=0 is also a family of q-Appell polynomials.

Proof. a) The proof is the direct consequence of linear properties of determinant.

b) According to the determinantal definition of q-Appell polynomials given in Theorem

5.6 relation(5.2.11) and also notation(5.3.3), we have

(AÃ)n,q(x) = An,q(Ãn,q(x)) =
(−1)n

(B0,q)n+1
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã0,q(x) Ã1,q(x) Ã2,q(x) ... ... Ãn−1,q(x) Ãn,q(x)
B0,q B1,q B2,q ... ... Bn−1,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using formula(5.2.2) given in Lemma 5.1 we have
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Dq(Ã0,q(x)) Dq(Ã1,q(x)) Dq(Ã2,q(x)) ... ... Dq(Ãn−1,q(x)) Dq(Ãn,q(x))
B0,q B1,q B2,q ... ... Bn−1,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Since {Ãn,q(x)}∞n=0 is a family of q-Appell polynomials, according to relation(5.1.1)

we have

Dq,x(Ãn,q(x)) = [n]qÃn−1,q(x), n = 0, 1, 2, ....

Therefore we can continue as

Dq((AÃ)n,q(x)) =
(−1)n

(B0,q)n+1
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 Ã0,q(x) [2]qÃ1,q(x) ... ... [n− 1]qÃn−2,q(x) [n]qÃn−1,q(x)
B0,q B1,q B2,q ... ... Bn−1,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now, expand the last determinant along with the first column as follows

=
(−1)n

(B0,q)n+1
×−B0,q×
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(−1)n

(B0,q)n+1
×



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ã0,q(x) [2]qÃ1,q(x) ... ... [n− 1]qÃn−2,q(x) [n]qÃn−1,q(x)

B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= [n]q(AÃ)n−1,q(x),

which  means that  {(AA˜)n,q(x)}n∞=0  belongs  to  the  family  of  q-Appell  polynomials

too.

Definition 5.13. 2D q-Appell polynomials {An,q(x, y)}∞n=0, which was defined sooner in

Section (3.2) by means of the relation (3.2.1), can be represented, also, as below

Aq(x, y, t) := Aq(t)eq(tx)Eq(ty) =
∞∑
n=0

An,q(x, y)
tn

[n]q!
, (5.3.4)

or equivalently

A0,q(x, y) =
1

B0,q

An,q(x, y) =
(−1)n

(B0,q)n+1×∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x+ y (x+ y)2q ... ... (x+ y)n−1q (x+ y)nq
B0,q B1,q B2,q ... ... Bn−1,q Bn,q

0 B0,q

[
2
1

]
q

B1,q ... ...

[
n− 1
1

]
q

Bn−2,q

[
n
1

]
q

Bn−1,q

0 0 B0,q ... ...

[
n− 1
2

]
q

Bn−3,q

[
n
2

]
q

Bn−2,q

... . . . ...
...

... . . . ...
...

0 ... ... ... 0 B0,q

[
n

n− 1

]
q

B1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.3.5)

Remark 5.14. From the Definition 5.13, it is clear that

An,q(x, 0) = An,q(x). (5.3.6)
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Theorem 5.15. The following fact holds for 2D q-Appell polynomials {An,q(x, y)}∞n=0

An,q(x, y) =
n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 Ak,q(x)y
n−k. (5.3.7)

Proof. Proof is simple and based on properties of determinant.

Corollary 5.16. The following difference identity holds for q-Appell polynomials

{An,q(x)}∞n=0

An,q(x, 1)− An,q(x) =
n−1∑
k=1

[
n
k

]
q

q
(n−k)(n−k−1)

2 Ak,q(x), n = 0, 1, 2, .... (5.3.8)

Proof. Using relations (5.3.6) and also (5.3.7) for y = 1 and y = 0 and replacing the

results in the left side of relation(5.3.8) leads to reach to the right side of this relation.

Theorem 5.17. For every t ∈ R, the following facts are equivalent for q-Appell polyno-

mials {An,q(x)}∞n=0

a) An,q(x,−y) = (−1)nAn,q(0, y),

b) An,q(x) = (−1)nAn,q(0).

Proof. (a⇒ b) The proof is done using part (a) for x = 0.

(b⇒ a) We apply the relation(5.3.7) for the left hand side of part (a) as follows

An,q(x,−y) =
n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 Ak,q(x, 0)(−y)n−k

= (−1)n
n∑
k=0

[
n
k

]
q

q
(n−k)(n−k−1)

2 Ak,q(x, 0)(−1)kyn−k

= (−1)n
n∑
k=0

[
n
k

]
q

q
k(k−1)

2 An−k,q(x, 0)(−1)n−kyk.

Using part (b), we have

An,q(x,−y) = (−1)n
n∑
k=0

[
n
k

]
q

q
k(k−1)

2 An−k,q(0)x
k.
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Now, using Definition 5.13 leads to obtain

An,q(x,−y) = (−1)nAn−k,q(0, y),

whence the result.

Lemma 5.18. In relation(5.2.15) for the coefficients An,q and Bn,q we have

A2n+1,q = 0⇔ B2n+1,q = 0, n = 0, 1, 2, . . . . (5.3.9)

Proof. (⇒)We have already known the following fact from relation(5.2.15) for n =

0, 1, 2, . . .

B1,q = − 1
A0
A1,qB0,q,

B2n+1,q = − 1
A0

[
2n+ 1
k

]
q

A1,qB2n,q

+− 1
A0

(∑n
k=1

([
2n+ 1
2k

]
q

A2k,qB2n−k+1,q +

[
2n+ 1
2k + 1

]
q

A2k+1,qB2n−k+1,q

))
.

Since A2n+1,q = 0 for n = 0, 1, 2, . . . , then
B1,q = 0

B2n+1,q = − 1
A0

∑n
k=1

[
2n+ 1
2k

]
q

A2k,qB2n−k+1,q, n = 1, 2, 3, . . . .

Consequently, we should have B2n+1,q = 0, for n = 0, 1, 2, . . . .

(⇐) In a similar way to the above we can prove it.

Theorem 5.19. The following facts are equivalent for q-Appell polynomials {An,q(x)}∞n=0

a) An,q(−x) = (−1)nAn,q(x),

b) B2n+1,q = 0, for n = 0, 1, 2, . . . .

Proof. According to Theorem 5.17, we know that

An,q(−x) = (−1)nAn,q(x)⇔ An,q(t) = (−1)nAn,q(0)
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So using Lemma5.18, we have

⇔ A2n+1,q(0) = (−1)nA2n+1,q(0)⇔ A2n+1,q = 0⇔ B2n+1,q = 0.

Theorem 5.20. For every n ≥ 1, q-Appell polynomials {An,q(x)}∞n=0 satisfy the following

identities

x∫
0

An,q(t)dqt =
1

[n+ 1]q
(An+1,q(x)− An,q(0)) (5.3.10)

x∫
0

An,q(t)dqt =
1

[n+ 1]q

n+1∑
k=0

[
n+ 1
k

]
q

q
k(k−1)

2 An−k,q(0) (5.3.11)

Proof. Relation(5.3.10) is the direct result of property(5.1.1) for q-Appell polynomials

{An,q(x)}∞n=0. To prove equality(5.3.11), we start from relation(5.3.10) for x = 1 as

follows

1∫
0

An,q(t)dqt =
1

[n+ 1]q
(An+1,q(1)− An,q(0)) .

Now, find An+1,q(1) using relation(5.3.7) by assuming x = 0 and y = 1

An+1,q(1) =
n+1∑
k=0

[
n+ 1
k

]
q

q
k(k−1)

2 An−k,q(0).

Therefore, we obtain

1∫
0

An,q(t)dqt =
1

[n+ 1]q

n∑
k=0

[
n+ 1
k

]
q

q
k(k−1)

2 An−k,q(0).
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5.4 Determinantal representation for Some q-Appell polynomials
5.4.1q-Bernoulli polynomials

The q-Bernoulli polynomials Bn,q(x) are defined by means of the generating function,

[37]

Bq(x, t) :=
t

eq(t)− 1
eq(tx) =

∞∑
Bn,q(x)

tn

[n]q!
. (5.4.1)

From this definition and also using Lemma (10) of [57], it is easy to achieve that

xn =
n∑[

n
k

]
q

1

[k + 1]q
Bn−k,q(x). (5.4.2)

Using identity(5.4.2), we obtain

B0,q(x) = 1,

B1,q(x) = x − 1
q 
,

B2,q(x) = x2 − x + q2

[2]q [3]q
,

B3,q(x) = x3 − [3]q
[2]q
x2 − q2[3]q

[4]q
x+ [3]q−[2]q

[4]q [2]q
− q2

[2]2q
,

...

Based on the discussion above and noting to the relation (5.2.11), given in Theo-

rem 5.6, we obtain

B0,q = 1,

Bn,q =
1

[n+1]q
, n = 1, 2, 3, ....

(5.4.3)

5.4.2 Generalized q-Bernoulli polynomials

(x, y) in chapterBased on the definition of 2D q-Bernoulli polynomials B[
n,q

m−1,α] three, 

we have

B
[m−1,1]
0,q (x, 0) = [m]q!,

B
[m−1,1]
1,q (x, 0) = [m]q!

(
x− 1

[m+1]q

)
,

B
[m−1,1]
2,q (x, 0) = x2 − [2]q [m]q !

[m+1]q
x+

[2]qq
m+1[m]q !

[m+1]2q [m+2]q
.
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B0,q =
1

[m]q!
,

Bn,q =
[n]q

, n = 1, 2, 3, ...,m ∈ N. (5.4.4)
[n + m]q!

5.4.3 q-Euler polynomials

The q-Euler polynomials En,q(x) are defined by means of the generating function,

[37], [86], [33]

Eq(x, t) :=
2

eq(tx) =
∞∑
n=0

En,q(x)
tn

[n]q!
. (5.4.5)

eq(t) + 1

Based on this definition it is easy to see that

E0,q(x) = 1,
E1,q(x) = x− 1

2
,

E2,q(x) = x2 − [2]q
2
x+ [2]q

4
− 1

2
,

...

Based on the discussion above and noting to the relation (5.2.11), given in Theo-

rem 5.6, for the coefficients Bn,q we obtain

B0,q = 1 (5.4.6)

Bn,q =
1
, n = 1, 2, . . . .

2

5.4.4 q-Hermite polynomials

q-Hermite polynomials Hn,q (x) are defined by means of the generating function, [88]

Fq (x, t) := Fq (t) eq (tx) =
∞∑
n=0

Hn,q (x)
tn

[n]q!
,

Fq (t) :=
∞∑
n=0

(−1)n qn(n−1) t2n

[2n]q!!
, [2n]q!! = [2n]q [2n− 2]q ... [2]q .

According to Theorem 10 in [88], we have

77

B
[
n,q
m−1,1]

(x, 0) in the relation(5.3.5), given in Definition 5.13, we may write

Therefore, for the generalized q-Bernoulli numbers B
[
n,q
m−1,1] corresponding to



H0,q (x) = 1,

H1,q (x) = x,

H2,q (x) = x2 − 1,

H3,q (x) = x3 − [3]q x,

H4,q (x) = x4 −
(
1 + q2

)
[3]q x

2 + [3]q q
2.

Based on the discussion above and notting to the ralation(5.2.11), given in Theorem 5.6, 

for the coefficients Bn,q we obtain

B2n,q = 1, (5.4.7)

B2n+1,q = 0, n = 1, 2, 3, ....
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THE q-UMBRAL PERSPECTIVE OF THE CLASS OF q-
APPELL POLYNOMIALS

6.1 An Introduction to q-Umbral Calculus

1978, Roman and Rota viewed the classical umbral calculus from a new perspective 

and proposed an interesting approach based on a simple but innovative indication for the 

effect of linear functionals on polynomials, which Roman later called it the modern clas-

sical umbral calculus, [111], [112]. Using this new umbral calculus, they defined the se-

quence of Sheffer polynomials whose their characteristics proved that this new proposed 

family of polynomials is equivalent to the family of polynomials of type zero which was 

previously introduced by Sheffer, [35]. Roman, also, proposed a similar umbral approach 

under the area of nonclassical umbral calculus which is called q-umbral calculus, [112],

[113], [114]. Inspired by his work, in the following, we recast the obtained results of um-

bral calculus for q-Appell polynomials.

Let C be the field of complex numbers and F set of all formal power q-series in the vari-

able t over C. In other words, f(t) is an element of F if

f(t) =
∞∑
k=0

ak
[k]q!

tk, (6.1.1)

where ak is in C.

Let P be the algebra of all polynomials in variable x over C. Let P∗ be the vector space of 

all linear functionals on P.  The action of a linear functional L  on an arbitrary polynomial 
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p(x)  is  denoted by                     We  remind   that  the  vector   space  addition  and   scalar 

multiplication operations on P∗ are defined by 〈L + M|p(x)〉 = 〈L|p(x)〉 + 〈M|p(x)〉, and 

〈cL|p(x)〉 = c〈L|p(x)〉, for any constant c ∈ C.The formal power q-series in (6.1.1) 

defines the following functional on P

〈f(x)|xn〉 = an, (6.1.2)

Particularly, according to (6.1.1) and (6.1.2) we have

〈tk|xn〉 = [n]q!δn,k n, k ≥ 0, (6.1.3)

where δn,k is the Kronecker’s symbol.

Assume that fL(t) =
∞∑
k=0

〈L|xk〉
[k]q!

tk. Since 〈fL(t)|xn〉 = 〈L|xk〉, so fL(t) = L. Hence, it is

clear that the map L 7→ fL(t) is a vector space isomorphism from P∗ onto F . Therefore,

F not only can be considered as the algebra of all formal power q-series in variable t, but

also it is the vector space of all linear functionals on P . This follows the fact that each

member of F can be assumed as both a formal power qseries and a linear functional. F is

called the q-umbral algebra and studying its properties is called q-umbral calculus.

Remark 6.1. For the q-exponential function eq (t), it can be easily observed that

〈eq (yt) |xn〉 = yn and consequently

〈eq (yt) |p(x)〉 = p(y), (6.1.4)

and

〈eq (yt)± 1|p(x)〉 = p(y)± p(0). (6.1.5)

Remark 6.2. For f(t) in F we have

f(t) =
∞∑
k=0

〈f(t)|xk〉
[k]q!

tk, (6.1.6)
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and for all polynomials p(x) in P we have

p(x) =
∞∑
k=0

〈tk|p(x)〉
[k]q!

xk. (6.1.7)

Proposition 6.3. For f(t) and g(t) ∈ F we have

〈f(t)g(t)|p(x)〉 = 〈f(t)|g(t)p(x)〉. (6.1.8)

Proposition 6.4. For f(t) and g(t) ∈ F we have

〈f(t)g(t)|xn〉 =
∞∑
k=0

[
n
k

]
q

〈f(t)|xk〉〈g(t)|xn−k〉. (6.1.9)

Proposition 6.5. For f1(t), f2(t), . . . , fn(t) ∈ F we have

〈f(t)1f2(t) . . . fk(t)|xn〉 (6.1.10)

=
∑

i1+i2+...+ik=n

[
n

i1, i2, . . . , ik

]
q

〈f1(t)|xi1〉〈f2(t)|xi2〉 . . . 〈fk(t)|xik〉,

where
[

n
i1, i2, . . . , ik

]
= [n]q !

[i1]q ![i2]q !...[ik]q !
.

         q

We use the notation tk for the k-th q-derivative operator, Dk
q , on P as follows

tkxn =

{
[n]q !

[k]q !
xn−k, k ≤ n,

0, k > n.
(6.1.11)

Consequently, using the notation above, each arbitrary function in the form of (6.1.1) can

be considered as a linear operator on P defined by

f(t)xn =
∞∑
k=0

[
n
k

]
q

akx
n−k. (6.1.12)

Now, consider an arbitrary polynomials p(x) ∈ P . Then, according to the relation (6.1.7)

for its k-th q-derivative we have

Dk
qp(x) = p(k)(x) =

∞∑
j=k

〈tj|p(x)〉
[j]q!

[j]q[j − 1]q . . . [j − k + 1]qx
j−k. (6.1.13)

As the result of the fact above we obtain

tkp(x) = Dk
qp(x) = p(k)(x), (6.1.14)
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and, also,

p(k)(0) = 〈tk|p(x)〉 = 〈1|p(k)(x)〉. (6.1.15)

The immediate conclusion of the relations (6.1.1), (6.1.2) and (6.1.12) is that each 

member of F plays three roles in the q-umbral calculus; a formal power q-series, a linear 

functional and a linear operator.

The order of a non-zero power q-series f(t) in (6.1.1) is denoted by O(f(t)) and is defined 

as the smallest integer k for which the coefficient of tk is non-zero, that is ak 6= 0. A q-

series f(t) with O(f(t)) = 0 is called invertible and in case that O(f(t)) = 1 it is called a 

delta q-series.

Theorem 6.6. Let f(t) be a delta q-series and g(t) be an invertible series. Then there

exists a unique sequence Sn,q(x) of q-polynomials satisfying the following conditions

〈g(t)f(t)k|Sn,q(x)〉 = [n]q!δn,k, for all n, k ≥ 0.

Definition 6.7. In Theorem (6.6), {Sn,q(x)}∞n=0 is called the q-Sheffer sequence for the

pair (g(t), f(t)). Moreover, the q-Sheffer sequences for (g(t), t) is the q-Appell sequence

for g(t).

Theorem 6.8. Let An,q(x) be q-Appell for g(t). Then

a) (The Expansion Theorem) for any h(t) in F

h(t) =
∞∑
k=0

〈h(t)|Ak,q(x)〉
[k]q!

g(t)tk,

b) (The Polynomial Expansion Theorem) for any p(x) in P we have

p(x) =
∞∑
k=0

〈g(t)tk|p(x)〉
[k]q!

Ak,q(x).
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Theorem 6.9. The following facts are equivalent

a) An,q(x) is q-Appell for g(t).

b) tAn,q(x) = [n]qAn−1,q(x), where tAn,q(x) = Dq(An,q(x)).

c) For all y ∈ C 1
g(t)
eq(tx) =

∞∑
k=0

Ak,q(x)

[k]q !
tk.

d) An,q(x) =
∞∑
k=0

[
n
k

]
q

〈g−1(t)|xn−k〉xk.

e) An,q(x) = g−1(t)xn.

Remark 6.10. Based on different selections for g(t) in part (c) of Theorem (6.9), we

obtain various families of q-Appell polynomials. For instance, it is clear from Definitions

(3.1), (3.2) and (3.3) that taking g(t) as eq(t)−1
t

, eq(t)+1

2
or eq(t)+1

2t
, leads to construct the

families of q-Bernoulli, q-Euler or q-Genocchi polynomials, respectively.

Theorem 6.11. (The Recurrence Formula for q-Appell Sequences) Suppose that An,q(x)

is q-Appell for g(t). Then we have

An+1,q(qx) =
[
qx− qnDq,tg(t)

g(qt)

]
An,q(x).

Proof. We prove this theorem in the light of the technique which is applied in the proof of

Theorem 2 in [97]. Since An,q(x) is q-Appell for g(t) we can write

1

g(t)
eq(tqx) =

∞∑
n=0

An,q(qx)
tn

[n]q!
. (6.1.16)
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Take 1
g(t)

= Aq(t). According to (3.2.2), Aq(t) is analytic. So, differentiating equation

(6.1.16) and multiplying both sides of the obtained equality by t, we get

∞∑
n=0

[n]qAn,q(qx)
tn

[n]q!
= Aq(qt)eq(tqx)

[
t
DqAq(t)

Aq(qt)
+ tqx

]
, (6.1.17)

so it follows that

∞∑
n=0

[n]qAn,q(qx)
tn

[n]q!
=
∞∑
n=0

qnAn,q(x)
tn

[n]q!

[
t
DqAq(t)

Aq(qt)
+ tqx

]
. (6.1.18)

This means that

∞∑
n=0

[n]qAn,q(qx)
tn

[n]q!
=
∞∑
n=1

[
qn−1An−1,q(x)

DqAq(t)

Aq(qt)

+ qxAn−1,q(x)

]
tn

[n]q!
, (6.1.19)

which is equivalent to write

∞∑
n=0

[n]qAn,q(qx)
tn

[n]q!
=
∞∑
n=1

[
qn−1

DqAq(t)

Aq(qt)
+ qx

]
An−1,q(x)

tn

[n]q!
. (6.1.20)

Comparing both sides of identity(6.1.20), we have

An,q(qx) =

[
qn−1

DqAq(t)

Aq(qt)
+ qx

]
An−1,q(x), (6.1.21)

whence the result.

6.2 A q-Umbral Study on q-Genocchi numbers and polynomials, an 

Over the past decades, many results have been derived using Umbral as well as q-

Umbral methods for different members of the family of Appell and q-Appell polynomials. 

In this section, we look at the characteristics and properties of q-Genocchi numbers and 

polynomials, as an example of the family of q-Appell polynomials, from q-umbral point of 

view. Indeed, it is possible to derive similar results to the obtained results here for the q-

Bernoulli and q-Euler polynomials. The interested readers may see, for instance [100]-

[110].
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6.2.1 Various results regarding q-Genocchi polynomials

According  to  the relation (b) of  Theorem (6.9) for the sequence  of  q-Genocchi polyno-

mials, {Gn,q(x)}∞n=0, this family is q-Appell for g(t) = eq(t)+1

2t
. Therefore, relation (6.6)

for the sequence of q-Genocchi polynomials, {Gn,q(x)}, can be expressed as follows

〈
eq(t) + 1

2t
tk|Gn,q(x)

〉
= [n]q!δn,k, n, k ≥ 0. (6.2.1)

Remark 6.12. As direct corollaries of Theorems (6.9) and (6.11) we have

a) tGn,q(x) = DqGn,q(x) = [n]qGn−1,q(x),

b) Gn,q(x) =
∞∑
k=0

[
n
k

]
q

〈
2t

eq(t)+1

∣∣∣∣xn−k〉xk,
c) Gn,q(x) =

2t
eq(t)+1

xn,

d) Gn+1,q(qx) =

[
qx− qn−1

(
eq(t)(t−1)+1

2t2

)]
Gn,q(x).

Proposition 6.13. For n ∈ N we have

G0,q = 1,
n∑
k=1

[
n+ 1
k + 1

]
q

Gn−k,q = −[n+ 1]q(1 +Gn,q).

Proof. According to the relations (2.11), (6.1.3) and (6.2.1) we can write

〈
eq(t) + 1

2t

∣∣∣∣xn〉 =
1

2[n+ 1]q

〈
eq(t) + 1

t

∣∣∣∣txn+1

〉
=

1

2[n+ 1]q

=
1

2

∫ 1

0

xndqx.

Therefore, for an arbitrary polynomial p(x) ∈ P we can conclude

〈
eq(t) + 1

2t

∣∣∣∣p(x)〉 =
1

2

(∫ 1

0

p(x)dqx+ p(0)

)
. (6.2.2)
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Now, from one hand if we take p(x) = Gn,q(x), then we have

1

2

(∫ 1

0

Gn,q(x)dqx+Gn,q(0)

)
=

〈
eq(t) + 1

2t

∣∣∣∣Gn,q(x)

〉
=

〈
1

∣∣∣∣eq(t) + 1

2t
Gn,q(x)

〉
=

〈
t0
∣∣xn〉 = [n]q!δn,0. (6.2.3)

From another hand, considering the fact that

Gn,q(x) =
n∑
k=0

[
n
k

]
q

Gn−k,qx
k, (6.2.4)

we can conclude that

∫ 1

0

Gn,q(x)dqx =
n∑
k=0

[
n
k

]
q

Gn−k,q

∫ 1

0

xkdqx

=
n∑
k=0

[
n
k

]
q

Gn−k,q(x)

[k + 1]q
. (6.2.5)

Comparing identity (6.2.3) with (6.2.5), we obtain∫ 1

0

Gn,q(x)dqx =
n∑
k=0

[
n
k

]
q

Gn−k,q(x)

[k + 1]q
=
{ 2−G0,q(0) n = 0
−G0,q(0) n 6= 0

, (6.2.6)

whence the result.

Remark 6.14. According to part (b) of Theorem (6.8), for an arbitrary polynomial p(x) ∈

P we can write

p(x) =
∞∑
k=0

〈eq(t) + 1

2t
tk|p(x)〉Gk,q(x)

[k]q!
=

1

2

∞∑
k=0

〈eq(t) + 1

t
|tkp(x)〉Gk,q(x)

[k]q!

=
1

2

∞∑
k=0

Gk,q(x)

[k]q!

(∫ 1

0

tkp(x)dqx+ tkp(0)
)
.

Remark 6.15. We know that

〈eq(t)tk|(x− 1)nq 〉 = [n]q!δn,k.

Therefore, according to part(b) of Theorem (6.8), forGn,q(x) as a polynomial chosen from

P we can obtain

Gn,q(x) =
n∑
k=0

〈eq(t)|tkGn,q(x)〉
(x− 1)nq
[k]q!

=
n∑
k=0

[
n
k

]
q

Gn−k,q(1)(x− 1)nq .
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Proposition 6.16. For n ∈ N we have

(x− 1)nq =
1

2

(
n∑
k=0

n−k∑
l=0

[
n
k

]
q

[
n− k
l

]
q

1

[m+ 1]q
Gk,q(x)(−1)n−k−lq

l(l−1)
2

+
n∑
k=0

[
n
k

]
q

Gk,q(x)

)
.

Proof. From the binomial relation(2.2.10), we obtain

(x− 1)nq =
n∑
l=0

(−1)n−lq
l(l−1)

2 xl. (6.2.7)

Now, taking k-th q-derivative from both sides of identity(6.2.7), we have

tk(x− 1)nq =
∑

l = kn
[
n
k

]
q

=
[n]q!

[n− k]q!
(x− 1)n−kq (6.2.8)

According to part(b) of Theorem (6.8), we can write

(x− 1)nq =
n∑
k=0

1

[k]!

〈eq(t) + 1

2t
tk|(x− 1)nq

〉
Gn,q(x)

=
n∑
k=0

[
n
k

]
q

Gn,q(x)
〈eq(t) + 1

2t
|(x− 1)n−kq

〉
=

n∑
k=0

Gn,q(x)
(∫ 1

0

(x− 1)n−kq dqx+ 1
)
.

Now, using relation (6.2.8) for the integral in the last relation above, will lead to obtain the

desired result.

Theorem 6.17. Let Pn = {p(x) ∈ P|deg(p(x)) ≤ n}. Then for an arbitrary p(x) ∈ Pn

and a constant cn,q, we may assume that p(x) =
∑n

i=0 ci,qGi,q(x). Then for any constant

k, the coefficient ck,q is equal to 1
[k]q !

〈 eq(t)+1

2t
|p(k)(x)

〉
, and it can be obtained from the

following relation

ck,q =
1

2[k]q!

(∫ 1

0

p(k)(x)dqx+ p(k)(0)
)
,

where p(k)(x) = Dk
qp(x).

Proof. For any polynomial p(x) =
∑n

i=0 ci,qGi,q(x) in Pn, we may write

〈eq(t) + 1

2t
tk|p(x)

〉
=

n∑
i=0

ci,q
〈eq(t) + 1

2t
tk|Gi,q(x)

〉
. (6.2.9)
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So, according to the relation (6.2.1), we obtain

=
n∑
i=0

ci,q[i]q!δi,k = [k]q!ck,q, (6.2.10)

which means that

ck,q =
1

[k]q!

〈eq(t) + 1

2t
tk|p(x)

〉
. (6.2.11)

According to the relation (6.1.14), this is equivalent to write

ck,q =
1

[k]q!

〈eq(t) + 1

2t
|tkp(x)

〉
=

1

[k]q!

〈eq(t) + 1

2t
|p(k)(x)

〉
. (6.2.12)

finally, using the relation (6.2.2), we obtain

ck,q =
1

2[k]q!

(∫ 1

0

p(k)(x)dqx+ p(k)(0)
)
. (6.2.13)

6.2.2 Some results regarding q-Genocchi polynomials of higher order

Let q ∈ C, m ∈ N And 0 < | q| < 1. The q-Genocchi Aolynomials  G[
n,q

m]
(x) in x, of order m, 

in A Auitable neighborhood of t  = 0, Are Aefined Ay means of the Aollowing Aenerating 

function, [97]

( 2t

eq(t) + 1

)m
eq(tx) =

∞∑
n=0

G[m]
n,q (x)

tn

[n]q!
. (6.2.14)

In case that x = 0, G[m]
n,q (0) = G

[m]
n,q is called the n-th q-Genocchi number of order m.

From the above definition, it is clear that the class of q-Genocchi polynomials,

{G[m]
n,q (x)}∞n=0, of order m is q-Appell for g(t) =

(
eq(t)+1

2t

)m
. Thus, according to the

relation (6.6), for the sequence of q-Genocchi polynomials, G[m]
n,q (x), of order m, we can

write 〈(eq(t) + 1

2t

)m
tk|G[m]

n,q (x)
〉
= [n]q!δn,k, n, k ≥ 0. (6.2.15)
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Lemma 6.18. For any n ∈ N0, the following identity holds for the n-th q-Genocchi num-

ber of order m

G[m]
n,q =

∑
i1+i2+...+im=n

[
n

i1, i2, . . . , im

]
q

Gi1,qGi2,q . . . Gim,q

Proof. From one hand, according to the relation (6.2.14), it is obvious that〈( 2t

eq(t) + 1

)m
tk|xn

〉
=
∞∑
k=0

G
[m]
n,q

[k]q!
〈tk|xn〉 = G[m]

n,q . (6.2.16)

From another hand, according to the Proposition (6.5), we have

G[m]
n,q =

∑
i1+i2+...+im=n

[
n

i1, i2, . . . , im

]
q

×

〈 2t

eq(t) + 1
|xi1〉〈 2t

eq(t) + 1
|xi2〉 . . . 〈 2t

eq(t) + 1
|xim〉. (6.2.17)

Based on the definition of q-Genocchi polynomials and also noting relation (6.1.3) for

each 〈 2t
eq(t)+1

|xil〉, l ∈ {1, 2, . . . ,m} we can write

〈 2t

eq(t) + 1
|xil
〉
=
∞∑
k=0

Gil,q

[k]!
〈tk|xil〉 = Gil,q, (6.2.18)

whence the result.

Theorem 6.19. For any n ∈ N0, the following identity holds for the n-th q-Genocchi

polynomial of order m

G[m]
n,q (x) =

n∑
k=0

[
n
k

]
q

〈eq(t) + 1

2t
|G[m]

n−k,q(x)
〉
Gk,q(x)

=
1

2m−1

n∑
k=0

[
n
k

]
q

G
[m−1]
n−k,qGk,q(x).

Proof. According to the relation (6.2.14), it is clear that

G[m]
n,q (x) =

n∑
k=0

[
n
k

]
q

G
[m]
n−k,qx

k. (6.2.19)

Therefore, we may assume that G[m]
n,q (x) =

∑n
k=0 ck,qGk,q(x) is a polynomial with degree

n in Pn. Since G[m]
n,q (x) is a q-Appell polynomial, according to part(b) of Theorem (6.9)

for its k-th q-derivative we can write

Dk
qG

[m]
n,q (x) = [n]q[n− 1]q . . . [n− k + 1]qG

[m]
n−k,q(x) =

[n]q!

[n− k]q!
G

[m]
n−k,q(x). (6.2.20)
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Now, according to the relation (6.2.12), we may continue as

ck,q =
1

[k]q!

〈eq(t) + 1

2t
|tkG[m]

n,q (x)
〉
=

1

[k]q!

〈eq(t) + 1

2t
|Dk

qG
[m]
n,q (x)

〉
=

[
n
k

]
q

〈eq(t) + 1

2t
|G[m]

n−k,q(x)
〉
. (6.2.21)

According to part(e) of Theorem (6.9), it is clear that the q-Appell polynomial G[m]
n−k,q(x)

is equal to
(
eq(t)+1

2t

)m
xn−k. As the result of this fact and noting to the relation (6.1.15),

we obtain from the last identity in (6.2.21)

ck,q =

[
n
k

]
q

〈
t0| 2t

eq(t) + 1

(eq(t) + 1

2t

)m
xn−k

〉
=

1

2m−1

[
n
k

]
q

G
[m−1]
n−k,q , (6.2.22)

whence the result.

Theorem 6.20. For any arbitrary polynomial p(x) ∈ Pn the following identity holds

p(x) =
n∑
k=0

〈(eq(t) + 1

2t

)m
tk
∣∣p(x)〉G[m]

k,q (x)

[k]q!
.

Proof. Assume that p(x) =
∑n

i=0 ci,qG
[m]
i,q (x). Therefore, noting to the relation (6.2.15)

for the q-Appell polynomial G[m]
i,q (x), we may conclude that

〈(eq(t) + 1

2t

)m
tk
∣∣p(x)〉 =

n∑
i=0

ci,q

〈(eq(t) + 1

2t

)m
tk
∣∣G[m]

i,q (x)
〉

(6.2.23)

=
n∑
i=0

ci,q[i]q!δi,k = ck,q[k]q!.

Thus,

ck,q =
1

[k]q!

〈(eq(t) + 1

2t

)m
tk
∣∣p(x)〉. (6.2.24)

Substituting ck,q in the summation assumed in the beginning of the proof, leads to obtain

the desired result.
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expressed based on the following relation

Gn,q(x) =
m−1∑
k=0

[
m
k

]
q

2m[m]q!

[
n+m− k
m− k

]
q

×

{
m∑
i=0

[
m
i

]
q

n+m−k∑
l=0

∑
l1+l2+...+li=l

[
l

l1, l2, . . . , li

]
q

[
n+m− k

l

]
q

×

Gn+m−k−l,q

}
G

[m]
k,q (x)

+
n∑

k=m

[
n

k −m

]
q

2m[k]q!

[
k
m

]
q

×

{
m∑
i=0

n−k+m∑
l=0

∑
l1+l2+...+li=l

[
l

l1, l2, . . . , li

]
q

[
n+m− k

l

]
q

×

Gn−k+m−l,q

}
G

[m]
k,q (x)

Proof. In Theorem (6.20), take p(x) to be the n-th q-Genocchi polynomial Gn,q(x), that

is

Gn,q(x) =
n∑
k=0

ck,qG
[m]
k,q (x), (6.2.25)

where

ck,q =
1

[k]q!

〈(eq(t) + 1

2t

)m
tk
∣∣Gn,q(x)

〉
. (6.2.26)
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Then, for k < m, we have

ck,q =
1

2m[k]q!

〈(eq(t) + 1)m

tm−k
|Gn,q(x)

〉
=

1

2m[k]q!
× 1

[n+m− k]q! . . . [n+ 1]q!

〈
(eq(t) + 1)m

(1
t

)m−k
|tm−kGn+m−k,q(x)

〉
=

[m]q!

2m[k]q![m− k]q!
× [m− k]q!

[n+m− k]q! . . . [n+ 1]q!

〈
(eq(t) + 1)m|Gn+m−k,q(x)

〉

=

[
m
k

]
q

2m
× [m− k]q!

[m]q![n+m− k]q! . . . [n+ 1]q!

〈 m∑
i=0

[
m
i

]
q

(eq(t))
m|Gn+m−k,q(x)

〉

=

[
m
k

]
q

2m[m]q!

[
n+m− k
m− k

]
q

〈 m∑
i=0

[
m
i

]
q

(eq(t))
m|Gn+m−k,q(x)

〉
.

Applying relation (6.2.4) to Gn+m−k,q(x), we may continue as

ck,q =

[
m
k

]
q

2m[m]q!

[
n+m− k
m− k

]
q

×

〈 m∑
i=0

[
m
i

]
q

(eq(t))
m|

n+m−k∑
l=0

[
n+m− k

l

]
q

Gn+m−k−l,qx
l
〉
.

Using Proposition (6.5) and considering Remark (6.1), we obtain

ck,q =

[
m
k

]
q

2m[m]q!

[
n+m− k
m− k

]
q

× (6.2.27)

m∑
i=0

[
m
i

]
q

n+m−k∑
l=0

∑
l1+l2+...+li=l

[
l

l1, l2, . . . , li

]
q

[
n+m− k

l

]
q

Gn+m−k−l,q.

Now, assume that k ≥ m. Then starting from the relation (6.2.26), we have

ck,q =
1

[k]q!
〈(eq(t) + 1

2t
)mtk|Gn,q(x)〉

=
1

2m[k]q!
〈(eq(t) + 1)m|tk−mGn,q(x)〉

=
1

2m[k]q!
.

1

[n+m− k]q! . . . [n+ 1]q!

〈
(eq(t) + 1)m

∣∣Gn−k+m,q(x)
〉

=
1

2m[k]q!
.

[n]q![k −m]q!

[n− k −m]q![k −m]q!

〈
(eq(t) + 1)m

∣∣Gn−k+m,q(x)
〉

=
[k −m]q!

2m[k]q!

[
n

k −m

]
q

m∑
i=0

〈
(eq(t) + 1)i

∣∣Gn−k+m,q(x)
〉
.
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Finally, we obtain

ck,q =

[
n

k −m

]
q

2m[k]q!

[
k
m

]
q

× (6.2.28)

m∑
i=0

n−k+m∑
l=0

∑
l1+l2+...+li=l

[
l

l1, l2, . . . , li

]
q

[
n+m− k

l

]
q

Gn−k+m−l,q.

Replacing identities (6.2.27) and (6.2.28) in the assumed sum in (6.2.25), completes the

proof.

Remark 6.22. According to the proof of Theorem (6.21), for any n ∈ N0 and any m ∈ N,

the n-th q-Appell polynomial, An,q(x), can be expressed based on the following relation

An,q(x) =
m−1∑
k=0

[
m
k

]
q

2m[m]q!

[
n+m− k
m− k

]
q

×

{
m∑
i=0

[
m
i

]
q

n+m−k∑
l=0

∑
l1+l2+...+li=l

[
l

l1, l2, . . . , li

]
q

[
n+m− k

l

]
q

×

An+m−k−l,q

}
G

[m]
k,q (x)

+
n∑

k=m

[
n

k −m

]
q

2m[k]q!

[
k
m

]
q

×

{
m∑
i=0

n−k+m∑
l=0

∑
l1+l2+...+li=l

[
l

l1, l2, . . . , li

]
q

[
n+m− k

l

]
q

An−k+m−l,q

}
G

[m]
k,q (x)
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