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ABSTRACT

Digital imaging technology has provided countless opportunities for human visual ap-

plications and many scientific disciplines such as astronomy and microbiology. Digital

images are subject to various noise due to environmental factors or faults in hardware.

One type of noise — impulse noise — manifests itself with the highest or the lowest

intensity value in the dynamic range during digitization process. Impulse noise involves

high frequency components which are undesirable. Therefore, it is vital to restore con-

taminated digital images before utilizing them in various applications.

In this thesis, we have investigated Nonlinear Fixed-Valued Impulse (salt-and-pepper)

Noise removal methods. Restoration of a contaminated image is composed of two

stages. These are noise detection and restoration. The performance of various state-of-

the-art impulse noise removal methods are empirically compared for these two stages.

For detection, misclassification and false-alarm rates are used for objective measure-

ment. Restoration capabilities are compared in terms of Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity (SSIM) and Mean Absolute Error (MAE).

We have also identified a common problem among impulse noise removal methods,

namely, spatial bias. Asymmetric distribution of corruption prevents an equal contribu-

tion of uncorrupted pixels in the filtering window from a spatial perspective, effectively

yielding a biased estimation of the original intensity value. In order to eliminate spatial

bias, we have proposed Unbiased Weighted Mean Filter (UWMF). UWMF eliminates

spatial bias by recalibrating pixel weights based on the positional distribution of cor-

rupted pixels in the filtering window. Recalibrated weights reflect the spatial properties

of corruption and compensate the missing contribution.

iii



We have demonstrated that elimination of spatial bias improves restoration quality

in terms of objective measurements (PSNR, SSIM and MAE). In addition, unbiased

restoration results with least amount of disturbance in the edges and smooth regions.

Keywords: Impulse Noise Removal, Nonlinear Filters, Weighted Mean Filters, Median

Filters
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ÖZ

Sayısal imge teknolojisi, görsel uygulamalarda olduğu gibi, astronomi ve mikrobiyoloji

başta olmak üzere birçok bilim dalı için sayısız olanaklar sağlamıştır. Sayısal imgeler,

çevresel nedenlerden veya donanımsal sorunlardan ötürü çeşitli gürültülere mağruz kal-

abilirler. Bu gürültülerden bir tanesi olan darbe gürültüsü, kendisini sayısallaştırma

sürecinde, uç noktadaki koyuluk değerlerini alması ile gösterir. Darbe gürültüsü, yük-

sek frekans bileşenler içerir. Bu bileşenler, çeşitli nedenlerden dolayı istenmemekte-

dir. Dolayısıyla, darbe gürültüsüne mağruz kalmış sayısal imgelerin yenilenmesi, bu

imgelerin düzgün bir şekilde kullanılması için büyük önem arz eder.

Bu tezde Doğrusal-olmayan Sabit-değerli Darbe Gürültüsü yenileme yöntemleri ince-

lenmiştir. Sayısal bir imgenin yenilenmesi iki aşamadan oluşur. Bunlar, gürültünün

tespiti ve yenilenmesidir. Çeşitli darbe gürültüsü temizleme yöntemleri, bu iki aşama

üzerinden değerlendirilmiştir. Gürültünün tespit başarısının değerlendirilmesinde,

hatalı tespit ve yanlış uyarı oranları kullanılmıştır. Yenileme başarısının ölçümü için

ise Doruk Sinyal-Gürültü Oranı (PSNR), Yapısal Benzerlik (SSIM) ve Ortalama Mut-

lak Hata (MAE) kullanılmıştır.

İnceleme esnasında, bütün yöntemlerde ortak olan, uzamsal meyil ismini verdiğimiz

bir sorun tespit edilmiştir. Darbe gürültüsünden kaynaklı bozulmanın, süzgeçleme

penceresi üzerindeki asimetrik dağılımı, bozulmaya uğramamış imge öğelerinin eşit

şekilde katkı yapmasını engeller. Bu durum, temizlenmesi amaçlanan imge öğesinin

tahmin edilen koyuluk değerinin, bozulmanın yoğun olmadığı bölgelerdeki koyuluk

değerlerine meyilli olması sonucunu doğurur. Bu sorunu ortadan kaldırmak için Mey-

ilsiz Ağırlıklı Ortalama Süzgeci (UWMF) yönetmi önerilmiştir. Önerilen yöntem,

süzgeçleme penceresindeki bozulmaya uğramış imge öğelerinin uzamsal dağılımlarını

kullanarak, ağırlıkları yeniden ayarlar ve uzamsal meyili ortadan kaldırır. Yeniden

v



ayarlanmış olan ağırlıklar, bozulmanın uzamsal özelliklerini yansıtır ve dolayısı ile

yapılan tahmine katkısı az olan imge öğelerinin katkılarını eşitler.

Yapılan deneyler sonucunda, uzamsal meyilin ortadan kaldırılmasının yenileme

başarısını arttırdığı saptanmış ve deney sonuçları, nesnel değerlendirme ölçütleri

(PSNR, SSIM ve MAE) ile gösterilmiştir. Ek olarak, meyilsiz temizleme, kenar ve

düz bölgelerde en az karışıklık ile sonuçlanmıştır.

Anahtar Kelimeler: Darbe Gürültüsü Yenileme, Doğrusal-olmayan Süzgeçler, Ağır-

lıklı Ortalama Süzgeçleri, Orta Değer Süzgeçleri
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Chapter 1

INTRODUCTION

Digital images have found endless use since their inception. The interest over utilization

of digital images has sparkled especially after 1960’s, thanks to the advancements in

high level programming languages and microprocessors. Today, many fields, ranging

from astronomy to microbiology, require digital imaging technology.

During acquisition or transmission, digital images are subjected to various noise due

to environmental factors or faulty hardware. One type of noise, called impulse noise,

manifests itself with relatively high (white) or low (black) intensity value on a given

pixel. Images contaminated by impulse noise involve high frequency components and

they are undesirable for the following reasons.

• Human visual system is sensitive to the presence of impulse noise

• High frequency components are problematic for various image processing methods

(edge detection etc.)

Impulse noise is an impediment to pictorial interpretation and decreases the suitability

of images for both human and computer vision applications. Therefore, it is vital to

restore these images in order for further use.

The methods aiming to remove impulse noise (also called filters) are categorized under

two types — linear and nonlinear — based on their characteristics as described in Sec-

tion 3.2. In late 1970’s and early 1980’s, it has been understood that nonlinear filters

were superior compared to linear filters in terms of impulse noise removal capabilities,
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which sparkled a burst of interest for nonlinear filters. Furthermore, the superiority of

nonlinear filters are not limited to impulse noise.

Nonlinear filters for impulse noise removal exploit local (segment of image) and/or

global (entire image) statistics and spatial relationship in order to estimate the original

intensity value of a corrupted pixel. Restoration procedures are applied while convolving

a contaminated image, that is, visiting the image pixels one by one. In general, the

local information is sought in a square neighborhood centered on a pixel called filtering

window with odd side lengths.

This thesis investigates nonlinear filters for impulse noise removal. The primary aims

of this thesis are to conduct an empirical analysis to assess the performance of various

state-of-the-art methods for impulse noise removal and to improve restoration process

via preserving edges and other fine details of contaminated images. For the latter, our

efforts have focused on exploiting spatial relationship between pixels and distribution

of noise.

There are more than one model for impulse noise as described in Section 3.1. This

thesis is mainly concerned with a specific model called Fixed-Valued Impulse Noise.

Preliminary empirical studies for Random-Valued Impulse Noise are presented under

Section 5.6. However, a deeper analysis of the state-of-the-art Random-Valued Impulse

Noise removal methods and investigating the potentiality of extending the findings of

this thesis to the other models of impulse noise are beyond the scope. The rest of the

thesis involves five chapters. Chapter 2 surveys the impulse noise removal literature. In

Chapter 3, various preliminary information is provided. Although, some of the topics

discussed under this chapter may not be required to understand subsequent chapters,

they are provided for the sake of completeness. Chapter 4 proposes a new impulse

noise filter aiming to remove what we call spatial bias. The details about experiments,
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findings and their implications are presented under Chapter 5. Finally, the conclusive

remarks are rendered under Chapter 6.
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Chapter 2

LITERATURE SURVEY

This chapter provides a survey of impulse noise removal literature. Section 2.1 gives

an overview of the history of nonlinear filters and research directions in general. The

review of the state-of-the-art methods are presented under four sections differentiated

by their restoration characteristics. These are Median Filters (Section 2.2), Mean Filters

(Section 2.3) and Interpolation Based Filters (Section 2.4). The filters belonging none

of these groups are presented under Section 2.5.

2.1 Overview

The utilization of nonlinear filters for impulse noise removal is triggered by the success

of Standard Median Filter (SMF) [35] in late 1970s [10, 12, 13]. The subsequent studies

have mainly focused on improving SMF [5, 18, 26, 37]. Although properties of impulse

noise and restoration methods have been studied extensively, it is still an active research

topic [2, 21, 29, 38] involving applications of methods and models in other research

fields such as natural language processing [42], neural networks [22] and soft computing

[34, 37].

Perhaps two of the most important concepts employed in impulse noise removal are

adaptiveness and the concept of switching. Adaptive filters — filters capable of chang-

ing their properties based on (mostly local) characteristics of subject image are superior

when various information, e.g. noise density, are unknown. Many adaptive filters are

proposed over the years [4, 14, 15, 27, 40, 41]. Among them, Adaptive Median Filter

(AMF) [23] is a well-known, benchmark method that is widely used due to its fine detail

preservation capabilities. Switching filters [7, 16, 25, 32, 33, 38] try to detect corruption

on a given pixel before applying any restoration procedure.
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The restoration process involves two objectives: accurate noise detection and a close

estimation of the original intensity value. The studies focusing on the former objective

are hard to unify in terms of research direction. Among detection algorithms, one naïve

yet accurate and commonly employed [3, 8, 17, 36, 43] method is classification based

on the maximum and the minimum possible intensity value in the dynamic range of an

image. For an 8-bit monochrome image, these values are 0 and 255. This method will

be called Naïve Noise Detection (NND) hereafter. For the latter objective, utilization of

a weight function is a common method [3, 5, 16–18, 37, 39, 41, 42]. In general, weight

functions reflect the spatial relationship.

2.2 Median Filters

2.2.1 Standard Median Filter

Standard Median Filter (SMF) [11] replaces the pixel under consideration with the me-

dian value of its neighborhood. More rigorously, SMF is defined as follows

rx,y = median
(i, j)∈ cFW

{ci, j} (2.1)

where r is the restored image and c is the contaminated image. Coordinates in subscripts

represent the pixel intensity value at those coordinates. cFW represents the filtering

window of the contaminated image.

SMF does not have a switching procedure to ignore corrupted pixels. It inherently

assumes that the median value is not corrupted because extreme values (i.e., corruption)

will be clustered at the ends of lower and upper half. However, when noise density is

higher than 50%, this is not the case. SMF performs poorly for highly contaminated

images.
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2.2.2 Adaptive Median Filter

Adaptive Median Filter (AMF) [11] improves two drawbacks of SMF. These are se-

lecting a corrupted pixel in the presence of high noise density and absence of a noise

detection procedure. The former issue is addressed by incrementing the size of the

filtering window based on the following criterion

((cmed− cmin) ≤ 0 OR (cmed− cmax) ≥ 0) AND wsize < maxwsize

where c is a contaminated image; cmin, cmed and cmax are the minimum, the median and

the maximum intensity values in the filtering window, respectively. wsize is the current

filtering window size; maxwsize is the maximum filtering window size. Corrupted pixels

are detected based on the following criterion

(cx,y− cmin) > 0 AND (cx,y− cmax) < 0

where cx,y is a pixel at coordinates (x.y).

Since AMF is sensitive to the presence of highly dense filtering windows, it is less

likely to select a corrupted pixel as median. AMF is superior in terms of restoration

performance compared to SMF.

2.2.3 Recursive and Adaptive Median Filter

Meher and Singhawat proposed Recursive Adaptive Median Filter (RAMF) in [24].

RAMF is developed based on the merits of various methods, namely, Decision-based

Filter (DBF) [30], Neighborhood Mean Filter (NMF) [31] and Modified Decision Based

Unsymmetric Trimmed Median Filter (MDBUTMF) [8]. It also utilizes the detection

algorithm of Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) [33]. For

restoration, while convolving the contaminated image, RAMF selects the median of

the filtering window (3× 3) if there is at least one uncorrupted pixel. Otherwise, it in-

creases the window size to 5× 5. In the larger filtering window, previous condition is

checked again, however, on failure to find uncorrupted pixels, the median of restored

pixels of four adjacent 3×3 filtering windows is selected. RAMF provides comparable

restoration quality.
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2.2.4 Improved Boundary Discriminative Noise Detection Filter

Improved Boundary Discriminative Noise Detection Filtering Algorithm (IBDND) is

proposed in [16]. In their efforts to improve the filtering stage of Boundary Discrimi-

native Noise Detection (BDND) [25], the authors focus on expansion condition of the

filtering window and incorporation of spatial distance. IBDND makes use of estimated

noise density from detection stage in the expansion condition for filtering window, ef-

fectively making it adaptive to noise density. The obvious problem with such approach

is the propagation of errors from detection stage to filtering stage, due to the usage of

estimated noise density, that affects not only the restoration quality but also computa-

tional efficiency. In order to incorporate spatial correlation, IBDND inversely relates the

distance to the center and contribution factor of pixels. IBDND surpasses the restoration

quality of BDND both in terms of Peak Signal-to-Noise Ratio (PSNR) and Tenengrad

metrics for monochrome images; ∆E∗ab for color images and operates on smaller window

size compared to that of BDND.

2.2.5 Modified Decision Based Unsymmetric Trimmed Median Filter

In [8], authors proposed a variant of median filter, namely, Modified Decision Based

Unsymmetric Trimmed Median Filter (MDBUTMF). MDBUTMF ignores corrupted

pixels while ordering intensity values in the filtering window. The noise is detected

with NND. After constructing a trimmed pixel set, the central pixel is replaced by the

median value. If all pixels are corrupted, then mean of the filtering window is used. At

higher noise densities, median value may not provide optimal estimation as distant pix-

els are incorporated without considering the spatial relationship. This problem results

with poor restoration quality in edges as well as smooth regions. Overall, MDBUTMF

is highly efficient in terms of computational efficiency and provides high restoration

quality.

2.2.6 Noise Adaptive Fuzzy Switching Median Filter

Another switching-based adaptive median filter is Noise Adaptive Fuzzy Switching Me-

dian Filter (NAFSMF) [33]. NAFSMF is a hybrid of AMF and Fuzzy Switching Me-

dian Filter [32]. It first labels two intensity values (Lsalt and Lpepper) for upper and
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lower impulsive peaks of contaminated image signal using image histogram. A pixel is

considered as corrupted if it is equal to one of these values. The filtering process starts

with expanding the filtering window while searching for uncorrupted pixels. Upon find-

ing enough uncorrupted pixels, median in current window is selected for restoration.

However, expansion stops on a predetermined window size if no uncorrupted pixels are

found. In such a case, a new 3×3 window is imposed and median of the first four pixels

in the upper-left region is selected for restoration. NAFSMF provides high restoration

quality in terms of PSNR. However, calculation of two peak values introduces an addi-

tional stage and effectively increases the computational complexity and suitability for

real-time applications.

2.2.7 A Switching Median Filter with Boundary Discriminative Noise Detection

Ng and Ma [25] incorporated Noise Adaptive Soft-Switching Median Filter (NASMF)

[7] with Boundary Discriminative Noise Detection (BDND). BDND forms three inten-

sity clusters as lower intensity impulse noise, uncorrupted pixels and higher intensity

impulse noise by calculating lower and higher intensity boundary values using the in-

tensity differences between pixels in the filtering window. BDND introduces three mod-

ification to filtering stage of NASMF. The first modification reduces maximum window

size in order to eliminate blurring effect at higher noise densities. The second modi-

fication imposes an additional condition to the filtering window expansion. The addi-

tional condition allows the filtering window to expand when there is no uncorrupted

pixels. The third and final modification is ignoring corrupted pixels in ranking opera-

tion. BDND shows robust detection performance even at high noise densities with total

misclassification rate less than 1%.

2.2.8 Noise Adaptive Soft-Switching Median Filter

Noise Adaptive Soft-Switching Median Filter (NASMF) [7] switches the filtering

method employed based on the information gathered on the detection stage. In the

filtering stage, the pixels are differentiated into four classes as uncorrupted pixels, iso-

lated impulse noise, non-isolated impulse noise and edge pixels, using local and global

pixel statistics. Isolated and non-isolated impulse noise are restored with SMF; edge
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pixels are restored with Fuzzy Weighted Median Filter. NASMF performs well with

lower noise densities. However, at higher noise densities, it fails to restore fine details

due to incorrect classification of pixels.

2.3 Mean Filters

2.3.1 Adaptive Weighted Mean Filter

In [39], authors propose a method named Adaptive Weighted Mean Filter (AWMF).

AWMF operates in a similar way to AMF. In order to enhance the performance of

AMF, the authors focus on decreasing detection errors and estimating a value better

than median. AWMF adaptively increases the filtering window size until two succes-

sive windows have equal minimum and maximum intensity values. During adaptive

process, the central pixel is considered as corrupted if it is equal to current maximum or

minimum intensity values. Pixels with intensity values between current maximum and

minimum intensity values are assigned to 1; the rest is assigned to 0. Then, the central

pixel is replaced with a weighted mean using binary weights. Compared to AMF, the

expansion of window size is relatively limited which may improve computational effi-

ciency drastically. In addition, AWMF surpasses AMF in terms of noise detection rate

and restoration quality.

2.3.2 Cloud Model Filter

Cloud Model Filter (CMF), proposed by Zhou [42], employs Cloud Model [19] for

detection and filtering stages which exploits both randomness and fuzziness involved in

impulse noise. CMF considers the intensity values in a windows as a normal distribution

with various parameters — expected value (Ex), entropy (En) and hyperentropy (He).

In detection stage, an adaptive approach is used. The central pixel is considered as

uncorrupted if it is between maximum and minimum value in the filtering window.

These values are calculated using Ex and En. The filtering window expands if the

central pixel is less than minimum value or greater than maximum value and number of

uncorrupted pixels is less than threshold δ . In filtering stage, a weighted fuzzy mean

filter is used. CMF successfully detects impulse noise with total misclassification rate

less than 0.01% at higher noise densities while its detection rate diminishes slightly at
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lower noise densities. CMF does not require the detection stage to be completed before

performing filtering. This improves computational efficiency as restoration can be done

while iterating corrupted image for detection.

2.4 Interpolation Based Filters

2.4.1 Interpolation-based Impulse Noise Removal

Interpolation-based Impulse Noise Removal (IBINR) is proposed in [17]. Corrupted

pixels are detected using NND. IBINR assigns weights to the uncorrupted pixels in the

filtering window based on their Euclidean Distance to the center, then it replaces the

central pixel with a weighted mean. The detection method, while intuitive in parallel

with the nature of impulse noise, is bound to failure in binary images. This problem

is solved by counting the number of black and white pixels and assigning whichever

has highest occurrence when uncorrupted pixels are absent in the filtering window. At

higher noise densities, IBINR enlarges the filtering window size up to 13×13. As dis-

tance to the center increases, the spatial correlation decreases which may result with

lower restoration quality. This is, however, solved by a term mitigating the contribu-

tion factor of distant pixels. In general, IBINR provides robust restoration performance

while maintaining computational efficiency.

2.4.2 Continued Fractions Interpolation Filter

In [3], another interpolation-based method is proposed by Bai et al. Continued Frac-

tional Interpolation Filter (CFIF) incorporates Thiele’s Continued Fraction Interpola-

tion (CFI). NND is employed for noise detection. Then, for all four directions (0◦, 45◦,

90◦and 135◦), CFI is computed. For each CFI value in four directions, weights are cal-

culated in an adaptive manner with an exponential weight function using four neighbors

(two on the left, two on the right). If the calculated weighted mean is not in the range of

minimum and maximum intensity values of pixels in any direction, then the number of

neighbors used in weight function is adaptively divided by two and the weights are cal-

culated again. The detection method of CFIF is bound to failure for binary images and

CFIF has no handling mechanism as once the pixel is classified, next pixel is taken into
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consideration without any further analysis. In terms of noise removal, CFIF provides

comparable results in terms of PSNR.

2.5 Other Filters

2.5.1 Adaptive Switching Morphological Filter

Feng et al. [9] proposed Adaptive Switching Morphological Filter (ASMF). ASMF

utilizes a morphological two-stage noise detector and conditional rank-order filter. In

the first stage of detection, erosion and dilation operations are employed iteratively to

find internal and external morphological gradients. These gradients are then used to

identify corrupted pixels. Due to high false alarm rate at the end of the first stage,

an additional detection stage is imposed. In this stage, erosion and dilation operations

are applied to those pixels that are marked as corrupt in the first stage. The absolute

difference D between mean of these two operations and corresponding pixel value in

the contaminated image is compared with a threshold. Pixels having greater D value

than the threshold are classified as corrupted. In filtering stage, the size of structuring

element is adaptively determined based on uncorrupted pixels in the local and mean of

r-th min (for erosion) and max (for dilation) is used as an estimation of the original

intensity value. ASMF is accurate (total misclassification < %2) in terms of impulse

noise detection even at high noise densities and high restoration performance.

2.5.2 Adaptive Anisotropic Diffusion Filter

Veerakumar et al. [36] proposed edge preserving Adaptive Anisotropic Diffusion Fil-

ter (AADF). AADF employs Rank Ordered Logarithmic Difference (ROLD) [6] for

Random-Valued Impulse Noise (RVIN) and NND for Fixed-Valued Impulse Noise

(FVIN). In restoration process, the contaminated image is multiplied with noise map

(a binary image containing 0s and 1s) and if the value of the pixel in consideration is

greater than zero, then its value is retained. Otherwise, two types of filters are used.

In a 3× 3 filtering window, if all pixels are corrupted then traditional mean filter in a

5×5 filtering window is selected for restoration. If there are some uncorrupted pixels,

then a modified version of Anisotropic Diffusion Filter (ADF) [28] is applied. Although

AADF is not suitable for binary images, it provides high restoration performance when
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applied to monochrome images. In addition, AADF involves application of many con-

volution kernels which are costly in terms of computational efficiency and reduces the

suitability for real-time applications.

2.5.3 Impulse Noise Removal Based on Noise Space Characteristics

A method exploiting noise space characteristics is proposed in [43]. In this method,

three noise patterns called T-Single-noise-pattern, T-Double-noise-pattern, T-Triple-

noise-pattern and their respective noise removal operators are defined. Noise detection

is done by incorporating NND in these operators. In order to understand which pat-

tern is present at any given time, the difference between intensity values and square

root of weighted standard deviation in the filtering window is analyzed. All patterns re-

store using median value, however, the window sizes are different for each pattern. The

filtering window sizes for T-Single-noise-pattern, T-Double-noise-pattern and T-Triple-

noise-pattern is 3×3, 3×4 and 4×4, respectively. In addition, the corrupted pixels are

ignored in the ranking process. The restoration performance of the proposed method is

comparable with the state-of-the-art methods.

2.5.4 Neuro-Fuzzy Based Impulse Noise Filter

A neuro-fuzzy based impulse noise removal method is proposed in [20]. Two first order

Sugeno-type fuzzy inference systems containing four inputs and one output are em-

ployed. The difference between four pixels in horizontal middle line (for the first sys-

tem) and vertical middle line (for the second system) and median in the filtering window,

together with median itself is fed to the systems as inputs. Each input has three gener-

alized bell-type membership functions and for all four inputs there are total of 81 rules

(34). The output of the filter (Y ) is weighted average of the outputs of the individual

rules and weights of each rule is multiplication of membership values. If Y is outside

of the dynamic range for intensity values (0 and 255 for 8-bit monochrome images),

then it is truncated. The restoration is done by replacing each pixel with the average of

the outputs of two fuzzy filters. These filters require optimization for various internal

parameters. For this purpose, a hybrid training phase involving Gradient Descent and

Least Squares Algorithms is conducted. The training phase is required to be performed
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only once which decreases off-line time of the method, i.e., the time spend for outside

of filtering, significantly.
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Chapter 3

PRELIMINARIES

This chapter concerns various concepts regarding impulse noise and nonlinear filters.

Two well-known impulse noise models are presented under Section 3.1. In Section 3.2,

the concept of linearity is explained.

3.1 Impulse Noise Models

Impulse noise occurs due to electromagnetic interference which manifests itself with

relatively high or low intensity values compared to uncorrupted pixels. Transmission

of image signal in noise channel and faulty camera sensors are common causations for

such contamination. It is essential to understand the nature of impulse noise in order to

remove it effectively.

Although several impulse noise models are proposed in the literature, only two of them

are widely adopted. These are Fixed-Valued Impulse Noise (FVIN), which this study

is interested in, and Random-Valued Impulse Noise (RVIN). The former model is also

known as salt and pepper noise.

3.1.1 Fixed-Valued Impulse Noise

Fixed-Valued Impulse Noise, also known as salt and pepper noise, is a type of noise

where a corrupted pixel is digitized to the maximum or the minimum possible intensity

value in the dynamic range. In a more rigorous sense, the model is defined as

cx,y =


imin, p

imax, q

ox,y, 1− (p+q)

(3.1)
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where o is the original image and c is the contaminated image. cx,y and ox,y are intensity

values at coordinates (x,y) in c and o, respectively. p and q represents the probability of

corruption for both extrema, imin (pepper) and imax (salt), respectively. The probability

for imin (p) and imax (q) are generally considered as equal and their sum is the noise den-

sity. In practice, imin and imax correspond to 0 and 2N−1, respectively. N is the number of

bits representing the image pixels. For instance, the extreme values for commonly used

8-bit monochrome images are 0 or 255. Figure 3.1 illustrates an image contaminated by

FVIN.

Figure 3.1: Lena image contaminated by %10 FVIN.
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3.1.2 Random-Valued Impulse Noise

Random-Valued Impulse Noise can be manifested with any intensity value between the

dynamic range of an image. Therefore, the detection of this model is more difficult

compared to FVIN. RVIN is generally modeled by Bernoulli uniform noise model [1].

RVIN is defined as

cx,y =

 i, p

ox,y, 1− p
(3.2)

where i ∼U [imin, imax]. U [·] represents a uniform random variable that can be valuated

between imin and imax. ox,y and cx,y represent the pixel intensities at coordinates (x,y) in

the original and contaminated image, respectively. p is the noise density. An illustration

of RVIN can be seen in Figure 3.2.

Theoretically, a corrupted pixel can take any value between the dynamic range, however,

since the interference to the image signal is impulsive, it is expected that the intensity

values of corrupted pixels should be on one of the both ends of the dynamic range. A

realistic RVIN model is proposed in [25]. In this model, the possible intensity value is

defined with a length parameter m on both sides of the dynamic range, e.g., [0 9] and

[246 255]. This model is defined as

cx,y =


[imin m], p

2m

ox,y, 1− p

[imax−m imax],
p

2m

(3.3)

where m represents the range on both sides. In this model, all possible intensity values

on the ranges have equal probability of occurrence.
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Figure 3.2: Lena image contaminated by %10 RVIN.

3.2 Concept of Linearity

A filter can be considered as an operator whose operands are image segments or en-

tire images. An operator is said to be linear if it satisfies Additivity and Homogeneity

properties. Consider an operator ξ

ξ [ix,y] = ox,y (3.4)

where i is an input; o is an output image. ξ is linear if

ξ [ci fx,y + c j gx,y] = ci ξ [ fx,y]+ c j ξ [gx,y]

= ci fx,y + c j gx,y

(3.5)

where ci, c j are arbitrary constants; f and g are arbitrary images with same size. Equa-

tion (3.5) states that the output of applying a linear operation on summation of two
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inputs is same as applying the linear operation individually and then summing the re-

sults. In addition, when inputs of a linear operation multiplied by a factor(ci and c j),

then the result is equal to multiplication of the factor and the operation due to its inputs.

Both Additivity and Homogeneity are satisfied when (3.5) holds true for any operator ξ .

Consider order-statistics operator maximum (in short max) which finds maximum value

on a given image segment. Consider the following two image segments

f =


0 2 7

3 4 8

5 1 6

 g =


6 5 1

4 7 8

1 3 9

 (3.6)

In order to test linearity, let ci = 1 and c j =−1. According to Additivity and Homogene-

ity properties, the following two equations must yield the same result.

max

ci


0 2 7

3 4 8

5 1 6

+ c j


6 5 1

4 7 8

1 3 9


 (3.7)

ci max




0 2 7

3 4 8

5 1 6


+ c j max




6 5 1

4 7 8

1 3 9


 (3.8)

However, it is clear that (3.7) yields 7 and (3.8) yields 6. Thus, max operation is not

linear.
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Chapter 4

THE PROPOSED METHOD

This chapter proposes a novel filter for impulse noise removal, namely, Unbiased

Weighted Mean Filter (UWMF). UWMF addresses our observation regarding a par-

ticular problem of impulse noise removal filters in the literature. We call this problem

spatial bias. In Section 4.1, the nature of spatial bias and a method to eliminate spatial

bias is presented. In Section 4.2, further details of UWMF are given.

4.1 Spatial Bias

Filters employing a weight function can compute the optimal estimation of the original

intensity value only when the pixel under consideration is the only corrupted pixel in

the filtering window. In other words, an optimal estimation can be made only when

all pixels in the filtering window contribute to the estimation. However, even at lower

noise densities such as %10, it is likely to encounter another corrupted pixel other than

the one in the center of the filtering window. It is intuitive to consider possibilities of

better estimations with respect to spatial relationship between pixels in an image. An

important question is then arisen as how a better estimation can be made.

Another important observation regarding many filters in the literature is that there is a

selection of uncorrupted pixels before or during filtering stage. The intensity values of

corrupted pixels, assuming that the detection is accurate, can not be used. However, this

kind of selective approach also ignores the positional information of corrupted pixels

in the filtering window and effectively leads into a spatial bias towards uncorrupted

pixel. For example, if corrupted pixels are clustered in a particular region in the filtering

window, then, the contribution of pixels where corruption is not dense will be higher.
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The relation between weight function and spatial bias is mutual, that is, the weights can

be recalibrated to eliminate spatial bias and the information supplied by positional distri-

bution (i.e., spatial bias) can be exploited to recalibrate weights, thus, a better estimation

can be made. If a weight function assigns weights symmetrically (e.g., Euclidean Dis-

tance), then asymmetric distribution of corrupted pixels from a spatial perspective will

also cause a bias.

4.1.1 Elimination of Spatial Bias

Elimination of spatial bias can be related to a physical system. Consider the filtering

window as a uniform grid and the central cell to be the center of gravity. Each cell on

the grid represents a pixel and each cell has its own associated weight. If a weight is

removed from the grid, the center of gravity would shift away from it. The same shift

occurs when a pixel is ignored. Estimations conducted on such configuration yield the

estimation of a different position (center of gravity of uncorrupted pixels) instead of the

actual center.

The primary objective of spatial bias elimination is to recalibrate pixel weights present

in the filtering window in such a way that the center of gravity shifts back to actual cen-

ter. When a pixel is corrupted, its position information and weight can still be exploited.

Spatial bias can be eliminated by a combination of two operations using this informa-

tion; increasing the weights that are further away from the shifted center of gravity and

decreasing those weights that are close to it.
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Spatial bias in a filtering window can be represented as a vector~g by simply calculating

the center of gravity with

~g = ∑
x,y

wx,y~dx,y (4.1)

where ~dx,y is the radial vector from the center of the filtering window to coordinates (x,y)

and wx,y is the weight at (x,y). The recalibration is achieved by solving the following

linear equation with one unknown variable

∑
x,y
[wx,y +wx,y(~dx,y ·~g′)]~dx,y = 0 (4.2)

where ~g′ is the counter-bias vector. Upon expanding summation and dot product of ~dx,y

and ~g′, we obtain

∑
x,y
[wx,y(g′xdx

x,y +g′ydy
x,y)]~dx,y =−∑

x,y
wx,y~dx,y (4.3)

where superscripts represent the dimensional components of the vectors. Rewriting

(4.3) with respect to the dimensional components yields the following two equations.

g′x ∑
x,y

wx,y
(
dx

x,y
)2

+g′y ∑
x,y

wx,ydx
x,ydy

x,y =−∑
x,y

wx,ydx
x,y

g′y ∑
x,y

wx,y
(
dy

x,y
)2

+g′x ∑
x,y

wx,ydx
x,ydy

x,y =−∑
x,y

wx,ydy
x,y

(4.4)

After solving the linear system in (4.4), we obtain

P = ∑
x,y

wx,y
(
dx

x,y
)2

Q = ∑
x,y

wx,ydx
x,ydy

x,y

R =−∑
x,y

wx,ydx
x,y

S = ∑
x,y

wx,y
(
dy

x,y
)2

T =−∑
x,y

wx,ydy
x,y

g′y = (PT )+(QR)
−Q2+(PS)

g′x =− (Qg′y)+R
P

(4.5)

In (4.2), the dot product of terms wx,y, ~dx,y and ~g′ is maximum when ~dx,y and ~g′ point

to the same direction; minimum when these vectors point to opposite directions of each

other. Therefore, weights located at opposite direction of~g, relative to the shifted center
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of gravity, i.e., the weights closer to the corrupt pixels, will contribute more. Thus,

the lost information will be compensated by increased contribution of these pixels. If

contamination is dense in a particular region of the filtering window, some of the weights

may be negative after recalibration.

An important property of this procedure is its applicability to different filters. As it has

been stated, the spatial bias arises due to asymmetric distribution of corrupted pixels and

such randomness is an inherent feature of impulse noise. Weighted mean and median

filters are good candidates for employing the spatial bias elimination. However, even

for methods without a weight assignment, it can be employed by assuming weights as

one.

4.2 Noise Restoration

The proposed method performs three operations in a sequential manner while convolv-

ing a filtering window over a contaminated image. These are noise detection, bias elim-

ination and calculation of new intensity value. Unbiased Weighted Mean Filter employs

NND, that is, pixel is identified as noise if it has the highest or the lowest intensity value.

After noise detection and spatial bias elimination, the noise is restored. The last two op-

erations are performed in a rectangular window that is centered on corrupt pixel upon

noise detection. Let NFW denote filtering window size. Let I and W to be the sets of in-

tensity values and weights in the filtering window (−(NFW −1)/2≤ x,y≤NFW −1)/2)

respectively and let ix,y denote the intensity value; wx,y represent the weight of a pixel

located at coordinates (x,y) in I and W , respectively.
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Similarly, let w′x,y denote the recalibrated weight (described in Sec. 4.1.1) in W ′ at same

coordinates. Considering (i, j) as the central location in the filtering window and oi, j as

the intensity value at these coordinates, the new intensity value of oi, j is computed with

the following function

wx,y = [Φ((x,y),(i, j))]−k

w′x,y = wx,y +wx,y(~dx,y ·~g′)

I255 = {(x,y) | ix,y = 255 ∧ ix,y ∈ I}

I0 = {(x,y) | ix,y = 0 ∧ ix,y ∈ I}

oi, j =



ii, j, ii, j 6∈ I255∧ ii, j 6∈ I0

255, I ⊆ (I255∪ I0)∧ c(I∩ I255)> c(I∩ I0)

0, I ⊆ (I255∪ I0)∧ c(I∩ I255)≤ c(I∩ I0)
∑

ix,y∈I∧w′x,y∈W ′
ix,yw′x,y

∑

w′x,y∈W ′
w′x,y

, otherwise

(4.6)

where c is a function which counts the number of elements in a set and Φ((x,y),(i, j))

is a distance function between central location (i, j) and coordinates (x,y), ~g′ is the

counter-bias vector calculated in (4.2). I255 represents the set of intensity values equal

to 255 and I0 represents the set of intensity values equal to 0. In this study, we have used

Minkowski Distance defined as

DMinkowski(Q,R) =
(

N
∑

i=1
|Qi−Ri|p

)1/p
(4.7)

where p is a parameter of distance metric. When p is 1 or 2, it corresponds to Manhattan

or Euclidean Distances, respectively. These two values for p is found to be yielding the

highest restoration performance (explained in Sec. 5.4). k is a parameter of the pro-

posed method which controls the effect of weights based on the distance to the central

pixel. The pixels that are further away relative to the center of the filtering window are

less spatially-correlated than those that are close. Thus, it is important to diminish con-

tribution of distant pixels. According to the empirical results, the value of k is estimated
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to be between 4 and 6; and p to be 1 (Manhattan Distance). Details of parameter effects

are presented under Section 5.4.

There are four different cases while assigning a new value to oi, j. The first one is iden-

tity mapping when pixel is not identified as noise. The second and the third cases occur

only when there is no uncorrupted pixel in the filtering window, i.e., all pixels are either

black (ix,y ∈ I0) or white (ix,y ∈ I255). In such a case, the proposed method counts the

number of black and white pixels and assigns whichever has higher occurrence in the

filtering window. Finally, the fourth case is where oi, j is assigned to a weighted mean

using the recalibrated weights. Due to linearity of recalibration and randomness of noise

distribution, various numerical instabilities, e.g., weighted means falling outside of in-

tensity range, may occur. In such cases, clipping or usage of the original weights are

two possible solutions. We have estimated the occurrence of these cases to be statisti-

cally insignificant (p ≤ 0.00006). The pseudo of the proposed method is illustrated in

Algorithm 1.

A snapshot of restoration process is presented as an example in Fig. 4.1. In the upper-

right matrix (Fig. 4.1b), the uncorrupted pixels are clustered around the left region of the

filtering window. This configuration shifts the gravity towards left. After recalibration

(Fig. 4.1d), the weights of pixels are decreased in the left region; increased in the

right region. The recalibrated configuration satisfies Equation (4.2). In this particular

snapshot, the original intensity value is 162. The weighted mean using the original

weights is calculated to be 197 whereas the proposed method calculates a weighted

mean of 164.

24




192 105 78 81 78
208 163 117 89 72
224 205 162 103 64
225 221 205 159 89
227 228 222 198 133


(a)


192 105 255 81 78
208 163 255 89 255
224 205 255 255 255
225 0 255 255 89
227 228 222 198 133


(b)

0.004 0.012 0.063 0.012 0.004
0.012 0.063 1 0.063 0.012
0.063 1 0 1 0.063
0.012 0.063 1 0.063 0.012
0.004 0.012 0.063 0.012 0.004


(c)


−0.001 0.005 0.063 0.014 0.010
−0.005 0.020 1 0.111 0.012
−0.029 0.270 0 1 0.063
−0.006 0.063 1 0.063 0.030
−0.002 0.002 0.056 0.011 0.009


(d)

Figure 4.1: A snapshot of restoration process from Lena image contaminated by 30%
noise. (a) Original filtering window. (b) Filtering window after contamination. (c)
Original weights. (d) Recalibrated weights.
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Algorithm 1 The pseudo code of the proposed method.
1: for oi, j ∈ image do
2: if oi, j 6= 255∧oi, j 6= 0 then
3: oi, j← oi, j, continue
4: else
5: sumi← 0, sumw′ ← 0
6: count255← 0, count0← 0
7: P← 0, Q← 0, R← 0, S← 0, T ← 0
8: for ix,y ∈ I∧ /∈ (I0∪ I255) do
9: dx

x,y← x− i
10: dy

x,y← y− j

11: wx,y←
[
(|x− i|p + |y− j|p)1/p

]−k

12: P← P+wx,y(dx
x,y)

2

13: Q← Q+wx,ydx
x,ydy

x,y
14: R← R+wx,ydx

x,y

15: S← S+wx,y(d
y
x,y)

2

16: T ← T +wx,ydy
x,y

17: end for
18: R←−R
19: T ←−T
20: g′y←

(PT )+(QR)
−Q2+(PS)

21: g′x←−
(Qg′y)+R

P
22: for ix,y ∈ I do
23: if ix,y = 255 then
24: count255 = count255 +1
25: else if ix,y = 0 then
26: count0 = count0 +1
27: else
28: w′x,y← wx,y +[wx,y(g′xdx

x,y +g′ydy
x,y)]

29: sumw′ = sumw′+w′x,y
30: sumi = sumi + ix,yw′x,y
31: end if
32: end for
33: if count255 + count0 = NFW

2 then
34: if count255 > count0 then
35: oi, j← 255
36: else
37: oi, j← 0
38: end if
39: else
40: oi, j← sumi

sumw′
41: end if
42: end if
43: end for
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Chapter 5

EXPERIMENTAL RESULTS

This chapter provides the main findings of conducted experiments and their interpre-

tation. There are three sections under this chapter. In Section 5.1, details of experi-

mental methodology and metrics that are used for qualitative measurements are given.

The analysis of noise detection performance are under Section 5.2. In Section 5.3, the

restoration performance and computational complexity of the state-of-the-art methods

are analyzed. Finally, in Section 5.4, the effect of various parameters of the proposed

method is analyzed in order to find their optimal values.

5.1 Experimental Methodology

In simulations, two impulse noise models — Fixed-Valued Impulse Noise (FVIN) and

Random-Valued Impulse Noise (RVIN) — are tested. Four distinct experiments are con-

ducted in order to assess the performance of the various state-of-the-art impulse noise

removal methods and our proposed method Unbiased Weighted Mean Filter (UWMF).

These experiments are conducted in images contaminated by FVIN and involve com-

parison of noise detection performance, noise removal (restoration) performance, com-

putational complexity, CPU time, and finally analysis of parameters for the proposed

method. The methods that are implemented for comparison purposes are Interpolation-

based Impulse Noise Removal (IBINR) [17], Improved Boundary Discriminative Noise

Detection Filtering Algorithm (IBDND) [16], Cloud Model Filter (CMF) [42], Modi-

fied Decision Based Unsymmetric Trimmed Median Filter (MDBUTMF) [8], Adaptive

Median Filter (AMF) [23] and finally Standard Median Filter (SMF) [11]. In the second

experiment, the detection methods of CMF and BDND are compared with NND. Fur-

thermore, aforementioned noise detection methods are tested with images contaminated
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by RVIN and according to these results, best candidate is incorporated into the proposed

method (UWMF) in order to assess the restoration performance on this noise model.

All methods are implemented in C++ programming language and the simulations are

performed on a computer with Intel i7 CPU and 8GB of RAM. Eight commonly used

8-bit monochrome test images are used for experiments. The test images House and

Checkerboard are 256×256 and the rest of the images are 512×512 in size. In addition,

all filters are tested on medical, astronomical and other types of images with varying

sizes. In order to prevent occasional peaks in simulation results, average of 10 iterations

is taken for all experiments.

In all experiments, images are contaminated with different noise densities, ranging from

10% to 90%, with equal probability for both salt and pepper noise. Suggested window

sizes are used for all methods and no pixels around the edges are ignored while calculat-

ing the performance and for CMF, δ is taken as 1. In the third experiment, the effect of

different distance metrics based on the value of p, various values for k and window size

are tested. In experiments involving RVIN, the model in (3.3) is used and m is taken as

5.
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5.1.1 Performance Metrics

In the first experiment, two types of detection errors — Misdetection (MD) and False

Alarm (FA) — are used to measure detection performance. They are defined as

αMD(v1,v2,v3) =

 1, v1 6= v2∧ v3 = 0

0, otherwise

MD = ∑
x,y

αMD(ox,y,cx,y,nx,y)

(5.1)

αFA(v1,v2,v3) =

 1, v1 = v2∧ v3 = 1

0, otherwise

FA = ∑
x,y

αFA(ox,y,cx,y,nx,y)

(5.2)

where o is the original, c is the contaminated image. n is a binary noise map. αMD and

αFA are MD and FA decision functions, respectively. The error rates (%) for MD and

FA are given by

RMC = MD
M N ·100

RFA = FA
M N ·100

(5.3)

where M and N are image dimensions. Note that the summation of MD and FA errors

yields total detection error.

Noise detection is imperative to successful impulse noise removal. The problems of

detection can be analyzed from perspective of two types of errors. MD prevents a cor-

rupted pixel to be restored. Since corruption tends to be relatively different in terms of

intensity value compared to local uncorrupted pixels, it is natural to expect such errors

decrease the restoration quality drastically. On the other hand, in the case of FA, an

uncorrupted pixel is subjected to restoration procedure. The primary aim restoration

procedure is to guess the original intensity value of corrupted pixel with information at

hand. In consideration of this fact, FA is a less destructive detection error compared to

MD in terms of both objective and subjective assessments.
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In the second experiment where noise removal capabilities are tested, three well-known

performance metrics are used. These are Peak Signal-to-Noise Ratio (PSNR) in deci-

bels, Mean Absolute Error (MAE) and Structural Similarity (SSIM). It is important to

compare the methods in terms of Structural Similarity (SSIM) as visual quality of a re-

stored image may not be in parallel with restoration results in terms of PSNR or Mean

Absolute Error (MAE). PSNR, SSIM and MAE are defined as

PSNR = 10log10
2552

1
MN ∑

x,y
(ox,y− rx,y)2

(5.4)

SSIM =
(2µoµr + c1)(2Σ+ c2)

(µ2
o +µ2

r + c1)(σ2
o +σ2

r + c2)
,

µ =
1

MN ∑
x,y

ox,y,

σ
2 =

1
MN ∑

x,y
(ox,y−µ)2,

Σ =
1

MN ∑
x,y

ox,yrx,y−σoσr

(5.5)

MAE =
1

MN ∑
x,y
|ox,y− rx,y| (5.6)

where M×N is the size for original and restored images o and r. µo and µr are means;

σ2
o and σ2

r are variances for two images and Σ is their covariance. Finally, c1 and c2 are

stabilization constants.

Computational complexity analysis has been conducted using O-notation. It shows how

an algorithm scales with various parameters as those parameters tend to infinity. For

practical algorithm speed assessment, CPU time is used.

5.2 Noise Detection Performance

The detection performance of NND, CMF and BDND are presented in Table 5.1. In

that table, RTOTAL is summation of RMD and RFA defined in (5.3). However, none of

the methods produced false alarm. For this reason, false alarm metric is excluded from

Table 5.1. NND naïvely assumes that corrupted pixels are either black or white, or in
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a more generalized sense, the pixels with maximum or minimum intensity value in the

dynamic rage. This situation makes NND suitable for images where extreme intensity

values are absent. The success of NND can be seen for Lena, Barbara and House images

in Table 5.1. In these images, NND operates with perfect detection accuracy while other

methods result with MD. All methods provide robust detection performance across a

wide range of noise densities with total misclassification rate less than 1%. Among

three detection algorithms, NND slightly outperforms the other two. In most cases, such

performance difference will not make a significant improvement in terms of restoration

quality.

In experiments, we have observed that none of the noise detection algorithms could op-

erate on binary images (e.g., Checkerboard). This is due to the fact that these algorithms

are not designed for binary images. Figure 5.1 illustrates original and contaminated

Checkerboard image. NND completely fails as it considers entire binary image to be

noise. CMF and BDND also fail because these methods can not find proper upper and

lower intensity bounds for noise detection. One solution to this problem is counting

the number of corrupted pixels in a filtering window and acting accordingly if there is

no uncorrupted pixel. IBINR and MDBUTMF are two methods solving this issue with

such approach.

Figure 5.1: Original and contaminated (%30) Checkerboard image.
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Table 5.1: Comparison of FVIN detection performance of NND, CMF and BDND.
NND CMF BDND

Image Noise MD Total (RTOTAL) MD Total (RTOTAL) MD Total (RTOTAL)

L
en

a

10 0 0(0%) 44 44(0.0168%) 0 0(0%)

30 0 0(0%) 8 8(0.0031%) 1 1(0.0004%)

50 0 0(0%) 1 1(0.0004%) 7 7(0.0027%)

70 0 0(0%) 0 0(0%) 17 17(0.0065%)

90 0 0(0%) 0 0(0%) 261 261(0.0996%)

Pe
pp

er
s

10 1 1(0.0004%) 57 57(0.0217%) 918 918(0.3502%)

30 1 1(0.0004%) 10 10(0.0038%) 688 688(0.2625%)

50 1 1(0.0004%) 1 1(0.0004%) 714 714(0.2724%)

70 1 1(0.0004%) 1 1(0.0004%) 599 599(0.2285%)

90 0 0(0%) 0 0(0%) 719 719(0.2743%)

B
ab

oo
n

10 24 24(0.0092%) 46 46(0.0175%) 393 393(0.1499%)

30 18 18(0.0069%) 20 20(0.0076%) 315 315(0.1202%)

50 20 20(0.0076%) 20 20(0.0076%) 255 255(0.0973%)

70 17 17(0.0065%) 17 17(0.0065%) 130 130(0.0496%)

90 10 10(0.0038%) 10 10(0.0038%) 215 215(0.0820%)

B
ar

ba
ra

10 0 0(0%) 16 16(0.0061%) 1 1(0.0004%)

30 0 0(0%) 3 3(0.0011%) 4 4(0.0015%)

50 0 0(0%) 0 0(0%) 9 9(0.0034%)

70 0 0(0%) 0 0(0%) 33 33(0.0126%)

90 0 0(0%) 0 0(0%) 304 304(0.1160%)

B
oa

t

10 6 6(0.0023%) 22 22(0.0084%) 136 136(0.0519%)

30 6 6(0.0023%) 6 6(0.0023%) 121 121(0.0462%)

50 6 6(0.0023%) 6 6(0.0023%) 140 140(0.0534%)

70 2 2(0.0008%) 2 2(0.0008%) 96 96(0.0366%)

90 6 6(0.0023%) 6 6(0.0023%) 337 337(0.1286%)

B
ri

dg
e

10 1327 1327(0.5062%) 1442 1442(0.5501%) 3159 3159(1.2051%)

30 1200 1200(0.4578%) 1205 1205(0.4597%) 1781 1781(0.6794%)

50 1080 1080(0.4120%) 1081 1081(0.4124%) 1707 1707(0.6512%)

70 914 914(0.3487%) 914 914(0.3487%) 1308 1308(0.4990%)

90 752 752(0.2869%) 752 752(0.2869%) 1237 1237(0.4719%)

H
ou

se

10 0 0(0%) 10 10(0.0038%) 217 217(0.0828%)

30 0 0(0%) 0 0(0%) 184 184(0.0702%)

50 0 0(0%) 0 0(0%) 161 161(0.0614%)

70 0 0(0%) 0 0(0%) 66 66(0.0252%)

90 0 0(0%) 0 0(0%) 114 114(0.0435%)
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5.3 Noise Restoration Performance & Computational Complexity

The restoration capabilities of the state-of-the-art methods and the proposed method

(UWMF) are compared across a wide range of noise densities, ranging from 10% to

%90, using different qualitative assessment methods. In addition, all methods are com-

pared visually. Figures 5.2 and 5.3 present the comparison of selected methods in terms

of PSNR and SSIM for Lena and House images, respectively. UWMF has the highest

restoration performance for both metrics. MDBUTMF, IBINR, IBDND and CMF have

similar results and their results are close to the performance of UWMF. However, AMF

is significantly outperformed by other methods. In House image, the performance dif-

ference between the proposed method and the other methods is even greater. This is due

to the fine detail preservation capabilities of UWMF in both smooth and edge regions.

10 30 50 70 90

20

25

30

35

40

45

Noise Density (%)

PS
N

R
(d

B
)

AMF
MDBUTMF
IBDND
CMF
IBINR
UWMF

(a)

10 30 50 70 90

0.96

0.97

0.98

0.99

1

Noise Density (%)

SS
IM

(b)

Figure 5.2: Comparison of the state-of-the-art methods and UWMF in terms of PSNR
(in dB) and SSIM on Lena image.
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Figure 5.3: Comparison of the state-of-the-art methods and UWMF in terms of PSNR
(in dB) and SSIM on House image.

In order to evaluate restoration performance visually, restored Lena image and four

magnified regions within this image are illustrated in Figure 5.4. The proposed method

preserves the fine details in smooth and edge regions compared to the other methods.

This is due to unbiased nature of UWMF, that is, the intensity value estimations of cor-

rupted pixels reflect the local structure of the image, effectively resulting with superior

restoration quality. In the lower-left region where area around nose and mouth is mag-

nified, a better restoration quality is evident for image restored by the proposed method.

Although CMF, IBDND and IBINR results with slightly lower restoration performance

quantitatively, the difference in terms of visual results is great between UWMF and the

other methods.

For further analysis of restoration capabilities of the impulse noise removal methods

in consideration, a smaller region around nose (from dorsal to the end of sidewalls)

is mapped in Figure 5.5. AMF is excluded from this experiment as it has the lowest

restoration performance. From a topographical viewpoint, the proposed method (Fig.

5.5f) has the best estimation of the original image (Fig. 5.5a). In the hat and shoulder re-

gions (upper-right and lower-right magnifications, respectively), although jagged edges

occur in all of the restored images because of high noise density (90%), the proposed

method results the least amount of disturbance in the edges. MDBUTMF (Fig. 5.5b)
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.4: Visual results of Lena and various magnified regions (90% contamination)
restored with the state-of-the-art methods and UWMF. (a) Original image. (b) MD-
BUTMF [8]. (c) IBDND [16]. (d) CMF [42]. (e) IBINR [17]. (f) UWMF.

and IBDND (Fig. 5.5c) have the poorest preservation of the local structure compared to

the topographical map of the original image.

The simulation results for different metrics are presented in Tables 5.2, 5.3 and 5.4.

Similarly, the visual results of restored images are shown in Figure 5.6. As mentioned

earlier, IBDND and CMF fail to restore Checkerboard image since the detection pro-

cedure for these methods are not suitable for binary images and they do not have a

handling mechanism for a case where all pixels in a filtering window are corrupted. Al-

though NND is employed by IBINR, MDBUTMF and the proposed method, it is also

not suitable for binary images. However, these methods have handling mechanism when

no uncorrupted pixels are found in the filtering window.
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Figure 5.5: Comparison of local topographical restoration map of the selected methods
around nose region on Lena image with 90% contamination. (a) Original image. (b)
MDBUTMF [8]. (c) IBDND [16]. (d) CMF [42]. (e) IBINR [17]. (f) UWMF.
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Table 5.2: Detailed comparison of the state-of-the-art methods and UWMF in terms of PSNR (in dB), SSIM and MAE.
SMF AMF MDBUTMF IBDND CMF IBINR UWMF

Image Noise PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE

L
en

a

10 30.29 0.9876 4.35 36.82 0.9972 1.03 42.48 0.9992 0.38 42.54 0.9992 0.38 42.06 0.9992 0.40 42.86 0.9993 0.37 43.25 0.9993 0.36
30 28.73 0.9823 5.00 32.44 0.9926 2.02 36.28 0.9969 1.28 36.94 0.9973 1.22 36.55 0.9970 1.26 36.92 0.9973 1.22 37.53 0.9976 1.16
50 23.68 0.9415 8.97 29.19 0.9845 3.49 31.77 0.9912 2.61 33.63 0.9942 2.23 33.15 0.9935 2.33 33.76 0.9944 2.21 34.42 0.9952 2.09
70 18.93 0.8147 17.00 25.97 0.9674 5.73 29.12 0.9837 4.10 30.56 0.9883 3.62 29.90 0.9863 3.87 30.76 0.9888 3.57 31.41 0.9903 3.36
90 18.93 0.8147 17.00 21.21 0.9020 10.90 24.96 0.9571 7.31 25.69 0.9639 6.69 25.83 0.9642 6.88 26.69 0.9710 6.22 27.19 0.9740 5.93

C
he

ss
bo

ar
d 10 21.02 0.9842 2.02 15.90 0.9485 6.58 16.83 0.9524 20.88 N/A N/A N/A N/A N/A N/A 24.50 0.9929 0.91 24.44 0.9928 0.92

30 16.29 0.9531 5.99 12.79 0.8946 13.46 12.99 0.8662 44.57 N/A N/A N/A N/A N/A N/A 17.27 0.9625 4.79 17.25 0.9623 4.81
50 14.02 0.9210 10.10 10.95 0.8392 20.54 10.40 0.7059 71.81 N/A N/A N/A N/A N/A N/A 14.12 0.9227 9.87 14.15 0.9232 9.81
70 11.34 0.8533 18.74 8.92 0.7438 32.73 8.32 0.4721 94.16 N/A N/A N/A N/A N/A N/A 11.17 0.8475 19.48 11.13 0.8460 19.67
90 5.95 0.4921 64.88 5.51 0.4373 71.89 6.65 0.1540 117.66 N/A N/A N/A N/A N/A N/A 6.69 0.5716 54.71 6.72 0.5748 54.32

Pe
pp

er
s 10 27.91 0.9852 4.55 35.02 0.9970 1.16 38.97 0.9986 0.44 30.97 0.9925 0.81 39.47 0.9988 0.46 40.50 0.9990 0.46 41.45 0.9991 0.45

30 26.83 0.9812 5.19 30.89 0.9925 2.16 33.57 0.9958 1.44 30.07 0.9909 1.75 34.05 0.9962 1.45 34.91 0.9969 1.46 36.11 0.9976 1.40
50 25.08 0.9717 6.46 27.98 0.9857 3.64 30.05 0.9909 2.70 28.70 0.9875 2.89 30.99 0.9926 2.62 31.84 0.9939 2.58 32.95 0.9952 2.46
70 22.58 0.9488 9.13 25.00 0.9718 5.91 27.70 0.9844 4.22 27.28 0.9827 4.32 28.34 0.9864 4.20 29.10 0.9886 4.00 30.16 0.9910 3.79
90 17.22 0.8116 19.72 20.27 0.9161 11.43 24.02 0.9635 7.35 23.89 0.9623 7.41 24.80 0.9690 7.22 25.51 0.9739 6.61 26.27 0.9779 6.32

B
ab

oo
n 10 20.66 0.8352 15.53 26.30 0.9591 3.86 31.44 0.9875 1.42 29.61 0.9809 1.57 31.65 0.9881 1.43 32.52 0.9902 1.31 32.76 0.9908 1.27

30 20.22 0.8201 16.32 23.82 0.9292 6.41 26.38 0.9596 4.45 26.28 0.9580 4.39 26.71 0.9621 4.39 27.34 0.9671 4.15 27.62 0.9693 4.01
50 19.40 0.7792 18.37 21.58 0.8826 10.19 23.04 0.9101 8.58 24.00 0.9275 7.55 24.02 0.9279 7.74 24.57 0.9366 7.30 24.72 0.9389 7.15
70 18.78 0.7367 20.47 19.44 0.8081 15.40 21.17 0.8598 12.60 21.96 0.8823 11.43 21.81 0.8758 11.92 22.26 0.8905 11.19 22.41 0.8937 11.02
90 17.60 0.6343 24.49 16.97 0.6646 23.61 19.24 0.7726 18.24 19.08 0.7758 18.24 19.61 0.7844 17.74 19.69 0.7984 17.18 19.83 0.8027 16.96

B
ar

ba
ra

10 22.91 0.9401 9.93 28.14 0.9792 2.52 33.73 0.9916 0.89 34.63 0.9926 0.83 34.00 0.9920 0.89 34.95 0.9929 0.81 35.18 0.9931 0.77
30 22.37 0.9333 10.67 25.90 0.9681 4.21 28.45 0.9804 2.87 29.47 0.9841 2.63 29.01 0.9827 2.75 29.56 0.9844 2.62 29.73 0.9849 2.51
50 22.12 0.9286 11.62 23.75 0.9509 6.72 25.18 0.9622 5.63 26.72 0.9732 4.69 26.36 0.9710 4.89 26.79 0.9735 4.66 26.82 0.9737 4.49
70 20.99 0.9059 14.07 21.66 0.9234 10.25 23.29 0.9436 8.35 24.45 0.9569 7.27 24.21 0.9542 7.63 24.55 0.9578 7.20 24.61 0.9583 7.00
90 17.50 0.7814 23.17 18.71 0.8532 16.87 21.75 0.9200 12.02 21.46 0.9165 11.97 22.13 0.9268 11.65 22.07 0.9270 11.30 22.28 0.9299 10.98

B
oa

t

10 26.71 0.9637 6.66 32.92 0.9857 1.67 38.98 0.9917 0.56 37.84 0.9915 0.61 38.46 0.9918 0.60 39.35 0.9922 0.56 39.66 0.9923 0.54
30 25.65 0.9552 7.38 29.42 0.9764 2.93 32.97 0.9857 1.89 33.17 0.9871 1.85 33.13 0.9870 1.88 33.69 0.9878 1.81 34.21 0.9886 1.72
50 23.64 0.9298 9.30 26.62 0.9613 4.86 28.65 0.9722 3.85 30.21 0.9802 3.32 29.97 0.9794 3.44 30.69 0.9818 3.23 31.17 0.9831 3.08
70 21.58 0.8869 12.10 23.81 0.9323 7.77 26.33 0.9572 5.89 27.55 0.9680 5.26 27.06 0.9647 5.62 27.93 0.9705 5.12 28.41 0.9730 4.91
90 18.42 0.7532 18.92 19.95 0.8456 13.75 22.70 0.9090 10.11 23.42 0.9243 9.32 23.57 0.9260 9.59 24.33 0.9384 8.63 24.71 0.9427 8.39

B
ri

dg
e

10 23.76 0.9510 10.66 29.01 0.9771 2.97 33.98 0.9865 1.04 32.25 0.9846 1.33 33.32 0.9860 1.18 35.00 0.9878 0.96 35.22 0.9879 0.93
30 22.92 0.9417 11.62 26.38 0.9671 4.73 28.77 0.9767 3.25 28.70 0.9771 3.36 29.06 0.9784 3.30 29.90 0.9809 3.03 30.28 0.9819 2.89
50 21.41 0.9168 14.18 23.88 0.9488 7.62 25.25 0.9583 6.45 26.10 0.9654 5.81 26.41 0.9675 5.79 27.13 0.9716 5.30 27.42 0.9731 5.14
70 19.72 0.8741 17.89 21.35 0.9154 11.98 23.12 0.9373 9.66 24.02 0.9489 8.82 23.99 0.9486 9.18 24.59 0.9553 8.33 24.88 0.9575 8.13
90 17.14 0.7564 25.48 17.93 0.8240 20.32 20.40 0.8868 15.48 20.71 0.8976 14.73 21.14 0.9050 14.77 21.57 0.9158 13.62 21.80 0.9191 13.41

H
ou

se

10 26.51 0.9697 4.77 34.13 0.9949 1.14 37.95 0.9979 0.42 28.94 0.9829 0.96 38.41 0.9981 0.48 40.19 0.9988 0.41 42.04 0.9993 0.36
30 25.51 0.9623 5.51 29.83 0.9863 2.19 32.46 0.9924 1.44 28.47 0.9808 1.82 32.99 0.9933 1.51 34.36 0.9951 1.37 36.11 0.9968 1.22
50 23.91 0.9445 6.84 26.96 0.9735 3.71 28.72 0.9819 2.85 27.52 0.9760 2.91 29.86 0.9860 2.77 31.12 0.9895 2.46 32.55 0.9925 2.25
70 21.21 0.8919 9.98 24.04 0.9479 6.04 26.45 0.9693 4.46 26.34 0.9681 4.34 27.13 0.9733 4.54 28.20 0.9793 3.96 29.43 0.9844 3.71
90 18.06 0.7644 16.42 19.50 0.8524 11.68 22.76 0.9263 7.95 22.95 0.9298 7.68 23.65 0.9386 7.85 24.39 0.9493 6.95 25.05 0.9559 6.82



Table 5.3: Detailed comparison of the state-of-the-art methods and UWMF in terms of PSNR (in dB), SSIM and MAE on additional images.
AMF MDBUTMF IBDND CMF IBINR UWMF

Image Noise PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE
C

he
st

10 40.31 0.9985 0.60 28.06 0.9936 2.73 35.28 0.9984 1.57 34.55 0.9985 1.86 43.26 0.9998 0.24 44.09 0.9998 0.22
30 36.04 0.9979 1.12 21.26 0.9647 8.34 33.24 0.9976 2.22 32.24 0.9974 2.60 28.48 0.9926 1.02 28.54 0.9926 0.98
50 32.93 0.9968 1.92 18.53 0.9305 13.91 31.32 0.9965 2.98 30.75 0.9963 3.37 35.91 0.9978 1.35 36.20 0.9980 1.25
70 29.39 0.9955 3.23 15.80 0.8639 19.73 29.46 0.9947 4.03 28.39 0.9935 4.74 29.73 0.9941 2.31 30.17 0.9945 2.11
90 21.98 0.9716 7.44 13.93 0.7793 26.12 25.40 0.9866 6.82 24.32 0.9827 8.21 17.25 0.9134 8.39 17.30 0.9144 8.03

G
al

ax
y

10 42.61 0.9992 0.55 49.67 0.9997 0.14 49.45 0.9997 0.16 49.39 0.9997 0.17 50.85 0.9997 0.14 51.42 0.9998 0.13
30 39.53 0.9982 0.88 43.37 0.9993 0.48 44.24 0.9994 0.50 44.01 0.9993 0.53 43.86 0.9993 0.46 44.13 0.9993 0.45
50 36.71 0.9965 1.46 39.47 0.9980 1.10 40.91 0.9986 0.92 40.85 0.9987 0.98 41.71 0.9988 0.87 42.77 0.9991 0.79
70 33.44 0.9916 2.50 36.69 0.9961 1.74 38.28 0.9972 1.49 37.88 0.9971 1.62 38.71 0.9976 1.43 39.76 0.9981 1.31
90 27.23 0.9664 5.26 32.01 0.9885 3.56 33.59 0.9922 2.82 33.50 0.9919 3.06 34.39 0.9934 2.64 35.16 0.9944 2.48

H
ea

d

10 26.29 0.9910 2.36 20.81 0.9662 10.00 11.12 0.6642 48.61 16.46 0.8973 26.36 24.71 0.9871 2.38 25.31 0.9888 2.08
30 24.30 0.9861 3.54 15.90 0.8859 25.59 10.39 0.6044 53.43 10.96 0.6403 53.45 21.24 0.9719 3.80 21.43 0.9731 3.51
50 22.30 0.9778 5.21 13.06 0.7670 42.68 9.70 0.5402 58.47 9.14 0.4704 66.53 19.30 0.9534 8.09 19.90 0.9609 7.04
70 19.90 0.9595 8.04 10.72 0.5951 58.06 8.91 0.4608 64.61 8.17 0.3512 75.74 17.32 0.9254 11.61 17.82 0.9333 10.30
90 14.96 0.8761 17.45 8.83 0.3754 75.17 7.72 0.3138 77.17 7.61 0.2543 83.40 11.18 0.7086 29.21 11.22 0.7138 28.29

K
id

ne
y

10 42.05 0.9989 0.52 38.68 0.9981 0.40 41.49 0.9990 0.35 40.55 0.9987 0.40 45.38 0.9995 0.21 46.42 0.9997 0.18
30 36.79 0.9970 1.30 32.15 0.9910 1.27 37.37 0.9973 0.86 37.62 0.9975 0.88 37.77 0.9976 0.63 38.31 0.9978 0.51
50 32.96 0.9925 2.48 29.90 0.9846 2.53 34.11 0.9944 1.59 35.01 0.9953 1.59 36.98 0.9971 1.37 38.23 0.9978 1.09
70 28.93 0.9820 4.47 27.09 0.9702 3.96 32.25 0.9910 2.59 32.06 0.9906 2.84 33.48 0.9933 2.41 35.30 0.9956 1.94
90 22.51 0.9205 9.88 24.43 0.9442 7.54 27.73 0.9747 5.39 27.34 0.9717 5.99 27.99 0.9760 5.02 28.78 0.9799 4.45

M
oo

n

10 34.58 0.9933 1.44 40.27 0.9982 0.56 39.76 0.9981 0.58 40.17 0.9982 0.57 41.49 0.9987 0.49 42.19 0.9989 0.45
30 30.13 0.9830 3.05 34.05 0.9929 1.91 33.86 0.9924 1.84 34.60 0.9937 1.83 35.55 0.9947 1.63 36.15 0.9954 1.52
50 26.79 0.9650 5.42 28.86 0.9765 4.45 29.94 0.9814 3.54 30.91 0.9852 3.51 31.66 0.9872 3.26 32.53 0.9895 2.98
70 23.48 0.9258 9.02 26.37 0.9581 6.84 27.31 0.9657 5.79 27.33 0.9657 6.16 28.51 0.9739 5.41 29.22 0.9778 5.05
90 19.00 0.7939 16.52 21.87 0.8770 12.30 22.86 0.9045 10.85 22.98 0.9033 11.22 24.04 0.9265 9.89 24.48 0.9325 9.48

Sk
ul

l

10 41.22 0.9990 0.52 44.37 0.9995 0.21 44.33 0.9995 0.23 44.91 0.9995 0.22 46.19 0.9997 0.19 47.25 0.9997 0.17
30 36.01 0.9969 1.16 38.52 0.9982 0.71 38.73 0.9982 0.70 40.16 0.9987 0.67 40.65 0.9988 0.59 41.64 0.9991 0.51
50 32.30 0.9928 2.14 34.09 0.9949 1.76 35.51 0.9963 1.32 36.44 0.9970 1.32 37.20 0.9975 1.25 38.42 0.9980 1.09
70 28.69 0.9830 3.72 31.18 0.9902 2.80 33.07 0.9936 2.21 32.61 0.9929 2.47 33.82 0.9946 2.15 34.61 0.9954 1.95
90 23.68 0.9464 7.43 26.66 0.9717 5.58 28.36 0.9812 4.42 27.92 0.9789 4.93 29.06 0.9839 4.19 29.37 0.9849 4.05



Table 5.4: Detailed comparison of the state-of-the-art methods and UWMF in terms of PSNR (in dB), SSIM and MAE on additional images.
AMF MDBUTMF IBDND CMF IBINR UWMF

Image Noise PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE PSNR SSIM MAE
B

re
as

t
10 42.08 0.9991 0.50 47.81 0.9998 0.17 48.47 0.9998 0.16 47.94 0.9998 0.17 48.82 0.9998 0.15 49.09 0.9998 0.14
30 39.29 0.9999 0.87 42.22 0.9990 0.56 43.20 0.9992 0.51 42.82 0.9992 0.54 42.76 0.9991 0.49 42.77 0.9992 0.47
50 36.61 0.9984 1.46 38.46 0.9978 1.19 40.21 0.9986 0.94 39.82 0.9984 0.99 40.32 0.9985 0.93 40.68 0.9986 0.87
70 33.81 0.9958 2.34 36.06 0.9962 1.79 37.64 0.9973 1.50 37.14 0.9969 1.63 37.78 0.9975 1.48 38.12 0.9976 1.41
90 28.26 0.9794 4.25 32.99 0.9923 2.93 33.86 0.9937 2.67 33.93 0.9938 2.72 34.42 0.9944 2.52 34.80 0.9949 2.41

C
he

st
2

10 41.80 0.9994 0.70 48.40 0.9998 0.17 48.75 0.9998 0.20 48.18 0.9998 0.22 48.16 0.9998 0.22 47.52 0.9998 0.23
30 40.28 0.9992 0.90 42.83 0.9995 0.54 43.76 0.9995 0.62 44.16 0.9996 0.59 42.19 0.9994 0.67 41.80 0.9993 0.70
50 38.28 0.9987 1.32 40.73 0.9991 0.91 41.22 0.9992 1.06 41.56 0.9992 1.01 40.91 0.9992 1.09 40.84 0.9991 1.11
70 35.57 0.9974 2.05 38.01 0.9983 1.44 39.12 0.9987 1.57 39.44 0.9988 1.52 38.95 0.9987 1.59 39.26 0.9987 1.56
90 29.03 0.9867 4.03 34.80 0.9965 2.42 35.85 0.9973 2.41 36.35 0.9976 2.41 36.52 0.9976 2.29 37.28 0.9980 2.18

C
ir

cu
it

10 40.81 0.9985 0.57 42.09 0.9989 0.30 43.14 0.9992 0.33 44.74 0.9994 0.29 46.10 0.9995 0.24 46.78 0.9997 0.22
30 35.58 0.9945 1.31 35.55 0.9951 0.98 38.67 0.9974 0.89 39.50 0.9980 0.87 39.30 0.9979 0.75 39.70 0.9980 0.71
50 32.07 0.9892 2.41 33.78 0.9927 1.91 34.60 0.9938 1.68 36.26 0.9956 1.59 37.25 0.9965 1.42 38.57 0.9973 1.25
70 28.50 0.9769 4.21 30.38 0.9840 3.10 32.22 0.9892 2.65 33.15 0.9912 2.69 34.07 0.9929 2.36 35.52 0.9947 2.10
90 22.66 0.9123 8.96 26.89 0.9640 5.92 27.46 0.9686 5.13 28.21 0.9730 5.29 29.33 0.9792 4.56 30.41 0.9835 4.15

Sa
te

lli
te

10 23.23 0.9795 5.33 30.08 0.9958 1.37 27.94 0.9931 2.02 30.24 0.9959 1.41 31.87 0.9972 1.19 32.13 0.9973 1.15
30 22.75 0.9773 6.03 24.91 0.9861 4.23 25.43 0.9876 4.38 25.52 0.9879 4.19 26.59 0.9905 3.67 26.28 0.9898 3.80
50 21.47 0.9694 8.36 23.78 0.9818 6.53 23.34 0.9796 7.16 23.29 0.9796 7.06 24.36 0.9840 6.21 24.68 0.9851 6.06
70 19.96 0.9571 11.96 21.75 0.9709 9.72 21.61 0.9696 10.20 22.05 0.9726 9.92 22.27 0.9741 9.28 22.64 0.9762 9.08
90 17.88 0.9311 17.79 20.29 0.9593 13.24 19.36 0.9494 14.87 20.66 0.9620 13.60 20.25 0.9588 13.49 20.57 0.9615 13.31

Sp
in

e

10 40.07 0.9986 0.60 35.32 0.9975 0.65 35.45 0.9975 0.75 35.31 0.9974 0.80 39.71 0.9991 0.35 40.65 0.9993 0.30
30 35.65 0.9972 1.16 29.89 0.9906 1.66 33.05 0.9958 1.31 32.83 0.9955 1.39 35.12 0.9975 0.76 35.54 0.9977 0.68
50 32.24 0.9945 2.00 27.69 0.9843 2.89 31.03 0.9925 1.99 31.05 0.9925 2.07 33.58 0.9964 1.56 33.67 0.9965 1.41
70 28.77 0.9883 3.35 24.90 0.9714 4.28 29.56 0.9895 2.80 28.90 0.9879 3.15 30.91 0.9932 2.44 31.59 0.9943 2.21
90 23.19 0.9592 6.64 23.02 0.9551 6.37 26.17 0.9776 4.79 25.55 0.9740 5.30 26.02 0.9769 4.41 26.40 0.9788 4.11

W
om

an

10 37.95 0.9981 1.28 43.65 0.9994 0.35 41.86 0.9992 0.41 43.43 0.9994 0.37 43.94 0.9993 0.36 44.13 0.9994 0.37
30 35.88 0.9958 1.66 38.62 0.9981 1.08 37.13 0.9975 1.14 38.98 0.9983 1.07 38.74 0.9982 1.10 38.64 0.9981 1.13
50 33.45 0.9939 2.46 35.45 0.9964 1.83 35.03 0.9960 1.91 36.24 0.9969 1.84 36.43 0.9970 1.85 36.65 0.9970 1.85
70 30.70 0.9895 3.67 33.18 0.9940 2.73 33.29 0.9940 2.80 33.92 0.9948 2.70 34.18 0.9951 2.74 34.51 0.9954 2.70
90 25.90 0.9707 6.06 29.72 0.9871 4.13 30.35 0.9888 4.28 30.78 0.9897 4.00 31.22 0.9907 4.00 31.66 0.9915 3.85



The complexity of algorithms in O-notation can be found in Table 5.5. In addition, the

speed (CPU time) of the methods used in the experiments is presented in Table 5.6. The

results in this table is obtained using relatively bigger window sizes (inner and outer)

for BDND.

Table 5.5: Computational Complexity in O-notation.

Method Complexity
AMF [23] O(MNW 2 logW )

MDBUTMF [8] O(MNW 2 logW )

IBDND [16] N/A
CMF [42] N/A
IBINR [17] O(MNW 2)

UWMF O(MNW 2)

M and N are image dimensions and W is filtering window size.

5.4 Analysis of Parameters

In the third experiment, we have analyzed the effect of the parameters of the proposed

method in order to find the optimal values. The proposed method has three parameters.

These are k, p and window size (will be referred as wsize hereafter). k controls the

weight reduction over the distance. Its contribution is inversely proportional to distance

to the center of filtering window that is shown in (4.6). wsize is the size of square

neighborhood in which the proposed method obtains necessary information. Finally, p

is the parameter of Minkowski Distance defined in (4.7). The value of p also affects the

weights of pixels contributing to weighted mean. Figure 5.7 illustrates the effect of p

as its value changes. According to simulation results, restoration quality is the highest

when p = 1 (Manhattan Distance) and p = 2 (Euclidean Distance). Therefore, for other

parameters, only these two values of p are tested.

The effect of different k values under the effect of aforementioned distance metrics —

Euclidean and Manhattan Distances — can be seen in Figure 5.8. Lower values of k

do not diminish weights of pixels sharp enough as distance increases. Furthermore,
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Table 5.6: Comparison of the state-of-the-art methods and UWMF in terms of CPU
time (in milliseconds)

Image Noise AMF MDBUTMF IBDND CMF IBINR UWMF

L
en

a

10 51 11 6159 31 8 18
30 56 21 5839 48 35 46
50 81 81 5447 79 61 364
70 168 100 5198 155 163 803
90 1131 304 4108 453 576 1787

C
he

ck
er

bo
ar

d 10 5411 3 N/A N/A 3 38
30 5611 5 N/A N/A 13 32
50 5579 18 N/A N/A 18 137
70 5235 22 N/A N/A 44 223
90 4066 72 N/A N/A 146 453

Pe
pp

er
s

10 52 11 6139 31 8 17
30 56 21 5783 48 34 44
50 82 81 5370 78 61 361
70 168 100 4780 155 163 812
90 1190 304 4145 474 574 1786

B
ab

oo
n

10 52 11 6177 31 8 17
30 58 23 5794 50 36 44
50 82 82 5453 82 64 360
70 189 105 4746 157 168 803
90 1268 314 3984 464 579 1791

B
ar

ba
ra

10 51 11 5635 54 13 17
30 58 21 5559 49 35 44
50 84 83 5258 80 62 360
70 172 102 4767 161 167 799
90 1230 311 4058 464 580 1776

B
oa

t

10 51 10 5683 31 8 17
30 56 21 5433 48 35 44
50 81 81 5180 78 60 359
70 167 100 4768 157 163 798
90 1220 306 4077 474 581 1806

B
ri

dg
e

10 330 10 5043 35 8 18
30 313 21 5067 53 36 46
50 280 84 4950 86 65 369
70 364 104 4582 167 168 822
90 1370 311 4015 487 634 1788

H
ou

se

10 12 2 1486 8 2 4
30 14 5 1395 12 9 11
50 21 20 1299 19 15 90
70 43 26 1154 39 41 202
90 285 74 993 112 138 446

high values of k cause a dramatic reduction. This situation causes a peak in restoration

quality as k increases. It is crucial to use optimal values for k in order to achieve the

best noise removal performance. Restoration results in Table 5.2 are obtained with

k = 4. The optimal value of k is in range of [4 6], however, as long as k is in this range,

the difference is negligible, therefore, a fine-tuning is not necessary.

Unlike k, wsize does not affect restoration quality as long as it is large enough to contain

uncorrupted pixels. If a very large wsize is selected, the weights of very distant pixels

are mitigated by k. This is evident in Figure 5.9. However, larger wsize will decrease
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the performance in terms of CPU time. Recommended values for wsize are presented in

Table 5.7.

Table 5.7: Recommended window sizes for the proposed method.
Noise Density (p) Window Size

p < 20 3×3
20≤ p < 50 5×5
50≤ p < 70 7×7
70≤ p < 85 9×9
85≤ p < 90 11×11

p≥ 90 13×13

5.5 Discussion on Experimental Results

Spatial bias is an impediment to proper estimation of the original intensity value. Our

proposed method addresses this problem and provides superior restoration performance.

This has been demonstrated in terms of objective measurements in Figures 5.2 and 5.3

as well as in Table 5.2. Furthermore, UWMF decreases the disturbance in the edges

and gradient-like regions, resulting with the least amount of jagged edges and blotches

between comparison methods, effectively increasing the suitability of images restored

by UWMF for further processing or computer vision applications. Figures 5.4 and 5.5

demonstrated the effectiveness of UWMF in these terms.

UWMF does not require parameter tuning based on the image. In addition, the con-

volution process of the proposed method is suitable for parallel implementation using

various computing architectures. This property makes it suitable for real-time applica-

tions such as surveillance systems.

5.6 Preliminary Studies on Random-Valued Impulse Noise

The model defined in (3.3) is used for RVIN. In this model, the corruption can take a

value on both sides of dynamic range in a span defined with m. For example, if m is 5,

the corruption can take any value in [0 5] and [250 255]. All intensity values in these

spans have equal probability of occurrence. The noise detection methods are presented

42



in Table 5.8. Checkerboard image is omitted. Similar to detection results in FVIN

on Table 5.1, all methods have failed to detect noises on this image. NND and CMF

have failed to detect RVIN. Although the total detection error for these two methods is

between 10% and 30% in lower noise densities, the number of pixels that are falsely

detected or misclassified as noise is close to total number of corrupted pixels. In other

words, these methods have failed to detect majority of the corrupted pixels. BDND

provides robust detection performance up to 90% noise density. The detection values in

Table 5.8 are obtained using suggested window sizes. However, we have observed that

using relatively bigger window sizes than suggested improves the detection performance

dramatically. The efficiency in terms of CPU time decreases as window sizes increases.

Table 5.8: Comparison of RVIN detection performance of NND, CMF and BDND
NND CMF BDND

Noise MC (RMC) FA (RFA) Total (RTOTAL) MC (RMC) FA (RFA) Total (RTOTAL) MC (RMC) FA (RFA) Total (RTOTAL)

L
en

a

10 0 25558 25558(9.75%) 51 13218 13269(5.06%) 166 176 342(0.13%)
30 0 76617 76617(29.23%) 5 66679 66684(25.44%) 138 326 464(0.18%)
50 0 127739 127739(48.73%) 4 124164 124168(47.37%) 275 220 496(0.19%)
70 0 178829 178829(68.22%) 30 177799 177829(67.84%) 334 2130 2463(0.94%)
90 0 230014 230014(87.74%) 88 229354 229441(87.52%) 586 32953 33540(12.79%)

Pe
pp

er
s

10 1 25551 25552(9.75%) 56 13397 13453(5.13%) 1767 1285 3052(1.16%)
30 1 76758 76759(29.28%) 8 66437 66445(25.35%) 1693 2995 4688(1.79%)
50 1 127814 127815(48.76%) 6 123486 123491(47.11%) 1797 4495 6292(2.40%)
70 0 178886 178886(68.24%) 32 177510 177542(67.73%) 1554 7604 9157(3.49%)
90 0 229970 229970(87.73%) 76 229208 229284(87.46%) 1220 37240 38460(14.67%)

B
ab

oo
n

10 23 25572 25595(9.76%) 41 18149 18190(6.94%) 627 320 947(0.36%)
30 17 76810 76827(29.31%) 21 71297 71318(27.21%) 623 329 952(0.36%)
50 14 128097 128111(48.87%) 18 126218 126236(48.16%) 669 220 889(0.34%)
70 9 178783 178792(68.20%) 47 178220 178267(68.00%) 512 2130 2642(1.01%)
90 3 229931 229934(87.71%) 90 229361 229451(87.53%) 506 32780 33286(12.70%)

B
ar

ba
ra

10 0 25620 25620(9.77%) 14 15739 15754(6.01%) 474 643 1117(0.43%)
30 0 76679 76679(29.25%) 2 68647 68649(26.19%) 753 1003 1756(0.67%)
50 0 127886 127886(48.78%) 4 124714 124718(47.58%) 897 898 1794(0.68%)
70 0 178823 178823(68.22%) 34 177765 177799(67.82%) 812 2663 3476(1.33%)
90 0 230007 230007(87.74%) 83 229335 229417(87.52%) 858 33103 33961(12.96%)

B
oa

t

10 7 25497 25504(9.73%) 23 14034 14057(5.36%) 1137 744 1881(0.72%)
30 6 76586 76593(29.22%) 9 68056 68064(25.96%) 919 1256 2175(0.83%)
50 5 127585 127589(48.67%) 10 124821 124830(47.62%) 1153 1658 2810(1.07%)
70 3 178716 178719(68.18%) 32 178004 178036(67.92%) 961 3773 4734(1.81%)
90 1 230004 230005(87.74%) 80 229425 229505(87.55%) 902 33986 34888(13.31%)

B
ri

dg
e

10 1652 25571 27223(10.38%) 1756 16541 18298(6.98%) 10745 420 11165(4.26%)
30 1289 76427 77716(29.65%) 1303 68876 70179(26.77%) 5445 1567 7012(2.67%)
50 930 127780 128710(49.10%) 934 124741 125675(47.94%) 5745 1930 7675(2.93%)
70 564 178746 179310(68.40%) 600 177744 178344(68.03%) 3924 4122 8046(3.07%)
90 221 229840 230061(87.76%) 299 229163 229462(87.53%) 1801 34412 36213(13.81%)

H
ou

se

10 0 6431 6431(9.81%) 6 3329 3335(5.09%) 544 24 568(0.87%)
30 0 19161 19161(29.24%) 0 16694 16694(25.47%) 390 77 467(0.71%)
50 0 31977 31977(48.79%) 1 31017 31018(47.33%) 522 93 614(0.94%)
70 0 44698 44698(68.20%) 9 44378 44386(67.73%) 376 630 1006(1.54%)
90 0 57464 57464(87.68%) 20 57285 57305(87.44%) 202 8300 8503(12.97%)
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NND and CMF are not suitable for RVIN. For this reason, we have incorporated BDND

into our proposed method (UWMF). The restoration performances are presented in Ta-

ble 5.9. The restoration results are close to the performance on FVIN except for images

House and Peppers. This is due to poor detection performance.
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Figure 5.6: Visual results of five images restored with the state-of-the-art methods and
UWMF.
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Figure 5.7: Restoration results of UWMF with different values of p.
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Figure 5.8: Restoration results (PSNR in dB) of UWMF with different k values on Lena
image contaminated with different noise densities. (a) UWMF with Euclidean Distance.
(b) UWMF with Manhattan Distance.
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Figure 5.9: Restoration results (PSNR in dB) of UWMF with various window sizes on
Lena image contaminated with different noise densities. (a) UWMF with Euclidean
Distance. (b) UWMF with Manhattan Distance.
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Table 5.9: Comparison of the performance of UWMF on images contaminated by RVIN and FVIN.
Lena Peppers Baboon Barbara Boat Bridge House

Metric Noise RVIN FVIN RVIN FVIN RVIN FVIN RVIN FVIN RVIN FVIN RVIN FVIN RVIN FVIN

PS
N

R

10 42.40 43.25 31.83 41.45 30.05 32.76 35.09 35.18 37.66 39.66 33.55 35.22 29.81 42.04
30 37.29 37.53 29.94 36.11 26.24 27.62 29.54 29.73 33.28 34.21 28.56 30.28 28.51 36.11
50 34.27 34.42 28.55 32.95 24.20 24.72 26.93 26.82 30.62 31.17 25.68 27.42 27.54 32.55
70 31.31 31.41 25.95 30.16 22.18 22.41 24.67 24.61 28.02 28.41 23.01 24.88 26.46 29.43
90 26.89 27.19 22.27 26.27 19.75 19.83 22.25 22.28 24.45 24.71 20.34 21.80 23.33 25.05

SS
IM

10 0.9993 0.9993 0.9940 0.9991 0.9831 0.9908 0.9964 0.9931 0.9975 0.9923 0.9952 0.9879 0.9860 0.9993
30 0.9974 0.9976 0.9908 0.9976 0.9580 0.9693 0.9876 0.9849 0.9930 0.9886 0.9851 0.9819 0.9811 0.9968
50 0.9949 0.9952 0.9871 0.9952 0.9309 0.9389 0.9774 0.9737 0.9866 0.9831 0.9699 0.9731 0.9756 0.9925
70 0.9899 0.9903 0.9758 0.9910 0.8874 0.8937 0.9619 0.9583 0.9758 0.9730 0.9407 0.9575 0.9684 0.9844
90 0.9726 0.9740 0.9424 0.9779 0.7983 0.8027 0.9324 0.9299 0.9422 0.9427 0.8897 0.9191 0.9359 0.9559

M
A

E

10 0.36 0.36 0.76 0.45 1.48 1.27 0.77 0.77 0.60 0.54 1.19 0.93 0.81 0.36
30 1.16 1.16 1.83 1.40 4.29 4.01 2.47 2.51 1.79 1.72 3.24 2.89 1.72 1.22
50 2.11 2.09 3.07 2.46 7.32 7.15 4.50 4.49 3.20 3.08 6.03 5.14 2.80 2.25
70 3.39 3.36 4.93 3.79 11.07 11.02 7.00 7.00 5.03 4.91 9.71 8.13 4.17 3.71
90 6.04 5.93 8.40 6.32 17.03 16.96 10.99 10.98 8.55 8.39 15.05 13.4 7.29 6.82



Chapter 6

CONCLUSION

This thesis investigated nonlinear filters for impulse noise of type Fixed-Valued Impulse

Noise (FVIN). We have analyzed various state-of-the-art methods for impulse noise de-

tection and removal, namely Adaptive Median Filter (AMF), Modified Decision Based

Unsymmetric Trimmed Median Filter (MDBUTMF), Naïve Noise Detection (NND),

Boundary Discriminative Noise Detection (BDND), Improved Boundary Discrimina-

tive Noise Detection Filtering Algorithm (IBDND), Cloud Model Filter (CMF) and

Interpolation-based Impulse Noise Removal (IBINR). Furthermore, we have provided

an empirical comparison in both objective and subjective assessments. Finally, we have

found that the distribution of noise in the filtering window can be exploited to counter a

problem what we call spatial bias.

The intensity value of corrupted pixel can not be used in restoration procedure. Many

filters ignore corrupted pixels while estimating the original intensity value. In a filtering

window, corrupted pixels are as spatially correlated as uncorrupted pixels. Therefore,

using only corruption-free pixels leads to a spatial bias. In a contaminated image, the

information of intensity values of corrupted pixels is lost, however, their position infor-

mation is still present. The natural question is then arisen to ask if information supplied

by corrupted pixels can be exploited to make a better estimation.

The spatial bias is characterized by the positional distribution of noise in the filtering

window. In the presence of a weight function, the position information can be exploited

to recalibrate weights in order to counter the spatial bias. We have utilized this idea

and proposed a novel method for impulse noise removal, namely Unbiased Weighted
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Mean Filter (UWMF), which eliminates spatial bias and effectively provides a better

estimation of the original intensity value.

We have conducted extensive simulations to assess performance of aforementioned

state-of-the-art methods in terms of detection accuracy, objective restoration metrics —

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) and Mean Absolute

Error (MAE) — as well as computational complexity in O-notation and CPU time. In

general, we have observed that detection methods perform impressively and yield a total

detection error rate less than 1%. We have concluded that methods utilizing a weight

function which reflects the spatial relationship between pixels provide better restoration

quality. Furthermore, we have demonstrated that spatial bias is an inherent problem of

impulse noise due to random distribution of corrupted pixels. Experiments show that

the elimination of spatial bias mitigates disturbance in the edges and smooth regions,

resulting with superior visual clarity and restoration performance due to its unbiased

nature. Finally, we have analyzed the parameters of the proposed method and provided

optimal values to obtain the highest restoration performance.

In the future, applications of weight elimination to other filters or impulse noise models

can be investigated. Additionally, effects of nonlinear weight recalibration function can

be explored. Finally, extension of UWMF to color image can be studied.
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Appendix A: Source Code

Listing A.1: C++ Implementation of UWMF

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ t h i s f u n c t i o n c a l c u l a t e s i n v e r s e Minkowski D i s t a n c e ∗∗
∗∗ t o t h e g i v e n c e n t e r o f a f i l t e r i n g window ∗∗
∗∗ t h e w e i g h t s are s t o r e d i n a f l a o t v e c t o r ∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
void C a l c u l a t e W e i g h t s ( s t d : : v e c t o r < f l o a t > &weigh t s ,

c o n s t gge : : u t i l s : : Poin t2D &c e n t e r ,
i n t wsize , i n t k , i n t p )

{
/ / t h e s i d e l e n g t h o f t h e sq ua re window
i n t wid th = ws ize ∗ 2 + 1 ;
i n t h e i g h t = wid th ;
f l o a t we ig h t = 0 ;
f o r ( i n t y = 0 ; y < h e i g h t ; y ++) {

f o r ( i n t x = 0 ; x < wid th ; x ++) {
/ / make d i s t a n c e z e r o i f i t s t h e c e n t r a l p i x e l
i f ( c e n t e r . x == x && c e n t e r . y == y ) {

w e i g h t s [ h e i g h t ∗ y + x ] = 0 . f ;
c o n t in u e ;

}
/ / c a l c u l a t e i n v e r s e d i s t a n c e
f l o a t l = s t d : : abs ( c e n t e r . x − x ) ;
f l o a t r = s t d : : abs ( c e n t e r . y − y ) ;
l = s t d : : pow ( l , p ) ;
r = s t d : : pow ( r , p ) ;
f l o a t d i s t a n c e = s t d : : pow ( l + r , 1 . f / p ) ;
we ig h t = 1 / s t d : : pow ( d i s t a n c e , k ) ;
w e i g h t s [ h e i g h t ∗ y + x ] = w e i gh t ;

}
}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ t h i s f u n c t i o n compares two f l o a t i n g −p o i n t number ∗∗
∗∗ such f u n c t i o n i s r e q u i r e d s i n c e t h e u n d e r l y i n g ∗∗
∗∗ r e p r e s e n t a t i o n o f f l o a t i n g −p o i n t numbers i s n o t ∗∗
∗∗ p r e c i s e ∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
bool I s E q u a l ( f l o a t f i r s t , f l o a t second )
{

/ / t h e s m a l l e s t r e p r e s e n t a b l e f i x e d v a l u e
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f l o a t e p s i l o n = s t d : : n u m e r i c _ l i m i t s < f l o a t > : : e p s i l o n ( ) ;

/ / compare t h e d i f f e r e n c e r a t h e r than e q u a l i t y
f i r s t = s t d : : f a b s ( f i r s t ) ;
second = s t d : : f a b s ( second ) ;
f l o a t l a r g e = ( f i r s t > second ) ? f i r s t : second ;
f l o a t r i g h t = e p s i l o n ∗ l a r g e ;
f l o a t l e f t = s t d : : f a b s ( f i r s t − second ) ;
re turn l e f t <= r i g h t ;

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ g e t cpu−t i m e i n t e r m s o f ms ∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
s t d : : c l o c k _ t DiffInMS ( s t d : : c l o c k _ t t s t a r t , s t d : : c l o c k _ t

t e n d )
{

re turn 1000 . f ∗ ( t e n d − t s t a r t ) / CLOCKS_PER_SEC ;
}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗ c++ i m p l e m e n t a t i o n o f Unbiased Weighted Mean F i l t e r ∗∗
∗∗ t a k e s two image c o n t a i n e r s as p a r a m e t e r s ∗∗
∗∗ f i r s t image i s c o r r u p t e d image , t h e second one ∗∗
∗∗ s t o r e s t h e r e s o t r e d image , o t h e r arguments are ∗∗
∗∗ f i l t e r p a r a m e t e r s ∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
s t d : : c l o c k _ t UWMF( g r a p h i c s : : bas i c_Canvas < f l o a t > &image ,

g r a p h i c s : : ba s i c_Canvas < f l o a t > &o u t p u t ,
i n t wsize = 1 , i n t p = 1 , i n t k = 4 , i n t

o f f s e t = 0 )
{

/ / s t a r t c l o c k f o r CPU t i m e measurement
s t d : : c l o c k _ t t s t a r t = s t d : : c l o c k ( ) ;

/ / some c o n s t a n t s
c o n s t i n t WIDTH = image . GetWidth ( ) ;
c o n s t i n t HEIGHT = image . Ge tHe igh t ( ) ;
c o n s t f l o a t MAX = 1 . f ;
c o n s t f l o a t MIN = 0 . f ;

/ / i n i t i a l i z e v a r i a b l e s and c a l c u l a t e r e q u i r e d w e i g h t s
e t c .

s t d : : v e c t o r < f l o a t > o r g w e i g h t s ( ( ( ws ize ∗ 2 + 1) ∗ (
ws ize ∗ 2 + 1) ) ) ;

s t d : : v e c t o r < f l o a t > m o d i f i e d w e i g h t s ( ( ( ws ize ∗ 2 + 1) ∗
( ws ize ∗ 2 + 1) ) ) ;
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C a l c u l a t e W e i g h t s ( o r g w e i g h t s , gge : : u t i l s : : P o i n t ( wsize ,
ws ize ) , wsize , k , p ) ;

i n t s t a r t x , s t a r t y , endx , endy , w e i g h t s t a r t , i n d e x ;
i n t mincount , maxcount ;
f l o a t c u r w e i g h t , modif iedsum , modifiedwsum , orgsum ,

orgwsum ;
f l o a t p i x e l v a l , P , Q, R , S , T , term1 , term2 , te rm3 ;
bool h a s n o n n o i s y ;
gge : : u t i l s : : Poin t2D Gp ; / / c o u n t e r−b i a s v e c t o r

/ / s t a r t t h e main loop
f o r ( i n t y = o f f s e t ; y < HEIGHT − o f f s e t ; y ++) {

f o r ( i n t x = o f f s e t ; x < WIDTH − o f f s e t ; x ++) {

/ / r e s e t t h e w e i g h t s f o r each loop
m o d i f i e d w e i g h t s = o r g w e i g h t s ;

p i x e l v a l = image ( x , y ) ;

/ / n o i s e d e t e c t i o n
i f ( ! I s E q u a l ( p i x e l v a l , MIN) && ! I s E q u a l (

p i x e l v a l , MAX) ) {
o u t p u t ( x , y ) = image ( x , y ) ;
c o n t in u e ;

}

/ / compute t h e d i m e n s i o n s o f f i l t e r i n g window
s t a r t x = s t d : : max(−wsize , −x ) ;
s t a r t y = s t d : : max(−wsize , −y ) ;
endx = s t d : : min ( wsize , WIDTH − 1 − x ) ;
endy = s t d : : min ( wsize , HEIGHT − 1 − y ) ;
w e i g h t s t a r t = ( ws ize + s t a r t y ) ∗ ( ws ize ∗ 2 +

1) + ws ize + s t a r t x ;

/ / compute s p a t i a l b i a s
i n d e x = w e i g h t s t a r t ;
P = Q = R = S = T = 0 . f ;
f o r ( i n t yy = s t a r t y ; yy <= endy ; yy ++) {

f o r ( i n t xx = s t a r t x ; xx <= endx ; xx ++) {
p i x e l v a l = image ( x + xx , y + yy ) ;
i f ( ! I s E q u a l ( p i x e l v a l , MIN) && ! I s E q u a l

( p i x e l v a l , MAX) ) {
c u r w e i g h t = o r g w e i g h t s [ i n d e x ] ;
P += ( xx ∗ xx ) ∗ c u r w e i g h t ;
Q += xx ∗ c u r w e i g h t ∗ yy ;
R += xx ∗ c u r w e i g h t ;
S += ( yy ∗ yy ) ∗ c u r w e i g h t ;
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T += yy ∗ c u r w e i g h t ;
}

i n d e x ++;
}
i n d e x += ws ize ∗ 2 + s t a r t x − endx ;

}

R = −R ;
T = −T ;

/ / a s o l u t i o n f o r n u m e r i c a l i n s t a b i l i t i e s
/ / ! ! ! t h i s i s j u s t a work−around
t e rm1 = ( P ∗ T − Q ∗ R) ;
te rm2 = ( S ∗ P − (Q ∗ Q) ) ;

i f ( te rm2 == 0 . f ) {
te rm1 += 0.000001 f ;
te rm2 += 0.000001 f ;

}

Gp . y = term1 / te rm2 ;

te rm3 = (R − Q ∗ Gp . y ) ;

i f ( P == 0 . f ) {
te rm3 += 0.000001 f ;
P += 0 .000001 f ;

}

Gp . x = term3 / P ;

/ / r e c a l i b r a t e w e i g h t s u s i n g c o u n t e r−b i a s
v e c t o r ( Gp )

i n d e x = w e i g h t s t a r t ;
f o r ( i n t yy = s t a r t y ; yy <= endy ; yy ++) {

f o r ( i n t xx = s t a r t x ; xx <= endx ; xx ++) {
p i x e l v a l = image ( x + xx , y + yy ) ;
i f ( ! I s E q u a l ( p i x e l v a l , MIN) && ! I s E q u a l

( p i x e l v a l , MAX) ) {
c u r w e i g h t = o r g w e i g h t s [ i n d e x ] ;
m o d i f i e d w e i g h t s [ i n d e x ] = c u r w e i g h t

+ ( ( Gp . x ∗ xx + Gp . y ∗ yy ) ∗
c u r w e i g h t ) ;

}
i n d e x ++;

}
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i n d e x += ws ize ∗ 2 + s t a r t x − endx ;
}

/ / i n i t i a l i z e v a r i a b l e s f o r o r i g i n a l i n t e s n i t y
/ / v a l u e e s t i m a t i o n , i . e . , w e i g h t e d mean
i n d e x = w e i g h t s t a r t ;
mincount = 0 , maxcount = 0 ;
modi f iedsum = 0 . f , modifiedwsum = 0 . f ;
orgsum = 0 . f , orgwsum = 0 . f ;
h a s n o n n o i s y = f a l s e ;

/ / compute w e i g h t e d mean u s i n g r e c a l i b r a t e d
w e i g h t s

f o r ( i n t yy = s t a r t y ; yy <= endy ; yy ++) {
f o r ( i n t xx = s t a r t x ; xx <= endx ; xx ++) {

p i x e l v a l = image ( x + xx , y + yy ) ;
i f ( I s E q u a l ( p i x e l v a l , MIN) ) {

mincount ++;
}
e l s e i f ( I s E q u a l ( p i x e l v a l , MAX) ) {

maxcount ++;
}
e l s e {

h a s n o n n o i s y = t rue ;

modifiedwsum += m o d i f i e d w e i g h t s [
i n d e x ] ;

modi f iedsum += m o d i f i e d w e i g h t s [
i n d e x ] ∗ p i x e l v a l ;

orgwsum += o r g w e i g h t s [ i n d e x ] ;
orgsum += o r g w e i g h t s [ i n d e x ] ∗

p i x e l v a l ;
}
i n d e x ++;

}
i n d e x += ws ize ∗ 2 + s t a r t x − endx ;

}

/ / i f t h e r e aren ’ t any u n c o r r u p t e d p i x e l s
/ / p i c k e i t h e r b l a c k or w i h t e depend ing on
/ / o c c u r e n c e c o u n t
i f ( ! h a s n o n n o i s y ) {

i f ( mincount > maxcount ) {
o u t p u t ( x , y ) = 0 . f ;

}
e l s e {

o u t p u t ( x , y ) = 1 . f ;
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}
}
e l s e {

/ / i f t h e r e i s a problem w i t h t h e
e s t i m a t i o n

/ / use w e i g h t e d mean computed u s i n g t h e
o r i g i n a l w e i g h t

/ / c l i p p i n g i s a n o t h e r o p t i o n
i f ( I s E q u a l ( modifiedwsum , MIN) | |

( modi f iedsum / modifiedwsum ) < MIN | |
( modi f iedsum / modifiedwsum ) > MAX) {

o u t p u t ( x , y ) = orgsum / orgwsum ;
}
e l s e {

o u t p u t ( x , y ) = modif iedsum /
modifiedwsum ;

}

}
}

}

s t d : : c l o c k _ t t e n d = s t d : : c l o c k ( ) ;
re turn DiffInMS ( t s t a r t , t e n d ) ;

}

62



Appendix B: Additional Images

Figure B.1: Chest image. 600×493 in size.

Figure B.2: Galaxy image. 566×598 in size.
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Figure B.3: Head image. 512×512 in size.

Figure B.4: Kidney image. 360×414 in size.
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Figure B.5: Moon image. 662×640 in size.

Figure B.6: Skull image. 374×452 in size.

65



Figure B.7: Breast image. 482×571 in size.

Figure B.8: Chest2 image. 596×416 in size.
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Figure B.9: Circuit image. 906×678 in size.

Figure B.10: Satellite image. 754×808 in size.
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Figure B.11: Spine image. 512×512 in size.

Figure B.12: Woman image. 732×785 in size.
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