

Analysis of the LTE Security

Algorithm ZUC with SAT Solver

Ibrahim Awel Ahmed

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the Degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

February 2015

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Serhan Çiftçioğlu

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Assoc. Prof. Dr. Alexander Chefranov

 Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Asst. Prof. Dr. Gürcü Öz

3. Asst. Prof. Dr. Önsen Toygar

iii

ABSTRACT

Long Term Evolution (LTE) the 4th generation (4G) mobile broadband radio network

is designed with special attention given to security. In order to secure the

communication over the air radio network of LTE, three confidentiality and integrity

cryptographic algorithms are approved by 3rd Generation Partnership Project (3GPP).

ZUC, which is one of the algorithms is the third alternative to LTE. ZUC is designed

using inherited properties from SNOW3G cryptographic algorithm with some

improvements. However, it has been found that related keys, which are result of weak

key state exists in its predecessor. Moreover, from the view point of Security

Algorithms Group of Experts (SAGE) advancement in cryptanalysis may have effect

on both ZUC and its predecessor, due to their design similarity, and SNOW3G weak

key property. This thesis analyzed the latest version of ZUC; the analysis is to check

the existence of weak key state in ZUC at the end of initialization of Linear Feedback

Shift Register (LFSR) with key and initialization vector (IV). The analysis is done by

Boolean satisfiability problem solver (SAT solver) program, emerging logical

cryptographic algorithms analysis technique. For the analysis the key initialization

procedure equations of the algorithm are converted to SAT instance, which is special

input format for SAT solvers in Conjunctive Normal Form (CNF), and are fed to SAT

Solver. The result showed that the latest version of ZUC LFSR after the initialization

is not initialized with same value that indicates there is no weak key state problem in

the key generation procedure of ZUC algorithm.

Keywords: ZUC, weak key, Satisfiability, SAT solver, Logical cryptanalysis

iv

ÖZ

Dördüncü nesil mobil geniş bant radyo ağı olan Uzun Vadeli Dönüşüm (LTE),

özellikle güvenlik konusu dikkate alınarak tasarlanmıştır. LTE’nin hava radyo ağı

üzerinden iletişim sağlamak üzere üç şifreleme algoritması 3. Nesil Ortaklık Projesi

(3GPP) tarafından onaylanmıştır. Bu algoritmalardan biri olan ZUC, LTE’nin üçüncü

alternatifidir. ZUC, SNOW3G şifreleme algoritmasından bazı özellikleri alarak, ilgili

özelliklerin geliştirilmesiyle tasarlanmıştır. Ancak, ilgili anahtarlarla ilgili olarak,

öncülü olan SNOW3G’de zayıf anahtar durumunun mevcut olduğu görülmüştür. Buna

ek olarak, Güvenlik Algoritmaları Grubu Uzmanları’nın (SAGE) bakış açısına göre

kripto analizi alanındaki iyileştirmelerin ZUC ve öncülü üzerinde etkili olabilir. Bunun

nedeni ise tasarım benzerlikleri ve SNOW3G zayıf anahtar özellikleridir. Bu çalışma,

ZUC’un son sürümünü analiz etmeyi amaçlamıştır. Analiz, anahtar ve başlatma

vektörü (IV) ile doğrusal geribesleme öteleme kaydının (LFSR) başlatılmasının

sonunda, zayıf anahtar durumunu denetlemek amacıyla yapılmıştır. Şifreleme

algoritmalarının analizinde yükselmekte olan bir yöntem olarak Boolean

sağlanabilirlik problem çözücü (SAT çözücü) programı kullanılmıştır. Algoritmanın

anahtar başlatma prosedürü denklemleri, Bağlaçlı Normal Biçim’de (CNF) SAT

çözücüleri için özel bir girdi biçimi olan SAT örneklerine dönüştürülmüştür ve

ardından SAT Çözücüsü’ne yerleştirilmiştir. Sonuçlara göre, ZUC LFSR’nin son

sürümünün aynı değerlerle başlatılmadığı ortaya çıkmış ve ZUC algoritmasında zayıf

anahtar durumunun mevcut olmadığı anlaşılmıştır.

Anahtar Sözcükler: ZUC, zayıf anahtar, Sağlanabilirlik, SAT çözücü, Mantıksal

kripto analizi.

v

Dedicated to My Family

vi

ACKNOWLEDGMENT

With the supervision of Assoc. Prof. Dr. Alexander Chefranov in my work, getting

valuable advice, follow up, corrections, suggestion, and improvements, I learn a lot

from this thesis. It is a pleasure for me to say thank you so much to my supervisor

Assoc. Prof. Dr. Alexander Chefranov.

My thankfulness extended to professors at EMU who shared me their knowledge. In

addition, I am indebted to express my thankfulness for my families whom behind my

studies with their support, encouragement and helped me to advance in knowledge.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGMENT ... vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF SYMBOLS OR LIST OF ABBREVIATIONS ... xi

1 INTRODUCTION .. 1

1.1 Problem Definition ... 2

1.2 Methodology of Analysis ... 4

1.3 Organization of the thesis ... 4

2 BOOLEAN SATISFIABILITY (SAT) PROBLEMS ... 6

2.1 Boolean Satisfiability problems ... 6

2.2 SAT Solvers .. 9

2.2.1 Conjunctive Normal Form .. 9

2.2.2 DIMACS Format ... 10

3 ZUC ALGORITHM STRUCTURE ... 14

3.1 Structure of ZUC .. 14

3.1.1 LFSR ... 15

3.1.2 Bit Reorganization (BR): .. 15

3.1.3 Non-linear function (F) ... 16

3.2 Execution .. 17

3.2.1 Initialization stage ... 17

3.2.2 Working stage ... 18

viii

3.2.3 Keystream Generation ... 18

3.2.4 Encryption/Decryption .. 18

4 IMPLEMENTATION AND EXPERIMENTAL RESULTS 20

4.1 Building CNF ... 20

4.2.1 Exclusive OR CNF .. 21

4.2.2 Modular addition 2m .. 22

4.2.3 Modular addition 2m CNF ... 23

4.2.4 S-Box CNF .. 24

4.2.5 Rotation – K bit cyclic shift CNF ... 26

4.3 Generating ZUC SAT instance CNF ... 26

4.4 Experiment conducted .. 31

4.4.1 User manual to the program .. 31

4.4.2 Experment results analysis .. 35

5 CONCLUSION ... 38

REFERENCES ... 39

APPENDICES ... 42

Appendix A: Test parameters ... 43

Appendix B: Test cases variables assignment ... 46

Appendix C: Sample XOR CNF Generator Code .. 47

Appendix D: Sample S-Box S0 CNF Generator Code .. 49

ix

LIST OF TABLES

Table 1: Possible values for 10 binary variables .. 8

Table 2: Truth table Boolean function ... 21

Table 3: Truth table Exclusive OR... 22

Table 4: Truth table Boolean addition of two 1-bit operands with carry bits 23

Table 5: Partial view truth table ZUC S-Boxes S0 / S1 input and output 25

Table 6: Partial view of S-box 0 first output column CNF .. 25

Table 7: Mapping operand to SAT variable ... 27

Table 8: Partial view of Exclusive OR CNF generation .. 28

Table 9: Partial views of generated DIMACS file ... 29

Table 10: Mapping s-box inputs to SAT variable .. 30

Table 11: Partial view of generated DIMACS of S-Box 0 .. 30

Table 12: Different Key and IV for test scenarios ... 36

Table 13: Experimental result key 1 and IV 1 ... 36

Table 14: Experimental result key 2 and IV 2 ... 37

Table 15: Experimental result key 3 and IV 3 ... 37

Table 16: Experimental result key 4 and IV 4 ... 37

Table 17: Experimental result key 5 and IV 5 ... 37

Table A1: Test 1 parameters………………………………………………………...43

Table A2: Test 2 parameters…………………………………………………….......43

Table A3: Test 3 parameters………………………………………………………...44

Table A4: Test 4 parameters………………………………………………………...45

x

LIST OF FIGURES

Figure 1: Satisfiable input for MinSat SAT Solver [9] .. 11

Figure 2: SATISFIABLE output of MinSat SAT Solver [9] 12

Figure 3: UNSATISFIABLE input and output of MinSat SAT Solver [9] 13

Figure 4: Structure of ZUC Algorithm [6] ... 14

Figure 5: Boolean addition of two 1-bit operands with carry bits [15] 23

 Figure 6: Encryption/decryption test case 1…………….……………….................. 32

 Figure 7: Saved DIMACS files….……..……………….……………….................. 33

 Figure 8: Input to online SAT Solver [9]………………….……………….............. 34

 Figure 9: Output of online SAT Solver [9]….…………….……………….............. 35

xi

LIST OF SYMBOLS OR LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

BR Bit-reorganization

CNF Conjunctive Normal Form

DIMACS Center for Discrete Mathematics and Theoretical

Computer Science

EPS Evolved Packet System - LTE and SAE

EEA EPS Encryption Algorithm

EIA EPS Integrity Algorithm

128-EEA3 128-bit EEA third algorithm

FSM Finite State Machine

GF (q) Galois field with q elements

3G 3rd Generations of mobile communications technology

4G 4th Generations of mobile communications technology

3GPP 3rd Generation Partnership Project

IV Initialization Vector

LFSR Linear Feedback Shift Register

LTE Long Term Evolution (radio network)

SAGE Security Algorithms Group of Experts

SATISFIABILITY or SAT Boolean Satisfiability Problem

SNOW3G Stream cipher for the 3GPP encryption algorithms

QoS Quality of Service

ZUC Stream cipher algorithm (named after Chinese

 Mathematician and astronomer Zu Chongzhi)

xii

+ The addition of two integers.

= The assignment operator

mod The modulo operation of integers

⊕ The bit-wise exclusive-OR operation of integers

⊞ The modulo 232 addition

a||b The concatenation of strings a and b

aH The leftmost 16 bits of integer a

aL The rightmost 16 bits of integer a

a<<<nk The k-bit cyclic shift of the n bit register ato the left

a>> 1 The l-bit right shift of integer a

(a1, a2,…, an) → (b1, b2,…, bn) The assignment of the values of ai to bi in parallel

→ Implication

↔ Double implication

¬ Negation / NOT

𝑥

∨

∧

 Negation of x

 OR

 AND

 x Upper bound of x

1

Chapter 1

1 INTRODUCTION

Long Term Evolution (LTE) the 4th Generation (4G) mobile broadband radio

network technology designed by the 3rd Generation Partnership Project (3GPP),

telecommunication standard and development body [1], to fulfill the growing

demands for huge broadband throughput, definite availability, wide coverage of

mobility, and variety of Quality of Service (QoS) levels, with special attention given

to security. Security is a critical issue for both 3G and 4G mobile networks, [2] and

in particular strict security as one of the design objectives for LTE [3]; therefore,

3GPP specifications recommend encrypted communication over the air interface of

LTE mobile network. Moreover, three confidentiality and data integrity

cryptographic algorithms are approved by 3GPP [4].

The approved confidentiality and data integrity cryptographic algorithms are

SNOW3G, Advanced Encryption Standard (AES), and ZUC. SNOW3G have been

working for the 3G. The big expectation of strict security added AES as second

alternative. In 2010, new algorithm ZUC proposed as a third addition to LTE [4] and

the 2011 version of ZUC added to LTE Advanced [4, 2].

ZUC is stream cipher, which takes 128-bit keys to encrypt/decrypt blocks of data in

the range of 1 to 232 bits [5, 6]. The encryption/decryption is adding key stream bits

generated by ZUC into plain message or cipher message. ZUC algorithm involves

2

three logical layers first layer is Linear Feedback Shift Register (LFSR) that contain

16 stages shift registers, and second layer bit reorganization (BR) layer, and third

layer nonlinear transformation layer (F) [6]. Each of the layers of ZUC discussed

further in Chapter 3.

ZUC algorithm has design similarity to SNOW3G. SNOW3G cipher consists of a

combination of a LFSR and a Finite State Machine (FSM) where the LFSR also feeds

the next state function of the FSM. During evaluation, weaknesses were discovered

in SNOW 1.0 and the authors have developed a new version, version 2.0 of the cipher

that solves the weaknesses and improves the performance. During SAGE evaluation,

the design was further modified to increase its resistance against algebraic attacks

with the result named SNOW3G. It has been found that related keys exist both for

SNOW 2.0 and SNOW3G [7].

1.1 Problem Definition

ZUC algorithm design requirement was to make it different from its predecessor

algorithms, so that an attack on either is unlikely on the others too. However, ZUC

architectural design is not fully different from the previous 3GPP approved algorithm

i.e. SNOW3G. Therefore, according to SAGE the design requirements not fully

fulfilled, because ZUC inherits properties from SNOW3G. Nonetheless, SAGE

considered that it was not only inherited some features, but also added strength too,

and hence accepted the design. However, SAGE had doubt that both algorithms

might be affected with advancement in cryptanalysis [4].

Unfortunately, the 2010 public evaluation found weakness, then again newer version

in 2011 released making amendment to flaws identified, followed by six-month

3

public evaluation which ended with no problem reported. Finally, SAGE approved

the 2011 version to 3GPP as confidentiality and integrity protection for LTE

Advanced mobile network [4].

ZUC considered resistant from different types of cryptanalytic attacks [4] among

them an attack related key used, which referred as weak key. Generally, weak key is

a key that leads to extraction of the key bits used for the encryption/decryption from

the input bits and output bits relationship of a cryptographic algorithm [8]. In context

to ZUC, keys considered weak if the Key and initialization Vector (IV) used for the

initialization of the LFSR initializes all the cells of the LFSR with same value at the

end of initialization, which is called all-p state. The pair that leads to such state is

called weak (key IV) pair and the Key is called weak key [4].

The strength of ZUC comes mainly from its nonlinear process during the key steam

generation that makes an attack complex and difficult. Though considering SAT

solver’s efficacy in solving complex problems [8] and SAGE’s initial idea that

advancement in cryptanalysis may affect ZUC and its predecessor as premise [4], the

objective of this thesis is to analyze ZUC with SAT solver, analyzing security

algorithms with different mechanisms exposes hidden weakness there by gives

direction for either amendment or replacement. SAT solvers alone cannot break

modern cryptographic algorithms; however, they are useful at enhancing

cryptanalysis, and their combination to other cryptanalytic techniques seems

promising [8]. The analysis mechanism of ZUC algorithm is specifically related to

key loading and initialization procedure to find, or prove the absence of, weak key

state on ZUC using SAT solver state of the are cryptanalysis method emerging.

4

1.2 Methodology of Analysis

SAT solvers can help to analyze cryptographic algorithms key generation process

mechanism to verify its strength and weakness [8]. Therefore, the analysis is done

with SAT Solver program. For this thesis MiniSat SAT Solver available online at [9]

is used. SAT solver cryptanalysis requires representation of the algorithm or parts of

it into format that SAT solvers understand called SAT instance. SAT instance is

Conjunctive Normal Form (CNF) representation of the cryptographic algorithm

equations that involve ARX algorithms (i.e. operations based on NOT, XOR, AND,

OR, as well as addition modulo 2n and left rotation) [8]. In addition to ARX operators,

CNF of S-box also required for algorithms that involve S-box like ZUC.

The next stage is generating SAT instances while the algorithm is running, and stores

the CNF to file. Then feed to SAT solver and if the formed CNF equation is

satisfiable indicates possibility of weak key, else, weak key is not exit [8].

1.3 Organization of the thesis

In Chapter 1, we have covered introduction, problem definition and methodology of

analysis. The subsequent chapters are as follows:

Chapter 2 discuses Boolean satisfiability problem, the foundations of SAT solvers.

Chapter 3, discuses ZUC algorithm general structure and its operation

Chapter 4 discusses the implementation of ZUC algorithm followed by SAT instance

generation from the source code, and then SAT solver analysis on the generated SAT

instances.

Chapter 5 concludes the thesis.

5

Finally, at the end of appendices section experimental test parameters, test cases

sample codes, and instance generator sample codes are included.

6

Chapter 2

2 BOOLEAN SATISFIABILITY (SAT) PROBLEMS

This Chapter discussed SAT problems, followed by SAT problem solvers referred as

SAT Solvers. Then CNF, the standard input for most SAT solvers discussed. The

CNF input representation for SAT Solvers called Center for Discrete Mathematics

and Theoretical Computer Science (DIMACS) format and its syntax discussed.

Finally, practical examples are supplied.

2.1 Boolean Satisfiability problems

Boolean satisfiability problems are mathematical logical problems that try to find

possible solution that makes a given Boolean function result true. In other word we

are interested in getting values that satisfy Boolean equation as in equation (2.1)

shown bellow, so that the result becomes 1 i.e. TRUE. A Boolean expression result

becomes TRUE is referred as SATISFIABLE, meaning there are possible solution

that fulfil the given expression. Otherwise, it is called UNSATISFIABLE i.e. the

expression is always 0 indicates FALSE, i.e. there is no possible input for the problem

that make the result of it becomes TRUE [10, 13].

𝑓 = ⋀ 𝐶𝑖, 𝑤ℎ𝑒𝑟𝑒 𝐶 = ⋁ 𝐿𝑖, 𝐿

𝑚

𝑖=1

∈ {0,1}

𝑛

𝑖=1

(2.1)

L (Literal) a propositional variable or its negation,

and C (Clause) is literal or disjunction of literals.

http://en.wikipedia.org/wiki/Propositional_variable

7

For example, let’s consider simple Boolean formula f which is conjunction between

two Boolean variables a, and b.

f = (a ∧ ¬b)

f is SATISFIABLE i.e. (f =1 = (a ∧ ¬b)), because there are possible values that the

result f = (a ∧ ¬b) = TRUE, when a = TRUE, and b = FALSE satisfy the formula.

In contrast, f = (a ∧ ¬a), f is UNSATISFIABLE i.e. (f = (a ∧ ¬a) = FALSE), since

there is no possible value that makes the result f TRUE, in both cases when a = TRUE

and a = FALSE, f = (a ∧ ¬a) is always FALSE, hence UNSATISFIABLE.

Let’s consider another example with number of Boolean variables increasing to 5

variables a1,a2,a3,a4,a5 having the following clauses of the five Boolean variables:

(¬a2 ∨ a5)

 (a4 ∨ ¬a5)

(a1 ∨ ¬a3 ∨ a4)

(a1 ∨ a2)

To check the satisfiability we can create collectively combining each of them as a

Boolean formula as follows:

f = (¬a2 ∨ a5) ∧ (a4 ∨ ¬ a5) ∧ (a1 ∨ ¬ a3 ∨ a4) ∧ (a1 ∨ a2)

Now the objective is to find possible Boolean values that satisfy the formula, so that

f becomes TRUE (1).

1 = (¬a2 ∨ a5) ∧ (a1 ∨ ¬a3 ∨ a4) ∧ (a4 ∨ ¬a5) ∧ (a1 ∨ a2)

Possible values that satisfy the given equation substituted in each variable ai of the

Boolean equation are:

a1=1 a2=0 a3=1 a4=1 a5=1

f = (1 ∨ 1) ∧ (1 ∨ 0 ∨ 1) ∧ (1 ∨ 0) ∧ (1 ∨ 0)

8

SAT problems looks easy just as we are trying the possible values to get the result,

but the problem arises when the number of Boolean variable increase, and becomes

complex. Also SAT problems are NP-Complete. NP-Complete problems get harder

and harder as the problem becomes larger and will be difficult to solve. So we can

generalize it as follows for n variables at worst case we have 2n exhaustive search to

get the possible values that make the give Boolean equation TRUE [10].

For example for 10 variables, it needs 210 =1024 exhaustive search with possible

configuration values shown in Table 1.

 Table 1: Possible values for 10 binary variables

210 Possible values

1 0000000000

2 0000000001

3 0000000010

4 0000000011

. .

. .

1024 111111111

Similarly increasing the variables to 1000 then we need to have:

21000 =1.07150860718626732094842504906e+301 Possible values.

Therefore, an efficient alternative required to solve these kind complex Boolean

equations. Satisfiability solvers in short SAT Solvers, deal in such problems and

decides whether the give equation is satisfiable or not [11]. SAT solvers and how

they work is explained in the subsequent sections.

9

2.2 SAT Solvers

SAT Solvers are programs that determine whether Boolean expression has solution

or not, using mathematical methods. SAT solver program tries to find all possible

values for the variables that can make the given expression as a whole true, and gives

the possible satisfiable values. During the search, if there are no values that make the

expression true it returns unsatisfiable . To find satisfying values for a given clause

of an expression SAT solver apply depth-first search algorithm based on

backtracking the details of how it work can be found in [12]. Mostly SAT Solvers

input is Boolean expressions in CNF with special input format called DIMACS

format [11]. CNF and DIMACS are explained in the next sections.

2.2.1 Conjunctive Normal Form

CNF Terminologies: CNF is formed from the following three basic blockes: term,

clause, and expression [11].

Term A term is a Boolean variable like (a2) or the negation of it like (¬a2). Term

also called literal.

Clause A clause is the disjunction of terms, terms joined by OR. Clause can

contain single terms, and clause may not have repetition of Bboolean variables.

Expression An expression is the conjunction of clauses, clauses joined by AND.

Definition: CNF is expression formed by conjunction of clauses, clauses connected

by AND as in (2.1), and each clause composed of disjunction of terms. As the

symbols indicate the disjunctions of the terms (Li) forms the clause C and the

conjunction of clauses(Ci) gives the final result of f in CNF.

Example: This expression (a ∨ b ∨ c) (¬a ∨ b ∨ ¬c) is in CNF since the conjunction

implicitly expressed by parenthesis. To satisfy the expression “SATISFIABLE”

10

(TRUE) results of every clause must be TRUE. Since it is conjunction of clauses any

one of the clauses is FALSE, the expression as a whole is “UNSATISFIABLE”

(FALSE) [11], which is the basics behind that SAT solvers use to find the possible

solutions.

2.2.2 DIMACS Format

The input format for SAT Solvers is the referred as DIMACS file format which is

normal text file. As SAT Solvers requirement the CNF of a given Boolean expression

is represented in DIMACS file. In DIMACS the variables are not directly written

rather each variable is assigned mapping decimal number as representation of the

variable and negation of it expressed by “-“ and the two operators of CNF disjunction

and conjunction are represented by space and 0 respectively. The syntax for the

DIMACS in CNF is as follows [11]:

 p cnf <No_OF_VARIABLES> < No_OF_CLAUSE>

 First line must start with character “p” followed by space then “cnf” again

space the number of variables space at the end number of clauses.

 Character “c” to make comment

 In this format variables of the equation under consideration are given natural

number representation, and integers are assigned for literals. For example, the

variable a2 represented by 2 and –a2 by -2.

 The DIMACS in CNF operator disjunction represented by character space

 Number zero (0) indicates ends a clause and represents the conjunction.

The next examples show the DIMACS File format for Boolean equation.

SATISFIABLE Example

f =(a | b) & (-a | b) & (-b | a)

11

Each clause independently re-written as follows, it contains two variables a, and b

and three clauses:

(a | b)&

(-a | b)&

(-b | a)

Convert the variables into the mapped SAT variables a=1 and b=2 and feed to SAT

solver as shown in the Figure 1.

Figure 1: Satisfiable input for MinSat SAT Solver [9]

As shown in Firure 2. from the execution of the expression f possible values that

make the it SATISFIABLE are a=1, and b=2. Positive result implies true; a=true,

and b=true.

 f =(a | b) & (-a | b) & (-b | a)

 true = (true | true) & (-true | true) & (-true | true)

12

Figure 2: SATISFIABLE output of MinSat SAT Solver [9]

UNSATISFIABLE Example

f =[-b & (-a | -c) & (a | b) & (b |c)]

Each clause independently re-written as follows, it contains three variables a, b, and

c and four clauses:

-b &

 (-a | -c) &

 (a | b) &

 (b |c)

Convert the variables into mapped SAT variables a=1, b=2, and c=3. Then feed to

SAT solver as shown in the Figure 3.

13

Figure 3: UNSATISFIABLE input and output of MinSat SAT Solver [9]

From the execution of the expression f There is no possible value that will make the

given expression f true, hence UNSATISFIABLE.

14

Chapter 3

3 ZUC ALGORITHM STRUCTURE

In this Chapter, the general structure and execution of ZUC algorithm in briefly

presented for further details refer [4, 5, 6, 13], official 3GPP specifications. The new

stream cipher ZUC is a world–oriented stream cipher, takes a 128-bit secret key and

a 128-bit IV as input, and outputs keystreams of 32-bit words, which are used to

encryption/decryption [5].

3.1 Structure of ZUC

As shown in the Figure 4. The general structure of ZUC algorithm involves three

logical layers: LFSR, BR, and F [6]. Each logical layer of the algorithm briefly

discussed bellow.

Figure 4: Structure of ZUC Algorithm [6]

15

3.1.1 LFSR

LFSR has 16 cells each having 31-bits denoted by (s0, s1,…, s14,s15) each can take

values 1.2.3…,231-1. LFSR involves two modes of operation initialization and

working modes.

1) Initialization mode

In this mode for the initialization of LFSR values, (s0, s1,…, s14,s15), it takes a 31-bit input

from output of F discarding 1 right most bit u=W>>1, details shown below:

LFSRWithInitialisationMode (u) {

v = 215s15 217s13 221s10 220s4 (1+28)s0 mod (231-1) (3.1)

s15 = u + v mod (231-1) (3.2)

if s16 = 0 then set s16 231-1

(s1, s2,…, s15,s16) → (s0, s1,…, s14,s15)

}

2) Working mode

In this mode the initialization of LFSR values (s0, s1,…, s14,s15) it takes no input details

shown below:

LFSRWithWorkMode () {

v = 215s15 217s13 221s10 220s4 (1+28)s0 mod (231-1)

if s16 = 0 then set s16 231-1

(s1, s2,…, s15,s16)→ (s0, s1,…, s14,s15)

}

3.1.2 Bit Reorganization (BR):

The BR cells denoted by X0, X1, X2 and X3 in the second logical layer. Each of the

BR cells takes 32 bit from LFSR Cells Left half (H) or Right Half (L). Then X0, X1,

X2 will be input for F (nonlinear function) and X3 will be input for key stream

production.

16

Bitreorganization (){

X0 = S15H || S14L

X1 = S11L || S9H

X2 = S7L || S5H

X3 = S2L || S0H

}

3.1.3 Non-linear function (F)

The non-linear function denoted by F in the logical layer has 32-bits cells R1 and R2.

As it mentioned above the first three words, X0, X1, X2 formed in the BR stage are

input to F and then F output 32-bit (W). The equations shown below are under the F.

F(X0, X1, X2) {

W = (X0 ⊕ R1) ⊞ R2 (3.3)

W1 = R1 ⊞ X1 (3.4)

W2 = R2 ⊕X2 (3.5)

R1 = S (L1 (W1L || W2H)) (3.6)

R2 = S (L2 (W2L || W1H)) (3.7)

}

In the equations (3.6) and (3.7) S is S-box and L is linear transformer. Linear transformer

(L) defined bellow in (3.8), and (3.9), and S-box defined in (3.10).

1) The linear transforms L1 and L2

According to the definition below, it transforms the input to x

L1(X) =X⊕ (X<<<322) ⊕ (X<<<3210) ⊕ (X<<<3218) ⊕ (X<<<3224) (3.8)

L2(X) =X⊕ (X<<<328) ⊕ (X<<<3214) ⊕ (X<<<3222) ⊕ (X<<<3230) (3.9)

2) S-Boxes

17

The S-box S The 32×32 S-box S is composed of 4 juxtaposed 8×8 S-boxes, i.e.,

S=(S0,S1,S2,S3),whereS0=S2, S1=S3 S-Boxes 0, S-Boxes defined in [6].

For example

For an 8-bit input x in hex as x=h||l, the first hex half (h) represents row and the

second hex half (l) column of S0 (or S1).

S0 (0x24) =0xE4 and S1 (0x68)=0x23.

Similarly for 32-bit input x divide it into four 8-bits (4 bytes) and apply the same as

above for each.

X= x0 || x1 || x2 || x3, Y = y0 || y1 || y2 || y3 where xi and yi are all bytes, i=0, 1, 2, 3. Then

we have yi=Si (xi), i=0, 1, 2, 3

Let X=0x2468ACE8 be a 32-bit input, and Y its 32-bit output. Then divide each byte get

from the output from the appropriate S-box then it will give as follows:

 Y=S(X) =S0 (0x24) ||S1 (0x68) ||S2 (0xAC) ||S3 (0xE8) = 0xE423E17B.

In general for S-Boxes 0 and 1

Y = Si(x), i=0,1 (3.10)

3.2 Execution

ZUC execution has two stages: the initialization and working stage.

3.2.1 Initialization stage

The initialization starts by key loading and cells R1 and R2 initialized to be all 0. The 16

cells of LFSR each with 31-bit is initialized by expanding the 128-bit Key and IV

into 16 each having one byte, and constant value 240-bit expanded into 16 having 15-

bit each then it loads to LFSR as follows:

k = k0|| k1 ||k2 ||…||k15 and

iv = iv0|| iv1 || iv2 ||…|| iv15

D= d0||d1 ||…||d15, Constant value

18

si = ki|| di ||ivi where ki and ivi, 0<i<15, are all bytes.

Then it runs the following functions for 32 rounds:

1. Bitreorganization ()

2. W=F (X0, X1, X2)

3. LFSRWithInitialisationMode (w>> 1)

3.2.2 Working stage

Following the initialization stage the working stage. First, it runs the following only

once: it discards the output of W nonlinear function F:

1. Bitreorganization ()

2. F (X0, X1, X2)

3. LFSRWithInitialisationMode ()

3.2.3 Keystream Generation

Then 32-bit key stream (Z) production commences the key stream generation

involves the following:

1. Bitreorganization ()

2. Z= F (X0, X1, X2) ⊕ X3

3. LFSRWithInitialisationMode ()

For the encryption/decryption of a message with LENGTH bits, it generates

 L=LENGTH/32 words.

3.2.4 Encryption/Decryption

Both encryption/decryption perform by exclusive-OR message M and cipher

message C by the keystream Z generated in the above step.

M = M [0] ║M [1] ║M [2] ║…║M [LENGTH-1] be the input bit stream of

length LENGTH and

19

C = C[0] ║C[1] ║C[2] ║…║C[LENGTH-1] be the corresponding output bit

stream of length LENGTH, where M[i] and C[i] are bits, i=0,1,2,…,LENGTH-1.

Then

C[i] = M[i] z[i],i=0,1,2,…,LENGTH-1.

M[i] = C[i] z[i],i=0,1,2,…,LENGTH-1.

20

Chapter 4

4 IMPLEMENTATION AND EXPERIMENTAL

RESULTS

First, ZUC Confidentiality algorithm written in C programming language is taken

from 3GPP specification documentations [5, 6]. Then the CNF generators added to

the source code without affecting the encryption decryption process. CNF generators

can be prepared converting each operator in the algorithm [8]. The ZUC

Confidentiality algorithm is composed of different operators exclusive OR, modular

addition 2m, and rotation – K bit cyclic shift. When the operators execute the method

defined for the particular operator appends the CNF of the operator into DIMACS

file. In addition to operators CNF for S-Boxes is also generates during the S-Boxes

execution.

4.1 Building CNF

The conversion of Boolean equations into CNF format done based on truth table of

given equation or applying De’morgans laws. General case how to generate CNF

from truth table mentioned is discussed in this section, so that it can be applied for

all similar cases in the implementation. To build CNF from truth table we need to

consider all the possible inputs and outputs of the Boolean equation [16]. For

instance, let us take an arbitrary example of a Boolean function with three variables

f (x, y, z), variables x and y represent the two operands and z the result of the

operations, like (z = x ⊕ y) and the function output is either true “1” or false “0”. Let

us also assume the function in consideration have the truth Table 2.

21

 Table 2: Truth table Boolean function

Row No. x y z f (x, y, z)

1 0 0 0 1

2 0 0 1 0

3 0 1 0 0

4 0 1 1 1

5 1 0 0 0

6 1 0 1 1

7 1 1 0 1

8 1 1 1 0

To generate CNF from truth table, first, check the result of the function with the given

variables for each row. When the result of the function is “0” from the same row of

the corresponding variables will be connected by disjunction (logical OR), if the

value of the truth table is “1” the negation of the variable will be taken this makes

what is known clause of the CNF. Similarly for the rest of the rows and connect each

clause of the rows by conjunction (logical AND) this finally gives the CNF of the

equation.

𝑓 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ 𝑦 ∨ z) ∧ (𝑥 ∨ 𝑦 ∨ z) ∧ (𝑥 ∨ 𝑦 ∨ 𝑧)

For all the equations similar approach will be applied to generate the CNF of

cryptographic equations of ZUC algorithm containing cryptographic equations:

(3.1), (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9), and (3.10), and having the

operators exclusive OR, modular addition 2m, S-Box, and rotation – K bit cyclic shift.

The CNF of each operators is defined using truth table.

4.2.1 Exclusive OR CNF

To build the Exclusive OR CNF Table 3 is used with similar method is applied above.

22

 Table 3: Truth table Exclusive OR

Rows No. X Y z z = x ⊕ y

1 0 0 0 1

2 0 0 1 0

3 0 1 0 0

4 0 1 1 1

5 1 0 0 0

6 1 0 1 1

7 1 1 0 1

8 1 1 1 0

CNF of z = x ⊕ y is:

 (x ∨ y ∨ ¬ z) ∧ (x ∨ ¬ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬ y ∨ ¬ z) (4.1)

4.2.2 Modular addition 2m

Modular addition is part of many cryptographic algorithms, for instance SNOW 3G,

and ZUC. Specifically two operands modular addition is the focus of this thesis as

the cryptographic equations of ZUC involve fixed length two operand modular

additions. Modular addition is based on Galois field GF (2m) i.e. addition n operands

having m-bit and values can only be {0, 1}. As Figure 5 (left) depicts to perform two

operands modular addition it is important to have three operands (x, y, and CarryIn),

i.e. the two operands plus the carry bit, and the expected outputs (Sum, CarryOut)

result sum and the carry bit output. Similarly, for n bit operands as Figure 5 (right)

shows it can be generalized as the addition for each bit as (xi, yi, and CarryIni) and

its result outputs are (Sumi, CarryOuti) [15,16].

23

Figure 5: Boolean addition of two 1-bit operands with carry bits [15]

4.2.3 Modular addition 2m CNF

Base on the above addition method we can generalize and represent the result for two

operands all possible inputs and outputs of the modular addition as shown in Table

4.

Table 4: Truth table Boolean addition of two 1-bit operands with carry bits

Rows No. Carry In

zi

Operand1

xi

Operand2

yi

Carry Out

zi+1

Sum

si

1 0 0 0 0 0

2 0 0 1 0 1

3 0 1 0 0 1

4 0 1 1 1 0

5 1 0 0 0 1

6 1 0 1 1 0

7 1 1 0 1 0

8 1 1 1 1 1

From the above truth table, representation of the Modular addition in CNF is as

follows:

 si = (zi ∨ xi ∨ yi) ∧ (zi ∨ ¬xi ∨ ¬yi) ∧ (¬zi ∨ xi ∨ ¬yi) ∧ (¬zi ∨ ¬xi ∨ yi) (4.2)

zi+1 = (zi ∨ xi ∨ yi) ∧ (zi ∨ xi ∨ ¬yi) ∧ (zi ∨ ¬xi ∨ yi) ∧ (¬zi ∨ xi ∨ yi) (4.3)

The final modular addition in CNF is the CNF of (4.2) ∧ (4.3).

24

Addition 2
m

CNF = [(4.2) ∧ (4.3)] (4.4)

4.2.4 S-Box CNF

The CNF generated based on truth table of the s-boxes Table 5 (It shows partial view

of the 256 rows), which are representation of the S-Boxes S0 and S1. The truth tables

have 256 rows that constructed from the 16x16 s-box, that are directly taken from

the 3rd Generation Partnership Project (3GPP) ZUC specification document [6], and

its equivalent binary that is necessary for the generation of the CNF made from the

input and output of the s-boxes. The 8-bit outputs of the truth table is represented

by variables y1, y2, y3, y4, y5, y6, y7, y8 similarly 8-bit input also represented by

variables x1, x2, x3, x4, x5, x6, x7, x8. The CNF representation for each of the eight

output variables made according to truth Table 5 of the s-box CNF generated by

traversing through each 256 row of the output variable. According to CNF rule from

truth table, during the traverse when the output variable truth table value is “0” from

the same row of the corresponding 8-bit input variables connected by disjunction

(logical or) when the value is “1” it negation is taken. Finally the generated

disjunction variables connected by conjunction (logical and) to the next one. Let us

consider the first output (y1) variable CNF automatically generated shown below by

(4.5), similarly for rest of output variables y2, y3, y4, y5, y6, and y7, y8 their CNF

constructed and joined by conjunction to get the final CNF of the S-box0 as shown

in (4.6). Due to the big size of the CNF of S-boxes Table 6 shows partial view of S-

box 0 and same method applied on the others y2, y3, y4, y5, y6, and y7, y8.

25

 Table 5: Partial view truth table ZUC S-Boxes S0 / S1 input and output

No
S-Box S0/S1

Input

S-Box S0

Output

S-Box S1

Output

X1 X2 X3 X4 X5 X6 X7 X8

 y1 y2 y3 y4 y5 y6 y7 y8

 y1 y2 y3 y4 y5 y6 y7 y8

1 0x00 0 0 0 0 0 0 0 0 0x3e 0 0 1 1 1 1 1 0 0x55 0 1 0 1 0 1 0 1

2 0x01 0 0 0 0 0 0 0 1 0x72 0 1 1 1 0 0 1 0 0xc2 1 1 0 0 0 0 1 0

3 0x02 0 0 0 0 0 0 1 0 0x5b 0 1 0 1 1 0 1 1 0x63 0 1 1 0 0 0 1 1

… … … … … … …

… … Rows omitted … … … …

… … … … … … …

 Rows omitted

… … … … … … …

… … … … … … …

255 0xfe 1 1 1 1 1 1 1 0 0x34 0 0 1 1 0 1 0 0 0xe2 1 1 1 0 0 0 1 0

256 0xff 1 1 1 1 1 1 1 1 0x60 0 1 1 0 0 0 0 0 0xf2 1 1 1 1 0 0 1 0

 Table 6: Partial view of S-box 0 first output column CNF

y1 = [(x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7 ∨ x8)∧

 (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7 ∨ ¬x8) ∧

 (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ ¬x7 ∨ x8) ∧

 …

 Clauses omitted

 …

 (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ x8) ∧

 (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ ¬x8)]

 (4.5)

f S-Boxes0 CNF = ⋀ (𝑦𝑖8
𝑖=1) defined based on (4.5) and all outputs (4.6)

By applying similar method, we can generate CNF for S-Box 1 we finally get:

f S-Boxes1 CNF = ⋀ (𝑦𝑖8
𝑖=1) (4.7)

26

4.2.5 Rotation – K bit cyclic shift CNF

The K bits cyclic shift also called rotation. CNF generated based on De Morgan’s

law implication and double implication.

c ↔ (a<<<32k) (4.8)

a ↔ b = (a → b) ∧ (b → a) De Morgan’s law of double implication (4.9)

(a → b) = ¬a ∨ b De Morgan’s law of implication (4.10)

c → (a<<<32k) ∧ (a<<<32k) → c applying by (4.8)

CNF Rotation: (¬c ∨ (a<<<32k)) ∧ ((a<<<32k) c)) applying by (4.9) (4.11)

4.3 Generating ZUC SAT instance CNF

CNF is generated for each key IV input; during execution of the program the CNF

generator for each operator in the program takes operands (variables) of the operation

convert them into binary. Then for bit values of 1 it sends positive and for 0 negative

of the SAT variables, which are tracked with numbers [8]. For example the execution

of the exclusive OR operator defined in (4.1) for a single occurrence in the algorithm

it generates 32x4 clauses composed of the logical variables xi, yi, zi represented

interms of the SAT variable numbers. These SAT variables start from 1 and

increments for every logical operator execution in a bit level. Then the CNF variables

are stored into DIMACS file appending on the previous.

next Table 7 taken from the first round execution of exclusive OR operator executing

equation defined by (3.1) for particular input values x,y,z given in the table. It shows

the input variables in binary and the corresponding SAT variables as decimal number.

In SAT variables mapping binary 1 represented with positive and 0 with negative

decimal numbers.

27

Table 7: Mapping operand to SAT variable

Inputs X=e08f9a00, y=0, z= e08f9a00

X e08f9a00

xi binary 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

xi SAT variable 1 2 3 -4 -5 -6 -7 -8 9 -10 -11 -12 13 14 15 16 17 -18 -19 20 21

-22 23 -24 -25 -26 -27 -28 -29 -30 -31 -32

Y 0

yi binary 0

yi SAT variable -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18

-19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32

Z e08f9a00

zi binary 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

zi SAT variable 1 2 3 -4 -5 -6 -7 -8 9 -10 -11 -12 13 14 15 16 17 -18 -19 20 21

-22 23 -24 -25 -26 -27 -28 -29 -30 -31 -32

Now let us apply the SAT variables and generate SAT instance for equation (4.1) for

32 times as follows:

f⊕ CNF = ⋀ (xi ∨ yi ∨ ¬zi) ∧ (xi ∨ ¬yi ∨ zi) ∧ (¬xi ∨ yi ∨ zi) ∧ (¬xi ∨ ¬yi ∨32
𝑖=1

¬zi)

Applying the SAT variables, it will give as shown in Table 8. The table shows

partially not all the 32x4 clauses.

28

 Table 8: Partial view of Exclusive OR CNF generation

 (1 ∨ -1 ∨ ¬1) ∧ (1 ∨ ¬-1 ∨ 1) ∧ (¬1 ∨ -1 ∨ 1) ∧ (¬1 ∨ ¬-1 ∨ ¬1)

(2 ∨ -2 ∨ ¬2) ∧ (2 ∨ ¬-2 ∨ c2) ∧ (¬2 ∨ -2 ∨ 2) ∧ (¬2 ∨ ¬-2 ∨ ¬2)

(3 ∨ -31 ∨ ¬3) ∧ (3 ∨ ¬-3 ∨ 3) ∧ (¬3 ∨ -3 ∨ 3) ∧ (¬3 ∨ ¬-3 ∨ ¬3)

…

Clauses omitted

 ….

We have seen sample representation for exclusive or operator similarly, all operators

defined by (4.4), (4.6), and (4.10) according to shown below:

f⊞CNF=⋀ (zi ∨ xi ∨ yi) ∧ (zi ∨ ¬xi ∨ ¬yi) ∧ (¬zi ∨ xi ∨ ¬yi)

∧ (¬zi ∨ ¬xi ∨ yi)(zi ∨ xi ∨ yi) ∧ (zi ∨ xi ∨ ¬yi) ∧
(zi ∨ ¬xi ∨ yi) ∧ (¬zi ∨ xi ∨ yi)

32
𝑖=1

f S-Boxes CNF = Defined by equations (4.6) and (4.6) for S-box 0 and S-Box 1

respectively.

f <<<k CNF = ⋀ (ci ∨ ¬a(i + k mod32)) ∧ (¬ai ∨ c(i + k mod32))32
𝑖=1

After traversing through the Initialization procedures of ZUC for three rounds

including the last state of the initialization we will have DIMACS CNF with 3584

SAT variables and 48128 clauses generated Table 9 shows parts of the CNF

instances generated.

29

 Table 9: Partial views of generated DIMACS file

p cnf 3584 48128

c XOR Start

c 1

1 -1 -1 0

1 1 1 0

-1 -1 1 0

-1 1 -1 0

c 2

2 -2 -2 0

2 2 2 0

-2 -2 2 0

-2 2 -2 0 …

48092

…

….

3582 3582 3582 0

3582 3582 -3582 0

3582 -3582 3582 0

-3582 3582 3582 0

c 3

3 -3 -3 0

3 3 3 0

-3 -3 3 0

-3 3 -3 0

c 4

-4 -4 4 0

-4 4 -4 0

4 -4 -4 0

4 4 4 0

…

Clauses

…

….

-3583 -3583 3583 0

-3583 -3583 -3583 0

-3583 3583 3583 0

3583 -3583 3583 0

c 5

-5 -5 5 0

-5 5 -5 0

5 -5 -5 0

5 5 5 0

c 6

-6 -6 6 0

-6 6 -6 0

6 -6 -6 0

6 6 6 0

…

Omitted

…

….

-3584 3584 3584 0

-3584 3584 -3584 0

-3584 -3584 3584 0

3584 3584 3584 0

Next S-box specifically taken out of the above-generated DIMACS file and shown

below in Table 10 for specific input given, the SAT variable takes eight inputs by

mapping to SAT variable, in this case from current position of SAT variable counter

from 641 to 648 and generates the CNF clause shown in Table 11. Based on the rules

defined for S-box 0 above in (4.5), and (4.6).

30

 Table 10: Mapping s-box inputs to SAT variable

Inputs hex x=9d

x binary 1 0 0 1 1 1 0 1

x SAT variable 641 -642 -643 644 645 646 -647 648

 Table 11: Partial view of generated DIMACS of S-Box 0

c y1 Start

641 -642 -643 644 645 646 -647 648 0

641 -642 -643 644 645 646 -647 -648 0

641 -642 -643 644 645 646 647 648 0

….

Clauses omitted

…..

-641 642 643 -644 -645 -646 -647 -648 0

-641 642 643 -644 -645 -646 647 648 0

-641 642 643 -644 -645 -646 647 -648 0

c y1 End Clauses : 128

….

….

c y2 Start

641 -642 -643 644 645 646 -647 648 0

641 -642 -643 644 645 -646 647 648 0

641 -642 -643 644 645 -646 647 -648 0

…..

…..

-641 642 643 -644 645 -646 647 648 0

-641 642 643 -644 -645 646 647 648 0

-641 642 643 -644 -645 -646 647 648 0

c y2 End Clauses : 128

….

….

c y8 Start

641 -642 -643 644 645 646 -647 648 0

641 -642 -643 644 645 646 -647 -648 0

641 -642 -643 644 645 -646 -647 648 0

…

…

-641 642 643 -644 -645 -646 -647 -648 0

-641 642 643 -644 -645 -646 647 648 0

-641 642 643 -644 -645 -646 647 -648 0

c y8 End Clauses : 128

31

4.4 Experiment conducted

The test of availability of weak key state on ZUC algorithm is performed by

generating CNF representation of the equations of the key initializations represented

in DIMACS format, then executed with Online SAT solver available in [9]. Based

on the weak sate definition in [8, 4] and explained above in Chapter 1 section 1.3.

The CNF is generated for each round of the initialization and the final state assumed

as weak key state appended to the CNF DIMACS file, and finally the SAT instance

executed with SAT solver. The existence possible solution is indication of the

availability of weak key, else if SAT solver returns UNSATISFIABLE indicates

there is no weak key state.

Therefore, ZUC algorithm is implemented as per the requirement in [5,6], and for the

key initialization procedure the ARX operators SAT instance generator is added to

the code without affecting the operation of the encryption decryption process. Then

according to the above weak key definition for each ARX operators key initialization

procedure with key IV SAT instance is generated considered as input, and the final

status of the key IV initialization SAT instance as output of the initialization. Then

generated SAT instance execute with SAT Solver. SAT solver tries to get possible

solution for this relation from the given input output relation if there is possible

solution it implies the key is weak; otherwise, the key is not weak.

4.4.1 User manual to the program

The first step of the analysis is generating SAT instance. The SAT instance

generation process simultaneously proceeds while performing the

encryption/decryption process. Therefore, all the parameters of ZUC algorithm those

32

are necessary for the encryption/decryption need to be properly assign. The following

steps summarize the process:

1. Assignment of the confidentiality keys, IV, and the other variables of ZUC

algorithm like COUNT, BEARER, DIRECTION, and LENGTH. In addition,

during encryption supply the plain text M, and during decryption supply the

cipher message C. all values used are found in implementer’s test data in [13],

and partially supplied in appendix A Table A1 – Table A4. Sample

assignment taken from the source code shown in Appendix B the complete

view can be found in the source code from CD of the thesis.

2. Then build the solution to make the compilation from the environment of

development in this case visual Studio 2012 and run the program. The

program dose the encryption/decryption for the given input as shown bellow

in Figure 6.

 Figure 6: Encryption/decryption test case 1

33

3. Simultaneously the program generates the SAT instances and save in

DIMACS file in the specified location in this case c drive, with the given file

name in this case DIMACS as shown in Figure 7.

4. Open the DIMACS file from the saved location copy all contains of the file

that you want to test.

Figure 7: Saved DIMACS files

5. Then open the online SAT solver as shown in Figure 8 past it to SAT solver

execution window and click solve.

34

 Figure 8: Input to online SAT Solver [9]

6. The result of execution of the SAT Solver shall be as follows shown in Figure

9. The output of the SAT solver interpreted if SATISFIABLE it returns the

possible values, else UNSATISFIABLE implies no possible value(s) that

satisfy the given SAT instance input that is indication that there is no weak

key state.

35

 Figure 9: Output of online SAT Solver [9]

4.4.2 Experment results analysis

The experiment done with different key and IV combinations. The five keys shown

in Table 12 taken from [13], implementers test data document. The Keys are given

directly and the IV constructed from the IV building block variables. These Keyes

are used during the SAT instance generation. In addition, 50 more randomly

generated keys are used. For readability purpose each key is assigned labels: key1,

key2, key3, key4, and key5, similarly the initialization vectors are also labeled as

IV1,IV2,IV3,IV4,and IV5.

36

 Table 12: Different Key and IV for test scenarios

Key/IV No Values(hex)

Key 1 Test Key 1 from [13] , Implementer’s Test Data

IV 1 66 03 54 92 78 00 00 00 66 03 54 92 78 00 00 00

Key 2 Test Key 2 from [13] , Implementer’s Test Data

IV 2 00 05 68 23 c4 00 00 00 00 05 68 23 c4 00 00 00

Key 3 Test Key 3 from [13] , Implementer’s Test Data

IV 3 76 45 2e c1 14 00 00 00 76 45 2e c1 14 00 00 00

Key 4 Test Key 4 from [13] , Implementer’s Test Data

IV 4 e4 85 0f e1 84 00 00 00 e4 85 0f e1 84 00 00 00

Key 5 Test Key 5 from [13] , Implementer’s Test Data

IV 5 27 38 cd aa d0 00 00 00 27 38 cd aa d0 00 00 00

The SAT instances are generated for the initialization procedure of the ZUC

algorithm with different key and IV. The SAT instances generated during the

initialization procedure for one round, two rounds, and three rounds initializations.

For each round the last state of the initialization appended as weak key state. Tables

13 to 17 summarizes the SAT instance generated for initialization of one round 1792

SAT variable having 24064 clauses, for two rounds of initialization 2688 SAT

variable having 36096 clauses, and for three rounds of initialization 3584 SAT

variable having 48128 clauses generated. Then the CNF generated stored in

DIMACS file executed with SAT solver the existence of possible solution is

indication of the availability of weak key. In the test conducted for all cases, SAT

solver returns UNSATISFIABLE indicates there is no weak key state in ZUC

algorithm.

 Table 13: Experimental result key 1 and IV 1

Rounds Key IV No.Variables No.Clauses Satisfiability

1 1 1 1792 24064 UNSATISFIABLE

2 1 1 2688 36096 UNSATISFIABLE

3 1 1 3584 48128 UNSATISFIABLE

37

 Table 14: Experimental result key 2 and IV 2

Rounds Key IV No.Variables No.Clauses Satisfiability

1 2 2 1792 24064 UNSATISFIABLE

2 2 2 2688 36096 UNSATISFIABLE

3 2 2 3584 48128 UNSATISFIABLE

 Table 15: Experimental result key 3 and IV 3

Rounds Key IV No.Variables No.Clauses Satisfiability

1 3 3 1792 24064 UNSATISFIABLE

2 3 3 2688 36096 UNSATISFIABLE

3 3 3 3584 48128 UNSATISFIABLE

 Table 16: Experimental result key 4 and IV 4

Rounds Key IV No.Variables No.Clauses Satisfiability

1 4 4 1792 24064 UNSATISFIABLE

2 4 4 2688 36096 UNSATISFIABLE

3 4 4 3584 48128 UNSATISFIABLE

 Table 17: Experimental result key 5 and IV 5

Rounds Key IV No.Variables No.Clauses Satisfiability

1 5 5 1792 24064 UNSATISFIABLE

2 5 5 2688 36096 UNSATISFIABLE

3 5 5 3584 48128 UNSATISFIABLE

38

 Chapter 5

5 CONCLUSION

In this thesis ZUC the LTE Advanced confidentiality and integrity cryptographic

algorithm recommended by SAGE to be the third alternative algorithm, in addition

to SNOW3G, and AES investigated for the existence of weak key. Weak key state in

general is a key that leads to extraction of the key bits used for the

encryption/decryption. Specifically to ZUC, keys considered weak if the Key and

initialization Vector (IV) used for the initialization of the LFSR initializes all the

cells of the LFSR with same value at the end of initialization. In this analysis,

existence of weak key in ZUC is checked with the help of SAT solver that is the state

of the art cryptanalysis tool which is emerging. For the test SAT instance for different

Key and IV combination, test parameters are provided by 3GPP ZUC implementers

test data documentation and in addition fifty keys were randomly generated. The SAT

instance generated for three rounds of the initialization procedure and the last round

of the initialization state of LFSR were considered as weak key. Then for each

scenario of the Key IV combination, SAT instance results were generated and then

executed with SAT solver. The result for the entire test return UNSATISFIABLE

that means LFSR is not initialized with the same values therefore weak key does not

exist in the key generation procedure of ZUC algorithm. Hence, ZUC is a strong

algorithm and the right choice for the high security demand of the 4G network.

39

REFERENCES

[1] “3GPP,” The 3rd Generation Partnership Project, [Online]. Available:

http://www.3gpp.org/. [Accessed 15 January 2015].

[2] Orhanou, Ghizlane, S. El Hajji, A. Lakbabi, and Y. Bentaleb. "Analytical

evaluation of the stream cipher ZUC." In Multimedia Computing and

Systems (ICMCS), International Conference, pp. 927-930. IEEE, 2012

[3] Escudero-Andreu, C.P. Raphael and D.J. Parish. "Analysis and Design of

Security for Next Generation 4G Cellular Networks." In Proceedings of the

13th Annual Post Graduate Symposium on the Convergence of

Telecommuni-Cations, Networking and Broad-Casting (PGNET), pp. 25-26,

2012.

[4] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3. Document 4: Design and Evaluation Report,

ETSI/SAGE Specification, Version: 2.0 (September 9, 2011).

[5] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3.Document 1: 128-EEA3 and 128-EIA3 Specification.

ETSI/SAGE Specification, Version: 1.7 (December30, 2011).

[6] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3. Document 2: ZUC Specification, ETSI/SAGE

Specification, Version: 1.6 (June 28, 2011).

http://www.3gpp.org/

40

[7] “SNOW,” WIKIPEDIA, [Online]. Available:

http://en.wikipedia.org/wiki/SNOW/ .[Accessed 24 February 2015].

[8] Fr´ed´eric L., Jr N. J., and Heul D. V. "Applications of SAT Solvers in

Cryptanalysis: Finding Weak Keys and Preimages." Journal on Satisfiability,

Boolean Modeling and Computation, Vol. 9, pp.1-25, 2014.

[9] “MiniSat in your browser,” Wonderings of sat geek, [Online]. Available:

http://www.msoos.org/2013/09/minisat-in-your-browser/.[Accessed 15

January 2015].

[10] Qasem M., “SAT and MAX-SAT for the Lay-Researcher,” Public

Authority for Applied Education and Training College of Technological

Studies, [Online]. Available: http://www.mqasem.net/sat/sat/index.php.

[Accessed 15 January 2015].

[11] Wheeler D. A., “MiniSAT User Guide: How to use the MiniSAT SAT

Solver,” Wonderings of satgeek,[Online]. Available:

http://www.dwheeler.com/essays/minisat-user-guide.html. [Accessed 15

January 2015].

[12] Soos M., Nohl K., and Castelluccia C. "Extending SAT solvers to

cryptographic problems." In Theory and Applications of Satisfiability

Testing-SAT, Springer Berlin Heidelberg, pp. 244–257, 2009.

http://en.wikipedia.org/wiki/SNOW/
http://www.msoos.org/2013/09/minisat-in-your-browser/
http://www.mqasem.net/sat/sat/index.php
http://www.dwheeler.com/essays/minisat-user-guide.html

41

[13] Specification of the 3GPP Confidentiality and Integrity Algorithms 128-

EEA3 & 128-EIA3 Document 3: Implementer’s Test Data, ETSI/SAGE

Specification, Version: 1.1 (January 4, 2011).

[14] “Boolean satisfiability problem,” WIKIPEDIA, [Online].Available:

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem. [Accessed 12

January 2015].

[15] Schmalz M.S., “Organization of Computer Systems Course Notes,”

University of Florida, [Online]. Available:

http://www.cise.ufl.edu/~mssz/CompOrg/CDA-arith.html. [Accessed 12

January 2015].

[16] Stallings, William. "Cryptography and network security, principles and

practices”, fifth Edtion, New York, USA: Practice Hall, 2011

[17] Legendre F., Dequen G., and Krajecki M. "Logical Reasoning to Detect

Weaknesses About SHA-1 and MD4/5." IACR Cryptology ePrint Archive,

2014.

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://www.cise.ufl.edu/~mssz/CompOrg/CDA-arith.html

42

APPENDICES

43

Appendix A: Test parameters

 Table A1: Test1 parameters

Key (hex) 17 3d 14 ba 50 03 73 1d 7a 60 04 94 70 f0 0a 29

Count (hex) 66035492

Bearer (hex) f

Direction (hex) 0

Length 193 bits

Plaintext:

(hex) 6cf65340 735552ab 0c9752fa 6f9025fe 0bd675d9 005875b2

00000000

Ciphertext:

(hex) a6c85fc6 6afb8533 aafc2518 dfe78494 0ee1e4b0 30238cc8

00000000

 Table A2: Test 2 parameters

Key (hex) e5 bd 3e a0 eb 55 ad e8 66 c6 ac 58 bd 54 30 2a

Count (hex) 56823

Bearer (hex) 18

Direction (hex) 1

Length 800 bits

Plaintext:

(hex) 14a8ef69 3d678507 bbe7270a 7f67ff50 06c3525b 9807e467

c4e56000 ba338f5d 42955903 67518222 46c80d3b 38f07f4b

e2d8ff58 05f51322 29bde93b bbdcaf38 2bf1ee97 2fbf9977

bada8945 847a2a6c 9ad34a66 7554e04d 1f7fa2c3 3241bd8f

01ba220d

Ciphertext:

(hex) 131d43e0 dea1be5c 5a1bfd97 1d852cbf 712d7b4f 57961fea

3208afa8 bca433f4 56ad09c7 417e58bc 69cf8866 d1353f74

865e8078 1d202dfb 3ecff7fc bc3b190f e82a204e d0e350fc 0f6f2613

b2f2bca6 df5a473a 57a4a00d 985ebad8 80d6f238

64a07b01

44

 Table A3: Test 3 parameters

Key (hex) d4 55 2a 8f d6 e6 1c c8 1a 20 09 14 1a 29 c1 0b

Count (hex) 76452ec1

Bearer (hex) 2

Direction (hex) 1

Length 1570 bits

Plaintext:

(hex) 38f07f4b e2d8ff58 05f51322 29bde93b bbdcaf38 2bf1ee97

2fbf9977 bada8945 847a2a6c 9ad34a66 7554e04d 1f7fa2c3

3241bd8f 01ba220d 3ca4ec41 e074595f 54ae2b45 4fd97143

20436019 65cca85c 2417ed6c bec3bada 84fc8a57 9aea7837

b0271177 242a64dc 0a9de71a 8edee86c a3d47d03 3d6bf539

804eca86 c584a905 2de46ad3 fced6554 3bd90207 372b27af

b79234f5 ff43ea87 0820e2c2 b78a8aae 61cce52a 0515e348

d196664a 3456b182 a07c406e 4a207912 71cfeda1 65d535ec

5ea2d4df 40000000

Ciphertext:

(hex) 8383b022 9fcc0b9d 2295ec41 c977e9c2 bb72e220 378141f9

c8318f3a 270dfbcd ee6411c2 b3044f17 6dc6e00f 8960f97a

facd131a d6a3b49b 16b7babc f2a509eb b16a75dc ab14ff27

5dbeeea1 a2b155f9 d52c2645 2d0187c3 10a4ee55 beaa78ab

4024615b a9f5d5ad c7728f73 560671f0 13e5e550 085d3291

df7d5fec edded559 641b6c2f 585233bc 71e9602b d2305855

bbd25ffa 7f17ecbc 042daae3 8c1f57ad 8e8ebd37 346f71be

fdbb7432 e0e0bb2c fc09bcd9 6570cb0c 0c39df5e 29294e82

703a637f 80000000

45

 Table A4: Test 4 parameters

Key (hex) db 84 b4 fb cc da 56 3b 66 22 7b fe 45 6f 0f 77

Count (hex) e4850fe1

Bearer (hex) 10

Direction (hex) 1

Length 2798 bits

Plaintext:

(hex) e539f3b8 973240da 03f2b8aa 05ee0a00 dbafc0e1 82055dfe

3d7383d9 2cef40e9 2928605d 52d05f4f 9018a1f1 89ae3997

ce19155f b1221db8 bb0951a8 53ad852c e16cff07 382c93a1

57de00dd b125c753 9fd85045 e4ee07e0 c43f9e9d 6f414fc4

d1c62917 813f74c0 0fc83f3e 2ed7c45b a5835264 b43e0b20

afda6b30 53bfb642 3b7fce25 479ff5f1 39dd9b5b 995558e2

a56be18d d581cd01 7c735e6f 0d0d97c4 ddc1d1da 70c6db4a

12cc9277 8e2fbbd6 f3ba52af 91c9c6b6 4e8da4f7 a2c266d0

2d001753 df089603 93c5d568 88bf49eb 5c16d9a8 0427a416

bcb597df 5bfe6f13 890a07ee 1340e647 6b0d9aa8 f822ab0f

d1ab0d20 4f40b7ce 6f2e136e b67485e5 07804d50 4588ad37

ffd81656 8b2dc403 11dfb654 cdead47e 2385c343 6203dd83

6f9c64d9 7462ad5d fa63b5cf e08acb95 32866f5c a787566f

ca93e6b1 693ee15c f6f7a2d6 89d97417 98dc1c23 8e1be650

733b18fb 34ff880e 16bbd21b 47ac0000

Ciphertext:

(hex) 4bbfa91b a25d47db 9a9f190d 962a19ab 323926b3 51fbd39e

351e05da 8b8925e3 0b1cce0d 12211010 95815cc7 cb631950

9ec0d679 40491987 e13f0aff ac332aa6 aa64626d 3e9a1917

519e0b97 b655c6a1 65e44ca9 feac0790 d2a321ad 3d86b79c

5138739f a38d887e c7def449 ce8abdd3 e7f8dc4c a9e7b733

14ad310f 9025e619 46b3a56d c649ec0d a0d63943 dff592cf

962a7efb 2c8524e3 5a2a6e78 79d62604 ef268695 fa400302

7e22e608 30775220 64bd4a5b 906b5f53 1274f235 ed506cff

0154c754 928a0ce5 476f2cb1 020a1222 d32c1455 ecaef1e3

68fb344d 1735bfbe deb71d0a 33a2a54b 1da5a294 e679144d

df11eb1a 3de8cf0c c0619179 74f35c1d 9ca0ac81 807f8fcc

e6199a6c 7712da86 5021b04c e0439516 f1a526cc da9fd9ab

bd53c3a6 84f9ae1e 7ee6b11d a138ea82 6c5516b5 aadf1abb

e36fa7ff f92e3a11 76064e8d 95f2e488 2b5500b9 3228b219

4a475c1a 27f63f9f fd264989 a1bc0000

46

Appendix B: Test cases variables assignment

#include <stdio.h>
#include "zuc.c"
typedef unsigned char u8;
typedef unsigned int u32;

void testCase1()
{

//Test Set 1
//Confidentiality Key - CK
u8 CK[KEY_SIZE]={0x17 ,0x3d ,0x14 ,0xba ,0x50 ,0x03 ,0x73 ,0x1d
,0x7a ,0x60 ,0x04 ,0x94 ,0x70 ,0xf0 ,0x0a ,0x29};
//IV parameters
u32 COUNT = 0x66035492;
u32 BEARER =0xf;
u32 DIRECTION = 0x0;
u32 LENGTH = 193;
//Plaintext - M
//MESSAGE_SIZE = 7;
u32 M[MESSAGE_SIZE] = {0x6cf65340 ,0x735552ab ,0x0c9752fa
,0x6f9025fe ,0x0bd675d9 ,0x005875b2 ,0x00000000};
//ciphertext - C
u32 C[MESSAGE_SIZE] = {0xa6c85fc6 ,0x6afb8533 ,0xaafc2518
,0xdfe78494 ,0x0ee1e4b0 ,0x30238cc8 ,0x00000000};

}

void testCase2()
{

//Test Set 2
//Confidentiality Key - CK
u8 CK[KEY_SIZE]={0xe5, 0xbd, 0x3e, 0xa0, 0xeb, 0x55, 0xad,
0xe8, 0x66, 0xc6, 0xac, 0x58, 0xbd, 0x54, 0x30, 0x2a};
//IV parameters
u32 COUNT = 0x56823;
u32 BEARER =0x18;
u32 DIRECTION = 0x1;
u32 LENGTH = 800;
//Plaintext - M
//MESSAGE_SIZE = 25;
u32 M[MESSAGE_SIZE]={0x14a8ef69, 0x3d678507, 0xbbe7270a,
0x7f67ff50, 0x06c3525b, 0x9807e467, 0xc4e56000, 0xba338f5d,
 0x42955903, 0x67518222, 0x46c80d3b, 0x38f07f4b, 0xe2d8ff58,
0x05f51322, 0x29bde93b, 0xbbdcaf38,
 0x2bf1ee97, 0x2fbf9977, 0xbada8945, 0x847a2a6c, 0x9ad34a66,
0x7554e04d, 0x1f7fa2c3, 0x3241bd8f,
 0x01ba220d };
//ciphertext - C
u32 C[MESSAGE_SIZE]={0x131d43e0, 0xdea1be5c, 0x5a1bfd97,
0x1d852cbf, 0x712d7b4f, 0x57961fea, 0x3208afa8, 0xbca433f4,
0x56ad09c7, 0x417e58bc, 0x69cf8866, 0xd1353f74, 0x865e8078,
0x1d202dfb, 0x3ecff7fc, 0xbc3b190f,
0xe82a204e, 0xd0e350fc, 0x0f6f2613, 0xb2f2bca6, 0xdf5a473a,
0x57a4a00d, 0x985ebad8, 0x80d6f238,
0x64a07b01 };

}

47

Appendix C: Sample XOR CNF Generator Code

void xORCNFGenerator(u32 a, u32 b,u32 c)
{
 u32 i,xORCNFClauseCount=0;
 CNFVariable();

 decimalToBinary(a,32);

 for(i=0;i<32;i++)
 if(binaryResult[i]==0)
 CNFVariable_a[i] = CNFVariable_a[i]*-1;

 decimalToBinary(b,32);

 for(i=0;i<32;i++)
 if(binaryResult[i]==0)
 CNFVariable_b[i] = CNFVariable_b[i]*-1;

 decimalToBinary(c,32);

 for(i=0;i<32;i++)
 if(binaryResult[i]==0)
 CNFVariable_c[i] = -1* CNFVariable_c[i];

 //CNF of c ⇔ (a ⊕ b)

 writeCharToDIMACSCNF('c');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('X');
 writeCharToDIMACSCNF('O');
 writeCharToDIMACSCNF('R');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('S');
 writeCharToDIMACSCNF('t');
 writeCharToDIMACSCNF('a');
 writeCharToDIMACSCNF('r');
 writeCharToDIMACSCNF('t');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('\n');

 for (i = 0; i < 32; i++)
 {
 writeCharToDIMACSCNF('c');
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(++xORCNFClauseCount);
 writeCharToDIMACSCNF('\n');
 writeNoToDIMACSCNF(CNFVariable_a[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(CNFVariable_b[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(-1*CNFVariable_c[i]);
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('0');
 writeCharToDIMACSCNF('\n');
 CNFTotalClausesCount++;

 writeNoToDIMACSCNF(CNFVariable_a[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(-1*CNFVariable_b[i]);
 writeCharToDIMACSCNF(' ');

48

 writeNoToDIMACSCNF(CNFVariable_c[i]);
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('0');
 writeCharToDIMACSCNF('\n');
 CNFTotalClausesCount++;

 writeNoToDIMACSCNF(-1*CNFVariable_a[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(CNFVariable_b[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(CNFVariable_c[i]);
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('0');
 writeCharToDIMACSCNF('\n');
 CNFTotalClausesCount++;

 writeNoToDIMACSCNF(-1*CNFVariable_a[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(-1*CNFVariable_b[i]);
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(-1*CNFVariable_c[i]);
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('0');
 writeCharToDIMACSCNF('\n');
 CNFTotalClausesCount++;
 }

 writeCharToDIMACSCNF('c');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('X');
 writeCharToDIMACSCNF('O');
 writeCharToDIMACSCNF('R');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('e');
 writeCharToDIMACSCNF('n');
 writeCharToDIMACSCNF('d');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('\n');

}

49

Appendix D: Sample S-Box S0 CNF Generator Code

void sBox0CNFGenerator(u32 sBoxinput)
{
 u32 i,j,k,CNFClausePerColumnCount=0;
 CNFSBoxVariable();

 decimalToBinary(sBoxinput,8);

//makes the variable Format cnf variable according to the the binary
//input of the box.

 for(i=0;i<8;i++)
 if(binaryResult[i]==0)
 CNFVariable_SBox[i] = -1*CNFVariable_SBox[i];

 //8 CNF for representing each output columns of S-Box truth table
 for (j = 0; j < 8; j++)
 {
 CNFClausePerColumnCount=0;

 writeCharToDIMACSCNF('c');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('o');
 writeNoToDIMACSCNF(j+1);
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('S');
 writeCharToDIMACSCNF('t');
 writeCharToDIMACSCNF('a');
 writeCharToDIMACSCNF('r');
 writeCharToDIMACSCNF('t');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('\n');
 //traverse through the column
 for (i = 0; i < 256; i++)
 {

//if only the value of the output column = 0 Generate
//the CNF

 if(S0_Binary[i][j]=='0')
 {
 // 8 input columns of the of S-Box truth table
 for (k = 8; k < 16; k++)
 {

//if the value of the input column = 1
//negate the //variable Format

 if(S0_Binary[i][k]=='1')
 {

writeNoToDIMACSCNF(-1*CNFVariable_SBox[k-8]);

 }
 else
 {

//if the value of the input column = 0 do
//nothing the variable Format

 writeNoToDIMACSCNF(CNFVariable_SBox[k-8]);
 }
 writeCharToDIMACSCNF(' ');
 }
 writeCharToDIMACSCNF('0');
 writeCharToDIMACSCNF('\n');
 CNFTotalClausesCount++; //total number of cluses

 CNFClausePerColumnCount++; // clauses per column

50

 }
 }
 writeCharToDIMACSCNF('c');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('o');
 writeNoToDIMACSCNF(j+1);
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('E');
 writeCharToDIMACSCNF('n');
 writeCharToDIMACSCNF('d');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF('C');
 writeCharToDIMACSCNF('l');
 writeCharToDIMACSCNF('a');
 writeCharToDIMACSCNF('u');
 writeCharToDIMACSCNF('s');
 writeCharToDIMACSCNF('e');
 writeCharToDIMACSCNF('s');
 writeCharToDIMACSCNF(' ');
 writeCharToDIMACSCNF(':');
 writeCharToDIMACSCNF(' ');
 writeNoToDIMACSCNF(CNFClausePerColumnCount);
 writeCharToDIMACSCNF('\n');
 }
}

