

Semantic Web Service Filtering Strategy based on

Categories, Attributes and Mediation

Samira Ghayekhloo

Submitted to the

Institute of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Eastern Mediterranean University

December 2015

Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Cem Tanova

Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor

of Philosophy in Computer Engineering.

Prof. Dr. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Computer

Engineering.

Assoc. Prof. Dr. Zeki Bayram

Supervisor

Examining Committee

1. Prof. Dr. Atilla Elçi

2. Prof. Dr. Can Özturan

3. Prof. Dr. Işık Aybay

4. Assoc. Prof. Dr. Alexander Chefranov

5. Assoc. Prof. Dr. Zeki Bayram

ABSTRACT

The primary contribution of this thesis is a novel logical discovery framework for

semantic web services. The framework utilizes semantic description of Web services

and user goals in the F-logic language. In this framework, Web service or goal pre-

conditions and post-conditions can have embedded objects inside logical

expressions. Full usage of conjunction, disjunction and negation operators are

allowed in logical expressions occurring inside web service pre-conditions or goal

post-conditions. This framework tackles the scalability problem and improves

discovery performance by adding two pre-processing stages to the service

matchmaking engine. The first stage eliminates web services that cannot satisfy the

goal based on ontology comparison of user request and Web service categories. In

the second stage, a novel algorithm that can deal with embedded objects inside logic

expressions, concepts and attributes of objects that take part in the specification of

the goal and Web service is used to analyse the goal and web service specifications

and determine which web services will definitely fail in the subsequent logical

matching phase. The result of the application of these two pre-filtering stages is that

a much smaller pool of Web services need to be considered by the full-blown logic-

based matcher against the client request, resulting in considerable gains in scalability

of the discovery process. This effectiveness of this two-stage pre-filtering strategy

has been verified using a new Web service repository, called WSMO-FL test

collection.

The secondary contribution of this thesis is the creation of a novel framework called

RFSWS consisting of rubric tables and a feature-based evaluation scheme for the

iii

evaluation and comparison of Semantic Web service discovery and composition

approaches, and its subsequent application to the evaluation of five recently

introduced prominent Semantic Web services discovery and composition approaches.

This is a novel application of rubrics, which have traditionally been used for grading

student performance by teachers. Considering the shortcomings of existing Semantic

Web services composition approaches that were discovered through the evaluation,

an idealized dynamic Semantic Web service discovery and composition method, a

yardstick by which all future Semantic Web services composition approaches can be

evaluated, has been proposed as well.

Keywords: Rubric, Semantic Web service, Web service discovery, Web service

composition, Feature, Evaluation, Pre-filtering, F-Logic, Test collection.

iv

ÖZ

Bu tezin temel katkısı, anlamsal ağ hizmetleri için yeni bir mantıksal keşif

çerçevesinin oluşturulmasıdır. Bu çerçeve, ağ hizmetlerinin ve kullanıcı isteklerinin

anlamsal tanımı için F-logic dilini kullanır. Bu çerçevede, ağ hizmetleri veya

kullanıcı isteklerinin ön-şartlarında ve arka-şartlarında mantıksal ifadeler içinde

gömülü nesneler bulunabilir. Ağ himetleri önşartlarında ve kullanıcı isteği

arkaşartlarında „ve‟, „veya‟ ve „değil‟ işlemleri kısıtlamasız bir şekilde kullanılabilir.

Bu çerçeve, hizmet eşleştirme makinesinin önüne iki adet ön-işleme aşaması koyarak

ölçekleme probleminin üstesinden gelip keşif performansını iyi bir seviyeye getirir.

İlk aşamada, kullanıcı isteği ile ağ hizmetinin kategorileri ontolojiler kullanılarak

mukayese edilir ve bu şekilde kullanıcı isteğine cevap veremeyecek olan ağ

hizmetleri elenir. İkinci aşamada, kullanıcı isteği ve ağ hizmetinin tanımında yer alan

mantık ifadeleri içinde gömülü nesnelerle, kavramlarla ve nesne özellikleri ile başa

çıkabilen yeni bir algoritma kullanılarak kullanıcı isteği ve ağ hizmeti çözümlenir, ve

bu şekilde kesinlikle bir sonraki mantıki eşleştirme aşamasında başarısız olacak ağ

hizmetleri elenir. Bu iki ön-eleme aşamalarının uygulanması neticesinde, mantıksal

eşleştirme işlemine tabi olacak ağ hizmeti sayısı önemli ölçüde azaltılmış olur ve

böylelikle keşif sürecinin ölçeklenebilirliği konusunda önemli bir kazanım elde

edilmiş olur. Bu iki aşamadan oluşan ön-eleme stratejisinin etkinliği, WSMO-FL

adını verdiğimiz yeni bir test kolleksiyonu üzerinde doğrulanmıştır.

Bu tezin ikinci katkısı, rubric tabloları ve özellik tabanlı değerlendirmeye dayalı,

anlamsal ağ hizmetleri keşif ve birleştirme yaklaşımlarını değerlendirme ve

mukayese etme amaçlı, RFSWS adı verilen çerçevenin geliştirilmesi, ve bu

v

çerçevenin yakın geçmişte ilk kez kullanıma sunulan beş adet önemli anlam ağı

hizmetleri keşif ve birleştirmesi yaklaşımlarını değerlendirmek için kullanılmasıdır.

Bu, daha önceleri sadece öğrenci performans değerlendirmesi için kullanılan

rubrikler için yeni bir uygulama alanıdır. Yapılan değerlendirme sonucu meydana

çıkarılan anlamsal ağ hizmetleri keşif ve birleştirme yaklaşımlarının eksiklerinden

yola çıkılarak, geleceğin anlamsal ağ hizmetleri keşif ve birleştirme yaklaşımlarının

da mukayese yöntemi ile değerlendirilebileceği ideal dinamik anlamsal ağ hizmetleri

keşif ve birleştirme yöntemi ilaveten önerilmiştir.

Anahtar kelimeler: Rubrik, Anlamsal ağ hizmeti, Ağ hizmeti keşfi, Ağ hizmeti

birleşimi, Özellik, Değerlendirme, Ön-eleme, F-Logic, Test kolleksiyonu.

vi

DEDICATION

To my family

And

Especially it is lovingly dedicated to my husband,

Hamed Khodadadi

For his support, encouragement, and his endless love during my life

vii

ACKNOWLEDGMENT

First of all, I would like to explicitly express my heartfelt gratitude to my advisor

Assoc. Prof. Dr. Zeki Bayram for the endless support of my Ph.D. thesis and related

courses, for his patience, incentive, and excellent knowledge. His advice assisted me

in all the steps of research of this dissertation. He was not only my supervisor but

also like a father figure in his office, “Dünyanın En Tatlı Babası”. He really

supported me like a father during my Ph.D. study in Cyprus. Many thanks for

everything.

Besides, I am most grateful to the members of my thesis committee:

Prof. Dr. Işık Aybay, chairman of department and Assoc. Prof. Dr. Alexander

Chefranov, for agreeing to be on my committee. Their insightful comments and

encouragement helped me greatly. Thanks for your helpful feedback.

Most importantly I must thank my wonderful supportive husband Hamed for putting

up with me over the seven years. His aid, quiet patience, exhortation and endless love

were certainly the reasons that I am in this place. He has shared this entire amazing

trip with me, so it only seems right that I dedicate this thesis to him.

Last, but never least, I would like to thank my parents, my sisters and brothers,

especially my twin sister, Sara and my parents-in-law for supporting me spiritually

throughout study in Cyprus and my life in general.

viii

TABLE OF CONTENTS

ABSTRACT.. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT... viii

LIST OF FIGURES .. xiii

LIST OF TABLES .. xiv

LIST OF LISTINGS ... xvi

LIST OF ALGORITHMS .. xvii

LIST OF FORMULAS ... xviii

LIST OF ABBREVIATIONS ... xix

1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Overview of Achievements.. 3

1.2.1 New Evaluation Framework ... 3

1.2.2 New Logical Discovery Framework ... 4

1.2.3 New Test Collection... 6

1.3 Outline of this Dissertation .. 7

2 BACKGROUND .. 9

2.1 Web Service (WS)... 9

2.2 Semantic Web Service (SWS) ... 9

2.3 Conceptual Models for Semantic Web Services .. 10

2.4 SWS Discovery .. 12

2.5 SWS Composition .. 13

ix

2.6 FLORA-2 and F-Logic.. 13

2.7 Rubrics ... 14

2.8 Scalability.. 17

3 RFSWS: A NEW EVALUATION FRAMEWORK .. 18

3.1 RFSWS Framework ... 18

3.1.1 Rubric Tables .. 18

3.1.2 Feature-based Evaluation Scheme .. 22

3.2 Approaches Employing Different Methodologies for Discovery and

Composition of Web Services.. 26

3.2.1 DynamiCoS ... 26

3.2.2 PORSCE II & VLEPPO... 28

3.2.3 Bartalos .. 29

3.2.4 Top-k ASC .. 30

3.2.5 Tang et al.. 32

3.3 Actual Comparison of Approaches in Section (3.2) .. 33

3.3.1 Rubric-based Appraisal and Comparison ... 33

3.3.2 Feature-based Appraisal and Comparison .. 37

3.4 Evaluation and Appraisal of SWS Composition Approache 40

3.5 An Idealized Approach .. 42

4 SEMANTIC WEB SERVICE SPECIFICATION AND DISCOVERY

FORMALIZATION ... 44

4.1 New Logical Semantic Web Service Discovery Framework........................... 44

4.2 Enhancements over the Original WSMO Framework 46

4.3 Scenarios obtained from WSMO-FL test collection .. 49

5 PROPOSED TWO-PHASE PRE-FILTERING MECHANISM 59

x

5.1 Category-based Filtering (Cat_Filt) ... 59

5.1.1 Abstract Definition of Cat_Filt Algorithm.. 60

5.2 Filtering According to Capability Decomposition (Cap_Filt) 61

5.2.1 Disjunctive Normal Form (DNF).. 63

5.2.2 Cap_Filt Algorithm ... 63

6 IMPLEMENTATION ... 68

6.1 Main Predicates of Pre-filtering Strategies Written in FLORA-2 68

6.1.1 %FilterMain Predicate .. 68

6.1.2 %Filter_Cap Predicate .. 70

6.1.3 % FindGoalOrWsAtt Predicate... 73

6.1.4 %Conv_DNF Predicate ... 74

6.1.5 %DC Predicate .. 76

6.1.6 %Check_Att_Cnp Predicate... 78

6.2 Demonstration of the Workings of Defined Pre-filtering Predicates through the

Examples .. 79

6.2.1 Results Obtained by Employing Category Filtering Predicates................ 79

6.2.2 Results Obtained by Employing Capability Filtering Predicates.............. 81

7 EXPERIMENTAL EVALUATIONS ... 95

7.1 Available Test Collections ... 95

7.1.1 OWLS-TC ... 95

7.1.2 SAWSDL-TC.. 96

7.1.3 WSMO-Lite TC .. 96

7.2 Why Existing Test Collections are not suitable for Evaluating our Semantic

Web Service Filtering Strategy .. 96

xi

7.3 WSMO-FL: A New Test Collection for Web Services based on an Extended

Version of WSMO using FLORA-2 .. 97

7.4 Experimental Environment .. 98

7.5 Experimental Results ... 98

7.5.1 Average Response Time ... 98

7.5.2 Effectiveness of the Pre-filtering Algorithms in Eliminating Irrelevant

Web Services.. 100

7.5.3 Definitions of Precision, Recall and Fallout ... 101

7.5.4 Discussion of the Results .. 103

7.6 Related Work Regarding Approaches using Various Techniques to Improve

Speed of Discovery Processes of WSs... 104

7.6.1 Approaches that Improve the Matchmaker Engine................................. 107

7.6.2 Approaches Using Pre-processing Mechanisms 110

8 CONCLUSION AND FUTURE WORK... 114

REFERENCES.. 118

APPENDIX .. 130

Appendix A: Source code of %Conv_DNF predicate in FLORA-2.................... 131

Appendix B: Source code of %Check_Att_Cnp predicate in FLORA-2............ 136

Appendix C: Sample of Web Service in WSMO-FL Test Collection 138

Appendix D: Sample of Goal in WSMO-FL Test Collection.............................. 139

Appendix E: Source code of MainMatcher.. 140

xii

LIST OF FIGURES

Figure 1. Procedures of our work... 3

Figure 2: Overview of OWL-S .. 10

Figure 3: WSMO top level notions .. 12

Figure 4. Structure of Rubric table... 15

Figure 5. DynamiCoS Architecture [18] .. 27

Figure 6. PORSCE II & VLEPPO Architecture [36]... 28

Figure 7. Bartalos Composition Processes Architecture [5] 30

Figure 8. Architecture of Top-k ASC [20]... 31

Figure 9. Framework of Tang et al., [72] ... 32

Figure 10. Evaluation chart .. 38

Figure 11. Proposed SWS discovery framework including two pre-filtering stages . 45

Figure 12. Part of the hierarchical structure of our specified domains in the category

ontology Global_Cat_Ont .. 60

Figure 13. Comparison of Filt_Disc and Naive_Disc .. 100

Figure 14. Effectiveness of the two pre-filtering stages in eliminating irrelevant Web

services ... 101

Figure 15. Precision, recall and fallout of each requested goal along with the average

precision and fallout lines .. 103

xiii

LIST OF TABLES

Table 1. Sample of research report rubric table [67] ... 16

Table 2. Analytic rubric table for the appraisal of SWS discovery and composition

approaches (Part1).. 20

Table 3. Analytic rubric table for the appraisal of SWS discovery and composition

approaches (Part2).. 21

Table 4. Features and sub-features that will be used to evaluate approaches 22

Table 5. Evaluation of SWS composition approaches based on rubric tables (Part1)34

Table 6. Evaluation of SWS composition approaches based on rubric tables (Part2)35

Table 7. Summary of the evaluation of SWS composition approaches based on rubric

tables .. 36

Table 8. Evaluation of SWS composition approaches using the feature-based table 38

Table 9. Results of Cat_Filt algorithm over the described scenarios......................... 80

Table 10. Attributes and concepts of both Goal #1 and Goal #2 pre-condition........ 81

Table 11. Attributes and concepts of SWS #1 to SWS #4 post-conditions 82

Table 12. SWS#1 pre-condition before and after converting into DNF 84

Table 13. SWS #2 pre-condition before and after converting into DNF 85

Table 14. SWS #3 pre-condition before and after converting into DNF 87

Table 15. SWS #4 pre-condition before and after converting into DNF 88

Table 16. Goal #1 post-condition before and after converting into DNF 89

Table 17. Goal #2 post-condition before and after converting into DNF 89

Table 18. List of extracted attributes and concepts of SWS #1 to SWS #4 pre-

conditions ... 90

xiv

Table 19. List of extracted attributes and concepts of Goal #1 and Goal #2 post-

conditions ... 90

Table 20. Attributes and concepts of Goal #1 and SWS #3 pre-conditions.............. 91

Table 21. Attributes and concepts of Goal #1 and SWS #3 post-conditions 92

Table 22. Statistical comparison of Filt_Disc and Naive_Disc 99

Table 23. Precision, recall and fallout of combined pre-filtering stages in each

requested goal.. 102

Table 24. Comparison of this work with related works ... 106

xv

LIST OF LISTINGS

Listing 1. Goal concept in our extended version of WSMO...................................... 47

Listing 2. WS concept in our extended version of WSMO....................................... 47

Listing 3. Capability concept in our extended version of WSMO 48

Listing 4. Part of goal instance specification request a flight reservation 50

Listing 5. Part of goal instance specification request a restaurant name 51

Listing 6. Parts of WS instance specification dealing with flight reservation via credit

card or PayPal .. 52

Listing 7. Parts of WS instance specification dealing with restaurant reservation 54

Listing 8. Parts of WS instance specification dealing with either flight or ship

reservation .. 56

Listing 9. Parts of WS instance specification dealing with finding a school‟s name 58

Listing 10. Pre-filtering processes containing two filtering stages (lines 2 to 4:

Cat_Filt, lines 5 to 11: Cap_Filt) ... 69

Listing 11. Critical parts of %Filter_Cap predicate.. 71

Listing 12. Source code of %FindGoalOrWsAtt predicate in FLORA-2 73

Listing 13. Algorithm of Conv_DNF function in Haskell syntax 75

Listing 14. Source code of %DC predicate in FLORA-2 .. 77

xvi

LIST OF ALGORITHMS

Algorithm 1. Capability filtering Algorithm .. 64

Algorithm 2. Filtering by comparing concepts and attributes................................... 79

xvii

LIST OF FORMULAS

Formula 1. Abstract definition of Cat_Filt as a function ... 61

xviii

LIST OF ABBREVIATIONS

ACM Abstract Composition Model

AI-planning Artificial Intelligence planning

Cat_Filt Category-based Filtering

Cap_Filt Capability-based Filtering

CLM Casual Link Matrix

DAG Directed Acyclic Graph

DNF Disjunctive Normal Form

DSD DIANE Service Description

DynamiCoS Dynamic Composition of Services

ECA Event Condition Action

F-Logic Frame Logic

FP Functional Properties

HY HYbrid method

NFP Non-Functional Properties

NLOG Non-Logic

OWL-S Web Ontology Language for Services

QoS Quality of Service

SAWSDL Semantic Annotation for WSDL and XML schema

SDC Semantic Discovery Caching

SOC Service Oriented Computing

SWS Semantic Web Service

SY SYnonymity

Top-k ASC Top-K Automatic Service Composition

xix

TX Taxonomy

WS Web Service

WSC Web Service Composition

WSDL Web Service Description Language

WSDL-S Web Service Description Language with Semantics

WSMO Web Service Modelling Ontology

xx

Chapter 1

INTRODUCTION

The major aim of this thesis is presenting a logical framework to improve scalability

of automated Semantic Web Service (SWS) discovery through pre-filtering

strategies. The secondary aim is the presentation of a novel framework for evaluating

semantic web service discovery and composition approaches, which has been used to

identify weaknesses of existing discovery methods, leading to the development of

our discovery framework.

This chapter consists of three parts. In section 1.1, motivation of our work is given.

The second part, section 1.2, explains our methodologies which have been employed

in this dissertation context, and finally in section 1.3 the structure of this thesis is

outlined.

1.1 Motivation

Service-Oriented Computing (SOC) is a computing paradigm that emerged at the end

of 1990's as an evolution in design and delivery of software applications [63]. SOC

employs service as an essential factor, which plays an important role in the

development of distributed applications. Web Services (WSs) are web application

components which can be described, published, and discovered through the Web.

Also as an example of their features we can say that they are loosely coupled,

platform independent, and are accessible through programming over the internet.

1

Although the advantages of traditional WSs are well established, there exist a

number of challenges in service-oriented systems. WS descriptions are syntactic, so

the tasks of discovery, selection, and composition have to be performed by the

software developer (human). SWS technology, a combination of WSs and Semantic

Web concepts, has been created to relieve to a large extent the programmer of the

manual work required to use WSs. Semantic annotation of WSs makes them

understandable by machines, and permits their automatic discovery and composition,

with minimal user intervention.

Despite many efforts that have been performed in the context of SWS, there are still

many open issues and active research is being carried out to address them [59]. In

each step of our research on SWS discovery and composition methods, weaknesses

of the available approaches motivated us to propose and implement new solutions.

Figure 1 depicts the main procedure of our work which contains three steps. These

three steps are: i) an evaluation of schemes for SWS discovery and composition

approaches, ii) a logical framework which improves performance of SWS discovery

process through pre-filtering strategies and iii) a proper test collection which covers

main functional descriptions (inputs, outputs, preconditions and effects) of WSs and

goals.

2

An evaluation Framework

A discovery framework

A test collection

Figure 1. Procedures of our work

Steps of figure 1 are described below.

1.2 Overview of Achievements

1.2.1 New Evaluation Framework

Existing proposals regarding WS discovery and composition have been surveyed and

the results presented in several review works in the last decade. These surveys have

some important shortcomings, such as not stating clearly what requirements need to

be met for an approach to successfully solve the problems of WSs discovery and

composition, and lacking in the level of detail.

Such shortcomings prompted us to develop for the first time analytic rubrics, as well

as a feature-based comparison scheme, for evaluating and comparing SWS discovery

and composition approaches. We called our method Rubric and Feature-based

appraisal and comparison framework for Semantic Web Services (RFSWS) [28].

RFSWS includes some of the key discovery and composition issues and

requirements that were identified based on a comprehensive study of the literature on

SWS discovery and composition methods. We then proceeded to actually evaluate

five prominent approaches for SWS discovery and composition introduced since

2011 in order to determine their relative strengths and weaknesses, and finally come

3

up with an idealized approach for SWS discovery and composition. Our work is

novel not only in its development and use of special rubrics (which have been

traditionally used by teachers in grading the students‟ performance, Wolf & Stevens

[75]) for the evaluation of SWS discovery and composition approaches, but also in

the level of detail in which the evaluation has been made, and in the specification of

an SWS discovery and composition approach which can be the yardstick with which

future approaches can be compared to. Furthermore, it distinguishes itself from other

recent surveys on WS discovery and composition approaches [69, 53, 6] in that it

surveys and compares the current state-of-the-art SWS discovery and composition

approaches.

1.2.2 New Logical Discovery Framework

In recent years, complexity of conceptual models (e.g. WSMO
1 and OWL-S

2
) for

semantic description of WSs, as well as the increasing number of advertised services

in repositories made the discovery processes of SWSs a difficult task [58]. In order to

deal with the problems of scalability and complexity, researchers proposed various

methods, such as indexing and caching mechanism [70], pre-processing strategies

before actual matching [26, 34], and hybrid matchmakers that combine logic-based

and non-logic based reasoning [44, 46]. However, we could not find any work that

addresses the performance challenge of discovery process in a similar way to our

work which is a logical discovery framework based on two new pre-filtering

strategies which help to improve the speed of discovery processes of SWSs on large

scale.

1 Web Service Modeling Ontology
2 Web Ontology Language for Services

4

Our discovery framework is based on the WSMO conceptual model for semantically

describing user requests (goals), WSs and domain ontologies. During the discovery

process, goal capability descriptions such as inputs, outputs, pre-conditions and

post-conditions (effects) are compared with advertised WS capability descriptions in

order to determine whether they match or not. Logical inference is utilized for

matching, which guarantees that the capability requested by the goal is indeed

satisfied by the capability of the WS and also that the WS has all it needs before its

starts execution. Capability reasoning of goal and advertised services relies on

ontologies which are used both to describe the services and goals and also to describe

the common vocabulary needed by the services and goals.

Given a user request specified in the form of a goal, using the logical inference based

matcher to match it against all WS specifications in the WS repository is an

impractical approach as the number of WSs increases, and the need to narrow down

the candidate WSs that will participate in the full matching phase arises. In order to

deal with the problem, we use two pre-filtering stages to eliminate WSs that cannot

possibly be successfully matched, and reduce the number of WSs which go through

the full logic-based matching stage. Our first pre-filtering stage uses a categorization

scheme of WSs and second stage uses a novel technique of extracting attributes and

concepts of objects utilized in the goal and the WS specifications. Our technique can

deal with objects that occur in a logical formula with full usage of the logical

connectives conjunction, disjunction and negation, a first in literature. We also make

use of ontology-based mediation between concepts and attributes, so that two

syntactically different symbols may be declared to denote the same thing

semantically.

5

1.2.3 New Test Collection

Test collections are yardsticks to evaluate the suitability and performance of service

discovery frameworks. The majority of SWS approaches (such as [26, 46, 40, 56, 68,

2]) that proposed a solution to improve the discovery processes, evaluated efficiency

and accuracy of their works based on OWLS-TC
3 version 3 test collection. Among

all related works, although the authors of [17] evaluated their proposal based on last

version of OWLS-TC test collection, only input and output parameters are

considered for evaluation of their work.

Therefore, unavailability of an appropriate test collection motivated us to establish a

new test collection which covers the main functional descriptions of WSs such as

pre-conditions and post-conditions, as well as a categorization scheme of WSs. Our

new own generated test collection of WS and goal specifications has been named

WSMO-FL
4
.

WSMO-FL covers main functional descriptions of WSs and goals such as pre-

conditions and post-conditions, as well as a categorization scheme of WSs and goals.

WSMO-FL contains three different domains, namely transportation, food and

education, with 250 different F-Logic WS descriptions, 6 different F-Logic goals

descriptions, 22 concepts, 3100 attributes and 1225 instances. We used it as an

appropriate test collection to measure the gains in efficiency obtained by employing

our proposed pre-filtering strategy.

3 http://projects.semwebcentral.org/projects/owls-tc/
4 http://cmpe.emu.edu.tr/samira/WSMO-FL.htm

6

1.3 Outline of this Dissertation

The remainder of this thesis is organized as follows.

In chapter 2 some background information about the concepts and terminologies

which are used in this thesis, such as SWS, WSMO, SWS discovery, SWS

composition, rubric, FLORA-2 etc. are introduced.

Chapter 3 comprises our novel RFSWS framework, and has five sub-parts. The first

part presents our strategies in creation and implementation of RFSWS framework.

The second part introduces approaches used different methodologies for discovery

and composition of SWSs. Third part illustrates tabular evaluation and comparison of

mentioned approaches in part two, part four demonstrates features and characteristics

of an ideal SWS discovery and composition approach and closing part is related

works.

Chapter 4 first introduces our new logical SWS discovery framework which is able

to deal with all logical connectives inside the capability objects of WSs and goals.

Then, it explains our enhancements over the original WSMO framework, such as

optimization and categories. Finally, it presents some scenarios which are part of

WSMO-FL test collection version 2 and have been used for the work reported in this

thesis.

Chapter 5 describes our novel pre-filtering strategies which have been employed to

improve the performance of the SWS discovery process. In this chapter both of the

implemented filtering methods, Category-based (Cat_Filt) and Capability-based

(Cap_Filt), are analysed in detail.

7

Chapter 6 is the implementation part of this dissertation which introduces main

predicates used in our pre-filtering technique. All of these predicates are written in

FLORA-2. Furthermore, in this chapter, step by step achieved results of each

predicate during two filtering stages according to our predefined scenario in

chapter 4 are displayed.

Chapter 7 contains the experimental results of our work along with explanation about

related works. The graphical and tabular results which were obtained on our test

collection after employing the pre-filtering steps are shown in this chapter.

Finally, chapter 8 is the conclusion and future work part, and summarizes and

highlights the achievements that were explained in the previous chapters, and points

out advantages of our work compared to prior works in this field.

8

Chapter 2

BACKGROUND

Chapter 2 introduces some background information about the concepts and

technologies which were used in this thesis such as WS, SWS, WSMO, SWS

discovery, SWS composition, rubric, FLORA-2 etc.

2.1 Web Service (WS)

WSs are web application components which can be described, published, and

discovered through the Web. Two common types of WSs are SOAP-based WSs,

which use WS Description language (WSDL) for their description, and RESTful

WSs, which conform to the REST architectural principle [8]. From the information

technology viewpoint, WSs are loosely coupled, platform independent, and are

accessible through programming over the internet.

2.2 Semantic Web Service (SWS)

Semantic Web has been a popular topic of research since its introduction by Tim

Berners-Lee in 2001 [10]. Automation of many tasks on the Internet is facilitated

through the addition of machine understandable semantic information to Web

resources. Applications of SWS technology include [25, 26], as well as others. SWS

technology is the combination of WSs and Semantic Web concepts and allows for

example automatic discovery of WSs based on their functionality or composition of

WSs which cannot fulfil the user requests individually becomes possible [54].

9

2.3 Conceptual Models for Semantic Web Services

WSs are semantically described by providing a high level declarative specification of

WS functionality and non-functional properties in order to facilitate automatic

discovery, composition and invocation of WSs. Two prominent models in SWS

descriptions are Web Service Modelling Ontology (WSMO) [65] and Web Ontology

Language for Services (OWL-S) [53]. There also exist other special purpose

languages for the semantic description of WSs, such as DIANE Service Description

(DSD) language [50], WSMO-lite [76], and Semantic Annotation for WSDL and

XML schema (SAWSDL) [47].

OWL-S: OWL-S has been developed in the years 2003-2006 by a mostly US-based

consortium under the DAML program. It defines an upper ontology for semantically

annotating Web services that consists of elements as shown in figure 2. Every

description element is defined on the basis of domain ontology, and the current

standard ontology language OWL is used as the specification language.

Figure 2: Overview of OWL-S

The Service Profile: The OWL-S profile specifies what functionality the service

provides. The functionality description is split into the information transformation

10

performed by the service and the state change as a consequence of the service

execution. The former is captured by defining the inputs and outputs of the service,

and the latter is defined in terms of preconditions and effects. Inputs, outputs,

preconditions and effects are normally referred to as IOPEs. In the last version of

OWL-S, effects are defined as part of a result.

The Service Model: Describes how the Web service works. The service is conceived

as a process, and the description model defines three types of processes (atomic,

simple, and composite processes). These are described by IOPE along with a

proprietary process language that defines basic control- and dataflow constructs.

The Service Grounding: Gives details of how to access the service which is realized

as a mapping from the abstract descriptions to WSDL

WSMO: The Web Service Modeling Ontology WSMO is developed by a European

initiative since 2004. WSMO comprises four core elements, namely ontology, goal,

Web service, and mediator as it is shown in figure 3. The Ontology is defined as a

formal, explicit specification of a shared conceptualization [31]. In the context of

semantic WS, ontology provides a common vocabulary to denote the types in the

form of classes or concepts, properties and interrelationships of concepts in a

domain. A Goal describes what the requester can provide, and what it expects from a

WS. A Web service description represents different functional and non-functional

features of a deployed WS. Finally, Mediator handles heterogeneity problems that

possibly arise between goals, WSs and ontologies.

11

Figure 3: WSMO top level notions

Web services in WSMO are described by non-functional properties, a capability that

specifies the provided functionality in terms of preconditions, assumptions, post-

conditions, and effects. Pre-condition specifies the requested information before

execution of the services. Assumption describes state of the word which is assumed

before the execution of the services. Post-condition describes information that is

guaranteed to be reached after successful execution of the service, and Effect

describes the state of the word that is guaranteed to be reached after successful

execution of the service. The information transformation performed by a service is

described in WSMO by using pre-conditions and post-conditions of the service

capability. State change is described in WSMO by using assumptions and effects.

WSMO treats input and output (parameters in OWL-S) type description implicitly as

part of its pre-condition and post-condition [32].

2.4 SWS Discovery

In general, WS discovery is the process of finding appropriate WSs with respect to

the user request and ranking of discovered services based on user preference. Our

discovery framework receives WSMO goal descriptions and WSMO WS

descriptions, all coded in F-Logic, along with related mediators and ontologies as

12

input entities and for each goal returns an ordered list of WSs that can satisfy the

needs of the goal.

2.5 SWS Composition

In recent years, due to the increasing the number of WSs and complexity of users'

demands, traditional WSs have not been able to answer complex user requests

adequately. In many instances, the user's request cannot be answered by just one

service, and several services must be combined to produce the required result. This

job must be done manually if traditional WSs are used. SWSs automate process of

WS discovery, selection and composition through Semantic annotation of WSs and

expressive definition of user desires in the form of goals.

2.6 FLORA-2 and F-Logic

F-Logic (frame logic) [41] is a powerful logic language with object modelling

capabilities. It is used as a foundation for object-oriented logic programming and

knowledge representation. Two popular reasoners of F-Logic are FLORA-2 [42] and

OntoBroker [3]. Our proposed intelligent agent for semantic WS discovery uses the

FLORA- 2 reasoning engine. FLORA-2 is considered as a comprehensive object-

based knowledge representation and reasoning platform. The implementation of

FLORA-2 is based on a set of run-time libraries and a compiler to translate a unified

language of F-logic, HiLog [15], and Transaction Logic [12, 11] into tabled Prolog

code [42]. Basically, FLORA-2 supports a programming language that is a dialect of

F-logic including numerous extensions that involves a natural way to do meta-

programming in the style of HiLog, logical updates in the style of Transaction Logic

and a form of defeasible reasoning described in [74].

13

2.7 Rubrics

A rubric, in its traditional role, is a scoring and instructional tool used to assess

student performance using a task-specific set of criteria, providing informative

feedback to the instructor regarding the level of understanding on the part of the

students, as well as informing students about the expectations of instructors from

their work. To measure student performance a rubric contains the essential criteria

for the task and levels of performance (i.e., from poor to excellent) for each criterion.

The meaning of each level of performance for each criterion is defined explicitly to

permit objective evaluation.

There exist two types of rubric, namely holistic and analytic. In the former, the

teacher scores the overall process or product as a whole, without taking into account

the component parts singly [60]. In the latter, first the teacher lists all parts of product

or process, then considers a score for each part, and at the end sums the individual

scores to obtain a total score [57, 60].

Rubrics generally contain three components:

 Dimensions

 Rating Scale

 Descriptors

Dimensions are generally referred to as performance criteria, the rating scale as

levels of performance, and descriptors as definitions. Figure 4 depicts the general

form of a rubric table.

14

Figure 4. Structure of Rubric table

Table 1 presents a sample of analytic rubric for evaluating research reports [67].

15

Table 1. Sample of research report rubric table [67]

16

Criterion Score Description

Amount of

information

Needs

Improvement

All topics not addressed or most questions

answered with words or phrases instead of

sentences.

Satisfactory
All topics are addressed, and most questions

answered with 1-2 sentences about each.

Good
All topics are addressed and most questions

answered, with at least 3 sentences about each.

Excellent All topics are addressed, and all questions

answered, with at least 3 sentences about each.

Organization

Needs

Improvement

There appears to be little organization of the

material.

Satisfactory
Information is generally organized, but no

headings are used.

Good

Information is organized with headings, but

some material under the headings may be out of

place.

Excellent Information is very well organized with

headings that relate clearly to the material.

Quality of

Information

Needs

Improvement

Information gathered has little or nothing to do

with the questions posed.

Satisfactory

Information gathered provides answers to main

questions, but no details and/or examples are

given.

Good

Information gathered provides answers to main

questions along with 1-2 supporting details

and/or examples.

Excellent
Information gathered provides answers to the

main questions along with several supporting

details and/or examples for each.

Sources Needs

Improvement

Some sources for information and graphics are

not documented.

Satisfactory

Sources for information and graphics are

documented, but most are not in the correct

format.

Good
Most sources for information and graphics are

documented in the designated format.

Excellent
Sources for information and graphics are

documented in the designated format.

2.8 Scalability

Scalability is defined as the capability of increasing the computing capacity of

service provider‟s computer system and system‟s ability to process more operations

or transactions in a given period. It is also related to performance [49].

17

Chapter 3

RFSWS: A NEW EVALUATION FRAMEWORK

In chapter 3 our new Rubric and Feature-based assessment and comparison

framework for Semantic Web Services (RFSWS) is presented. This chapter contains

five sub sections. The first section presents our strategies in creation and

implementation of RFSWS framework, and the second one introduces approaches

employing different methodologies for discovery and composition of WSs. The third

part demonstrates tabular evaluation and appraisal of mentioned approaches in the

second part, the fourth part is related work, and finally, the closing part presents our

notion of what features and characteristics an ideal SWS discovery and composition

approach should have.

3.1 RFSWS Framework

3.1.1 Rubric Tables

In this work for the first time, we apply the technique of rubric tables outside the area

of education, and developed rubrics for the evaluation and appraisal of SWS

discovery and composition approaches. Also we actually evaluat several recent SWS

discovery and composition approaches through using our rubrics. Since not all

comparable attributes of the approaches are amenable to comparison using rubrics,

we also develop a feature-based evaluation scheme, and used that scheme in concert

with the rubric to obtain a better picture of the approaches under consideration.

Tables 2 and 3 contain our analytic rubric table. Our rubric table contains six

18

important criteria needed in composition processes of SWSs, along with their

descriptions.

These criteria are automation, scalability, adaptivity, dynamicity, heterogeneity and

workflow pattern. Automation is the automation level of WS discovery and

composition approach, scalability shows how many WSs the system can deal with,

adaptivity identifies the degree to which the system is flexible for modifying its

behaviours in volatile environments and responding to significant changes at

execution time, dynamicity means the degree of dynamism at which the approach can

combine WSs for user's request at runtime, heterogeneity means the degree to which

the WS discovery and composition approach can deal with heterogeneity of WSs,

and workflow pattern illustrates which types of workflow patterns WS discovery and

composition approach uses. We analysed the SWS composition approaches and filled

the performace levels of the important criteria in composition process. Scores 1, 2, 3

and 4 illustrate rating scales of our rubric table namely, needs improvement,

satisfactory, good and excellent respectively.

19

approaches (Part1)

Table 2. Analytic rubric table for the appraisal of SWS discovery and composition

20

Criterion Score Explanation

 Semi-automatic: User designs the overall architecture of

WSs interactions and describes at a high level the

requirements that participating WSs must satisfy. Actual

WS discovery and composition take place automatically

at runtime.

Automation

1

2

Somewhat automatic: The system presents the user with

its results and the user accepts the one that is most

satisfactory for the job at hand.

3

Mostly automatic: All the WS discovery and composition

procedures are done automatically by the machine and

without user intervention; however the approach does not

consider the non-functional properties.

4

Fully automatic: User does not intervene in discovery

and composition processes and all the WS discovery and

composition procedures are done automatically by
machine which considers the non-functional properties

and user preference as well.

Scalability

1

Approach works only with toy examples, using less than

10 WSs. This approach merely presents its idea in small

size with possible development in future works.

2 Approach can handle 10 to 99 WSs.

3
Approach presents method for reasonable real-life cases,

and can deal with WSs within the range of 100 to 1000.

4 Approach is scalable to more than thousands of WSs.

Adaptivity

1
No adaptiveness: Presented method is not able to support

any types of adaptation during WSC processes.

2

Rule-based adaptation: Approach employs methods that

rely on predefined event-condition-action (ECA) rules.

Rules are activated whenever the events which they are
bound to happen in the environment, but they are limited

in covering all possible events and scenarios.

3

Partial adaptation: Approach considers only some aspects

of adaptation at runtime, such as, change in non-

functional properties and/or addition or removal of WSs
during WS discovery and composition processes.

4

Full adaptation: Approach is able to cope with all aspects
of unpredicted change in functional and non-functional

properties of WSs at runtime without interrupting the

whole system operation.

approaches (Part2)

Table 3. Analytic rubric table for the appraisal of SWS discovery and composition

21

Criterion Score Explanation

 Static: All processes of discovery, selection and

composition of specified WSs take place manually at

design time. Thus it cannot be an appropriate solution for

the unpredicted user's request.

Dynamicity

1

2

Somewhat-dynamic: The processes of discovery and

selection are performed statically, while the composition

of WSs is done at runtime.

3

Mostly dynamic: Approach creating an Abstract

Composition Model (ACM) at design time, while

discovery, selection and composition (actual linking of

WSs according to the ACM) of WSs are done at

execution-time.

4

Fully dynamic: Approach implementing this type of

dynamism is able to handle all the processes of discovery,

selection and composition of WSs at runtime.

Heterogeneity

1

Approach assumes that all the candidate WSs which

participate in WSC processes use the same description
language.

2

Approach requires an adaptor for each pair of cooperating
WSs. (In this case with N cooperative WSs are needs to

2
develop N adaptors).

3
Approach has no formal mediator component, but can

solve the heterogeneity problem, in non-systematic ways.

4

Approach uses in-built mediators to overcome the
problems of heterogeneity and enable interoperability

between WSs.

Workflow
Pattern

1

Sequential: The sequential pattern defines sequential

execution of WSs. A WS is invoked after the completion

of previous one.

2

Sequential and and-split-join: WSC approach uses both

sequential and and-split-join patterns. And-split-join

represents WSs that are executed simultaneously. The
term join represents the synchronization constructor,

which shows that the next WS is invoked when all
parallel branches of WSs have been executed.

3

Sequential, and-split-join and conditional: WSC approach

uses sequential, and-split-join and conditional patterns. A

conditional pattern represents the exclusive choice of
branches to invoke the proper WS. In exclusive choice,

exactly one of the conditions is permitted to be true, and

the corresponding WS is executed.

4

Sequential, and-split-join, conditional and iteration: WSC

approach uses all the mentioned patterns. In the iteration

pattern, WSs can be called repetitively.

Table 4. Features and sub-features that will be used to evaluate approaches

3.1.2 Feature-based Evaluation Scheme

There exist some important criteria which have important roles in SWS discovery

and composition processes but cannot be easily evaluated using rubrics, because it is

not possible to directly compare the offered solutions on a graded scale. Here we

investigate those as feature-based criteria, which we use in conjunction with the

analytic rubric represented in the previous subsection for the appraisal and analysis

of SWS discovery and composition approaches.

In the rest of this section, features and sub-features items are explained briefly.

1. Accepted SWS description methodology: This item is about methods for

describing both functional and non-functional properties of WSs. Two popular ones

are top-down and bottom-up methods.

22

Feature Value space

1. Accepted SWS Description Methodology
Top-down

Bottom-up

2. Quality of Service

Response time

Performance

Cost

Availability

Security

Reliability

3.Composition Methods

AI-planning

Workflow-based

Model-based

Mathematics-based

Other methods

4. Execution of Composite Services

Self-execution

Execution by other

standards

5. Personalization
User preference

Context awareness

(a) Top-down: WSs are semantically described by providing a high level

declarative specification of WS functionality and non-functional properties.

Two prominent models which follow this method are WSMO and OWL-S.

There also exist other special purpose languages for the semantic description

WSs, such as DIANE Service Description (DSD) language [50].

(b) Bottom-up: First the service developer generates WSs based on Web Service

Description Language (WSDL) [16]. Then existing WSs are semantically

annotated by different bottom up annotation models such as WS Description

Language with Semantics (WSDL-S) [1] or Semantic Annotation for WSDL

and XML schema (SAWSDL) [47].

2. Quality of Service (QoS): QoS deals with the quality aspects of a user's

interaction with the WSs. The prominent QoS factors associated with the WS

composition and execution are mentioned in [52]; below we explain them briefly.

(a) Response time: Refers to the time needed to complete a user's request.

(b) Performance: Refers to the overall speed of the system for completing the

user's request and is measured in terms of response time, latency, execution

time and throughput. Latency is the round-trip delay time in sending a request

by the user and receiving the response from the system, execution time is to

the time taken by a WS to fulfil its series of activities and throughput refers to

the number of requests which are served in a given period of time. In general,

low latency, high throughput, low execution time and fast response time are

the desired performance characteristics of WS.

23

(c) Cost: Is the amount of money needed in order to execute the related WSs for

answering the user's request.

(d) Availability: Is the readiness of the WS to accept and process requests. High

availability shows that the WS is ready to use most of the time.

(e) Security: Since WS discovery and composition processes work on the public

Internet, loss, theft and modification of information is a real risk; therefore

security is a very important aspect of WS discovery and composition

processes that must be given full attention. The service provider should have

different levels of security depending upon the needs of the service requestor.

Sub-aspects of security include confidentiality, traceability, authorization and

non-repudiation.

3. Composition methods: Different approaches use various methods to combine the

WSs in order to satisfy the user's demand. Due to the large number of composition

methods, we use the classification scheme proposed in [7]. The authors divide

composition methods into four groups, namely AI planning, workflow-based, model-

based and mathematic-based methods.

(a) AI-planning: Employs Artificial Intelligence planning (AI-planning)

algorithms in order to combine WSs. The approach solves the problems of

WS discovery and composition by designing the set of actions for achieving

the goals and generating a plan.

(b) Workflow-based: In this approach first an Abstract Composition Model

(ACM) is designed, either manually or automatically by the workflow

generator tools in accordance with the user's request. ACM specifies control

and data flow among the tasks. Secondly, an algorithm is employed to find

24

specific WSs that are matched to the tasks and bind relevant WSs together

respectively.

(c) Model-based: This approach uses modelling languages like UML, Petri net,

etc. to model service composition and overcome to the problems of complex

requests.

(d) Mathematic-based: This approach presents its solution for solving the WS

discovery and composition problems based on mathematic structure and

techniques such as: graph-based techniques, logic-based techniques and

techniques based on process algebra.

(e) Other Methods: The last group of composition methods comprises all the

approaches that do not fit in the aforementioned list and represents other

methods for solving the WS discovery and composition problem.

4. Execution of composite services: These approaches present different ways to

execute the qualified composite service, either directly via in-built components or by

the help of other standards.

(a) Self-execution: All the processes of composition and execution of WSs are

done within the presented approach's components.

(b) Execution by other standards: The approach addresses discovery and

composition of WSs to create composite services but devolves the execution

of the composite service to other outstanding standards, such as BPEL [38].

5. Personalization: Web personalization is the process of customizing WSs so that

they match the particular user's needs and preferences [37]. Preference and context-

awareness are two main factors of personalization.

25

(a) User Preference: By paying attention to the end user's desire or intention in

service selection, it is possible to improve the quality of presented WSs and

better achieve end user's satisfaction.

(b) Context Awareness: Context refers to the information about the end user and

its environments, such as, name, address, current location of the user and type

of device that the customer is using. Authors of [66] categorize methods for

awareness of end user's context as: personal profile oriented, usage history

oriented, process oriented and other methods.

3.2 Approaches Employing Different Methodologies for Discovery

and Composition of Web Services

This section briefly reviews five state-of-the-art SWS composition approaches,

namely: DynamiCoS [18], PORSCE II & VLEPPO [35, 36],

Bartalos [5], Top-k ASC [20] and Tang et al. [72]. These approaches present

different methods for solving the problems of SWS discovery and composition. They

have been selected after a comprehensive survey of the literature on current SWS

discovery and composition approaches.

3.2.1 DynamiCoS

DynamiCoS (Dynamic Composition of Services) [18] is a user-centric framework

which was created for combining WSs at runtime to answer the user requirements. In

this framework, services are created and published by the service provider at design-

time but the processes of discovery, selection and composition are performed at

runtime. As shown in figure 5, DynamiCoS architecture has five modules, namely

service creation, service publication, service request, service discovery and service

composition. In order to achieve automation in WS discovery and composition

processes, the framework semantically annotates the WS as a seven-tuple < ID, I, O,

26

P, E, G, NF >, where ID, I, O, P, E, G and NF stand for service identifier, inputs,

outputs, preconditions, effects, goals, and non-functional properties respectively.

Figure 5. DynamiCoS Architecture [18]

The composition processes of DynamiCoS are:

(i) Requested WSs are discovered based on exact and partial matching of

Inputs, Outputs, Preconditions and Effects (IOPE) concepts of WSs.

(ii) Description of all discovered WSs are organized in a pre-processed

structure called Casual Link Matrix (CLM) [51] which stores all possible

semantic connections (or causal links) between the discovered services'

input and output concepts.

(iii) A graph-based composition algorithm [30] is used to find set of composed

services according to the user demand via the prepared CLM matrix.

27

3.2.2 PORSCE II & VLEPPO

PORSCE II & VLEPPO [35, 36] is a framework for modelling the SWSC problem as

a planning problem, expressed in the Planning Domain Definition Language (PDDL)

[27], and then applying a variety of external planners to get a solution plan for

obtaining the end user's goal. Figure 6 depicts the architecture of this approach which

contains two software systems, namely PORSCE II [35] and VLEPPO [33, 34].

Implementation of the approach is performed through the integration of these two

systems. The former performs all the tasks related to WSs, such as transforming

OWL-S description of WSs to PDDL, accuracy measurement of the composed

service, etc., while the latter deals with the planning steps. Key features of this

approach are: (i) it is able to be used by the non-expert user through the dialog

interface in PORSCE II, (ii) it allows the preparation of an approximate composition

service, and (iii) independence between the representation and solving parts makes

the approach flexible in the choice of external planners.

Figure 6. PORSCE II & VLEPPO Architecture [36]

28

SWSC steps in PORSCE II & VLEPPO are:

(i) Translation of the WS composition problem into the planning problem,

which is done in PORSCE II, comprising the transformation of the

discovered OWL-S description of WSs into PDDL elements.

(ii) Solving the transformed problem by invoking external planners in

VLEPPO.

(iii) Visualization of the generated plans in PORSCE II.

(iv) Selection of one of the generated plan based on statistical methods and

accuracy metrics.

In the remainder of this paper, inside tables we shall use the abbreviation PII-V to

denote the PORSCE II & VLEPPO approach.

3.2.3 Bartalos

Bartalos [5] created an approach for composing SWS in a large scale environment by

considering functional properties of WSs (Input, Output, Pre/Post conditions) along

with QoS attributes. The basic steps of the framework are (i) finding WSs that can

consume the provided inputs such that their preconditions are satisfied, (ii) selecting

WSs that provide requested outputs and post-conditions by using a backward

chaining strategy, and finally, (iii) multiple composite services are created based on

produced interconnection between initial and final services by considering optimal

the QoS value.

29

Figure 7. Bartalos Composition Processes Architecture [5]

Figure 7 illustrates the overall composition processes in the Bartalos approach. Its

composition process architecture is divided into two main phases: bootstrap and user

querying. Bootstrap is the pre-processing stage which is performed before receiving

any user request. In this stage all the actual WSs are analysed and linked if there is

any relation between them to create a Directed Acyclic Graph (DAG). User querying

is done after receiving the goal. The initial and finals WSs are found and then the

DAG of WSs found in the pre-processing stage is employed to find a set of suitable

composition of services according to QoS attributes.

3.2.4 Top-k ASC

Top-k ASC (Top-K Automatic Service Composition) [20] is a method which was

created for determining best k composition services based on QoS attributes with a

large number of WSs. A WS is defined as a three tuple < I, O, QoS > where I, O

denote the semantic concepts of Input and Output, and QoS denotes Quality of

Service. QoS itself is defined as an n-tuple < q1, q2, q3,… , qn >, where each qi

defines one QoS attribute, such as cost, response time, availability, etc. This

30

framework transforms the WS composition problem into a graph searching problem,

i.e. each composed service is shown in the form of a DAG. Afterward, the approach,

by using a composition algorithm (based on backtracking and depth-first search) can

find best k composition services in a parallel way according to the user's request.

Figure 8. Architecture of Top-k ASC [20]

The composition procedure of Top-k ASC is depicted in figure 8. The approach has

two phases: run-up and composition. The run-up phase, usually done off-line,

consists in pre-processing of WSs from a large-scale registry, and then transforming

the pre-processed services sets into the rule repository for being efficiently accessible

to answer the user's request. The composition phase contains service filtering and

parallel composing stages. The service filtering stage fetches rules representation of

WSs which are compatible with user request from rule repository and filters out

unrelated ones. The parallel composing stage uses the idea of MapReduce [19]

(a programming model for processing parallelizable problems in a large data sets

with a huge number of nodes) to find best k composition services in a parallel way,

while guaranteeing optimal QoS.

31

3.2.5 Tang et al.

Tang et al. [72] presents a framework for composing SWSs based on a logical

interface of Horn clauses and Petri nets. In this approach a WS is defined by four-

tuple < I, O, BC, QoS > where I, O, BC and QoS stand for the semantic concepts of

Input and Output, set of Behavioural Constrains and Quality of Service respectively.

Behavioural Constrains is conditions which ensure correct execution of the WSs.

Quality of Service involves attributes such as cost, response time, availability and

reliability.

Figure 9. Framework of Tang et al., [72]

Figure 9 illustrates SWSC processes of Tang et al. which involve the following steps:

(i) Before accepting any request from the user, the Rule Builder component

that works based on the hypergraph theory [9] generates dependency

rules between the existing SWSs in the registry. These rules have the

structure WS1˄WS2˄…˄WSk→WSz which means whenever all of

WSi (1 ≤ i ≤ k) have finished their execution, then WSz can be invoked.

Rules are stored in the Service Dependency Rule Base.

32

(ii) When an end user request comes, rule builder creates Horn logic rules for

inputs and outputs of the request. Rules are indicated → WSp and

WSq → for inputs and outputs respectively, and are stored in the Query

Specific Rule Base.

(iii) The Logical Reasoner applies an algorithm based on forward chained

deduction for propositional logic (PL-FC-ENTSILS?) on both service

dependency and query specific rules. This algorithm determines whether

there exist any compositions of services that can satisfy user request. If

such a composition exists, it returns a set of Horn clauses rules which are

necessary for the composition.

(iv) The Petri Net Translator takes the selected rules and converts them into

the Petri net representation, and finally,

(v) The Composition Solver part generates composite services by using

structural analysis techniques, such as T-invariant, of Petri nets.

3.3 Actual Comparison of Approaches in Section (3.2)

This section presents the actual comparison and appraisal of the mentioned SWS

composition approaches based on the RFSWS framework which we presented in

Section 3.1. Tables 5, 6 and 8 depict the evaluation of the aforementioned

approaches according to the rubric tables and feature-based scheme respectively.

3.3.1 Rubric-based Appraisal and Comparison

Tables 5 and 6 illustrate tabular comparison and appraisal of SWS composition

approaches based on rubric tables 2 and 3.

33

Table 5. Evaluation of SWS composition approaches based on rubric tables (Part1)

5 N/S means not specified, i.e., the approach does not clearly specify values

34

Criterion Score Explanation

 DynamiCoS is an automatic SWS composition framework

where all the processes of discovery and composition are

done automatically.

Automation

4

3

PII-V is a framework which automatically composes SWSs

based on AI planning techniques. Furthermore, the most

preferable composite service can be selected automatically

among the candidate ones based on statistical methods and

accuracy metrics without considering any non-functional
properties.

4

Bartalos automatically combines SWSs in a large scale

environment by considering both functional and non-

functional attributes.

4
Top-k ASC automatically determines best k composite

services based on QoS attributes.

4
Tang et al. is an automatic WS composition framework

based on logical interface of Horn clauses and Petri nets.

Scalability

3
DynamiCoS prototype shows that approach is able to deal

with 500 WSs in the registry.

3
Experimental result shows that PII-V is able to handle

1000 WSs.

4
Experimental result of Bartalos demonstrates that it has

high scalability, being able to handle around 100,000 WSs.

4 Top-k ASC can handle 20,000 WSs.

5
N/S

Tang et al. does not give any information about the size of

the web service registry.

Adaptivity

1
DynamiCoS does not support any kind of adaptivity and

flexibility in its WS discovery and composition processes.

3

In PII-V, service replacement component handles problems

of service failure or service unavailability by replacing an

alternative atomic WS into the composite plan. If it cannot
find a suitable alternative WS, it performs the re-planning

technique.

3

Bartalos is able to handle three types of changes in WS

environment, namely addition/removal of a WS, and change

in the QoS of a WS, by designing an algorithm which

updates a data structure to handle the dynamic changes in the

WS environment.

1
Top-k ASC does not take adaptivity issues into account

during the composition processes.

1
Tang et al. is not flexible enough to adapt to any changes

that may happen during the composition processes.

Table 6. Evaluation of SWS composition approaches based on rubric tables (Part2)

35

Criterion Score Explanation

 DynamiCoS supports runtime discovery, selection and

composition of SWSs.

Dynamicity

4

4
In PII-V, all the processes of discovery, composition and
selection of composed services are done at runtime.

4
Bartalos composes SWSs in a large scale environment by

considering the QoS attributes at runtime.

4
Top-k ASC performs the processes of creating best k

composite services at runtime.

4
In Tang et al. all the composition processes are done
dynamically.

Heterogeneity

3

DynamiCoS framework has two steps for solving the

problem of using different WS description languages. First,

it specifies an interpreter for each supported description

language to extract necessary information of WS such as I,
O, P, E, G and NF. Second, it publishes all the extracted
WS information into the registry by using the DynamiCos

service publication mechanism.

1

PII-V does not consider the problems of incompatibility of

WSs in the registry, since it uses the same description

language, OWL-S, for all the existing WSs.

3

In Bartalos different types of WS descriptions (WSDL,

OWL-S) are parsed by the WS Reader. Then the parsed
data are processed by the WS processor to build the basic

data structure.

1
Top-k ASC assumes that all the WSs use the same

description language.

1
Tang et al. does not take the incompatibility of WSs into

account since it uses the same semantic description

language, SAWSDL, for all existing WSs in the registry.

Workflow

Pattern

2

DynamiCoS uses a graph-based composition algorithm to

find a composite service based on user request. A

composite service which is represented as a DAG can have

sequential and and-split-join constructors.

2
In PII-V, plans which are generated in VLEPPO are based

on the sequential and and-split-join control structure.

2
In Bartalos, composition of WSs is presented in DAG with

sequential and and-split-join control structure.

2

Best k composite services in Top-k ASC are presented in

DAG which can contain sequential and and-split-join

structure.

2
In Tang et al., the represented composite service in Petri

net can contain sequential and and-split-join constructors.

tables

A summary of the findings is presented in table 7 (assume that all criteria have the

same importance). Results show that among the evaluated SWS composition

approaches, Bartalos [5] is the winner of rubric-based evaluation with the highest

total grade of 20. Most of the studied approaches except PORSCE II & VLEPPO

obtained highest score in the automation and dynamism criteria. These approaches

achieved this score since they carried out all the steps of SWS discovery and

composition processes automatically and at runtime along with considering non-

functional properties of WSs beside the functional ones.

Table 7. Summary of the evaluation of SWS composition approaches based on rubric

In the second criterion (scalability), Bartalos and Top-k ASC received the best score

among the approaches. They obtained this score since they were able to deal with

more than thousands of WSs in the registry. Both of the mentioned approaches pre-

process existing WSs in the registry to determine dependencies between WSs and

thereby enhance response time and the performance of discovery and composition

processes. Bartalos seems better than Top-k ASC and Tang et al. in pre-processing of

WSs as it takes different types of WS description languages into account.

36

Criterion DynamiCoS PII-V Bartalos Top-k

ASC

Tang et al.

Automation 4 3 4 4 4

Scalability 3 3 4 4 N/S

Adaptivity 1 3 3 1 1

Dynamicity 4 4 4 4 4

Heterogeneity 3 1 3 1 1

Workflow

Pattern

2 2 2 2 2

Total score 17 16 20 16 12

All the mentioned approaches obtained the same score in the workflow pattern

criterion. Approaches merely support sequential and and-split-join control structures

for creating composite services and cannot handle complex patterns such as

conditional and iteration.

Lastly, adaptivity guarantees flexibility of approaches against any changes that may

happen during the composition processes. Bartalos and PORSCE II & VLEPPO

provide methods to handle such changes. Bartalos, compared to PORSCE II &

VLEPPO, is able to adapt itself to more changes, namely addition/removal of a WS,

and change in the QoS of a WS.

3.3.2 Feature-based Appraisal and Comparison

Table 8 depicts the evaluation of SWS composition approaches based on supported

features described in table 4. Unlike the summary evaluation rubric table 7, it is hard

to quantitatively compare features of the approaches, since they employ a variety of

methods, tools and languages.

37

Table 8. Evaluation of SWS composition approaches using the feature-based table

Also chart in figure 10 depicts graphically the scores of each studied approaches

determined by the rubric table evaluation as well.

Figure 10. Evaluation chart

6 N/A means not available

38

Criterion DynamiCoS PII-V Bartalos Top-k ASC Tang et al.
Accepted
SWS Description
Methodology

Top-down Top-
down

Top-
down

N/S Bottom-up

Quality of Service Cost 6
N/A N/S Response

time
Response
time, Cost,
Availability

Composition
Methods

Mathematics-
based

AI-
planning

AI-
planning

Mathematics-
based

Model-
based

Execution of
Composite Services

N/A N/A N/A N/A N/A

Personalization N/A N/A N/A N/A N/A

The first feature (accepted SWS description methodology) determines what kinds of

semantic description languages are used by the approaches. Bartalos and PORSCE II

& VLEPPO use WSs which are semantically described in OWL-S. On the other

hand, DynamiCoS which is a service description language neutral framework, allows

service providers to use different semantic description languages for describing the

WSs. Spatel language is employed in the DynamiCoS prototype for the semantic

annotation of WS operations. Furthermore OWL is also used in this prototype for

describing ontologies. In contrast, Tang et al. accepts the bottom-up WS description

language, SAWSDL.

The second row of table 8 depicts the QoS aspects of the approaches. Bartalos

considers QoS attribute values for each atomic WS, and the best composite service is

found based on the optimal aggregated QoS values of each atomic WS which

participates in the composition. However it does not clearly define what kinds of

QoS attributes are used in this approach. On the other hand, the DynamiCoS

prototype uses an OWL ontology which defines non-functional properties of WSs,

but only cost is used in the prototype. Tang et al. uses the QoS attributes cost,

availability and response time for WSs.

Approaches, in order to achieve user's desired goals, combine WSs in various ways.

DynamiCoS and Top-k ASC employ different mathematical techniques to compose

the WSs. In DynamiCoS composite services are generated based on a CLM matrix

via a graphic composition algorithm, whilst in Top-k ASC the WSC problem is

transformed into a graph searching problem. Top-k ASC uses a composition

algorithm based on the combination of backtracking and depth-first search. In

PORSCE II & VLEPPO and Tang et al., similar to Top-k ASC, the WSC problem is

39

transformed into a different formalism. PORSCE II & VLEPPO uses AI-planning

method and WSC problem is transform into a planning problem. Then, WSs are

composed using classical planning techniques. Tang et al. uses a model-based

composition method. In the Tang et al. WSC problem is transformed into logical

interface problem of Horn clauses and Petri nets, and then a forward chaining

algorithm is used to find composite services.

Finally, despite the importance of last two features (execution of composite services

and personalization), most of the approaches do not deal with them. Only Bartalos,

via Solution Generator supplies composite service in executable BPEL format.

3.4 Evaluation and Appraisal of SWS Composition Approache

In this section, we briefly review other recent prominent surveys on WS discovery

and composition approaches, and then point out the ways in which our work is

different from or superior to these works.

The survey paper [64] reviews WS discovery and composition approaches based on

two composition methods: workflow and AI-planning, and claims that most of the

WS discovery and composition approaches employ AI-planning techniques to

compose the WSs.

The authors of [7] present requirements in automated WS discovery and composition

such as dynamicity, automation level, semantic capability, QoS awareness,

scalability, correctness, domain independence, partial observation and adaptivity.

They compare state-of-the-art approaches proposed until 2010 based on these

criteria.

40

Vardhan et al. [73] introduce a review paper which has a simple classification of WS

composition approaches, namely static composition, dynamic composition and

semantics based. It proceeds to evaluate and compare WS composition approaches

using this classification.

Authors of [21] review only dynamic WS discovery and composition approaches.

They derive a reference model along with some requirements for dynamic WS

discovery and composition techniques, namely query analyser, dynamic selection,

composition template, verification model, distributed execution, monitoring module,

recovery module, QoS certifier, control agent, semantic based and context source.

They then analyse the WS discovery and composition approaches based on these

requirements.

In [69] the authors present a WS discovery and composition life cycle consisting of

three phases, namely definition, service selection, and execution. For each phase, a

different set of requirements is given. For definition phase, the requirements are

expressibility and correctness. The requirements automation and selectability are for

the service selection, and finally adaptability, scalability, monitoring and reliability

are for execution phase. Then, they compare WS discovery and composition

approaches using the specified requirements.

Our work is unlike the prior works because:

 We determined aspects of SWS discovery and composition processes that can

be evaluated as performance criteria in rubric tables and defined rubric tables

for such evaluation.

41

 We designed a feature-based evaluation scheme for aspects of SWS discovery

and composition processes that could not be naturally evaluated using

performance criteria.

 We created a novel framework called RFSWS consisting of rubric tables and

the feature-based evaluation scheme for the evaluation and comparison of

SWS discovery and composition approaches.

 We used the RFSWS framework to actually evaluate five state-of-the-art

SWS discovery and composition approaches that contain the recent

advancements in SWS discovery and composition technology.

 We proposed an idealized SWS discovery and composition approach which

can be the yardstick against which any new SWS discovery and composition

approaches can be judged (given in the following section).

3.5 An Idealized Approach

An idealized approach has to perform all the steps of the WSC processes in an

automated manner. Specifically, it should have the following capabilities:

 Accept requests both from expert and inexpert users,

 Deal with large number of WSs in the registry (scalability),

 Handle diverse WSs in the registry (heterogeneity),

 Automatically employ partial matching as well as exact matching of

requested WSs with the WSs in the registry at runtime,

 Consider both functional and non-functional properties of WSs in the

composition processes.

 Involve sequential, and-split-join, conditional and iteration patterns in the

control structure of the composite service, and

42

 Be adaptable and respond to significant changes at execution time in volatile

environments.

43

Chapter 4

SEMANTIC WEB SERVICE SPECIFICATION AND

DISCOVERY FORMALIZATION

Chapter 4 contains the following subjects: i) expression of a new logical SWS

discovery framework using F-logic, ii) explanation of new employed enhancements

over the original WSMO framework such as optimization and categories, and finally,

iii) description of some scenarios which are part of WSMO-FL V2 test collection.

4.1 New Logical Semantic Web Service Discovery Framework

In general, WS discovery is the process of finding appropriate WSs with respect to

the user request and ranking of discovered services based on user preference. Many

researchers proposed various SWS discover methods [71, 68, 14] in different ways

with ours. Our discovery framework receives WSMO goal descriptions and WSMO

WS descriptions, all coded in F-Logic, along with related mediators and ontologies

as input entities and for each goal returns an ordered list of WSs that can satisfy the

needs of the goal.

Figure 11 depicts the architecture of our discovery framework. The framework

consists of four stages: 1) the creation and maintenance of goals and WSs along with

related domain ontologies and mediators, 2) pre-filtering stages, 3) matchmaker and

4) ranking stage. In the creation and maintenance stage, WS and goal descriptions

which are specified based on our modified WSMO model, along with domain

ontologies and mediators, are stored in different repositories. In the pre-filtering

44

stages, for a given goal, advertised WSs are filtered in two steps in order to narrow

down the list of WSs that can be possible matches for the goal, the rest of the WSs

being eliminated from consideration. In the matchmaker stage, the logical

matchmaker checks whether each filtered WS can really execute in a way such that

the user goal is achieved. Finally, the ranking stage returns lists of matched WSs

based on user preference regarding the minimization of some numeric result (for

example, the cost of a flight between two cities).

1
User

request

Domain
Ontologies

Mediator
s Service

repository

2

3

Category_based Filtering
ffufiltering

Capability_based Filtering

filtering

Filtered

service
repository

Matchmaker List of

discovered
services

4 Ranking

List of ranked

services based on
user preference

Figure 11. Proposed SWS discovery framework including two pre-filtering stages

45

Following are briefly description of our logical matchmaker mechanism.

Our logical matchmaker algorithm makes use of pre-conditions and post-conditions

of goals and WSs, as well as related domain ontologies and mediators which are

imported in service descriptions. The proof commitments (i.e. what must be proven

before a match can succeed) required for our logical inference based matching are

given below:

1. Onts ˄ Mediator ˄ Goal.Pre ╞ Ws.pre: The pre-condition of the WS (Ws.Pre)

should be logically entailed by imported ontologies, mediators, and what is

provided /guaranteed by the goal pre-condition (Goal.Pre).

2. Onts ˄ Mediator ˄ Goal.Pre ˄ (Ws.pre => Ws.post) ╞ Goal.post: the post-

conditions of the goal should be logically entailed by imported ontologies,

mediations as well as the implication Ws.pre=>Ws.post, which we assume is

guaranteed by the execution of the WS.

4.2 Enhancements over the Original WSMO Framework

We enhanced the original WSMO model [24] framework in several ways. Listings 1,

2 and 3 depict the meta-level concept definitions of WSMO. Listing 1 contains the

Goal concept, instances of which are used to specify a user‟s request. It has attributes

for non-functional properties (such as quality of service, response time, security etc.),

category information (such as transportation, education, food etc.), ontologies that

need to be consulted that contain specific information about a domain (for example,

flight information ontology, geographical information ontology, etc.), mediator

information (ontologies that deal with discrepancies in terms by defining equivalence

classes of terms and synonymous relationship between them), capability needed

46

from the WS, and the interface demanded from the WS (i.e. orchestration and

choreography). The hasCategory attribute has been newly introduced in our

framework in order to allow filtering based on categories.

Goal [|
hasNonFunctionalProperty =>NonFunctionalProperty,

hasCategory=> Category,

importsOntology => Ontology,

usesMediator =>Mediator,

requestsCapability =>Capability ,
requestsInterface => Interface

|].

Listing 1. Goal concept in our extended version of WSMO

The Service concept given in listing 2 is almost identical to the Goal concept. Its two

differences are: (i) it specifies the provided capability instead of the requested

capability, and (ii) it has an extra attribute called otherSource (not in the original

WSMO specification) which lists the concepts that should be excluded from

consideration in the filtering phase, since objects that are instances of the listed

concepts should come from other sources, such as imported ontologies, and are not in

the goal.

Service [|
hasNonFunctionalProperty =>NonFunctionalProperty,

hasCategory=> Category,

importsOntology => Ontology,

usesMediator=>Mediator,

hasCapability =>Capability,

hasInterface => Interface,

otherSource =>OntologyConcept

|].
Listing 2. WS concept in our extended version of WSMO

47

Listing 3 is the definition of the Capability concept. It has attributes for non-

functional properties, imported ontologies, mediators used, pre-condition,

assumption, post-condition, effect and optimization. The optimization attribute

allows the user to specify that the WS returned by the discovery engine should be

optimized with respect to some measure (for example, price of a flight etc.), and is an

enhancement of the original WSMO specification.

Capability [|
hasNonFunctionalProperty =>NonFunctionalProperty,

importsOntology => Ontology,

usesMediator=>Mediator,

hasPrecondition=>Axiom,

hasAssumption=>Axiom,

hasPostcondition=>Axiom,

hasEffect=>Axiom,

optimization=>OptSpecification

|].
Listing 3. Capability concept in our extended version of WSMO

When a capability object is part of a goal, the pre-condition is a conjunction of

embedded objects in the form of F-logic molecules which specify the information

provided by the request to the WS, and post-condition is a logical expression

possibly containing embedded objects, predicates, conjunction, disjunction and

negation operators. All logic variables in a goal post-condition are implicitly

existentially quantified.

However, inside a WS specification, pre-condition is a logical expression possibly

containing embedded objects in the form of F-logic molecules, predicates,

conjunction, disjunction and negation operators and where all logic variables are

existentially quantified, and post-condition is a conjunction of embedded objects

which specify the information provided by the WS to the requester that is the result

48

of the WS execution. Note the similarities between the goal post-condition and WS

pre-condition, as well as the goal pre-condition and WS post-condition.

4.3 Scenarios obtained from WSMO-FL test collection

Listings 4 to 9 show the F-logic descriptions of two goals and four WSs

specifications respectively among various available types of goals and WSs in our

repository.

Listing 4 depicts capability descriptions of a goal instance, which belongs to

AirTransportation category and describes a request for a flight ticket from Berlin to

Istanbul and specifies that the user does not want Sabiha_Gokcen as a destination

airport. The requester also demands flights that have less than 500$ cost for one

person, and that whatever flight is returned, it must have the minimum cost. Note that

logic variables start with the “?” symbol.

49

Goal Instance

Goal #1: “Book a flight from Berlin to Istanbul”

hasCategory −˃ AirTransportation,

requestsCapability −˃ ${goal_1[

hasPrecondition−˃

${reqFlight[

originateCity−˃ berlin,

terminalCity −˃ istanbul

]: RequestFlightTicket

},

hasPostcondition −˃

(${?BookTicket[

fromAirport −˃ ?FromAirport,

toAirport −˃ ?ToAirport,

cost −˃ ?Cost

]:Response

},

\+ is_equal(?ToAirport , Sabiha_Gokcen),

less (?Cost, 500)

),

optimization −˃

${optObj[optCost −˃? Cost]}

]

}

Listing 4. Part of goal instance specification request a flight reservation

Listing 5 depicts semantically descriptions of a goal instance, which belongs to

Restaurant category. This goal describes a request for a restaurant‟s name in Berlin

and specifies that the desired restaurant must be a vegetarian restaurant. The

requester also demands restaurant‟s name that maximum food price of this restaurant

should not be greater than 150$ for two people.

50

Goal Instance

Goal #2: “Reserve a restaurant in Berlin”

hasCategory −˃ Restaurant,

requestsCapability −˃ ${goal_2[

hasPrecondition−˃

${findRest[

restName−˃?Name,

inCity−˃ berlin,

foodSource−˃ plants,

numberPeople −˃ 2

]:RequestRest

},

hasPostcondition −˃

(${?BookRest[

restName−˃ ?Name,

address−˃ ?Adr,

maxPrice−˃ ?TotalCost

]:ResponseRest

},

\+ greater (?TotalCost, 150)

)]

}

Listing 5. Part of goal instance specification request a restaurant name

Listing 6 depicts the main part of the capability and category descriptions of a WS

instance in our WS repository. SWS#1 belongs to the AeroplaneTransportation

category and provides flight reservation through credit card or PayPal payment

systems for users who request a flight from one place to another place. This WS asks

for source and destination cities, desired payment types, consults two ontologies

containing flight information (FlightInfo_Simple_ont) and geographical information

(Geographical_ont), and returns the list of matching airports. The preconditions

needs four objects, two of first three objects coming from the goal (instance of

RequestFlightTicket and either CreditCard or PayPal) and last object coming from

an imported ontology (instance of Flight).

51

SWS#1:

“Reserve a Flight by Credit Card Or PayPal”

hasCategory −˃ AeroplaneTransportation,

importsOntology −˃

{ '.../ FlightInfo_Simple_ont.flr',

'…/Geographical_ont.flr'},

hasCapability−˃ ${ sws_1[

hasPrecondition−˃

(${?ReqFlight[

startCity−˃?FromCity,

endCity−˃?ToCity

]: RequestFlightTicket

}

,

(${?PaymentType1[

creditNumber−˃?CreditNo,

expireDate−˃?ExpreDate

]: CreditCard

};

${?PaymentType2[

accountName−˃?AccName,

accountNumber−˃?AccNo

]:PayPal

}

)

,

(${?SomeFlight[

fromAirport−˃?FromAirport,

toAirport−˃?ToAirport,

cost−˃?Cost

]:Flight

}

)

),

hasPostcondition−˃

${response[

fromAirport−˃?FromAirport,

toAirport−˃?ToAirport,

cost−˃?Cost

]:Response

}

]

}

Listing 6. Parts of WS instance specification dealing with flight reservation via credit

card or PayPal

52

In order to better illustrate our work, consider listings 7, 8 and 9 which depict main

parts of SWS descriptions of three different instances in our WS repository. All these

services are obtained from the defined domains in our test collection

(WSMO-FL V2).

According to Listing 7, SWS#2, it belongs to the Food category and provides a

restaurant reservation for the user who demands the name of restaurant in specific

place. This WS asks for name of restaurant if available, city of the desired restaurant,

the number of people and type of specific food, then consults two ontologies

containing restaurant information (RestInfo_ont) and geographical information

(Geographical_ont) and returns the lists of matching restaurants along with their

maximum meals‟ price for specific number of people. An instance of the Food

concepts should come from the restaurant ontology (RestInfo_ont). Note that

imported ontologies of the WS can act like the local knowledgebase consulted by the

WS.

53

SWS#2:

“Reserve a Restaurant”

hasCategory −˃ Food,

importsOntology −˃

{ '.../ RestInfo_ont.flr',

'…/Geographical_ont.flr'},

hasCapability−˃ ${ sws_2[

hasPrecondition−˃

(${?FindRest[

restName −˃?Name,

inCity −˃?City,

numberPeople −˃?HNumber,

foodSource −˃?Source

]:RequestRest

},

${?SomeRestaurant[

restName −˃?Name,

inCity −˃?City,

foodSource −˃?Source,

address −˃?Adr,

maxPrice −˃?Cost

]:Food

},

mult(?Cost,?HNumber,?TotalCost)

) ,
hasPostcondition−˃

${response[

restName −˃?Name,

address −˃?Adr,

maxPrice −˃? TotalCost

]:ResponseRest

}

]

}

Listing 7. Parts of WS instance specification dealing with restaurant reservation

SWS#3 in listing 8 fits in the Transportation category and provides a flight or ship

reservation for a user who desires to book either a flight or ship voyage from one

place to another place in world. SWS#3 asks for origin and destination cities

according to user‟s desire, consults either of the two ontologies containing flight

information (FlightInfo_Simple_ont) and geographical information

54

(Geographical_ont) or two ontologies containing ship information

(ShipInfo_Simple_ont) and geographical information (Geographical_ont)

respectively. As the result, it returns a list of matching airports or harbours, ordered

according to minimum cost, if the goal specifies an ordered result.

55

SWS#3:

“Reserve a Flight or Ship”

hasCategory −˃ Transportation,

importsOntology −˃

{ '.../ FlightInfo_Simple_ont.flr',

'.../ ShipInfo_Simple_ont.flr ',
'…/Geographical_ont.flr'},

hasCapability−˃ ${ sws_3[

hasPrecondition−˃

((${?ReqShip[

startCity->?FromCity,

toCity->?ToCity

]:RequestShipTicket

} ,
${?SomeShip[

fromHarbor ->?FromHarbor,

toHarbor ->?ToHarbor,

cost->?Cost

]:Ship

}

) ;
(${?ReqFlight[

fromCity->?FromCity,

destinationCity ->?ToCity

]: RequestAirplainTicket

},

${?SomeFlight[

fromAirport->?FromAirport,

toAirport->?ToAirport,

cost->?Cost

]:Flight

}

)) ,
hasPostcondition−˃

${response[

originateAirport ->?FromAirport,

toAirport->?ToAirport,

fromHarbor ->?FromHarbor,

toHarbor ->?ToHarbor,

cost->?Cost

]:Response

}

]

}

Listing 8. Parts of WS instance specification dealing with either flight or ship

reservation

56

Finally in listing 9, SWS#4, fits in the Learning category and provides school‟s name

for users who request a name of school in specific city. This WS asks for the name of

school, desired city, school type (preliminary_school or high_school or etc.) and

gender of students who are studying in the school, then consider two ontologies

containing school information (SchGenderInfo_ont) and geographical information

(Geographical_ont) and returns the list of schools‟ name along with their costs.

Again, the precondition needs two objects, one coming from the goal (instance of

RequestSch) and one coming from an imported ontology (instance of Education).

57

SWS#4:

“Finding Name of School”

hasCategory −˃ Learning,

importsOntology −˃

{ '.../ SchGenderInfo_ont.flr',

'…/Geographical_ont.flr'},

hasCapability−˃ ${ sws_4[

hasPrecondition−˃

(${?FindSch[

schName->?Name,

inCity->?City,

schoolType->?SchoolType,

gender->?Gender

]:RequestSch

},

${?SomeSch[

schName->?Name,

inCity->?City,

gender->?Gender,

address->?Adr,

schoolType->?SchoolType,

cost->?Cost

]:Education

}),
hasPostcondition−˃

${response[

schName->?Name,

address->?Adr,

cost->?Cost

]:ResponseSch

}

]

}

Listing 9. Parts of WS instance specification dealing with finding a school‟s name

58

Chapter 5

PROPOSED TWO-PHASE PRE-FILTERING

MECHANISM

In chapter 5 we explain our novel strategy improves discovery performance by

adding two pre-filtering stages before the logical matchmaker stage of discovery

framework. We call these two pre-processing algorithms, which offer different

filtering levels, Category-based Filtering (Cat_Filt) and Capability-based Filtering

(Cap_Filt).

Our algorithms that perform pre-processing reduce the input data of service

matchmaking, so that the matching process is more streamlined; only logical

reasoning about WSs that really matter with respect to the goal is carried out.

In the following sections, we describe the two filtering stages in more detail.

5.1 Category-based Filtering (Cat_Filt)

The Cat_Filt stage filters the original WSs repository according to both specified

categories and synonyms defined in the Global_Cat_Ont ontology. Figure 12

illustrates part of hierarchical structure of our specified domains in Global_Cat_Ont,

which currently contains the three major categories for transportation, food and

education.

59

Figure 12. Part of the hierarchical structure of our specified domains in the category

ontology Global_Cat_Ont

Global_Cat_Ont contains both structural knowledge (i.e. it defines subclass and

superclass relationships between concepts of three specified domains) and a

dictionary of synonymous concepts.

5.1.1 Abstract Definition of Cat_Filt Algorithm

Formula 1 shows the abstract definition of Cat_Filt in the form of a function that

takes a goal as a parameter.

To understanding of the following function, let us give a brief introduction to object

oriented notation used in FLORA-2. Suppose that O and C are two objects.

O : C means that O is an instance of C (in FLORA-2, an object can simultaneously

be a class). C :: D means that C is a subclass of D. Also for user-defined equality,

60

suppose that O1 and O2 are different names (called id-terms in FLORA-2

terminology) that are supposed to denote the same object. This fact is stated in

FLORA-2 with the notation O1:=: O2. This facility enables the user to state that two

syntactically different (and typically non-unifiable) terms represent the same object,

and can be used to define synonymy between such terms.

Here, g and w stand for goal instance and WS instance respectively, and W is the

Web service repository. The result of the function is the union of three sets: (i) if the

goal specifies a category (𝐶𝑎𝑡𝑔), advertised WSs in the registry which have

categories matching the goal‟s category, (ii) WSs that have no category specified,

and (iii) all WSs in case no category is specified for the goal. This definition

guarantees that if there is any possibility of a WS matching the goal, it is never

eliminated from consideration in the next phase.

1: Cat_Filt(g) = { w | g has a category specified,

2:

3:

4:

5:

6:

7:

w ∈ W,

Catw ∈ Global_Cat_Ont,

Catg ∈ Global_Cat_Ont,

(Catw :: Catg or Catg :: Catw or Catw:=: Catg)}

{ w | w ∈ W, w does not have a category specified }

{ w | g does not have a category specified, w ∈ W }.

Formula 1. Abstract definition of Cat_Filt as a function

5.2 Filtering According to Capability Decomposition (Cap_Filt)

Cap_Filt algorithm eliminates irrelevant WSs based on checking of the attributes and

concepts of objects employed in the goal and the WS pre and post-conditions. Our

Cap_Filt algorithm uses a novel technique of extracting attributes and concepts of

objects utilized in the goal and the WS specifications. This algorithm can deal with

predicates and objects that occur in a logical formula with full usage of the logical

61

connectives conjunction, disjunction and negation, a first in literature. We also make

use of ontology-based mediation between concepts and attributes, so that two

syntactically different symbols may be declared to denote the same thing

semantically. Therefore, Cap_Filt analyses semantic equivalency between extracted

attributes and concepts in order to filter out unrelated WSs.

The level of similarity between such parameters is obtained based on their

hierarchical relationships inside this ontology. In this work, levels of semantic

similarity between parameters are defined as exact, plug-in, subsume and fail. Exact

means two concepts or two attributes are exactly identical in the same domain

ontology. Similarity degree of two concepts or two attributes is plug-in only if

concept or attribute of goal request is superclass of concept or attribute of the WS.

Degree of two concepts or two attributes is subsume only if concept or attribute of

goal request is subclass of concept or attribute of the WS. Finally fail degree

expresses that there is no semantic-based relationship between two concepts or two

attributes.

Also, our work, in order to gain more precise results and tackle the problem that two

concepts or two attributes which are going to be investigated may not be equal

syntactically, uses WorldNet [55], a dictionary of synonymous words. Thus,

synonym similarity between the goal and WS parameters in the Cap-Filt algorithm is

calculated by making use of the WordNet
7 online synonym dictionary.

7 https://wordnet.princeton.edu/

62

5.2.1 Disjunctive Normal Form (DNF)

Since Cap_Filt should be able to deal with predicates and objects that occur in a

logical formula with full usage of the logical connectives conjunction, disjunction

and negation, we need to reach a comparable list of concepts and attributes of objects

between pre-condition and post-condition parts of goal and WS. In order to achieve a

comparable list, some kind of normalized form is needed. Note that, a goal pre-

condition (web service post-condition) is a conjunction of embedded objects (in the

form of F-logic molecules), and goal post-condition (web service pre-condition) is a

logical expression possibly containing embedded objects, predicates, conjunction,

disjunction and negation operators, where all logic variables are existentially

quantified. The logic of matching dictates that we use Disjunctive Normal Form

(DNF) for web service pre-conditions and goal post-conditions.This is due to the fact

that a WS pre-condition (goal post-condition) in DNF depicts explicitly the

alternatives that the web service (goal) is ready to accept for a match.

A formula in DNF has the structure of (C11 ˄ C12 ˄ …˄ C1n) ˅ …˅ (Ck1 ˄ Ck2 ˄…˄

Ckn), where Cij (a literal) is either an object, predicate or the negation of an object or

predicate.

5.2.2 Cap_Filt Algorithm

Algorithm 1 depicts the employed strategies in the second step of filtering.

63

Algorithm 1. Capability filtering Algorithm

Following are the steps of capability filtering procedure, given in algorithm 1. Lines

1 to 11 are related to examining the objects in goal pre-conditions and WS pre-

conditions. Lines 12 to 22 compare goal post-conditions and WS post-conditions‟

objects. Lines 23 to 27 return matched WS to the goal request if and only if the

results of two previous parts are true.

Starting point of algorithm begins by getting the concepts and attributes of the goal

pre-condition side which contain a conjunction of components. The WS pre-

condition which may contain conjunction, disjunction and negation components is

64

Input: Goal.Pre, Goal.Post, Ws.Pre and Ws.Post
Output: Matching status of Web service

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:

Get concepts and attributes of Goal.Pre
Convert Ws.Pre into DNF
Eliminate the negative literals in the converted Ws.Pre
WsPrePossibleMatch ← False
for each OR‟ed component Comp (of Ws.Pre)

get Comp’s concept, attributes
if concept and attributes of Comp match with concepts and attributes of Goal.Pre

then
WsPrePossibleMatch ← True

end if
end for

Get concepts and attributes of Ws.Post
Convert Goal.Post into DNF
Eliminate the negative literals in the converted Goal.Post
GoalPostPossibleMatch ← False
for each OR‟ed component Comp (of Goal.Post)

get Comp’s concept, attributes
if concept and attributes of Comp match with concepts and attributes of Ws.Post

then
GoalPostPossibleMatch ← True

end if
end for

if WsPrePossibleMatch && GoalPostPossibleMatch then
return (WS Matches)

else
return (WS doesn‟t Match)

end if

converted into DNF. Then negative components are eliminated for the next step (the

filtering algorithm looks for the presence of attributes and concepts, not their

absence). The attributes and concepts of WS pre-condition in DNF are extracted to

compare with attributes and concepts of goal pre-condition. If they match,

WsPrePossibleMatch flag‟s status is changed to “True”.

Next step is analysing of post-conditions parts of goal and WS. Goal post-condition

is converted into DNF and its negative components are removed. Then, attributes and

concepts of the goal post-condition in DNF are extracted to check with WS post-

conditions‟ components. If they match, the GoalPostPossibleMatch flag‟s status is

changed to “True”.

Finally, lines 23 to 27 check whether both flags, WsPrePossibleMatch and

GoalPostPossibleMatch, are “True” or not. If both are “True”, a positive result is

returned. Otherwise, the result is negative.

Complexity of Cap_Filt Algorithm:

The conversion of logic statements to DNF naturally dominates the time complexity

of the algorithm, since in the worst case it is exponential (for example, logical

formulas of the form (X11 ⋁ X12 ⋁ … X1k) ⋀ (X21 ⋁ X22 ⋁ … X2k) ⋀ … ⋀

(Xm1 ⋁ Xm2 ⋁ … Xmk), where Xij, 1 ≤ i ≤ m, 1 ≤ j ≤ k are propositional literals, have

k
m

 terms, each term consisting of conjunctions of m literals when converted to DNF).

In the context of pre and post-conditions, literals are objects or negations of objects.

However, in practical situations, we expect that the pre-conditions of WSs and post-

conditions of goals would already be in DNF, eliminating the costly conversion

process. Disregarding the DNF conversion, and assuming that the matching of a

single attribute of a WS concept to a goal concept attribute takes constant time

65

through the usage of appropriate hashing mechanisms, and the number of or‟ed

component of a WS has a practical maximum limit, then the complexity of matching

a list of such attributes against goal concept attributes is linear in the size of the list.

A more detailed analysis of the time complexity of Cap_Filt Algorithm is as follows.

Let n be the maximum of the number of attributes in the decomposed objects in each

or‟ed component of the pre-condition of a WS in DNF, and the pre-condition of a

goal. In algorithm 1, line one takes O(n) time, since goal.pre is a conjuction of

positive literals, and the expression tree grows only to the right. Line 2, in the worst

case, can be exponential in the number of or‟ed components, as already mentioned.

Time complexity for processing line 3 is O(n), because we need to search all the

extracted attributes of WS pre-condition and then eliminate the negative ones. The

processing time of line 4 is O (1), because this line refers changing the status of

WsPrePossibleMatch flag.

Assuming that there is a practical maximum limit r in the number of or‟ed

componets in WS pre-condition, Line 5 iterates at most r times. Line 6 has time

complexity O (n), since each attribute needs to be individually “read”. Line 7

involves matching of attribute values, and has time complexity O(n). Line 9 involves

the change of flag status, and has constant time complexity O(1). As a result, the

complexity of lines 5-10 is O(rn) = O(n).

An exactly symmetrical analysis can be made for lines 12-22 of the algorithm,

resulting in an overall complexity of O(n), provided that the WS pre-condition and

goal post-condition are already in DNF, and there is a practical maximum limit on

66

the number of or‟ed components. Otherwise, the time complexity is exponential in

the worst case.

67

Chapter 6

IMPLEMENTATION

Chapter 6 outlises the implementation part of this dissertation which introduces the

main predicates used in our pre-filtering technique. All of these predicates are written

in FLORA-2. Furthermore, in this chapter, results of each predicate during two

filtering stages according to our predefined scenario in chapter 4 are displayed step

by step.

6.1 Main Predicates of Pre-filtering Strategies Written in FLORA-2

This section explains the main predicates which are employed in our two pre-

filtering techniques. The predicates are %FilterMain, %Filter_Cap,

%FindGoalOrWsAtt, %Conv_DNF, %DC and %Check_Att_Cnp.

6.1.1 %FilterMain Predicate

In listing 10, both category and capability filtering strategies are performed through

the main predicate named %FilterMain. Output of this predicate is a list of goals and

their related WSs which are inserted into the knowledge based named

RelatedGoalWsModule for the subsequent logical matchmaker phase.

68

1:

2:
3:
4:

5:

6:
7:
8:
9:
10:
11:

%FilterMain :- ?_Inserted = setof{ ?Ins |
//---------First stage of filtering- Cat_Filt--------------

?GoalName[hasCategory->?GoalCat]@?_GoalModule,
?WsName[hasCategory->?WsCat]@?_WsModule,
((?WsCat :=: ?GoalCat) ; (?WsCat :: ?GoalCat) ; (?GoalCat ::?WsCat)),

//----------Second stage of filtering- Cap_Filt----------
%Filter_Cap (?GoalName, ?WsName),
alreadySelected(?WsName, WEBSERVICE)@FilteredWsModule,
alreadySelected(?WsName, GOAL)@FilteredWsModule,

insert{related(?GoalName,?WsName)}@RelatedGoalWsModule,
?Ins=related(?GoalName,?WsName)

}.

Listing 10. Pre-filtering processes containing two filtering stages

(lines 2 to 4: Cat_Filt, lines 5 to 11: Cap_Filt)

For each goal and WS pair, the first stage, Cat_Filt uses the Global_Cat_Ont

ontology to check semantic similarity of the goal category (Catg) against the Web

service category (Catw). According to listing 10 line 4, if Catg and Catw are equal,

synonym or in an inheritance relationship with one another, the WS is kept for the

next stage, otherwise it is discarded.

In the second stage, Cap_Filt, first attributes and concepts of objects utilized in the

goal and the WS pre and post-conditions are extracted by our new algorithm

(described in chapter 5). Then, extracted concepts and attributes as well as our

ontology-based mediation are used to select WSs which satisfy the following

conditions:

(i) Their pre-condition concepts and attributes are a subset of, equal to or

synonymous with the goal pre-condition concepts and attributes,

(ii) Their post-conditions‟ concepts and attributes are superset, equal to or

synonymous with the goal post-condition concepts and attributes.

69

Each goal is then logically tested for an exact match with only the WSs that survived

the two-phase filtering process.

Note that our Cap_Filt deals with any logical expression involving the negation and

disjunction operators as well as the conjunction operator.

6.1.2 %Filter_Cap Predicate

As it is shown in line 5 of listing 10, in order to perform Cap_Filt algorithm we call

another predicate %Filter_Cap. %Filter_Cap sequentially calls four main predicates

named %FindGoalOrWsAtt, %Conv_DNF, %DC and %Check_Att_Cnp. The

following sections explain all of the mentioned predicates in detail.

Listing 11 depicts critical parts of the %Filter_Cap predicate. Filtering based on

concepts and attributes of objects in the capability specification of the WS and goal

is carried out in the following manner:

1) Lines 2 to 7 read goal and WS pre and post conditions from their individual

modules.

2) As the process of checking semantic and synonymous similarity of goal and

WS specifications is done in the knowledge base module (GoalWsAttModul),

in listing 11 line 8, attributes and concepts of goal pre-condition are inserted

into GoalWsAttModule through the %FindGoalOrWsAtt predicate. Its source

code is available in listing 12.

3) In order to find a comparable list of concepts and attributes in WS pre-

condition with concepts and attributes in goal pre-condition, line 9 of

listing 11 calls %Conv_DNF predicate to convert the WS pre-condition into

70

1:

2:

3:
4:

5:
6:
7:

8:
9:
10:
11:

12:

13:
14:
15:
16:

Disjunctive Normal Form (DNF). Output is a WS pre-condition in DNF.

%Conv_DNF is completely explained in listing 13.

%Filter_Cap (?GoalName, ?WsName):-

//----------Pre-Condition --------

?GoalName[requestsCapability->?GCap]@?GoalModule,
?GCap ~ ${?_GCapability[
hasPrecondition->?GoalPre ,hasPostcondition-> ?GoalPost]}@?GoalModule,

?WsName[hasCapability->?Wcap]@?WsModule,
?Wcap ~ ${?_WSCapability[
hasPrecondition-> ?WsPre,hasPostcondition->?WsPost]}@?WsModule,

%FindGoalOrWsAtt (?GoalPre, GoalWsAttModule),
%Conv_DNF(?WsPre,?DNFedWsPre),
%DC (?DNFedWsPre, ?Ws_Pre_Att_Cnp),
%Check_Att_Cnp (?WsName, ?Ws_Pre_Att_Cnp, WEBSERVICE),

//----------Post-Condition --------

deleteall{?_A[?_B->?_V]:?_C @GoalWsAttModule},

%FindGoalOrWsAtt (?WsPost,GoalWsAttModule),
%Conv_DNF(?GoalPost,?DNFedGoalPost),
%DC (?DNFedGoalPost, ?Goal_Post_Att_Cnp),
%Check_Att_Cnp (?WsName, ?Goal_Post_Att_Cnp, GOAL).

Listing 11. Critical parts of %Filter_Cap predicate

4) Attributes and concepts of the WS pre-condition in DNF are extracted via

%DC predicate. Source code of this predicates is presented in listing 14. Line

10 of listing 11 shows that this predicate is called with the WS pre-condition

in DNF (?DNFedWsPre) as input parameter and an unbound variable

?Ws_Pre_Att_Cnp as output parameter. ?Ws_Pre_Att_Cnp is the list of

concepts and their corresponding attributes in WS pre-conditions.

5) Finally, line 11 depicts %Check_Att_Cnp predicate that implements

algorithm 2 explained in section 6.1.6. This predicate compares concepts and

attributes related to goal pre-conditions with concepts and attributes

71

associated to WS pre-conditions based on their semantic and synonymous

similarity.

Comparison of goal and WS post-conditions is similar to the pre-conditions, except

for some changes in predicates‟ parameters.

6) As it is shown in line 12 of listing 11, contents of knowledge base

GoalWsAttModule which already consists of goal pre-condition‟s attributes

and concepts, is deleted in order to replace it with the new data.

7) Attributes and concepts of WS post-conditions are inserted into

GoalWsAttModule module by %FindGoalOrWsAtt predicate in line 13 of

listing 11.

8) In line 14 of listing 11, goal post-conditions are converted into DNF through

the %Conv_DNF predicate. This predicate calls ?GoalPost as input

parameter and the goal post-condition in DNF is the output of this predicate.

9) Attributes and concepts of the goal post-condition in DNF

(?DNFedGoalPost) are extracted via %DC predicate, then results are stored

in ?Goal_Post_Att_Cnp variable as shown on line 15.

10) Line 16, similar to line 11, %Check_Att_Cnp implements algorithm 2.

However, this time it checks concepts and attributes related to

WS post-conditions with concepts and attributes associated to goal post-

conditions based on semantic equivalency between them.

If all these checks succeed, then the pair of goal and its related WSs are inserted into

the knowledge base so that full checking of the proof commitments can be carried

out in the next stage.

72

6.1.3 % FindGoalOrWsAtt Predicate

As it is shown in lines 8 and 13 of listing 11, attributes and concepts of goal pre-

conditions and WS post-condition which only contain conjunction logical

connectives are sequentially inserted into GoalWsAttModule through

%FindGoalOrWsAtt predicate. Source code of this predicate is depicted in listing 12.

Lines 1 to 6 of listing 12 demonstrate that if goal pre-condition or WS post-condition

contains only an attribute or a concept, they are inserted directly into the

GoalWsAttModule module. However, if goal pre-condition or WS post-condition

contains more than one concept and/or an attribute, they are decomposed through the

meta-decomposition operator “=..” in FLORA-2 (FLORA-2 supports an extended

version of the Prolog meta-decomposition operator “=..”; the main use of the “=..”

operator in FLORA-2 is for decomposing HiLog terms or reifications of HiLog

predicates and F-logic frame literals [48]). Then, the retrieved attributes and concepts

are inserted into GoalWsAttModule module as it is shown in lines 7 to 13 of

listing 12.

1:
2:
3:

4:
5:
6:

7:
8:
9:
10:
11:
12:
13:

% FindGoalOrWsAtt (?Cap,?GoalWsAttModule):-
?Cap ~ ${?A[?B->?C]@?_Module1},
insert{?A[?B->?C]@?GoalWsAttModule }.

% FindGoalOrWsAtt (?Cap,?GoalWsAttModule):-
?Cap ~ ${?A:?Concept@?_Module1},
insert{?A:?Concept}@?GoalWsAttModule.

% FindGoalOrWsAtt (?Cap,?GoalWsAttModule):-
?Cap =..?L,
?L = [?H,?F,?S],
?H = logic(and),
!,
% FindGoalOrWsAtt (?F,?GoalWsAttModule),
% FindGoalOrWsAtt (?S,?GoalWsAttModule).

Listing 12. Source code of %FindGoalOrWsAtt predicate in FLORA-2

73

6.1.4 %Conv_DNF Predicate

This predicate is the heart of our Cap_Filt strategy since it can deal with objects that

occur in a logical formula with full usage of the logical connectives conjunction,

disjunction and negation. As already explained, the main aim of the %Conv_DNF

predicate is converting WS pre-conditions and goal post-conditions into DNF.

Listing 13 depicts the algorithm implemented by %Conv_DNF algorithm in Haskell

syntax. This algorithm converts any propositional formula into DNF. The definition

of %Conv_DNF is much more involved due to the necessity of dealing with

embedded objects and the particularities of the FLORA-2 system. The full code of

the %Conv_DNF predicate, however, is available in Appendix A.

74

1:
2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

data Propositional = Var String |
And Propositional Propositional |
Or Propositional Propositional |
Not Propositional

conv_dnf f = (dnf (nnf f))

nnf (Var a) = (Var a)

nnf (Not (Var a)) = (Not (Var a))

nnf (Not (Not a)) = nnf a

nnf (Not (And a b)) = (Or (nnf (Not a))

(nnf (Not b)))

nnf (Not (Or a b)) = (And (nnf (Not a))

(nnf (Not b)))

nnf (And a b) = (And (nnf a) (nnf b))

nnf (Or a b) = (Or (nnf a) (nnf b))

in_dnf (Or a b) = (in_dnf a) && (in_dnf b)

in_dnf a = all_conj a

all_conj (And a b) = (all_conj a) && (all_conj b)

all_conj (Var a) = True

all_conj (Not (Var a)) = True

all_conj a = False

dnf f

| in_dnf f = f

| otherwise = case f of

(Or a b) → (Or (dnf a) (dnf b))

(And a b) → process_and (dnf a) (dnf b)

process_and (Or p q) (Or r s) = Or

(Or (dnf (And p r)) (dnf (And q r)))

(Or (dnf (And p s)) (dnf (And q s)))

process_and (Or p q) b2 = Or (dnf (And p b2))

(dnf (And q b2))

process_and a2 (Or r s) = Or (dnf (And a2 r))

(dnf (And a2 s))

Listing 13. Algorithm of Conv_DNF function in Haskell syntax

75

The following is a brief explanation regarding the internal steps of the Conv_DNF

function:

i) As it is displayed in listing 13, main function of algorithm, conv_dnf,

calls two other functions are named nnf and dnf step by step.

ii) Presentation of nnf function illustrated in lines 6 to 14 of listing 13. nnf

converts its parameter to Negation Normal Form (NNF).

iii) Then, dnf function first checks its argument to see if it is already in DNF.

If so, returns it argument as is. If not,

iv) then it must belong to one of the cases below:

A) The outermost operator is disjunction, in which case the function is

called recursively on each sub-part and the result is the disjunction of the

two sub-results,

B) The outermost operator is a conjunction, in which case the two sub-

parts are passed as parameters to recursive calls to the function dnf, and

the sub-results are passed to the function process_and for proper handling

of the various cases.

6.1.5 %DC Predicate

Listing 14 presents the source code of %DC predicate in FLORA-2. This

transactional predicate sequentially extracts attributes and concepts of the WS pre-

condition in DNF and the goal post-condition in DNF. Then, extracted concepts and

attributes are stored in different lists.

76

1:
2:
3:
4:
5:

6:
7:
8:
9:

%DC (?X,?R):- ?X = (?A ;?B),
!,
% DC (?A,?A1),
% DC (?B,?B1),
%append(?A1,?B1,?R).

% DC (?Conj,?R):- \true,
!,
% DC_and(?Conj,?ListAtt),
?R=[?ListAtt].

10: % DC_and(?X,?R):- ?X=..?L,
11:
12:
13:
14:

?L=[?A,?_B,?C,?_D],
?A=flogic('->',?_Module),
!,
?R=[?C].

16: % DC_and(?X,?R):- ?X=..?L,
17:
18:
19:
20:
21:
22:

?L=[?A,?B,?C],
?A=logic(and) ,
?B =${?_Obj:?Concept@?_M},
!,
% DC_and(?C,?C1),
?R=[(?Concept,?C1)].

23: % DC_and(?X,?R):- ?X=..?L,
24:
25:
26:
27:
28:
29:

?L = [?A,?B,?C],
?A = logic(and) ,
?B = ${?_Obj[?At->?_Val]@?_M},
!,
% DC_and(?C,?C1),
?R = [?At|?C1].

30: % DC_and(?X,?R):- ?X=..?L,
31:
32:
33:
34:
35:
36:

?L=[?A,?B,?C],
?A=logic(and) ,
!,
% DC_and(?B,?B1),
% DC_and(?C,?C1),
%append(?B1,?C1,?R).

37: % DC_and(?X,?R):- ?X ~ ${nothing:Nothing@main},
38:
39:

!,
?R=[].

40: %append([],?_X,?_X).
41: %append([?_H|?T],?Y,[?_H|?R]):- %append(?T,?Y,?R).

Listing 14. Source code of %DC predicate in FLORA-2

77

6.1.6 %Check_Att_Cnp Predicate

The following are the steps of %Check_Att_Cnp predicate given in algorithm 2. This

predicate contains two stages, (i) it first compares concepts and attributes related to

goal pre-condition with concepts and attributes associated to WS pre-condition,

(ii) then, concepts and attributes related to WS post-condition are investigated with

concepts and attributes associated to goal post-condition based on semantic

equivalency between them.

Output of %Check_Att_Cnp predicate is the name of related WSs whose concepts

and attributes exist in the requested goal, as it is shown in algorithm 2. A WS name

which is passed through this level of filtering is stored in the knowledge base named

FilteredWsModule.

Source code of %Check_Att_Cnp predicate is available in appendix B.

78

Algorithm 2. Filtering by comparing concepts and attributes

6.2 Demonstration of the Workings of Defined Pre-filtering

Predicates through the Examples

In order to better understand the working of aforementioned predicates, we use WS

and goal instances which were already explained in chapter 4. The results of pre-

filtering predicates over the instances are shown step by step.

6.2.1 Results Obtained by Employing Category Filtering Predicates

Consider the listings 4 and 5 of chapter 4 which depict Goal #1 and Goal #2

instances. In these two requests, users are looking for a flight and a restaurant

consecutively.

79

Input: List1 of the form [(Concept, [ListOfAttributes]), …]
(extracted from either Goal.Pre or Ws.Post)

List2 of the form [(Concept, [ListOfAttributes]),…]
(extracted from either Ws.Pre or Goal.Post)

Tag (either GOAL or WEBSERVICE)

Output: (WsName,Tag) (as insertion into module FilteredWsModule)

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Let equiv(A,B) = (A::B) or (B::A) or (A:=:B)
PossibleMatch ← True
for all (Concept2,[ListOfAttributes2]) ∈ List2 do

if not (Concept1,[ListOfAttributes1]) ∈ List1 (
equiv(Concept1,Concept2) and

 (attribute2 ∈ [ListOfAttributes2]) (

 (attribute1∈ [ListOfAttributes1]) (
equiv(attribute1,attribute2)

)
)

)
then

PossibleMatch ← False
end if

end for
if

PossibleMatch = True
then

Insert (WsName,Tag) into FilteredWsModule
end if

Table 9. Results of Cat_Filt algorithm over the described scenarios

Category of Goal #1 is AirTransportation and category of Goal #2 is Restaurant.

Besides, category of SWS #1 is AeroplaneTransportation, category of SWS #2 is

Food, category of SWS #3 is Transportation and finally category of SWS #4 is

Learning.

As already explained, Cat_Filt algorithm is based on concept relationships definition

in Global_Cat_Ont ontology. Outputs of Cat_Filt strategy over the above described

instances are illustrated in table 9.

As it is shown in table 9, retrieved WSs based on Goal#1 category filtering are

SWS#1 and SWS#3. Since, category of SWS#1 which is AeroplaneTransportation,

is a synonym of Goal#1 category, AirTransportation, and category of SWS#3 which

is Transportation, is a superclass of AirTransportation. Therefore, SWS#1 and

SWS#3 remain as matched WSs for Goal#1 and are forwarded to the next step of

checking in the Cap_Filt algorithm. However, SWS #2 and SWS #4 are discarded as

irrelevant WSs for Goal#1.

The only category matched WS for Goal#2 is SWS#2. Since SWS#2 belongs to

Food category and according to concepts‟ relationships definition in

Global_Cat_Ont ontology it is a superclass of Goal #2 category, Restaurant.

80

 CatSWS#1 CatSWS#2 CatSWS#3 CatSWS#4

AeroplaneTransportation Food Transportation Learning

CatGoal#1

√

×

√

× AirTransportation

CatGoal#2
× √ × ×

Restaurant

Table 10. Attributes and concepts of both Goal #1 and Goal #2 pre-condition

6.2.2 Results Obtained by Employing Capability Filtering Predicates

WSs that passed through the Cat_Filt algorithm are entered as inputs of Cap_Filt

algorithm in order to filter based on attributes and concepts of objects in the

capability specification of the WS and goal. Following sub-sections show results

obtained by applying the available predicates in Cap_Filt over the goals and WSs

instances in a step by step manner.

Output of %FindGoalOrWsAtt Predicate: In this predicate attributes and concepts

of goal pre-conditions and WS post-conditions which only contain conjunction

logical connectives are sequentially inserted into GoalWsAttModule module.

Table 10 depicts attributes and concepts of both Goal#1 and Goal#2 pre-condition

which are inserted into GoalWsAttModule module.

Our predicate also inserts attributes and concepts of WS post-condition into the

GoalWsAttModule module. Table 11 depicts attributes and concepts of all WS

instances in our scenario.

81

Goals Attributes and concepts

Goal #1

Concept: RequestFlightTicket

Attributes: originateCity, terminalCity

Goal #2

Concept: RequestRest

Attributes: restName, inCity, foodSource, numberPeople

Table 11. Attributes and concepts of SWS #1 to SWS #4 post-conditions

Output of %Conv_DNF Predicate: In order to get a comparable list of concepts

and attributes in WS pre-condition with concepts and attributes in goal pre-condition

we need to convert WS pre-condition into DNF.

Also, in order to compare concepts and attributes of goal post-condition with WS

post-condition, we need to convert goal post-condition into DNF.

This section presents the structure of WS pre-condition and goal post-condition

before and after converting into DNF. Conversion into DNF is according to the

algorithm described in section 6.1.4.

Tables 12 to 17 depict pre-conditions of our WSs and post-conditions of our goals

instances before and after converting into DNF. Tables 12 to 15 belong to

SWS #1, SWS #2, SWS #3 and SWS #4 pre-conditions. Tables 16 and 17 display

Goal #1 and Goal #2 post-conditions.

82

WSs Attributes and concepts

SWS #1
Concept: Response

Attributes: fromAirport, toAirport, cost

SWS #2
Concept: ResponseRest

Attributes: restName, address, maxPrice

SWS #3

Concept: Response

Attributes: originateAirport, toAirport, fromHarbor, toHarbor,

cost

SWS #4
Concept: ResponseSch

Attributes: schName, address, cost

Table 12 illustrates SWS #1 pre-condition before and after converting into DNF. To

better understand the contents of table 12, consider the following assumptions.

Suppose that we assign terms A, B, C and D instead of the objects in SWS #1

pre-condition. Term „A‟ is utilized instead of ?ReqFlight object, term „B‟ is used

instead of ?PaymentType1, term „C‟ is used for ?PaymentType2 and finally term „D‟

is used instead of ?SomeFlight.

According to the following assumptions, the structure of SWS #1 pre-condition

before converting to DNF was ((A ⋀ (B ⋁ C)) ⋀ D) which is not in DNF. Therefore,

after employing %Conv_DNF predicate, the new structure of SWS #1 pre-condition

is ((A ⋀ (B ⋀ D)) ⋁ (A ⋀ (C ⋀ D))) which is in DNF. The new structure can be

compared with the goal pre-condition.

83

Table 12. SWS#1 pre-condition before and after converting into DNF

84

SWS #1

Before

(${?ReqFlight[
startCity−˃?FromCity,
endCity−˃?ToCity

]: RequestFlightTicket },
(${?PaymentType1[

creditNumber−˃?CreditNo,
expireDate−˃?ExpreDate

]: CreditCard
};

${?PaymentType2[
accountName−˃?AccName,
accountNumber−˃?AccNo

]:PayPal
}),

(${?SomeFlight[
fromAirport−˃?FromAirport,
toAirport−˃?ToAirport,
cost−˃?Cost

]:Flight
}))

After

((${?ReqFlight[
startCity−˃?FromCity,
endCity−˃?ToCity

]: RequestFlightTicket
},

(${?PaymentType1[
creditNumber−˃?CreditNo,
expireDate−˃?ExpreDate

]: CreditCard
},

${?SomeFlight[
fromAirport−˃?FromAirport,
toAirport−˃?ToAirport,
cost−˃?Cost

]:Flight
}));

(${?ReqFlight[
startCity−˃?FromCity,
endCity−˃?ToCity

]: RequestFlightTicket
},

(${?PaymentType2[
accountName−˃?AccName,
accountNumber−˃?AccNo

]:PayPal
},

${?SomeFlight[
fromAirport−˃?FromAirport,
toAirport−˃?ToAirport,
cost−˃?Cost

]:Flight
})))

Table 13. SWS #2 pre-condition before and after converting into DNF

Table 13 illustrates contents of SWS #2 pre-condition. SWS #2 pre-condition is

already in DNF, so after converting it into DNF, it will be the same as before. Only

predicates are eliminated, because our Cap_Filt algorithm only examines attributes

and concepts and does not deal with predicate checking.

Table 14 illustrates SWS #3 pre-condition before and after conversion into DNF. To

better understand the table contents, consider term „A‟ as the first object, ?ReqShip,

85

SWS #2

Before

(${?FindRest[
restName −˃?Name,
inCity −˃?City,
numberPeople −˃?HNumber,
foodSource −˃?Source

]:RequestRest
},

${?SomeRestaurant[
restName −˃?Name,
inCity −˃?City,
foodSource −˃?Source,
address −˃?Adr,
maxPrice −˃?Cost

]:Food
},

mult(?Cost,?HNumber,?TotalCost)
)

After

(${?FindRest[
restName −˃?Name,
inCity −˃?City,
numberPeople −˃?HNumber,
foodSource −˃?Source

]:RequestRest
},

${?SomeRestaurant[
restName −˃?Name,
inCity −˃?City,
foodSource −˃?Source,
address −˃?Adr,
maxPrice −˃?Cost

]:Food
})

term „B‟ as second object, ?SomeShip, term „C‟ as third object, ?ReqFlight, and

finally term „D‟ as last object, ?SomeFlight.

As it is displayed in table 14, the structure of SWS #3 pre-condition before

converting into DNF with the new assumption terms was ((A ⋀ B) ⋁ (C ⋀ D)) which

is in DNF. So, the structure of SWS #3 pre-condition will not change after calling

%Conv_DNF predicate.

86

Table 14. SWS #3 pre-condition before and after converting into DNF

Table 15 depicts contents of SWS #4 pre-condition before and after converting into

DNF. As it is presented, the structure of SWS #4 is already in DNF, so after calling

%Conv_DNF predicate, the structure will not change and it will be the same as

before.

87

SWS #3

Before

((${?ReqShip[
startCity->?FromCity,
toCity->?ToCity

]:RequestShipTicket
} ,

${?SomeShip[
fromHarbor ->?FromHarbor,
toHarbor ->?ToHarbor,
cost->?Cost

]:Ship
}) ;

(${?ReqFlight[
fromCity->?FromCity,
destinationCity ->?ToCity

]: RequestAirplainTicket
},

${?SomeFlight[
fromAirport->?FromAirport,
toAirport->?ToAirport,
cost->?Cost

]:Flight
}))

After

((${?ReqShip[
startCity->?FromCity,
toCity->?ToCity

]:RequestShipTicket
} ,

${?SomeShip[
fromHarbor ->?FromHarbor,
toHarbor ->?ToHarbor,
cost->?Cost

]:Ship
}) ;

(${?ReqFlight[
fromCity->?FromCity,
destinationCity ->?ToCity

]: RequestAirplainTicket
},

${?SomeFlight[
fromAirport->?FromAirport,
toAirport->?ToAirport,
cost->?Cost

]:Flight
}))

Table 15. SWS #4 pre-condition before and after converting into DNF

Tables 16 and 17 display the post-conditions of Goal #1 and Goal #2 respectively. As

it presented after converting both Goal #1 and Goal #2

post-conditions into DNF, only the predicates like, less, \+ is _equal and greater are

eliminated, because our Cap_Filt algorithm only examines attributes and concepts

and don‟t deal with predicate checking.

88

SWS #4

Before

(${?FindSch[
schName->?Name,
inCity->?City,
schoolType->?SchoolType,
gender->?Gender

]:RequestSch
},

${?SomeSch[
schName->?Name,
inCity->?City,
gender->?Gender,
address->?Adr,
schoolType->?SchoolType,
cost->?Cost

]:Education
})

After

(${?FindSch[
schName->?Name,
inCity->?City,
schoolType->?SchoolType,
gender->?Gender

]:RequestSch
},

${?SomeSch[
schName->?Name,
inCity->?City,
gender->?Gender,
address->?Adr,
schoolType->?SchoolType,
cost->?Cost

]:Education
})

Table 16. Goal #1 post-condition before and after converting into DNF

Table 17. Goal #2 post-condition before and after converting into DNF

Output of %DC Predicate: This transactional predicate sequentially extracts

attributes and concepts of the WS pre-condition in DNF and the goal post-condition

in DNF. Then, it stores extracted concepts and attributes in different lists.

Tables 18 and 19 illustrate list of extracted attributes and concepts of WSs

pre-conditions and goals post-conditions through the %DC predicate.

89

Goal #1

Before

(${?BookTicket[
fromAirport −˃?FromAirport,
toAirport −˃ ?ToAirport,
cost −˃ ?Cost

]:Response
},

\+ is_equal(?ToAirport, Sabiha_Gokcen),
less (?Cost, 500)

),

After

${?BookTicket[
fromAirport −˃?FromAirport,
toAirport −˃?ToAirport,
cost −˃ ?Cost

]:Response
}

Goal #2

Before

(${?BookRest[
restName−˃?Name,
address−˃?Adr,
maxPrice−˃? TotalCost

]:ResponseRest
},

\+ greater (?TotalCost, 150)
)

After

${?BookRest[
restName−˃?Name,
address−˃?Adr,
maxPrice−˃? TotalCost

]:ResponseRest
}

pre-conditions

post-conditions

Table 18. List of extracted attributes and concepts of SWS #1 to SWS #4

Table 19. List of extracted attributes and concepts of Goal #1 and Goal #2

Output of %Check_Att_Cnp Predicate: This predicate compares extracted

concepts and attributes related to goal with concepts and attributes associated to WS

based on semantic equivalency between them. Extracted concepts and attributes are

presented in tables 10, 11, 18 and 19.

90

WSs [(ConceptName, [List of attributes])]

SWS #1

[
[(RequestFlightTicket,[startCity, endCity]) ,
(CreditCard, [creditNumber, expireDate]) ,
(Flight, [fromAirport, toAirport, cost])]
,
[(RequestFlightTicket,[startCity, endCity]) ,
(PayPal, [accountNam, accountNumber]) ,
(Flight, [fromAirport, toAirport, cost])]
]

SWS #2

[
[(RequestRest, [restName, inCity, numberPeople, foodSource]),
(Food , [restName, inCity, foodSource, address, MaxPrice])]
]

SWS #3

[
[(RequestShipTicket, [startCity, toCity]),
(Ship, [fromHarbor, toHarbor, cost])]
,
[(RequestAirplainTicket, [fromCity, destinationCity]),
(Flight, [fromAirport, toAirport, cost])]

]

SWS #4

[
[(RequestSch, [schName, inCity, schoolType, gender]),
(Education, [schName, inCity, gender, address, schoolType, cost])]
]

Goals [(ConceptName, [List of attributes])]

Goal #1

[[(Response, [fromAirport, toAirport, cost])]]

Goal #2

[[(ResponseRest, [restName, address, maxPrice])]]

Table 20. Attributes and concepts of Goal #1 and SWS #3 pre-conditions

All extracted concepts and attributes of WS pre-condition are checked with extracted

concepts and attributes of goal pre-condition. If all were equal or synonyms or

belong to the same class, name of WS along with “WEBSERVICE” tag are inserted

into FilteredWsModule.

For instance, consider SWS #3 and Goal #1. Attributes and concepts of Goal #1 and

SWS #3 pre-conditions are depicted in table 20.

SWS #3 provides either ship reservation service or flight reservation service.

Therefore, it could be considered as a proper service for Goal #1 which is looking for

a flight ticket reservation.

At this point, %Check_Att_Cnp predicate checks whether the concepts and attributes

in goal pre-condition exist in WS pre-condition or not.

This predicate first checks whether concepts of Goal #1 pre-condition are among the

concepts of WS pre-condition or not. Concept of Goal #1 pre-condition,

RequestFlightTicket, is synonym with concept of SWS #3 pre-condition,

RequestAirplainTicket.

91

Goal#1

Concept: RequestFlightTicket

Attributes: originateCity, terminalCity

SWS#3

[[(RequestShipTicket, [startCity, toCity]),
(Ship, [fromHarbor, toHarbor, cost])]
,
[(RequestAirplainTicket, [fromCity, destinationCity]),
(Flight, [fromAirport, toAirport, cost])]]

Table 21. Attributes and concepts of Goal #1 and SWS #3 post-conditions

Then attributes belonging to the matched concept are examined as well. As it is

displayed in table 20, originateCity and fromCity are the first attribute of Goal #1

pre-condition and SWS #3 pre-condition and both belong to the same concept.

Although the spelling of these two attributes is different and they may not have any

relation in domain ontology, they have the identical meaning. Our approach tackles

this problem and considers the attributes similar to each other through the dictionary

of synonymous words in the mediator.

Next attribute of goal pre-condition, terminalCity, is also synonym with the WS pre-

condition attribute, destinationCity. Therefore, pre-conditions of SWS #3 and

Goal #1 are semantically equivalent, and name of SWS #3 along with

“WEBSERVICE” tag are inserted into FilteredWsModule module.

Note that two concepts Ship and Flight are not checked by %Check_Att_Cnp

predicate because they came from external ontology.

Similar to pre-conditions we need to examine semantic equivalency of post-

conditions as well. So, next step is checking the concepts and attributes of SWS #3

and goal #1 post-conditions according to tables 11 and 19.

92

Goal#1

[[(Response, [fromAirport, toAirport, cost])]]

SWS#3

Concept: Response
Attributes: originateAirport, toAirport, fromHarbor, toHarbor, cost

Table 21 depicts concepts and attributes of Goal #1 and SWS #3 post-conditions. As

it is shown concepts of both goal and WS post-conditions are the same. Therefore,

checking the attributes of matched concepts is started.

First attributes of Goal #1 and SWS #3 are fromAirport and originateAirport

respectively, and through the dictionary of synonym words [55] in our mediator, are

synonym. Also the rest attributes of goal post-condition, toAirport and cost are

exactly available among the existing attributes in WS

post-condition. Therefore, post-conditions of SWS #3 and Goal #1 are semantically

equivalent, and name of SWS #3 along with “GOAL” tag are inserted into

FilteredWsModule module.

Output of %FilterMain Predicate: This predicate checks both pre-filtering

algorithms, and output is list of goals and their related WSs which are inserted into

the knowledge based named RelatedGoalWsModule for the subsequent logical

matchmaker phase.

By considering the mentioned instances, outputs of Cat_Filt algorithm are SWS #1

and SWS#3 as proper WSs for Goal #1 based on their category filtering.

However, as output of Cap_Filt algorithm which examines goals and WSs based on

their concepts and attributes only SWS#3 remains as proper WS to the requested

goal, Goal #1.

Therefore, SWS #3 are inserted into RelatedGoalWsModule as related WS to the

Goal #1 for logical checking through the logical matchmaker. In the logical

93

matchmaker engine retrieved related WSs are checked with their specified goals

based on ontology matching of their attributes‟ value.

94

Chapter 7

EXPERIMENTAL EVALUATIONS

Chapter 7 contains experimental date, experimental environments, experimental

results and related works. The graphical and tabular results were obtained on our test

collection, WSMO-FL V2, after employing the pre-filtering steps, are shown in this

chapter.

7.1 Available Test Collections

A proper test collection is needed in order to evaluate the suitability and performance

of service discovery frameworks. Currently, two de-facto test collections are OWLS-

TC
8 and SAWSDL-TC

9
. OWLS-TC, which mainly considers input and output

parameters, is applicable for approaches that deal with OWL-S WSs descriptions,

Approaches which employ SAWSDL WS descriptions use the SAWSDL-TC test

collection. Another test collection uses WSMO-lite for the description WSs [13], a

bottom-up approach for annotating web services.

7.1.1 OWLS-TC

The latest version of OWLS-TC at the time this dissertation is written is version 4

[45]; it consists of 1083 WSs and 42 queries which are written in the OWL-S

language. Unfortunately, the majority of WSs in OWLS-TC are only partially

described, being based on input and output types. Only in the last version (version 4),

8 http://projects.semwebcentral.org/projects/owls-tc/
9 http://projects.semwebcentral.org/projects/sawsdl-tc

95

160 WSs contain pre-conditions and post-conditions (effects) which are described in

different languages such as, SWRL
10 and PDDL [27].

7.1.2 SAWSDL-TC

The SAWSDL-TC test collection is established to support the performance appraisal

of SAWSDL matchmakers. The latest version of SAWSDL-TC, at the time this

dissertation is written is version 3; it consists of 1080 semantic WSs and 42 queries

which are described in the SAWSDL language. However, descriptions of WSs and

queries are only based on input and output parameters [39].

7.1.3 WSMO-Lite TC

WSMO-Lite, lightweight service ontology intended for semantic annotations of the

Web Service Description Language WSDL. In contrast to SWS frameworks such as

OWL-S and WSMO, WSMO-Lite simplifies the semantic descriptions and enables

bottom-up semantic annotation of WSs, but very importantly, it also relaxes the

requirements on completeness of semantic descriptions, which enables building

incremental layers of semantics on top of existing service descriptions(SAWSDL,

MicroWSMO).

7.2 Why Existing Test Collections are not suitable for Evaluating

our Semantic Web Service Filtering Strategy

Our semantic web service filtering strategy requires the specification of goals and

web services that have complex logical expressions (including disjunction,

conjunction and negation) in their pre- and post-conditions, as well as a

categorization scheme. Since none of the existing test collections (including WSMO-

lite) have web service and goal descriptions with these features, we could not use

10 SWRL: A Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/

96

them and were forced to produce a novel test collection, WSMO-FL
11 that does

support them.

7.3 WSMO-FL: A New Test Collection for Web Services based on an

Extended Version of WSMO using FLORA-2

The majority of approaches (such as [26, 46, 40, 56, 68, 2]) that work in our field

and are mentioned in related works, evaluate efficiency and accuracy of their works

based on OWLS-TC version 3 test collection. Among all related works, authors of

[17] evaluated their proposal based on last version of OWLS-TC test collection, but

only input and output parameters are considered for the evaluation of their work. As

explained in the previous section, we generated our own test collection of WS and

goal specifications, and used this test collection to measure the gains in efficiency

obtained by employing our proposed pre-filtering strategy. We called our test

collection

WSMO-FL contains three different domains, namely transportation, food and

education, with 250 different F-Logic WSs descriptions, 6 different F-Logic goals

descriptions, 22 concepts, 3100 attributes and 1225 instances.

In [26] we used WSMO-FL V1. The first version of our test collection only contains

objects and predicates that occur in a logical formula with usage of the conjunction

(and) logical operator.

11 http://cmpe.emu.edu.tr/samira/WSMO-FL.htm

97

http://cmpe.emu.edu.tr/samira/WSMO-FL.htm

However, the new version, WSMO-FL V2, which is the test collection of our current

thesis, improved the previous version. This second version involves WSs and goals

with the objects and predicates that occur in logical formulas with full usage of the

conjunction (and), disjunction (or) and negation (not) logical operators.

7.4 Experimental Environment

In this chapter, in order to validate our proposal, we performed experimental

evaluations described and the results of that experimental study. For analysis, each

test has been run 20 times, and it performed on a PC running Windows 7 OS, with a

2.93 GHz Intel processor and 4.00 GB of RAM.

7.5 Experimental Results

In order to determine the actual improvements of our proposed pre-filtering stages,

we measured several indicators: (i) The average response time of our SWS

matchmaker with filtering (Filt_Disc) and without filtering (Naive_Disc). (ii) The

number of WSs that have been effectively eliminated from the initial pool of

available WSs at each pre-filtering stage, (iii) Precision, recall and fallout.

Due to the fact that our filtering stages never eliminate any WS from consideration

unless they are guaranteed to fail at the logical matching stage, it is no surprise that

recall rate is always 100%.

7.5.1 Average Response Time

The results of the performed tests for the goal are given in table 22, showing the

mean and median of the time it took to match the goal against varying number of

WSs. The statistical measures (mean, median) were computed over 20 runs which

yielded the raw data. Timing data was recorded for the two cases of matchmaker

98

Table 22. Statistical comparison of Filt_Disc and Naive_Disc

using the pre-filtering phases Filt_Disc and matchmaker using no filtering at all

Naive_Disc.

Figure 13 graphically depicts the same information as a line chart. It can be seen that

when using Filt_Disc, the average response time is in range of 57 to 3569

milliseconds, while for the same goal and WSs in Naive_Disc it dramatically

increases and is in range of 3065 to 82158 milliseconds.

Curvefitting of the data in Table 22 (also in figure 13) using the online curvefitting

tool [61] gives the linear formula:

𝑎𝑔 𝑡

.

99

No. WS Engine Mean time

(ms)

Median time

(ms)

10

Filt_Disc 57 72

Naive_Disc 3065 3125

50
Filt_Disc 903 980

Naive_Disc 10056 9985

100
Filt_Disc 1841 1806

Naive_Disc 27775 27685

150
Filt_Disc 2005 1909

Naive_Disc 39666 39295

200
Filt_Disc 2982 2983

Naive_Disc 65892 65886

250
Filt_Disc 3569 3665

Naive_Disc 82158 81924

A
v
er

ag
er

es
p
o
n
se

ti
m

ei
n
m

s

Using this formula, we can predict that for 1000 WSs, the average response time will

be 14,161.761 ms. This is a reasonable response time for most cases. For example,

consider a human user being helped by an intelligent agent employing semantic web

technology to find appropriate WSs for an airline reservation; and 14 seconds for

automatic discovery is most likely acceptable. We can thus claim that our discovery

framework, through its pre-filtering stages, handles realistic numbers of WSs well.

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

Filt_Disc

Naive_Disc

10 50 100 150 200 250

Number of WSs

Figure 13. Comparison of Filt_Disc and Naive_Disc

7.5.2 Effectiveness of the Pre-filtering Algorithms in Eliminating Irrelevant

Web Services

Figure 14 depicts the dramatic number of reductions in the number of WSs that

remain after each pre-filtering phase. The data has been collected by matching six

different goals and varying number of WSs for each goal. The chart indicates that

Cap_Filt through the semantic equivalency of goal and WS concepts and attributes

does a very good job of eliminating irrelevant WSs, given that most of the remaining

WSs after its application passes the Cap_Filt stage.

100

Figure 14. Effectiveness of the two pre-filtering stages in eliminating irrelevant Web

services

7.5.3 Definitions of Precision, Recall and Fallout

To analyse the accuracy of our pre-filtering stages, table 23 gives the precision, recall

and fallout values of the combined pre-filtering stages for the same set of data

obtained by running 6 requested goals against 250 WSs in the repository.

Precision is the percentage of the retrieved WSs that are actually relevant. In our

context, “retrieved Web services” means the WSs that survived the two-stage

elimination process, and a WS is “relevant” to a goal if the logical matchmaker says

so. With these definitions, precision can be expressed as [4]:

𝑎 𝑡 𝑡 𝑡 𝑡

𝑡

101

𝑎
𝑎

𝑡

𝑡

𝑡

𝑡

𝑎 𝑡
𝑎

𝑡

𝑡

𝑡

𝑡

requested goal

Recall is the portion of the relevant WSs that are successfully retrieved. It can be

expresed as:

𝑎 𝑎 𝑡 𝑡 𝑡

Fallout is the percentage of the retrieved WSs that are non-relevant. In our context, a

WS is “non-relevant” to a goal if the logical matchmaker says non-matched. With

these definitions, fallout can be exprsed as:

𝑡

Table 23. Precision, recall and fallout of combined pre-filtering stages in each

As shown in table 23, average precision for all request queries is 83.21% which can

be considered a good precision rate. It means that 83.21% of retrieved WSs are

exactly matched with the requested goal and the other around 15% is irrelevant.

However, the average recall of queries has the highest possible rate, 100%. With this

100% recall rate, all the relevant WSs in WS repository are retrieved through the

proposed pre-filtering stages, an important feature that sets out filtering strategy apart

from all the other proposals.

102

Goal Q1 Q2 Q3 Q4 Q5 Q6 Average

Precision 90.91% 69.23% 72.73% 90.00% 87. 5% 88.89% 83.21%

Recall 100% 100% 100% 100% 100% 100% 100%

Fallout 9.09% 30.77% 27.27% 10.00% 12.50% 11.11% 16.79%

100

80

60

40

20

0

Avg. Precision

Precision

Recall

Fall out

Avg. Fallout

Q1 Q2 Q3 Q4 Q5 Q6

Goals

Figure 15. Precision, recall and fallout of each requested goal along with the average

precision and fallout lines

Figure 15 graphically shows the precision, recall and fallout rate of each requested

goal together with the average precision and fallout lines. The chart illustrates that

precision rate of all requests except the second and third one (Q2, Q3) are higher

than the average. Low precision rate of Q2 and Q3 indicate that there exist many

WSs in the repository whose attributes and concepts are semantically similar to the

concepts‟ name and attributes‟ name of requested goals, however, the value of WS

attributes which were defined in ontologies do not match with the requested value of

goals attributes. Such WSs fail in the actual logical matching procedure.

7.5.4 Discussion of the Results

Our prefiltering stages result in an impressive 100% recall rate. The reason for this

top recall rate is that all relevant WSs are retrieved by Cat_Filt and Cap_Filt

algorithms, which is another way of saying that in the pre-filtering stages, we only

eliminate WSs that the matcher would definitely reject. The 100% recall rate of our

framework implies that our method does not result in contain false negatives (FN)

(i.e. WSs which are relevant, but are classified as irrelevant).

103

Our work, due to checking of the semantic and synonym equivalency of concepts

and attributes of WSs and goals, as well as using Global_Cat_Ont ontology which

contains both structural knowledge (i.e. it defines subclass and superclass

relationships between concepts of three specified domains) and a dictionary of

synonymous concepts, eliminates all of the irrelevant WSs through the filters stages.

Therefore, the average precision and recall rate of our approach is higher than the

others work in this filed.

In general, since our framework evaluation is based on our newly generated test

collection, WSMO-FL V2, a comparison between the recall rate and precision rate of

our work and the other available works in the literature would not be very

informative. However, an average of 100% for recall, 83.21% for precision and

16.79% for fallout indicates a satisfactory accuracy of this work. It should be pointed

out that this accuracy was observed in a more complex condition of goals and WSs

due to pre and post-condition parameters that involve all logical connectives (i.e.

and, or, not), whereas other studies mentioned in related works did not consider this

much of complexities in their goals and WSs descriptions.

7.6 Related Work Regarding Approaches using Various Techniques

to Improve Speed of Discovery Processes of WSs

Recently, although a wealth of insightful efforts have proposed different solutions to

improve the semantic Web discovery process, we could not find any work that

addresses the performance challenge of discovery process in a similar way to our

work. In this section, we discuss proposals related to this field and analyse their

relationship with our solution and their advantages as compared to our approach.

104

Table 24 compares our work with the related works based on several dimensions

with respect to SWS discovery improvement. These dimensions are: pre-processing,

discovery methods, parameters, false negatives and frameworks.

First three dimensions are further subdivided into sub-dimensions: Pre-processing is

sub-divided into Non-Functional Properties (NFP) and Functional Properties (FP).

NFP here stands for methods of adding some NFP elements to the WS and goal

descriptions (e.g. categorization of each advertised / requested WS at design time).

FP stands for methods to compare functional parameters of goal and WSs (i.e.

IOPE).

One more level of subdivision used in pre-processing factor is: Taxonomy (TX) (i.e.

relationship between two concepts/attributes is described by using a hierarchical

diagram), Synonymity (SY) (i.e. syntactically two concepts/attributes are different

but they have the same or identical meaning) and syntax (ST) (i.e. no synonymous or

hierarchical relationships exist between two concepts/attributes and they are

compared based on similarity of their string) similarity method measurements for

each mentioned NFP and FP.

Discovery methods represent which kinds of service matchmakers are used in the

approaches: Logic (LOG), Non-logic (NLOG) or Hybrid method (HY) which is

combination of both logic and non-logic methods.

Parameters demonstrate degree of completeness of a research (whether it uses the

major functional parameters of goal and WSs or not). Major functional parameters of

105

Table 24. Comparison of this work with related works

goal and WSs in OWL-S and WSMO models are Input (I), Output (O), Pre-condition

(PRE) and Post-condition or Effect (POS/EFF).

We summarise the result of the comparative study of WS discovery approaches in

table 24, where each row represents an approach, and the columns stand for main

dimensions in WS discovery improvement. The symbol „„√‟‟ used to denote that the

specified approach supports the corresponding dimension, and „„-‟‟ means that it

does not.

106

App

Pre-processing Discovery

method

Parameters

FN

Frame
work

NFP FP

T

X

S

Y

T S S

X Y T

L

O

G

N-

LO

G

HY

I

O

P

R

E

P

O

S

[46] - - - - - - - √ √ √ - - - OWL-S

[44] - - - - - - - √ √ √ - - - WSMO

[70,

71]
- - - - - √ - - √ √ √ √

-
WSMO

[68] - - - - - √ - - √ √ √ √ - OWL-S

[2] - - - - - - - √ √ √ - - - OWL-S

[40] √ - - - - √ - - √ √ - - - OWL-S

[56] - √ - - - - - - √ √ - - - OWL-S

[26] - - √ - - - - - √ √ - - - OWL-S

[25] - - √ - - - - - √ √ - - - WSMO

[48] - - - - √ √ - - √ √ √ √ - WSMO

Our
work

√ √ √ √ - √ - - √ √ √ √ √ WSMO

Approach name (APP) Logic (LOG) Non-logic (NLOG)
Hybrid method (HY) Functional properties (FP)
Taxonomy (TX) Output (O)
Synonymity (SY) Input (I)
syntax (ST) False Negatives (FN)

Non-functional properties
(NFP)
Pre-condition (PRE)

Post-condition /Effect
(POS/EFF)

In order to highlight the advantages of our work with respect to the prior researches,

we classified the related works into two groups: approaches that optimize SWS

discovery through a) improvement of matchmakers and b) application of pre-filtering

mechanism before actual matchmakers. The former discusses the related works

where the only focus is to improve the performance of their matchmaker engines by

employing various methods. The latter tries to reduce the size of original repository

and the filtered repository is used as input of actual matchmaker.

7.6.1 Approaches that Improve the Matchmaker Engine

Regarding the need to improve the discovery process and make it more scalable,

some approaches attempt to improve the performance of the matchmaker engine

without introducing any extra pre-processing stages.

Klusch et al. [46] implemented a hybrid matchmaker consisting of both

approximated Information Retrieval (IR) matching, such as syntactic similarity

technique, and OWL-DL logical reasoner to discover SWSs. Authors used four

variants to calculate the text similarity of parameters, called cosine, loss-of-

information, extended Jacquard, and Jensen-Shannon. In OWLS-MX, the logical

reasoner only considers degree of semantic similarity between input and output

parameters of OWL-S advertised/requested services and available concepts in the

specified domain ontology. Later they developed their system to support WSMO

services, called WSMO-MX [44]. Their comprehensive evaluations demonstrate that

both approaches presented high precision in the S3 contest [43]. However,

shortcomings of their solution are (i) they are time consuming because of high

calculation costs related with both logic-based matching and text-based similarity

matching, (ii) they retrieve WSs which are not related to the request.

107

The Klusch et al. approach can be improved if they utilize our pre-processing

strategies on top of their actual matchmakers. For instance, by applying our pre-

filtering stages before the hybrid matchmakers, especially on the logic-based

matchmaker they can potentially decrease the size of the initial WS repository and

consequently improve the overall performance of matchmaker.

Stollberg et al. in [70, 71] improved the matching process by implementing a caching

mechanism that decreases the size of search space and reduces the matchmaker

operations. The presented cache uses a Semantic Discovery Caching (SDC) graph

that stores connections between client requests described as WSMO goal templates,

and their relevant WSs. Thus, when a goal instance is received, first, the system

compares the goal instance with cached templates with respect to semantic similarity,

and if there is a match, merely the relevant WSs are stored in the SDC graph are used

for subsequent discovery.

Authors of [70, 71] claim that they presented a standard approach where both

advertised and requested functionalities are formally expressed in terms of pre-

conditions and effects (post-condition). Also they used first-order logic as the

specification language for formal description of these terms. Since our proposal also

has been established in the spirit of WSMO framework and developed to work on

goals and WSs capability which consist of inputs, outputs, pre and post-condition,

proposed caching approach can be completed when our pre-filtering mechanisms are

implemented before creating the caching graph. Thus, the number of relevant WSs

which are stored in graph can be possibly decreased.

108

Authors of [68] introduced SPARQL as a language to describe the pre-conditions

and post-conditions of OWL-S WSs as well as user requests. They implemented a

matchmaker that works through agents called SPARQLent (SPARQL agent). In this

approach, a complete discovery solution of their algorithm is discussed and shows

how SPARQL queries are used to modify and query the agent‟s knowledge base.

Finally, they evaluated their proposal against OWLS-MX via SME2 test tool
12

.

Although the method offered in [68] is based on pre and post-conditions of WSs and

goals, their evaluation is performed based on OWLS-TC V3, where presented WSs

descriptions are without pre and post-conditions. Our pre-filtering stages could be

also useful in helping SPARQL agent avoid the loading of all the available WSs on

the repository and as a result cause to further improvements in their agent

performance.

Amorim et al. [2] discuss a hybrid matchmaker called OWL-S Discovery. It is a

combination of semantic filters based on input and output parameters of

requested/advertised services and analysing each neighbour relationship in domain

ontology. Authors employ five levels of semantic similarity between input and

output parameters, namely exact, plug-in, subsume, fail and sibling. Also, in order to

analyse each neighbour relationship in the concepts, they use a dictionary to classify

the concepts. Based on this dictionary, concepts are either identical, synonymous or

neither synonymous nor identical, as in our work. At the end they compare their

work with Paolucci‟s approach [62] and the hybrid algorithm OWLS-MX through

12 http://projects.semwebcentral.org/projects/sme2

109

OWLS-TC V3 test collection. Our proposal also can be applied to the top of OWL-S

Discovery to further improve discovery processes. However our work uses a more

expressive model to describe user requests and WSs descriptions as they contain pre

and post conditions.

7.6.2 Approaches Using Pre-processing Mechanisms

These approaches make use of pre-processing mechanisms that help the optimization

of automated WS discovery by narrowing down the set of existing WSs in the

repository that will be considered by the service matchmaker. Pre-processing

mechanisms are further are subdivided into two categories, 1) Pre-processing

mechanisms based on categorization schemes of NFPs and 2) Pre-processing

mechanisms based on semantic similarity of FPs.

Pre-filtering based on categorization schemes of NFPs: Most of the efforts related

to pre-filtering techniques follow one of the two classification methods: they either

exploit hierarchical categorization schemes of WSs on the basis of domain ontologies

[40] or use dictionary of synonymous words [56]. The filtering process is separate

from the matchmaker, so the results of this pre-filtering stage are then inspected

through any actual process of service matchmaking. The majority of the mentioned

proposals adapted OWLS-TC V3 test collection by adding one element to the request

and WS NFPs that refer to service application domain.

Authors of [40, 56] implemented their categorization proposals on OWL-S WSs and

verified it with respect to the OWLS-TC V3 data set. However, OWL-S service

description in this test collection doesn‟t contain any information about service‟s

application domain. Thus, in order to overcome the limitation of current OWL-S

service profile elements both approaches added one NFP to the OWL-S service

110

profile. Although both used the same idea, their solution is different. In [40] the

defined category concept of the service request is compared with the defined

category concept of advertised WSs via hierarchical categorization scheme in global

category ontology. A WS is eliminated if it has no category relationship with the

request category. However, in [56] equivalency of requested and advertised WSs

category concepts are computed via their relationship in the WordNet [55] dictionary

of synonyms words. This approach is lacking in its own matchmaker (i.e. evaluation

is done via OWLS-MX matchmaker).

Although the idea of our first filtering stage is similar to the mentioned proposals, it

has the following novelties: (i) our proposed Cat_filt stage enrich the WSMO

framework by adding an attribute called hasCategory to both goal and WS

descriptions. (ii) In order to increase the accuracy and performance of our

categorization schemes, this work takes into account semantic similarity relationship

between goal category and WS category (i.e. if two categories mean the same thing

or inherit the same class).

Pre-filtering based on semantic similarity of FPs: Authors of [25, 26] also used

pre-processing strategies before the actual matching process. Their pre-filtering is

based on only FPs of WSs. They present two different SPARQL queries to facilitate

the search process on a SWS registry. They automatically create SPARQL queries

(called Qall, Qsome) by analysing the user request, and by using these two filtering

queries they are able to perform two levels of filtering on the initial WS repository.

Based on these two queries, only WSs containing all (in the case of Qall) or some (in

the case of Qsome) concepts referred by a user request are returned.

111

Our second filtering stage (Cap_Filt) is similar to the method proposed in [29]. Four

major differences between our work and their works are:

(i) since in our pre-filtering stage service descriptions consist of all information

about inputs, outputs, pre and post- conditions, we can obtain more accurate

results than their strategies,

(ii) our algorithm not only considers the hierarchical relationship of concepts and

attributes but also takes into account the similarity of requested/advertised

WS concepts and attributes based on their synonyms,

(iii) we employ an initial filtering phase based upon a categorization scheme,

which could actually improve their performance as well if they used it before

Qall or Qsome algorithm ,

(iv) Their approach consists of only a pre-processing stage to filter the

preliminary WS repository and they did not implement any service

matchmaking, so they cannot be evaluated on their own.

Among all the mentioned approaches, [48] is the closest to our work. The

INFRAWEBS project implements a discovery framework which consists of two-

components, pre-filtering and discovery. In the pre-filtering stage it uses traditional

Information Retrieval techniques, and a logic-based matching implemented in Prolog

is utilized as a service matchmaker.

Although the INFRAWEBS project has similarities with our work, some differences

do stand out. Our pre-filtering stage considers semantic equivalency of both NFP and

FP of the requested/advertised services, analysing objects, attributes and concepts.

Our discovery engine works with much richer descriptions of WSs and requests,

encoded in frame logic. Our implementation uses the FLORA-2 language and

112

execution environment, a much more powerful alternative to plain Prolog. It is

conceivable that a combination of our approach and theirs can yield a discovery

framework that is more effective at eliminating useless WSs than either approach

alone.

113

Chapter 8

CONCLUSION AND FUTURE WORK

This dissertation presents two new methods and one newly generated test collection.

These two methods are: i) a new evaluation framework for comparison and appraisal

of SWS discovery and composition approaches, and ii) a new logical framework to

improve peformance of automated SWS through pre-filtering strategies. The second

method is the major contribution of this thesis.

In the first method, we presented a novel framework for the appraisal and

comparison of automatic SWS discovery and composition approaches. Our method

comprises of two parts: a rubric table, and a table of features appropriate for

evaluating SWS discovery and composition processes. We called our method

RFSWS, which stands for Rubric and Feature-based evaluation framework for SWS

composition approaches.

Our usage of analytic rubric tables in the RFSWS framework is the first of its kind in

the evaluation of SWS discovery and composition approaches. Aspects of SWS

discovery and composition approaches that could not be assessed meaningfully using

rubrics have been delegated to the feature-based evaluation scheme. When together

with the feature-based evaluation scheme, the rubric we generated gives a reasonably

complete picture of the capabilities, deficiencies, strong and weak points of a SWS

discovery and composition approaches under review.

114

In the second method, we illustrated that the overall performance and accuracy of

SWS discovery frameworks can be improved significantly through the introduction

of pre-filtering stages that eliminate most of the irrelevant WSs from consideration at

the computationally expensive matching stage. Specifically, in this thesis, we

proposed Category_based and Capability_based pre-filtering mechanisms for

narrowing down the number of WS descriptions that need to be considered in the

matching phase to determine their relevance to the current goal.

We evaluated the effectiveness of our proposal in a novel test collection, WSMO-FL,

which consists of 250 WS specifications of varying complexities and 6 goals. Our

filtering stages stand out due to their 100% recall rate and 83.21% precision rate that

are a consequence of their design, their ability to deal with complex specifications of

goals and WSs written in an enhanced version of WSMO., as well as a reasonably

high precision rate, as demonstrated experimentally, which is bound to increase

considerably in the presence of a large number of categories and goals/WSs that

make use of those categories. Our results also indicate that when the pre-filtering

stages are employed in the system, as expected, the search space is considerably

reduced, and consequently response time of the system is improved dramatically.

Our contributions in this thesis can be summed up in the following:

i) Unlike all the previous works in evaluation of SWS discovery and

composition approaches, we proposed a novel idea in the context of

comparison and evaluation of WSC approaches based on rubrics.

ii) Our RFSWS framework not only can be used as is or enhanced by other

future researchers for the evaluation of SWSC approaches, but also it can

115

be adapted by researchers working on other subjects to evaluate

methodologies and approaches relevant to their area of investigation.

iii) Unlike the majority of SWS discovery approaches which are only

performed on input and output concepts, our SWS discovery framework

deals with concepts and attributes of WS and goal pre and post

conditions.

iv) Our pre-filtering stages are generic, so that they can be applied (after

necessary adaptations) to improve the performance of other available

service matchmakers.

v) 100% recall rate of our framework implies that our method does not result

in contain false negatives (FN) (i.e. WSs which are relevant, but are

classified as irrelevant): ALL relevant WSs are retrieved through the pre-

filtering algorithms.

vi) Due to incomplete service descriptions in existing test collections such as

OWL-S (i.e. WSs are partially described only based on input/output

concepts), for the first time we created a new test collection named

WSMO-FL, which contains fully defined WSs and goals capabilities (i.e.

WSs and goals are described based on pre and post-conditions).

vii) To the best of our knowledge WSMO-FL is the first larger test collection

which is established based on the WSMO conceptual model. It uses

Frame-logic (F-logic) as a fully adequate expression language for

specifying pre and post-conditions which is missing in currently available

test collections.

116

For future work, we are planning to improve our scheme in the following ways:

i) Extending our new WSMO-FL test collection to (a) have a much larger

number of Web services and goals, as well as categories, (b) increasing

complexity of Web service and goal pre- and postconditions, and (c)

expanding the dictionary of synonymous words in the existing domain

ontologies.

ii) Implementing parallel version of our filtering strategy to get better

scalability

117

REFERENCES

[1] Akkiraju, R., Farrell, J., Miller, J. A., Nagarajan, M., Sheth, A. P., & Verma, K.

(2005). WSDL-S: Web service semantics. [Accessed on 2015 Aug 12].

Available from: www.w3.org/Submission/WSDL-S/.

[2] Amorim, R., Claro, D. B., Lopes, D., Albers, P., & Andrade, A. (2011).

Improving Web service discovery by a functional and structural approach.

InWeb Services (ICWS), 2011 IEEE International Conference, P. 411-418.

[3] Angele, J. (2014). OntoBroker: Mature and approved semantic middleware,

Semantic Web 5, No. 3, P. 221-235.

[4] Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval,

Vol. 463. New York: ACM press.

[5] Bartalos, P. (2011). Effective Automatic Dynamic Semantic Web Service

Composition. Inf. Sci. and Technol. Bulletin ACM Slovakia, 3(1), P. 61-72.

[6] Bartalos, P., & Bieliková, M. (2012). Automatic Dynamic Web Service

Composition: A survey and problem formalization. Computing and Informatics,

30(4), P. 793-827.

[7] Baryannis, G., & Plexousakis, D. (2010). Automated Web Service Composition:

State-of-the-Art and Research Challenges. ICS-FORTH, Tech. Rep, 409.

118

http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/

[8] Belqasmi, F., Singh, J., Melhem, S. Y. B., & Glitho, R. H. (2012). SOAP-based

vs. RESTful web services: A case study for multimedia conferencing. IEEE

Internet Computing, (4), P. 54-63.

[9] Berge, C. (1989). Hypergraphs: Combinations of Finite Sets. NorthHolland,

Amsterdam, the Netherlands.

[10] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). Semantic Web. Scientific

American, 284(5), P. 28-37.

[11] Bonner, A. J., & Kifer, M. (1994). Overview of transaction logic. Theoretical

Computer Science, 133(2), P. 205-265.

[12] Bonner, A. J., & Kifer, M. (1998). A logic for programming database

transactions. In Logics for databases and information systems , P. 117-166.

Springer US.

[13] Cabral, L., Li, N., & Kopecký, J. (2012). Building the WSMO-Lite Test

Collection on the SEALS Platform.

[14] Çelik, D., & Elçi, A. (2013). A broker-based semantic agent for discovering

Semantic Web services through process similarity matching and equivalence

considering quality of service. Science China Information Sciences, 56(1),

P. 1-24.

119

[15] Chen, W., Kifer, M., & Warren, D. S. (1993). HiLog: A foundation for higher-

order logic programming. The Journal of Logic Programming, 15(3),

P.187-230.

[16] Chinnici, R., Moreau, J. J., Ryman, A., & Weerawarana, S. (2007). Web

Services Description Language (WSDL) version 2.0. W3C recommendation,

Vol. 26.

[17] Cong, Z., Fernandez, A., Billhardt, H., & Lujak, M. (2014). Service discovery

acceleration with hierarchical clustering. Information Systems Frontiers, 17(4),

P. 1-10.

[18] Da Silva, E. G., Pires, L. F., & Van Sinderen, M. (2011). Towards runtime

discovery, selection and composition of semantic services. Computer

Communications, 34(2), P.159-168.

[19] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on

large clusters. Communications of the ACM, 51(1), P. 107-113.

[20] Deng, S., Huang, L., Tan, W., & Wu, Z. (2014). Top-K Automatic Service

Composition: A Parallel Method for Large-Scale Service Sets. Automation

Science and Engineering, IEEE Transactions on, 11(3), P. 891-905.

[21] Eid, M., Alamri, A., & El Saddik, A. (2008). A reference model for dynamic

web service composition systems. International Journal of Web and Grid

Services, 4(2), P. 149-168.

120

[22] Elçi, A., & Rahnama, B. (2007). Human-robot Interactive Communication

Using Semantic Web Tech. in Design and Implementation of Collaboratively

Working Robots. The 16th IEEE International Symposium in Robot and

Human interactive Communication, P. 273-278.

[23] Elçi, A., & Rahnama, B. (2009). Semantic robotics: cooperative labyrinth

discovery robots for intelligent environments. Complex Systems in Knowledge-

based Environments: Theory, Models and Applications, P. 163-198.

[24] Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D., &

Domingue, J. (2006). Enabling semantic web services: the web service

modeling ontology, P. 63- 81. Springer Science & Business Media.

[25] Garcia, J. M., Ruiz, D., & Ruiz-Cortés, A. (2011). A lightweight prototype

implementation of SPARQL filters for WSMO-based discovery. Tech. Rep.

ISA-11-TR-01, Applied Software Engineering Research Group-University of

Seville.

[26] Garcia, J. M., Ruiz, D., & Ruiz-Cortés, A. (2012). Improving semantic web

services discovery using SPARQL-based repository filtering. Web Semantics:

Science, Services and Agents on the World Wide Web, 17, P. 12-24.

[27] Ghallab, M., Knoblock, C., Wilkins, D., Barrett, A., Christianson, D., Riedman,

M., & Weld, D. (1998). PDDL-the planning domain definition language. Yale

center for computational vision and control, Tech Report No.: CVC TR-98-

003/DCS TR-1165.

121

[28] Ghayekhloo, S., & Bayram, Z. (2015). A Novel Rubric and Feature-Based

Appraisal and Comparison Framework for the Evaluation of Semantic Web

Services Composition Approaches. Indian Journal of Science and Technology,

In press.

[29] Ghayekhloo, S., & Bayram, Z. (2015). Prefiltering Strategy to Improve

Performance of Semantic Web Service Discovery. Scientific Programming,

Vol 2015.

[30] Goncalves da Silva, E. M., Ferreira Pires, L., & van Sinderen, M. J. (2009).

Supporting dynamic service composition at runtime based on end-user

requirements. CEUR Workshop Proceedings.

[31] Gruber, T. R. (1993). A translation approach to portable ontology specification.

Knowledge acquisition, 5(2), P. 199-220.

[32] Hakimpour, F., & Cong, U. S. (2006). Semantic Descriptions of Web Services.

Advances in Electronic Business, 2(2), P. 31.

[33] Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos, D., & Vlahavas, I.

(2007). VLEPPO: A visual language for problem representation. PlanSIG, 7,

P. 60-66.

[34] Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos, D., & Vlahavas, I.

(2010). A visual programming system for automated problem solving. Expert

Systems with Applications, 37(6), P. 4611-4625.

122

[35] Hatzi, O., Vrakas, D., Bassiliades, N., Anagnostopoulos, D., & Vlahavas, I.

(2013). The PORSCE II framework: Using AI planning for automated

semantic web service composition. The Knowledge Engineering Review,

28(02),P.137-156.

[36] Hatzi, O., Vrakas, D., Nikolaidou, M., Bassiliades, N., Anagnostopoulos, D., &

Vlahavas, I. (2012). An integrated approach to automated semantic web service

composition through planning. IEEE Transactions on Services

Computing, 5(3), P. 319-332.

[37] Hong, J., Suh, E. H., Kim, J., & Kim, S. (2009). Context-aware system for

proactive personalized service based on context history. Expert Systems with

Applications, 36(4), P. 7448-7457.

[38] Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., & Yiu,

A. (2007). Web services business process execution language version

2.0. OASIS standard, 11(120).

[39] Khalid, M., Fries, B., Vasileski, M., Kapahnke, P., & Klusch, M. (2010).

SAWSDL-TC Service Retrieval Test Collection, User Manual Version 3.0,

Saarbrücken, Germany.

[40] Khdour, T. (2011). Towards Semantically Filtering Web Services Repository.

In Digital Information and Communication Technology and Its Applications,

P. 322-336. Springer Berlin Heidelberg.

123

[41] Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented

and frame-based languages. Journal of the ACM (JACM), 42(4), P. 741-843.

[42] Kifer, M., Yang, G., Wan, H., Zhao, C., Kuznetsova, P., & Liang, S. (2014).

FLORA-2: User‟s Manual Version 1.0. Department of Computer Science,

Stony Brook University, Stony Brook.

[43] Klusch, M. (2012). The S3 Contest: Performance Evaluation of semantic web

services. Semantic Web Services: Advancement through Evaluation.

[44] Klusch, M., & Kaufer, F. (2009). WSMO-MX: A hybrid Semantic Web service

matchmaker. Web Intelligence and Agent Systems, 7(1), P. 23-42.

[45] Klusch, M., Alam Khalid, M., Kapahnke, P., Fries, B., & Vasiles Saarbrücken,

M. (2010). OWLS-TC: OWL-S Service Retrieval Test Collection, User

Manual Version 4.0. Saarbrücken, Germany.

[46] Klusch, M., Fries, B., & Sycara, K. (2009). OWLS-MX: A hybrid Semantic

Web service matchmaker for OWL-S services. Web Semantics: Science,

Services and Agents on the World Wide Web, 7(2), P. 121-133.

[47] Kopecky, J., Vitvar, T., Bournez, C., & Farrell, J. (2007). SAWSDL: Semantic

annotations for wsdl and xml schema. Internet Computing, IEEE, 11(6),

P. 60-67.

124

[48] Kovács, L., Micsik, A., & Pallinger, P. (2006). Two-phase Semantic Web

Service Discovery Method for Finding Intersection Matches using Logic

Programming. In Workshop on Semantics for Web Services.

[49] Kritikos, K., & Plexousakis, D. (2008). Enhancing the Web service description

and discovery processes with QoS. Managing Web Service Quality: Measuring

Outcomes and Effectiveness: Measuring Outcomes and Effectiveness. IGI

Global.

[50] Küster, U., König-Ries, B., Klein, M., & Stern, M. (2007). DIANE: A

matchmaking-centered framework for automated service discovery,

composition, binding, and invocation on the web. International Journal of

Electronic Commerce, 12(2), P. 41-68.

[51] Lécué, F., & Léger, A. (2006). A formal model for semantic web service

composition. The Semantic Web-ISWC 2006, P. 385-398. Springer Berlin

Heidelberg.

[52] Lee, K., Jeon, J., Lee , W., Jeong, S. H., & Park, S. W. (2003). Qos for web

services: Requirements and possible approaches. W3C working group note, 25,

P. 1-9.

[53] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

& Sycara, K. (2004). OWL-S: Semantic markup for web services. W3C

member submission, 22, P. 2007-2004.

125

[54] McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. IEEE

intelligent systems, (2), P. 46-53.

[55] Miller, G., & Fellbaum, C. (1998). Wordnet: An electronic lexical database.

Blackwell Publishing Ltd, MA.

[56] Mohebbi, K., Ibrahim, S., & Zamani, M. (2013). A Pre-matching Filter to

Improve the Query Response Time of Semantic Web Service

Discovery.Journal of Next Generation Information Technology, 4(6).

[57] Moskal, B. M. (2009). Scoring rubrics: What, when and how? Practical

assessment, research and evaluation. [Accessed on 2015 Aug 20]. Available

from: pareonline.net/getvn.asp?v=7&n=3.

[58] Ngan, L. D., & Kanagasabai, R. (2013). Semantic Web service discovery: state-

of-the-art and research challenges. Personal and ubiquitous computing, 17(8),

P. 1741-1752.

[59] Ni, Y., & Fan, Y. (2010). Model transformation and formal verification for

Semantic Web Services composition. Advances in Engineering Software,

41(6), P. 879-885.

[60] Nitko, A. J. (2001). Educational assessment of students. Prentice-Hall, Inc.,

Des Moines, IA 50336-1071.

126

[61] Online Curve Fitting [Accessed on 2015 Dec 24]. Available from: http://

www.MyCurveFit.com

[62] Paolucci, M., Kawamura, T., Payne, T. R., & Sycara, K. (2002). Semantic

matching of web services capabilities. In The Semantic Web—ISWC 2002,

P. 333-347. Springer Berlin Heidelberg.

[63] Papazoglou, M. P., & Van Den Heuvel, W. J. (2007). Service oriented

architectures: approaches, technologies and research issues. The VLDB journal,

16(3), P. 389-415.

[64] Rao, J., & Su, X. (2005). A Survey of Automated Web Service Composition

methods. In Semantic Web Services and Web Process Composition , P. 43-54.

Springer Berlin Heidelberg.

[65] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., &

Fensel, D. (2005). Web Service Modelling Ontology. Applied ontology, 1(1),

P. 77-106.

[66] Rong, W., & Liu, K. (2010). A survey of context aware web service discovery:

from user's perspective. In Service Oriented System Engineering (SOSE), 2010

Fifth IEEE International Symposium, P. 15-22.

[67] RubiStar (2008) [Accessed on 2015 Aug 20]. Available from: http://

rubistar.4teachers.org/.

127

[68] Sbodio, M. L., Martin, D., & Moulin, C. (2010). Discovering Semantic Web

services using SPARQL and intelligent agents. Web Semantics: Science,

Services and Agents on the World Wide Web, 8(4), P. 310-328.

[69] Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., & Xu, X.

(2014). Web services composition: A decade‟s overview. Information

Sciences, 280, P. 218-238.

[70] Stollberg, M., Hepp, M., & Hoffmann, J. (2007). A caching mechanism for

semantic web service discovery, P. 480-493, Springer Berlin Heidelberg.

[71] Stollberg, M., Hoffmann, J., & Fensel, D. (2011). A caching technique for

optimizing automated service discovery. International Journal of Semantic

Computing, 5(01), P. 1-31.

[72] Tang, X., Jiang, C., & Zhou, M. (2011). Automatic Web service composition

based on Horn clauses and Petri nets. Expert Systems with Applications,

38(10), P. 13024-13031.

[73] Vardhan, A. V., Basha, M. S., & Dhavachelvan, P. (2011). An Overview of

Web Services Composition Approaches. International Journal of Computer

Applications, 29(8), P. 10-15.

[74] Wan, H., Grosof, B., Kifer, M., Fodor, P., & Liang, S. (2009). Logic

programming with defaults and argumentation theories. In Logic

Programming, P. 432-448.

128

[75] Wolf, K., & Stevens, E. (2007). The role of rubrics in advancing and assessing

student learning. The Journal of Effective Teaching, 7(1), P. 3-14.

[76] Fensel, D., Fischer, F., Kopecký, J., Krummenacher, R., Lambert, D., & Vitvar,

T. (2010). WSMO-Lite: Lightweight semantic descriptions for services on the

web. W3C Member Submission, 23.

129

APPENDIX

130

Appendix A: Source code of %Conv_DNF predicate in FLORA-2

//-------------------------%NNF-----------------------

// negation normal form

%nnf(?X, ?R):- %is_pred(?X,?_PredName,?_Parameters),

!,

?R=?X.

%nnf(?X, ?R):- %is_neg_pred(?X),

!,

?R=?X.

// base case 1

%nnf(?X, ?R):- %is_simple(?X),

!,

?R=?X.

// base case 2

%nnf((\+ ?X), ?R):- %is_simple((\+ ?X)),

!,

?R=(\+ ?X).

// double negation

%nnf((\+ ?X), ?R):- ?X=(\+ ?Y),

!,

%nnf(?Y,?Y2),

?R=?Y2.

// special case for double negation of conjunction

%nnf(?In, ?R):- ?In = (\+ (\+ (?X,?Y))),

!,

%nnf((?X,?Y),?R).

//negation of conjunction

%nnf(?In, ?R):- ?In =.. ?L,

((?L = [hilog(\+), ?X,?Y]) ;
(?L = [hilog(\+), (?X,?Y)]) ;
(?L = [flapply(hilog,\+), ?X,?Y]) ;
(?L = [flapply(hilog,\+), (?X,?Y)]) ;
(?L = [negation(\+), ?X,?Y]) ;
(?L = [negation(\+), (?X,?Y)]) ;
(?L = [flapply(negation,\+), ?X,?Y]) ;
(?L = [flapply(negation,\+), (?X,?Y)])

),

!,

%nnf((\+ ?X),?X2),

%nnf(\+ ?Y,?Y2),

?R=(?X2;?Y2).

131

%nnf((\+ (?X;?Y)), ?R):-

\true,

!,

%nnf((\+ ?X),?X2),

%nnf((\+ ?Y),?Y2),

?R=(?X2,?Y2).

%nnf((?X,?Y), ?R):- \true,

!,

%nnf(?X,?X2),

%nnf(?Y,?Y2),

?R=(?X2,?Y2).

%nnf((?X;?Y), ?R):- \true,

!,

%nnf(?X,?X2),

%nnf(?Y,?Y2),

?R=(?X2;?Y2).

//-------------------------%in_DNF--------------------------------

%in_dnf((?X;?Y)):- \true,

!,

%in_dnf(?X),

%in_dnf(?Y).

%in_dnf(?X):- %all_conj(?X).

%all_conj((?X,?Y)):- \true,

!,

%all_conj(?X),

%all_conj(?Y).

%all_conj(?X):- %is_simple(?X).

%all_conj(?X):- %is_pred(?X,?_PredName,?_Parameters),!.

%all_conj(?X):- %is_neg_pred(?X),!.

%is_simple(?X):- isatomic{?X},!.

%is_simple(?X):- ?X ~ ${?_A[?_B->?_C]@?_Module}, !.
%is_simple(?X):- ?X ~ ${?_A:?_C@?_Module}, !.

%is_simple((\+ ?X)):- isatomic{?X},!.

%is_simple((\+ ?X)):- ?X ~ ${?_A[?_B->?_C]@?_M}, !.
%is_simple((\+ ?X)):- ?X ~ ${?_A:?_Concept}, !.

132

//----------------------------------%DNF--------------------

%dnf(?X,?R):- %in_dnf(?X),

!,

?R ~ ?X.

%dnf(?X,?R):-?X ~ (?A ; ?B),

!,

%dnf(?A,?A2),

%dnf(?B,?B2),

?R ~ (?A2;?B2).

%dnf(?X,?R):- ?X ~ (?A , ?B),

%dnf(?A,?A2),

%dnf(?B,?B2),

(

(?A2 ~ (?P1@?M ; ?Q1@?M),

?B2 ~ (?H1@?M ; ?S1@?M),

!,

%dnf((?P1 , ?H1),?Res1@?M),

%dnf((?P1 , ?S1),?Res2@?M),

%dnf((?Q1 , ?H1),?Res3@?M),

%dnf((?Q1, ?S1),?Res4@?M),

?R ~ (?Res1;?Res2;?Res3;?Res4)

)

;

(

?A2 ~ (?P1@?M ; ?Q1@?M),

// ?B2 ~ conjunction of literals

!,

%dnf((?P1, ?B2@?M),?Res1@?M),

%dnf((?Q1, ?B2@?M),?Res2@?M),

?R ~ (?Res1;?Res2)

)

;

(

// ?A2 conjunction of literals

?B2 ~ (?H1@?M; ?S1@?M) ,
!,

%dnf((?A2@?M,?H1),?Res1@?M),

%dnf((?A2@?M,?S1),?Res2@?M),

?R ~ (?Res1;?Res2)

)

;

(

// both ?A2 and ?B2 conjunction of literals

?R ~ (?A2, ?B2)

)).

133

//--------------------------%Remove_NOT-------------------------------

// %remove_not(Input,Result)

// object is positive

%remove_not(?X,?R):- ?X =..?L,

?L = [?A|?_B],

((?A = flogic('->',?_M));(?A = flogic(:,?_M))),

!,

?R=?X.

//object is negative

%remove_not(?X,?R):- ?X =..?L,

?L = [?A,?_B],

?A = negation(\+),

!,

?R = ${nothing:Nothing@?_Module}.

%remove_not(?X,?R):-

(%is_pred(?X,?_PredName,?_Parameters)

;

%is_neg_pred(?X)),

!,

?R = ${nothing:Nothing@?_Module}.

// contain more object (and)

%remove_not(?X,?R):- ?X =..?L,

?L = [?H|?T],

?H = logic(and),

!,

?T=[?C,?D],

%remove_not(?C,?C1),

%remove_not(?D,?D1),

?R= (?C1,?D1).

// contain more object (or)

%remove_not(?X,?R):- ?X =..?L,

?L = [?H|?T],

?H = logic(or),

!,

?T=[?C,?D],

%remove_not(?C,?C1),

%remove_not(?D,?D1),

?R= (?C1;?D1).

134

//------------------------------------%Convert-DNF------------------

%Conv_DNF(?In,?Result):- %nnf(?In,?Temp),

%remove_not(?Temp,?RNot),

%dnf(?RNot,?Result).

135

Appendix B: Source code of %Check_Att_Cnp predicate in

FLORA-2

%Check_Att_Cnp (?WsName, ?_X,?WsOrGoal):-

alreadySelected (?WsName,?WsOrGoal)@FilteredWsModule,

!.

%Check_Att_Cnp(?_WsName,?DisjOfConj,?_WsOrGoal):-

?DisjOfConj=[],

!.

%Check_Att_Cnp(?WsName,?Conjunction,?WsOrGoal):-

?Conjunction=[?FirstConjunction|?_Rest],

%processConjunction(?WsName,?FirstConjunction,?WsOrGoal).

%Check_Att_Cnp(?WsName,?Conjunction,?WsOrGoal):-

?Conjunction=[?_FirstConjunction|?Rest],

Check_Att_Cnp(?WsName,?Rest,?WsOrGoal).

%processConjunction(?WsName,?Conj,?WsOrGoal):-

?Conj=[],

insert{alreadySelected(?WsName,?WsOrGoal)}@FilteredWsModule,

!.

%processConjunction(?WsName,?Conj,?WsOrGoal):-

?Conj=[?FirstPair|?RestPairs],

%processPair(?WsName,?FirstPair,?WsOrGoal),

%processConjunction(?WsName,?RestPairs,?WsOrGoal).

%processPair(?WsName,?Apair,?_WsOrGoal):-

?Apair =(?Concept,?_AttList),

?WsName[otherSource->?Concept]@?_WsModule,

!.

%processPair(?_WsName,?Apair,?_WsOrGoal):-

?Apair =(Nothing,?_AttList),

!.

%processPair(?_WsName,?Apair,?WsOrGoal):-

?Apair =(?Concept,?AttList),

%allAttributesPresent(?Concept,?AttList,?WsOrGoal).

%allAttributesPresent(?_Concept,?AttList,?_WsOrGoal):-

?AttList = [],
!.

136

%allAttributesPresent(?Concept1,?AttList,?WsOrGoal):-

?AttList = [?AnAttribute1|?RestAttributes],

(

(?AnAttribute1 :=: ?AnAttribute2) ;
(?MediatorAtt::Mediator,

?AnAttribute1::?MediatorAtt,

?AnAttribute2::?MediatorAtt)

),

?SomeObj[?AnAttribute2->?_SomeValue]@GoalWsAttModule,

(

(?Concept1 :=: ?Concept2) ;
(?MediatorConcept::Mediator,

?Concept1::?MediatorConcept,

?Concept2::?MediatorConcept)

),

?SomeObj:?Concept2@GoalWsAttModule,

%allAttributesPresent(?Concept1,?RestAttributes,?WsOrGoal).

137

Appendix C: Sample of Web Service in WSMO-FL Test Collection

sws3:Service.

sws3[

hasNonFunctionalProperty -> someNonFunctional,

hasCategory->Transportation,

importsOntology ->{ 'C:\Matching\Areas/FlightInfo_Simple_ont.flr',

'C:\Matching\Areas/geographical_ont.flr',

'C:\Matching\Areas/ShipInfo_Simple_ont.flr'},

usesMediator -> someMediator,

hasCapability -> ${ ws3_c [

hasPrecondition ->

((${?ReqShip[

startCity->?FromCity,

toCity->?ToCity

]:RequestShipTicket

},

${?SomeShip[

fromHarbor ->?FromHarbor,

toHarbor ->?ToHarbor,

cost->?Cost

]:Ship

}

) ;

{ReqFlight[

fromCity->?FromCity,

destinationCity ->?ToCity

]:RequestAirplainTicket

},

${?SomeFlight[

fromAirport->?FromAirport[inCity->?FromCity],

toAirport->?ToAirport[inCity->?ToCity],

cost->?Cost

]:Flight

}

)),

hasPostcondition ->

${response[

originateAirport->?FromAirport,

toAirport->?ToAirport,

fromHarbor->?FromHarbor,

toHarbor->?ToHarbor,

cost->?Cost

]:Response

}

]

},

hasInterface -> someInterface,

otherSource -> {Flight,Ship}].

138

Appendix D: Sample of Goal in WSMO-FL Test Collection

g1: Goal.

g1[

hasNonFunctionalProperty -> someNonFunctional,

hasCategory->AirTransportation,

importsOntology -> somOnt,

usesMediator -> someMediator,

requestsCapability -> ${goal1_c1[

hasPrecondition ->

${reqFlight[

originateCity->berlin,

terminalCity->Istanbul

]:RequestFlightTicket

},

hasPostcondition ->

(${?BookTicket[

fromAirport->?FromAirport,

toAirport->?ToAirport,

cost->?Cost

]:Response

},

\+ is_equal(?ToAirport ,sabiha_Gokcen),

less(?Cost, 500)

)

]

},

requestsInterface -> someInterface

].

139

Appendix E: Source code of MainMatcher

//----------------------------------Pre-filtering_Part------------------------//

%FilterMain:- ?_Inserted = setof{ ?Ins |
?Goal[hasCategory->?GoalCat]@?_GoalModule,

?WS[hasCategory->?WsCat]@?_WsModule,

((?WsCat :=: ?GoalCat) ; (?WsCat::?GoalCat) ; (?GoalCat::?WsCat)),

%Filter_Cap(?Goal, ?WS),

alreadySelected(?WS,GOAL)@FilteredWsModule,

alreadySelected(?WS,WEBSERVICE)@FilteredWsModule,

insert{related(?Goal,?WS)}@RelatedGoalWsModule,

?Ins=related(?Goal,?WS)

}.

//----------------------------------Matching_Part----------------------------//

%run_a(?Result):-

%FilterMain,

%run_c(?Result).

%run_c(?Result):- ?Result = setof{ ?MatchResult |
related(?Goal,?WS)@RelatedGoalWsModule,

%match_c(?Goal,?WS,?MatchResult)

}.

//---------------------------------Match---//

%match_c(?Goal,?WS,?Res):-

WebService(?WS, ?_WsPath,?WsModule),

Goal(?Goal, ?_GoalPath,?GoalModule),

deleteall{?_A[?_B->?_C]@m1},

%module_copy4(?WsModule, m1),

%module_copy4(?GoalModule, m1),

?_temp = setof{ ?WsOntology |
(?WS[importsOntology -> ?WsOntology])@m1,

Ontology(?_Ont,?WsOntology,?OntModule),

%module_copy4(?OntModule, m1),

t_insert{ontologyLoaded(?WsOntology)@m1 }},

\if (

?Goal[requestsCapability->?GCap]@m1,

?GCap ~ ${?_GCapability[

hasPrecondition->?_GoalPre,hasPostcondition->

?_GoalPost,optimization-> ?_Opt]}@m1,!

140

)

\then (

%optimizing_main(?Goal,?WS,?optValue),!,

?Res = opt_match(?Goal,?WS,?optValue)

)

\else (

%non_optimizing_main(?Goal,?WS),!,

?Res=plain_match(?Goal,?WS)

)

,!.

%match_c(?Goal,?WS,?Res):-

\true,!,

?Res=non_match(?Goal, ?WS).

//------------------------------------Non_optimizing_main-------------------------//

%non_optimizing_main(?GoalName,?WsName):-

%match(?GoalName,?WsName, ?_Cost),

!.

//----------------------------------Optimizing_main---------------------------------//

%optimizing_main(?GoalName,?WsName,?Min_Val):-

?Min_Val = min{ ?Cost | %match(?GoalName,?WsName,?Cost)},

!.

//------------------------------------Ranking--//

%ranking(?Result, ?Ranked):-

?Ranked = setof{?N|

%Goals(?AllGoals),

%member(?AGoal, ?AllGoals),

?WsList = setof{ ?WsValuePair([asc(2)]) | member(?E,?Result),

?E=opt_match(?AGoal, ?AWs, ?Value),

?WsValuePair = [?AWs, ?Value]

},

?N=(?AGoal,?WsList)

}.

141

