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ABSTRACT 

The current research involves the ideas and principles about integral inequalities of 

Gronwall type. It deals with the possibilities that we mathematicians use in order to 

solve equations in various ways. The first case we adopted to solve equations is 

Linear Generalization. The latter deals with equations that are different from those 

treated with Non-Linear Generalization. 

The research we conduct overlaps to study the relation between fractional and 

Gronwall inequalities by analyzing how Gronwall inequalities are included and used 

in fractional inequalities. 

Keywords: Gronwall inequalities, Fractional inequalities, Linear generalizations and 

Non-Linear generalizations. 
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ÖZ 

Mevcut araştırma Gronwall Çeşidi integral eşitsizlikler hakkında fikir ve ilkeleri 

içermektedir. Biz matematikçiler çeşitli şekillerde denklemleri çözmek için 

kullanmak olasılıklar ile ilgilenir. Biz denklemleri çözmek için kabul edilen ilk vaka 

Doğrusal Genelleme olduğunu. Doğrusal Olmayan Genelleme ile tedavi farklıdır 

denklemler ile ikinci fırsatlar. 

Yaptığımız araştırmalar Gronwall eşitsizlikler dahil ve fraksiyonel eşitsizliklerin 

nasıl kullanıldığını analiz ederek fraksiyonel ve Gronwall eşitsizlikler arasındaki 

ilişkiyi incelemek için örtüşür. 

Anahtar Kelimeler: Gronwall eşitsizlikler, Fraksiyonel eşitsizlikler, lineer 

genellemeler ve Doğrusal Olmayan genellemeler. 
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Chapter 1 

INTRODUCTION 

Gronwall inequalities are an important tool in the study of existence, boundedness, 

uniqueness, stability, invariant manifolds and other qualitative properties of solution 

of differential equation and integral equation. 

As R. Bellman pointed out in 1953 in his book “Stability Theory of Differential 

Equations”, McGraw Hill, New York, the Gronwall type integral inequalities of one 

variable for real functions play a very important role in the Qualitative Theory of 

Differential Equations. The main aim of the present thesis is to present (fractional) 

Gronwall inequality and some natural applications of (fractional) Gronwall 

inequalities to certain fractional integral equations. The work begins by presenting a 

number of classical facts in the domain of Gronwall type inequalities. We collected 

in a reorganized manner most of the above inequalities from the book “Inequalities 

for Functions and Their Integrals and Derivatives”, Kluwer Academic Publishers, 

1994, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink. Chapter 2 contains some 

nonlinear generalization of the Gronwall inequalities. Chapter 3 contains some 

fractional generalization of the Gronwall inequalities. These results are then 

employed in this chapter to study some properties of fractional Volterra Integral 

Equations.  
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Chapter 2 

LINEAR INEQUALITY 

In the qualitative theory of differential and Volterra integral equations, the Gronwall 

type inequalities of one variable for the real functions play a very important role.  

The first use of the Gronwall inequality to establish boundedness and stability is due 

to R. Bellman. For the ideas and the methods of R. Bellman, see [R. BELLMAN, 

Stability Theory of Differential Equations, McGraw Hill, New York, 1953.] where 

further references are given. 

 In 1919, T.H. Gronwall [T.H. GRONWALL, Note on the derivatives with respect to 

a parameter of the solutions of a system of differential equations, Ann. Math., 20(2) 

(1919), 293-296.] proved a remarkable inequality which has attracted and continues 

to attract considerable attention in the literature. 

Also we will present some other inequalities of Gronwall type that are known in the 

literature and we will give various generalizations of Gronwall’s inequality involving 

an unknown function of a single variable, by the recent reference [34]. 
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Theorem 2.1(see [3]) Let ,  and    be a continuous mappings on[ , ]  and ( ) 0,s 

[ , ]s    . 

Moreover, assume that  

               ,  

s

ds s st t t


                                          (2.1) 

Then 

         exp ( )         ,  

s s

t

t u du dts t t s


      
 

    
 

  .                      (2.2) 

Proof Assume that ( ) ( ) ( ) ,  [ , ]

s

y s u u du s


     . 

Then clearly ( ) 0y    and 

( ) ( ) ( )y s s s   . 

From (2.1) we have  

                

s

s s s t ty dt


   
 

   
 

  

( )  ( )    ( )  ( ) ( )

s

s s s t t dt


        

( ) ( ) ( ) ( ),    ( , )s s s y s s       . 

Multiply both sides with exp ( ) 0 ,

s

t dt



 
  
 
  we get  

     exp ( )     exp ( )     ( )  ( )exp ( )  

s s s

y t dt t ds s s ts t s y t d
  

     
     

          
     
  

             

or

 

          exp ( )   exp   ( )  ( )exp ( )

s s s

s s s ty t dt y dt s s t dt
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and  

   exp ( )     ( ) ( ) exp ( )  

s s
d

y t dt s s t ds t
ds

 

   
    

      
     

  . 

Integrating on[ , ]s  , gives  

      exp ( )      exp ( ) .

s s u

y t dt u u t dt dus
  

   
   
     
   
  

 

Multiply both sides by exp( ( ) ) ,

s

t dt



 
 
 

 we get  

   ( )     exp ( )  ,     [ , ] 

s s

u

y s u u t dt du s


    
 

  
 

  . 

Since (( )) ) (s ys s   , then 

       exp ( )  

s s

t

t u du dts t t


    
 

   
 

  , 

which completes the proof. 

Corollary 1 Let be differentiable, by the inequality (2.1),   

           exp ( ) ( ) , ,   

s s s

t

u du u du t ds t s
 

      
   

      
   
   .              (2.3) 

Proof:  It is clear that, 

  exp ( )

s s

t

d
u du dt

d
t

s


 
  

    
  

   

 exp ( ) exp ( )  ( )

s s s

t t

u du ut du t dt
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      exp exp ( )   ( ) ,  [ , ]

ss s

t

u du u dus t dt s
 

      
   

        
   
   . 

 

Hence 

          exp ( )
u

s s

u u t dts du


   
 

  
 

   

  ( )exp ( )   exp ( ) ( )  ,    [ , ]

s s s

t

u du u du t dt s
 

      
   

     
   
   . 

Then we get the desired inequality.  

Corollary 2   If    , then from  

( ) ( ) ( ) ,

s

s t t dt


                                                            (2.4) 

it follows that  

( ) exp ( ) .

s

s u du


  
 

  
 
                                                       (2.5) 

Theorem 2.2(see [7], [3]) Assume that :[ , ]    is a continuous mapping, 

satisfying the following inequality:  

( ) ( ) ( ( )) ,      [ , ],

s

s t t dt s


                                    (2.6) 

where [ ,0,  ]:      and :     are continuous functions and   is 

increasing.  Then the inequality                                           

 

1( ) ( ) ,       [ ]( ,)

s

t dts s


  
 

      
 

                         (2.7) 

holds, where :    is defined by  
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0

    ,           .
 

v

v

dt
vv

t
                                               (2.8) 

Proof   Let  

      ( )    ,   [ , ],

s

t ty s dt s


       

clearly ( ) 0y    and from (2.6), we get 

( ) ( ) ( ( )),     [ , ].y s s y s s        

Integrating both sides on [α, s], we get  

 

 
     

0

        ,   ,  

s sy

t
dt

dt M s
M t






   
   

that is, 

            ,    ,,

s

y M dt Ms st


     
 

apply 1  to both sides, we have 

     1  ,

s

s ty M dt M



 

    
 
  

or 

     1  ,

s

y dt Ms t M



 

    
 
  

sine ( ) ( )s y s  , then we get the proof.  

Theorem 2.3 (see [9])Assume :[ , ]     be a continuous mapping and satisfies 

the  inequality:  

       2 2

0 ,
1 1

,      ,
2 2

s

s t st dt


                                (2.9)  
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Where 0   and 0   are continuous non-negative. Then the inequality 

     0 ,  ,    

s

d ss t t


                                                  (2.10) 

holds true.  

Proof    Let  

         2 2

0

1
  ,      ,

2
,

s

y dt ss t t



        

where 0  . From (2.9), we have 

     2 ,     , .y ss s                                       (2.11) 

Because    ( )  ( ,) ,s sy s s     , we get 

     2 ( ) ,   ,  .

s

y y ds t st



        

Integrating on[α, s] , we can deduce that  

   2 ( ) 2 ( ) ,    .,  

s

y s y st dt



        

From (2.11), gets 

     0 ,   ., 

s

s t dt s


        

Hence 0,   (2.10) holds. 

Theorem 2.4 (see [16]) Suppose that ( ) 0s   is a continuous function such that  

   
0

0,   for   ,

s

s

s t dt s s          

where 0,  0,  0     . Then for  0 ,   s s s satisfies 
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      0 0exp   1  )  exp  .s s s s s 






 

     
 

 

Theorem 2.5 (see [55) Assume ( )s be a continuous function and satisfy 

           
0

0 0  exp    exp( ) ,

s

s

a s s a s t ds ts t           

where 0,  0,  0,a     are any real numbers. Then 

             1 

0 0 0exp  α s 1 exp  s s a a ss s    


         . 

Theorem 2.6(see [55]) Assume ( )s  is a continuous mapping satisfying 

       
 

  ,

s

T

T xs t t dt      

∀ 𝑠,𝑇 ∈ ( , )  , where ( ) 0x s   and continuous, then 

         
0 0

0 0 0exp exp ,      

s s

s s

x dt x dt s ss t s s t  
   
       
   
   
  . 

Theorem 2.7 (see [11]) Assume ( ) 0s   be a continuous on[0, ]v , and satisfy the 

following inequality: 

       1 

0

( ) ,

s

s x ts x y dtt t       

where 1( ) 0x s   and ( ) 0y s  are integrable mapping on 0,v and ( )x s is a bounded 

there. Then, on  0,v  we have 

     1
0

0 0

  sup ( ) exp . 

s s

s h

y dt x s x dts t t
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Theorem 2.8(see [11]) Assume that ( ) [0, )s C    and nonnegative such that 

 
   

0

 
   , 

s

s ms dt
t

s
t

  
     

where 0,  α 0,  β 0.    Then 

1

( ) 1 .
( ) ( ( 1) )

n n

n

m s
s s

n


 

    





 
  

     



 

Theorem 2.9   (see [4]) Let  and   be a continuous and  and x y  be a Riemann 

integrable mappings  on [ , ]I a b with 0y   and 0  . 

(i) If 

             ,         ,

s

a

s s s t tx y dt s I                                           (2.12) 

then 

               exp ,         .  

s s

a t

x y x y ds s s t t s It d    
 

   
 

                 (2.13) 

Furthermore, equality holds in (2.13) for 1 1   ,[ ] I ba I   if equality holds in (2.12) 

for  𝑠 ∈  𝐼1. 

(ii) In both (2.12) and (2.13) the result remainders valid if ≤ is changed by ≥.  

(iii) Together (i) and (ii) still useable if  

s

a

 is changed by  

b

s

 and  

s

t

 by  

t

s

 . 

Proof  Suppose that  

     
s

a

s t dtt     such that     0,a   

where 

( ) ( ) ( )s s s   . 
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Since      

( ) ( ) ( ) ( ) ( ) ( )t x t t y t t t     . 

 Multiplying by    exp
t

s

y d  
 
 
 
 and integrating on  ( , )a t we get 

          exp ,         .

t

s

s

x y ds t tt d s I


   
 

   
 

                        (2.14) 

Since 0,y   substituting of (2.14) into (2.12) leads to (2.13). The equality 

requirements are clear and proof of the equation (ii) can be written by transformation 

of variables s → −s.  

Theorem 2.10   (see [17]) If 

               
1 1

1 1 2

2

  ,
nss

n

s

m

n

ns

x x y dt xs s s t t s ty dst   


      

where  , ,s   0 • •  •    ,  n ns s        and the generated functions are all 

continuous, nonnegative and real and if the following inequality holds 

1 1 1

2 1 1 2 1 1

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1,
ns s sm

n n

n s s s

y s x s x s y t x t x y d dt ds   


  
   

    
     

then 

     1 2   ,s sK MK s    

where 

             
1

1 1 1 1  exp ,

s s

n

s t

K x xs y x xs s t d dtt y  
 

   
 

   

             
1

2 2 1 1 2 1 1exp ,

s s

s t

x x y x x y d dt tK s s s t  
 

   
 

   

and 
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1 1

1

1 2

2 2

  1  .
n ns sm m

n n

n ns

n n

s

M K dty t t y t tK dt 



 

  
   
  
  
    

Theorem 2.11 (see [35]) Let ( )s  be continuous, real, and non-negative such that for  

s > s0 

     
0

, ,      0
s

s

s t ts t d        

where  ,s t  is a continuously differentiable function in 𝑠 and continuous in 

𝑡 with  , 0s t   for 𝑠 ≥ 𝑡 ≥ 𝑠0. Then 

 
0 0

( )  exp ( , ) ,   .

s

s

t

s

s t t t r dr dt
t


  

  
   

    
   

Theorem 2.12 (see [17]) Suppose that ( )s be continuous, nonnegative and real on

[ , ]  , such that 

           , ,

s

x y s ts dt ts s


      

where      0,  0,  , 0x s y ts s    and are continuous mappings for 

t s     

 then 

       exp      , ,

s

X Ys s ts s dt



 

  
 

  

where ( ) sup ( ),
t s

X s x t
 

 ( ) sup ( ),
t s

Y s y t
 

 ( , ) sup ( , ).
t s

t s s


 
 

   



12 
 

Theorem 2.13(see [14]) Assume ,  [ , ]x C a b   and let  ,I a b  furthermore let  

be a non-negative continuous function on : .a t s b     If 

         , ,    ,

s

a

x s ts st dt Is                                      (2.15) 

 then 

         , ,     ,

s

a

x s t xs dt s Is t                                                  (2.16) 

where 

1

( , ) ( , )n

n

s t s t




  with  ,      ,t s   is the resolving kernel of   ( , )s t and

 ,n s t are repeated kernels of  , .s t
 

Remark: If we take ( , ) ( ) ( )s t y s t   and 
1

( , ) ( ) ( )
m

n n

n

s t y s t 


  we have the 

results of D. Willett [14].   
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Chapter 3 

NONLINEAR INEQUALITY 

We can consider various nonlinear generalizations of Gronwall’s inequality. The 

following theorem is proved in [43]. 

Theorem 3.1(see [43]) Assume ( ) 0s  be a function satisfy  

          
0

      ,    0,    0,
s

a

s

s t t t tx y dt a                             (3.1) 

where ( ) 0 and (0) 0x s y  are continuous mappings for 0.s s When 0 1a   we have 

       

0

0

1

1

1

( ) exp (1 ) ( )

                        1 exp 1 ;

s s

s t

s

a

s

a

s a x t dt

a y a x d tt d

 







  
    
  

  
    

  



 

                (3.2) 

for 𝑎 = 1 

     
0

exp   ,

s

s

s t tx y dt 
  

    
  
                                   (3.3) 

and for 1a  with the additional hypothesis 

       
0 0

0 0

1 1

1 1

exp 1   1

s s a

s s

v va

a x dt a y dtt t



         
       

      
                       (3.4) 

we also get for 0 0s s s v   , for 0v  , we have 



14 
 

   

       

0

0

1

1

1

( ) exp 1

                 1 exp 1 .

s

s

s

t

as

s

s a x dt

a y a x d dt t

t 

  




  
    

  

  
    

  



 

(3.5) 

proof  

If 1a  we have linear inequality so that  (3.2) is valid. 

Now let 0 1.a  h is a solution of the integral equation  

         
0

0,   .

s

a

s

h x h y h dts t t t s st        

In differential system this is the Bernoulli equation  

           ' ,   0 .ah x h y h hs s s s s     

This is linear in the variable 1 ah   so can readily be integrated to create  

       

0

0

1

1

1

( ) exp (1 ) ( )

                        1 exp 1 .

s s

s

a

t

s

a

s

h s a x t dt

a y a xt d dt









  
    
  

  
    

  



 

 

This equals the right side of the equation (3.2). 

For 1a   the equation is an equation of Bernoulli type. For the  proof  we need the 

additional condition (3.4) if this condition is to holds on bounded interval 

0 0 .s ss v    

Theorem 3.2 (see [17]) If 

       
0

    ,   0 1,

s

ag u ds at t ts       
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where all mappings are non-negative and continuous on     0, ,   0.v   Then 

   

1
1

1
0

0

  ,  ( )

a

a

s

as s t dtg u 




 

   
 
  

where 0 is the unique root of .  aa    

Theorem 3.3 (see [17])  Assume ( ),  ( ) [0, ]s u s C v  be non-negative functions 

 if 

         1 2 3

0 0

  ,

s v

a au ds t ut t t dtt          

where 1 2 30,  0,  0     , then for 0 1a  we have 

     

1

1  
1  

0 2

0

1   
a

a

s

a u dts t  



 

   
 

  

where 0 is the uniquesolution of the equality 

   
1

12 3 1 2
2

3 3 0

 . 1 0.a

va

a u tt d


  
  

 



 
     

 
  

If     1

2 1

0

1 a

s

ta u dt    and 1a   there exists an interval  [0, 0, ]v   where  

     
 

1

1
1

1 2

0

1 . 
as

a a u dts t  



 

   
 

  

Theorem 3.4(see [48]) Assume ,  ,  x y and  be non-negative and continuous of

[ , ]I a b and let
x

y
  be a non-decreasing function. If       

           ,   ,   2,

s

a

ns s s t tx y dt s I n                             (3.6) 
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then  

         

1

1
11 1 ,  ,( ) n

s

a

n
ns s t t tx n y x dt a s b 




 
     

 
 (3.7) 

where 

  1sup  :    1    1  .

s

n

n

a

b s I n yx dt 
 

    
 

  

Theorem 3.5 (see [30]) Suppose that ( ) [ , ],s C a b  ( ) [ , ]s C a b   are positive 

functions, 0,  0    and ( ) 0f z  be a non-decreasing mapping for 0z  . If    

            ,         , ,

s

a

s t tf dt s a b        

then 

     1

1          ,   ,

s

a

F F dt at bs s b  
 

     
 

  

where 

 
 

        (    0,     0)

s
dt

F
f t



      

and 1b is defined such that 

    1

1the domain of ( ) for [ , ]

s

F dt F s a bt


      . 

Theorem 3.6 (see [22]) Assume ( ) 0,  ( ) 0s y s   be continuous functions on 0[ , ).s 

Moreover let ( ),  ( )  and  ( )g s f x s  be differentiable mappings with g  non-negative, 

0f   non-decreasing, and 0fx   non-increasing. Let 
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0

.  

s

s

s s s tg x y f dtt                                     (3.8) 

If  

 
  

 0

1
s 1 0,on   ,      

η 
g

sf
s 

 
   

 
 

            (3.9) 

for each non-negative continuous mapping η, then 

          
0

1

0         ,

s

s

s s t tF F g y x g s ds 
  

     
  

                             (3.10) 

where 

 
 

 ε

 

 
ε ,     0,  ε 0,

 

dt
F

tf


                                              (3.11) 

and (3.10) holds for all values of s which make the function 

         
0

0

s

s

F g s y xs t t g dtt         
 

belongs to the domain of the inverse mapping 1.F   

Proof Let 

          
0

  .

s

s

K t g x y f dt ts t t    

Since f  is non-decreasing and x  is non-increasing, from (3.8) we get that  

   ( ) ( )f s f K s  . As of this we get 

                ,g x y f xs s s s s s sy f K g s           

this may be written as 

 

 
   

 

 

 
      . 

         

sK g
x y

f K s f

s
s s

sK

 
 

      

 

By (3.9), we have, 
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     .

     

s
s

K
x y s

f
s

s
g

K


 

  

 

Integrating from both sides we get, 

         
0

0    .

s

s

F K F g x y g dts s t t t              

If we assume that
1( ) the domain of ( )s F  , then we get the inequality (3.10)  

since ( ) ( ).s K s   

Theorem 3.7 (see [2]) Assume that ( )s is a continuous mapping on 0[ , ]s   such that 

   
 

    
0

 

0  ,      ,

s

s

u

g s tfs t dts       

where  

1) ( ) 0g s  is continuous, and non-increasing;  

2) ( )u s  is differentiable, and 0 0( ) 0,  ( ) ,  ( )u s u s s u s s    ;  

3) ( ) 0f   is non-decreasing on ;  

4) 0 0( , ) [ , ] [ , ]s t C s s     is non-negative with ( , ) 0s t
s





is continuous. 

Then for 𝐹 defined by (3.11) we get 

          
0

1

0 0 –   ,

s

s

g g F Fs s Gs ts tg d 
  

   
  

  

where 

      
 

 
0

,   , .

u s

s

G s ss u u s t dt
s

s
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Theorem 3.8(see [26]) Assume ( ) and  ( )s x s be non-negative and continuous 

functions on[ ], ,  ( ) 0f    is non-decreasing for 0  , and let for each  in [ , ]t s  

            .

s

t

x r f rs drt      

Then for each  in [ , ]s    we have 

      1       ,

s

F F x r drs


 
 

  
 

  

where 𝐹 is defined in (3.11) and let      1       the domain of ( )

s

F x r dr F


 
 

  
 

 . 

Proof Let 

       
s

t

H x r f drt r   

then we have  

        .t s H t    

Since f  is non-decreasing, we get 

      ,f ft tHs          

this can be written as, 

    
   

 
 

.
s t

t
s t

d H
x dt

f H






 

  
 

By integrating from  to  ( )s t t s we have, 

           .

s

t

F H F xt ds ts t        

However, F is non-decreasing thus       ,F Ft tHs         combining the last 

two inequalities and reorganizing, we get  
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         .

s

t

s tF x dttF      

Apply 1F  to both sides we get the result. 

Theorem 3.9 (see [2])Suppose that the positive functions ( ) and ( )s g s  are 

continuous on 0[ , ),s   moreover assume   

0

0

1

( ) ( ) ( ) ( ) [ ( )] ,     

sm

n n

n s

s s x s y t f tg dt s s 


    , 

where ( ) 0ny s  be a continuous on    0 , ,  0 ,ns x t  while   0,nx t   and f is a 

non-decreasing function that satisfies ( ) ,  where 0.f      

Then 

0

1

0

11 1

( ) ( ) ( ) ln ( ) ln ( ) ( ) ( )
m m ms

n n n n
s

nn n

s g s g F F g x s x s x t y t dt 

 

 
      

 
   , 

where max ( )g g s and F is defined in (3.11). 

Theorem 3.10(see [2])Suppose that ( ) 0s  is a continuous function and satisfy 

   
 

    
 

    
1 2

0 0

 

1 1 2 2              ,

u s u s

s s

g x G ds s t t tt x G dtt       

with  

1)  ( )g s   is a non-increasing mapping on 0[ , ]s  , 

2)  1 0 2 0[ , ],  [ , ]x C s x C s   are nonnegative on 0[ , ];s   

3)  1 2 and u u  are non-decreasing and continuously differentiable mapping 

with 0 0 1( ) ,  1,2,  and  ( ) ;nu s s n u s s    
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4) 1 2( ) and ( )G G    are non-decreasing, continuous functions, and  

satisfy 2( ) 0,G   for all    and  

1

2 2

( )

( )
  ,

( )

d

Gd

G

G

 

 

 
 

 
 

where is any constant. Then 

       0  ,s s sg sg     

where    

 

    

    
 

 

1

0

1

0 0

1

1 0

2 2 2 1

( ) exp  

                     exp ,

u s

s

u ts

s s

t s

u t

s F x dt F g

x u x r dt r dt

 

 


  

    
  

  
        



 
 

is a continuous solution of the initial value problem 

               1 1 1 1 2 2 2 2

0 0

   

( ) ( ),

s u s s u s sy u G y u G

s g s

 



   

  

1  is the inverse of  ,  andF F

    
 

0

1
0

22

( )

( )
    .F F d

t
t

G

G G





 
 


   

 

 Theorem 3.11(see [2])Assume ( )s is a continuous function and satisfy 

 

  
0

0

1

,   o( ) ( ) ( ) n [ , ]( )
nu sm

n n

n s

y dts g x t t ss s g  


   , 

with the following condition   

1) 0nx  is bounded, non-increasing functions ; 

2) 0ny  is continuous functions; 
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3) 0 0( ) ,  ( ) ,  ( ) 0n n nu s s u s s u s   ; 

4) ( )g s is a non-increasing continuous function ; 

5) ( ) 0f    is a non-decreasing function defined on  . 

Then  

       0g gs s s s     

where F is defined by (3.11) and 

        
0

(

0

)

1

1

nu sm

n

n

n

s

F F g xs s t ty dt 



 
  

  
  , 

is a continuous solution of the initial value problem 0 0( ) ( )s g s  and 

           
1

    . 
m

n n n n n

n

s u sx y us s fu 


   

Theorem 3.12 (see [8])Assume that ( ) 0,  ( ) 0 and ( ) 0s x s y s    are bounded on 

[ , ]a b ; ( , ) 0s t  is bounded for ;a t s b   ( )s and ( , )t   are  measurable 

functions. Let ( )g   be strictly increasing and ( )f   be non-decreasing. If 

( ) sup ( ),
a t s

X s x t
 

 ( ) sup ( )
a t s

Y s y t
 

 and ( , ) sup ( , ),
t s

s t t


 
 

   then from 

             ,    ,     , ,

s

a

g x y s ts s s stf dt a b      

it follows that 

          1 1 , ,   ,  ' ,

s

a

g F X Y s t d bs t as F s s  
  

     
   

  

where 

 
  1

    (   0,   0)  
 

z
F

f z

d

g





 


   , 
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and 

        ' max     , .
a

b a b F X Y t dt F g



   
   

        
   

∶  

Theorem 3.13 (see [22])Assume that the functions ( ),  ( ),  ( ) and ( )g s x s y s f  satisfy 

the conditions of Theorem 3.6 and the function ( ) 0G    is monotone decreasing 

for 0  . Let 

           
0

s

s

G s g s x ys t f dtt    . 

Then, on 0[ , ]s b  

          
0

1 1

0  ,

s

s

F ss G F g x y g dt tt t  
  

   
 

 
 
 
 

  

where 

 
 1

 

  ,        0

s

G t

dt
F

f

 


  
  


 

and b  is defined such that the mapping ( )s  obtained in Theorem 3.6 belongs to the 

domain of the mapping 1 1.G F   

Theorem 3.14 (see[50]) Assume ( ) 0,  ( ) 0,  0 and 0s x s y      be  continuous 

functions on [ , ],I a b  and 

         

1

,      ,      1 .

s q
q

a

s s sx y dt st t I q  
 

    


 

  

Then 
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1

1

( ) ( ) ( )

   ,      ,

1 1

s

a

q

q
q

t z t x t dt

x y s I

z

s s s

s





 
 
   

   


 

and 

     exp .

s

q

a

z x dts t t
 

  
 


 

Theorem 3.15(see [15], [3])Assume 

1)  ( ) 0,  ( ) 0  and  ( , ) 0s g s G s t    are continuous functions on , and t ≤ s; 

2)  
   ,

0
G s t

s





 is continuous;  

3) ( ) 0f     is continuous, additive and non-decreasing on (0, ∞); 

4)   ( )v   is a positive, non-decreasing and continuous function on (0, ∞). 

If  

        
0

, ,

s

g v G s t f dts s t 
 

   
 
  

for  s J , then we have 

          1

0 0

,   ,

ss

s s F tg v F G s t f g d tt u dt 
   

    
  

 
  
 

   

while 

     
0

( ) ,   0,  0,
( ( ))

, , ,
 

s
G

dt
F

f v t

su G s s s t dt
s





  









 




 

and 
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0 0

  0, , ) . 

s s

J s F F G s t f g d tt t dtu
   

       
   

 ∶  

Proof Since the function f  is additive and ( , )G s t in  s  is non-decreasing we have 

       ,s sg sv h    

where   

             
0 0

,   ,     ,

s

h G s t f g dt G t f ds tt gt t



      

(0, ) and 0.s    Moreover since f  is non-decreasing, we find that 

        . f g fs s sv h                                           (3.12) 

Multiplyingboth sides by 
 ,  G s t

s




 and integrating from0 to s , we get 

            
0 0

,     , .
       

s s
G G

s t f g dt s t f v h dt
s s

t t t
 

 
    

Conversely, if we multiply (3.12) by  ,G s s and using this previous 

inequality, we get 

             
0

, , ,
 

s
G

h G s s f v h s t f v h
s

s t ds t


  


 

that is, 

      
0

    , , .
 

s
d G

F h G s s s t dt
ds s




 


 

Then, by integrating from 0 to   we have 

       
0

  0      ,F h F h u dss



     

and since          g v h      we have 
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          1

0 0

     ,   .g v F G t f g dtF t su ds

 

   
    

      
    
   

Since is arbitrary, we get the result. 

Theorem 3.16 (see [15])Assume (0, )I   and  

1) ( ) 0,  ( ) 0 and ( ) 0s g s G s    are continuous on I  ;  

2) ( ) 0f   is additive, continuous and non-decreasing on I  ;  

3) ( )v  is continuous, positive and non-decreasing.  

If 

        
0

,       ,

s

g v G f dts s t t s I 
 

   
 
  

then for 1s I , we have 

          1

0 0

    ,

s s

g v F G f g dts G dts F t t t 
    

     
     

   

where 𝐹 is well-defined such as in Theorem 3.15 and 

        1

0 0

  : .

s s

s I F F G f g dt G dtI t t t
   

      
   

   

Theorem 3.17 (see [15])Assume (0, )I   and let 

1) ( ) 0,  ( ) 0 and ( ) 0s g s G s    are continuous on I  ;  

2) ( ) 0f   is additive, continuous and non-decreasing on I  ;  

3) ( )v  is continuous, positive and non-decreasing.  

and assume ( )f  be an even function on . If  
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0

– ,     0, ,

s

g v G f dt ss s t t 
 

   
 
  

then for t ∈ I1 we have 

          1

0 0

  ,

s s

s s F t tg v F G f g d tt G dt 
   

    
  

 
  
 

   

where  

        1

0 0

  : .

s s

s I F F G f g dt G dtI t t t
   

      
   

   

Theorem 3.18 (see [13]) Assume 10,  ,  0 and 0x o       be continuous 

functions on [ , ]I a b , and let ( )x s  be non-decreasing on I . Suppose 0f  and v are 

non-decreasingcontinuous functions on [0, ∞) such that f is sub-additive and sub-

multiplicative on [0, ∞), moreover assume that  v   is positive for 0.  Let 

[0, )g C  be a strictly increasing function with      for  0  and  g 0 0.g       

If 

             1                    ,     ,

s s

a a

g x v f dt ds s t t t t It s    
 

    
 
   

then  

    

      

1 1

1

1

1

( ) ( ) ( )  

                         ( ) ( )

                         ,   for ,  

s

a

s

a

s

a

s g t dt

G x s v F f Z dt

F f x Z dt a s b

G

t t

t t t

 





 




 



 
  



  
       











 

where 
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0

1 01
exp  ,         ,      0,  (  0)(   )

s

a y

s t
g

dy
Z dt G y y

y



 


 
    

 
   

and 

 
  

0

0 ,     0,  (    0)
 

dy
F

f v y





     

while  

      

      

1  sup   : 

                                         .

s

a

s

a

s I F f x Z dt

f Z

b t t t

t t dt F



 

  
   

  


  





 

 

If ( )x s s  we may drop the condition that the function 𝑓 is sub-additive and 

considering 2a s b  leads us to  

    1 1 1

1( ) ( ) ( ) ( ) ,

s s

x

a a

s g t dt G x v F fG t dttZ    
    

      
    

    

where  

 
  0

,     0
   

x

dy

f x
F

yv



  


  

and 

      2 sup       .

s

x

a

b t I ft tZ dt F 
 

   
 

 ∶  

Theorem 3.19(see [34]) Let ( , )u s  be continuous and non-decreasing in  on 

   0, ε,ε    where ε .    If ( )h s is continuous and satisfies 

    0

0

  , ,s th u s h dt
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where 0  be any a constant, then 

    h s s  

where ( )s is the maximal solution of the problem 

      0, ,    0 ,us s       

defined on 0, .  

Proof  Consider the function 

    0

0

, ,

s

th ts u t d     

then ( ) ( )h s s  and  

          0, , ,   with   0     .s su s h u s s      
 

From Theorem 2 of Chapter XI, [34] we have ( ) ( )s s  then we get the proof.    

Theorem 3.20(see [34]) Assume 0( ) [0, ].s C   Suppose ( , , )u s t  be continuous and 

non-decreasing in for  0 ,s t    and .  If ( )h s is considered to be a continuous 

mapping which satisfies the following inequality   on  0,      

      0

0

, ,    

s

h u ss s tt h dt                (3.13)
 

then  

      on  0,  ,s sh                                             (3.14) 

where ( )s  is a solution of the equation 

        0

0

, ,   on   0,   . 

s

u s t dts s t                                             (3.15) 
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Proof  

From (3.13) and (3.15) we get (3.14) at 0s  . Based on the continuity of the 

mappings used, we have (3.14) holding on a number of nontrivial interval.  In case 

the last deduction is not holding on the interval [0, ] then there is 0 s such that 

    0 on [0,  )h s s s however 0 0( ) ( ).h s s  From (3.13) and (3.15) we get 

      0 0 0 0

0

, ,

s

s s sh u h dtt t    

      0 0 0

0

, , .o

s

u t dts s t s      

This contradiction proves the theorem.  

In what following we say that the mapping ( , , )u s t  is a solution of the condition 

(µ) if the equation 

      0 0

0

, ,

s

w c u s ts dts tw     

has a solution defined on  [0, ],  0,µ .c    

Theorem 3.21(see [34]) Assume that ( , , )u s t  is defined for 0 , ,  ,  s t     and is 

continuous and non-decreasing in  satisfying condition  .µ If the continuous 

mapping ( )h s satisfies 

      0 0

0

, ,

s

s s sh u t h t dt                                              (3.16) 

on  0, ,  then  

 

where ( )s  satiates (3.15) on the same interval 

      on  0,  ,s sh  
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Proof  For all fixed ,m we denote by ( )mw s a solution of the integral equation 

      0

0

  , ,    

s

m mu s t w dw t
m

ts s


     

defined on[ , ]o   for small enough, we may employ Theorem 3.20 to arrange that  

       1 1   m ms s sw w ws     

in addition to    mh s sw .Letting m approaches  , we get the result.  

Theorem 3.22(see [33]) Assume ( , , )u s t  be continuous and non-decreasing 

function in   for 0 , .  ,   s t       Let 0( ) [0, ]s C  and either  

1) Considering any continuous function 0( )s  which is fixed over   on [ , ]o   

and any  0c    which is small enough, the equation 

         0 1 0

0 0

  , ,   , ,

s

w c u s t w dt u s t w ds s tt t



      

has a continuous solution on [ , ]o  ; or 

2)  

     1 2
0

0

max , , , , . 
s

s t u s t dts u




   

 
    

Moreover if  ( )h s satisfies 

         0 1 2

0 0

, , , , ,

s

s s th u s t h dt u s t h dtt



     

where ( )h s  is a continuous function, then 

         on   0,   ,sh s   

where 
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         0 1 2

0 0

, , , , .

s

s s tu s t dt u s t dtt



        

Theorem 3.23(see [32]) Assume ( , , ) 0[ , )u s t C    for  0,t  and  with .  

Let for fixed     and  0,s t C    the function ( , , ( ))u s t t  is measurable in t  on

 0, .   Additionally, suppose u   be a non-decreasing in   and 0( ) [0, ]s C   . If  

        0 , ,     on   0, ,
s

s s th u s t h dt 


                               (3.17) 

while  h s is any continuous function, then 

         on   0,  ,sh s                                            (3.18) 

where ( )s is a solution of the equation 

        0 , ,   on   0, . 
s

u s t dts s t  


    

Theorem 3.24(see [32]) Suppose that ( ) ( )g C J  is strictly monotone functionon 

an interval ,J  and let the function ( , )R s h be continuous on I K  where [ , ]I a b  and

K is an interval containing zero, and furthermore assume that the mapping R is 

monotone with the respect to the variable h .Let   1 , : s t a t s b     and  assume 

that  , ,w s t  is continuous and either positive or negative on 1 J  , monotone in the 

variable , and monotone in the variable .s Letalso that the mapping  and the 

mapping x are all continuous on I with   JI  and  

     ,       s       ,x R ss h g J for I and h                              (3.19) 

where 0  is constant. Assume  
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         ,   , ,  ,       ,

s

a

g t x t R s w s t dt s It 
 

   
 
                          (3.20) 

and assume   ( , , )s a   is the maximal (minimal) solution of the initial value 

problem 

    
 

1

1 1

, , , ,

0,   ( ) , 

s

a

w s g x R s

a s b b b

  

 

    

    
                                        (3.21) 

if the functions  , ,•w s t  and g are monotonicin the same sense, where 1  b x is 

chosen such a way that the maximal (minimal) solution can be computed in the given 

interval. Then, if the function  •, ,w t  and  ,•R s  are monotonic in the same sense,  

        1

1    ,    ,   ,s s sg x R s a s b        
                         (3.22) 

where      , ,s as s  if 

1)  ,•R s and ( , ,•)w s t are monotonic in the same sense and g is increasing; if 

2) g is decreasing and    ,• ,  , ,•s w s tR are monotonic in the opposite sense, then 

the previous inequality is reversed in (3.22).  

ProofThe mapping 

      1 , , , , ,  G s w s g x Rs s        

is continuous on the compact set  1 , ,    so it is bounded there, say by the 

constant  N . By [34]there exists ,a  independent of  ,s  such that a b (indeed

1

1 min  ( , )b a b a N    ) such that the maximal(minimal) solution of the initial 

value problem (3.21) has a solution on[ , ]a b . If  ,a b  is fixed, and assume

 ,s a  . We define  
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    , , ,

s

a

h s w tt dt     

we have  

           , , ,   , , ,

s s

a a

h s s w s t dt wt t stt d h                         (3.23) 

if  •, ,w t  is increasing (decreasing). Note that (3.20) implies that  ,h s s K for

.s I Since 0 K , it follows that  ,h s K  in both sense of (3.23). 

From (3.20) we get  

        1 , , ,g x R s ss h ss                                             (3.24) 

if g  is increasing (decreasing).As     , , ,h s w ss     for ,a s b   we have 

         1 , , , , , ,h s w s g x R s hs s s        
                         (3.25) 

if  , ,•w s t and g  are monotone in the same (opposite) sense. In additional, using 

(3.23) leads us to   

       , , , ,  ,   ,R s h s s R s h s a s                                   (3.26) 

 if (i)   ,•R s  and  , ,•w s t  are monotonic in the same ((ii)opposite) sense.  Therefore  

           1 1, , , ,   ,x R s h s s g x R sg s h ss             

 on a s    if (i’): g  is an increasing function and (i) or g  is a decreasing function 

and (ii) ((ii’) g  is an increasing function and (ii) or g  is a decreasing function and 

(i)). Then this implies that 

     
       

1

1

, , , ,

                           , , , , ,

w s g x R s h s s

w s

s

sg x R s h s



 





  

    

(3.27) 
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if (i”):   , ,•w s t  is an increasing function and (i’) or  , ,•w s t  is a decreasing 

function and (ii’) ((ii”):  , ,•w s t  is an increasing function and (ii’) or  , ,•w s t  is a 

decreasing function and (i’)). Joining this and (3.25), gives us that to, if  , ,•w s t  and

 ,•R s are monotonic in the same sense, then  

         1, , ,   , ,    ,   , h s w s g x R s hs s a s b            
  (3.28) 

If  , ,•w s t  and g are monotone with same (opposite) sense. 

Since  , 0h a   , and from [34] leads us to, if  , ,•w s t  and  ,•R s are monotonicin 

the same sense and if  , ,s a   is the extreme solution of (3.19) as mentioned, then  

      1,       , ,    for             , h s s a a s T b        

which we get in particular that this hold when s  .  Since is a randomly chosen 

element from the interval  1, ,a b  it follows that 

       1,  on    ,h s s a bs                    (3.29) 

provided that (I):  , ,•w s t  and g are monotonicin the same sense ((II):  , ,•w s t  and

g are monotonicin the  opposite sense).  

From (3.23) and (3.26), it follows on 1,a b  that 

       , , ,  R s h s s R s s    

if (I’):  ,•R s is an increasing function and (I) or  ,•R s  is a decreasing function and 

(II), ((II’):  ,•R s  is an increasing function and (II) or  ,•R s is a decreasing 

function and (I)). Now, if (I”): g  is an increasing function and (I’) or g  is a 

decreasing function and (II’) ((II”): g  is an increasing function and (I’) or g  is a 
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decreasing function and (II’) ((II”): g  is an increasing function and (II’) or g  is a 

decreasing function and (I’)) then  

           1 1  ,  ,            ,     .x R s h s s gg s sx R s s          
  

From the different cases, we can conclude that if  •, ,w t  and  ,•R s  are monotone 

in the same sense and  , ,•w s t  also  ,•R s  are monotone in the same (opposite) 

sense, then  

           1 1, , ,g sx R s h s s g x Rs s s          
                        (3.30) 

on 1,a b .The conclusion (3.22) now follows in cases (1) or (2) from (3.24) and 

(3.19).  

Similarly we can  prove the following theorem. 

Theorem 3.25(see [33]) Addition to the hypotheses of last theorem, assume    

       
 

  ,   ,  ,   ,    
a

s

g x R s w s t dt s Is s t 
 

   
 
  

and that  •, ,w t   and  ,•R s are monotone in the opposite sense. Suppose

 , ,,s s a  where  , ,s a   is the maximal (minimal) solution of problem  (3.21) 

and assume that  , ,•w s t  and g  are monotone with opposite (same) sense. Then  

         1 

1,    on     ,  s s sg x R s a b        

provided that conditions (1) or (2) of Theorem 3.24 hold. 

Remark If  00, ,K s  then 0w  holds (since  ,h s s K ), so by (3.19) h  can 

be replaced with 0 h   .  
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Theorem 3.26 (see [27]) Consider ,   ,  x y  and z to be continuous non-negative 

functions on  ,I a b and ,  g v  are continuous non-negative mappings on    with g

strictly increasing and v  non-decreasing. Furthermore, assume that  ,s t is 

continuous and non-negative on   , : ,s t a t s b      and  ,W s   is continuous 

and nonnegative on ,I   with  ,•W s  non-decreasing on  . Define 

( ) max ( ),  and ( , )  max ( , ),  for .
a t s t s

Z s z t s t t a t s b

 

   
     

 

If  

             
 

, , ,   ,
a

s

g x y v z s t W t dt s Is s s s t  
 

    
 

                    (3.31) 

then 

1

1 0( ) [ ( ) ( ) ( ( , ( )))],    ,s g x s y s v s Z s s I                       (3.32) 

where      1 , , , ,az z as s s    with   , , as b z  is the maximal  

solution on 0[ , ]I a b  of 

1

0( , ) ( , [ ( ) ( ) ( )]),     ( ) ( ).b s W s g x s y s v a z a        

Now  consider the following inequality of Gollwitzer[20] 

      1( ) ( , ),     ,  .

s

a

s x f s t f dt s It a b       

Using Theorem 3.24 with:  
1( ) ,  ( , ) ( ),g R s h f h   

   , ,   ( ) ( ),  ( )  and  W s t t f f J J       is an interval defined such that   JI  . 

The comparison equation is 

      1 ,       0f x fs a        .                                 (3.33) 

From Theorem 3.24 we have  
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1

1( ) ( ( )),   ,s x f s a s b                                       (3.34) 

with ( )s being the unique solution of the problem (3.33) on the interval 1[ , ]a b , if we 

define now the function F as 

 
 

 
1

0

 ,              ,
 

d
F f J K

f x f







  
  

  

then from (3.34) we get 

  1 1    ,     ,     

s

a

x f dt a ss F b  
  

     
   

                        (3.35) 

where  

 1 sup :     .

s

a

s I d Fb t K
 

   
 

  

Consider  and   be continuous mapping on the interval [ , ]I a b with 0  , and 

assume the mapping f be continuous and monotone function in the interval J such 

that   II  and 0f   on J except perhaps at an endpoint of J . Let choose v be 

continuous and monotone on an interval K such that 0 K , and assume that ,x y  are 

constantssuch that   0   for   ,  x v J h K yh h    . 

If the mappings f and v are monotonic in the same sense and 

      , ,  ,

s

a

x v s t d If t t ss  
 

   
 
  

then 

  1

1,     ,

s

a

x v F dt a s bs 
  

     
   

  

where  
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 0

  ,         
 

d
F K

f x v







 

  
  

and 

 1 sup :  .

s

a

b s I dt F K
 

   
 

  

Theorem 3.27(see [41]) Assume that the functions ( ),  ( ),  ( ),  ( ) and ( )s x s y s w s z s  

are non-negative, real and continuous defined on   such that for s  ,  

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

s s t

s x s y s w t t dt w t y t z v v dv dt  
  

     
  

    

Then on the same interval we have 

       

             

0

0

0

0

( ) ( ) ( )exp ( ) ( )

           

(

  .

)

s

s

t

t

x y

x r w r z r exp y w z dv dr

s s s w t x t y t y r w r z r dr

v v v dt


   

     
 

 
       

 





 





 

 

 

Theorem 3.28(see [18]) Assume    0,  0,  ( , ) 0  and  ( , , ) 0sv u h s r H ss r x   

for  s r x    and 1 2 30,  0 and  0     be a constants not all zero. If 

         

   

1 2

3

,

                                              , , , 

s t

trs

v u vs t t h t r v r dr dt

H t r x v x dtdrds

 



 



 
   

 



 



                  (3.36) 

 

then for s   
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1 2

3

exp ,

                     , ,     .

r

s t

s t

v u h t r dr dt

H t r x dx

s t

dr dt

 

  






  

   
  


 



 



                                     (3.37) 

Proof Suppose the right hand side of (3.36) be denoted by ( )s . 

Then ( ) ( ) for t s t s   since all termsare nonnegative, we get 

 

 
 

 

 

   

 

   

 

     

2 2

2 2 3

,      ,  ,   
   

   

             , , ,   .

s s

s s r

rb v h s r v r H s r x v x
dr dxdr

b b b b

h s r dr H s r x dx

s s
u s

s s s s

u s dr

 



 

  


  

  

 

 

 

Integrationfroma  to t we getg 

 

     

1

2 3

0

     

log log

    ,   , , .

b rt s t

b

u h t r drdt H t r x dx

s

t drdt
   



 



 
   

 
  

 

Writing this in terms of ( )b s and from   ( )v s b s complete the proof. 

Theorem 3.29 (see [3])Assume ( ) 0,s   on 0,s  and satisfy the inequality 

         
0 0 0

  , , , ,

s s t

s s s

s s t dt F s t r drdst r         

Where  ,s t  and ( , , )F s t r are continuously differentiable non-negative  

mappings for 0,  and 0s t r s     . Then 

   
 

 
 

0 0 0 0

, , ,
exp , , , .

s tt s

s s s s

t r F t r
t t F t ts r dr d dr dt

t t
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Theorem 3.30(see [18]) Assume ( ) 0, s  ( ) 0,  ( ) 0x s y s  and ( , ) 0s r   be 

continuous functions for r s   , and assume 1 2 3,  and    are all non-negative.  If 

for [ , )s   , 

           1 2 3 , ,

s t

x y t r x r drd ts s t t t d
 

    
   

     
   

   

then for [ , ),s    

       

   

       

1 2 3

1 3

3

( ) ( ) exp   ,

                 ,  

                exp , .

s t

s t

s

t

t t

t

s x s y x t r x r dr dt

y t r dr

y x r x r dr d dt







 



    

 

  



  

   
     

    

 
  

 

   
    

     

 

 

 

 

Theorem 3.31 (see [51]) Assume that  ,( 0) hs C  is non-negative and suppose 

that    0,q s hC is positive and non-decreasing. Let  , ,  1,2,. . , ,0 . n s t n mg    be 

continuous functions on   0, 0,h h , and non-negative in .s  If for [0, )s h  

           
0 1

1 1 2 1 2 1 1

0 0 0

, , .  .  .  ,  .  .  .
m

m

s ss

m m ms s s s sq g s s s s g m ds ds 


      

then  

 

        ,   [0, ),q V ss s hs    

where ( ) ( , )iV s U s s  and ( , )iU s  is defined by 

   1

10

 , exp ,

s s

j

js g t dtU  
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1 1

1 1

10

,
, , 1 , ,

,

k

K i k

i

s

k i

k

U
U

t
s G s g s dt

sg
  







   

 

  
  

  
  

     
1

10

, exp , , .
n

j

s

n

j

ns g g dG t t t  




   
   

   
  

Remark Considering the particular case when 2n  in the previous theorem leads us 

to that s J   

     

     

1

0

1 1 2

0 0

exp ,

                     1 , exp 2 , , . 

s

s t

q g s t dt

g s t g t r g t r dr dt

s s
 

  
 

   
       
   



 

 

From the last theorems we have took linear inequalities. 

Theorem 3.32(see [40], [38]) Assume that    ,  ( ) and   s x s sy are continuous, real 

and non-negative mappings on [0, ) such that 

     

     

0

0

0 0

                ,   [0, ),    0  1  ,

s

s t

q

x dt

x y

s t t

t r r dr dt s q

  



 

 
     

 



 

 

where 0 0  is constant. Then for [0, )s   

     

       

0

0 0

1

1
1

0

0 0

exp

        1 exp 1 . 

s t

t r q
q

x x r dr

q y r

s t

vq x dv dr dt
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Theorem 3.33(see [40], [38])Assume ( ) 0,  ( ) ,  ( ) 0s x s y s    and ( ) 0z s  be 

continuous on such that for [0, )s   

               0

0 00

,   0  1 

s t

q

r

s t t v v v vx x r y z dv dr dt q    
  

        
  

    

where 0 0  is constant. Then for [0, )s   

          

          

0 0

0 0 0

1

1
1

0

0 0

exp

        1 exp 1 .

s r

r r p
q

t

x x r x y dv

q z q x y du dv dt

s t v v

v u u










  
     

 


    

         
    



  

 

 

Theorem 3.34(see [54]) Assume        ,  ,  , ,   ,nx g s t f ts ss  and  , ,nh s t

1  ,  . . . ,n m be non-negative continuous mappings defined on [0, )J h and J J .  

Let ( )x s be non-decreasing and      , ,  ,   ,n ng s t f s t and h s t  be non-decreasing in s.  

If 0 1q   and 

             
10 0 0

  ,   , , ,

s s t

n

m
q

n nx g s t dt f s t h s r r dr dts s t  


 
    

 
    

then   

1) for 0 1q  and s J  we have 

1

1
1

1 0

( )  [ ( )  ( )] (1 ) ( )  ( ) ( , )      

sm q
q

n n

n

s x s G s q F s G s h s t dt






 
   
 

   

 2) for 1  and  q s J   we have 

           
10

  exp  ,    , ,

s

n

m

n nx g s t F G hs s ss ds t t


  
   

  
  

where 
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0

exp ,

s

G g s dts t   

also 

   
0

, ,   1  ,2, . . . ,  .

s

n nf s t dt n mF s    

Theorem 3.35 (see [39], [37]) Assume that ( ),  ( ) and  ( )s x s y s are continuous and 

non-negative mappings on [ , ],J    and suppose that   0f v   is continuous, 

sub-additive and strictly increasing function for 0v  and  0 0f  . If for s J  

             ,

s t

x ys s t t y r f r dr dt
 

  
 

   
 

   

then for 0s J  we have 

            

             1     ,

t

s t

a

x y y r f x r dr dt

y F F y r x r y f x dv dr

s s t t

t v y r rv d dt



 



 

 



 
   

 

  
      

  

 

  

 

where 

 
  

0

0,       0,

v

v

dt
F v v

t tf
v   

  

and 

             0  [ , ] .

s

s F F y x y r f x r dr dt y dJ t t t t



 

 
   

        
   

 ∶  

Theorem 3.36(see [39], [37]) Assume that ( ),  ( ),  ( ),  ( )s x s y s z s  and ( )s are 

continuous mappings on [ , ]J   and   0g v   is strictly increasing, continuous, 
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sub-multiplicative, and sub-additive mapping for 0v   , with  0 0.g  If s J  we 

have  

                 
0

,

ss

s s s t tx y z g y r g r dr dtt


   
 

   
 
   

then for 0s J  we also have 

         

         

1(  

                            ,

s

t

x y b z g y Fs s s

F

t t

b g y r z r r dr dt












  


  
    

  





 

where 

           ,

t

b z g x y r g x r dr dtt t t



 


 

  
 

   

 
 

0

0,      0, 
 

v

v

dt
F v v

g
v

t
    

and  

           0 [ , ] :   .s F F g y r z r rb dJ r





  
  

      
  

  

Theorem 3.37 (see [39], [37])Suppose that ,  ,  ,  ,   and x y z g  are the functions 

that satisfy the hypotheses of the last theorem. If for s J  we have 

          

         

1   

                          ,

s

s t

x y g z g ds s s t t

z

t

t g y r g r d tt r d



 

 

 

 

 
  




 








 

 

then we also have for s J  
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1  ( )  

           exp    

           exp   .

s

r

t

a

x y s g z g x g y

g y r z r r dr g x r z r r

g y z d

s s t t t

v d tv r dv v











 






  


  
     

 

 
     

  



 



 

Theorem 3.38(see [39], [37])Assuming that the mappings is defined as in Theorem 

3.36, for ,t s     

we have 

                 1        ,

s s s

t t r

y g z r g r dr z r u g u ds t s u dr    
  

     
  

    

then for the same range of values we have 

       1

1

1

                        ( ) exp ( ( ) ( ( )) ( )) .

s s

t r

g g y

z r z u g y s u du dr

s t s 







 

 
   

  
 

 

Theorem 3.39 (see [10]) Suppose that the mappings    ,  s sx and  ,s t  are non-

negative for 0 t s    and  u t is positive, non-decreasing and continuous for 0t  . 

If 

           ,

s r

x r u r r t u ds t t dr
 

    
 

   
 
   

       ,

s

dr su


      

where 0   is constant, then for  ,s    we have 
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       , .

 

rs s
dy

x r r t dt dr
u y

L s




 


 

   
 

    

Proof  From the hypotheses, it follows that 

( ) ( ( ))  ( ( ))
    ( )       ( ,  )       ( )  ( ,  )  .

( ( ))  ( ( ))  ( ( )) 

s s
s u s u t

x t s t dt x s s t dt
u s u s u s

 

  
 

  


      

Apply integration operator to both sides we obtain the result.  

Theorem 3.40 (see [46]) Let 

1)   0u   and continuous non-decreasing mapping on 0, ; 

2)  
 

 
0

0,  (0 ,  0,
    

d
R

t

t

u





       is fixed), 

and 1R   is the inverse of R ; 

3)     0, ;s C    

4)    0M s  is a non-decreasing mapping. 

If 

       , 

s

M Pu ds rs


     

with the operator P  defined in Theorem 3.39, then  

      1    s sR R M L s      

where  L s is also defined in the previous Theorem. 

ProofSuppose     is fixed. Then for  ,s    we get   

     
0

,

s

M Pu drs      
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since      .M sM   On the basis of in Theorem 3.39, we have  

 1   ( ) [ ( ) ( )] for  .s R R M L s s      

Setting s  we get the result. 
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Chapter 4 

GRONWALL TYPE INEQUALITY AND ITS 

APPLICATION TO A FRACTIONAL INTEGRAL 

EQUATIONS 

 

In recent years, an increasing number of Gronwall inequality generalizations have 

been discovered to address difficulties encountered in differential equations. Among 

these generalizations, we focus on the works of Ye, Gao and Qian, Gong, Li, the 

generalized Gronwall inequality with Riemann-Liouville fractional derivative are 

presented as follows.In thischapter we will show that fractional Gronwall inequality 

is useful in investigating the dependence of the solution on the order and the initial 

condition to a certain fractional differential equation with Riemann–Liouville 

fractional derivatives. 

4.1 Fractional Integral Inequality  

In this section, we wish to establish an integral inequality which can be used in a 

fractional differential equation.   

Theorem 4.1 (see [42]) Assume     0,   sx  is a non-negative function locally 

integrable on0 s T   some T    and   0f s   is a non-decreasing continuous 

function well-defined on 0 s T  ,    f s M   and let  s  be non-negative and 

locally integrable on 0 s T  by the way of 

       1

0

       ,( )

s

s s s sf t dtx t     
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on this interval then 

   
    

 
10

1      0 .( ) ,   
( )

n
s

n

n
f s

s s s x t
n

sdx t t










 
 


  

 






  

Proof 

Suppose      1

0

(  0) , ,

s

s s s uu t tB f dt s    for locally integrable functions 𝑢. 

Then 

     s x s sB    

implies 

1

0

( ) ( ) ( ).
n

k n

k

s B x s B s 




   

Let’s show that 

    
 

1

0

( ) ( ) ( )

n

n

s

n
f s

B s s t d
n

t t



 


 

                        (4.1) 

 and  0 as   for each  [0, ).nB n s Ts     

Clearly for n=1 the relative (4.1) is true. 

Let (4.1) be true for some n = k, then we have to prove that it is true for n = k+1. 

Then the induction hypothesis equals 

      
    

 
 1 1 1

0 0

 
   .

 
( ) ( )

k
s t

k k kB B B t
f t

s s f s T dT dt
k

s t T 





   
 
   

 


 

   

Since ( )f s  is non-decreasing, then 

    
  
 

 1 1 1

0 0

1

    ( .) ( )

k
s

k
t

k kB t T dT dt
k

s f s s t T 



 

  
 
  

 
 

  
 

Via exchanging the order of integration, we get 
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1
( 1) 1

0

( ( ) ( ))
( ) ( ) ,

(( 1) )

s k
kf s

s t t dt
k







 

 
   

where the integral  

1

1 1 1 1 1

0

( 1) 1

( ) ( ) ( ) (1 )

                                   ( ) ( , )

s

k k k

T

k

s t s T dt s T z z dz

s T B k

     

  

     

 

    

 

 
 

( 1) 1( ) ( )
   ( )

(( 1) )

kk
s T

k

 



  
 
 

 

is calculated by the substitution ( )t T z s T    and the definition of the beta 

function, the inequality (4.1) proved 

since
  

 0

1( ) ( ) ( ) 0  as  
 

 

s

n

n

nB s s t n
M

n
t dt





 




     for [0, )s  , 

we get the result.  

Corollary 4.1 Let 0,  0    and ( )x s  be a non-negative function locally 

integrable on 0  (some ),s T T     and suppose ( ) 0s  is locally integrable on 

0 ,s T   and satisfy 

1

0

( ) ( ) ( ) ( )

s

s x s s t t dt      

on this interval; then 

1

10

( ( ))
( ) ( ) ( ) ( ) ,   0

(
.   

)

s n
n

n

s x s s t x d Tt t s
n

 









 
    

 
  



52 
 

Corollary 2 Under the hypothesis of Theorem 4.1 let ( )x s be a non-decreasing 

function on    0, .T Then 

          ( ),x E fs s s s





   

 
0

where is the Mittag- Leffler function defined by     .
( 1)

k

k

z
E E z

k
 








 

  

Proof  The hypothesis imply 

1

0 0

( ( ) ( )) ( ( ) ( ) )
( )  ( ) 1 ( )   ( ) 

( ) ( 1)

                                                                        ( ) ( ( ) ( ) ).

s n n
n

n no

f t f s s
s x s s t dt x s

n n

x s E f s s








 


 



 


 

  
    

   

 

 

 

The proof is complete. 

4.2 Application  

Consider the following Riemann-Liouville fractional derivatives problem with initial 

value problem  

    , ,D x s f s x s                                                            (4.2) 

 1

0 0 ,sD x s x

                                                              (4.3) 

with  0 1,  0 ,   : 0,s f            and D  stand for Riemann –

Liouville derivative operator. 

The existence and uniqueness of the initial value problem are studied in what follow. 

The problem stated by the equations (4.2)-(4.3) is first reduced into fractional 

integral equation 

 
   

    
11

0

1
, ,

s

x s s s T f T x T dT


 

  
                                  (4.4) 
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this is called Volterra integral equation of order .  

Obviously, the initial value problem (4.2)-(4.3) and equation (4.4) are equivalent. 

Theorem 4.2: (see [44]) Let 0   and 0   such that 0 1      . Consider 

f  to be a Lipschitz continuous mapping with respect to second variable. 

   , ,f s x f s z L x z    

with L being a constant independent of ,  s x and z in  . For0 s h    , assuming 

that the solutions of initial value problems (4.2)-(4.3) are x and z and 

    ,D z s f s z s   ,                                                    (4.5) 

 1

0tD z s   

   ,                                                        (4.6) 

the following holds for 0 s h   

     
 

 
 

 

  
 

1
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,

n ns

n

s tL
z s x s A s A t dt

n

 

 
  

 




   
            

  

where 

 
         

     

1 1 .
1

1 1
                                                                    .

s s
A s s s f

s
f

  
  

 

 

      

    


  



   
      

 
  

    

 

and 

 
0
max ,

s h
f f s x

 
 . 

Proof: Initial value problem stated by (4.2)-(4.3) and (4.5)-(4.6) have solutions given 

by 
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and 
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0

1
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s

z s s s T f T x T dT
  

   

    
     , 

it follows that 

   
   

 
    

 
    

 
    

 
    

 
    

1 1
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0 0

1 1
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1 1
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1 1
                   + , ,

1 1
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where  
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s s
A s s s f
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using theorem 4.1 leads us to 
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z s x s A s A t dt
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The theorem is therefore proved. 

Corollary 3 Based on the hypothesis of theorem 4.2, if 0  , it follows that 

     1

,z s x s s E Ls 

      , 



55 
 

for 0 s h  , with the Mittag-Leffer function ,E   defined 

 
 

,

0

,  0
k

k
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E x
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Proof if 0  , then 
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By Theorem 4.2, we have  
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with 0 .s h   

The corollary is then proved. 

Theorem 4.3: (see [53]) Suppose  , ,qw v c J   be such that  

 
 

   
1

,
p pa

s

w
w s s a D f s w

p

   


 

and 

 
 

   
1

,
p pa

s

v
v s s a D f s v

p

   


 

with     
1 p

a s aw p w s s a


   and     
1 p

a s av p v s s a


   . If any of the 

above inequalities come to be strict, and if a aw v  thenit follows that    w s v s  on

.J  
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Theorem 4.4 (see [12])Consider as defined in the previous theorem ,w v with none 

of them is having strict inequality. Let’s assume also that the right-sided Lipschitz 

condition is satisfied by f . 

     , ,f s y f s x L y x   , .y x  

If ,a aw v  then    w s v s on J .  

Proof Consider 0  and let a function w  be defined as      w s w s s   , 

s J , with 

      1

, 2
p p

p ps s a E L s a


    

note that  
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furthermore, by taking    
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 and applying the Lipschitz 

condition on f , we get what follows 
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In the previous set of relations, the inequalities come from that
 p


 


. We also 

have that 

        1

, 2 .
q q p

p pw s s a w s s a E L s a 


      

The previous function is continuous on J , since  ,qw c J  . Therefore 

 ,qw c J   and using the Theorem 4.3,     ,  w s v s s J    . Now if 0  , we 

then have on both sides     ,  ,w s v s s J    this finishes the proof.  

What will follow now is the solving of linear fractional integral equation, which has 

variable coefficients. Combined with theorem 4.3, this equation give us the Gronwall 

type inequality. 

Theorem 4.5 (see [28])Let  ,x c J  , The fractional integral equation  
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with   
q

y s s a which converges uniformly on J and the operator x  is defined by 

   .p

x sD x s s    

Proof The following corollaries are required to prove the previous theorem 
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Corollary 4If the function  x s is identically equals to a constant  , then  
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Proof Induction is used for the proof.  

The equation (4.9) is true for 1n  since  
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Consider this to be the basis step and suppose that the equation (4.9) is true up to an 

index 1k  . It follows that  
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it follows by induction that the equation (4.9) is true 1.n   

Corollary 5 Let 0   be defined such that   ,  .x s s J    Then  
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                                               (4.10) 

Proof Induction is used for the proof.  

The equation (4.10) is true for n=1 since  
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Consider this to be the basis step and suppose that the equation (4.10) is true up to an 

index 1k  . It follows that  
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It follows by induction that the equation (4.10) is true 1n  . What follows now is 

the rest of the proof of the theorem 4.5, 

let the sequence of functions  
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with  
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. Our aim is to show that    p

ny s s a is uniformly 

convergent on J . The proof is done by induction. Actually, by induction, we can 

show that  
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First of all, let consider, 
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The equation (4.12) is true for 1n  , taking this as the basis step of the induction and 

assuming that the equation (4.12) is always true up to a certain 1k  . Then 



60 
 

   
 

     

 
 

 
   

 
 

 
 

   
     

 
 

 
 

1

1 0

1 1 1

0

1 1 10

0

1 10 1

0

1
 

1
             =

1
            =

            =

   

s p

k k
a

ksp p pja a
x

a
j

k sp p pja a
x x

a
j

k
p pja a

x x

j

y s y s s t x t y t dt
p

y y
s a s t x t t a dt

a p p

y y
s a s t p t t a dt

a p p

y y
s a s a

a p



 

 





  



  



 



  


   
  

   
  

  
 





 



 
 

1
1

0

         = .
k

pja
x

j

y
s a

p












 

By induction, we are leading to the conclusion that the equation (4.12) is true 1n 

and .s J   Our aim is now to show that 
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uniformly on .J First, note that  ,x c J  , therefore, one may choose  0,   

such a way that   ,  x s s J   . Using the corollary 4 and 5 it follows that 1n 

and s J  , 
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also note that 
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The previous equation converges. It follows by the Wieirstrass M-Test that 
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  is uniformly convergent on .J  
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Let’s finally show that the considered y satisfies the equation (4.7) 
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Then we get the proof. 

Remark : To establish the previous result, the requirement is that  x s  is a 

continuous function. However, to prove our next result, the requirement is that  x s  

is nonnegative. And finally were leading to the following Gronwall type inequality. 

Theorem 4.6 (see [28])Let  ,qu c J    and ( , )qx c J   be such that  
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The proof of this theorem 4.6 is directly established using Theorems 4.4 and 4.5. 

Actually, if the theorem 4.6 is considered with the initial condition
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 is 

identically constant  say au . In which case, when the integer 1p  , the 

Theorem4.6becomes 
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which is the Gronwall Inequality well known. 

Another application of Gronwall Inequality 

Theorem 4.7 (see[28]) Let  0 ,f C   be a function such that  ,f s y M on 0R  

where 
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Suppose that f  is Lipschitz. Then we have the following successive approximations 
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exist on  ,I a a   , with 
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. 

Theorem 4.8 Let  ,f c D  , with D  being a domain,  D   . Assuming 

that the function f is a Lipschitz function on the domain D  with respect to y and 

with Lipchitz constant L . Let  , aa y D . Then 0  , 0  all constants such 

that  a ax B y  , the equation (4.4) defined by
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 has a unique solution  , , ay s a x  on the 

interval  ,I a a   .  

Theorem 4.9 (see [29])Assuming that all the assumptions of the previous theorem  

are verified. Then 0  and 0  such that  , , ay s a x is continuous with respect 

to  a ax B y based on the following conditions : If  , a ax x B y then  , ,y s a x  

and  , , ay s a x  are solutions of the equation (4.4) and also 
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uniformly on  ,I a a   . 

Proof Based on theorem 4.8, it follows that 
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are the unique solutions of the equation (4.4) that exist on the interval  , .I a a   If 

the Lipchitz condition is applied on f , it follows that 
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by the theorem 4.8, it follows that 
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Therefore s I  , 
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which leads us to 
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 uniformly on  ,I a a   .  

Theorem 4.10 (see [36]) Let  ,f C D  , with D  being a domain,  D   . 

Assuming that the function f is a Lipschitz function on the domain D  with respect 

to y and with Lipchitz constant L . Let  , aa y D . Then 0  , 0  and

0  all constantssuch taht  0 ,s a a     and  0 ax B y  , the equation (4.4) 

has a unique solution on the interval  , .I a a    

Theorem 4.11 (see [53]) Assuming that all the assumptions of the previous theorem 

are verified. Then 0  , 0  and 0  such that  , , ay s a x is continuous with 

respect to      0 0, , as x a a B y    based on the following conditions: 

If    0 0, , ,T x s x  ,then 
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Proof Based on the theorem 4.10, it follows that  
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and 
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   uniformly on 
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Chapter 5 

CONCLUSION 

In this thesis, we have studied  generalizations of the Gronwall inequality using 

several mathematical techniques. In addition, we have listed the initial value 

problems and studied the uniqueness of solutions to these problems by applying the 

generalized Gronwall inequalities. 
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