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ABSTRACT

In this thesis, the 2nd, 3rd and 4th order multiplicative Runge-Kutta Methods are de-

veloped in analogy to the classical Runge-Kutta Method. The error analysis is only

carried out for the 4th order multiplicative Runge-Kutta method based on the conver-

gence and stability analysis. The convergence behaviour of the developed multiplica-

tive Runge-Kutta method is analysed by examining examples of initial value problems

with closed form solutions, as well as problems without closed form solutions. The

obtained results are also compared to the results obtained from the solutions of the

classical Runge-Kutta method for the same examples. The error analysis shows that

the solutions of the multiplicative Runge-Kutta methods give better results especially

when the solution has an exponential nature. The modified quadratic Lorenz attractor

is developed to examine the applicability of the proposed multiplicative Runge-Kutta

method on the chaotic systems. The chaotic system is analysed numerically for its

chaotic behaviour. Finally, the chaotic system is transformed into the corresponding

system in terms of multiplicative calculus and the analysis are also done based on the

rules of the multiplicative calculus. The results of the analysis show that the multi-

plicative Runge-Kutta method is also applicable to multiplicative chaotic systems.

Keywords: Multiplicative calculus, complex multiplicative calculus, Runge-Kutta,

differential equations, numerical approximation, dynamical systems.
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ÖZ

Bu tezde, 2. ,3. ve 4. derece Runge-Kutta metodları temelinde çarpımsal analiz kural-

ları kullanılarak 2. ,3. ve 4. dereceden çarpımsal Runge-Kutta yöntemleri bulunmuş

ve incelenmiştir. Bulunan yöntemlerin hata analizleri, yakınsaklık ve istikrarlılık anal-

izleri temel alınarak yapılmıştır. Bulunan metodların yakınsaklık özellikleri, çözüm-

leri bilinen ve bilinmeyen diferansiyel denklemler çözülerek gösterilmiştir. Çözümleri

bilinen adi diferansiyel denklemler, çarpımsal Runge-Kutta ve Runge-Kutta yöntem-

leri kullanılarak çözülmüş ve hata analizleri yapılmıştır. Bu sonuçlara göre, özellikle

çözümü eksponensiyel olan denklemlerde, çarpımsal Runge-Kutta metodunun bilinen

Runge-Kutta metoduna göre daha iyi sonuçlar verdiği görülmüştür. Son olarak da

çarpımsal Runge-Kutta metodlarının karmaşık sistemler üzerinde uygulanabildiğini

göstermek için karmaşık bir sistem bulunmuş ve numerik olarak incelenmiştir. Daha

sonra bulunan sistem çarpımsal analiz kurallarına göre düzenlenmiş ve çarpımsal Runge-

Kutta yöntemleri kullanılarak çözülmüştür. Elde edilen sonuçlar bulunan yöntemlerin

karmaşık sistemler üzerinde de kullanılabileceğini göstermiştir.

Anahtar Kelimeler: Çarpımsal analiz, kompleks çarpımsal analiz, Runge-Kutta, difer-

ansiyel denklemler, numerik yakınsama, dinamik sistemler.
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Chapter 1

INTRODUCTION

Micheal Grossman and Robert Katz can be considered as the first inventors of Multi-

plicative calculus. In 1972, they have defined nine different Non-Newtonian calculi in

their book, called the Non-Newtonian Calculi [15]. After that, the bigeometric mul-

tiplicative calculus was elaborated by Micheal Grossman in [14]. Micheal Grossman

was not the only one who emphasized bigeometric multiplicative calculus. Cordova-

Lepe has also proposed the bigeometric multiplicative calculus by [10] using the name

proportional calculus. Although, Volterra and Hostinsky proposed a kind of flavor of

multiplicative calculus in [35], we can not date the invention of multiplicative calculus

back to 1938. After many years, Bashirov et al presented a mathematical description

of the geometric multiplicative calculus in [7]. By this research, Bashirov et al give a

start to many studies in the field of multiplicative calculus. The multiplicative numer-

ical approximation methods in [22, 23, 28, 21, 26, 24, 27, 8] have been proposed and

discussed after his studies. Apart from the multiplicative Runge-Kutta Method [26],

also the multiplicative finite difference method was invented by Riza et al in [28], and

the multiplicative Adams Bashforth-Moulton methods where developed by Mısırlı and

Gürefe [21]. Furthermore, multiplicative calculus has been used in biomedical image

analysis [13] and modelling with differential equations [6]. As an example of the mul-

tiplicative numerical approximation methods, Aniszewska developed the bigeometric

Runge-Kutta method for applications in dynamic systems in [1]. Riza and Eminağa
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also proposed the bigeometric Runge-Kutta method, based on the bigeometric Taylor

theorem derived in [27].

The fact that multiplicative calculus can only be applied to purely positive-valued func-

tions or purely negative-valued functions of real variable can be considered as a dis-

advantage. To overcome this restriction, multiplicative calculus was extended to the

complex domain. Uzer presented the first studies of complex multiplicative calculus

in [33]. Then, Bashirov and Riza gave a complete mathematical description of the

complex geometric multiplicative calculus in [5, 4]. The fact that the derivative is a

local property, suggests the extension to the complex domain. Thus, by transforming

the functions into complex valued functions of real variable we can remove the restric-

tion of using purely positive valued ore negative valued functions. Since the Cauchy

Riemann conditions will be trivial in this way, we can use the real and the imaginary

parts separate.

The basic definitions, theorems and rules of the multiplicative derivative, that will be

used in this thesis, can be listed as follows.

The multiplicative derivative is defined by the formula

lim
h−→0

(
f (x+h)

f (x)

)1/h

(1.0.1)

which shows us the number times that f (x) changes at the time moment x.

If f (x) is a positive function on A and its derivative at x exists, then the relation between

the classical and the multiplicative derivative can be written as

2



f ∗(x) = lim
h−→0

f (x+h)
f (x)

1/h

= lim
h−→0

(1+
f (x+h)− f (x)

f (x)
)

f (x)
f (x+h)− f (x) ·

f (x+h)− f (x)
h · 1

f (x)

= e
f ′(x)
f (x) = e(ln◦ f )

′
(x)

If c is a positive constant, f and g are *differentiable, h is differentiable functions,

some basic rules of *differentiation and the main theorems that will be used widely in

this study can be summarized as follows:

(c f )∗(x) = f ∗(x) (1.0.2)

( f g)∗(x) = f ∗(x)g∗(x) (1.0.3)(
f
g

)∗
(x) =

f ∗(x)
g∗(x)

(1.0.4)

( f h)∗(x) = f ∗(x)h(x) · f (x)h′(x) (1.0.5)

( f ◦h)∗(x) = f ∗(h(x))h′(x) (1.0.6)

Theorem 1.0.1 (Multiplicative Taylor’s Theorem for One Variable) Let A be an open

interval and let f : A→R be n+1 times *differentiable on A. Then for any x, x+h∈A,

there exists a number θ ∈ (0,1) such that

f (x+h) =
n

∏
m=0

( f ∗(m)(x))
hm
m! · ( f ∗(n+1)(x+θh))

hn+1
(n+1)!

Theorem 1.0.2 (Multiplicative Chain Rule) Let f be a function of two variables y

and z with continuous partial *derivatives. If y and z are differentiable functions on

(a,b) such that f (y(x),z(x)) is defined for every x ∈ (a,b), then

d∗ f (y(x),z(x))
dx

= f ∗y (y(x),z(x))
y′(x) f ∗z (y(x),z(x))

z′(x)
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Theorem 1.0.3 (Multiplicative Taylor’s Theorem for Two Variables) Let A be an open

subset of R2 . Assume that the function f : A→ R has all partial *derivatives of order

n+1 on A. Then for every (x,y), (x+h,y+k) ∈ A so that the line segment connecting

these two points belongs to A, there exists a number θ ∈ (0,1) such that,

f (x+h,y+ k) =
n

∏
m=0

m

∏
i=0

f ∗(m)

xiym−i(x,y)
hikm−i
i!(m−i)! ·

n+1

∏
i=0

f ∗(n+1)
xiyn+1−i(x+θh,y+θk)

hikn+1−i
i!(n+1−i)!

Based on the given rules, definitions and the theorems given above, the multiplicative

Runge-Kutta methods will be derived in chapter 2, in order to solve the multiplicative

initial value problems of the form:

y∗(x) = g(x,y), with y(x0) = y0 (1.0.7)

Based on the classical Runge-Kutta methods, the most widely used methods of order 2,

which can also be considered as the multiplicative Heun’s method, order 3, and order

4 are discussed for positive-valued functions of real variable. Then chapter 2 will be

ended by explaining how the positive valued functions of real variable can be extended

to complex valued functions of real variable. The solution for the break downs of the

multiplicative derivatives at the roots is also given in Section 2.4.

In chapter 3, the error analysis for the proposed method is presented. The error analysis

is based on the convergence and stability analysis which are applied in analogy to the

classical Runge-Kutta method as in [32]. The results of the analysis show that, the error

for the multiplicative Runge-Kutta method becomes smaller compared to the classical

Runge-Kutta method for the same step size.
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In order to show the applicability of the 4th order geometric multiplicative Runge-Kutta

Method, the proposed method is applied to various examples. In section 4.1, first order

multiplicative initial value problems are discussed. The first example is a multiplica-

tive initial value problem with a known closed form solution, that does not involve an

exponential or logarithmic function. The solutions of the multiplicative and the clas-

sical Runge-Kutta method are compared for a fixed step width h. The next example is

a multiplicative initial value problem, where the exact solution contains a logarithmic

function. To show the applicability of the proposed method in different fields, a bio-

logical example is given. Based on the Baranyi model for bacterial growth [3, 2] using

differential equations, the multiplicative Runge-Kutta method will be applied on the

bacterial growth in food modelled by Huang [18, 17, 16]. In section 4.2, a higher or-

der multiplicative initial value problem is solved. A second order multiplicative initial

value problem, with a well-known closed form solution, is used to compare the results

of the classical and the multiplicative Runge-Kutta methods. Since the same example

was also used in [28], the results of the multiplicative finite difference method and the

multiplicative Runge-Kutta method are also compared. Both comparisions show the

superiority of the multiplicative Runge-Kutta method.

In the last chapter, the applicability of the multiplicative Runge-Kutta methods on the

chaotic systems is analyzed. The first example is the Rössler attractor. Then a new

chaotic system called the Modified Quadratic Lorenz Attractor is defined based on

the chaotic Lorenz attractor. The new chaotic system is analyzed numerically for the

chaotic behaviour. Then, the new chaotic system is transformed to a multiplicative

chaotic system to show the applicability of the multiplicative Runge-Kutta methods on

5



the chaotic systems. Finally, we close with the conclusions in Chapter 6, summarising

all results.
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Chapter 2

MULTIPLICATIVE RUNGE-KUTTA METHODS FOR
REAL-VALUED FUNCTIONS OF REAL VARIABLE

One important family of the iterative methods for approximating the solutions of the

ordinary differential equations are the Runge-Kutta methods. These methods are used

to solve the differential equations of the form:

y′(x) = g(x,y), y(x0) = y0. (2.0.1)

In the following, the multiplicative Runge-Kutta methods will be derived, based on

the classical Runge-Kutta methods, in order to approximate the solutions of the multi-

plicative initial value problems of the form:

y∗(x) = g(x,y) with y(x0) = y0. (2.0.2)

2.1 2nd order Multiplicative Runge-Kutta Method (MRK2)

The 2nd order multiplicative Runge-Kutta method, known also as the Heun’s method,

can be derived explicitly in analogy to the 2nd order classical Runge-Kutta method by

making the following ansatz:

y(x+h) = y(x) ·gαh
0 ·g

βh
1 , (2.1.1)

where

g0 = g(x,y), (2.1.2)

g1 = g(x+ ph,y ·gqh
0 ). (2.1.3)
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The starting point is the Taylor expansion of y(x + h). By using the multiplicative

Taylor’s theorem as given in [7], the multiplicative Taylor expansion of y(x+h) up to

order 2 can be written as

y(x+h) = y(x) · y∗(x)h · y∗∗(x)h2/2 · ... (2.1.4)

Substitution of the multiplicative differential equation (2.0.2) in the Taylor expansion

yields

y(x+h) = y(x) ·g(x,y)h · y∗∗(x)h2/2 · ... (2.1.5)

On the other hand y∗∗(x) can also be written in terms of g(x,y) as:

y∗∗(x) = (y∗(x))∗ = (g(x,y))∗. (2.1.6)

Since y(x) is also a function depending on x, g(x,y(x))∗ can be calculated by using the

multiplicative chain rule as in [7]. According to that, g(x,y(x))∗ can be written as:

y∗∗(x)= g∗(x,y)=
d∗

dx∗
g(x,y)= g∗x(x,y)g

∗
y(x,y)

y′(x)= g∗x(x,y)g
∗
y(x,y)

y lng(x,y). (2.1.7)

Then by substituting (2.1.7) in equation (2.1.5) second order multiplicative Taylor ex-

pansion becomes:

y(x+h) = y(x) ·g(x,y)h ·
(

g∗x(x,y)g
∗
y(x,y)

y lng(x,y)
)h2/2

· ...

= y(x) ·g(x,y)h ·g∗x(x,y)h2/2g∗y(x,y)
y lng(x,y)h2/2 · ..., (2.1.8)

where g∗x(x,y) and g∗y(x,y) denotes the partial multiplicative derivatives with respect to

x and y respectively.

In order to find the constants α,β , p and q we need to compare the Taylor expansion

of equation (2.1.1) with the equation (2.1.8). Thus, the next step is to find the Taylor

expansion of (2.1.1). Since the power of (2.1.1) includes one h, we will expand g1 up

8



to order one, in order to compare the Taylor expansions. By using the multiplicative

chain rule, the Taylor expansion of g1 becomes

g1 = g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng0. (2.1.9)

Remembering that g0 = g(x,y), the Taylor expansion of g1 will be

g1 = g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng(x,y). (2.1.10)

Thus, by inserting (2.1.3) and (2.1.10) in (2.1.1), we obtain the Taylor expansion of the

2nd order Multiplicative Runge-Kutta method as

y(x+h) = y(x) ·g(x,y)αh ·
(

g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng(x,y)
)βh

. (2.1.11)

After rearranging the terms with respect to the orders of h, the Taylor expansion of

y(x+h) for the proposed method becomes

y(x+h) = y(x) ·g(x,y)(α+β )h ·g∗x(x,y)β ph2
·g∗y(x,y)y lng(x,y)βqh2

. (2.1.12)

Comparing the equations (2.1.8) and (2.1.12) for the powers of g(x,y) and its partial

derivatives results:

α +β = 1, (2.1.13)

β p =
1
2
, (2.1.14)

βq =
1
2
. (2.1.15)

Since the number of equations is less than the number of unknowns, we get infinitely

many solutions for the equations (2.1.13)-(2.1.15). Moreover, it is obvious that p = q

and α + β = 1, so that we can easily obtain the multiplicative Butcher Tableau in

analogy to the regular Butcher Tableau [9] as:

9



0

p q

α β

Among all possibilities, one possible choice of the parameters is:

α =
1
2
,β =

1
2
, p = 1, and q = 1. (2.1.16)

Thus, the choice of the parameters results in the 2nd order Multiplicative Runge-Kutta

method known also as the multiplicative Heun’s method as:

y(x+h) = y(x) ·g
h
2
0 ·g

h
2
1 , (2.1.17)

g0 = g(x,y), and (2.1.18)

g1 = g(x+h,y ·gh
0). (2.1.19)

The choice of the parameters can also be done differently depending on the problem,

to optimise the solutions.

2.2 3rd order Multiplicative Runge-Kutta Method (MRK3)

The 3rd order MRK-method can also be derived, in the same analogy of the 2nd order

MRK-method, to solve the multiplicative differential equation (2.0.2).

In order to derive the 3rd order Multiplicative Runge-Kutta method we make the fol-

lowing ansatz.

10



y(x+h) = y(x) ·gαh
0 ·g

βh
1 ·g

γh
2 , (2.2.1)

g0 = g(x,y), (2.2.2)

g1 = g(x+ ph,y ·gqh
0 ), (2.2.3)

g2 = g(x+ p1h,y ·gq1h
0 ·g

q2h
1 ). (2.2.4)

The starting point for the derivation of the 3rd order method is also the same with the

Heun’s method. The first step is to find the Taylor expansion of y(x+h) up to order 3

in h. Using the Taylor’s theorem as it is defined in [7], the Taylor expansion will be:

y(x+h) = y(x) · (y∗(x))h · (y∗∗(x))h2/2 · (y∗∗∗(x))h3/3! · ... (2.2.5)

Remembering that,

y∗(x) = g(x,y), (2.2.6)

y∗∗(x) = (y∗(x))∗ = (g(x,y))∗, (2.2.7)

y∗∗∗(x) = (y∗(x))∗∗ = (g(x,y))∗∗. (2.2.8)

Since y(x) is a function of x, in order to find the 2nd and 3rd multiplicative derivatives

of y(x) we will apply the multiplicative chain rule.

y∗∗(x) = g(x,y)∗ = g∗x(x,y) ·g∗y(x,y)y lng, (2.2.9)

y∗∗∗(x) = g(x,y)∗∗ =
d∗

dx
(g(x,y)∗)

=
d∗

dx

(
g∗x(x,y) ·g∗y(x,y)y lng

)
= g∗xx(x,y) ·g∗xy(x,y)

y lng ·g∗yx(x,y)
y lng ·

g∗yy(x,y)
(y lng)2

·g∗y(x,y)y(lng)2
. (2.2.10)
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In newtonian calculus, the partial derivatives are commutative. It can be easily shown

that, the partial multiplicative derivatives are also commutative in multiplicative calcu-

lus.

g∗xy(x,y) = ∂
∗
y (∂

∗
x g(x,y)) = ∂

∗
y exp

{
gx(x,y)
g(x,y)

}
= exp

{
∂y lnexp

{
gx(x,y)
g(x,y)

}}
=

= exp
{

∂y

{
gx(x,y)
g(x,y)

}}
= exp

{
gxy(x,y)g(x,y)−gy(x,y)gx(x,y)

g(x,y)2

}
, (2.2.11)

and

g∗yx(x,y) = ∂
∗
x (∂

∗
y g(x,y)) = ∂

∗
x exp

{
gy(x,y)
g(x,y)

}
= exp

{
∂x lnexp

{
gy(x,y)
g(x,y)

}}
=

= exp
{

∂x

{
gy(x,y)
g(x,y)

}}
= exp

{
gyx(x,y)g(x,y)−gx(x,y)gy(x,y)

g(x,y)2

}
. (2.2.12)

Using the commutativity property of the partial derivatives, it is clear that the multi-

plicative partial derivatives are also commutative. Thus the equation (2.2.10) can be

simplified to

y∗∗∗(x) = (g(x,y))∗∗

= g∗xx(x,y) ·g∗xy(x,y)
2y lng ·g∗yy(x,y)

(y lng)2
·g∗y(x,y)y(lng)2

. (2.2.13)

Then by substituting the corresponding partial multiplicative derivatives in equation

(2.2.5), the multiplicative Taylor expansion of order 3 can be written as:

y(x+h) = y(x) ·g(x,y)h · (g∗x(x,y) ·g∗y(x,y)y lng)h2/2 · (g∗xx(x,y) ·g∗xy(x,y)
2y lng·

·g∗yy(x,y)
(y lng)2

·g∗y(x,y)y(lng)2
)h3/3! · . . . (2.2.14)
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rewriting the terms results

y(x+h) = y(x) ·g(x,y)h ·g∗x(x,y)h2/2 ·g∗y(x,y)y lngh2/2 ·g∗xx(x,y)
h3/6 ·g∗xy(x,y)

y lngh3/3·

·g∗yy(x,y)
y2(lng)2h3/6 ·g∗y(x,y)y(lng)2h3/6 · . . . (2.2.15)

As we have found the multiplicative Taylor expansion of y(x+ h), the next step is to

find the Taylor expansion of the ansatz (2.2.1). In order to find its Taylor expansion,

we have to find the Taylor expansions of (2.2.3) and (2.2.4) and substitute in equation

(2.2.1).

The multiplicative Taylor expansion of g1 will be:

g1 = g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng ·g∗xx(x,y)
(ph)2/2 ·g∗xy(x,y)

pqy lngh2
·

·g∗yy(x,y)
(yq lng)2h2/2 ·g∗y(x,y)q2y(lng)2h2/2, (2.2.16)

and the multiplicative Taylor expansion g2 will be as follows:

g2 = g(x,y) ·g∗x(x,y)p1h ·g∗y(x,y)(y lngq1+y lng1q2)h ·g∗xx(x,y)
p2

1h2/2·

·g∗xy(x,y)
p1h(q1hy lng+q2hy lng1) ·g∗yy(x,y)

(q1y lng+q2y lng1)
2h2/2·

·g∗y(x,y)(q2
1y(lng)2+2q1q2y lng lng1+q2

2y(lng1)
2)h2/2. (2.2.17)

Since the expansion of g2 depends on both of the functions g and g1, in order to get

the expansion of g2 depending only the function g, the next step is to substitude the

Taylor expansion of g1 which is given in the equation (2.2.16) into the last expression.

As it can be seen from the equation (2.2.17) that, we need to substitude lng1 instead

13



of g1. Although the multiplicative Taylor expansions consists of multiplications of the

terms, because of the logarithm, the terms of lng1 can be written as the summations of

the terms. After a lengthy calculation, some of the terms will cancel and the simplified

form of the Taylor expansion of g2 can be written as

g2 = g(x,y) ·g∗x(x,y)p1h ·g∗y(x,y)(y lngq1+y lngq2)h ·g∗xx(x,y)
p2

1h2/2·

·g∗xy(x,y)
p1h(q1hy lng+q2hy lng) ·g∗yy(x,y)

(q1y lng+q2y lng)2h2/2·

·g∗y(x,y)(q2
1y(lng)2+2q1q2y(lng)2+q2

2y(lng)2)h2/2. (2.2.18)

Then by inserting the corresponding Taylor expansions of g1 and g2 in (2.2.1) gives

y(x+h) = y(x) ·g(x,y)αh · (g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng ·g∗xx(x,y)
(ph)2/2·

·g∗xy(x,y)
pqy lngh2

·g∗yy(x,y)
(yq lng)2h2/2 ·g∗y(x,y)q2y(lng)2h2/2)βh·

· (g(x,y) ·g∗x(x,y)p1h ·g∗y(x,y)(y lngq1+y lngq2)h ·g∗xx(x,y)
p2

1h2/2·

·g∗xy(x,y)
p1h(q1hy lng+q2hy lng) ·g∗yy(x,y)

(q1y lng+q2y lng)2h2/2·

·g∗y(x,y)(q2
1y(lng)2+2q1q2y(lng)2+q2

2y(lng)2)h2/2)γh. (2.2.19)

Rearranging the terms with respect to the orders of h gives the Taylor expansion of the

ansatz for the 3rd order multiplicative Runge-Kutta method as

y(x+h) = y(x) ·g(x,y)(α+β+γ)h ·g∗x(x,y)(β p+γ p1)h2
·g∗y(x,y)y lng(βq+γ(q1+q2))h2

·

·g∗xx(x,y)
(β p2+γ p2

1)h
3/2 ·g∗xy(x,y)

y lng(β pq+γ p1(q1+q2))h3
·

·g∗yy(x,y)
y2(lng)2(βq2+γ(q2

1+2q1q2+q2
2))h

3/2·

·g∗y(x,y)y(lng)2(βq2+γ(q2
1+2q1q2+q2

2))h
3/2. (2.2.20)
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Then, comparing the equations (2.2.15) and (2.2.20) for the powers of g(x,y) and its

multiplicative partial derivatives, for the constants results in the following equations

α +β + γ = 1,

β p+ γ p1 =
1
2
,

βq+ γq1 + γq2 =
1
2
,

β p2 + γ p2
1 =

1
3
,

β pq+ γ p1q1 + γ p1q2 =
1
3
,

βq2 + γq2
1 +2γq1q2 + γq2

2 =
1
3
.

From the given set of equations, it can be easily seen that

p = q, (2.2.21)

p1 = q1 +q2, (2.2.22)

resulting in the following equations

α +β + γ = 1, (2.2.23)

β p+ γ p1 =
1
2
, (2.2.24)

β p2 + γ p2
1 =

1
3
. (2.2.25)

It is clear that the different choices of q,q1, and q2 will determine the values of p and

p1. According to this, the equations (2.2.23)-(2.2.25) can be solved with respect to α ,

β , and γ , where we get
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α = −−6 p p1 +3p+3 p1−2
6 p p1

, (2.2.26)

β = − 3 p1−2
6 p(p− p1)

, (2.2.27)

γ = − 2−3 p
6 p1 (p− p1)

. (2.2.28)

Resulting in the multiplicative Butcher Tableau

0

p q

p1 q1 q2

α β γ

As in the Heun’s method, the number of equations is less than the number of unknowns,

resulting infinitely many solutions. One possible choice of the constants is to evaluate

the functions g0 at the beginning, g1 in the middle, and g2 at the end of the interval.

Moreover, we give equal weights to the function evaluated at the left and right endpoint

of the interval of length h, and double the weight for the value in the middle of the

interval; which results in the constants α =
1
6
,β =

2
3
,γ =

1
6
, p=

1
2
, p1 = 1,q=

1
2
,q1 =

−1,q2 = 2. According to the choice of the constants, the 3rd order Multiplicative

Runge-Kutta method can be written as:

y(x+h) = y(x) ·g
h
6
0 ·g

2h
3

1 ·g
h
6
2 ,

g0 = g(x,y),

g1 = g(x+
h
2
,y ·g

h
2
0 ),

g2 = g(x+h,y ·g−h
0 ·g

2h
1 ).
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2.3 4th order Multiplicative Runge-Kutta Method (MRK4)

The 4th order Runge-Kutta method is the most widely used method to solve the initial

value problems. The multiplicative counterpart of the 4th order Runge-Kutta method

can be derived in analogy to the above described 2nd and 3rd order multiplicative

Runge-Kutta methods.

Consequently, we start by the following ansatz

y(x+h) = y(x) ·gαh
0 ·g

βh
1 ·g

γh
2 ·g

δh
3 , (2.3.1)

g0 = g(x,y), (2.3.2)

g1 = g(x+ ph,y ·gqh
0 ), (2.3.3)

g2 = g(x+ p1h,y ·gq1h
0 ·g

q2h
1 ), (2.3.4)

g3 = g(x+ p2h,y ·gq3h
0 ·g

q4h
1 ·g

q5h
2 ). (2.3.5)

Remembering that the multiplicative Taylor expansion of y(x+h) is given in equation

(2.2.15) as

y(x+h) = y(x) ·g(x,y)h ·g∗x(x,y)h2/2 ·g∗y(x,y)y lngh2/2 ·g∗xx(x,y)
h3/6 ·g∗xy(x,y)

y lngh3/3·

·g∗yy(x,y)
y2(lng)2h3/6 ·g∗y(x,y)y(lng)2h3/6 · . . . (2.3.6)

we will find the Taylor expansion of y(x+ h) for the ansatz (2.3.19). The first step is

again to find the Taylor expansions of g0,g1,g2 and g3, in order to substitute in the

equation (2.3.19).

After a lengthy calculation, as we have already explained for the Taylor expansion of
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g2 for the 3rd order multiplicative Runge-Kutta method, the Taylor expansions of g1,

g2 and g3 can be found in the same way. The Taylor expansion of g1 can be written as

g1 = g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng ·g∗xx(x,y)
(ph)2/2 ·g∗xy(x,y)

pqy lngh2
·

·g∗yy(x,y)
(yq lng)2h2/2 ·g∗y(x,y)q2y(lng)2h2/2, (2.3.7)

while the Taylor expansion of g2 will be

g2 = g(x,y) ·g∗x(x,y)p1h ·g∗y(x,y)(y lngq1+y lngq2)h ·g∗xx(x,y)
p2

1h2/2·

·g∗xy(x,y)
p1h(q1hy lng+q2hy lng) ·g∗yy(x,y)

(q1y lng+q2y lng)2h2/2·

·g∗y(x,y)(q2
1y(lng)2+2q1q2y(lng)2+q2

2y(lng)2)h2/2, (2.3.8)

and the Taylor expansion of g3 is

g3 = g(x,y) ·g∗x(x,y)p2h ·g∗y(x,y)(y lngq3+y lngq4+y lngq5)h ·g∗xx(x,y)
p2

2h2/2·

·g∗xy(x,y)
p2h(q3hy lng+q4hy lng+q5hy lng) ·g∗yy(x,y)

(q3y lng+q4y lng+q5y lng)2h2/2·

·g∗y(x,y)(q2
3y(lng)2+q2

4y(lng)2+q2
5y(lng)2+2q3q4y(lng)2+2q3q5y(lng)2+2q4q5y(lng)2)h2/2. (2.3.9)

Using the Taylor expansions of g1, g2 and g3, obtained in the equations (2.3.7)-(2.3.9),

the Taylor expansion of the ansatz (2.3.19) can be written as

y(x+h) = y(x) ·g(x,y)αh · (g(x,y) ·g∗x(x,y)ph ·g∗y(x,y)yqh lng ·g∗xx(x,y)
(ph)2/2·

·g∗xy(x,y)
pqy lngh2

·g∗yy(x,y)
(yq lng)2h2/2 ·g∗y(x,y)q2y(lng)2h2/2)βh·

· (g(x,y) ·g∗x(x,y)p1h ·g∗y(x,y)(y lngq1+y lngq2)h ·g∗xx(x,y)
p2

1h2/2·

·g∗xy(x,y)
p1h(q1hy lng+q2hy lng) ·g∗yy(x,y)

(q1y lng+q2y lng)2h2/2·
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·g∗y(x,y)(q2
1y(lng)2+2q1q2y(lng)2+q2

2y(lng)2)h2/2)γh · (g(x,y) ·g∗x(x,y)p2h·

·g∗y(x,y)(y lngq3+y lngq4+y lngq5)h ·g∗xx(x,y)
p2

2h2/2·

·g∗xy(x,y)
p2h(q3hy lng+q4hy lng+q5hy lng) ·g∗yy(x,y)

(q3y lng+q4y lng+q5y lng)2h2/2·

·g∗y(x,y)(q2
3y(lng)2+q2

4y(lng)2+q2
5y(lng)2+2q3q4y(lng)2+q3q5y(lng)2+q4q5y(lng)2)h2/2)δh.

(2.3.10)

Rearrangement of the terms with respect to the orders of h gives the Taylor expansion

of the 4th order multiplicative Runge-Kutta method as

y(x+h) = y(x) ·g(x,y)(α+β+γ+δ )h ·g∗x(x,y)(β p+γ p1+δ p2)h2
·

·g∗y(x,y)y lng(βq+γ(q1+q2)+δ (q3+q4+q5))h2
·g∗xx(x,y)

(β p2+γ p2
1+δ p2

2)h
3/2·

·g∗xy(x,y)
y lng(β pq+γ p1(q1+q2)+δ p2(q3+q4+q5))h3

·

·g∗yy(x,y)
y2(lng)2(βq2+γ(q2

1+2q1q2+q2
2)+δ (q2

3+q2
4+q2

5+2q3q4+2q3q5+2q4q5))h3/2·

·g∗y(x,y)y(lng)2(βq2+γ(q2
1+2q1q2+q2

2)+δ (q2
3+q2

4+q2
5+2q3q4+2q3q5+2q4q5))h3/2. (2.3.11)

Comparing the equations (2.3.6) and (2.3.11) for the powers of g(x,y) and the multi-

plicative partial derivatives of g(x,y) results in the equations :

α +β + γ +δ = 1,

β p+ γ p1 +δ p2 =
1
2
,

βq+ γq1 + γq2 +δq3 +δq4 +δq5 =
1
2
,

β p2 + γ p2
1 +δ p2

2 =
1
3
,(2.3.12)

β pq+ γ p1q1 + γ p1q2 +δ p2q3 +δ p2q4 +δ p2q5 =
1
3
,

βq2 + γ(q1 +q2)
2 +δ (q2

3 +q2
4 +q2

5 +2q3q4 +2q3q5 +2q4q5) =
1
3
.
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In analogy to the 3rd order MRK-method, the number of equations can be reduced

since p, p1 and p2 can be written in terms of q,q1,q2,q3,q4 and q5 as

p = q, (2.3.13)

p1 = q1 +q2, (2.3.14)

p2 = q3 +q4 +q5. (2.3.15)

Thus the set of equations (2.3.12) can be reduced to the following set of equations:

α +β + γ +δ = 1, (2.3.16)

β p+ γ p1 +δ p2 =
1
2
, (2.3.17)

β p2 + γ p2
1 +δ p2

2 =
1
3
. (2.3.18)

The results that we have obtained, can be summarized in the multiplicative Butcher

Tableau as

0

p q

p1 q1 q2

p2 q3 q4 q5

α β γ δ

As it is already defined in 2nd and 3rd order multiplicative Runge-Kutta methods, we

get infinitely many solutions for the equation set (2.3.16)-(2.3.18) since the number of

unknowns is more than the number of equations. One of the possible choices of the
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constants is α =
1
6
,β =

1
3
,γ =

1
3
,δ =

1
6
, p =

1
2
, p1 =

1
2
, p2 = 1,q =

1
2
,q2 =

1
2
,q5 =

1,q1 = q3 = q4 = 0. Thus the 4th order multiplicative Runge-Kutta method can be

written as

y(x+h) = y(x) ·g
h
6
0 ·g

h
3
1 ·g

h
3
2 ·g

h
6
3 , (2.3.19)

g0 = g(x,y), (2.3.20)

g1 = g(x+
h
2
,y ·g

h
2
0 ), (2.3.21)

g2 = g(x+
h
2
,y ·g

h
2
1 ), (2.3.22)

g3 = g(x+h,y ·gh
2). (2.3.23)

2.4 Extension to complex valued functions of real variable

Multiplicative calculus is restricted to positive valued functions of real variable, which

can be listed as one of its drawbacks. To solve this problem we can extend it to the com-

plex domain. Since the Cauchy-Riemann conditions must be satisfied in the complex

domain, the rules for the derivatives of complex valued functions of complex variable

are more complicated. Thus, it might seem that extending the multiplicative calculus to

the complex domain will cause some difficulties. However, since we are interested in

complex valued functions of real variable, the Multiplicative Cauchy-Riemann condi-

tions will not be considered, and we will find the derivatives of the real and imaginary

parts separately. As it is mentioned in [5], in the complex plain one can evaluate the

multiplicative derivatives of the functions everywhere excluding the point 0+0i.

Since the phase factor will be responsible for the sign change, we can extend the 4th

order multiplicative Runge-Kutta Method to negative valued functions. After extend-

ing multiplicative calculus to the complex domain, the only remaining problem that

we can not solve is that the Multiplicative derivative is not defined at the roots of the
21



function, which can be easily seen from the definition of the multiplicative derivative.

So, in order to get rid of this problem we can switch to Newtonian Calculus at these

points. At the points where the multiplicative derivative is not defined, we get the

value of the function and the corresponding ordinary derivative and then use the clas-

sical Runge-Kutta Method for a few steps until the multiplicative derivative becomes

again reasonably large. Afterwards, we can continue by taking the value of the func-

tion and the multiplicative derivative as an input for the Multiplicative Runge-Kutta

method. The results are reasonably good, and often even better than using the classical

Runge-Kutta method alone.

Assuming that g(x) is a decreasing function, satisfying the conditions g(xi−1) > 0,

and g(xi+1) < 0, then there is a point ξ ∈ [xi−1,xi+1] such that g(ξ ) = 0 (see Figure

2.1). As we have mentioned above, at the point ξ , where g(ξ ) = 0, the multiplicative

derivative of g(x) is not defined. Therefore, on the intervals [x0,xi−1], and [xi+1,xn],

where the multiplicative derivative is defined, we will apply the Multiplicative Runge-

Kutta method. However, for the interval [xi−1,xi+1] we will apply the classical Runge-

Kutta Method. In order to apply the classical Runge-Kutta method we will use the

values of g(xi−1) and g∗(xi−1), which are calculated by the Multiplicative Runge-Kutta

Method, as input for the classical Runge-Kutta Method at the point xi−1, and vice versa

for the point xi+1.

22



Figure 2.1: Bypass the roots where the multiplicative derivative becomes undefined.
The dashed line denotes the region where the classical Runge-Kutta method is applied
to prevent the multiplicative derivate to become infinite. The multiplicative Runge-
Kutta method is applied in the region of the solid line.
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Chapter 3

ERROR AND STABILITY ANALYSIS

3.1 Convergence Of One-Step Methods

In this section, the behaviour of the approximate solution η(x;h) of the one-step

method will be analyzed for convergence as h→ 0. Assuming that the function g(x,y)

is one time multiplicative differentiable on the open interval (a,b) then the exact solu-

tion of the multiplicative initial value problem

y∗ = g(x,y), y(x0) = y0. (3.1.1)

is denoted by y(x).

Let the one step method is defined by φ(x,y;h) as,

η0 := y0,

for i = 0,1, . . . ,

η i+1 := η iφ(xi,η i;h)h, (3.1.2)

xi+1 := xi +h,

The one step method defined as the system (3.1.2) generates the approximate solution

η(x;h):

η(x;h) := η i, if x = x0 + ih. (3.1.3)
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for x ∈ rh := {x0 + ih | i = 0,1,2, . . .}.

Let us choose the initial values x and y as fixed but arbitrary constants and denote z(t)

as the exact solution of the following multiplicative initial-value-problem

z∗(t) = g(t,z(t)), z(x) = y. (3.1.4)

Then, for the exact solution z(t) of the system (3.1.4), the multiplicative ratio function

is represented as

ζ (x,y;h) :=


(

z(x+h)
y

)h
if h 6= 0,

g(x,y) if h = 0

, (3.1.5)

for step size h, and the multiplicative ratio function for the approximate solution of the

system (3.1.4), which is produced by φ , is denoted by φ(x,y;h). The multiplicative

ratio function corresponds to the difference quotient in Newtonian calculus.

For the ratio

τ(x,y;h) :=
ζ (x,y;h)
φ(x,y;h)

, (3.1.6)

the magnitude shows how good the value z(x+h) match the equation of the one-step

method at x+h .

At (x,y), the multiplicative local discretization error is denoted by τ(x,y;h). For the

one step method, we can require that

lim
h→0

τ(x,y;h) = 1. (3.1.7)
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Choosing x as fixed and letting h→ 0 where h∈ hx :=
{

(x−x0)
n |n = 1,2, . . .

}
, the point

of interest is the behaviour of the multiplicative global discretization error

e(x;h) :=
η(x;h)

y(x)
. (3.1.8)

Since, η(x;h), is defined for h ∈ hx, e(x;h) is also only defined for the values of h in

hx. Thus, we will study the convergence for

e(x;hn), hn :=
x− x0

n
, as n→ ∞. (3.1.9)

For the values of x in the closed interval [a,b], and all of the functions g(x,y) that are

one time multiplicative differentiable on the open interval (a,b), the one-step will be

convergent if

lim
n→∞

e(x;hn) = 1. (3.1.10)

For the functions g(x,y) which are p-times multiplicative differentiable on the interval

(a,b), then we can say that the methods of order p > 0 are convergent, and satisfy

e(x;hn) = O(ehp
n ). (3.1.11)

Thus, the order of the multiplicative global discretization error is equal to the order of

the multiplicative local discretization error.

Lemma 3.1.1 Let Ξi be numbers satisfying the estimates given as

|Ξi+1| ≤ |Ξi|(1+δ )B, δ > 0, B≥ 0, i = 0,1,2, ..., (3.1.12)

then

|Ξn| ≤ |Ξ0|e
nδ

B
enδ−1

δ . (3.1.13)

Proof. It is clear from the assumption that, since 0 < 1+ δ ≤ eδ for δ > −1, by

mathematical induction we will obtain
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|Ξ1| ≤ |Ξ0|(1+δ ) ·B, (3.1.14)

|Ξ2| ≤ |Ξ1|(1+δ ) ·B (3.1.15)

≤
(
|Ξ0|(1+δ ) ·B

)(1+δ )
·B (3.1.16)

= |Ξ0|(1+δ )2
·B(1+δ ) ·B (3.1.17)

= |Ξ0|(1+δ )2
·B1+(1+δ ), (3.1.18)

|Ξ3| ≤ |Ξ2|(1+δ ) ·B (3.1.19)

≤
(
|Ξ0|(1+δ )2

·B1+(1+δ )
)(1+δ )

·B (3.1.20)

= |Ξ0|(1+δ )3
·B(1+δ )+(1+δ )2

·B (3.1.21)

= |Ξ0|(1+δ )3
·B1+(1+δ )+(1+δ )2

, (3.1.22)

...

|Ξn−1| ≤ |Ξ0|(1+δ )n−1
·B[1+(1+δ )+(1+δ )2+...+(1+δ )n−2], (3.1.23)

|Ξn| ≤ |Ξ0|(1+δ )n
B[1+(1+δ )+(1+δ )2+...+(1+δ )n−1] (3.1.24)

= |Ξ0|(1+δ )n
B

(1+δ )n−1
δ (3.1.25)

≤ |Ξ0|e
nδ

B
enδ−1

δ , (3.1.26)

Theorem 3.1.2 Let us consider, the following multiplicative initial value problem, for

the values of x and y, such that x0 ∈ [a,b], y0 ∈ R

y∗ = g(x,y), y(x0) = y0, (3.1.27)

which has the exact solution y(x). Assuming that φ is a continuous function on

Γ :=
{
(x,y,h) |a≤ x≤ b,

∣∣∣∣ y
y(x)

∣∣∣∣≤ γ, 0≤ |h| ≤ h0

}
, h0 > 0, γ > 1, (3.1.28)
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and M and N are positive constants such that

∣∣∣∣φ(x,y1;h)
φ(x,y2;h)

∣∣∣∣≤ ∣∣∣∣y1

y2

∣∣∣∣M , (3.1.29)

for all values of (x,yi,h) ∈ Γ, i = 1,2, and

|τ(x,y(x);h)|=
∣∣∣∣ζ (x,y(x);h)
φ(x,y(x);h)

∣∣∣∣≤ eN|h|p, p > 0, (3.1.30)

for all x ∈ [a,b], |h| ≤ h0.

Then, for the multiplicative global discretization error e(x;h) =
η(x;h)

y(x)
, there exists

an h, 0 < h≤ h0, such that

|e(x;hn)| ≤ e|hn|pN eM|x−x0|−1
M , (3.1.31)

for all values of x ∈ [a,b] and hn =
x−x0

n , n = 1,2, . . . , where |hn| ≤ h. If γ = ∞, then

h = h0.

Proof. It is obvious that the function

φ̃(x,y;h) =



φ(x,y;h) if (x,y;h) ∈ Γ

φ(x,y(x)γ;h) if x ∈ [a,b], |h| ≤ h0, y≥ y(x)γ

φ(x, y(x)
γ

;h) if x ∈ [a,b], |h| ≤ h0, y≤ y(x)
γ

(3.1.32)

is continuous on Γ̃ := {(x,y,h) |x ∈ [a,b], y ∈R, |h| ≥ h0} and satisfying the condition

∣∣∣∣∣ φ̃(x,y1;h)

φ̃(x,y2;h)

∣∣∣∣∣≤
∣∣∣∣y1

y2

∣∣∣∣M , (3.1.33)

for all values of (x,yi,h) ∈ Γ̃, i = 1,2, and since φ̃(x,y(x);h) = φ(x,y(x);h), the fol-
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lowing condition is also satisfied∣∣∣∣∣ζ (x,y(x);h)

φ̃(x,y(x);h)

∣∣∣∣∣≤ eN|h|p, for x ∈ [a,b], |h| ≤ h0. (3.1.34)

Assuming that the one-step method, generated by φ̃ , provides the approximate values

η̃ i := η̃(xi;h) for yi := y(xi), xi := x0 + ih:

η̃ i+1 = η̃ i · φ̃(xi, η̃ i;h)h. (3.1.35)

Then with the help of

yi+1 = yi ·ζ (xi,yi;h)h, (3.1.36)

we obtain the recurrence formula, for the error ẽi := η̃ i
yi

as

ẽi+1 = ẽi ·

[
φ̃(xi, η̃ i;h)

φ̃(xi,yi;h)

]h

·

[
φ̃(xi,yi;h)
ζ (xi,yi;h)

]h

. (3.1.37)

Thus (3.1.33) and (3.1.34) implies that∣∣∣∣∣ φ̃(xi, η̃ i;h)

φ̃(xi,yi;h)

∣∣∣∣∣≤
∣∣∣∣ η̃ i

yi

∣∣∣∣M = |ẽi|M (3.1.38)

∣∣∣∣∣ φ̃(xi,yi;h)
ζ (xi,yi;h)

∣∣∣∣∣≤ eN|h|p (3.1.39)

and hence from (3.1.37) we get the recursive estimate

|ẽi+1| ≤ |ẽi| · |ẽi||h|M · eN|h|p+1
. (3.1.40)

Since we are solving a multiplicative initial value problem, we will consider the initial

values as exact, and start the iterations with ẽ0 =
η̃0
y0

= 1 as follows

|ẽ0| = 1, (3.1.41)

|ẽ1| ≤ |ẽ0|
[
|ẽ0|M

]h [∣∣∣eN|h|p
∣∣∣]h

(3.1.42)

=
∣∣∣eN|h|p+1

∣∣∣ , (3.1.43)
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|ẽ2| ≤ |ẽ1|
[
|ẽ1|M

]h [∣∣∣eN|h|p
∣∣∣]h

(3.1.44)

≤
∣∣∣eN|h|p+1

∣∣∣[∣∣∣eN|h|p+1
∣∣∣M]h [∣∣∣eN|h|p

∣∣∣]h
(3.1.45)

=
∣∣∣eN|h|p+1

∣∣∣[∣∣∣e|h|MN|h|p+1
∣∣∣][∣∣∣eN|h|p+1

∣∣∣] (3.1.46)

=
∣∣∣eN|h|p+1(1+(1+|h|M))

∣∣∣ , (3.1.47)

|ẽ3| ≤ |ẽ2|
[
|ẽ2|M

]h [∣∣∣eN|h|p
∣∣∣]h

(3.1.48)

≤
∣∣∣eN|h|p+1(1+(1+|h|M))

∣∣∣[∣∣∣eN|h|p+1(1+(1+|h|M))
∣∣∣M]h [∣∣∣eN|h|p

∣∣∣]h
(3.1.49)

=
∣∣∣e(1+(1+|h|M))N|h|p+1

∣∣∣[∣∣∣e|h|M(1+(1+|h|M))N|h|p+1
∣∣∣][∣∣∣eN|h|p+1

∣∣∣] (3.1.50)

=
∣∣∣eN|h|p+1((1+(1+|h|M))+|h|M(1+(1+|h|M))+1)

∣∣∣ (3.1.51)

=
∣∣∣eN|h|p+1(1+(1+|h|M)+(1+|h|M)2)

∣∣∣ , (3.1.52)

...

|ẽk| ≤ |ẽk−1|
[
|ẽk−1|M

]h [∣∣∣eN|h|p
∣∣∣]h

(3.1.53)

≤
∣∣∣eN|h|p+1(1+(1+|h|M)+(1+|h|M)2+···+(1+|h|M)k−1)

∣∣∣ (3.1.54)

= eN|h|p+1 (1+|h|M)k−1
|h|M (3.1.55)

= eN|h|p (1+|h|M)k−1
M (3.1.56)

≤ e
ek|h|M−1

M N|h|p. (3.1.57)

Thus the recursive estimate in equation (3.1.40) simplifies to

|ẽk| ≤ eN|h|p ek|h|M−1
M . (3.1.58)

Now let us choose x in the closed interval [a,b] satisfying x 6= x0, as a fixed constant

and h := hn =
(x−x0)

n , n > 0 as an integer. Then, using xn = x0 +nh = x and k = n, and

also keeping in mind that ẽ(x;hn) = ẽn, equation (3.1.58) can be written as

|ẽ(x;hn)| ≤ eN|hn|p eM|x−x0|−1
M , (3.1.59)
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for all x ∈ [a,b] and hn with |hn| ≤ h0.

Since |x−x0| ≤ |b−a| and γ > 0, there exists an h, 0 < h≤ h0, such that |ẽ(x, ;hn)| ≤ γ

for all x ∈ [a,b], |hn| ≤ h, i.e., for the one-step method generated by Φ,

η0 = y0,

η i+1 = η iφ(xi,η i;h),

we have for |h| ≤ h, according to the definition of φ̃ ,

η̃ i = η i, ẽi = ei, and φ̃(xi, η̃ i;h) = φ(xi,η i;h).

The assertion of the theorem,

|ẽ(x;hn)| ≤ eN|hn|p eM|x−x0|−1
M ,

thus follows for all x ∈ [a,b] and all hn =
(x−x0)

n , n = 1,2, . . . , with |hn| ≤ h.

3.2 Stability Analysis

In this section, we will focus on the stability analysis of the multiplicative Runge-Kutta

methods. The presence of the multiplicative Butcher Tableau allows us to analyze the

stability of the n-th order Multiplicative Runge-Kutta method, but the analysis will be

conducted exemplarily for the 4th order Multiplicative Runge-Kutta method to be able

to show explicitly its behaviour. In Newtonian calculus, the stability properties of the

Runge-Kutta methods are analysed by the following basic test equation.

y′(x) = λy(x), y(x0) = y0, (3.2.1)

where λ ∈C. The behaviour of (3.2.1) was studied extensively by [11, 12, 19, 25]. The

stability analysis of the Multiplicative Runge-Kutta methods can also be done based

on this test equation. In order to do this, we rewrite the test equation in terms of the
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multiplicative calculus. We will consider the 4th order MRK method as denoted in

(2.3.19) - (2.3.23). By (2.3.19) we obtain

yn+1 = yn[gα
0 ·g

β

1 ·g
γ

2 ·g
δ
3 ]

h, (3.2.2)

where

α +β + γ +δ = 1. (3.2.3)

In analogy to [21] the multiplicative form of the basic test equation is given as

y∗(x) = eλ , y(x0) = y0, (3.2.4)

which has the analytic solution

y(x) = eλ (x−x0)y0. (3.2.5)

As x→∞ and Re(λ )< 0, the solution of the system approaches to zero. If the method

also has the same behaviour, then we can say that the method is A-stable [11]. Since

y∗(x) is a constant function, equations (2.3.20)-(2.3.23) simplify to g0 = g1 = g2 =

g3 = eλ . Then, by (3.2.4) and (3.2.2), we obtain

yn+1

yn
= ez = R(z), (3.2.6)

where z = λh. R(z) is the stability function of the proposed method. Then, the domain

of stability is

s∗ = {z ∈ C : |R(z)|< 1} . (3.2.7)

Consequently, by (3.2.7) we obtain

0 < e−|λ |h < 1, (3.2.8)

which leads to

0 < h < ∞. (3.2.9)

Thus, the result shows that the proposed method is unconditionally stable. By (3.2.7),

it can be seen that Re(z) < 0 where |ez| = eRe(z). When Re(z) < 0 the left half plane
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will be the region of absolute stability, thus the method is A-stable. In Newtonian

calculus, the explicit multistep methods can not be A-stable and the implicit multistep

methods can be A-stable if the order is at most 2. Whereas in Multiplicative calculus

both explicit and implicit methods are A-stable. One can say that a method is L-stable

if the method is A-stable and R(z)→ 0 when |z| → ∞ [12]. Since we have shown that

the Multiplicative Runge-Kutta methods are A-stable and ez → 0 when |z| → ∞, we

can say that the proposed methods are L-stable by [12].
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Chapter 4

APPLICATIONS OF THE MULTIPLICATIVE RUNGE-KUTTA
METHOD

4.1 Solution of first order multiplicative differential equations

Example 1. (Square Root)

We want to discuss the following multiplicative initial value problem, where no expo-

nential function or logarithm is involved in the exact solution.

y∗(x) = e
1

2y2 , y(0) = 1. (4.1.1)

The corresponding Newtonian initial value problem for (4.1.1) becomes

y′(x) =
1
2y

, y(0) = 1, (4.1.2)

where the exact solution of both Multiplicative and Newtonian initial value problems

given in (4.1.1) and (4.1.2) is

y(x) =
√

x+1. (4.1.3)

The Multiplicative initial value problem given in (4.1.1) is solved by using the 4th order

multiplicative Runge-Kutta method while the Newtonian initial value problem given

in (4.1.2) is solved by the 4th order Runge-Kutta method. The results of both methods

are listed in the following table.
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Table 4.1: Comparison of the multiplicative Runge-Kutta method and classical Runge-
Kutta method. MRK4 and RK4 corresponds to 4th order multiplicative Runge-Kutta
method and 4th order Runge-Kutta method respectively.

x yexact yMRK4 relative yRK4 relative

errMRK4in % errRK4in %

0 1 1 0 1 0

0.6 1.2649111 1.2649153 3.38×10−6 1.2382302 0.021093074

1.2 1.4832397 1.483244 2.88×10−6 1.4409643 0.028502049

1.8 1.6733201 1.673324 2.36×10−6 1.6205072 0.031561693

2.4 1.8439089 1.8439125 1.97×10−6 1.783364 0.032835088

3 2 2.0000034 1.69×10−6 1.9334697 0.033265139

It is clear from Table 4.2 that the relative error of the 4th order Multiplicative Runge-

Kutta method is 4 orders less in magnitude compared to the 4th order Runge-Kutta

method. This is in well agreement to the error analysis presented in section 3.

Moreover, the basic operations used in multiplicative calculus are mainly multiplica-

tion, division, calculation of the exponential function and calculation of the logarithm

function, while in Newtonian calculus, we just consider summation, subtraction and

multiplication.

Letting the size of all numbers be n-bit, the computational complexities for the follow-

ing arithmetic operations can be listed as:
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Table 4.2: Computational complexities

Operation Complexity

addition and subtraction O(n)

multiplication and division O(n2)

exponential and logarithm O(n5/2)

So, according to the computational complexities listed above it is clear that the 4th or-

der multiplicative Runge-Kutta method requires less number of operations compared

to the 4th order Runge-Kutta method. In order to be able to consider the 4th order mul-

tiplicative Runge-Kutta method as a serious alternative to the 4th order Runge-Kutta

method, the performance of the proposed method has to be at least comparable. Here

performance points out, higher accuracy, i.e. smaller errors, for the same computation

time. Hence, we have measured the relative error as a function of the computation

time by keeping the starting and the end point fixed with varying step size h. The

comparison of the results for both methods are shown in figure 4.1.

0 0.005 0.01 0.015 0.02 0.025
Time in s

1e-20
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4th order Runge-Kutta Method
4th order Multiplicative Runge-Kutta Method

Figure 4.1: Comparison of the computation time and the relative error for the multi-
plicative initial value problem (4.1.1) and the initial value problem (4.1.2) for the same
initial values x0 = 0 and y0 = 1 and fixed final values xn = 3, yn = 2 by varying h.
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As it can be seen from figure 4.1, comparing the relative errors as function of the

computation time shows that the multiplicative Runge-Kutta method is working more

efficiently compared to the Runge-Kutta method, since there is a significant difference

between the relative errors. The comparison has been carried out also for other sample

problems with known closed form solutions. The results indicate that the 4th order

multiplicative Runge-Kutta method is more powerful compared to the 4th order Runge-

Kutta method.

Example 2. (Logarithmic Solution)

The solution of the first initial value problem did not contain an exponential or logarith-

mic function. For the second example, let us consider a function which has logarithmic

solution. We will concentrate on the following multiplicative initial value problem

y∗(x) = e
x−1
xy , y(1) = 1. (4.1.4)

The ordinary initial value problem corresponding to (4.1.4) can be written as:

y′(x) = 1− 1
x
, y(1) = 1, (4.1.5)

where the analytic solution of both initial value problems is obtained as

y(x) = x− lnx. (4.1.6)

The results of the 4th order multiplicative Runge-Kutta method and the 4th order multi-

plicative Runge-Kutta method as well as the relative errors of each method are shown

in the following table.
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Table 4.3: Comparison of the multiplicative Runge-Kutta method and the classical
Runge-Kutta method. MRK4 and RK4 corresponds to 4th order multiplicative Runge-
Kutta method and 4th order Runge-Kutta method respectively.

x yexact yMRK4 relative yRK4 relative

errMRK4in % errRK4in %

1 1 1 0 1 0

1.5 1.0945 1.0945 3.128×10−3 1.2123 10.76

2 1.3069 1.3068 2.955×10−3 1.4892 13.95

2.5 1.5837 1.5837 2.681×10−3 1.8068 14.09

3 1.9014 1.9013 2.339×10−3 2.1527 13.22

Comparison of the relative errors indicates that, using the multiplicative Runge-Kutta

method produces more accurate results compared to the classical Runge-Kutta method.

Example 3. (Biological Example)

In order to prove that the newly defined method can also be applied to mathematical

models in different fields, to get better results, we will discuss the model of the bacterial

growth in food which was modelled by Huang [16, 17, 18]. We will focus on the

Baranyi model [2, 3] for the bacterial growth in food. The model is defined by the

differential equation

y′(t) = µmax
1− ey−ymax

1+ e−α(t−λ )
. (4.1.7)

The corresponding multiplicative differential equation for (4.1.7) is:

y∗(t) = exp
{

µmax
y

1− ey−ymax

1+ e−α(t−λ )

}
, (4.1.8)

with the initial value y0 = y(0) = 7.
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Since there is no closed form solution available for the initial value problems (4.1.7)

and (4.1.8), we have solved the initial value problems by the 4th order multiplicative

Runge-Kutta method and the 4th order Runge-Kutta method for small h, where both

solutions coincide. Then by increasing the step size h we have checked which method

deviates first from the solutions, that we have obtained for small h. As it is represented

in figure 4.2, the 4th order Runge-Kutta method deviates first. Then we have compared

the solutions for the greatest h, where 4th order multiplicative Runge-Kutta method

still match with the solutions for small h, where the 4th order Runge-Kutta method

does not. Also in this case, the performance results for the 4th order multiplicative

Runge-Kutta method are better compared to 4th order Runge-Kutta method.

0302010
5

10

15

20

RK and MRK with 300 points
MRK with 30 points
RK with 30 points

Figure 4.2: Solution for bacteria growth model, λ = 3.21, µmax = 0.644, α = 4, ymax =
18.

It is clear from the figure 4.2 that, the numerical solutions of the differential equations

(4.1.7) and (4.1.8) using the corresponding Runge-Kutta Methods are not distinguish-

able for h = 0.1. Furthermore, for bigger h values, i.e. h = 1, the 4th order Multiplica-

tive Runge-Kutta method still mathches with the solution for h = 0.1, while the 4th

order Runge-Kutta method gives significantly different results (dotted line).
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4.2 Solution of a second order multiplicative differential equation

Example 1. (2nd order Differential Equation)

Multiplicative Runge-Kutta methods are also applicable for solving the higher order

multiplicative initial value problems. As an example, we will consider a 2nd order

multiplicative initial value problem, which has the following model

y∗∗(x) = f (x,y,y∗), y(x0) = y0, and y∗(x0) = y1. (4.2.1)

In order to solve this type of multiplicative initial value problem, we need to solve the

coupled system of first order multiplicative differential equations

y∗0(x) = y1(x), (4.2.2)

y∗1(x) = f (x,y0,y1). (4.2.3)

Exemplarily, we will solve the multiplicative initial value problem for the 2nd order

multiplicative differential equation

y∗∗(x) = e. (4.2.4)

The second order differential equation which corresponds to (4.2.4) is

y′′(x) =
y′(x)2

y(x)
+ y(x), (4.2.5)

where the exact solution of both differential equations (4.2.4) and (4.2) is

y(x) = α exp
{

x2

2
+βx

}
. (4.2.6)

The same initial value problem, was also solved by using the multiplicative finite dif-

ference method, as an example for a multiplicative boundary value problem in [28]. To

compare the solutions that we have obtained from the 4th order Multiplicative Runge-

Kutta method with the solutions of the multiplicative finite difference method, dis-
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cussed in [28], we select α = 1, β = 1, x0 = 1, and h = 0.25. The choice of the

constants results in the following initial conditions

y0 = e3/2 and y1 = e2. (4.2.7)

The results of both methods are summarized in the following table.

Table 4.4: Comparison of the multiplicative Runge-Kutta method and multiplicative
Finite Difference method. MRK4 and MFD corresponds to 4th order multiplicative
Runge-Kutta method and multiplicative finite difference method respectively.

x yexact yMRK4 relative yMFD relative

errMRK4in % errMFDin %

1 4.48168907 4.481689070 0 4.48168907 0

1.25 7.62360992 7.62360992 9.3×10−15 7.62360991 3.5×10−13

1.5 13.80457419 13.80457419 1.3×10−14 13.80457418 5.3×10−13

1.75 26.60901319 26.60901319 1.7×10−14 26.60913187 1.8×10−13

Table 4.4 shows the numerical approximation using the 4th order multiplicative Runge-

Kutta method for (4.2.4) with the initial conditions (4.2.7) and the corresponding re-

sults for the multiplicative finite difference method from [28]. Numerical approxima-

tions for the 2nd order multiplicative differential equation (4.2.4), using both methods,

shows that the 4th order multiplicative Runge-Kutta method gives slightly better results

than the multiplicative Finite Difference method. The relative error for the 4th order

multiplicative Runge-Kutta method is less by one order.

On the other hand, in order to compare the results of the proposed method with the

results of the 4th order Runge-Kutta method, the ordinary differential equation (4.2) is

solved with the corresponding initial values
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y0 = e3/2 and y1 = 2e3/2. (4.2.8)

The results obtained from the solution of the second order multiplicative and ordinary

differential equations (4.2.4) and as well as the corresponding relative errors are shown

in table 4.5 below.

Table 4.5: Comparison of the multiplicative Runge-Kutta method and the classical
Runge-Kutta method. MRK4 and RK4 corresponds to 4th order multiplicative Runge-
Kutta method and 4th order Runge-Kutta method respectively.

x yexact yMRK4 relative yRK4 relative

errMRK4in % errRK4in %

1 4.48168907 4.481689070 0 4.48168907 0

1.25 7.62360992 7.62360992 9.3×10−15 7.61823131 7.1×10−2

1.5 13.80457419 13.80457419 1.3×10−14 13.77941017 1.8×10−1

1.75 26.60901319 26.60901319 1.7×10−14 26.51619718 3.5×10−1

The comparison of the relative errors shows that the 4th order Runge-Kutta method

fails drastically, since the relative error differs by 13 orders in magnitude compared to

its multiplicative counterpart. The results in table 4.4 and table 4.5 shows that both the

4th order multiplicative Runge-Kutta method and the multiplicative finite difference

method succeed to give proper results for this example, while the results of the 4th

order Runge-Kutta method are not that much accurate.
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Chapter 5

APPLICATION OF THE MULTIPLICATIVE RUNGE-KUTTA
METHODS IN CHAOS THEORY

5.1 Solution of a system of multiplicative differential equation

We want also to show that the method, developed for the universal applicability of

the Multiplicative Runge-Kutta Method in section 2.4, works without major problems.

Therefore we chose exemplarily the Rössler attractor [29, 30] to show that the MRK

method can be extended to higher dimensions. Obviously in the Rössler attractor prob-

lem x(t), y(t) have roots and therefore the MRK method seems not be applicable.

Using the extension proposed in section 2.4, the Rössler attractor problem becomes

accessible also for the MRK method producing reasonable results. In the following we

will give the general equations for the Rössler attractor problem in ordinary calculus

and its multiplicative counterpart.

ẋ(t) = −y(t)− z(t), (5.1.1)

ẏ(t) = x(t)+αy(t), (5.1.2)

ż(t) = β +(x(t)− γ)z(t). (5.1.3)

The corresponding multiplicative counterparts of the equations (5.1.1)-(5.1.3) are then
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x∗(t) = exp
{
− (y(t)+ z(t))

x(t)

}
, (5.1.4)

y∗(t) = exp
{

x(t)+αy(t)
y(t)

}
, (5.1.5)

z∗(t) = exp
{

β +(x(t)− γ)z(t)
z(t)

}
. (5.1.6)

Solving the system of multiplicative differential equations (5.1.4)-(5.1.6) using the 4th

order MRK method for the parameters, α = β = 0.2 and γ = 8 we get the result de-

picted in figure 5.1. The results of the classical Runge-Kutta and the multiplicative

Runge- Kutta methods are comparable.

-10

0

10x
-10

0

10

y

0

10

20

30

40

z

Figure 5.1: Rössler problem with the parameters α = β = 0.2 and γ = 8.

For the solution of the coupled Multiplicative Runge-Kutta equation, all methods de-

scribed in section 2.4 to remove the restrictions of geometric multiplicative calculus,

were tested explicitly and the usage of the classical Runge-Kutta method for the tran-

sition region of the function gave the best results.
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5.2 A Modified Quadratic Lorenz Attractor

In this section, we will concentrate on the applicability of the proposed method in

chaotic systems. Instead of using a chaotic system which is already defined, we will

define a new chaotic system. Firstly, we will analyze the new chaotic system for its

chaotic behaviour in Newtonian calculus, afterwards we will define the system in Mul-

tiplicative calculus and examine its chaotic behaviour using the properties of Multi-

plicative calculus. Both systems, which are defined in Newtonian and Multiplicative

calculus, will be solved by using the 4th order Runge-Kutta method and the 4th order

Multiplicative Runge-Kutta method correspondingly.

5.2.1 Design of a new Chaotic System

The new Chaotic system will be derived from the Lorenz system, which is defined in

[20] as

dx
dt

= s(y− x), (5.2.1)

dy
dt

= x(r− z)− y, (5.2.2)

dz
dt

= xy−bz. (5.2.3)

The chaotic system, named as the Modified Quadratic Lorenz attractor, is generated by

the following simple three-dimensional system

dx
dt

= s(yz− x), (5.2.4)

dy
dt

= rx− xz, (5.2.5)

dz
dt

= (xy)2−bz, (5.2.6)
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where x, y, and z are variables and s, r, and b are real parameters. In the new pro-

posed chaotic system, all the equations have some differences compared to the orig-

inal Lorenz system. In order to see the differences between the two systems we can

compare the equations (5.2.1)-(5.2.3) and (5.2.4)-(5.2.6) one by one. Evidently, in the

Lorenz system equation (5.2.1) is linear, whereas equation (5.2.4) is non-linear. Fur-

thermore, equations (5.2.2) and (5.2.5) are both non-linear, where the y-dependence of

equation (5.2.2) is eliminated in the equation (5.2.5). The most significant difference

can be observed from the comparison of equations (5.2.3) and (5.2.6). In (5.2.6), the

term xy is squared compared to the equation (5.2.3).

5.2.2 System Description

The initial values and the parameters of the system are chosen as (1,1,1) and s = 12,

r = 8 with varying b. The system is solved by using the 4th order Runge-Kutta method,

for various b values, resulting in the solutions given in the graphs of Figure 5.3. It can

be observed from the graphs that, the behavior of the new chaotic system changes

depending on the different values of b.

-10 -5  0  5  10

-2-1 0 1 2 3
 0
 5

 10
 15
 20
 25
 30
 35

x
y

z

(a) b = 0.1

-10-5 0 5 10

-2
-1

 0
 1

 2
 3

 0
 5

 10
 15
 20
 25
 30

x
y

z

(b) b = 0.5

46



xy

 0

 5

 10

 15

 20

 25

 30

-10 -5  0  5  10-3 -2 -1  0  1  2  3

z

(a) b = 2

-10
 0

 10
 20 -4 -2  0  2  4

 0

 10

 20

 30

x
y

z

(b) b = 4

xy

 0
 5

 10
 15
 20
 25
 30
 35

-15 -10 -5  0  5  10  15-3 -2 -1  0  1  2  3  4

z

(c) b = 10

Figure 5.3: Simulation of the chaotic system when s = 12, r = 8 and various b values

As a result of the calculations, as it is shown in Figure 5.3, the new system can be

considered as a chaotic system for the parameters

s = 12,r = 8, and b = 4. (5.2.7)

Thus, from now on, the rest of the calculations will be done by using the parameters

choosen above, to analyze the chaotic behaviour of the system.

5.2.3 System Analysis

The first step to analyze a chaotic system is to find the equilibrium points. In order

to determine the equilibrium points of the proposed system (5.2.4)-(5.2.6), we need to

solve the system
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s(yz− x) = 0,

rx− xz = 0, (5.2.8)

(xy)2−bz = 0.

Thus, the solution of the system (5.2.8) with respect to x, y, z give the equilibria points

as:

O = (0,0,0), (5.2.9)

E+ =

(
4√

br3,
4

√
b
r
,r

)
, (5.2.10)

E− =

(
− 4√

br3,− 4

√
b
r
,r

)
. (5.2.11)

Then, for the parameters chosen in (5.2.7), the calculated numerical values of the equi-

libria points are

O = (0,0,0), (5.2.12)

E+ = (6.73,0.84,8), (5.2.13)

E− = (−6.73,−0.84,8). (5.2.14)

In order to decide on the stability of the new proposed system, the eigenvalues of the

Jacobian matrix must be analyzed.

Remembering that the Jacobian matrix of a 3×3 system can be written as
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J =



∂ f1

∂x
∂ f1

∂y
∂ f1

∂ z
∂ f2

∂x
∂ f2

∂y
∂ f2

∂ z
∂ f3

∂x
∂ f3

∂y
∂ f3

∂ z


, (5.2.15)

and considering the system (5.2.4)-(5.2.6) as

f1 =
dx
dt

= s(yz− x), (5.2.16)

f2 =
dy
dt

= rx− xz, (5.2.17)

f3 =
dz
dt

= (xy)2−bz, (5.2.18)

the Jacobian matrix for the system (5.2.16)-(5.2.18) can be easily obtained as

J =


−s sz sy

r− z 0 −x

2xy2 2x2y −b

 . (5.2.19)

The expressions for the eigenvalues of the Jacobian matrix (5.2.19) are very long and

complicated. As we are only interested in the numerical values of the eigenvalues at

the equilibria points (5.2.12)-(5.2.14) for the given parameters (5.2.7), the eigenvalues

corresponding to the equilibrium points O,E+ and E− are stated in the table below:
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Table 5.1: Eigenvalues of the Jacobian at the equilibrium points

Equilibrium λ 1 λ 2 λ 3

Point

O −12 −4 0

E+ 2.65+23.87i 2.65−23.87i −21.3

E− 2.65+23.87i 2.65−23.87i −21.3

As the eigenvalues λ 1 and λ 2 for the equilibrium point O are both negative, the system

is unstable at this equilibrium point. The eigenvalues corresponding to the equilibrium

point E− will be the same with the eigenvalues of E+, because of the quadratic nature

of the system. Since λ 3 is a negative real number and λ 1 and λ 2 are two complex con-

jugate eigenvalues with positive real parts, equilibrium points E+ and E− are unstable

according to [31].

5.2.4 Symmetry and Dissipativity

The System (5.2.4)-(5.2.6) has a natural symmetry and is invariant under the coordi-

nate transformation (x,y,z)→ (−x,−y,z) which persists for all values of the system

parameters. So, system (5.2.4)-(5.2.6) has rotation symmetry about the z− axis. Let,

f1 =
dx
dt , f2 =

dy
dt and f3 =

dz
dt in the system (5.2.4)-(5.2.6). Then we get for the vector

field

(ẋ, ẏ, ż)T = ( f1, f2, f3)
T . (5.2.20)

Consequently the divergence of the vector field V yields to:

∇ · (ẋ, ẏ, ż)T =
∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂ z
=−(s+b) = f . (5.2.21)

Note that f =−(s+b) =−16 is a negative value, so the system is a dissipative system

and an exponential rate is:
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dV
dt

= fV =⇒V (t) =V0e f t =V0e−16t . (5.2.22)

From (5.2.22), it can be seen that a volume element V0 is contracted by the flow into a

volume element V0e−16t at the time t .

5.2.5 Lyapunov Exponent and Fractional Dimension

The Lyapunov exponents generally refer to the average exponential rates of divergence

or convergence of nearby trajectories in the phase space. In order to define a system

as a chaotic system, the system should have at least one positive Lyapunov exponent.

Thus, to decide if the system defined by the equations (5.2.4)-(5.2.6) is chaotic or not,

the Lyapunov exponents can be evaluated by the following formula

l = lim
N→∞

N

∑
n=1

ln
d1

d0
. (5.2.23)

According to the detailed numerical and theoretical analysis, the Lyapunov expo-

nents of the system (5.2.4)-(5.2.6) are found to be l1 = 5.4162, l2 = 2.1912, and

l3 = −19.2269, which proves that the system is a chaotic system, since we have two

positive Lyapunov exponents.

If we are dealing with a chaotic deterministic system, the Lyapunov dimension is gen-

erally a non-integer. For example, in a 3-dimensional chaotic system, where the Lya-

punov exponents have the form l− < 0 < l+, the Lyapunov dimension is evaluated as,

DL = 2+
l+
|l−|

. (5.2.24)

On the other hand, for an attractor, the condition l++ l− < 0 must also hold, which is

equivalent to 2 < DL < 3. Therefore, the Lyapunov dimension of a system is evaluated

as:
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DL = j+

j

∑
i=1

li∣∣l j+1
∣∣ = 2+

l1 + l2
|l3|

. (5.2.25)

According to the given formula the Lyapunov dimension of the system is

DL = j+

j

∑
i=1

li∣∣l j+1
∣∣ = 2+

5.4162+2.1912
|−19.2269|

= 2.3957. (5.2.26)

Since the Lyapunov dimension is in the range 2 < DL < 3, the result is consistent with

the findings in [34].

Equation (5.2.25) shows that the system (5.2.4)-(5.2.6) is a dissipative system, and

the Lyapunov dimensions of the system are fractional. Having a strange attractor and

positive Lyapunov exponent, it is obvious that the system is a 3D chaotic system.
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Figure 5.4: Plot of Lyapunov exponents

5.2.6 Numerical Simulations

As we have mentioned before, the solutions of the chaotic systems are obtained by

using the 4th order Runge-Kutta method. Thus, according to those solutions, the time

series analysis of the system (5.2.4)-(5.2.6) with respect to x(t),y(t),z(t) axes are listed
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seperately in the Figure 5.5.
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Figure 5.5: Waveforms of x(t), y(t), z(t) respectively

It is obvious from the figures 5.6a, 5.6b and 5.6c that the time series of x(t), y(t), and

z(t) are not periodic, which indicates that the system is a chaotic system.

The projections of the system (5.2.4)-(5.2.6), on the x-y plane, x-z plane and y-z plane

are given in the Figure 5.6. All of the graphs shows the chaotic behaviour of the sys-

tem. It appears that the new attractor exhibits an interesting complex chaotic dynamics

behavior.
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Figure 5.6: Projection of System (5.2.4)-(5.2.6) on the x-y plane, x-z plane, y-z plane
respectively

5.3 Geometric Sense of the Modified Quadratic Lorenz System

As an application of the dynamical systems in multiplicative calculus, the newly formed

chaotic system can also be written in the sense of geometric multiplicative calculus.

After defining the system in multiplicative calculus, the analysis of the multiplicative

Lorenz system will be done based on the rules of the multiplicative calculus.

5.3.1 The Modified Quadratic Lorenz Attractor in Multiplicative Calculus

5.3.1.1 Numerical Simulations of the Multiplicative Chaotic System

In order to write the multiplicative counterpart of the chaotic system, we need to re-

member some properties of the multiplicative calculus. Remembering that addition,
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subtraction and multiplication of functions in Newtonian calculus can be written as

multiplication, division and power respectively in multiplicative calculus, then the

equation (5.2.4) can be written as

s(yz− x) →
(

ylnz

x

)lns

. (5.3.1)

Thus the multiplicative counterparts of the equations (5.2.5) and (5.2.6) can also be

written in the same way.

Then by using the given properties, the modified multiplicative quadratic Lorenz at-

tractor corresponding to the system (5.2.4)-(5.2.6), can be written as

d∗x
dt

=

(
ylnz

x

)s

,

d∗y
dt

=
xr

xlnz , (5.3.2)

d∗z
dt

=
xlnx(lny)2

zb .

The powers of the functions are chosen suitably according to the rule xlny = ylnx and

the constants lns, lnr and lnb are replaced by s,r and b.

The analysis of the multiplicative chaotic system will be done in analogy to the Newto-

nian sense. Thus the first step is to find the equilibrium points of the proposed system.

In order to get the equilibrium points of the system, we will solve the proposed system

by the 4th order multiplicative Runge-Kutta method. Thus the equilibrium points are

obtained from the solution of the following system
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d∗x
dt

= 1, (5.3.3)

d∗y
dt

= 1, (5.3.4)

d∗z
dt

= 1, (5.3.5)

which is equivalent to (
ylnz

x

)s

= 1,

xr

xlnz = 1, (5.3.6)

xlnx(lny)2

zb = 1.

Then the equilibria of the system are found to be

E1 = (1,1,1), (5.3.7)

E2 =

(
exp
(

4√
br3
)
,exp

(
4

√
b
r

)
,exp(r)

)
, (5.3.8)

E3 =

(
exp
(
− 4√

br3
)
,exp

(
− 4

√
b
r

)
,exp(r)

)
. (5.3.9)

Remembering that the Jacobian matrix of a 3×3 multiplicative system is in the form

J =


ln
(

∂ ∗ f1
∂x

)
ln
(

∂ ∗ f1
∂y

)
ln
(

∂ ∗ f1
∂ z

)
ln
(

∂ ∗ f2
∂x

)
ln
(

∂ ∗ f2
∂y

)
ln
(

∂ ∗ f2
∂ z

)
ln
(

∂ ∗ f3
∂x

)
ln
(

∂ ∗ f3
∂y

)
ln
(

∂ ∗ f3
∂ z

)

 . (5.3.10)

If we denote the multiplicative chaotic system as:
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f1 =
d∗x
dt

=

(
ylnz

x

)s

,

f2 =
d∗y
dt

=
xr

xlnz , (5.3.11)

f3 =
d∗z
dt

=
xlnx(lny)2

zb ,

the corresponding Jacobian matrix for the system (5.3.11) will be

J =


ln
(
exp{− s

x}
)

ln
(

exp{ s lnz
y }
)

ln
(

exp{ s lny
z }
)

ln
(
exp{ r−lnz

x }
)

ln(exp{0}) ln
(
exp{− lnx

z }
)

ln
(

exp{2lnx(lny)2

x }
)

ln
(

exp{2(lnx)2 lny
y }

)
ln
(
exp{−b

z}
)

(5.3.12)

=


− s

x
s lnz

y
s lny

z

r−lnz
x 0 − lnx

z

2lnx(lny)2

x
2(lnx)2 lny

y −b
z

 . (5.3.13)

Thus, for the equilibrium point E1 we obtain the Jacobian matrix as:

J(E1) =


−s 0 0

r 0 0

0 0 −b

 , (5.3.14)

and for the equilibrium points E2 and E3 the Jacobian matrix will be

J(E2,3) =


−secr srec −cse−r

0 0 −cre−r

4c2recr 4c2rec −be−r

 , (5.3.15)
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where c =± 4
√

b
r . Thus by using the equilibrium points given in the equations (5.3.7)-

(5.3.9) the corresponding eigenvalues of the Jacobian matrices can be summarized in

the following table.

Table 5.2: Eigenvalues of the Jacobian matrices of the multiplicative chaotic system at
the equilibrium points

Equilibrium λ 1 λ 2 λ 3

Point

E1 −12 −4 0

E2 −0.0286149 0.00644902+0.272747i 0.00644902−0.272747i

E3 −10017.4 0.000690801+0.892422i 0.000690801−0.892422i

As we have discussed for the chaotic system defined by the equations (5.2.4)-(5.2.6),

since the two eigenvalues of the first equilibrium point E1 are negative real numbers,

this shows that the system is unstable at this equilibrium point. On the other hand, one

of the eigenvalues of the equilibrium points E2 and E3 is a negative real number and

the other two are complex conjugate numbers with positive real parts, which proves

that the system is again unstable at those equilibrium points.

Moreover, keeping in mind that the relation between the multiplicative and the ordinary

derivative of the function f (x) is

f ∗(x) = e
f ′(x)
f (x) , (5.3.16)

the modified multiplicative quadratic Lorenz attractor can be expressed in terms of the

additive derivatives as
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dx
dt

= xs(ln(y) ln(z)− ln(x)) ,

dy
dt

= y(r ln(x)− ln(x) ln(z)), (5.3.17)

dz
dt

= z((ln(x) ln(y))2−b ln(z)).

In order to analyze the system defined by the additive derivatives, the first step is again

to find the equilibrium points. Thus defining the system as

xs(ln(y) ln(z)− ln(x)) = 0,

y(r ln(x)− ln(x) ln(z)) = 0, (5.3.18)

z((ln(x) ln(y))2−b ln(z)) = 0,

we will see that the equilibrium points of the system (5.3.18) are the same with the

ones that we have obtained for the system (5.3.6), which are given in the Table 5.3.

Then by defining the system (5.3.17) as

f1 =
dx
dt

= xs(ln(y) ln(z)− ln(x)) ,

f2 =
dy
dt

= y(r ln(x)− ln(x) ln(z)), (5.3.19)

f3 =
dz
dt

= z((ln(x) ln(y))2−b ln(z)),

the Jacobian matrix of the system can be written as

J =


s lny lnz− s lnx− s sx lnz

y
sx lny

z

ry
x −

y lnz
x r ln(x)− ln(x) ln(z) −y lnx

z

2z lnx(lny)2

x
2z(lnx)2 lny

y (ln(x) ln(y))2−b lnz−b

 . (5.3.20)
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Finding the corresponding Jacobian matrices for the equilibrium points results in the

following matrices:

J(E1) =


−s 0 0

r 0 0

0 0 −b

 , (5.3.21)

and

J(E2,3) =


−s e−c+crsr ecr−rsc

0 0 −ec−rcr

4c2re−cr+r 4c2re−c+r −b+4c2r−br

 , (5.3.22)

where c = ± 4
√

b
r . In order to get the eigenvalues of the system we will solve the

jacobian matrices for the values of s,b and r.

Thus the eigenvalues of the system (5.3.17) are listed in the following table.

Table 5.3: Eigenvalues of the Jacobian matrices of the multiplicative chaotic system,
defined by additive derivatives, at the equilibrium points

Equilibrium λ 1 λ 2 λ 3

Point

E1 −12 −4 0

E2 −21.3002 2.65011+23.872i 2.65011−23.872i

E3 −21.3002 2.65011+23.872i 2.65011−23.872i
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As it is already explained for the previous chaotic systems, since the nonzero eigenval-

ues of the equilibrium point E1 are negative real numbers, the system is unstable at this

equilibrium point. If we consider the 2nd and the 3rd equilibrium points, E2 and E3, the

corresponding eigenvalues are the same. Since, one of the eigenvalues is a negative

real number and the other two are complex conjugate numbers with positive real parts,

this shows that the system is again unstable at these equilibrium points.

The multiplicative chaotic system (5.3.17), which is defined by additive derivatives,

is solved by using the 4th order multiplicative Runge-Kutta method. Solutions shows

that the system is chaotic for the same values of s,r and b, as it is for the chaotic

system defined by the equations (5.2.1)-(5.2.3). Keeping the values of s and r fixed, as

s = 12 and r = 8, and using various b values, the graphs of the solution of both system

are shown in the following figure. It can be seen that the graphs of the multiplicative

chaotic system is the same with the original system in logarithmic scale.
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Figure 5.8: Simulation of the multiplicative chaotic system when s = 12, r = 8 and
various b values

5.3.1.2 Lyapunov Exponents of the Multiplicative Chaotic System

As it is already explained in Section 5.2.5, the chaotic behaviour of a system can also be

tested by the Lyapunov exponents. It was given in equation (5.3.23) that the Lyapunov

exponents of a chaotic system can be evaluated by the formula:

l = lim
N→∞

N

∑
n=1

ln
d1

d0
. (5.3.23)

Then the Lyapunov exponents of a multiplicative chaotic system are also evaluated in

analogy to the ordinary case. For the multiplicative chaotic systems, the formula used

to evaluate the Lyapunov exponents can be written as

l = lim
N→∞

N

∑
n=1

ln
d(ln)

1

d(ln)
0

. (5.3.24)

It can be easily seen that the difference between the equations (5.3.23) and (5.3.24)

is the evaluation of the distances. For the multiplicative chaotic systems the distances

62



between the points are evaluated in logarithmic scale. Thus, the Lyapunov exponents

of the multiplicative chaotic system (5.3.17) are found to be l1 = 8.1806, l2 = 1.0684

and l3 = −15.1893. As it is explained before, a dynamical system can be considered

as chaotic if the system has at least one positive Lyapunov exponent. The results of the

Lyapunov exponents shows that the system (5.3.17) is a chaotic system. On the other

hand, Lyapunov dimension of the system can be calculated as

DL = j+

j

∑
i=1

li∣∣l j+1
∣∣ = 2+

l1 + l2
|l3|

= 2.6089, (5.3.25)

Since the Lyapunov dimension of the multiplicative system is also in the range 2 <

DL < 3 and there are positive Lyapunov exponents we can conclude that system is

a chaotic system. The following graph shows all of the Lyapunov exponents of the

system (5.3.17).

Figure 5.9: Plot of Lyapunov exponents of the Multiplicative Chaotic System

Comparison of the results obtained for both multiplicative chaotic systems, where one

of the systems is defined by multiplicative derivatives which is the system (5.3.2) and

the other is defined by additive derivatives which corresponds to the system (5.3.17),

shows that they are the same systems defined in different calculi. On the other hand we
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may conclude that chaotic behaviour is a general property which is not very sensitive

to the type of the calculus used.
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Chapter 6

CONCLUSION

In this thesis the multiplicative Runge-Kutta methods of 2nd, 3rd and 4th order are

described in order to solve the multiplicative initial value problem

y∗(x) = g(x,y), with y(x0) = y0. (6.0.1)

The derivation of all methods was carried out in detail. The Butcher tableaus corre-

sponding to each method are also presented. Several methods to overcome the lim-

itations of Multiplicative Calculus are presented to ensure the universal applicability

of the Multiplicative Runge-Kutta methods. Then the convergence, error and stabil-

ity analysis of the multiplicative one-step methods were discussed in detail. Further-

more, several problems are solved by using the 4th order Multiplicative Runge-Kutta

method. The results obtained from the solution of the problems by the Multiplicative

Runge-Kutta method are then compared with the results obtained from the classical

Runge-Kutta method and the Multiplicative Finite Difference Method. Comparison

of the results show that Multiplicative Runge-Kutta method gives better results than

the classical Runge-Kutta method and the Multiplicative Finite Difference Method, for

the same step size h. The methods were also compared with respect to the compu-

tation time, where the errors of the Multiplicative Runge-Kutta method were smaller

compared to the classical Runge-Kutta method for the same computation time.
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Finally, a new chaotic system was defined, which is called the Modified Quadratic

Lorenz Attractor. The system is analyzed numerically and theoretically to prove the

chaotic behaviour. In order to show the applicability of the proposed methods on

chaotic systems, the Modified Quadratic Lorenz Attractor is transformed to a mul-

tiplicative system. Then the multiplicative chaotic system is also analyzed for the

chaotic behaviour. The results of the analysis proved that the multiplicative Runge-

Kutta methods are also applicable to the chaotic systems.
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