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ABSTRACT

Many studies in the field of Bigeometric Calculus are based on an approximation to the

Bigeometric Taylor series, as the correct version is not known. The Bigeometric Taylor

Series introduced in this research, is derived and proven explicitly. As an application

of the Bigeometric Taylor Series, the Bigeometric Runge-Kutta method is derived in

analogy to the classical Runge-Kutta method. The stability, as well as the convergence

analysis is given explicitly for Bigeometric Runge-Kutta method. Application of the

Bigeometric Runge-Kutta method to problems with known closed form solutions show

the advantage of this method for a certain family of problems compared to the classical

Runge-Kutta Method.

Keywords: Bigeometric calculus, Runge-Kutta, differential equations, numerical ap-

proximation, dynamical systems,electirical circuits.
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ÖZ

Bigeometrik alanında yapılan birçok çalışmada Bigeometrik Taylor serisi doğru analiz

edilmeden kullanılmıştır. Bu çalışmada Bigeometrik Taylor Serisinin ispatı açık olarak

verilmiştir. Bigeometrik Taylor Serisinin bir uygulaması olarak, Bigeometric Runge-

Kutta yöntemi nümerik analizde bilinen Runge-Kutta yöntemi baz alınarak çıkarılmıştır.

Ayrıca Bigeometric Runge-Kutta yöntemi için yakınsak ve kararlılık testleri de analiz

edilmiştir. Yöntem dinamik sistemler, bioloji ve elektrik devrelerinde uygulanmış ve

Bigeometrik Runge Kutta ile elde edilen sonuçlar nümerik analizde bilinen Runge-

Kutta yöntemi ile karşılaştırılmıştır.

Anahtar Kelimeler: Çarpımsal analiz„ Runge-Kutta, diferansiyel denklemler, nu-

merik yakınsama, dinamik sistemler, elektrik devreleri.
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Chapter 1

INTRODUCTION

Each problem in Science and Engineering has its unique characteristics and proper-

ties, so apparently there is a significant number of problems where the solutions of

the problems are of exponential nature. Grossmann and Katz proved that it is possible

to produce infinitely many calculi independently [24]. They build a big family named

Non-Newtonian Calculus, covering also the Newtonian or Leibnizian Calculus, the Ge-

ometric Multiplicative Calculus, the Bigeometric Multiplicative Calculus and infinitely

many other calculi. The basic aim of the book [24] is to explain the requirements for

the generation of new types of calculi. Moreover, Grossmann and Katz present nine

specific non-Newtonian calculi, the general theory of non-Newtonian Calculus, and

heuristic guides for the application.

The most popular representatives of the family of Non-Newtonian calculi are the Ge-

ometric Multiplicative Calculus and the Bigeometric Multiplicative Calculus. There

are various applications of these two Non-Newtonian calculi available in the literature;

Multiplicative Calculus, both geometric as well as bigeometric have a wide area of

application, e.g. in modelling in finance and economics [10], numerical approxima-

tion methods in [30, 27, 26], biological image analysis in [21, 22], and application on

literary texts in [6].
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Geometric and Bigeometric calculus can applied either to purely positive valued func-

tions or purely negative valued functions of a real variable. There are several ap-

proaches to extend Geometric Multiplicative Calculus to the complex domain. A first

heuristic approach was presented by Uzer in [34], whereas the mathematically com-

plete description of complex multiplicative calculus was given by Bashirov and Riza

in [11, 7, 8, 31]. On the other hand, applications of Bigeometric Calculus found its

way in the field of nonlinear dynamics by the group of Rybaczuk [33, 4, 3, 2, 12, 32].

In order to find potential application areas of Bigeometric Multiplicative Calulus, we

have also studied mathematical models based on differential equations in biology. As

in general closed form solutions for real world problems are not available, the sys-

tems of ordinary differential equations have to be solved using numerical methods. In

general the 4th order Runge-Kutta method applied to the numerical solution of these

differential equations. As an example, the Modelling of Gene expression using dif-

ferential equations [14], modelling Tumour growth [1], or modelling bacteria growth

and cancer [19, 20] can be considered. In the present study, the Bigeometric Runge

Kutta Method is applied to the mathematical model of tumor therapy using oncolytic

virus[1].

As in the literature, it is not possible to find the proofs of all properties of the Bigeo-

metric Derivative, After the introduction of a complete description of the Bigeometric

Derivative, chapter 2 summarises all properties and proofs of the Bigeometric deriva-

tive analogous to [9]. In chapter 3, the relationship between the geometric multiplica-

tive and bigeometric multiplicative derivative for higher order derivatives is stated and

proven explicitly. As in all calculi, the fundamental theorem for numerical approxi-
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mations is also in Bigeometric Calculus the Bigeometric Taylor expansion. Chapter

4 gives the derivation and proof Bigeometric Taylor theoremn based on the Geomet-

ric Taylor theorem given [9]. Although Aniszewska [2] introduced the Bigeometric

Multiplicative Runge-Kutta Method using a different definition for the bigeometric

derivative with a limited Bigeometric taylor expansion, an explicit derivation of the

Bigeometric Runge-Kutta method as an application of the Bigeometric Taylor The-

orem is given in Chapter 5. Furthermore, the convergence and stability analysis of

Bigeometric Runge-Kutta method was given in Chapter 6. Consequently, the applica-

ble area of Bigeometric- Runge-Kutta Method was introduced and tested exemplarily

on several examples in Chapter 7. Finally, the thesis closes with the conclusion .
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Chapter 2

BIGEOMETRIC CALCULUS AND IT’S PROPERTIES

An overview of multiplicative calculus stated in [9]. The proofs of differentiation rules

and more information about multiplicative calculus are given in [9] and [10].Definition

of bigeometric derivative of a function f stated in [9] as :

f π(x) =
dπ f (x)

dx
= lim

h→0

(
f
(
(1+h)x

)
f (x)

) 1
h

, (2.0.1)

where f π shows the bigeometric derivative if the limit in (2.0.1) exist.

By using the solution of main limit definition in (2.0.1), the connection of the ordinary

and the Bigeometric derivative can be given as :

f π(x) = exp
{

x
f ′(x)
f (x)

}
. (2.0.2)

The effect of that x-value seen, when the function has a unit. The multiplicative deriva-

tive yields as f ∗ = e f ′(x)/ f (x). Let’s assume that x have the unit meter, and then the

multiplicative derivative finally turns a unit e1/m, which has no physical meaning. On

the other hand, in the Bigeometric derivative we also have x value can have a unit, like

the derivative itself, so at the end we get at least no unreasonable result.

The relation between first order Bigeometric derivative and the multiplicative deriva-

tive is derived in [30] as follows :
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f π(x) =
dπ f (x)

dx
= ( f ∗(x))x . (2.0.3)

If we extended equation (2.0.3) obviously exponential definitions can easly proved the

below relation :

f π(x) = exp(x(ln◦ f (x))′) = exp
(

x
[

f ′(x)
f (x)

])
= ( f ∗(x))x (2.0.4)

The complete differentiation and integration rules for geometric-multiplicative calcu-

lus stated in [9]. However, no references presented all the properties of differentiation

or integration rules for the Bigeometric calculus [23, 35, 15]. Therefore, all the prop-

erties of the Bigeometric derivatives stated in the following. The proofs are carried out

analogously to [9] by using the relation between geometric-multiplicative and bigeo-

metric derivative (2.0.4).

Bigeometric differentiation rules: Let f (x), g(x), and h(x) be π-differentiable func-

tions, and c ∈ R.

1. Constant multiple rule:

(c f )π(x) = ( f )π(x)

2. Product Rule :

( f g)π(x) = f π(x)gπ(x)

3. Quotient Rule : (
f
g

)π

(x) =
f π(x)
gπ(x)
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4. Power Rule :

( f h)π(x) = f π(x)h(x) f (x)xh′(x)

5. Sum Rule :

( f +g)π (x) = ( f π(x))
f (x)

f (x)+g(x) (gπ(x))
g(x)

f (x)+g(x)

6. Chain Rule:

For one variable :

( f ◦h)π(x) = f π(h(x))h′(x)

For two variable:

f π(y(x),z(x)) = ( f π
y (y(x),z(x)))

y
′
(x)( f π

z (y(x),z(x)))
z
′
(x)

with f π
y (y(x),z(x)) denoting the partial Bigeometric derivative of f (y(x),z(x))

with respect to y ,and f π
z (y(x),z(x)) denoting the partial Bigeometric derivative of

f (y(x),z(x)) with respect to z respectively.

Proofs of the Bigeometric differentiation rules:

1. Constant multiple Rule :

ex(ln(c f (x)))
′
= ex

(
1

c f (x) (c f (x)′)
)
= ex f ′(x)

f (x) = f π(x)

2. Product Rule :

ex(ln( f (x)g(x)))′ = ex
[

1
f (x)g(x) ( f ′(x)g(x)+ f (x)g′(x))

]
= ex

(
f ′(x)g(x)
f (x)g(x) +

f (x)g′(x)
f (x)g(x)

)
= f π(x)gπ(x)

3. Quotient Rule:
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ex(ln( f (x)
g(x) ))

′

= e
x
(

g(x)
f (x)

(
f ′(x)g(x)−g′(x) f (x)

g(x)2

))
= ex f ′(x)

f (x) e−x g′(x)
g(x) =

f π(x)
gπ(x)

4. Power Rule :

ex(ln( f (x))h(x))
′
= e

x
(

1
f (x)h(x)

f (x)h(x)
(

h′(x) ln f (x)+h(x) f ′(x)
f (x)

))
=

= ex
(

h′(x) ln f (x)+h(x) f ′(x)
f (x)

)
=
(

f (x)xh′(x)
)
( f π(x))h(x)

5. Sum Rule :

ex(ln( f (x)+g(x)))′ = ex
(

1
f (x)+g(x) ( f ′(x)+g′(x))

)
= ( f π(x))

f (x)
f (x)+g(x) (gπ(x))

g(x)
f (x)+g(x)

6. Chain Rule:

For one variable :

ex ln( f◦h)′(x) = ex
(

1
f (h(x)) ( f ′(h(x))h′(x))

)
= f π(h(x))h′(x)

For two variable :

ex(ln[ f (y(x),z(x))])′ = exp
{

x
f ′y(y(x),z(x))y

′(x)+ f ′z(y(x),z(x))z
′(x)

f (y(x),z(x))

}
=

= exp
{

x
f ′y(y(x),z(x))
f (y(x),z(x))

y′(x)
}

exp
{

x
f ′z(y(x),z(x))
f (y(x),z(x))

z′(x)
}
=

= f π
y (y(x),z(x))

y′(x) f π
z (y(x),z(x))

z′(x)

7



Chapter 3

THE RELATION BETWEEN GEOMETRIC AND
BIGEOMETRIC DERIVATIVE

As mentioned before it is obvious that we need to transform the bigeometric form to

Multiplicative form for finding and proving the properties of Bigeometric Calculus .

In other word we need to write bigeometric derivative in terms of the multiplicative

derivative for finding the Bigeometric form properties. Let us calculate the Bigeomet-

ric derivatives in terms of the multiplicative derivatives up to order three. Using the

power rule of the multiplicative derivative [9]. As a short revision for power rule :

f ∗∗ = (( f ∗)x)∗ = ( f ∗∗)x ( f ∗)x
′
. (3.0.1)

By using the same procedure in (3.0.1) we will write state f ππ and f πππ as :

f π(x) = f ∗(x)x (3.0.2)

f ππ(x) = ( f ∗∗(x))x2
( f ∗(x))x (3.0.3)

f πππ(x) = ( f ∗∗∗(x))x3
( f ∗∗(x))3x2

( f ∗(x))x (3.0.4)

... =
...

Let’s give an idea for second order bigeometric derivative how its come :

f ππ = (( f π)∗)x =
(
(( f ∗)x)

∗)x
=
(
( f ∗∗)x ( f ∗)x′

)x
= ( f ∗∗)x2

( f ∗)x (3.0.5)
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Analogously all higher multiplicative derivatives in terms of the bigeometric deriva-

tives can be performed. In order to show higher order multiplicative derivatives in

terms of bigeometric derivatives, we need to solve these equations (3.0.2) - (3.0.4) for

the geometric-multiplicative derivatives. Hence, the higher order bigeometric deriva-

tives derived as :

f ∗(x) = ( f π(x))
1
x (3.0.6)

f ∗∗(x) =

(
f ππ(x)
f π(x)

) 1
x2

(3.0.7)

f ∗∗∗(x) =

(
f πππ(x)( f π(x))2

( f ππ(x))3

) 1
x3

(3.0.8)

... =
...

Equations (3.0.6) - (3.0.8) suggest that the n-th order geometric-multiplicative deriva-

tive can be expressed in terms of the Bigeometric derivatives. (3.0.6) - (3.0.8) suggest

that the n-th order geometric-multiplicative derivative can be expressed in terms of the

Bigeometric derivatives using the unsigned Stirling Numbers first kind s(n, j) [5] as

following:

Theorem 3.0.1 (Relation between geometric and bigeometric multiplicative derivative)

The n-th geometric multiplicative derivative can be expressed as a product of bigeo-

metric multiplicative derivatives up to order n as :

f ∗(n)(x) =

(
n

∏
j=1

( f π( j)(x))(−1)n− js(n, j)

) 1
xn

, (3.0.9)

where f ∗(n)(x) denotes the n-th geometric-multiplicative derivative of f (x) and f π( j)(x)

denotes the j-th Bigeometric derivative of f (x).

9



Proof. The proof for this relation can be carried out simply using mathematical induc-

tion. But First let us check the formula for the first non-trivial case n = 2 .

f ∗∗(x) =
(

f π(x)(−1)2−1s(2,1) f ππ(x)(−1)2−2s(2,2)
)1/x2

=

(
f ππ(x)
f π(x)

) 1
x2

(3.0.10)

Equations (3.0.10) are obviously identical.

Let (3.0.9) be true for n and check if it is true for n+1 .

f ∗(n+1)(x) =
d∗

dx∗
f ∗(n)(x)

=
d∗

dx∗

(
n

∏
j=1

( f π( j)(x))
(−1)n− js(n, j)

xn

)

With

d∗ f (x)
dx∗

=

(
dπ f (x)

dxπ

)1/x

,

We can calculate the π-derivative of the product .

f ∗(n+1)(x) =

[
dπ

dxπ

(
n

∏
j=1

( f π( j)(x))
(−1)n− js(n, j)

xn

)]1/x

=

[
n

∏
j=1

( f π( j+1)(x))
(−1)n− js(n, j)

xn ( f π( j)(x))
x(−n)(−1)n− js(n, j)

xn+1

]1/x

=

[
n

∏
j=1

( f π( j+1)(x))
(−1)n− js(n, j)

xn ( f π( j)(x))
(−1)n+1− jns(n, j)

xn

]1/x

=

[
n

∏
j=1

( f π( j+1)(x))(−1)n− js(n, j)( f π( j)(x))(−1)n+1− jns(n, j)

]1/xn+1

=

[
n

∏
j=1

( f π( j+1)(x))(−1)n− js(n, j)
n

∏
j=1

( f π( j)(x))(−1)n+1− jns(n, j)

]1/xn+1
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=

[
n+1

∏
j=2

( f π( j)(x))(−1)n+1− js(n, j−1)
n

∏
j=1

( f π( j)(x))(−1)n+1− jns(n, j)

]1/xn+1

=

[
n

∏
j=2

( f π( j)(x))(−1)n+1− js(n, j−1) · ( f π(n+1)(x))(−1)n+1−(n+1s(n,n)·

·( f π(1)(x))(−1)nns(n,1) ·
n

∏
j=2

( f π( j)(x))(−1)n+1− jns(n, j)

]1/xn+1

=

[
n

∏
j=2

( f π( j)(x))(−1)n+1− j(s(n, j−1)+ns(n, j)) ·

·( f π(n+1)(x))(−1)n+1−(n+1s(n,n) · ( f π(1)(x))(−1)nns(n,1)
]1/xn+1

Using the recurrence relation for the unsigned Stirling Number of first kind [5]

s(n+1, j) = ns(n, j)+ s(n, j−1), (3.0.11)

we have

s(n, j−1)+ns(n, j) = s(n+1, j), (3.0.12)

and

ns(n,1) = s(n+1,1)− s(n,0) = s(n+1,1), (3.0.13)

as

s(n+1,0) = 0

Finally with s(n,n) = s(n+1,n+1) we obtain:
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f ∗(n+1)(x) =

[
n

∏
j=2

( f π( j)(x))(−1)n+1− j(s(n, j−1)+ns(n, j))

×( f π(n+1)(x))(−1)n+1−(n+1s(n,n)( f π(1)(x))(−1)nns(n,1)
]1/xn+1

=

=

[
n

∏
j=2

( f π( j)(x))(−1)n+1− js(n+1, j)

×( f π(1)(x))(−1)ns(n+1,1) · ( f π(n+1)(x))(−1)n+1−(n+1s(n+1,n+1)
]1/xn+1

=

[
n+1

∏
j=1

( f π( j)(x))(−1)n+1− js(n+1, j)

]1/xn+1

which completes the proof.
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Chapter 4

BIGEOMETRIC TAYLOR THEOREM

The Bigeometric Taylor theorem is not available any of the resources. The attempts

of the autors in [2] and [30] show that finding the Bigeometric Taylor expansion is not

that much easy. To show Bigeometric Taylor theorem we need the multiplicative form

of Taylor theorem which is given in [9] as:

Theorem 4.0.2 (Multiplicative Taylor Theorem) Let f : B→ R where B denotes an

open interval then the function f is n+ 1 times * differentiable on B. Then for any

x,x+h ∈ B, there exists a number ϑ ∈ (0,1) such that

f (x+h) =
n

∏
m=0

((
f ∗(m)(x)

) hm
m!

)((
f ∗(n+1)(x+ϑh)

) hn+1
(n+1)!

)
(4.0.1)

For showing bigeometric Taylor theorem we need to write nth order geometric deriva-

tive in 4.0.1, which shown by f ∗(m)(x) ,in terms of bigeometric derivative. In other

words, we need to use the relation between multiplicative and bigeometric derivative

stated in theorem 3.0.1. This shows clearly, why finding the Bigeometric Taylor theo-

rem is so difficult.The idea for derivation of Bigeometric Taylor Theorem is obviously

seen by substituting the higher order geometric-multiplicative derivatives in the ge-

ometric multiplicative Taylor theorem After a serious simplification the Bigeometric

Taylor theorem becomes visible .
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f (x+h) =
∞

∏
m=0

((
f ∗(m)(x)

) hm
m!

)
=

∞

∏
m=0

(
m

∏
j=1

( f π( j)(x))(−1)m− js(m, j)/xm

) hm
m!

(4.0.2)

Rearranging the terms with respect to the order of the bigeometric derivative we get:

f (x+h)=
∞

∏
m=0

(
∞

∏
j=m

( f π(m)(x))(−1)m− js(m, j)/xm

) hm
m!

=
∞

∏
m=0

(
m

∏
j=1

( f π( j)(x))
(−1)m− js(m, j)hm

xmm!

)

Rearranging the factors in terms of the orders of the Bigeometric derivatives we get :

f (x+h) =
∞

∏
m=0

(
∞

∏
j=m

( f π(m)(x))
(−1)m− js( j,m)h j

x j j!

)
=

∞

∏
m=0

(
( f π(m)(x))∑

∞
j=m

(−1)m− js( j,m)h j

x j j!

)
.

(4.0.3)
With

∞

∑
j=m

(−1) j−ms( j,m)
x j

j!
=

(ln(1+ x))m

m!
, (4.0.4)

Substituting (4.0.4) in (4.0.3), we obtain

f (x+h) =
∞

∏
m=0

(
( f π(m)(x))

(ln(1+ h
x ))

m

m!

)
. (4.0.5)

Finally we can summerize the Bigeometric Taylor theorem as following.

f (x+h) =
∞

∏
i=0

(
f π(i)(x)

) (ln(1+ h
x ))

i

i! (4.0.6)

In [2] the Bigeometric Taylor theorem showed up to order 5 in h/x. The Expansion of

the logarithms up to order 5 in h/x gives the same result of [2].

Theorem 4.0.3 (Bigeometric Taylor Theorem) Let f : B→ R where B denotes an

14



open interval then the function f is n+ 1 times π differentiable on B. Then for any

x,x+h ∈ B, there exists a number ϑ ∈ (0,1) such that

f (x+h) =
n

∏
i=0

(
f π(i)(x)

) (ln(1+ h
x ))

i

i!

( f π(n+1)(x+ϑh)
) (ln(1+ h

x ))
n+1

(n+1)!

 . (4.0.7)
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Chapter 5

BIGEOMETRIC RUNGE-KUTTA METHOD

In this chapter, we derive the 2nd , 3rd and 4th order Bigeometric Runge-Kutta method

based on the ordinary Runge-Kutta method in the given sections respectively Sec.

5.1,5.2 and 5.3. Bigeometric Taylor theorem (4.0.7) formula becomes a critical tool

for deriving the Bigeometric Runge-Kutta method. In the ordinary case, Runge-Kutta

Method plays an important role for the numerical solution of initial value problems.

Hence, Bigeometric Runge-Kutta method can applied to problems defined by the bi-

geometric initial value problem. Before starting to derivation of Bigeometric Runge-

Kutta method let’s define Bigeometric initial value problem as:

yπ(x) = ρ(x,y), (5.0.1)

with the initial value

y(x0) = y0. (5.0.2)

2nd order Bigeometric Runge-Kutta Method is the simplest form to find an estimation

of the solution with using (5.0.1) where the initial value (5.0.2). Because of this let’s

start with the derivation of 2nd order Bigeometric Runge-Kutta Method

5.1 2nd order Bigeometric Runge-Kutta Method(BRK2)

The second order bigeometric Runge-Kutta method can produce with the same idea in

the ordinary case. The method also identified as Euler method. Let step-size h > 0 and
16



define BRK2 method as follows :

y(x+h) = y(x)ρ
a ln(1+ h

x )
0 ρ

b ln(1+ h
x )

1 (5.1.1)

with

ρ0 = ρ(x,y), (5.1.2)

ρ1 = ρ((x+ `h,yρ

γh
x

0 ) (5.1.3)

The basic aim is to determine the unknown scalar values in (5.1.3) by using the Bigeo-

metric Taylor expansion (4.0.7) for y(x+h). We have to open our Bigeometric Taylor

expansion up to order 2 given as:

y(x+h) = y(x)(yπ(x))ln(1+ h
x ) (yππ(x))

1
2! [ln(1+

h
x )]

2

. . . (5.1.4)

For comparing the scalars we need to change yπ(x) and yππ(x) in (5.1.4) as:

yπ(x) = ρ((x,y) (5.1.5)

yππ(x) = (yπ(x))π = (ρ(x,y))π (5.1.6)

Application of chain rule stated in (6) to the function ρπ(x,y) we obtain :

yππ(x) = (ρ(x,y))π = ρ
π
x (x,y)ρ

π
y (x,y)

y
′

(5.1.7)

substituting (5.1.6) and (5.1.7) in equation (5.1.4) we obtain :

y(x+h) = y(x)(ρ(x,y))ln(1+ h
x )
(

ρ
π
x (x,y)ρ

π
y (x,y)

y
′) 1

2! [ln(1+
h
x ]

2

. . . (5.1.8)
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By using the property yπ = ρ(x,y) = exp
(

x y′
y

)
we will find first derivative in the

bigeometric form as :

y′ =
y
x

ln(ρ(x,y)) (5.1.9)

Replacing y′ in (5.1.8) our new form of bigeometric taylor theorem can stated as :

y(x+h) = y(x)(ρ(x,y))ln(1+ h
x )
(

ρ
π
x (x,y)ρ

π
y (x,y)

y
x ln(ρ(x,y))

) 1
2! [ln(1+

h
x ]

2

. . . (5.1.10)

For finding the unknown scalars in (5.1.1) we need to compare it with the equations

(5.1.10) and we have to open ρ1 from (5.1.3). Expansion of ρ1 using Bigeometric

Taylor Theorem with order two we obtain :

ρ1 = ρ(x,y) [ρπ(x,y)]ln(1+ h
x ) (5.1.11)

Applying chain rule for ρπ(x,y) in equation (5.1.11)

ρ1 = ρ(x,y)
[
ρ

π
x (x,y)

`
ρ

π
y (x,y)

y γ

x ln(ρ0)
]ln(1+ h

x ) (5.1.12)

where the partial derivative of yρ

γh
x

0 stated as :

d
dh

(
yρ

γh
x

0

)
= yρ

γh
0 ln(ρ0)

γ

x
= y

γ

x
lnρ0 (5.1.13)

with h = 0. Substituting ρ0 = ρ(x,y) (5.1.13), and (5.1.12) into (5.1.1) we obtain :

y(x+h) = y(x)[ρ(x,y)]︸ ︷︷ ︸
ρ0

a ln(1+ h
x )

[
ρ(x,y)

[
ρ

π
x (x,y)

`
ρ

π
y (x,y)

yγ

x ln(ρ(x,y)
]ln(1+ h

x )
]

︸ ︷︷ ︸
ρ1

b ln(1+ h
x )

(5.1.14)
Simplifying (5.1.14) the Bigeometric Euler Method becomes

18



y(x+h) = y(x)ρ(x,y)(a+b) ln(1+ h
x )ρ

π
x (x,y)

b`(ln(1+ h
x ))

2

ρ
π
y (x,y)

bγ
y
x ln(ρ(x,y))(ln(1+ h

x ))
2

(5.1.15)

Comparing the powers in Bigeometric Taylor theorem (5.1.10) and the calculated pow-

ers in the Bigeometric Euler (5.1.15) it is obvious that the parameters get the following

relations :

a+b = 1 (5.1.16)

`b =
1
2

(5.1.17)

γb =
1
2

(5.1.18)

Since the number of equatons is less than the number of unknowns, obviously we will

find infinitely many solutions of the given equations (5.1.16)-(5.1.18). Furthermore it’s

easily seen that ` = γ and a+ b = 1 must be satisfied. The relation of the parameters

can represent in the Butcher tableau [13] as following :

0

` γ

a b

We have numerous possibility for selection of unknowns a,b, p and γ . The parameters

can arrange differently depending on the kind of the given problem. One possible

selection of the parameters a,b, `, and γ is :

a = b =
1
2
, and `= γ = 1. (5.1.19)
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which is the parameters of classical Runge-Kutta method. Substituting parameters in

Bigeometric Euler Method stated in (5.1.1)-(5.1.3) BRK2 methd turns to :

y(x+h) = y(x)ρ
1
2 ln(1+ h

x )
0 ρ

1
2 ln(1+ h

x )
1 , (5.1.20)

ρ0 = ρ(x,y), (5.1.21)

ρ1 = ρ

(
x+h,yρ

h
x

0

)
. (5.1.22)

5.2 3rd order Bigeometric Runge-Kutta Method(BRK3)

The derivation of 3rd order Bigeometric Runge-Kutta method we apply the same pro-

cedure with Bigeometric Euler Method, i.e. the 2nd order Bigeometric Runge-Kutta

method stated in section 5.1.

In this case y(x+h) is open up to order 3 by using Bigeometric Taylor Theorem (4.0.7)

and get

y(x+h) = y(x)(yπ(x))ln(1+ h
x ) (yππ(x))

1
2! [ln(1+ h

x )]
2

(yπππ(x))
1
3! [ln(1+ h

x )]
3

. (5.2.1)

The derivation for the 3rd order Bigeometric Runge-Kutta method is :

y(x+h) = y(x)ρ
a ln(1+ h

x )
0 ρ

b ln(1+ h
x )

1 ρ
c ln(1+ h

x )
2 (5.2.2)

ρ0 = ρ(x,y), (5.2.3)

ρ1 = ρ

(
x+ `h,yρ

γh
x

0

)
, (5.2.4)

ρ2 = ρ

(
x+ `1h,yρ

γ1h
x

0 ρ

γ2h
x

1

)
. (5.2.5)

Now for comparing unknowns in (5.2.1) and (5.2.2) we have to change the Bigeometric

Taylor expansion as :
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yπ(x) = ρ(x,y) (5.2.6)

yππ(x) = (yπ(x))π = ρ
π
x (x,y)ρ

π
y (x,y)

y′(x) (5.2.7)

yπππ(x) = [yππ(x)]π =
[
ρ

π
x (x,y)ρ

π
y (x,y)

y′(x)
]π

(5.2.8)

By applying chain rule satate in (6) to (5.2.8)

yπππ(x) = ρ
π
xx(x,y)

[
ρ

π
xy(x,y)

]y′(x) [
ρ

π
yx(x,y)

]y′(x) [
ρ

π
yy(x,y)

](y′(x))2

ρ
π
y (x,y)

y′′(x)

= ρ
π
xx(x,y)ρ

π
xy(x,y)

2y′(x)
ρ

π
yy(x,y)

(y′(x))2
ρ

π
y (x,y)

y′′(x) (5.2.9)

Substituting (5.2.6),(5.2.7) and (5.2.9) in the 4 order Bigeometric Taylor formula stated

in (5.2.1) we obtain :

y(x+h) = y(x)(ρ(x,y))ln(1+ h
x )
(

ρ
π
x (x,y)ρ

π
y (x,y)

y′(x)
) 1

2! [ln(1+
h
x )]

2

[
ρ

π
xx(x,y)ρ

π
xy(x,y)

2y′(x)
ρ

π
yy(x,y)

(y′(x))2
ρ

π
y (x,y)

y′′(x)
] 1

3! [ln(1+ h
z )]

3

(5.2.10)

Replacing y′ in (5.2.10) obviously the Bigeometric Taylor expansion turns to :

y(x+h) = y(x)(ρ(x,y))ln(1+ h
x ) (ρπ

x (x,y))
1
2! [ln(1+ h

x )]
2 [

ρ
π
y (x,y)

y
x ln(ρ(x,y))

] 1
2!(ln(1+ h

x ))
2

×

×
[

ρ
π
xx(x,y)ρ

π
xy(x,y)

2 y
x ln(ρ(x,y))

ρ
π
yy(x,y)

( y
x ln(ρ(x,y)))

2
] 1

3! [ln(1+ h
x )]

3

×

×
[

ρ
π
y (x,y)

y( 1
x ln(ρ(x,y)))

2
] 1

3! [ln(1+ h
x )]

3

(5.2.11)

Obviously we need to expanding ρ1 and ρ2 by using the Bigeometric Taylor theorem.

Then we obtain :
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ρ1 = ρ(x,y)
[
ρ

π
x (x,y)

`
ρ

π
y (x,y)

y γ

x ln(ρ(x,y))
]ln(1+ h

x ) ·

·
[
ρ

π
xx(x,y)

`2
ρ

π
xy(x,y)

`y γ

x ln(ρ(x,y))
] 1

2! [ln(1+ h
x )]

2

·

·
[

ρ
π
yy(x,y)

(y γ

x ln(ρ(x,y)))
2

ρ
π
y (x,y)

y( γ

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2

(5.2.12)

ρ2 = ρ(x,y)
[
ρ

π
x (x,y)

`1ρ
π
y (x,y)

(γ1+γ2)
y
x ln(ρ(x,y))

]ln(1+ h
x ) ·

·
[
ρ

π
xx(x,y)

`2
1ρ

π
xy(x,y)

(`1γ1+`1γ2)
y
x ln(ρ(x,y))

] 1
2! [ln(1+

h
x )]

2

·

·
[

ρ
π
yy(x,y)

(γ1+γ2)
2( y

x ln(ρ(x,y)))
2
] 1

2! [ln(1+
h
x )]

2

·

·
[

ρ
π
y (x,y)

y(γ1+γ2)
2( 1

x ln(ρ(x,y)))
2
] 1

2! [ln(1+ h
x )]

2

(5.2.13)

By substituting (5.2.12) and (5.2.13) into (5.2.11) we obtain :

y(x+h) = y(x)ρ(x,y)(a+b+c) ln(1+ h
x )·

·
[
ρ

π
x (x,y)

(`b+`1c)
](ln(1+ h

x ))
2

·

·
[
ρ

π
y (x,y)

γb+(γ1+γ2)c
] y

x ln(ρ(x,y))(ln(1+ h
x ))

2

·

·
[
ρ

π
xx(x,y)

`2b+`2
1c
] 1

2 [ln(1+ h
x )]

3

·

·
[
ρ

π
xy(x,y)

(b`γ+(`1γ1+`1γ2)c)
y
x lnρ(x,y)

] 1
2 [ln(1+

h
x )]

3

·

·
[

ρ
π
yy(x,y)

(γ2b+(γ1+γ2)
2c).( y

x lnρ(x,y))
2
] 1

2 [ln(1+
h
x )]

3

·

·
[

ρ
π
y (x,y)

y(bγ2+(γ1+γ2)
2c)( 1

x lnρ(x,y))
2
] 1

2 [ln(1+
h
x )]

3

(5.2.14)

Now we will compare the powers of the Bigeometric derivatives in (5.2.14) with the
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ones in (5.2.11) then the relation of parameters stated as :

a+b+ c = 1

`b+ `1c+ `2d =
1
2

γb+ γ1c+ γ2c =
1
2

`2b+ `2
1c =

1
3

b`γ + `1γ1c+ `1γ2cd =
1
3

γ
2b+ γ

2
1 c+ γ

2
2 c+2γ1γ2c =

1
3

γ
2b+ γ

2
1 c+ γ

2
2 c+2γ1γ2c =

1
3

(5.2.15)

Then simplifying this finding in (5.2.15) we get analogously the parameters a,b,c, `,q, `1,γ1,

and γ2 as :

` = γ (5.2.16)

`1 = γ1 + γ2 (5.2.17)

and

a+b+ c = 1 (5.2.18)

`b+ c`1 =
1
2

(5.2.19)

As in the case of the Bigeometric Euler Method, the number of equations is less than

the number of unknowns; therefore we get again infinitely many solutions. We can

23



summerize the results in the following Butcher tableau :

0

` γ

`1 γ1 γ2

a b c

A reasonable selection of the parameters could be a = c = 1
6 , b = 2

3 , `= γ = 1
2 , `1 = 1

γ1 = −1 and γ2 = 2. The function is evaluated at three positions, i.e. at x, x+ `h

and x+ `1h. Reasonably `1 = 1 so that we evaluate the function at the beginning and

the end of the interval [x,x+ h]. We select ` = 1
2 to calculate the function also in the

middle of the interval. The weights of the contributions of ρ0, ρ1, and ρ2 are a, b, and c

respectively. As a+b+c = 1, we give equal weights for the end points of the interval,

and put the emphasis on midpoint of the interval and get therefore a = 1
6 , b = 2

3 , and

c = 1
6 . Nevertheless, the parameters can be selected in the framework of the Butcher

tableau for any problem independently to find the optimal solution. Finally we get for

this selection of the parameters the 3rd order Bigeometric Runge-Kutta method

y(x+h) = y(x)ρ
1
6 ln(1+ h

x )
0 ρ

2
3 ln(1+ h

x )
1 ρ

1
6 ln(1+ h

x )
2 , (5.2.20)

ρ0 = ρ(x,y), (5.2.21)

ρ1 = ρ

(
x+

h
2
,yρ

h
2x
0

)
, (5.2.22)

ρ2 = ρ

(
x+h,yρ

− h
x

1 ρ
2h
x

2

)
. (5.2.23)
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5.3 4th order Bigeometric Runge-Kutta Method(BRK4)

We know that the main aim of 4th order Runge-Kutta method(RK4) performs the most

accurate estimation for the initial value problems with a reasonable computational ef-

fort. Because of this property in many areas researchers, especially engineers and sci-

entist, preferred to use the (RK4) method. The analysis for several problems showed

that also in the framework of Bigeometric Calculus the 4th order Bigeometric Runge-

Kutta method(BRK4) gives the most accurate approximation for the initial value prob-

lems. For proving BRK4 method we need Bigeometric Taylor expansion of y(x+ h)

stated in equation (5.2.11) as :

y(x+h) = y(x)(ρ(x,y))ln(1+ h
x ) (ρπ

x (x,y))
1
2! [ln(1+ h

x )]
2 [

ρ
π
y (x,y)

y
x ln(ρ(x,y))

] 1
2!(ln(1+ h

x ))
2

·

·
[

ρ
π
xx(x,y)ρ

π
xy(x,y)

2 y
x ln(ρ(x,y))

ρ
π
yy(x,y)

( y
x ln(ρ(x,y)))

2
] 1

3! [ln(1+ h
x )]

3

·

·
[

ρ
π
y (x,y)

y( 1
x ln(ρ(x,y)))

2
] 1

3! [ln(1+ h
x )]

3

. . . (5.3.1)

By using same criteria in the 2nd and 3rd order case the 4th order Bigeometric Runge-

Kutta method derived as :

y(x+h) = y(x)ρ
a ln(1+ h

x )
0 ρ

b ln(1+ h
x )

1 ρ
c ln(1+ h

x )
2 ρ

d ln(1+ h
x )

3 : (5.3.2)

wihere ρ0,ρ1,ρ2, and ρ3 defined as following :

ρ0 = ρ(x,y) (5.3.3)

ρ1 = ρ

(
x+ `h,yρ

γh
x

0

)
(5.3.4)

ρ2 = ρ

(
x+ `1h,yρ

γ1h
x

0 ρ

γ2h
x

1

)
(5.3.5)

ρ3 = ρ

(
x+ `2h,yρ

γ3h
x

0 ρ

γ4h
x

1 ρ

γ5h
x

2

)
. (5.3.6)

25



For determine the scalar values in (5.3.2)-(5.3.6) we need to use Bigeometric Taylor

expansion for y(x+h) up to order 4 stated in (5.3.1).Obviously we need to expand ρ1,

ρ2, and ρ3 by using the Bigeometric Taylor theorem. Then we get

ρ1 = ρ(x,y)
[
ρ

π
x (x,y)

`
ρ

π
y (x,y)

y γ

x ln(ρ(x,y))
]ln(1+ h

x ) ·

·
[
ρ

π
xx(x,y)

`2
ρ

π
xy(x,y)

`y γ

x lnρ(x,y)
] 1

2! [ln(1+ h
x )]

2

·

·
[

ρ
π
yy(x,y)

(y γ

x lnρ(x,y))
2

ρ
π
y (x,y)

y( γ

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2

(5.3.7)

ρ2 = ρ(x,y)
[
ρ

π
x (x,y)

`1ρ
π
y (x,y)

(γ1+γ2)
y
x ln(ρ(x,y))

]ln(1+ h
x ) ·

·
[
ρ

π
xx(x,y)

`2
1ρ

π
xy(x,y)

(`1γ1+`1γ2)
y
x ln(ρ(x,y))

] 1
2! [ln(1+ h

x )]
2

·

·
[

ρ
π
yy(x,y)

(γ1+γ2)
2( y

x ln(ρ(x,y)))
2
] 1

2! [ln(1+ h
x )]

2

·

·
[

ρ
π
y (x,y)

y(γ1+γ2)
2( 1

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2

(5.3.8)

ρ3 = ρ(x,y)
[
ρ

π
x (x,y)

`2ρ
π
y (x,y)

(γ3+γ4+γ5)
y
x ln(ρ(x,y))

]ln(1+ h
x ) ·

·
[
ρ

π
xx(x,y)

`2
2

] 1
2! [ln(1+ h

x )]
2

·

·
[
ρ

π
xy(x,y)

(`2γ3+`2γ4+`2γ5)
y
x lnρ(x,y)

] 1
2! [ln(1+ h

x )]
2

·

·
[

ρ
π
yy(x,y)

(γ3+γ4+γ5)
2( y

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2

·

·
[

ρ
π
y (x,y)

y(γ3+γ4+γ5)
2( 1

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2

(5.3.9)

By substituting (5.3.7) , (5.3.8) and (5.3.9) into (5.3.2) we get :
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y(x+h) = y(x)ρ(x,y)a ln(1+ h
x )︸ ︷︷ ︸

ρ0

·

·
[
ρ(x,y)ρπ

x (x,y)
`
ρ

π
y (x,y)

y γ

x ln(ρ(x,y))
]ln(1+ h

x )b ln(1+ h
x )︸ ︷︷ ︸

ρ1

·

·
[

ρ
π
xx(x,y)

`2
ρ

π
xy(x,y)

`y γ

x lnρ(x,y)
ρ

π
yy(x,y)

(y γ

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2
b ln(1+ h

x )

︸ ︷︷ ︸
ρ1

·

·
[

ρ
π
y (x,y)

y( γ

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2
b ln(1+ h

x )

︸ ︷︷ ︸
ρ1

·

·

[
ρ(x,y)

[
ρ

π
x (x,y)

`1ρ
π
y (x,y)

y (
γ1+γ2)

x ln(ρ(x,y))
]ln(1+ h

x )
]c ln(1+ h

x )

︸ ︷︷ ︸
ρ2

·

·
[

ρ
π
xx(x,y)

`2
1ρ

π
xy(x,y)

y (
`1γ1+`1γ2)

x lnρ(x,y)
ρ

π
yy(x,y)

(γ1+γ2)
2( y

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2
c ln(1+ h

x )

︸ ︷︷ ︸
ρ2

·

·
[

ρ
π
y (x,y)

y(γ1+γ2)
2( 1

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2
c ln(1+ h

x )

︸ ︷︷ ︸
ρ2

·

·

[
ρ(x,y)

[
ρ

π
x (x,y)

`2ρ
π
y (x,y)

y (
γ3+γ4+γ5)

x ln(ρ(x,y))
]ln(1+ h

x )
]d ln(1+ h

x )

︸ ︷︷ ︸
ρ3

·

·
[

ρ
π
xx(x,y)

`2
2ρ

π
xy(x,y)

y (
`2γ3+`2γ4+`2γ5)

x lnρ(x,y)
ρ

π
yy(x,y)

(γ3+γ4+γ5)
2( y

x lnρ(x,y))
2
] 1

2! [ln(1+ h
x )]

2
d ln(1+ h

x )

︸ ︷︷ ︸
ρ3

·

·
[

ρ
π
y (x,y)

y(γ3+γ4+γ5)
2( 1

x lnρ(x,y))
2
] 1

2! ln(1+ h
x )

2
d ln(1+ h

x )

︸ ︷︷ ︸
ρ3

(5.3.10)

Simplifying (5.3.10) we get:
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y(x+h) = y(x)ρ(x,y)(a+b+c+d) ln(1+ h
x )·

·
[
ρ

π
x (x,y)

(`b+`1c+`2d)
](ln(1+ h

x ))
2

·

·
[
ρ

π
y (x,y)

[γb+(γ1+γ2)c+(γ3+γ4+γ5)d]
] y

x ln(ρ(x,y))(ln(1+ h
x ))

2

·

·
[
ρ

π
xx(x,y)

`2b+`2
1c+`2

2d
] 1

2 [ln(1+ h
x )]

3

·

·
[
ρ

π
xy(x,y)

(b`γ+(`1γ1+`1γ2)c+(`2γ3+`2γ4+`2γ5)d)
y
x lnρ(x,y)

] 1
2 [ln(1+ h

x )]
3

·

·
[

ρ
π
yy(x,y)

(γ2b+(γ1+γ2)
2c+(γ3+γ4+γ5)d)( y

x lnρ(x,y))
2
] 1

2 [ln(1+ h
x )]

3

·

·
[

ρ
π
y (x,y)

y(bγ2+(γ1+γ2)
2c+(γ3+γ4+γ5)

2
d)( 1

x lnρ(x,y))
2
] 1

2 [ln(1+ h
x )]

3

(5.3.11)

Now we will compare the powers of the Bigeometric derivatives with the ones in

(5.3.1), then we catch the relation between parametersin BRK4 method as :

a+b+ c+d = 1

`b+ `1c+ `2d =
1
2

γb+ γ1c+ γ2c+ γ3d + γ4d + γ5d =
1
2

`2b+ `2
1c+ `2

2d =
1
3

b`γ + `1γ1c+ `1γ2c+ `2γ3d + `2γ4d + `2γ5d =
1
3

γ
2b+ γ

2
1 c+ γ

2
2 c+2γ1γ2c+ γ

2
3 d + γ

2
4 d + γ

2
5 d +2γ3γ4d +2γ3γ5d +2γ5γ4d =

1
3

γ
2b+ γ

2
1 c+ γ

2
2 c+2γ1γ2c+ γ

2
3 d + γ

2
4 d + γ

2
5 d +2γ3γ4d +2γ3γ5d + γ5γ4d =

1
3

(5.3.12)

Simplifying (5.3.12) we obtain the relation of parameters as :
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` = γ (5.3.13)

`1 = γ1 + γ2 (5.3.14)

`2 = γ3 + γ4 + γ5 (5.3.15)

and

a+b+ c+d = 1 (5.3.16)

b`+ c`1 +d`2 =
1
2

(5.3.17)

b`2 + c`2
1 +d`2

2 =
1
3

(5.3.18)

The results of (5.3.12) can be extended using the Bigeometric Butcher Tableau [13].

0

` γ

`1 γ1 γ2

`2 γ3 γ4 γ5

a b c d

.

Since the number of equations is less than the number of unknowns, the above system

has infinitely many solutions. Depending on the nature of a problem, a suitable selec-

tion of the parameters can also be extended. The original parameters for the ordinary

case of RK4 are stated below :
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a = d =
1
6
, (5.3.19)

b = c =
1
3
, (5.3.20)

` = `1 = γ = γ2 =
1
2
, (5.3.21)

`2 = γ5 = 1, and (5.3.22)

γ1 = γ3 = γ4 = 0. (5.3.23)

For selecting parameters in RK4, the main contribution to the approximation comes

from the middle of the interval [x,x+ h]. We evaluate f in the middle of the interval

twice, both with a weight of 1/3. Therefore for comparing two methods we get our pa-

rameters same with RK4. Substitution parametrs(5.3.19)-(5.3.23) into (5.3.2)-(5.3.6)

we get the Bigeometric Runge-Kutta method as :

y(x+h) = y(x)ρ
1
6 ln(1+ h

x )
0 ρ

1
3 ln(1+ h

x )
1 ρ

1
3 ln(1+ h

x )
2 ρ

1
6 ln(1+ h

x )
3 (5.3.24)

with

ρ0 = ρ(x,y), (5.3.25)

ρ1 = ρ

(
x+

h
2
,yρ

h
2x
0

)
, (5.3.26)

ρ2 = ρ

(
x+

h
2
,yρ

h
2x
1

)
, (5.3.27)

ρ3 = ρ

(
x+h,yρ

h
x

2

)
. (5.3.28)
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Chapter 6

CONVERGENCE OF ONE-STEP METHODS

In this chapter, our aim is to test our BRK4 method for showing the completeness of

the theory. This chapter consist of two sections. In the first section 6.1 we analyze

the convergence analysis of the BRK4. Then second criteria in the numerical theory is

stability. We test the stability of BRK4 in the section 6.2

6.1 Convergence Analysis

In this section the convergence property tested for seeing the behaviour of Bigeometric

Runge-Kutta method. Let η(x;h) is denote approximate solution of one step method

where h→ 0. Suppose that f be a one time π-differentiable function on the interval

(a,b) and y(x) denote the exact solution of the initial-value problem :

yπ = ρ(x,y), y(x0) = y0. (6.1.1)

Consider Φ(x,y;h) as a one-step method,

η0 := y0,

for i = 0,1, . . . :

ηi+1 := ηiΦ(xi,ηi;h)log(1+ h
x ),

xi+1 := xi +h,
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where x ∈ Rh := {x0 + ih | i = 0,1,2, . . .} indicates the approximate solution of η(x;h)

as :

η(x;h) := ηi, where x = x0 + ih.

Assume that z(t) as an exact solution of the initial-value problem in (6.1.1).Let x,y are

arbitrary and fixed. The bigeometric derivative zπ(t) defined as :

zπ(t) = ρ(t,z(t)), z(x) = y, (6.1.2)

with initial values of x, y.

The bigeometric ratio function of the exact solution z(t) in (6.1.2) for step size h de-

notes as :

∆(x,y;h) :=


(

z(x+h)
y

)log(1+ h
x ) if h 6= 0,

f (x,y) if h = 0

(6.1.3)

where Φ(x,y;h) is the bigeometric ratio function for step size h of the approximate

solution of (6.1.2) indicated by Φ.

The magnitude ratio

τ(x,y;h) :=
∆(x,y;h)
Φ(x,y;h)

denotes how well the value z(x+h) at x+h fitted the equation of the one-step method.

Let τ(x,y;h) is the bigeometric local discretization error at the point (x,y).The main

concept is to satisfy the following condition.
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lim
h→0

τ(x,y;h) = 1

The curious part here is the role of the bigeometric global discretization error

e(x;h) :=
η(x;h)

y(x)

for h→ 0 and x is fixed where h ∈ Hx :=
{

(x−x0)
n |n = 1,2, . . .

}
. Since e(x;h) is only

defined for h ∈ Hx, we have to check the convergence of

e(x;hn), hn :=
x− x0

n
, as n→ ∞.

A one-step method in bigeometric calculus is convergent if it satisfied the condition

(6.1)

lim
n→∞

e(x;hn) = 1

for all x ∈ [a,b] and all functions f being one time π-differentiable on the interval

(a,b).

Since f being p-times π-differentiable on (a,b), methods of order p > 0 are conver-

gent, and satisfy

e(x;hn) = O
(

elog(1+ hn
xn )

p)
.

The order of the bigeometric global discretization error is thus equal to the order of the

bigeometric local discretization error. If the numbers ξi provide an estimates of the

form :
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|ξi+1| ≤ |ξi|(1+δ )B, δ > 0, B≥ 0, i = 0,1,2, ...,

then we will shortly denotes below equation as :

|ξn| ≤ |ξ0|e
nδ

B
enδ−1

δ

Proof. If we open (6.1) for i = 0,1,2, ..., we get :

|ξ1| ≤ |ξ0|(1+δ )B

|ξ2| ≤ |ξ0|(1+δ )2
B1+(1+δ )

...

|ξn| ≤ |ξ0|(1+δ )n
B[1+(1+δ )+(1+δ )2+...+(1+δ )n−1]

= |ξ0|(1+δ )n
B

(1+δ )n−1
δ

≤ |ξ0|e
nδ

B
enδ−1

δ

Consequently 0 < 1+δ ≤ eδ for δ >−1.

Theorem 6.1.1 Consider, x0 ∈ [a,b], y0 ∈ R, the initial-value problem

yπ = f (x,y), y(x0) = y0,

with the exact solution y(x). Assume that the function Φ be continuous on

G :=
{
(x,y,h) |a≤ x≤ b,

∣∣∣∣ y
y(x)

∣∣∣∣≤ γ, 0≤ |h| ≤ h0

}
, h0 > 0, γ > 1,

and there exist positive constants M and N such that

∣∣∣∣Φ(x,y1;h)
Φ(x,y2;h)

∣∣∣∣≤ ∣∣∣∣y1

y2

∣∣∣∣M
for all (x,yi,h) ∈ G, and i = 1,2 and
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|τ(x,y(x);h)|=
∣∣∣∣∆(x,y(x);h)
Φ(x,y(x);h)

∣∣∣∣≤ eN| log(1+ h
x )|

p
, p > 0

for all x ∈ [a,b], |h| ≤ h0. Then there exists an h, 0 < h ≤ h0, such that for the bigeo-

metric global discretization error e(x;h) = η(x;h)
y(x) ,

|e(x;hn)| ≤ exp
{

N
∣∣∣∣log

(
1+

hn

xn

)∣∣∣∣p 1
M

(
ekM

∣∣∣log
(

1+ x−x0
nx

)∣∣∣−1
)}

for all x ∈ [a,b] and all hn =
x−x0

n , n = 1,2, . . . , with |hn| ≤ h. If γ = ∞, then h = h0.

Proof. The function

Φ̃(x,y;h) =



Φ(x,y;h) if (x,y;h) ∈ G

Φ(x,y(x)γ;h) if x ∈ [a,b], |h| ≤ h0, y≥ y(x)γ

Φ(x, y(x)
γ

;h) if x ∈ [a,b], |h| ≤ h0, y≤ y(x)
γ

is continuous on G̃ := {(x,y,h) |x ∈ [a,b], y ∈ R, |h| ≥ h0} and satisfies the condition

∣∣∣∣∣Φ̃(x,y1;h)

Φ̃(x,y2;h)

∣∣∣∣∣≤
∣∣∣∣y1

y2

∣∣∣∣M (6.1.4)

for all (x,yi,h) ∈ G̃, i = 1,2, and because of Φ̃(x,y(x);h) = Φ(x,y(x);h), also the con-

dition ∣∣∣∣∣∆(x,y(x);h)

Φ̃(x,y(x);h)

∣∣∣∣∣≤ eN|log(1+ h
x )|

p
, for x ∈ [a,b], |h| ≤ h0. (6.1.5)

is satisfied.

For getting aproximate values η̃i := η̃(xi;h) for yi := y(xi), xi := x0 + ih, the one-step

method generated by Φ̃ as :
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η̃i+1 = η̃iΦ̃(xi, η̃i;h)log(1+ h
x ).

In view of

yi+1 = yi∆(xi,yi;h)log(1+ h
x ),

Calculate the error for ẽi := η̃i
yi

, the recurrence formula obtained as :

ẽi+1 = ẽi

[
Φ̃(xi, η̃i;h)

Φ̃(xi,yi;h)

]log(1+ h
x )

·

[
Φ̃(xi,yi;h)
∆(xi,yi;h)

]log(1+ h
x )

(6.1.6)

Simplifying (6.1.4), (6.1.5) it follows that∣∣∣∣∣Φ̃(xi, η̃i;h)

Φ̃(xi,yi;h)

∣∣∣∣∣ ≤
∣∣∣∣ η̃i

yi

∣∣∣∣M = |ẽi|M,∣∣∣∣∣Φ̃(xi,yi;h)
∆(xi,yi;h)

∣∣∣∣∣ ≤ eN|log(1+ h
x )|

p
,

Therefore from (6.1.6) the recursive estimation provided as:

|ẽi+1| ≤ |ẽi|(1+|log(1+ h
x )|M)eN|log(1+ h

x )|
p+1

.

Since we are related with an initial value problem, the initial values must be exact, and

hence ẽ0 =
η̃0
y0

= 1, resulting in

|ẽk| ≤ eN|log(1+ h
x )|

p e
k|log(1+ h

x )|M−1

M . (6.1.7)

Assume that x ∈ [a,b] and fixed, with the conditions x 6= x0 and x 6= 0. Let h := hn =

(x−x0)
n with an integer n > 0 . Then it is obvious that xn = x0+nh = x. Since ẽ(x;hn) =
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ẽn, from equation (6.1.7) with k = n,it follows that

|ẽ(x;hn)| ≤ exp
{

N
∣∣∣∣log

(
1+

hn

xn

)∣∣∣∣p 1
M

(
ekM

∣∣∣log
(

1+ x−x0
nx

)∣∣∣−1
)}

for all x∈ [a,b] and hn with |hn| ≤ h0. Since |x−x0| ≤ |b−a| and γ > 0, there exists an

h, 0 < h ≤ h0, such that |ẽ(x, ;hn)| ≤ γ for all x ∈ [a,b], |hn| ≤ h, i.e., for the one-step

method generated by Φ,

η0 = y0,

ηi+1 = ηiΦ(xi,ηi;h),

By using the definition of Φ̃ under the condition |h| ≤ h we get :

η̃i = ηi, ẽi = ei, and Φ̃(xi, η̃i;h) = Φ(xi,ηi;h).

The claim of the theorem,

|ẽ(x;hn)| ≤ exp
{

N
∣∣∣∣log

(
1+

hn

xn

)∣∣∣∣p 1
M

(
ekM

∣∣∣log
(

1+ x−x0
nx

)∣∣∣−1
)}

thus follows for all x ∈ [a,b] and all hn =
(x−x0)

n , n = 1,2, . . . , with |hn| ≤ h.

6.2 Stability Analysis

The stability analysis of the Bigeometric Runge-Kutta methods was presented in this

chapter. In Newtonian calculus, the stability properties of the ordinary Runge-Kutta

methods are tested by the following equation.

y′(x) = λy(x), y(x0) = y0 (6.2.1)
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where λ ∈ C. The analysis of stability of (6.2.1) was tested extensively by [16, 18,

25, 28]. The stability test for the Bigeometric Runge-Kutta method can be done by

applying same procedure in [26]. The bigeometric form of the (6.2.1) can be denoted

as :

yπ(x) = exλ , y(x0) = y0, (6.2.2)

The stability test function for 4th order BRK4 method with using the same process as

in (5.3.24) - (5.3.28). The test equation obtained as :

yn+1 = yn[ρ
a
0 ·ρb

1 ·ρc
2 ·ρd

3 ]
log(1+ h

x ) (6.2.3)

where

a+b+ c+d = 1. (6.2.4)

which gives the analytic solution

y(x) = eλ (x−x0)y0. (6.2.5)

It is obvious that x→ ∞ and Re(λ )< 0, the solution of the system approaches to zero.

We will decide that the method is A-stable [16] if the method has the same behaviour.

Since yπ(x) is a simple exponential function, equations (5.3.24) - (5.3.28) with (6.2.4)

the equation transforms to

yn+1 = exp
{

λxn(a+b+ c+d)+λh
(

1
2
(b+ c)+d

)}log(1+ h
x )
, (6.2.6)

We know that a+b+c+d = 1 and let assume that γ = 1
2(b+c)+d then yn+1 simplifies

to
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yn+1 = exp{λxn +λhγ}log(1+ h
x ) (6.2.7)

At the end we get

y(x) = e2λhγ log
(

1+ x−x0
x

)
y0. (6.2.8)

It is obvios that

yn+1

yn
= ez = R(z), (6.2.9)

where z= 2λhγ log
(
1+ x−x0

x

)
. R(z) denotes stability function of the proposed method.

The domain of stability is

S∗ = {z ∈ C : |R(z)|< 1} . (6.2.10)

Consequently, by (6.2.10) we obtain

0 < e−2|λ |hγ log(1+ h
x ) < 1 (6.2.11)

which leads to

0 < 2hγ log
(

1+
h
x

)
< ∞. (6.2.12)

Consequently,

0 <

∣∣∣∣h2

x

∣∣∣∣< ∞. (6.2.13)

So, the result shows that the newly introduced method is unconditionally stable. By

(6.2.10), it can be seen that Re(z)< 0 where |ez|= eRe(z). When Re(z)< 0 the method

is A-stable since the left half plane will be the region of absolute stability. In Newtonian

calculus, the explicit multistep methods can not be A-stable and the implicit multistep
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methods can be said to be A-stable if the order is at most 2. On the other hand, In

Bigeometric calculus both explicit and implicit methods are A-stable. A method is L-

stable if the method is A-stable and R(z)→ 0 when |z|→∞ [18]. Since we have shown

that the Bigeometric Runge-Kutta methods are A-stable and ez→ 0 when |z| → ∞, we

can say that the proposed methods are L-stable by [18].
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Chapter 7

APPLICATIONS OF THE BIGEOMETRIC RUNGE-KUTTA
METHOD

In this chapter, the BRK4 method is applied to different examples in different areas.

This chapter divided into section depending on the order of the differential equation.

In section, 7.1 the order of the differential equation is one. In section, 7.2 include the

modelling examples base on the order of the differential equation is two and three.

7.1 One Dimension example

Example 1. The important application for BRK4 is Gompertz function that an impor-

tant mathematical model for a time series. You will find a lot of applications correlated

with this function. As an example Gompertz function in [37] using for modeling the

bacterial growth curve and in [36] used for modeling some cancer research. Now let’s

define this important function as:

y = aexp(−bexp(−cx)). (7.1.1)

Let’s select a = 1 and b = c =−1 . Then we get :

y = exp(exp(x)). (7.1.2)

For getting an initial value problem whose answer is this special function can denote

as :

y′(x) = exp(x+ exp(x)) , y(1) = 15.1543. (7.1.3)

The equation (7.1.3) is in Newtonian form let’s change the corresponding equation to
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Bigeometric initial value problem by using (2.0.2) :

yπ(x) = exp(xexp(x)) , y(1) = 15.1543. (7.1.4)

The numerical solutions of the Bigeometric initial value problem (7.1.4) and the or-

dinary initial value problem are summarised in table 7.1. The two method compared

with their relative errors.

Table 7.1: Results of the 4th order Bigeometric Runge-Kutta and Runge-Kutta method
with relative errors
x yexact yBRK4 yRK4 relative error relative error

BRK4 RK4

1 15.15426 15.15426 15.15426 0 0

1.5 88.3838 93.2806 89.7539 0.0554 0.0155

2 1618.1780 1804.2784 1724.6248 0.1150 0.0658

2.5 1.95339×105 2.32326×105 2.42767×105 0.1894 0.2428

3 5.28491×108 6.8233×108 9.1744×108 0.2911 0.7336

3.5 2.4091×1014 3.4713×1014 6.6619×1014 0.4409 1.7653

4 5.1484×1023 8.6352×1023 2.3432×1024 0.6773 3.5499

In given table 7.1 some steps RK4 has better results than BRK4 but for bigger t−values

RK4 starts to give bad results as seen in the given table. Especially when t = 4 the

relative error for RK4 is the percentage of 36 whereas BRK4 errors stay percentage of

6. As a result in this important and extreme example, we can conclude that the result

of the BRK4 method is giving significantly better results compared to the ordinary
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Runge-Kutta method.

Example 2. The third example is the best-known circuit in electrical engineering

called as RC circuit. The circuit is for finding the voltage across to the capacitor, y(t),

for the depicted RC circuit Figure 7.1 in response to the applied voltage x(t) = 3
5e−2t

and initial condition y(1) = 0.14.

Figure 7.1: RC circuit for Example 1

Using Kirchhoff’s Voltage Law, the behavior of the system Figure 7.1 can be described

by the differential equation

dy(t)
dt

+
1

RC
y(t) =

1
RC

x(t) (7.1.5)

From given component values RC = 0.2s. Substituting in Eq. (7.1.5)

dy(t)
dt

+5y(t) = 5x(t) (7.1.6)

If we take x(t) = 3
5e−2t the Eq. (7.1.6) changed to :

dy(t)
dt

= 3e−2t−5y(t) (7.1.7)

This representation needs to be transform into ordinary case to bigeometric case by
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using the properties (2.0.2). Where easily converted as :

f π(x) = exp
{

t
3e−2t−5y(t)

y(t)

}
(7.1.8)

The new method BRK4 tested against RK4 and the numerical results for both methods

tabulated in Table 7.2 .

Table 7.2: Comparison of the numerical results of the both methods dependent on
their relative errors

t yexact(t) yBRK4(t) yRK4 relative error relative error

BRK4 RK4

1.5 0.0503402 0.050341072 0.049574276 1.8261×10−5 0.0152140

2 0.0183610 0.018361359 0.018016422 1.7419×10−5 0.0187689

2.5 0.0067417 0.006741771 0.006609736 1.4455×10−5 0.0195705

3 0.0024791 0.002479088 0.002430097 1.2003×10−5 0.0197498

3.5 0.0009119 0.000911916 0.000893861 1.0190×10−5 0.0197898

4 0.0003355 0.000335468 0.000328823 8.8407×10−5 0.0197987

In the table 7.2 the relative errors of RK4 and BRK4 are established and obviously

BRK4 produces fewer errors compared with RK4. Moreover, relative errors of the

BRK4 method are decreasing with depending on increasing step size (t) where the rel-

ative errors start to increase in the case of RK4. The test results for time computational

analysis within fixed length of time against to relative errors presented in Fig.7.2
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Figure 7.2: Time computation for Example 1

Obviously, the figure 7.2 underline that the relative errors for BRK4 are less than RK4

for the same execution period. However, this simple example is not sufficient to gener-

alize the reliability of BRK4. Further examples of alternative configurations followed.

Example 3. The circuit configuration modified to introduce a more complex repre-

sentation of nonlinear ordinary differential equation for showing the applicability of

BRK4.

dy
dt

+ t (y(t))2 = x(t) (7.1.9)

where x(t) = 3 with initial condition y(1) = 2.367. The transformed bigeometric

version of Eq. (7.1.9) can be extended as :

yπ = exp
{

t
(
−ty(t)− 3

y(t)

)}
(7.1.10)
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The method BRK4 tested against RK4 and the numerical results for both methods

tabulated in Table 7.3 .

Table 7.3: Comparison of the numerical results of the both methods dependent on their
relative errors

t yexact(t) yBRK4(t) yRK4 relative error relative error

BRK4 RK4

1.5 1.6042283 1.6042835 1.5920433 0.00003438 0.0075956

2 1.3070175 1.3070394 1.2991601 0.00001673 0.0060117

2.5 1.1425094 1.1425188 1.1373069 8.26025×10−6 0.0045535

3 1.0311113 1.0311164 1.0273429 4.94815×10−6 0.0036547

3.5 0.9480675 0.9480707 0.9451631 3.40227×10−6 0.0030635

4 0.8827656 0.8827679 0.8804331 2.51032×10−6 0.0026423

4.5 0.8295645 0.8295661 0.8276354 1.93225×10−6 0.0023254

5 0.7850882 0.7850894 0.7834570 1.53149×10−6 0.0020777

Result in Table 7.3 indicates that BRK4 still produces more accurate results even for

the case where a system represented by nonlinear ordinary differential equations.

7.2 Modelling Areas

In this section, we have three subsections as examples in biology 7.2.1,dynamical sys-

tems 7.2.2 and caotic circuits7.2.3 represented by the initial value problem. The first

example is a real-world example where the ordinary Runge-Kutta method breaks down

in certain situations, whereas the Bigeometric Runge-Kutta method gives accurate re-

sults. In second and third example, we try to show the application areas of the BRK4
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method.

7.2.1 Application to Biological Modelling and its numerical results

Another important applicable area for BRK4 is modeling we can use BRK4 as a model-

ing tool. As an example, we select to show the applicability of BRK4 in the modeling

field. Agarwal and Bhadauria [1] presented a mathematical model of tumor therapy

with oncolytic virus. The introduced nonlinear model related with the system of or-

dinary differential equations. The size of the uninfected and infected tumor cell pop-

ulation modeling in given nonlinear model. By using the RK4 method, Agarwal and

Bhadauria performed a stability analysis and compared the size of the uninfected and

infected tumor cell population. For calculating the size of the uninfected and infected

tumor cell population, x(t) and y(t) respectively, we used the BRK4 and RK4 methods.

We perform the comparison only for infected tumor cell population denoted as y(t), as

the results for uninfected tumor cell population denoted as x(t) are corresponding.

Oncolytic viruses permeate the tumor cells and replicate. Moreover, infected tumor

cells denoted by y(t) shows us infection of uninfected tumor cells with these oncolytic

viruses. Anticancer proteins produced by oncolytic viruses as a result of infecting and

penetrating in cancer cells. According to assumptions above Agarwal and Bhadauria

[1] introduced nonlinear mathematical model as :

dx
dt

= r1x
(

1− x+ y
K

)
− bxy

x+ y+a
(7.2.1)

dy
dt

= r2y
(

1− x+ y
K

)
+

bxy
x+ y+a

−αy (7.2.2)

with initial conditions: x(0) = x0 > 0 and y(0) = y0 > 0. We have to denote the param-
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eters appearing in this nonlinear model. The coefficients r1 represents maximum per

capita growth rates of uninfected cells and r2 represents maximum per capita growth

rates of infected cells. On the other hand K shows the carrying capacity, b shows the

transmission rate, a shows the measure of the immune response of the individual to

the viruses and α shows the rate of infected cell killing by the viruses. The selected

parameters of the model should be nonnegative. The presented system transformed to

bigeometric form. The bigeometric form can generate as :

xπ(t) = exp
[

r1t
(

1− x+ y
K

)
− tby

x+ y+a

]
(7.2.3)

yπ(t) = exp
[

r2t
(

1− x+ y
K

)
+

tbx
x+ y+a

−αt
]

(7.2.4)

Comparing RK4 and BRK4 methods numerical approximations to the functions x(t)

and y(t) was calculated. The results checked exemplarily for one set of parameters

for what step size we get meaningful results. The time t is selected in the interval

between 0 and 1000. Since nature of the equations (7.2.1)-(7.2.2) and (7.2.3)-(7.2.4)

are strongly nonlinear, we take a small step size h in both cases. Therefore, we provided

systematically changes in the step size and the number of points to be calculated.

48



0 100 200 300 400 500 600 700 800 900 1000
Time (t)

0

10

20

30

40

50

60

70

80

90

100

D
en

si
ty

 o
f t

um
or

 in
fe

ct
ed

 tu
m

or
 c

el
ls

 y
(t)

BRK/RK h=0.067
RK h=0.091
BRK h=0.091

Figure 7.3: Density of infected tumor cells y(t) as a function of time for the parameters
r1 = 40, K = 100, r2 = 2, a = 0.05, b = 0.02, and α = 0.03. The initial value y(1) =
0.1.

In the step-size h = 0.067 numerical results of BRK4 and RK4 gives relevant answers

as an absolute difference of 10−10. Because of, the exact answer is not available for this

problem, we accepted the solution for h= 0.067 as the closed form of the exact answer.

The step size increased both methods and realized that step size up to h = 0.091 the

results of the BRK4 method is not significantly different from the ones for h = 0.067.

On the other hand, RK4 method gives significantly different results as shown graph-

ically in figure 7.3. Absolute eroor for two computation analyses presented in Table

7.4. Obviously the absolute difference for the BRK4 method is less than one, whereas

the ordinary RK4 method changes significantly more for the same step size h = 0.091,

i.e. up to 67.68.
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Table 7.4: Density of infected tumor cells y(t) as a function of time for the parameters
r1 = 40, K = 100, r2 = 2, a= 0.05, b= 0.02, and α = 0.03.The initial value y(1) = 0.1.

t y(t) yBG(t) |y(t)− yBG(t)| yRK(t) |y(t)− yRK(t)|

1 0.1 0.1 0 0.1 0

100 0.534879 0.536288 0.00140927 27.2905 26.7556

200 2.84556 2.83341 0.0121523 61.8205 58.9749

300 13.5502 13.2125 0.337775 81.2303 67.6801

400 43.4665 42.5087 0.957788 87.0963 43.6298

500 73.3533 72.8296 0.523669 88.7399 15.3866

600 84.8726 84.7197 0.152969 89.2201 4.34745

700 88.1091 88.0662 0.0428714 89.3637 1.25459

For comparing the performance of these two methods, the absolute errors should be

similar. Therefore, for satisfying the completeness we choose step size for RK4 method

as h = 0.0705 and h = 0.091 for the BRK4 method. The results are tabulated in 7.5

and obviously the maximum absolute difference of RK4 method is nearly twice of the

absolute difference compared to the BRK4. Moreover, the computation times are mea-

sured as 2.328 seconds for the RK4 method and 2.296 seconds for the BRK4 method.

Hence, in this complicated mathematical model the introduced method BRK4 indicate

a higher performance at a higher accuracy.
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Table 7.5: Comparison of the absolute errors of the results from the calculations of the
ordinary Runge-Kutta method with h= 0.0705 (n= 14200 points) and the Bigeometric
Runge-Kutta Method for h = 0.091 (n = 11000 points).

t y(t) yRK(t) |y(t)− yRK(t)| yBGRK(t) |y(t)− yBGRK(t)|

1 0.1 0.1 0 0.1 0

100 0.534876 0.577645 0.0427696 0.536288 0.00141207

200 2.84555 3.09541 0.249859 2.83341 0.0121377

300 13.5502 14.5747 1.02456 13.2125 0.337715

400 43.4664 45.341 1.87463 42.5087 0.957674

500 73.3532 74.3369 0.983688 72.8296 0.523608

600 84.8726 85.1577 0.285053 84.7197 0.152951

700 88.1091 88.1891 0.0800294 88.0662 0.0428665

800 89.0339 89.0574 0.0234774 89.0213 0.0125593

900 89.3078 89.3148 0.00703348 89.304 0.00376082

1000 89.3901 89.3923 0.00212228 89.389 0.00113462

Finally, we showed that the BRK4 method can be used to demonstrate approximate

results for this model for a certain set of parameters. And we conclude that the BRK4

method produces better results than the RK4 method for larger step sizes. This claim

that there is a strong suspicion for certain problems the Bigeometric Calculus can be a

good base for the modelling and the numerical approximations of certain problems in

science and engineering.

7.2.2 Bigeometric Rössler System

As a further application, to show the applicability of the Bigeometric Runge-Kutta

method, we select an important dynamical system Rössler attractor. First of all we
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transformed the standard Rössler attractor to Bigeometric form and analyze the basic

properties of the new dynamic system based on Rössler attractor. The analysis includes

the orbits, the time series, and the solution of the coupled differential equations of the

Bigeometric Rössler attractor carried out using the Bigeometric Runge-Kutta method.

The Bigeometric Rössler attractor stated as :

dx
dt

= exp
{

t
−y− z

x

}
dy
dt

= exp
{

t
x+ay

y

}
dz
dt

= exp
{

t
b+ z(x− c)

z

} (7.2.5)

The orbits in figure 7.4 calculated in BRK4 with fixed a and b parameters where pa-

rameters c was change for each calculation.
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Figure 7.4: Orbits of the Bigeometric Rössler Attractor for a= 0.1,b= 0.1 and varying
c values.

The tests claim that the orbits of the Bigeometric Rössler Attractor exactly matches

with orbits of the Rössler attractor in its original form as shown in the figure 7.4.

The time analysis of Bigeometric form of Rössler attractor is shown in figure 7.5.
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Figure 7.5: Bigeometric Rössler Attractor

The results showed that the time series of the Bigeometric Rössler Attractor exactly

matches with time series of the Rössler attractor in its original form as shown in the

figure 7.5.

7.2.3 Caotic Circuits

The application area for BRK4 can be generated by combining the dynamical systems

and circuits. Chaotic behaviour in simple and complex systems has represented the

importance of getting a significant behaviour for nonlinear systems in engineering ap-

plications. Now lets select a complicated system in engineering area for checking our

method.The next application of BRK4 is a Gunn Oscillator system presented in [17].

The mathematical model of Gunn Oscillator extended in [17] as :

d2q
dt2 −βq+αq3 = ε

[
Vs +µ

dq
dt
−λ

(
dq
dt

)3
]

(7.2.6)
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For solving equation (7.2.6) we have to subdivide the given system into two parts as :

p =
dq
dt

p′ = ε

[
Vs +µ p−λ (p)3

]
+βq−αq3 (7.2.7)

The equation (7.2.7) is in Newtonian form, so next step is to transfer (7.2.7) into bige-

ometric form. For transformation, we need to use (2.0.2) and the second order bigeo-

metric derivative. The second order bigeometric derivative definition determined as :

qππ = exp

[
t

(
q̇
q
− t (q̇)2

q2 +
tq̈
q

)]
(7.2.8)

With using same ideas in (7.2.7), require that subdiving equation (7.2.8) into two part.

Before subdividing system we need to solve (7.2.8) for q̈ and substituting q̇ = q
t lnqπ

into (7.2.6) we get second order bigeometric form of the differential equation (7.2.6)

as :

qππ = exp

t2
β − log(qπ)2 +

t2ενs

q
−

(
t3α + ελ log(qπ)3

)
q2)

t

(qπ)1+tεµ (7.2.9)

with

νs = δ cos(Ωtt).

In order to solve (7.2.9) using the BRK4 method we employ the same idea as in the

ordinary case (7.2.7) :
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p = qπ (7.2.10)

pπ = exp

t2
β − log(p)2 +

t2ενs

q
−

(
t3α + ελ log(p)3

)
q2

t

(p)1+tεµ(7.2.11)

The numerical solution of (7.2.11) generated by BRK4 and tested with different values

of the constants, amplitude and frequency of the sync signal given in [17]. Phase plane

plot of the oscillator produced as in figure 7.6 -7.7 :
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Figure 7.6: Phase plane plot for different amplitude of sync Signal for β = 1, α = 1,
ε = 0.1 ,δ = 0.5 ,µ = 0.8, λ = 10
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Figure 7.7: Phase plane plot for different amplitude of sync Signal for β = 1, α = 1,
ε = 0.1 ,δ = 0.1,µ = 0.8, λ = 10

In this application, BRK4 applied to analyze the chaotic motion of oscillator system

that is more complicated. The method demonstrated same results as in [17]. The

chaotic motion seen in (7.6) and (7.7).
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Chapter 8

CONCLUSION

In this thesis, we have declared and derived the differentiation rules for the Bigeo-

metric derivative explicitly. We introduced the Bigeometric Taylor theorem on the

basis of the geometric multiplicative Taylor theorem by applying the relation between

the geometric and Bigeometric multiplicative derivative. Moreover, we derived the

Bigeometric Runge-Kutta by using the Bigeometric Taylor Theorem. The Bigeomet-

ric Runge-Kutta Method can applied in numerous examples for finding an estimation

for the models that represented a type of ordinary differential equations. We tested

Bigeometric Runge-Kutta method in different fields as biology, circuits design, and

dynamical systems. We observed that the relative errors of the Bigeometric Runge-

Kutta method stayed less that the ones of the ordinary Runge-Kutta method. In the

case of the mathematical model of Agarwal and Bhadauria [1] we could observe that

the Bigeometric Runge-Kutta method gave better results for larger step sizes h. The

basic aim of this thesis was that the Bigeometric Runge-Kutta method is an applicable

tool for the solution of initial value problems in different areas.
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