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ABSTRACT 

This thesis aims to discuss the deformed Schiӧberg-type potential for some diatomic 

molecules. The         s conditions are used to show a common diatomic molecular 

potential model. It also aims to employ the radial spherically symmetric Schrӧdinger 

equation and convert our potential into a format that allows us to use supersymmetric 

quantization and find a closed form analytical solution for the rotational and 

vibrational energy levels. We talk about our findings by utilizing three diatomic 

molecules   ( 
   
 ), HF (    

 ) and   ( 
   
  ). The findings of the thesis showed 

that there is a great comparison with those from a generalized pseudospectral 

numerical method (GPS).  

Keywords: rotational-vibrational energy spectra, deformed Schiӧberg-type potential, 

diatomic molecules.   
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ÖZ 

Bu tezin amacı iki-atomlu moleküllerde deforme edilmiş Schiöberg-tipi 

potansiyellerin incelenmesidir. Ortak iki-atomlu molekül potansiyelinin tesbitinde 

Varshni şartları kullanılmıştır. Ayrıca radyal simetrik Schrödinger denklemi 

potansiyeli supersimetrik Kuantum formatına sokulup dönme ve titreşimli enerji 

seviyeleri tam olarak bulunmuştur. Üç örnek seçilmiştir, bunlar H2(x
1∑    , HF(x

1∑    
 

ve N2(x
1∑    ‘dır. Tezin bulguları genelleştirilmiş spektral gibi görünen nümerik 

yöntemlerle mukayese edilebildiğini göstermiştir. 

Anahtar sözcükler: dönmeli – titreşimsel enerji spektrumu, deforme edilmiş 

Schiöberg-tipi potansiyel, iki-atomlu moleküller. 
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Chapter 1 

INTRODUCTION 

 

Relevant information about a diatomic molecule is encoded in the energy-distant 

relation provided by empirical diatomic potential energy functions. Hence, a large 

number of diatomic empirical potentials was suggested and investigated [1-23]. The 

crucial test is represented by how good an empirical potential function is in the 

reproduction of the so called experimental Rydberg-Klein-Rees (RKR) energy 

curves, and the rotational- vibrational energy levels for diatomic molecules. In 

addition, the investigations on such potentials included the relations among the 

suggested potentials.  

Hajigeorgiou [6], for example, has investigated an extended Lennard-Jones diatomic 

potential, Manning and Rosen [11] have studied the vibrational levels through the so 

called Manning-Rosen potential, Deng and Fan [3] have introduced the Deng-fan 

potential that is used, later on, by Mustafa [14] to study the rotational and vibrational 

energies, Schiӧberg [18] has introduced a hyperbolic potential function, Mustafa [13] 

has suggested a deformed Schiӧberg-type potential and obtained very accurate 

(compared with numerical as well as RKR results) rotational and vibrational energy 

levels for a number of diatomic molecules, Wang et al [23] have shown that a 

deformed and shifted Rosen-Morse [6] is equivalent to Tietz and Wei potentials [9], 

… etc. 
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Here are some potential that are unavoidable in the process. The Morse [12] three- 

parameters empirical potential energy function, 

                                    (       (    
  (      )

 
.                                            (1.1) 

Where    is the dissociation energy,    is the equilibrium bond length, and α is the 

range of the potential. The Morse potential is still been used in molecular physics and 

quantum chemistry [23]. The Manning and Rosen [11] potential function for 

diatomic molecules, 

                                     (    
  

      
*
 (         

(         
  

      

       
+,                             (1.2)  

With β and A are two dimensionless parameters, and is sometimes called a 

generalize Morse potential [11]. The Deng and Fan [6] potential,   

                                     (       (   
       

      
)
 

                                                (1.3) 

which is suggested to be better than the Morse potential (1.1) in representing 

diatomic interaction for vibration of diatomic [3]. The Schiӧberg [18] potential 

function, 

                                      (     (           ,                                              (1.4) 

Where ,  , α are three adjustable positive parameters,     1. Schiӧberg [18] 

believed that this potential function (1.4) is more accurate than the Morse potential 

function for some diatomic molecules [23]. Moreover, the Schiӧberg potential 

function, the Deng-Fan potential function and the Manning-Rosen potential function 

are the same empirical potential functions for diatomic molecules [13]. Also, Wang 

et al [22] generated improved expressions for two versions of the Schiӧberg potential 
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function. Both versions of the Schiӧberg potential function are Rosen-Morse and 

Manning-Rosen potential functions. Yet, Mustafa [13] has suggested a new 

deformed Schiӧberg-type potential for diatomic molecules, 

                                     (      (             
                                                       (1.5) 

Where    0,  , q, and the screening parameter α 0 are real adjustable parameters 

to be determined. Additionally, the q-deformation of the standard hyperbolic 

function is characterized through      

                                             
        

        
              

           

 
    

                                                
           

 
 .                                                (1.6) 

The main goal of this thesis is to study the deformed Schiӧberg- type potential (1.5) 

by using the radial spherically symmetric Schrödinger equation to investigate the 

central attractive/repulsive core l (l +1)/2𝜇    to get the rotational-vibration energy 

levels. To achieve this goal we present the necessary information in the 

subsequent chapters. In Chapter two,         s conditions for the deformed 

Schiӧberg-type potential (1.5) are highlighted.. In Chapter three, there is a brief 

review of the basic formulae of the supersymmetric quantum mechanics. A four-

parameter exponential-type potential is used and the exact energy spectra is 

obtained. Moreover, we also convert expression (2.7) into a proper form to be able 

to use the supersymmetric quantization recipe of [2] and find the rotational-vibration 

energy levels. In addition, Chapter four, discusses the obtained results using 

three-diatomic molecules   ( 
   
 ), HF(    

 ) and   ( 
   
  ). They compare 
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great with those from a generalized pseudospectral numerical method (GPS). Finally, 

Chapter five concludes the thesis through discussing the findings. 
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Chapter 2 

DIATOMIC MOLECULAR POTENTIAL 

An experimental diatomic molecular potential energy function, U(  , necessary and 

desirably has to satisfy the         s conditions [21, 15] 

                                      
  (  

  
                                                                         (2.1) 

                                       (       (                                                              (2.2) 

                                     
   (  

   
          (    

 𝜇  
 ,                                      (2.3)   

where     is the dissociation energy,     is the equilibrium bond length, c is the speed 

of light, 𝜇 = 
     

       
 is the reduced mass, and  e is the equilibrium harmonic 

oscillator vibrational frequency.  

From Eq. (1.5) and (1.6), we can convert our potential into an exponential form to 

obtain,  

                                       (      (    
          

          
 )
 

                                                 (2.4) 

We use the first and second         s conditions (2.1) and (2.2), on our (2.4), we 

obtain,  

                                      
  (  

  
                     ( 

        

      
)
 

              (2.5)               

And  
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                                    (       (                
  
   
 (                     (2.6) 

Equations (2.5) and (2.6) into (2.4), yield    

                                    (       *   
       

     
+
 

                                                   (2.7) 

Now, if we apply the third         s conditions (2.3), we get  

                                    
   (  

   
            

       
     

      
         (   

 

 
)           

                                       √
  

   
                                                                            (2.8)      

The deformation parameter q is defined as  

                                                (   
 

 
)                                                  (2.9)    

Where, q takes positive or negative values depending on whether the optimization 

parameter Ɛ is negative or positive, respectively. Obviously, q represents a 

deformation function that depends on the spectroscopic parameters F, γ, and    . That 

is q = q (F,γ,   ). One should notice that for the Morse potential the deformation 

parameter     (i.e.    ), for the Deng-Fan potential and improved for the 

Manning-Rosen potential      (               , and for the Tietz-Hua potential 
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Chapter 3 

SUPERSYMMETRIC QUANTUM MECHANICAL 

TREATMENT 

         

 In this chapter, we give a brief review for the supersymmmetic shape invariance. 

The Schrödinger equation for a particle of mass m in one – dimensional potential is,  

                                 *   
  

   
  (    + 𝜓(   = E 𝜓(   ,                                      (3.1) 

Where 𝜓(   is the wavefunction,   = (
  

  
),  (    is the potential and E is the 

energy. The ground – state wavefunction   (   can be written as, 

                               𝜓 (   = A exp ( 
 

√ 
∫ (    )                                           (3.2)  

where A is a normalized constant and  (   is called superpotential in 

supersymmetric quantum mechanics. Substituting (3.2) into (3.1), we obtain , 

                                 (    - √ 
  (  

  
 =  (   –                                                   (3.3)   

Where    is the ground – state energy. Equation (3.3) is a nonlinear Riccati equation.  

In terms of the superpotential  (    the supersymmetric partner potentials    (   

and    (    are given by,  

                                 (    =   (     +  √ 
  (  

  
 ,                                              (3.4) 

                                 (     =    (      - √ 
  (  

  
 .                                             (3.5) 
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 And the operator A and A
+
 are defined by  

                             A
+
 = - √ 

 

  
  +    (  ,                                                             (3.6) 

                             A =  √ 
 

  
  +    (  .                                                                (3.7) 

Incorporating (3.3) and (3.5), the potential V(r) and    (    have the following 

relation,  

                            V(r) =    (       +   ,                                                              (3.8) 

If     (   and    (    have similar shapes, they are said to be shape – invariant. And 

they satisfy the following relation,  

                               (       = 
  (        + R(                                                  (3.9) 

Where a0 is a set of parameter,    is a function of   , and the reminder R(                                                         

is independent of r. The Hamiltonians corresponding to the potentials    (   and  

   (   are given by,       

                                   =    
  

   
     (    ,                                                     (3.10) 

                                   =    
  

   
     (  .                                                       (3.11) 

The supersymmetric partner potential    (     and   (       have the same energy 

spectra except for the fact that    (     has one bound state less than   (  ,     

                                       
(  

 =     
(  

   (n = 0, 1, 2 , ……...), 

The ground – state energy of    (    is zero. For the partner potential   (  , the 

energy spectrum is given in the fashion [5],                            
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(  

 = 0,       
(  

   =  ∑   (   
 
   ,    (                                       (3.12) 

 

We can now use the four – parameters exponential – type potential,  

                           (  =      
  

       
  

  

(        
 ,                                              (3.13) 

Putting the superpotential as,  

                          (   = - √   (     
  

       
)                                                     (3.14) 

We may use (3.13) and (3.14) into (3.3), we get  

                                              
  = 

 

  
 (         ,   

 

                                            2Q1Q2 - 2αQ2 = 
 

  
 P2,                                                (3.15) 

                                              
   + 2αqQ2 =  

 

  
 P3.            

Also, solving (3.15) we can produced, 

                                           Q1 =   *
(          

     
   

  

   
+                                               (3.16) 

Using (3.16) and (3.14) in to (3.4) and (3.5), the supersymmetric potentials   (     

and    (     can be find as, 

   (         (      √   
  (  

  
     {*

(          

     
   

  

   
+
 

   
(           

  (        
  

                       
  
 

 (        
  

  
 

(          
   

    

 (        
   

     

(          
 }                            (3.17) 
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    (        (       √   
  (  

  
    {*

(          

     
   

  

   
+
 

   
(           

  (        
  

                         
  
 

 (        
  

  
 

(          
  

    

 (        
  

     

(          
 }                           (3.18)  

                                           

Putting    = Q2 and    = (Q2 - 2αq), the partner    (      and    (      satisfy 

following relationship,  

       R(   =    (      -  
  (                                                                                  

                              =   *
(          

     
   

  

   
+
 

 -   *
(       

   (          
   

(          

   
 +
 

.    (3.19)  

 Using Eq. (2.12), the energy levels for the partner potential    (    are given by  

           
(  

 = 0,                                                                                               (3.20)         

           
(  

 = ∑  (     
 
   R(    + R(    +……+ R(    

   =   *
(          

     
   

  

   
+
 

-   *
(       

   (          
   

(          

   
 +
 

 +    *
(       

   (          
  

        
(          

   
 +
 

 -   *
(       

   (          
   

(          

   
+
 

 +................+ 

         *
(       

   (    (         
   

(    (         

   
+
 

-  *
(       

   (           
    

(           

   
 +
 

 

        =   *
(          

     
   

  

   
+
 

-    *
(       

   (           
   

(           

   
 +
 

                     (3.21)                     

 Solving (3.15) yields
 

                                      E0 = P1 -  *
(          

     
   

  

   
+
 

                                         (3.22) 

                                      Q2 = -αq   √        
  

  
                                                (3.23) 
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Incorporating (3.8), (3.21) and (3.22), we can get the energy spectra for the four – 

parameters exponential – type potential,   

En =   
(  

 + E0 =   *
(          

     
   

  

   
+
 

 -    *
(       

   (           
   

(           

   
 +
 

 

                  + P1 -  *
(          

     
   

  

   
+
 

 

       
= P1 -   *

(       

   (           
   

(           

   
 +
 

,       

              n = 0 , 1 , 2 ,…………                                                                             (3.24)
  

In put (3.23) into (3.24), the above energy spectrum can be express, 

          
 

  

[
 
 
  

    
 (       

(         √   
  
   

  

   (             √   
  
   

   

]
 
 
 
 

   

                                                n = 1, 2, 3, . . . . . .                                                (3.25) 

3.1 Application To The Deformed Schiӧbeg-Type Potential  

We use the radial spherically symmetric Schrödinger equation to deal with the 

central attractive/repulsive core l (l+1)/2𝜇  .                                                                                     

               
        (  

     
 *

   (       

    
  (  +     (             (                         (3.26) 

Substituting expression (2.7) into (3.26), we get 

     
        (  

     
 [    *   

       

     
+
 

 
   (       

    
]     (              (            (3.27) 

Where      denotes the energy spectrum of the diatomic molecular, n and   are the 

vibrational and rotational quantum numbers, respectively. Eq. (3.27) is explained just 

for the case l   0.  
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 We change our potential (2.7) into an appropriate structure to have the capacity to 

apply the supersymmetric quantization (3.13) method by Jia et al [2], 

                                              (         
  

     
   

  

(       
                               (3.28) 

Where  

                                                           

         ( 
         

                                                         ( 
                                                  (3.29) 

Incorporating (3.28) and (3.29) into (3.26) we write the effective potential as, 

                                                 (    
   (      

    
    (    

                                                     ̃    
 ̃ 

     
  

 ̃ 

(       
                                       (3.30)              

                                                     ̃                  

                                                            ̃                  

                                                           ̃             

                                                              
   (       

     
                                                         (3.31) 

 

In the present proposition, we suggest Badawi et al [1] factorization formula,   

                                                     
  
 

  
     

  

     
 

  

(       
.                             (3.32)                                                                           

 The estimations of the   
 s are gotten utilizing the factorization formula of Badawi et 

al [1] in the accompanying way. Let y =   ( r -    ) then with  r = y + b and b =     

one suggests that, 
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(
 

 
  )

    

                                                       
   
 

  
       

  

      
 

  

(      )
 .                     (3.33)  

When r⇾  , y=0.  We take the Taylor  s expansion to both sides in (3.33), we get 

three linear equations. The solutions are,                             

                                          (
     

 
)
 

*
  

     
 (    +                                   (3.34)                                                 

                                          
  (      [ (

      

 
)  (    (

      

 
)
 

 ]           (3.35)               

                                       
   

  
(      *(     

   

    
+                                   (3.36) 

In such potential parametric situation, the supersymmetric quantum recipe used by 

Jia et al [2] is most probably utilized. This is also followed consequently for our 

schrӧdenger equation and the effective potential in both (2.7) and (3.30), 

respectively. More specifically, one should set their               are our current 

 ̃   ̃       ̃   respectively. Hereby, we only cast the necessary formulae where our 

superpotential would read [13], 

                                    ̃(   = - √   ( ̃    
 ̃ 

       
),                                         (3.37) 

and the ground-state like wave function is given by 

                                     (   = A exp ( 
 

√ 
∫  ̃(      .                                    (3.38) 

 Substituted (3.30), (3.37) and (3.38) into (3.26), we get 

                                      ̃      *
(   ̃    ̃   

    ̃  
   

 ̃ 

   
+                                                   (3.39) 
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                                           ̃     *
(   ̃    ̃   

    ̃  
   

 ̃ 

   
+
 

                                    (3.40) 

                                      ̃          √        
 ̃ 

  
                                           (3.41) 

The corresponding rotational-vibratinal energy levels are,                    

             ̃    
 
 
  

 𝜇
  

[
 
 
 
  𝜇

 
 
    

(  ̃    ̃ )

(       √  
 𝜇  ̃ 

 
 
    

)

  

(       √  
 𝜇  ̃ 

 
 
    

)

 

]
 
 
 
 
 

          (3.42)    

Where the positive and negative signs ( ) are corresponding to the cases q   0 and 

q   0. 
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Chapter 4 

RESULTS AND DISCUSSION 

  Table 1 shows Amlan K. Roy’s [17] spectroscopic parameters for three diatomic 

molecules   ( 
   
 ), HF(    

 ) and    ( 
   
  ). Now, we utilize the results shown 

in (3.42) and calculate the ro-vibrational energy levels provided, in Table 2, for 

  ( 
   
 ), HF(    

 ) and   ( 
   
  )  molecules, and  the vibrational energies for the 

  ( 
   
  ) molecule (given in table 3). For each of the aforementioned diatomic 

molecules, we have tested the sign of q and accordingly used the proper sign of the 

square root in (3.42).  In addition, in Table 2, we have compared the results we 

obtained with those of Amlan K. Roy [17], who employs a generalized 

pseudospectral (GPS) numerical method. It can be seen from the Roy’s study that his 

results are compared excellently with those of the Nikiforov-Uvarov formalism of 

Hamzavi [7]. Furthermore, in the conversion of the (eV)-units, which are used by 

Roy, into cm
-1

 units, we have used the relation [13],  

             (  
  ) =   (  

  ) + 
     (   

                 (        
 . 

It is apparent that the results we achieved from (3.42) are in good agreement with 

those from the GPS numerical method. However, when we want to explore any 

relationship between the accuracy of our results shown in Table 2 and the potential 

parameters given in Table 1, we can see a general trend that the heavier the reduced 

mass the more exact our results are contrasted with the GPS ones. This is mostly 
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connected to the semi-classical limit nature of the Taylor’s expansion near the 

equilibrium inter-nuclear distance, r →   , used in the factorization recipe (3.32) of 

Badawi et al. [1] . It is also apparent that the larger the reduced mass, in the central 

core term  (       /2µr
2
, the less the effect of the rotational quantum number . 

 Moreover, the authors of [8, 19] have used the common diatomic molecular 

potential (2.7) as an equivalent form for their deformed modified Rosen-Morse 

(DMRM) potential. As a result, the introduction of table 3 cannot be avoided in the 

process. In this table we compare our results with those given by Lino da Silva et al. 

[10] (who have used the RKR method to construct the potential curve of the 

  ( 
   
  )) along with the results reported by Sun et al. [19] and those of Morse 

potential. It can be seen from the comparison between our results and those of Lino 

da Silva et al [10] that the accuracy is still high. However, if our results are compared 

with those of Sun et al. [19], we can see small discrepancies.  

Table 4.1: The values of the molecular parameters are taken from Roy [17]. 

Molecule      Ɛ μ /      (     (   )   (Å) F(   )   (  
  )   

  ( 
   
 )  0.170066   0.084 1.61890  0.741 1.9506  38318 

HF(    
 )  0.127772   0.160 1.94207  0.917 2.2266  49382 

  ( 
   
 ) -0.032325   1.171 2.78585  1.097 2.6986  79885 
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Table 4.2: Rotational-vibrational energy      in      for   = 0, 3, 5 for different 

  values using 

    ( 
   
 )  HF(    

 )    ( 
   
 )  

  n       GPS[10] Eq.(3.42) GPS[10] Eq.(3.42] GPS[10] Eq.(3.42] 

  0   0 2171.682 2171.620 2047.271 2047.583 1174.939 1174.927 

  0   1 2289.372 2289.389 2088.368 2088.372 1178.870 1178.881 

  0   2 2523.794 2523.868 2169.893 2169.899 1186.778 1186.787 

  0   3  2872.971  2292.067  1198.653 

  0   4  3333.648  2454.724  1214.465 

  0   5  3901.964  2657.674  1234.235 

  0  10  8173.751  4266.494 1392.325 1392.337 

  0  15 14184.546 14257.357 6824.964 6825.640 1649.086 1649.101 

  0  20 21121.346 21406.208 10257.291 10259.283 2004.287 2004.306 

  3   0 13641.123 13641.153 13298.714 13298.702 8047.875 8074.931 

  3   1 13738.725 13740.002 13334.713 13334.767 8051.716 8051.773 

  3   2 13932.924 13936.843 13406.667 13406.849 8059.397 8059.454 

  3   3  14229.985  13514.858  8070.982 

  3   4  14616.957  13658.654  8086.343 

  3   5  15094.572  13838.054  8105.549 

  3  10  18692.978  15259.572 8259.034 8259.147 

  3  15  23845.985  17518.420 8508.407 8508.590 

  3  20  29951.318  20544.347 8853.370 8853.656 

  5   0 19916.186 19915.781 19858.084 19860.675 12460.465 12460.549 

  5   1 20000.398 20003.348 19893.600 19893.731 12464.229 12464.315 

  5   2 20168.806 20177.740 19959.350 19959.799 12471.756 12471.845 

  5   3  20437.497  20058.790  12483.147 

  5   4  20780.480  20190.575  12498.207 

  5   5  21203.936  20354.979  12517.037 

  5  10  24399.295  21657.201 12667.396 12667.620 

  5  15  28992.422  23724.734 12911.768 12912.163 

  5  20  34465.726  26490.807 13249.805 13250.446 
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Table 4.3:      for     (i.e., vibrational energy) compared with RKR [10], DMRM 

[19] and Morse [19] 

n   RKR[10] Eq.(3.42) DMRM[19] Morse[19] 

0 0 1184.4539 1174.9270 1174.9971 1174.9477 

1 0 3526.3576 3499.7431 3499.8409 3498.7289 

2 0 5833.4516  5790.7602 5790.8755 5787.6913 

3 0 8107.0460 8047.9317 8048.0809 8041.8351 

4 0 10348.312 10271.210 10271.387 10261.160 

5 0 12558.287 12460.549 12460.725 12445.666 

6 0 14737.876 14615.901 14616.138 14595.353 

7 0 16887.859 16737.218 16737.473 16710.222 

8 0 19008.895 18824.453 18824.747 18790.272 

9 0 21101.519 20877.559 20877.869 20835.503 
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Chapter 5 

CONCLUSION 

The main goal of this thesis is to study the deformed Schiӧberg- type potential by 

using the radial spherically symmetric Schrödinger equation to investigate the central 

attractive/repulsive core   (  +1)/2𝜇  (3.26) to  obtain  the rotational-vibration 

energy levels. To obtain this aim, we started by using the Morse potential (1.1) with 

the Manning-Rosen potential (1.2), the Deng-Fan potential (1.3) and the Schiӧberg-

type potential (1.4) to show their relationship. In addition, each of them was used to 

investigate the diatomic molecules. Some previous studies have found that the 

Manning-Rosen potential (1.2), the Deng-Fan potential (1.3)  and the Schiӧberg-type 

potential (1.4) are more accurate than the Morse potential (1.1) to explore the ro-

vibrational levels for diatomic molecules and the Manning-Rosen potential (1.2), the 

Deng-Fan potential (1.3)  and the Schiӧberg-type potential (1.4) are equivalent 

empirical potential functions for diatomic molecules. 

In this part of the thesis, We have used the         s [21,15]  conditions for 

deformed Schiӧberg-type potential (2.4) to obtain common diatomic molecular 

potential (2.7) . Also, We have used the radial spherically symmetric Schrӧdinger 

equation (3.26), the supersymmetric quantization method (3.28) by Jia et al [2], 

Badawi et al [1] factorization recipe (3.32) and ground-state like wave function 

(3.38) to obtain a closed form solution for the rotatinal-vibrational energy levels 

(3.42). 
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In the last part of this thesis, we discussed our results using three-diatomic 

molecules   ( 
   
 ), HF(    

 ) and    ( 
   
  ). The results of our analysis turned 

out to have great comparison with those from a generalized pseudospectral numerical 

method (in table 2), Lino da Silva et al. [10] and Sun et al. [19] (in table 3).  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                



 

21 
 

REFERENCES 

 [1] Badawi, M., Bessis, N., & Bessis, G. (1972). On the introduction of the rotation-

vibration coupling in diatomic molecules and the factorization method. Journal 

of Physics B: Atomic and Molecular Physics, 5(8), L157. 

 [2] Chun-Sheng, J., Xiang-Lin, Z., Shu-Chuan, L., Liang-Tian, S., & Qiu-Bo, Y. 

(2002). Six-Parameter Exponential-Type Potential and the Identity for the 

Exponential-Type PotentialsThe project supported by the Visiting Scholar 

Foundation of the Key Laboratory of University in the Ministry of Education of 

China. Communications in Theoretical Physics, 37(5), 523.  

 [3] Deng, Z. H., & Fan, Y. P. (1957). A potential function of diatomic 

molecules.Journal of Shandong University (Natural Science), 1, 011. 

[4] Diaf, A. (2015). Unified treatment of the bound states of the Schiöberg and the 

Eckart potentials using Feynman path integral approach. Chinese Physics 

B,24(2), 020302. 

[5] Gendenshtein, L. E. (1983). Derivation of exact spectra of the Schrödinger 

equation by means of supersymmetry. Soviet Journal of Experimental and 

Theoretical Physics Letters, 38, 356. 

 [6] Hajigeorgiou, P. G. (2010). An extended Lennard-Jones potential energy 

function for diatomic molecules: Application to ground electronic states.Journal 

of Molecular Spectroscopy, 263(1), 101-110. 



 

22 
 

[7] Hamzavi, M., Rajabi, A. A., & Thylwe, K. E. (2012). The rotation‐vibration 

spectrum of diatomic molecules with the tietz‐hua rotating 

oscillator.International Journal of Quantum Chemistry, 112(15), 2701-2705. 

 [8] Jia, C. S., Chen, T., Yi, L. Z., & Lin, S. R. (2013). Equivalence of the deformed 

Rosen–Morse potential energy model and Tietz potential enermodel. Journal of 

Mathematical Chemistry, 51(8), 2165-2172. 

 [9] Jia, C. S., Diao, Y. F., Liu, X. J., Wang, P. Q., Liu, J. Y., & Zhang, G. D. (2012). 

Equivalence of the Wei potential model and Tietz potential model for diatomic 

molecules. The Journal of chemical physics, 137(1), 014101.  

 [10] M. Lino da Silva, M. L., Guerra, V., Loureiro, J., & Sá, P. A. (2008). 

Vibrational distributions in N 2 with an improved calculation of energy levels 

using the RKR method. Chemical Physics, 348(1), 187-194. 

  [11] Manning, M. F., & Rosen, N. (1933). A potential function for the vibrations of 

diatomic molecules. Phys. Rev, 44, 953. 

[12] Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. 

Vibrational levels. Physical Review, 34(1), 57.c 

[13] Mustafa, O. (2015). A new deformed Schiöberg-type potential and ro-

vibrational energies for some diatomic molecules. Physica Scripta, 90(6), 

065002. 



 

23 
 

[14] Mustafa, O. (2015). On the ro–vibrational energies for the lithium dimer; 

maximum-possible rotational levels. Journal of Physics B: Atomic, Molecular 

and Optical Physics, 48(6), 065101.  

[15] Noorizadeh, S., & Pourshams, G. R. (2004). New empirical potential energy 

function for diatomic molecules. Journal of Molecular Structure: 

THEOCHEM, 678(1), 207-210.  

[16] Rosen, N., & Morse, P. M. (1932). On the vibrations of polyatomic 

molecules. Physical Review, 42(2), 210. 

[17] Roy, A. K. (2014). Ro-vibrational spectroscopy of molecules represented by a 

Tietz–Hua oscillator potential. Journal of Mathematical Chemistry, 52(5), 

1405-1413.  

[18] Schiöberg, D. (1986). The energy eigenvalues of hyperbolical potential 

functions. Molecular Physics, 59(5), 1123-1137. 

[19] Sun, Y., He, S., & Jia, C. S. (2013). Equivalence of the deformed modified 

Rosen? Morse potential energy model and the Tietz potential energy 

model.Physica Scripta, 87(2), 025301.  

[20] Tietz, T. (1963). Potential‐Energy Function for Diatomic Molecules. The 

Journal of Chemical Physics, 38(12), 3036-3037. 



 

24 
 

[21] Varshni, Y. P. (1957). Comparative study of potential energy functions for 

diatomic molecules. Reviews of Modern Physics, 29(4), 664.  

 [22] Wang, P. Q., Liu, J. Y., Zhang, L. H., Cao, S. Y., & Jia, C. S. (2012). Improved 

expressions for the Schiöberg potential energy models for diatomic 

molecules. Journal of Molecular Spectroscopy, 278, 23-26. 

[23] Wang, P. Q., Zhang, L. H., Jia, C. S., & Liu, J. Y. (2012). Equivalence of the 

three empirical potential energy models for diatomic molecules. Journal of 

Molecular Spectroscopy, 274, 5-8.  

 


