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ABSTRACT 

We give a full investigation and assessment on the general spherically symmetric 

time-like thin shells in general relativity.  In this main stream, we give the details of 

the Israel junction conditions which are used for gluing two distinct space-times on a 

hyper-surfaces including the case of time-like shells.  We also study the general 

stability of thin-shells against a radial perturbation. Our results are fully analytic in 

closed forms.    

Keywords: Thin-shells, General relativity, Spherically symmetric, Stability, Israel 

junction conditions. 
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ӦZ 

Küresel simetrik genel görelilikle zaman-benzer ince kabuklar üzerinde araştırma ve 

değerlendirme yaptık. Bu ana akımda ĺsrail sınır koşulları detaylarının göz önünde 

bulundurulduğunda bunlar iki farklı uzay-zaman benzeri kabuklar dahil olmak üzere 

yüzeylerin yapıştırılmasında kullanılır. Ayrıca ince kabukların radyal 

pertürbasyonlara karşı genel kararlılığını da inceledik. Sonuçlarımız kapalı formlarda 

tamamen analitiktir. 

Ana kelimeler:  ĺnce-kabukler, Genel görelilik, Küresel Simetrik, Kararlı, ĺsrail sınır 

koşulları. 
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Chapter 1 

INTRODUCTION 

Thin-shells in general relativity are objects connecting different space-times through 

a very thin surface of most probably physical matters. Such kind of shells, depends 

on their four-normal direction, can be time-like, space-like or null. A surface with a 

space-like / time-like four-normal vector is time-like / space-like surface and with 

null four-vector is a null surface. Although the technical details of these different 

types of thin-shells are more or less the same our concentration will be on the time-

like thin-shells only.  

Furthermore, the thin-shell under our investigation has spherically symmetric whose 

inside and outside space-times are both spherical solutions of the Einstein equations. 

Our approach is a generic and detailed one which considers the most general 

spherically symmetric space-times for the inside and outside of the shell.  

Thin-shells cannot exist without being matched with the two incomplete manifolds 

presented inside and outside. There are certain conditions / rules which have to 

satisfy having an acceptable thin-shell. Due to the same rules one has to consider 

certain form of matter source on the surface. The 2+1-dimensional thin-shell requires 

an energy-momentum tensor whose energy density and the angular pressure are 

related via the equation of states.  Such kind of relations provide the necessary 
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mathematical tools and techniques to assess not only the static thin-shells but also the 

dynamical behavior of the shells.  

To that end one has to construct the thin-shell based on the metrics of the bulks in 

either side and then apply a radial perturbation to the equilibrium shell and study the 

post perturbation motion of the radius of the shell. Limiting the perturbation to be 

only radial, however, provides advantages in the motion of the shell after the 

perturbation. For instance, the equation of motion is of the type of a one-dimensional 

particle moving under a one-dimensional potential. This allows us to assess the thin-

shell’s motion without solving analytically the equation. The general aspect of the 

motion is dictated by the potential itself.  
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Chapter 2 

ISRAEL JUNCTION CONDITION 

The Israel junction conditions, applying to both null and non-null hypersurfaces, is a 

regularity condition for the existence of smooth Lorentzian manifolds. No 

discontinuous happens in the metric.  This relates the induced metric and extrinsic 

curvature to changes in the stress-energy tensor across a hypersurface. 

Suppose we consider a (2+1)-dimensional hypersurface Σ that can be either time-

like, space-like or null in a (3+1)-dimensional space-time (metric    ). The 4-normal 

 ⃗  to these surfaces satisfy  ⃗   ⃗     which is pointing to the positive direction with 

respect to the bulk space-time. Throughout the thesis, we consider the time-like 

surface   ⃗   ⃗    . 

For the technical convenience, we introduce the Gaussian normal coordinates in the 

vicinity of the surface Σ. Gaussian normal coordinate system in 4-dimensional space-

time in which a hypersurface swept by the spherical shell divides into two regions is 

introduced starting from a certain coordinate system   
  with a metric    

    
  . In 

particular, assume the continuity of the four-dimensional coordinates   
  across Σ, 

then    
     

  is required. The surface Σ is parametrized by coordinates     

         , where   runs from 1 to 3. Here   is the proper-time variable that would be 

measured by an observer co-moving with the shell. 
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Consider a neighbourhood of Σ with a system of geodesics orthogonal to Σ. The 

neighborhood is chosen so that the geodesics do not intersect; that is, any point in the 

neighborhood is located on one and only one geodesic. In the Gaussian normal 

coordinate system, a geodesic in a neighbourhood of Σ which is orthogonal to Σ is 

taken as the third spatial coordinate denoted by  .  

The metric     has the form 

         
               

    ,                      (2.1) 

where    ⃗   ⃗     for a time-like hypersurface, w is constant, and 

               ,                                              (2.2) 

is the induced metric on Σ or the first fundamental form. 

The extrinsic curvature       in these coordinates (of the surfaces in which w is a 

constant) is defined as  

     
 

 

    

  
.                                                        (2.3) 

Gauss-Codazzi equations connect the metric tensor of the bulk and the surface via 

the extrinsic curvature tensor of the shell is given by 

      
    

  
      

 
 ,                                        (2.4) 

                  ,                                      (2.5) 

and 

             (             )
 ,                          (2.6) 

where    is the covariant derivative with respect to the three-dimensional metric    , 

     
  Riemann tensor on hypersurface. From Eqs. (2.4), (2.5) and (2.6) one finds 
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(             ), (where       is the Riemann curvature tensor) and of the scalar 

curvature (        ).  

We can define 

            ,                                                  (2.7) 

and from (2.4) we find 

           

  
       .                                    (2.8) 

From (2.5) we  find 

                      ,                                       (2.9) 

therefore 

            
 .                                             (2.10) 

From (2.4) and (2.6) we find 

                     ,                                        (2.11) 

therefore 

         *   
          

    

  
+ ,                                (2.12) 

where    
   Ricci tensor on hypersurface. 

From (2.8) and (2.12) we find 

               ,                                                  (2.13) 

therefore 

     (      *   
          

    

  
+ )     ⏟

  

(       

  
       ), (2.14) 

thus 
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     *                   

  
+ ,                                 (2.15) 

in which     
 

 and               . 

Finally, we obtain 

  
    

  
 

 
  

  =    
 ,                                                  (2.16) 

where   
  is the Ricci curvature tensor,   is the Ricci scalar, (     ,   is the 

gravitational constant) and   
  is the stress-energy tensor. 

The field equations (on the hypersurface) have mixed components 

    
    

  
 

 
  

  ,                                               (2.17) 

from (2.8) and (2.15) we find 

    
   

 

 
   

 

 
 [         ]       

 .                    (2.18)   

From the Einstein tensor, we have 

    
    

  
 

 
  

  ,                                               (2.19) 

where    
        , so that for      

    
    

        ,                                          (2.20)   

so that from (2.10) we find 

    
   [        

 ]       
  .                                       (2.21) 

Einstein tensor is given 

    
 

   
 
 

 

 
  

 
 ,                                                (2.22) 

where 

  
 

       ,                                                        (2.23) 
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so that from (2.12) we find 

  
 

    *      (   
          

    

  
) +,                       (2.24) 

therefore 

  
 

   
 
  *   

   
 
    

 
        

  
+ .                               (2.25) 

We can write  

       

  
 

 

  
(      )     

    

  
 ,                               (2.26) 

therefore 

       

  
 

   
 

  
    

    

  
 .                                  (2.27) 

Now, we will find  
    

  
 . From 

    
     

 
,                                             (2.28) 

derivative with respect to    

 

  
[    

  ]   ,                                                   (2.29) 

gives 

    

  
       

    

  
  ,                                       (2.30) 

thus 

   
    

  
         

  
 ,                                          (2.31) 

from (2.3), we obtain 

   
    

  
            

 
 .                               (2.32) 

Multiply by     to obtain 

  
     

  
     ,                                        (2.33) 
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now, put     to obtain 

    

  
     .                                             (2.34) 

Upon substitution of (2.34) into (2.27), yields 

       

  
 

   
 

  
      

  ,                                 (2.35) 

and with (2.26) we obtain  

  
 

   
 
  *   

   
 
    

 
 

   
 

  
      

  + .                   (2.36) 

From (2.15), we have 

  
 
    

 
   *   

 
         

 
      

 
       

  
+ ,           (2.37) 

where 

       

  
 

 

  
(      )     

    

  
 ,                              (2.38) 

where          . Substitute now (2.34) into (2.38) to obtain 

       

  
 

  

  
      

  ,                                               (2.39) 

where     
         , therefore we have 

       

  
 

  

  
        ,                                               (2.40) 

so that from (2.37), we obtain  

  
 
    

 
   *   

 
         

 
      

   

  
    

 
      + .        (2.41) 

Now, substitute (2.36) and (2.41) into (2.22) to obtain 
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  *   

   
 
    

 
 

   
 

  
      

  +  

 

 
  

 
   *

 

 
  

 
       

 

 
  

 
     

   

  
    

 
      + ,                  (2.42) 

where       
         

        
   

 
, so that we obtain 

    
 

   
   

 

 
  

 
   (

   
 

  
   

   

  
)   (

 

 
  

 
       

 

 
  

 
      

 
)       

 
,                    

(2.43) 

where   
   

 

 
  

 
    

  , and as a result 

    
 

   
    (

   
 

  
   

   

  
)   (

 

 
  

 
       

 

 
  

 
      

 
)       

 
 .   (2.44) 

Here the energy-momentum tensor is given by 

  
 

   
 

         
 

            
 

 ,                    (2.45) 

with   
 

 being the energy-momentum tensor on the shell, and   
  

are the energy-

momentum tensors on both sides in the bulk. 

If   
  involves a  -function on Σ, we find 

    
        (∫     

   
 

  
),                                  (2.46) 

The Israel junction conditions can be obtained by the integration of the field 

equations (2.18), (2.21) and (2.44), to find 

       
 ,                                                              (2.47) 

       
 ,                                                               (2.48) 

and  

  [  
 
]    

 [ ]       
 

 .                                    (2.49) 

This equation is called the Israel junction condition, where [  
 
]    

  
   

  
. 
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We can rewrite (2.49) in the other form 

[  
 
]    

 [ ]         
 

,                                     (2.50) 

where   
 

        , therefore 

[ ]   [ ]      ,                                             (2.51) 

and 

[ ]       ,                                                       (2.52) 

so that from (2.49) we obtain 

[  
 
]     (  

 
 

 

 
  

 
 ).                                               (2.53) 

This equation also is called the Israel junction condition. 
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Chapter 3 

THIN-SHELL FORMALISM IN GENERAL 

RELATIVITY 

3.1 Thin-shell in 3+1-Dimensions 

We consider standard general relativity, with the transition layer confined to a thin-

shell. The bulk space-times (interior and exterior) on either side of the transition 

layer will be spherically symmetric and static but otherwise arbitrary. The thin-shell 

(transition layer) will be permitted to move freely in the bulk space-times, permitting 

a fully dynamic analysis. 

To describe the geometry of the thin-shell, we use spherical coordinates (t, r, θ, φ) 

and we assume that the geometry is static, and spherically symmetric. 

Consider two distinct space-time manifolds, an exterior M+, and an interior M−, that 

are to be joined together across a surface layer Σ (a spherical shell). Σ is called a 

singular hypersurface of order one, surface layer or thin-shell. 

3.1.1 General Formalism 

The metric for a thin-shell is given by the following line element: 

   
       (  ) *  

  (  )

  
+    

  *  
  (  )

  
+

  

   
    

    
 ,       (3.1) 

(we are using geometrized units c = G = 1), where     
     

       
     

   the 

metric of the two-dimensional unit sphere with the two spherical polar coordinates θ 

and φ;    refers to the exterior and interior geometry, respectively. 
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      and      are non-negative functions from a given value of the radial 

coordinate, t is the time coordinate, and r is the space coordinate in the radial 

direction. 

The covariant metric components    
 : 

   
      [     (  ) *  

  (  )

  
+  *  

  (  )

  
+

  

   
    

      
 ].      (3.2)           

The contravariant metric tensor   
  

: 

  
  

     [      (  ) *  
  (  )

  
+

  

 *  
  (  )

  
+  

 

  
  

 

  
      

 ].       (3.3) 

To understand the physical meaning of the two metric functions,   (  ) and  

  (  ), it is necessary to invoke the Einstein field equations. 

3.2 Einstein Field Equations 

We consider Einstein’s equations in the form:  

        
 

 
            ,                                        (3.4) 

where     is called the Einstein tensor, which can be obtained through  a weary but 

straightforward calculation once the metric components     are given.     is the 

Ricci curvature tensor,           is the Ricci scalar,     is the stress-energy 

tensor, and G is the gravitational constant. 

3.2.1 Components of The Einstein Tensor 

To obtain the Components of the Einstein tensor for giving metric we should get to 

know the Christoffel symbols of the second kind: 

   
   

 
   [                 ],                                    (3.5) 
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where    
  is called the connection coefficients or Christoffel symbols. If all the 

gradients of the metric tensor are zero, then all of the Christoffel symbols of the 

second kind are zero. The connection coefficients are symmetric, the symmetry of 

Christoffel symbols means that 

   
     

 . 

3.2.2 Non-zero Christoffel Symbols 

From (3.5), when             , we have 

   
   

 
   [           ⏟

  

      ⏟
  

]   

 
        ,                     (3.6) 

from (3.2), we have 

      [     (  ) *  
  (  )

  
+]

  

,                                 (3.7.a) 

therefore 

       *         (  
 

 
)        (

     

  )+,                     (3.7.b) 

substitute (3.7.b) into (3.6) to obtain    

   
     (

     

       
)     

  .                                              (3.8) 

From Christoffel symbols (3.5), when        , we have 

   
   

 
   [                 ]   

 
        ,                   (3.9) 

from (3.2), we have 

      *  
  (  )

  
+
  

  

  
(     )

      
,                             (3.10) 

and substituting (3.10) into (3.9), we obtain 

   
   

(     )

       
.                                                    (3.11) 
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From (3.5), when          , we find 

   
   

 
   [     ⏟

  

      ⏟
  

      ]    

 
        ,                           (3.12) 

substitute (3.7.b) into (3.12), we find 

   
          (

   

 
)
 

 
      

   
            .                   (3.13)          

From (3.5), when          , we find 

   
   

 
   [     ⏟

  

      ⏟
  

      ]   
 

 
        ,                    (3.14) 

where 

               ,                                             (3.15) 

substitute (3.15) into (3.14), we obtain     

   
        .                                                   (3.16) 

From Christoffel symbols (3.5), when          , we find 

   
  

 

 
   [     ⏟  

  

      ⏟  
  

      ]    
 

 
        ,               (3.17) 

where 

                         ,                                    (3.18) 

and upon substituting (3.18) into (3.17), we obtain 

   
             .                                       (3.19) 

From Christoffel symbols (3.5), when         , we find 

   
   

 
   [                 ]   

 
        ,                         (3.20) 

Substitute (3.15) into (3.20), to obtain 
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 .                                                      (3.21) 

From Christoffel symbols (3.5), when         , we find 

   
   

 
   [     ⏟  

  

      ⏟  
  

      ]    

 
        ,                (3.22) 

where 

                             ,                          (3.23) 

Substitute (3.23) into (3.22), to obtain 

   
           .                                                         (3.24) 

From (3.5) when           , we find 

   
 

  

 
   [                 ]   

 
        ,                     (3.25) 

Substitute (3.18) into (3.25), to obtain 

   
 

 
 

 
    

 
 .                                                      (3.26) 

From (3.5) when           , we find 

   
 

  

 
   [           ⏟  

  

      ⏟  
  

]   

 
        ,                   (3.27) 

Substitute (3.23) into (3.27), to obtain 

   
 

 
    

    
    

 
 .                                                (3.28) 

3.3 Riemann Curvature Tensor 

The left hand side of the Einstein field equations (3.4) represents the geometry of the 

space-time and are given as a nonlinear combination of the metric components     

and their first and second derivatives. For completeness, we define the Riemann 

curvature tensor in terms of the Christoffel symbols: 
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 .                           (3.29) 

3.3.1 Non-zero Riemann Tensor Components 

     
       

 
⏟
  

      
     

    
 ⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟  

  

    
    

  

   
    

 ⏟   
  

   
    

 
⏟  

  

    
    

 
⏟  

  

,                                                            (3.30.a) 

therefore 

     
        

     
    

     
    

 ,                                    (3.30.b) 

from (3.8), we have 

     
  *   (

     

       
)+

  
     

   

      
 

(     )(          )

         
 .       (3.31) 

Substitute (3.8), (3.11) and (3.31) into (3.30.b) to get 

      
           

   (     )

       
 

   

       
 

(     )
 

         
 

(     )(          )

         
                            

(3.32) 

From Riemann curvature tensor (3.29) we find 

     
       

 
⏟
  

      
 

⏟
  

    
    

 
⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

 

   
    

 
⏟   

  

   
    

 
⏟  

  

    
    

 
⏟  

  

,                                                          (3.33.a) 

therefore 

     
     

    
 ,                                                   (3.33.b) 

and substituting (3.8) and (3.16) into (3.33.b) one gets 

     
           

     

  
.                                         (3.34) 

From the Riemann curvature tensor (3.29) we find 
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⏟
  

      
 

⏟
  

    
    

 
⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

 

   
    

 
⏟   

  

   
    

 
⏟  

  

    
    

 
⏟  

  

,                                                                     (3.35.a) 

therefore 

     
     

    
  .                                                 (3.35.b) 

Substitute now (3.8) and (3.19) into (3.35.b) to get 

     
                

(     )

  
     .                            (3.36) 

From the Riemann curvature tensor (3.29) we find 

     
       

 
⏟
  

      
     

    
     

    
 ⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 ⏟  
  

 

   
    

     
    

 
⏟  

  

    
    

 
⏟  

  

,                                                            (3.37.a) 

therefore 

     
        

     
    

     
    

 ,                                     (3.37.b) 

and from (3.13) we have 

     
  [        (

   

 
)
 

 
      

   
            ]

  
 .        (3.38.a) 

As a result, we have 

     
  

         (
   

 
)
 

           (
   

 
)
 

 

        (
        (    )         

  
)          

  
             

      

 
(
  (    )         

  )         
         

   
      .                 (3.38.b) 
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Substitute now (3.8), (3.11), (3.13), and (3.38.b) into (3.37.b) to get 

     
            (

   

 
)
 

          (
   

 
)
 

 
        

   
        

     
           

  
            

      

   
              

         

 
(
   

 
)
 

 
       

   
             

         

   
      

      

   
        .                           (3.39)                       

From the Riemann curvature tensor (3.29) we find 

     
       

       
 

⏟
  

    
    

 
⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

 

   
    

 
⏟  

  

    
    

     
    

 
⏟  

  

,                                                          (3.40.a) 

therefore 

     
       

     
    

     
    

 .                                   (3.40.b) 

The derivative of (3.16) with respect to r is 

     
                ,                                      (3.41) 

and substituting (3.11), (3.16), (3.21), and (3.41) into (3.40.b) we get 

     
    

(     )

  
 .                                              (3.42) 

From the Riemann curvature tensor (3.29) we find 

     
       

       
 

⏟
  

    
    

 
⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟    

  

    
    

 
⏟  

  

 

   
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
,                                                                    (3.43.a) 

therefore 
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.                                (3.43.b) 

The derivative of (3.19) with respect to r is 

     
   [          ]               ,                      (3.44) 

and upon substituting (3.11), (3.19), (3.26), and (3.44) into (3.43.b) we get 

     
    (

     

  
)      .                                   (3.45) 

From the Riemann curvature tensor (3.29) we find 

     
       

 
⏟
  

      
 

⏟
  

    
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
⏟  

  

 

   
    

     
    

 
⏟  

  

    
    

 
⏟  

  

,                                                           (3.46.a) 

therefore 

     
      

    
 ,                                                 (3.46.b) 

and substitute (3.13) and (3.21) into (3.46.b) to get 

     
   

        

 
(
   

 
)
 

 
      

   
            .               (3.47) 

From the Riemann curvature tensor (3.29) we have 

     
       

       
 

⏟
  

    
    

 
⏟  

  

    
    

 
⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟  

  

 

   
    

     
    

 
⏟  

  

    
    

 
⏟  

  

,                                                           (3.48.a) 

therefore 

     
       

     
    

     
    

 ,                        (3.48.b) 

which from (3.21) gives 

     
  (

 

 
)
 
  

 

  
 ,                                             (3.49) 
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and substitution of (3.11), (3.21), and (3.49) into (3.48.b) gives 

     
  

 

   

(     )

     
 .                                              (3.50) 

From the Riemann curvature tensor (3.29) we have 

     
       

       
 

⏟  
  

    
    

 
⏟  

  

    
    

     
    

 
⏟  

  

    
    

 
⏟    

  

    
    

 
⏟  

  

 

   
    

 
⏟  

  

    
    

 
⏟  

  

    
    

 
,                                                                   (3.51.a) 

so that 

           
       

     
    

     
    

 
.                         (3.51.b) 

The derivative of (3.24) with respect to   gives 

     
                            ,               (3.52) 

which upon substitution of (3.52), (3.21), (3.19), (3.24) and (3.28) into (3.51.b) gives   

    
  

    

 
     .                                               (3.53) 

From the Riemann curvature tensor (3.29) we have 

     
 

      
 

⏟
  

      
 

⏟
  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

 

   
 
   

     
 
   

 
⏟  

  

    
 

   
 

⏟  
  

,                                                                      (3.54.a) 

therefore 

     
 

     
 
   

   .                                               (3.54.b) 

Substitute (3.13), and (3.26) into (3.54.b) to get 

     
 

  
        

 
(
   

 
)
 

 
      

   
            .              (3.55) 
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From the Riemann curvature tensor we have 

     
 

      
 

      
 

⏟
  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 
   

 
    

 
   

 
⏟  

  

 

   
 
   

     
 
   

 
⏟  

  

    
 

   
 

⏟  
  

,                                                                      (3.56.a) 

therefore 

     
 

      
 

    
 
   

 
    

 
   

 ,                       (3.56.b) 

From (3.26) we have 

     
 

 (
 

 
)
  

  
 

   ,                                            (3.57)                                         

and substitute (3.26), (3.57) and (3.11) into (3.56.b) to get 

     
 

 
 

   (
     

   
).                                             (3.58) 

From the Riemann curvature tensor (3.29) we have 

     
 

      
 

      
 

⏟
  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 
   

 
⏟  

  

    
 

   
 

    
 
   

 
⏟  

  

 

   
 
   

     
 
   

 
⏟  

  

    
 

   
 

⏟  
  

,                                                                    (3.59.a) 

therefore 

     
 

      
 

    
 

   
 

    
 
   

 ,                                (3.59.b) 

and from (3.28) we have 

     
 

 (
    

    
)
  

 
            

     
 .                                    (3.60) 

Substituting (3.60), (3.28), (3.26), and (3.16) into (3.59.b) gives 

     
 

  
    

 
.                                                     (3.61) 
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3.4 The Ricci Tensor 

It is given by the contraction over the first and third index of the Riemann tensor: 

        
 .                                            (3.62.a) 

where 

         [                 ].                                 (3.62.b) 

The Ricci tensor     is symmetric. 

The Ricci tensor     is  

        
      

 ⏟
  

     
 ⏟

      
 

     
 

⏟

      
 

     
 

,                    (3.63) 

so that substituting (3.39), (3.47), and (3.55) into (3.63), we find 

             (
   

 
)
 

          (
   

 
)
 

         

   
             

         

  
                     

   
             

   
        

            

   
                     

   
         .        (3.64) 

The Ricci tensor     

        
      

      
 ⏟
  

     
      

 
,                                  (3.65) 

upon substituting (3.23), (3.50), and (3.58) into (3.65), we find 

             
   

  

(     )

     
 

   

      
 

(     )(          )

         
 

(     )
 

         
 

 

  

(     )

     
 .                                                                             (3.66) 

The Ricci tensor     is given by 

        
      

      
      

 
⏟
  

     
 

,                               (3.67) 
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and substituting (3.34), (3.42), and (3.61) into (3.67), we find 

               .                                    (3.68) 

The Ricci tensor     

        
      

      
      

      
 

⏟  
  

,                           (3.69) 

and substituting (3.36), (3.45), and (3.53) into (3.69), we find 

                         .                          (3.70) 

3.4.1 Ricci Scalar 

The contraction of the Ricci tensor is called the Ricci scalar: 

        ,                                           (3.71.a) 

therefore 

                              .                           (3.71.b) 

From (3.3) we have 

  
      

     
    

     

 
    

 

      
 

       
   ,                   (3.72) 

and substituting (3.64), (3.66), (3.68) and (3.70) into (3.72), we find 

       (
   

 
)      (

   

 
)  

  

  
        

   

 
       

   

  
      

 

   
        

   

 
 

   

  
 

(     )(    )

        
 

(     )(          )

        
 .                                                 

(3.73) 

3.5 Mixed Form of Einstein Equations 

  
    

  
 

 
  

       
 ,                                  (3.74) 
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where   
  is mixed form of the stress-energy tensor. Einstein equations must be 

solved for a perfect fluid
1
, so the stress-energy tensor should have these components 

  
      [        ], where   is the mass-energy density and   is the hydrostatic 

pressure. 

The tt-field equation of Einstein field equations is given by 

  
    

 ⏟
       

 
 

 
  

 ⏟
  

      
 ,                                       (3.75.a) 

therefore 

       
 

 
        .                                      (3.75.b) 

Substitute (3.64) and (3.73) into (3.75.b), to obtain 

    (
   

 
)     (

   

 
)  

  

   
        

   

 
       

 

   
        

(     )
 

        
 

   

  
 

(     )(    )

        
    (

   

 
)     (

   

 
)  

  

   
        

  

 
       

  

  
      

 

   
        

   

  
 

(     )(    )

        
 

(     )(          )

        
 

  

       ,                                                                  (3.75.c) 

therefore 

  
   

  

       ,                                              (3.76) 

and by rearranging this equation, we find 

  
  

     .                                                   (3.77) 

 

                                                           
1
A perfect fluid: is a fluid that can be completely characterized by its rest frame mass density ρ, and 

isotropic pressure P. 
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The rr-field equation of Einstein field equations is 

  
    

 ⏟
       

 
 

 
  

       
 ,                                      (3.78.a) 

therefore 

       
 

 
     ,                                         (3.78.b) 

Substitute (3.66), (3.73) into (3.78.b), to obtain 

    (
   

 
)     (

   

 
)  

   

   
        

   

  
 

(     )(          )

        
 

(     )
 

        
 

(     )

      (
   

 
)     (

   

 
)  

  

   
        

  

 
       

  

  
      

(     )

    
   

  
 

(     )(    )

        
 

(     )(          )

        
 

  

      , 

(3.78.c) 

thus 

  
  

   

  
      

  

      ,                                      (3.79) 

and rearrange this equation to obtain 

  
 

    
[           ].                                         (3.80) 

The   -field equation of Einstein field equations is 

  
    

 
⏟

       

 
 

 
  

       
 ,                                    (3.81.a) 

therefore 

       
 

 
     ,                                    (3.81.b) 

Substitute (3.68), (3.73) in (3.81.b), to obtain 
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    (

   

 
)     (

   

 
)  

  

   
        

  

 
       

  

  
      

(     )

    
   

  
 

(     )(    )

        
 

(     )(          )

        
 

  

      ,                                                         (3.81.c) 

therefore 

  
  

   

 
      

   

 
      

  

   
            

   

  
    ,(3.82) 

and rearrange this equation to obtain 

  
 

     
[                                        ].  

(3.83)                                                                                                                      

3.6 Transition Layer 

Now, consider a time-like 3-space Σ thin-shell which divides space-time into two 

distinct four-dimensional manifolds M+ and M−, located at         

                    
  

  
    ̇  , 

note that    is the proper time on the thin-shell hypersurface, and      is the shell's 

radius.  

Substituting these in (3.1), we find 

         (  ) *  
  (  )

     
+    

  *  
  (  )

     
+

  

(
   

  
)
 

             
 , 

(3.84.a) 

therefore 

       
 [     (  ) *  

  (  )

     
+   

 ̇  *  
  (  )

     
+

  

  
 ̇ ]           

 (3.84.b) 

Here we are defining the dot operation as the derivative with respect to    



 

  27 
 

 ̇  
  

  
    ̇  

  

  
  , 

and Σ is described by a line element on the shell: 

   
               .                                      (3.85) 

We compare (3.85) with (3.84.b) to obtain 

     (  ) *  
  (  )

     
+   

 ̇  *  
  (  )

     
+

  

  
 ̇    ,          (3.86.a) 

and rearrange the equation to yield 

  
 ̇       (  ) [

(  
  (  )

     
)   

 ̇

(  
  (  )

     
)

 ].                                   (3.86.b) 

Take the square root to get 

  ̇         
√  

     

    
  ̇ 

  
     

    

 .                                    (3.87) 

3.7 Components of The Four-velocity 

The four-velocity of the shell is given by  

  
 
 

   

  
 (

  

  
 
  

  
 
  

  
 
  

  
)     ̇  ̇     ,                       (3.88) 

which upon considering (3.87) we find 

  
 
 (       

√  
     

    
   ̇

  
     

    

   ̇    ).                             (3.89) 

3.8 The Unit Normal to The Junction Surface 

Usually    is the unit normal; the sign of    
     depends on whether the normal 

is time-like or space-like. 

The unit normal    is defined as 

   
  

   

 

√ 
,                                                           (3.90) 
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where the hypersurface Σ is described by the equation         , and 

         

   

  

   
 ,                                                   (3.91) 

and put     in (3.3) to yield 

  
  

     [      (  ) *  
  (  )

  
+

  

 *  
  (  )

  
+  

 

  
  

 

  
      

 ].  (3.92) 

Now, we should find  , from (3.91) to have: 

      (
  

  
)
 

    (
  

  
)
 

    (
  

  
)
 

    (
  

  
)
 

,                (3.93) 

where 

  

  
 

      

  
  

  

  
  

  

  

  

  
  

 ̇

 ̇
 ,                                        (3.94.a) 

  

  
 

      

  
  ,                                                 (3.94.b) 

and 

  

  
 

  

  
  .                                                       (3.94.c) 

Substitute (3.94.a-c) and (3.92) into (3.93), to find 

        (  
    

 
)
  

( 
 ̇

 ̇
)
 

 (  
    

 
),                           (3.95) 

and substitute  ̇  from (3.86.b) to obtain 

   
(  

    

 
)
 

(  
    

 
)  ̇ 

.                                                     (3.96) 

Taking the square root for (3.96), we obtain 

√  
(  

    

 
)

√  
    

 
  ̇ 

 .                                                   (3.97) 

The contravariant unit normal vector is defined as: 
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√   
  ,                                             (3.98) 

substitute now (3.97) into (3.98) to get the first component of unit normal vector as 

        

  

 

√ 
 [     (  

    

 
)
  

] * 
 ̇

 ̇
+
√  

    

 
  ̇ 

(  
    

 
)

,  

therefore 

   
 ̇   

(  
    

 
)
 .                                                     (3.99.a) 

The second component of the unit normal vector is  

        

  

 

√ 
 (  

    

 
)    

√  
    

 
  ̇ 

(  
    

 
)

, 

with 

   √  
    

 
  ̇ .                                        (3.99.b) 

The third component of the unit normal vector is 

        

  

 

√ 
  .                                           (3.99.c) 

and similarly the fourth component of the unit normal vector is  

        

  

 

√ 
  .                                          (3.99.d) 

The components of contravariant unit normal to the junction surface are 

  
 

 [
 ̇    

(  
     

 
)
 √  

     

 
  ̇     ] .                     (3.100.a) 

The components of covariant unit normal to the junction surface are 

  
     

   
  [   

   
     

   
     

   
     

   
 
], 
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from (3.100.a) we find 

  
  *  ̇    

√  
     

 
  ̇ 

(  
     

 
)

    +.                                (3.100.b) 

From (3.100.a) and (3.100.b), it can be checked that 

        
 
  

    ,                                               (3.100.c) 

which makes it space-like, indeed    
 

 is normal vector to a time-like hypersurface. 

3.9 Extrinsic Curvature  

The extrinsic curvature (second fundamental form) associated with the two sides of 

the shell is 

   
     

 (
    

          
    

   

   

   ).                                 (3.101) 

The discontinuity in the second fundamental form is defined as 

       
     

  .                                                  (3.102) 

The components of the extrinsic curvature 

   
     

 (
   

   
    

 ⏟
  

(
  

  
)
 

     
   

  

  

  
    

 ⏟
  

(
  

  
)
 

)    
 (

   

   
    

 (
  

  
)
 

 

   
 ⏟

  

  

  

  

  
    

 (
  

  
)
 

), 

therefore                                

   
     

 (
   

        
   

  

  

  
)    

 (
   

       
 (

  

  
)
 

    
 (

  

  
)
 

).       (3.103) 

Now, to find  
   

   , we take derivative of (3.87) with respect to   which gives 
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     ̇ * 
     

(  
 

 
)
√  

 

 
  ̇  

   (     )

   (  
 

 
)

 

√  
 

 
  ̇ 

 
 ̈   

(  
 

 
)√  

 

 
  ̇ 

 

   (     )

  (  
 

 
)
 √  

 

 
  ̇ +,                            (3.104) 

and by substituting (3.104), (3.8), (3.11), (3.13), (3.100.b) and (3.87) into (3.103), we 

find the first component of the extrinsic curvature 

   
   

[
 
 
 
 ( ̈ 

(         
    )

   )

√  
     

 
  ̇ 

   
    √  

     

 
  ̇ 

]
 
 
 
 

.           (3.105) 

It follows that 

   
      

  
⏟
   

   
      

 , 

From (3.105), we find 

   
    

( ̈ 
(         

    )

   )

√  
     

 
  ̇ 

   
    √  

     

 
  ̇  .               (3.106) 

The second component of the extrinsic curvature is 

   
     

 (
   

   ⏟
  

    
 
⏟
  

(
  

  
)
 

)    
 (

   

   ⏟
  

    
 (

  

  
)
 

⏟  
  

),   

therefore       

   
     

    
  ,                                               (3.107.a) 

and by substituting (3.100.b) and (3.16) into (3.107.a), we obtain  

   
   √  

     

 
  ̇  .                               (3.107.b) 

We can also find 
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 . 

From (3.107.b), it follows that 

   
     

 

 
√  

     

 
  ̇  .                               (3.108) 

The third component of the extrinsic curvature 

   
     

 (   
 (

  

  
)
 

),                                (3.109.a) 

and upon substitution of (3.100.b) and (3.19) into (3.109.a), we find 

   
          √  

     

 
  ̇  .                             (3.109.b) 

We can also find 

   
   

   
  

   
   

 

       
   

 , 

and from (3.109.b), we find 

   
   

 
 

 
√  

     

 
  ̇   .                               (3.110) 

3.10 Lanczos Equation: Surface Stress-energy 

The surface stress-energy tensor    
  on   yields the surface energy density    

     

and, surface pressures    
       

 
. 

   
   

 

  
(   

     
    

 ).                                                 (3.111) 

This  equation is called Lanczos equation, where    
       [      ] and    

  

      [   
     

     
 
]. 

From the Lanczos equation (3.111), we have 

   
  

   
 

  
               

   
 

  
,                             (3.112.a) 

sine    
     

    
    

    
, we obtain 
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(   

    
    

    
),                               (3.112.b) 

and using (3.108), we obtain 

      
 

   
*√  

     

 
  ̇  √  

     

 
  ̇  +.           (3.112.c)                             

Again from the Lanczos equation (3.111), we have 

   
  

   
     

 

  
             

   
     

 

  
,                                  (3.113.a) 

therefore 

  
 

  
(   

         
     

    
     

  
  

  (–)
),                            (3.113.b) 

and from (3.106) and (3.108), we obtain 

     
 

   

[
 
 
 
 (   ̇    ̈ 

(         
    )

  
)

√  
     

 
  ̇ 

    
    √  

     

 
  ̇  

(   ̇    ̈ 
(         

    )

  
)

√  
     

 
  ̇ 

    
    √  

     

 
  ̇ 

]
 
 
 
 

 .                       (3.113.c) 

From the Lanczos equation (3.111), we can  find  

     
   

 

  
 ,                                                    (3.114.a) 

since    
     

         
     

, we have 

     
 

  
(   

         
     

) .                                   (3.114.b) 

From (3.106) we obtain 
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[
 
 
 
 ( ̈ 

(         
    )

   )

√  
     

 
  ̇ 

   
    √  

     

 
  ̇  

( ̈ 
(         

    )

   )

√  
     

 
  ̇ 

   
    √  

     

 
  ̇ 

]
 
 
 
 

 .                        (3.114.c)                                                                

3.10.1 Static
2
 Space-time 

Let us assume the shell is static. That  means 

                         ̇   ̈   ,                       (3.115) 

using (3.115) in (3.112.c), (3.113.c) and (3.114.c), we find 

from (3.112.c)  

        
 

    
[√  

      

  
  √  

      

  
 ].                    (3.116.a) 

and from (3.113.c) we obtain 

       
 

    

{
 
 

 
 (  

(           
     )

  
)

√  
      

  

     
     √  

      

  
 

(  
(           

     )

   
)

√  
      

  

     
     √  

      

  

}
 
 

 
 

.                                 (3.116.b) 

Similarly from (3.114.c) we obtain 

                                                           
2
 A space-time is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary 

spacetime: the geometry of a stationary spacetime does not change in time; however, it can rotate. Thus, the Kerr solution 

provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is 
static 
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{

(           
     )

   
 

√  
      

  

   
     √  

      

  
 

(           
     )

   
 

√  
      

  

 

  
     √  

      

  
}.                                                                          (3.116.c) 

3.11 Conservation Identity 

Now, we need to obtain the first contracted Gauss-Codazzi equation. We start with 

the Einstein field equations (3.4). 

        
 

 
            . 

Multiply both sides by     , to find 

     
         

    
 

 
    

    ,                        (3.117.a) 

where     
    , to obtain 

     
         

    
 

 
   

  .                              (3.117.b) 

But    
    , therefore 

     
         

    
 

 
 ,                                       (3.117.c) 

where         , so that 

     
         

       
 

 
 ,                                 (3.117.d) 

and snice          and      
    ,  we obtain 

     
    

 

 
 .                                                  (3.118) 

Now, we should make use of some basic equations. We start with the equation of 

Gauss 
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        (             ),              (3.119.a) 

where          ,  
   

      
 , to find 

        
   

 
  

 
  

         (             ) .                   (3.119.b) 

Multiply by     , to obtain 

       
     

   
 
  

 
  

             (                   ),              (3.120) 

where       
   

      , therefore 

       
     

 
  

 
      (          

 ),                          (3.121.a) 

where        
      , thus 

      
 
  

 
      (          

 ) .                        (3.121.b) 

Multiply by      to obtain 

           
 
  

 
⏟      

    

          (      
  

⏟    
  

          
 ),                  (3.122.a) 

where       
      , so that 

     
    

     (        
  ),                           (3.122.b) 

where      
    , and one obtains 

 
     

     (        
  ).                                  (3.122.c)                                                           

This equation is called the first contracted Gauss equation. Here  
   

 is Ricci scalar 

of 3-metric    ,     is the extrinsic curvature 3-tensor of   . 

From (3.122.c) put     to obtain  

    
            

  ,                                 (3.123) 
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substituting (3.123) into (3.118), we find 

     
    

 

 
*  

            
  +,                        (3.124.a) 

This equation is called the “Hamiltonian” constraint. 

where     , therefore 

     
    

 

 
*        

    
   +.                          (3.124.b) 

Again from Einstein equation (3.4) 

        
 

 
     , 

multiply by    
 
  , to find 

      
 
         

 
   

 

 
        

 
   ,                                  (3.125.a) 

but since      
    , then 

      
 
         

 
   

 

 
    

 
  ⏟

  

,                             (3.125.b) 

therefore 

      
 
         

 
  .                                     (3.125.c) 

Now, we start with the equation of Codazzi 

      
    

   

   

   

   

                ,                        (3.126.a) 

to rewrite it in the form 

       
   

 
  

 
  

              ,                               (3.126.b) 

Multiply by     to obtain 

       
   

 
  

 
  

        (           ),                   (3.126.c) 

where          
 
 , so that 
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⏟    

    

  
 
     

      ,                        (3.127.a) 

but since        
      , then 

     
   

 
  

 
     

      ,                                          (3.127.b) 

where   
 
  

 
   

 
 . As a result 

     
   

 
     

     ,                                   (3.127.c) 

where         
 , but    

 
  

    
 , then 

     
   

      
     ,                                   (3.127.d) 

and put                  to obtain 

     
   

 
     

 
     .                                       (3.128) 

This equation is the second contracted Gauss-Codazzi equation.  

Substituting (3.128) into (3.125.c), we find 

     
   

 
     

 
     .                                       (3.129) 

This is called The “ADM” constraint. 

From Lanczos equation (3.111), we have 

     
    

    
   

 ,                                       (3.130.a) 

and derivative of (3.130.a) with respect to  , yields 

       
      

    
     .                                   (3.130.b) 

From (3.129) we have 

    
 

      
   

 
     ,                                    (3.131.a) 

and change         to obtain 
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     .                                                (3.131.b)                                                          

Substituting (3.131.b) into (3.130.b) gives 

       
       

   
 
       

     ,                            (3.132.a) 

will   
         , then it gives 

       
       

   
 

,                                        (3.132.b) 

where          , so that 

       
         

   
 

,                                    (3.132.c) 

so that  

     
  [     

   
 
]
 

 
.                                           (3.133) 

This equation is the conservation identity.   

A fundamental relation is the conservation identity. From right hand side of (3.133), 

we have                                                                 

         
   

 
      

   ,                         (3.134.a) 

where   
 

   , therefore 

     
         

         
         

   ⏟      
  

         
⏟      

  

,               (3.134.b) 

and from (3.89) and (3.100.a), we have 

     
    

 ̇√  
     

    
  ̇ 

  
     

    

[    
        

  
     

    

    (  
     

    
)] .               (3.134.c) 

From Einstein equations (3.4) we have 

          ,                                                   (3.135.a) 

multiply by       and rearrange the equation to obtain  
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   ,                                 (3.135.b) 

therefore 

     
    

 

  
[     

         
   ] .                         (3.135.c)    

From (3.76), we have                                       

      
     

  

     (  
 

 
),                                      (3.136) 

also from (3.79), we have 

      
     

   

 
 

  

      
 ,                                        (3.137) 

and after substituting (3.136) and (3.137) into (3.135.c) we obtain 

[     
   ]

 

 
 

 ̇

   
*  

 √  
     

    
  ̇    

 √  
     

    
  ̇ +.     (3.138.a) 

This equation can be rewritten as 

[     
   ]

 

 
  ̇  .                                          (3.138.b) 

Let’s introduce 

  
 

   
*  

 √  
     

    
  ̇    

 √  
     

    
  ̇ + ,             (3.139) 

where   is related to the energy-momentum flux that impinges on the shell. 

We have, from left hand side of (3.133) 

     
   *    

      
      

 
+   [    

      
      

 
],                     (3.140) 

where 

    
      

    
    

    
    

      
  ,                            (3.141.a) 

therefore 

    
   

  

  
 .                                                     (3.141.b) 
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Also 

    
      

    
    

    
    

  ,                                     (3.142.a) 

where     
   , so that 

    
           

  ,                                       (3.142.b) 

Now, to find    
 , from (3.5) and (3.85) we have 

   
   

 
           

 ̇

 
 ,                                        (3.143) 

and substituting (3.143) into (3.142.b), we find 

    
        

 ̇

 
 .                                             (3.144) 

We have, next 

    
 

     
 

   
    

 
   

 
   

 ,                                     (3.145.a) 

since     
 

  , then 

    
 

          
 

,                                        (3.145.b) 

Now, we will find    
 

, similar to (3.5) and (3.85) we have 

   
 

  

 
           

 ̇

 
 ,                                      (3.146) 

and after substituting (3.146) into (3.145.b), we find 

    
 

       
 ̇

 
 .                                             (3.147) 

Substitute (3.141.b), (3.144), and (3.147) into (3.140) to obtain 

     
  

  

  
 

  ̇

 
     .                                                 (3.148) 

Substitute next (3.148) and (3.138.b) into (3.133), to obtain 
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  ̇

 
        ̇ .                                                   (3.149) 

The area of thin-shell is       . Derivative of the area of thin-shell with respect 

to   is  

  

  
     ̇ ,                                                      (3.150.a) 

This equation can be rewritten as 

 

 

  

  
  

 ̇

 
 ,                                                        (3.150.b) 

substituting (3.150.b) into (3.149), we obtain this relation  

  

  
 

 

 

  

  
        ̇,                                   (3.151.a) 

or equivalently 

     

  
  

  

  
    ̇.                                         (3.151.b) 

The first term 
     

  
 is the change in the total energy   

  

  
  ,stands for the work done 

by the surface while    ̇ can by considered as the work done due to an external 

work. 

From (3.151.a) and (3.150.b) we have 

  

  
  

  ̇

 
        ̇ ,                                 (3.152.a) 

since we can write  
  

  
 

  

  

  

  
  ̇

  

  
 , we have  

 ̇
  

  
  

  ̇

 
        ̇,                                         (3.152.b) 

therefore 

    
 

 
        ,                                        (3.153) 

where a prime denotes differentiation with respect to  ,     
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Chapter 4 

STABILITY OF THIN-SHELL IN 3+1-DIMENSIONAL 

STATIC SPHERICALLY SYSTEM BULK 

4.1 Equation of Motion 

It is useful to rearrange the surface energy density      into the form   

 

 
 ̇        . 

From (3.112.c) we have 

      √  
     

 
  ̇  √  

     

 
  ̇ ,                           (4.1) 

squaring the parties one obtains  

          
  

 
  ̇   √  

  

 
  ̇ √  

  

 
  ̇    

  

 
  ̇ ,     

(4.2) 

which can be rearranged  

        (
  

 
 

  

 
)      ̇    √  

  

 
  ̇ √  

  

 
  ̇ .     (4.3) 

Now, put 

          (
  

 
 

  

 
)   ,                                         (4.4) 

   ̇ ,                                                        (4.5) 

and 

     
  

 
      

  

 
 ,                                   (4.6) 

and after substituting (4.5), (4.6) and (4.7) in (4.4), we find 
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       √    √    .                                         (4.7) 

Squaring the parties and rearrange the equation to find 

                       .                                (4.8) 

Next, substitute (4.5), (4.6) and (4.7) into (4.8) to obtain 

*        (
  

 
 

  

 
)   +

 

   ̇          (  
  

 
) (  

  

 
)   , 

(4.9) 

so that 

*        
  

 
 

  

 
  +

 

   ̇            (
  

 
 

  

 
)   

    

    . (4.10) 

Dividing by          , we find 

 ̇  
 

       
 

 

       
(
  

 
 

  

 
)  

 

       
    

   

 

        
*        

  

 
 

  

 
  +

 

                                        (4.11) 

therefore 

 ̇  
 

       
 

 

       
(
  

 
 

  

 
)  

 

       
    

   
 

        
[         

                (
  

 
 

  

 
)  (

  

 
 

  

 
)
 

]    .                         (4.12) 

Rearrange this equation to obtain 

 ̇    (
     

  
)          

 

       
(
  

 
 

  

 
)
 

  ,          (4.13) 

therefore 

 

 
 ̇  

 

 
[  (

     

  
)          

 

       
(
  

 
 

  

 
)
 

]   .              (4.14)                                                                                           

This equation is the equation of motion, where      is the thin-shell potential. 

     
 

 
[  (

     

  
)          

 

       
(
  

 
 

  

 
)
 

].                   (4.15) 
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The equation (4.14) can be rewritten as 

 

 
 ̇        .                                                   (4.16) 

This equation implies that       is not the type of external potential usually found in 

classical mechanics. The reason being that “the total energy” vanishes identically. 

Accordingly, every perturbation of the kinetic energy term in (4.16) will be 

compensated with a perturbation of the potential. 

4.2 Stability of The Thin-shell 

To analyze the stability of the thin-shell, we should consider      ,       and  

       around an assumed static solution,   . 

Now, we will find      |    
. From (4.15) we find 

    |    
 

 

 
[  (

     

   
)          

  
 

         
(
  

  
 

  

  
)
 

]   ,         (4.17)          

and we can rewrite (4.17) in the form 

  (
     

   
)          

  
 

         
(
  

  
 

  

  
)
 

.                   (4.18) 

Multiply by         
  to obtain 

        
          

 (
     

   
)          

  (
  

  
 

  

  
)
 

.            (4.19) 

Substituting     from (3.116.a) we obtain 

      
  

       
(  

  

  
  √  

  

  
√  

  

  
 

  

  
)  

(
    

    
)
 

(
     

   
) (  

  

  
  √  

  

  
√  

  

  
 

  

  
)  ((  

  

  
)  

 √  
  

  
√  

  

  
 (  

  

  
))

 

 (
  

  
 

  

  
)
 

,                                  (4.20) 
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which can be rearranged  

    |    
  .                                          (4.21) 

This equation implies the thin shell is in equilibrium at      . 

Now, we will find the first derivative of the potential  
     

  
|
    

. From (4.15) we can 

find 

     

  
|
    

 
     

   
  

 

   
   

    
            

       
       

  

 

           
(
     

  
)
 

 
   

 

           
(
     

  
)
 

 

 

         
(
     

  
) (

  
    

 

  
)    .                                                             (4.22) 

We can write this equation in the form 

     

   
  

 

   
   

    
            

       
       

  

 
 

           
(
     

  
)
 

 
   

 

           
(
     

  
)
 

 

 

         
(
     

  
) (

  
    

 

  
).                                                                      (4.23) 

Multiply by           
  to find 

     

  
|
    

       
                  

    
    

          
   

  

   
   

       
   

   

  
(
     

  
)
 

    
 (

     

  
)
 

    (
     

  
) (

  
    

 

  
)   (4.24) 

From (3.116.a) we can find the first derivative of     with respect to   

   

  
|
    

 
 

    
 [√  

  

  
  √  

  

  
 ]  

 

    
*

  
  

  
  

 

  

√  
  
  

 
 

  
  

  
  

 

  

√  
  
  

 +.     (4.25) 
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Substituting (3.116.a) and (4.25) into (4.24) and rearranging the equation it gives 

     

  
|
    

   .                                                     (4.26) 

The second derivative of the potential  
      

   |
    

, reads 

      

   |
    

   {

                           

                             

.               (4.27) 

Example 

Suppose the exterior space-time has the metric for a thin-shell  

   
     

    
     

    
    

    ,                       (4.28) 

and the interior space-time 

   
      

     
    

    
  .                             (4.29) 

Contrast these equations with (3.1) to obtain 

                     ,                          (4.30) 

and 

      
 

 
     .                                                    (4.31) 

So the stress-energy tensor should have these components  

  
      *  

 

  
 
  

   
 
  

   
+                 , 

notice the mass-energy density    . It is a black point solution to the Einstein’s 

equation.  

The surface energy density is given by (3.112.c) 
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              .                                             (4.32) 

The surface pressure is given by (3.113.c) 

     
 

    
√   ̇   ,                                         (4.33) 

and at static space-time 

       
 

     
   .                                                  (4.34) 

It is useful to rearrange the surface pressures  into the form. 

              ,                                                (4.35) 

so we have 

 

 
√   ̇  

 

  
  .                                                   (4.36) 

Squaring the parties one obtains  

   ̇  (
 

  
)
 

, 

which can be rearranged  

 

 
 ̇  

 

 
[  (

  

  
)
 

]    .                                   (4.37) 

This equation is the equation of motion, where      is the thin-shell potential. 

     
 

 
[  (

  

  
)
 

] .                                        (4.38) 

Now, we should consider      ,       and         around an assumed static 

equilibrium,   . The closed forms of     |    
 , 

     

  
|
    

 and  
      

   |
    

  are 

found to be 

    |    
  .                                          (4.39) 

The first derivative of the potential        is  
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|
    

  
 

  
  .                                               (4.40) 

The second derivative of the potential          is  

     
      

   
|
    

  (
  

  
)
 

    .                                       (4.41) 

As it is observed, both         and          are non-zero and also            

which indicates the thin-shell is not stable. 
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Chapter 5 

CONCLUSION 

In this thesis, we have studied the Israel junction condition for a smooth joining of 

two metrics at a time-like hypersurface. However, we have constructed spherically 

symmetric thin-shell supported by two distinct space-time manifolds. We have used 

cut and paste procedure in order to build a class of 4-dimensional space-times, with 

3-dimensional time-like transition layer. We have studied the unit normal to the 

junction surface and we have shown      which makes it space-like, indeed a 

time-like hypersurface. 

We have considered the extrinsic curvature and the discontinuity in the second 

fundamental form (extrinsic curvature). We have analyzed the Lanczos equation.  

We have also analyzed the equation of motion and performed a linearized stability 

analysis, after obtaining the static solution. The stability analysis, then, has been 

reduced to the study of the sign of the second derivative of an effective potential 

evaluated at the static solution,        

As an example, we presented the thin-shell with outside metric, a black point space-

time and inside a flat space-time. With an equation of state      , and       , 

we showed that thin-shell is unstable. 
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