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ABSTRACT

We give a full investigation and assessment on the general spherically symmetric
time-like thin shells in general relativity. In this main stream, we give the details of
the Israel junction conditions which are used for gluing two distinct space-times on a
hyper-surfaces including the case of time-like shells. We also study the general
stability of thin-shells against a radial perturbation. Our results are fully analytic in

closed forms.

Keywords: Thin-shells, General relativity, Spherically symmetric, Stability, Israel

junction conditions.



0z

Kiresel simetrik genel gorelilikle zaman-benzer ince kabuklar (izerinde arastirma ve
degerlendirme yaptik. Bu ana akimda {srail sinir kosullar1 detaylarinin géz oniinde
bulunduruldugunda bunlar iki farkli uzay-zaman benzeri kabuklar dahil olmak (izere
ylizeylerin  yapistirilmasinda  kullanilir.  Ayrica ince  kabuklarin  radyal
pertiirbasyonlara kars1 genel kararliligin1 da inceledik. Sonug¢larimiz kapali formlarda

tamamen analitiktir.

Ana kelimeler: Ince-kabukler, Genel gorelilik, Kiresel Simetrik, Kararls, {srail sinir

kosullart.
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Chapter 1

INTRODUCTION

Thin-shells in general relativity are objects connecting different space-times through
a very thin surface of most probably physical matters. Such kind of shells, depends
on their four-normal direction, can be time-like, space-like or null. A surface with a
space-like / time-like four-normal vector is time-like / space-like surface and with
null four-vector is a null surface. Although the technical details of these different
types of thin-shells are more or less the same our concentration will be on the time-

like thin-shells only.

Furthermore, the thin-shell under our investigation has spherically symmetric whose
inside and outside space-times are both spherical solutions of the Einstein equations.
Our approach is a generic and detailed one which considers the most general

spherically symmetric space-times for the inside and outside of the shell.

Thin-shells cannot exist without being matched with the two incomplete manifolds
presented inside and outside. There are certain conditions / rules which have to
satisfy having an acceptable thin-shell. Due to the same rules one has to consider
certain form of matter source on the surface. The 2+1-dimensional thin-shell requires
an energy-momentum tensor whose energy density and the angular pressure are

related via the equation of states. Such kind of relations provide the necessary



mathematical tools and techniques to assess not only the static thin-shells but also the

dynamical behavior of the shells.

To that end one has to construct the thin-shell based on the metrics of the bulks in
either side and then apply a radial perturbation to the equilibrium shell and study the
post perturbation motion of the radius of the shell. Limiting the perturbation to be
only radial, however, provides advantages in the motion of the shell after the
perturbation. For instance, the equation of motion is of the type of a one-dimensional
particle moving under a one-dimensional potential. This allows us to assess the thin-
shell’s motion without solving analytically the equation. The general aspect of the

motion is dictated by the potential itself.



Chapter 2

ISRAEL JUNCTION CONDITION

The Israel junction conditions, applying to both null and non-null hypersurfaces, is a
regularity condition for the existence of smooth Lorentzian manifolds. No
discontinuous happens in the metric. This relates the induced metric and extrinsic

curvature to changes in the stress-energy tensor across a hypersurface.

Suppose we consider a (2+1)-dimensional hypersurface X that can be either time-
like, space-like or null in a (3+1)-dimensional space-time (metric g45). The 4-normal
7 to these surfaces satisfy 7.7 = F1 which is pointing to the positive direction with
respect to the bulk space-time. Throughout the thesis, we consider the time-like

surface .71 = +1.

For the technical convenience, we introduce the Gaussian normal coordinates in the
vicinity of the surface X. Gaussian normal coordinate system in 4-dimensional space-
time in which a hypersurface swept by the spherical shell divides into two regions is
introduced starting from a certain coordinate system x£ with a metric 9z (x). In
particular, assume the continuity of the four-dimensional coordinates x{ across X,
then gz = gt is required. The surface T is parametrized by coordinates x! =
(t,x%,x%), where i runs from 1 to 3. Here 7 is the proper-time variable that would be

measured by an observer co-moving with the shell.



Consider a neighbourhood of ¥ with a system of geodesics orthogonal to X. The
neighborhood is chosen so that the geodesics do not intersect; that is, any point in the
neighborhood is located on one and only one geodesic. In the Gaussian normal
coordinate system, a geodesic in a neighbourhood of ¥ which is orthogonal to X is

taken as the third spatial coordinate denoted by w.

The metric g4 has the form
ds? = gapdx?dx? = edw? + y,, dx*dx", (2.1)
where € = .7 = +1 for a time-like hypersurface, w is constant, and
Vv = Guv — €My, (2.2)

is the induced metric on X or the first fundamental form.

The extrinsic curvature K,,, in these coordinates (of the surfaces in which wis a

constant) is defined as

10Yuy
Kuv = —Eﬁ (23)

Gauss-Codazzi equations connect the metric tensor of the bulk and the surface via

the extrinsic curvature tensor of the shell is given by

Ry = aaK—$ + K, K? (2.4)
Ryuvp = VyKyp — VoK, (2.5)

and
Rawp = Ry + €(KwKap — KupKay), (2.6)

where V,, is the covariant derivative with respect to the three-dimensional metric y,,,,

3R,1Wp Riemann tensor on hypersurface. From Egs. (2.4), (2.5) and (2.6) one finds



(Rug = g°PRcapi), (Where Rq4pp is the Riemann curvature tensor) and of the scalar

curvature (R = g“8R45).

We can define

Ryw = Y* Ry pwv: 2.7)
and from (2.4) we find
Ruw = V™ S5 4 Tr(K?). (2.8)
From (2.5) we find
Rwu = v?"Rowvy = =Y?"Ruwpyp (2.9)
therefore
Ryu = VK — VK. (2.10)

From (2.4) and (2.6) we find
Rup =Y Rawp + 9% Rupwp: (2.11)
therefore

_ 3 2 dK
Rup = “Ryp + € [2K1Ky, — KK, +Z12], (2.12)

3 - -
where °R,, Ricci tensor on hypersurface.

From (2.8) and (2.12) we find
R = y“pRﬂp + 9"V R,w, (2.13)
therefore

0Kyp
ow

R =4 ( Ry, + |2k} Ky, — KK, + + g™ (v Lo 4 k7)), (2.14)
—— ow

=1

thus



R=*R+e[3Tr(K?) —K* + 2ye 2],

w

inwhich K = K} and Tr(K?) = K*K;,.

Finally, we obtain

GB = RB —%6},3R= KT,

(2.15)

(2.16)

where R% is the Ricci curvature tensor, R is the Ricci scalar, (x = 8nG, G is the

gravitational constant) and T/ is the stress-energy tensor.

The field equations (on the hypersurface) have mixed components
GY, = R} — > 6UR,
from (2.8) and (2.15) we find

G% = =2 *R+-€[K? = Tr(K?)] = kT,

From the Einstein tensor, we have

GY, = RY —>5\'R,
where R} = g""R,,,, so that forw # u

G =Ry =g""Ry,,

so that from (2.10) we find

G"% = €[V, K —V,K}] = kT%.

Einstein tensor is given

G* = R* —Ls*R.

where

Ry =y**R,,,

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)



so that from (2.12) we find

no_ 3 1 oKy
RY = y#0 | *Ry, + € (2K1K, — KK, +572)), (2.24)
therefore
RE = *RY + e|2K3K} — KKY +yre 22| (2.25)
% 4 v ] 4 y ow ' *
We can write
0Kyp 0 ayHP
Vﬂp a_wp - ﬁ (V“pKvp) - Kvp W ' (2-26)
therefore
dK, oKk ayHP
uwp Vb _ v __ —_
Y T aw Kvp ow (2.27)
Now, we will find " From
ow
YopVHP =6, (2.28)
derivative with respect to w
2 [y,,v#°] =0 (2.29)
ow Ypr - 1 .
gives
dyy aykP
a—wp)/up + yvp W =0, (230)
thus
oy kP oy
Yup 3 = —YHP =2, (2.31)
from (2.3), we obtain
Jyhe
yvp;—w = 2yHPK,, = 2K} . (2.32)
Multiply by % to obtain
A0VHP 5 rrua
8p = = 2K*, (2.33)



now, put A = p to obtain

ayHe

ow

= 2KHP.

Upon substitution of (2.34) into (2.27), yields

oK. ) e
bp Y — v _ QK KHP
ow ow vp !

and with (2.26) we obtain

oKl

ow

Rl = Rl + € [2K}Kf — KK} + 2% — 2K, K+,

From (2.15), we have
I L3 u 2 U2 . up OKup
SR = 6l *R + € |36 Tr(K?) — 64 K? + 26 yH0 22|,

where

ayHe

OKup 0
yHP —>== = w (V“pKup) — Kup ow '

ow

where y#PK,,, = K. Substitute now (2.34) into (2.38) to obtain
)/“p OKyp — 6_1( — ZK#'DKMP,

ow ow

where K, ,K#P = Tr(K?), therefore we have
oK oK
up Ko _ 2
Y ow ow 2Tr(K"),

so that from (2.37), we obtain

SR = 84 *R + € 364 Tr(K?) — 64 K? + 260 = — 480 Tr(K?)|

Now, substitute (2.36) and (2.41) into (2.22) to obtain

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)



G, =

v

okt
ow

RY + € [2K2Kf — KKY + 25— 2K, kKo | -
S8U PR — € [280Tr(K?) — 280K + ol S — 264 Tr (K?)|, (2.42)

where 2K,,K* = 2g,,K}K*P = 2KK;', so that we obtain

Kt

B _ 3puk _lou 9K,
G = *RY —S LR + ¢ (52

_ SHOK 1cop 2y 4 Lopp2 BY _ ok
84 25) + € (584Tr(K?) + 3 54K? — KK}') = kT,
(2.43)

1
where *RY —~8,R = °G,/, and as a result

g
oK

L _ 3pu
G* = Gv+e(aw

— 8025 e (SOLTr(K?) +36UK? — KKl ) = kT . (2.44)
Here the energy-momentum tensor is given by
T =TV ~o(—w) + T} fo(w) + s(w)s!, (2.45)

with S& being the energy-momentum tensor on the shell, and Tvﬁare the energy-

momentum tensors on both sides in the bulk.

If S4 involves a §-function on X, we find
§4 = limy_ ( 8 T4dw), (2.46)
The Israel junction conditions can be obtained by the integration of the field

equations (2.18), (2.21) and (2.44), to find

0=kS%, (2.47)

0 = kS%, (2.48)
and

ef[Ky] - 65 KT} = xS", . (2.49)

This equation is called the Israel junction condition, where [KY]| = KX — K}~



We can rewrite (2.49) in the other form

[K¥] - 6/ [K] = 8nGS*,
where §; = 1+ 1+ 1 = 3, therefore

[K] — 3[K] = 8nGS,
and

[K] = —47GS,

so that from (2.49) we obtain

(k4] = 86 (i —255).

This equation also is called the Israel junction condition.

10

(2.50)

(2.51)

(2.52)

(2.53)



Chapter 3

THIN-SHELL FORMALISM IN GENERAL
RELATIVITY

3.1 Thin-shell in 3+1-Dimensions

We consider standard general relativity, with the transition layer confined to a thin-
shell. The bulk space-times (interior and exterior) on either side of the transition
layer will be spherically symmetric and static but otherwise arbitrary. The thin-shell
(transition layer) will be permitted to move freely in the bulk space-times, permitting

a fully dynamic analysis.

To describe the geometry of the thin-shell, we use spherical coordinates (t, r, 0, ¢)

and we assume that the geometry is static, and spherically symmetric.

Consider two distinct space-time manifolds, an exterior M+, and an interior M—, that
are to be joined together across a surface layer X (a spherical shell). £ is called a
singular hypersurface of order one, surface layer or thin-shell.

3.1.1 General Formalism

The metric for a thin-shell is given by the following line element:

-1
ds2 = —e2#:(%) [1 _ @l de2 + [1 _ @l dr2 +r2d02,  (3.1)
: | did £ +ridod

T+
(we are using geometrized units ¢ = G = 1), where d% = d63 + sin 6% de3 the
metric of the two-dimensional unit sphere with the two spherical polar coordinates 6

and ¢; + refers to the exterior and interior geometry, respectively.

11



Y(r)and M(r) are non-negative functions from a given value of the radial
coordinate, t is the time coordinate, and r is the space coordinate in the radial

direction.

The covariant metric components gz, :

1
g%, = diag [—ezl"i(ri) ll - @l ) ll — Ml , 12,12 sin Hf] (3.2)
" T +

T+

The contravariant metric tensor g

937 = diag

e _Mim)]‘ﬂ[l b)) o _] @3)

Ty ry |'r2’r2sin62

To understand the physical meaning of the two metric functions, ‘Pi(ri) and
M, (r,), it is necessary to invoke the Einstein field equations.

3.2 Einstein Field Equations

We consider Einstein’s equations in the form:

Guv = Ruy — 5 9uvR = 81GT,,, (3.4)
where G, is called the Einstein tensor, which can be obtained through a weary but
straightforward calculation once the metric components g, are given. R, is the
Ricci curvature tensor, R = g*V R,,,, is the Ricci scalar, T,, is the stress-energy
tensor, and G is the gravitational constant.

3.2.1 Components of The Einstein Tensor
To obtain the Components of the Einstein tensor for giving metric we should get to

know the Christoffel symbols of the second kind:

Ly =397 [gyp,/l T 9y — glp,y]’ (3.5)

12



where I;7 is called the connection coefficients or Christoffel symbols. If all the

gradients of the metric tensor are zero, then all of the Christoffel symbols of the

second kind are zero. The connection coefficients are symmetric, the symmetry of

Christoffel symbols means that
Gy = Do
3.2.2 Non-zero Christoffel Symbols

From (3.5), when ¢ =t, A =r, p =t, we have

t o1, tt _ 1 tt
Lt =397 |9eer + Gret — Gree| =39 Geers
—— ——

=0 =0

from (3.2), we have

T+

oo = [_ezwi(ri) 1_MH |

therefore

Geer = — [ztp'ez“’(” (1 _ M) 4 e2¥(™) (M)]

r T2

substitute (3.7.b) into (3.6) to obtain

t _ ) M—T'M’ _ t
e =97+ (2r(r—M)> = T

From Christoffel symbols (3.5), when 6 = 1 = p = r, we have

r 117

rr = %grr [grr,r + Irrr — grr,r] = Eg Grrr

from (3.2), we have

Mi(ri)l_l _ _ (M—rM')

Ty (r-m2z'’

Irrr = [1 -

and substituting (3.10) into (3.9), we obtain

_ (M-rM')

ro_
Ly = 2r(r-m)’

13

(3.6)

(3.7.8)

(3.7.b)

(3.8)

(3.9)

(3.10)

(3.11)



From (3.5), wheno =r, 1 = p = t, we find

— 1 71rr — 117
It =39" |9ree + 9ere — Geer| = =397 et
—— ——

=0 =0

substitute (3.7.b) into (3.12), we find

ez‘l»'(r)

' r—m 2
th =¥ eZ‘P(r) (T) + 2r3

From (3.5), wheng =r, 1 = p = 6, we find

1
Ige = 39" lgre,e + Goro — gee,r] =—59" 9oo,r:
—— —
=0 =0
where
Goor = (%), =12,

substitute (3.15) into (3.14), we obtain

I—'gre - —(T - M)

From Christoffel symbols (3.5), when o =r, 1 = p = ¢, we find

1 1
r _ 2 7T _ — _—_ _'r
Iop =59 (Iree T Jore — Goor| =~ 59 Jepr:
N—— N——

where
Jopr = (TZ sin? 6),7« = 2rsin? 9,
and upon substituting (3.18) into (3.17), we obtain

Iy, = —( —M)sin® 6.

From Christoffel symbols (3.5), wheno = p = 6, A = r, we find

)
Lo = %geg[gee,r + Gro0 — gre,e] = iggegee,w

Substitute (3.15) into (3.20), to obtain

14

(r—M)M —1rM").

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)



From Christoffel symbols (3.5), wheno = 6, 1 = p = ¢, we find

6 _ 1,00 _ _ _1,.60
I'op =397 |960.0 T 9po,0 — Gppo| = 39 Gpp6:
—— ——

where
9ppe = (r*sin®0) g = 2r?sinf cos 6,
Substitute (3.23) into (3.22), to obtain

0 _ o
F(p(p— sin @ cos 6.

From (3.5) wheno = @, A =1, p = ¢, we find
rrq; =39%¢ [gtpwm + Grop — gﬂp,w] =39%Gppr:
Substitute (3.18) into (3.25), to obtain

o _1_ no
Fr(p—r—l“(pr.

From (3.5) wheno = ¢, 4 =0, p = ¢, we find

Y _ 1 1
Lo = 39%Y 19006 + Jop.0 = G090 =397 Ipp.6;
——— ———
~0 —0

Substitute (3.23) into (3.27), to obtain

@ _cosB_I.,(p
09 = sing = @0

3.3 Riemann Curvature Tensor

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

The left hand side of the Einstein field equations (3.4) represents the geometry of the

space-time and are given as a nonlinear combination of the metric components g,

and their first and second derivatives. For completeness, we define the Riemann

curvature tensor in terms of the Christoffel symbols:

15



R%, =T’

yAp YpA L gx,p + 1 5[1}‘}‘) - a% y%n' (3.29)

14

3.3.1 Non-zero Riemann Tensor Components

Rber = I = Dby + TEGS + LAy + TGS + LY — TELE —
N——r! S—— N——

-0 =0 =0 =0
w - Iw - Iw, (3.30.9)
=0 =0 =0
therefore
RY = =L + LELL — TALY, (3.30.b)

from (3.8), we have

rtt,r _ [lp' " (M—rM' )] oy m"  (M-rM')(4r—2rM'-2M) . (3.31)
,r

2r(r—M) 2(r-M) 4r2(r—M)2

Substitute (3.8), (3.11) and (3.31) into (3.30.b) to get

39 (M-rM') M _(M—rM’)2 (M-rM")(4r—2rM'-2M)
2r(r—M) 2r(r—-M)  2r2(r—-M)2 41r2(r—-M)2

Rbpy = =" =W —
(3.32)
From Riemann curvature tensor (3.29) we find

t _ t t t t 0 [ t ot
Rigte = Toor — Toro + Tl + ielge + Igelge + el pg — Itolg, —
—— —— — —— ~——

=0 =0 =0 =0 :‘0_/ =0
Lolg: — Toaler — Tpelyr, (3.33.3)
=0 =0 =0
therefore
R = L[5y, (3.33.b)

and substituting (3.8) and (3.16) into (3.33.b) one gets

M-rM'’

t — _w! _ _
Rigeg = —W'(r — M) — —=

(3.34)

From the Riemann curvature tensor (3.29) we find

16



t  _ t 6 ®
Rt = Tppr — Dot + Nitlpe + Titlgy + Doelpy + Totlp — Tiplpe —
=0 =0 =0 =0 =0 =0
t o ®
I ot ~ ool — F¢§<PF<pt’ (3.35.9)
=0 =0 =0
therefore
Ripep = il . (3.35.b)

Substitute now (3.8) and (3.19) into (3.35.b) to get

sin? 0. (3.36)

Ry = —¥'(r — M) sin® 6 — —(M_:M )

From the Riemann curvature tensor (3.29) we find

r  _ pr r rpt rpr r o r n® rt
ter = lere = Teer + Dit Dty + Ll + LoDty + Tpely — Ll —
N SN—— N——_——— N——

N——

=0 =0 =0 =0 =0
FhI — TG - Iw (3.37.a)
=0 =0
therefore
Rt = —[ity + IGT5 — LhTE, (3.37.6)

and from (3.13) we have

2¥(r)
273

N2
Iier = [Lp'e“’@) (=) +2 (r—M)(M—rM’)] . (3.384a)
,r

As a result, we have

[ A—
Ly =

p2¥ (M (ﬂ)z 4 2e2%Myr2 (ﬂ)z +
r

r

2 (4 R VAT _ 2 !
e2v Oy (UM 2O | 2w ) ¥ M) (M~ M) +

r4

2% () pytt

e2¥(m (r3 (1-M")-372(r-M)

2 e Y —rM) == M) (3.38.b)

17



Substitute now (3.8), (3.11), (3.13), and (3.38.b) into (3.37.b) to get

o (T—M\2 ;o (T—M\2 = 2%y’
Rl = —e2¥ 0y (T8)" — 2%z (TH) 4 &2 (r — M) (M —

r

29 (r)w! 2¥(r)
M) =2 = M)A — M) — (M — M) (L - M) +
222! 1 _p\2 302PM) , e2¥Y My
() E M - M) (- M) + - (- M) +
e M - rM7? 3.39
M) (3.39)

From the Riemann curvature tensor (3.29) we find

r T r rpt rpr r ro r r® r ot
oro = Loor — lore + Ltrlgg + L lTog + LorTog + Lprlpg — Liolg, —
N—— SN—— N—— —_—— N———

=0 =0 =0 =0 =0
oo — olg — Tpalyr, (3.40.2)
N—— -
=0 =0
therefore
Rrg = Igo, + Llag — [goTy (3.40.b)

The derivative of (3.16) with respect to r is
o, == —=M),=-1+M, (3.41)
and substituting (3.11), (3.16), (3.21), and (3.41) into (3.40.b) we get

hep = — M), (3.42)

2r

From the Riemann curvature tensor (3.29) we find

Riyrp = Tpor — Tprr + T + Tl + T Loy + Tpe Ly — Ip I —
N—— N——
=0 =0 =0 =0 =0
Lol = ool — Dol (3.43.2)
=0 =0
therefore
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Riprp = Tgor + Ty — Tl (3.43.b)
The derivative of (3.19) with respect to r is
[ppr =—1(r = M)sin? 6], = (-1 + M')sin? 9, (3.44)

and upon substituting (3.11), (3.19), (3.26), and (3.44) into (3.43.b) we get

-
Rore =

= (M_rM,) sin? 0. (3.45)

From the Riemann curvature tensor (3.29) we find

RY = Ftet Qt@"‘ﬂ?ﬂ%"‘ﬂ? o+ ALY + oy - rort —

=0 =0 =0 =0 =0 =0 =0
Lol — FB%Ftt F olie (3.46.a)
=0 s
therefore
R%e = —I5l%, (3.46.b)

and substitute (3.13) and (3.21) into (3.46.b) to get

@l e2¥(r) (r_rM)z e — (r — M)(M —rM"). (3.47)

Rtta—_ r

From the Riemann curvature tensor (3.29) we have

Rrr@ Fr@r Frr 0 + thr + Fr?" + FBrF + Ffrﬂ(g F Frg” -
—0 =0 —0 =0 —0
Lol — T Lo — T LY, (3.48.3)
:VO_J &_’0_/
therefore
RS o ="L% + g% — L5, (3.48.h)
which from (3.21) gives
g _ (1 _ 1
K9=() =—7 (3.49)
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and substitution of (3.11), (3.21), and (3.49) into (3.48.b) gives

Re _ L(M—TM’)
M0 T 2r2 (r—mM)

(3.50)

From the Riemann curvature tensor (3.29) we have

] _ e ] 0 ) 0 6 ]
R<09<p —lop6 F<pe,<p + 1}91“(;(,, + EGE/% + Fe@rﬁp + Fwerw(ep - Ftquff) -
N—— N———
=0 =0 =0 =0 =0
0 0 o 0 ¢
I—;‘(p (prG - r@(pF(pH - F(p(pr(pg, (3.51.9)
D D ———
=0 =0
so that
0 _ b 0 0 ro

The derivative of (3.24) with respect to 8 gives

Ifp6 = (—sinf cos0) g = —cos? 6 +sin? 6, (3.52)

which upon substitution of (3.52), (3.21), (3.19), (3.24) and (3.28) into (3.51.b) gives

RO, — M(r)

@b = TSil’l2 6. (353)

From the Riemann curvature tensor (3.29) we have

Y — P Y (Y @ Yo P e Y
Rtt(p - Ft(p,t - Ftt,(p + Ftt thp + FrthZJ + Fet[;ffp + F(ptrtq) - thonfg -
—— —— ~———— ~————

=0 =0 =0 =0 =0 =0 0

1}?;,&? - FB(fPI}? - é”wl}‘f, (3.54.9)
=0 =0
therefore
RYy = —LoT (3.54.b)
Substitute (3.13), and (3.26) into (3.54.b) to get
W e2¥(M rr_m 2 2% ,
RYy = ———(=2) = =M M), (3.55)
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From the Riemann curvature tensor we have

RY., = —
rre ro,r rr,Q tr 'TQ
N——

=0 =0 =0 =0

prore

P rr P re ¢ re
rnprrr - re(p['rr - F(p(prrr’
N——— D s

=0 =

0
therefore
Y —_r? (2 ol Y
Rrr(p - [;’(p,r + r(prrﬂp - I}(prr;a

From (3.26) we have
o _ (1 _ 1
lror = (F)_T T
and substitute (3.26), (3.57) and (3.11) into (3.56.b) to get

R(ﬁ 1 (M—rM').

T T 2\ r—M

From the Riemann curvature tensor (3.29) we have

o _ re ® ¢t @ rr ® 1o @ o
Rop = Tope —Toae T liolop T Lraloy T Toelop t+ 1610,
——

=0 =0 =0 =0

LioT5o = Ty Too — T Tyg

@ [ PP o0’
N——
therefore
©  _ o P9 _ o pr
RBH(p - r@(p,@ + F(p6r6<p prFB@'

and from (3.28) we have

re _(cos@) __ —sin?6-cos? 6
,0

09,0 = \sing sin2 6

Substituting (3.60), (3.28), (3.26), and (3.16) into (3.59.b) gives

e _ _M®
RGg, = ———

21

=Ly — Ly + T L + Ll + T2 L% + T I — Lo LY —
N———

=0

(3.56.3)

(3.56.h)

(3.57)

(3.58)

Pt
_rt(prQG_
——

=0

(3.59.a)

(3.59.b)

(3.60)

(3.61)



3.4 The Ricci Tensor

It is given by the contraction over the first and third index of the Riemann tensor:

Ry, = Rysp. (3.62.a)
where
R,, = daig|Rst, Ry, Reg, Ry |- (3.62.b)
The Ricci tensor R, , is symmetric.
The Ricci tensor R;; is
Rt = Rige = Rttt + Rtrt + Rtet + Rzpt’ (3.63)
=0 _Rttr TR,

tto

so that substituting (3.39), (3.47), and (3.55) into (3.63), we find
_M\2 _wn2
Ree = e2¥ 0w (T2)" 4 o290z (M) 2% 2 py(M — M) +
zw)‘*’ _ _ e2¥M Ay 2w L _
2" —=(r-M)(1-M") — T -~ (r—M)—e*\" p— (r—M)M

rM)+e2“’<T) (M —rM)Y(1-M)—e 2‘*’(” (M rM")?.  (3.64)

The Ricci tensor R,.,

Ryy = Rigy = Rﬁtr + R;:rr + Rrer + R;f)(pr’ (3.69)
_0

upon substituting (3.23), (3.50), and (3.58) into (3.65), we find

_ w2 . 3Y (M-rM') M (M—rM')(4r—2M-2rM")
Ry = =W7 =W+ 2r (r=M) | 2(r-M) + 4r2(r—M)?2
(M-rm")? 1 (M-rM')
2r2(r-M)2  r2 (r—M) (366)
The Ricci tensor Ry is given by
Rgg = R§y9 = Rgg + Rire + Reee + Ry, (3.67)

—O
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and substituting (3.34), (3.42), and (3.61) into (3.67), we find

Rgg = —W'(r — M) + M'. (3.68)

The Ricci tensor Ry

R

t @
00 = R9sp = Rbp + Rhry + RO, + R (3.69)

‘P‘P‘P’
—0

and substituting (3.36), (3.45), and (3.53) into (3.69), we find
Ry = —¥'(r — M) sin® 6 + M'sin® 6. (3.70)
3.4.1 Ricci Scalar

The contraction of the Ricci tensor is called the Ricci scalar:

R = g""R,,, (3.71.8)
therefore
R =g"Ry + g Ry + g%’ Rog + g% Ryq - (3.71.b)
From (3.3) we have
— (r-M)
R = (r m Rtt +—R +3 Rgg + rzsm29R<P<P’ (3.72)

and substituting (3.64), (3.66), (3.68) and (3.70) into (3.72), we find
R = —29" (=) - 2972 (21 —j’—z'(M —rM) -2 @ M) -2 - M) -

2M’ _ (M-rM")(1-M") | (M-rM')(4r-2M-2rM")

(M —rM’ ) + rz 2r2(r—-M) 413(r—-M)

(3.73)

3.5 Mixed Form of Einstein Equations

Gy = Ry —>6¢R = 8Ty, (3.74)
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where T)7 is mixed form of the stress-energy tensor. Einstein equations must be
solved for a perfect fluid*, so the stress-energy tensor should have these components
T) = diag[—p, P, P, P], where p is the mass-energy density and P is the hydrostatic

pressure.

The tt-field equation of Einstein field equations is given by

1
Gf = Rf —30{R=8nT/, (3.75.a)
=gttRye; =1
therefore
g Ry — %R = —8mp . (3.75.b)

Substitute (3.64) and (3.73) into (3.75.b), to obtain
0 (T—M 2 (T—M '’ , 2y’ , 1 '
—y (B — vz (B 4 S M- M) =R (1= M) (M - M) +

(M=rm') | M (MerM))(-M') | (T-M o (r=M\ W
2r3(r—m) 2r 2r2(r-M) +¥ ( T )+Lp ( r )+2r2 (M —rM’) +

Y vy o Lo — ey M (MM (M)
—(1-M)+5 0 —M) +—M—TM)

2r 412(r—M)
(M—rM")(4r—2mM-2rM")  M' _
6r3 D) — = 81mp, (3.75.c)
therefore
Gt=-" = _gnp, (3.76)

and by rearranging this equation, we find

MI

8smr2

p = (3.77)

A perfect fluid: is a fluid that can be completely characterized by its rest frame mass density p, and
isotropic pressure P.
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The rr-field equation of Einstein field equations is

1
Gr = &TJ —EdrrR = 8nT/, (3.78.2)
=g""Ryr
therefore
9" Ry — 7R = 87P, (3.78.b)

Substitute (3.66), (3.73) into (3.78.b), to obtain

_wr (TmM 2 (T 3y’ (M rM')(ar-2M-2rM')
qj(r) ¥ (r) (M T‘M)+ 4r3(r—-M)

(rrw')” _ (rm) | (Z2) + w2 () + L - rm) + 21 - 1) +

2r3(r—M) r3

(M ™ ) M (Mm-rM")(1-M")  (M-rM')(4r-2M-2rM') M’

2 (T‘ B M) T 2r 4r2(r—M) 8r3(r—M) rz = 8mP,
(3.78.c)
thus
2y’ M’
Gf=r—2(T—M)—r—2=87TP, (379)
and rearrange this equation to obtain
P=— 2¥'(r— M) — M']. (3.80)
The 66-field equation of Einstein field equations is
1
G§ = 53 — 8¢ R = 8Ty, (3.81.a)
=g%9Rgg
therefore
9% Reg — R = 87P, (3.81.b)

Substitute (3.68), (3.73) in (3.81.b), to obtain
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——(r—M)+ +l11”( )+qu2( )+—(M—rM)+

v _ (M—rm') M" | (M-rM')(1-M')
(1 M) + (r M)+ —s——->- = TEEr—
(M—rM")(4r—2M-2rM') M’

8r3(r—M) r2

= 8nP, (3.81.c)
therefore
o _¥" (. _ L ¥ _aryy M
Gy = — (r—M)+ - (r M)+2r2 2r+M —3rM") = 8mP,(3.82)
and rearrange this equation to obtain
P = 16”2 27" (r = M) + 2r¥P"?(r—=M)+¥'Q2r+M —3rM’) —rM"].

(3.83)
3.6 Transition Layer

Now, consider a time-like 3-space X thin-shell which divides space-time into two

distinct four-dimensional manifolds M+ and M—, located at r = a(t)
Sr=a(t) = dr= %dr = adr,

note that t is the proper time on the thin-shell hypersurface, and a(7) is the shell's

radius.

Substituting these in (3.1), we find

dSZ — —ezl’ui(ai) [1 M+( )l d + [ Mi(ai)l_ (dﬁ)z de + aJ_,(T)zdﬂi,

a+(t) a4 (1) dt
(3.84.a)
therefore
My (az) ms(a)]
ds? = dr2 [—e”i(ar) l1 - +—(;l t2 + I1 — ;—(il a? |+ a,(1)?d0?(3.84.b)
+ o N + + +

Here we are defining the dot operation as the derivative with respect to
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_dt . __da

=% a=
dt drt

and X is described by a line element on the shell:

dsz = —dt?+a(r)?d02.

We compare (3.85) with (3.84.b) to obtain

_e?¥(as) l1 - Ml t2 + l1 - @r az =1,

a4 (7)

and rearrange the equation to yield

3.7 Components of The Four-velocity

The four-velocity of the shell is given by

dxV (dt da d6 deo

Ut = =—,—,—
* dt’dt’dt’ dr

- ) =(4,4,00),

which upon considering (3.87) we find

M .
¥ —w (@ N dga
Ui = e ¥z L@ ,a,0,0 ).

a(t)

3.8 The Unit Normal to The Junction Surface

(3.85)

(3.86.3)

(3.86.h)

(3.87)

(3.88)

(3.89)

Usually n, is the unit normal; the sign of n,n¥ = +1 depends on whether the normal

is time-like or space-like.
The unit normal n, is defined as

_dz 1
Ny = dx¥ *'
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where the hypersurface X is described by the equation X: r — a(t), and

r=gor Z L& (3.91)

dx% dxV '’

and put r = a in (3.3) to yield

gy = diag

_p2va(an) 1__Mi(ai)]_l,[l—’”i(“i)],i : ] (3.92)

a, a?’a?sin6?

Now, we should find *, from (3.91) to have:

_ttd_zz rrd_zz BHEZ <p<pd_22
=9 (g) +97 () +97 (%) +9* (&) (393)
where
dx _ d(r-a) _ d_a__%g__g’
dat  dat  dt  drdt ¢’ (3.94.2)
dX _ d(r-a) _
= 1, (3.94.b)
and
dz _ dz _
i (3.94.0)

Substitute (3.94.a-c) and (3.92) into (3.93), to find

e (1) () (1), =

a

and substitute £2 from (3.86.b) to obtain

(-’

gl oo (3.96)

Taking the square root for (3.96), we obtain

Ji= o) (3.97)

The contravariant unit normal vector is defined as:
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dx 1
daxBVx

substitute now (3.97) into (3.98) to get the first component of unit normal vector as

(a)

t — ttdZ 1 _ —211J M(a) e
=R ET|TC ] [ ] M(“) ’
therefore
e 4
nt = s (3.99.3)
(1-=2%)
The second component of the unit normal vector is
az 1 M(a) (a)
T T — a
nE9 eET (1 )() (1 Mfl“))’
with
= [1-12 4 a2, (3.99.b)
The third component of the unit normal vector is
6 _ 0092 1 _
n=9" o FE= =0. (3.99.c)
and similarly the fourth component of the unit normal vector is
az 1
¢ = gee 21 _
n 9% W 0. (3.99.d)

The components of contravariant unit normal to the junction surface are

e~ Y+ My(a) | .
Tll/_ = [(feM—*'m)) \/1 — iTa + az, 0,0] . (31006.)

The components of covariant unit normal to the junction surface are

+ +
gy0n+ [gttn+' grrn+' geen+' g(p(pn+]
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from (3.100.a) we find

}_Mi(a) 2
W 1 —a +a 00

TL% = —de i,w' ) . (3.100.b)

a

From (3.100.a) and (3.100.b), it can be checked that

ninf =+1, (3.100.c)
which makes it space-like, indeed nl:r is normal vector to a time-like hypersurface.
3.9 Extrinsic Curvature

The extrinsic curvature (second fundamental form) associated with the two sides of

the shell is

£ gk (22X py 3x70xP
K& = 5 (3o + Too 27 357 (3.101)
The discontinuity in the second fundamental form is defined as

The components of the extrinsic curvature

2 2 2 2

L _ (0 t(ﬂ) t orot t<a_r) Y ks r(ﬂ)

Kz e <61’2 + l—‘_,‘t.g ot + 20 T ot E@ ot nr 12 + I ot T
=0 =0

at or ar\2
5o 5+ 0 (50)
ﬂara‘c-l- T \ot !
=0

therefore

£t (26 ot 91O | (3P0 oy (00N e (07
Kz = —nq (arz+2F”arar) M (arz+rtt (6'[) + I (6'[) ' (3.103)

0%t
a2’

Now, to find we take derivative of (3.87) with respect to T which gives
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—y _ 12
Lﬂjﬂ;’) ’1_ﬂ+a2 ’ (3.104)
a?(1-7) ¢

and by substituting (3.104), (3.8), (3.11), (3.13), (3.100.b) and (3.87) into (3.103), we

find the first component of the extrinsic curvature

[(n-l_(Mi(a)—aM:_L(a)))
a 2a?
o ' _Mi(@) o
Ki=—| JW +LPJ_r(a)\/1 = +a N (3.105)
It follows that
Kt* = gi K& = —Kz,
—

=—1

From (3.105), we find

<d+(Mi(a)—aM’i(a))

2a? )
KTt = +W,(a) \/ 1@ 4 g2 (3.106)

M4 (a a
/1—%%12

The second component of the extrinsic curvature is

+ 4 0%t ¢ [d6)? | 8% . [d6)?
Kjo = —n | 255+ Tho (55) |~ |3 + oo (35) |
— -0 — —_——
=0 =0 =1
therefore
Ki, = —nilgy, (3.107.a)

and by substituting (3.100.b) and (3.16) into (3.107.a), we obtain

K& = aJl — D gz (3.107.b)

We can also find
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1
Kgi = gieKBi—G = azKOiB'
From (3.107.b), it follows that

o+ _ 1 _ Mi(a) .
Kg™ = a\/l ——+a?. (3.108)
The third component of the extrinsic curvature
+ dp)\?
K&, = —n? (r(;(p (2 ) (3.109.a)
and upon substitution of (3.100.b) and (3.19) into (3.109.a), we find
K&, = a sin? eJ1 —HD g2 (3.109.b)
We can also find
+ _ 1
K((f, gi‘qu}(p T a2 Sinzergfp’
and from (3.109.b), we find
ot _ l _ M. (a) 2
Ko™ = a\/l + (3.110)
3.10 Lanczos Equation: Surface Stress-energy

The surface stress-energy tensor S"j on X yields the surface energy density S% = —o
0 _ , _ ¢c?
and, surface pressures Sg =p = S,.

Sij = —é(;cij — 6316’,{()

(3.111)
This equation is called Lanczos equation, where S"j = diag [—o,p,p] and ;cij =
diag [KTT,K%,K(;].

From the Lanczos equation (3.111), we have

sT=%2 o %% (3.112.3)
T am T= T w ’ '
sine k% = K5 —k%, we obtain
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o =——(K§P-k7), (3.112.h)

41

and using (3.108), we obtain

a(a)=—L[J1—M+—“‘)+a2—\/1—’”—(“)+a2]. (3.112.c)
4mTa a a

Again from the Lanczos equation (3.111), we have

o _ KTT+K% _ KTT+K99
ShH = . 2 P=—0— (3.113.3)
therefore
1 - 2] 0 (-
p=L(KI® —KIO + k5P — ), (3.113.b)

and from (3.106) and (3.108), we obtain

[<1+a2+ad——(M+(a)+aM£r(a))

s i)
+atp;(a)\/1—M+—““)+a2—

1
a) = —|
p( ) 8na[ ,1—M+a(a)+d2 a

]

<1+a2+ad_(M_(a)+aM'_(a))> |
2a
— a¥’ (a) \/ 1-2-@ g2, (3.113.c)
1-M=@ 1 42 @ J
From the Lanczos equation (3.111), we can find
c+2p=", (3.114.3)
since k% = KT — K2, we have
1 (+) (=)
o +2p=—(Ki" - k). (3.114.b)

From (3.106) we obtain
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2a2

[<d+(M+(a)—aM£,<a))

o+2p= .

) + l1&(a)\/1 — M@ g2

(.. (M—(a)-am” (a)
it —

]
) _yi(a )J 2| (3.114.)
\/W a | . .

3.10.1 Static® Space-time
Let us assume the shell is static. That means

a=constant =a, = a=d=0, (3.115)
using (3.115) in (3.112.c), (3.113.c) and (3.114.c), we find
from (3.112.c)

00(a0) = — 17 [\/1—%?") —\/1—%‘3’”]. (3.116.2)

and from (3.113.c) we obtain

(<1 (M+(ao)+aoM5r(ao))

2a
_ 1 > ’ _ My (ag) _
Po(ao) = Pv— ! T, + ao¥i(ap) /1 v

L
ao
, )
(1 (M—(ag)+aoML(ap))

— ) — oW’ (ap) [1- Heldo) ! (3.116.h)
1_i 0 J

ao

Similarly from (3.114.c) we obtain

A space-time is said to be static if it does not change over time and is also irrotational. It is a special case of a stationary
spacetime: the geometry of a stationary spacetime does not change in time; however, it can rotate. Thus, the Kerr solution
provides an example of a stationary spacetime that is not static; the non-rotating Schwarzschild solution is an example that is
static
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(M+(a)-aoM} (ao)) (M—(a)-aoM" (ao))

1 2(12 M+(a0) 2a2
2po =— . Wi (ay) [1- — 0 -
0o + 2P0 = - M(a) + Wi (ap) 2 M)
\J ag

¥’ (ao) |1 —He) (3.116.c)
0

3.11 Conservation Identity

Now, we need to obtain the first contracted Gauss-Codazzi equation. We start with

the Einstein field equations (3.4).

1
Guv = Ryy =5 guR = 8TGT,,, .

Multiply both sides by n#nV, to find

Gy n*nY = Ry, ntn¥ — %gwn"n"R, (3.117.a)
where g,,n” = n,, to obtain

Gy n#n¥ = R, nHn? — %nun“R. (3.117.b)
But n,n* = +1, therefore

Gu nPnY = Ry, 0 — R, (3.117.c)
where n¥ = g"#n,,, so that

Guy N*nY = Ry nig¥in, — =R, (3.117.d)
and snice n¥n, = +1and R,, g*¥ = R, we obtain

1
G Y = =R. (3.118)

Now, we should make use of some basic equations. We start with the equation of

Gauss
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ax% axP oxV 9x%

Rapys 9 987 2K 98 Rija — M(KuKi — KieKj1), (3.119.a)
where A = u®u, = —1, Z’;‘: = ef, to find
Ragys efel ellef = Riju — MKaKj — KKy - (3.119.h)
Multiply by g, to obtain
Rapys 9" ef‘efelef = 9"Riju — M 9" KyKix — 9" K Kj1), (3.120)
where gt e%e® = g9, therefore
Ragys 9% ef el = Ry — A(KKjy — KK}, (3.121.3)
where Rypy5 9*° = Rp,, thus
Rgy el el = Ry — A(KKj — KK} . (3.121.b)
Multiply by g’* to obtain
Rg, g’k elfel = g/"Rj—A <K Kj g7% — gijikKji>, (3.122.9)
T Tk
where g/¥K! = K, so that
Rgy gP* = @R — A(K? - Ky K¥), (3.122.h)
where Rg, gP" = R, and one obtains
®R = DR — A(K? — Ky K). (3.122.0)

This equation is called the first contracted Gauss equation. Here )R is Ricci scalar

of 3-metric g, K, is the extrinsic curvature 3-tensor of X.

From (3.122.c) put k = j to obtain

R=A®R+ K2 K KY, (3.123)
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substituting (3.123) into (3.118), we find

Guy ¥’ =2 [APR + K7 - K K],

This equation is called the “Hamiltonian” constraint.

where A = —1, therefore

G

_1 j_ @
i = 2K — K KU — OR|.

Again from Einstein equation (3.4)
1
G;w = Ruv - ER Juv
multiply by e;n", to find

u

u_ v _ liv_l v
Guen' =Ryen zngei n,

but since g,,n" = n,, then

G

Uov wov 1 I
w e N’ =Ry en” —-R erny,

i
=0

therefore
u_v _ u_v
Gue n’ =Ry e n’.

Now, we start with the equation of Codazzi

axP oxY 9x8
a_- - = =
Ropysn a&) agk g&l

to rewrite it in the form

a, B v, 6 _
Rapys ne; ey el = Kk — Kjpyie

Multiply by g’! to obtain

Ragys neelef g/t = g/ (Kii — Kivx),

J

where g/t = gks7 | so that
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= VlKjk - VkKjl '

(3.124.9)

(3.124.h)

(3.125.a)

(3.125.b)

(3.125.¢)

(3.126.a)

(3.126.h)

(3.126.c)



B

a Y, 8 kl s8] _ ol
Rapys n%e; eper g™ 6, = Ky — Ky,

J

but since Rypys 97° = Ryp, then
Ry nefs! =KL, — K.
(Zﬁ j k k,l ,k 1
where ejﬁ6,{ = e,f . As aresult
a B _ 1l _
Rap n%ep = Ky — Koy
where n% = nf8g, but el 5§ = ef, then
Raﬁ nﬁe,‘é‘ = Klé;l — Kk,
andput «a =pu, B=v, k=i, | =jtoobtain

vl
Ryn'e; =K, —K; .

This equation is the second contracted Gauss-Codazzi equation.

Substituting (3.128) into (3.125.c), we find
Gun'el' =K}, — K.

This is called The “ADM” constraint.

From Lanczos equation (3.111), we have
—-8nS; = K} — 6/ K,
and derivative of (3.130.a) with respect to i, yields

—87TSji;i = Kji;i - 6]lKl .

From (3.129) we have

J — v,H .
Ki;j—Gm,n e, +K;,

and change i = j, j = i to obtain

38

(3.127.9)

(3.127.b)

(3.127.c)

(3.127.d)

(3.128)

(3.129)

(3.130.a)

(3.130.h)

(3.131.9)



| A v,H
Kj; =Gun'e; +K;.

Substituting (3.131.b) into (3.130.b) gives
—8nS}; = Gy n’ef + K — §{K;
will /K = K; , then it gives
—87S}; = G,y Vel
where G, = 8mT,,, so that
—8nS;; = 8nT,, n'e",

so that

_Sji;i = [T,LLV nveﬁ]t.

This equation is the conservation identity.

(3.131.h)

(3.132.9)

(3.132.h)

(3.132.¢)

(3.133)

A fundamental relation is the conservation identity. From right hand side of (3.133),

we have

RHS = Ty, n'ef = T, n"u,

where ej* = u*, therefore
_ tt 0,6
Ty nut = Ty n*ut + T U™ + Tog n°u® + Ty, nPu?,
N —— N — —

and from (3.89) and (3.100.a), we have

. My(a)
a ,1— e +a? e~2¥+(@) (1 _ Mi(a))

Vo —
Tm/ n‘u” = ) Tyt M@ + Ly a(r)
a(1) a(7)

From Einstein equations (3.4) we have
Gy = 8rTy, ,

multiply by nVu* and rearrange the equation to obtain
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(3.134.3)

(3.134.b)

(3.134.0)

(3.135.9)



T,, n"ut = SinG n'u#, (3.135.b)

uv uv
therefore
T n'uk = sin [Gee nfut+G,- n"u"] . (3.135.¢)
From (3.76), we have
M’ M
Gee = G Ger = ;eij (1 - ;)a (3.136)

also from (3.79), we have

29! M’

Grr = G;grr = aa—M) ' (3-137)
and after substituting (3.136) and (3.137) into (3.135.c) we obtain
[T, nvur]’ l \/ M*“” —lPL\/l _M@ aZl. (3.138.3)
-7 ima a(z)
This equation can be rewritten as
[T, nvut]” = ay. (3.138.h)

Let’s introduce

m[ J M*“‘) WJ M(“) l (3.139)

where Y is related to the energy-momentum flux that impinges on the shell.

We have, from left hand side of (3.133)

_Sji;i = [S]€T+S]€9+Sﬁ(p] = —[51?;1+Sgg+5$<p], (3.140)
where
Sta=Sir+ SiTar — Salte = Stz (3.141.3)
therefore
d
ST, = —d—‘T’. (3.141.b)
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Also
Ste = Sep + StTge — Salfs
where SZ5 = 0, so that

S8y =—(c+p)rY,

Now, to find %, from (3.5) and (3.85) we have
I =29 goor = % :
and substituting (3.143) into (3.142.b), we find

539 = —(a+p)%.

We have, next
Stip = St + St — S T,
since S7,, = 0, then
s¢, =—(o+p)y,

Now, we will find ¥

e Similar to (3.5) and (3.85) we have

¢ _ 1,00 _a
F‘L’(p_zg g(p(p,‘r_ai

and after substituting (3.146) into (3.145.b), we find

S;’;’q, = —(a+p)%.

Substitute (3.141.b), (3.144), and (3.147) into (3.140) to obtain

i _do  2a

Substitute next (3.148) and (3.138.b) into (3.133), to obtain
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(3.142.9)

(3.142.b)

(3.143)

(3.144)

(3.145.a)

(3.145.h)

(3.146)

(3.147)

(3.148)



d 2a .
d—j+§(a+p) =Ya. (3.149)
The area of thin-shell is A = 4ma?. Derivative of the area of thin-shell with respect

totis

2 = 8naa, (3.150.a)

This equation can be rewritten as

144 _ o4, (3.150.b)

AE_ a

substituting (3.150.b) into (3.149), we obtain this relation

do 1dA .
o + o (o +p) =Ya, (3.151.a)
or equivalently
d(cA) dA .
—— +p—=YAd. (3.151.b)
. d(c4) . . dA
The first term —— s the change in the total energy 2 ,stands for the work done

by the surface while YAa can by considered as the work done due to an external

work.

From (3.151.a) and (3.150.b) we have

do 2a .
w4 (c+p)+Ya, (3.152.a)
. . do do da . do
since wecanwrite —=——=qa—, we have
drt da dt da
199 — 285 4 p) 4+ Y (3.152.b)
a—=——(+p a, . .
therefore
o =—§(a+p)+Y, (3.153)
do

where a prime denotes differentiation with respectto a, ¢’ = -
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Chapter 4

STABILITY OF THIN-SHELL IN 3+1-DIMENSIONAL
STATIC SPHERICALLY SYSTEM BULK

4.1 Equation of Motion
It is useful to rearrange the surface energy density o(a) into the form

%az +V(a) = 0.

From (3.112.c) we have

—4naa=\/1—M+T(a)+d2—\/1—M_T@+d2, (4.1)

squaring the parties one obtains

(4naa)2=1—ﬂ+a2—2\/1——+a2\/1—&+a2+1—&+a2,
a a a a

(4.2)

which can be rearranged

24 (Me M) _ 5 952 — My a2 1Mo 42
(4mao) +(a+a) 2—-2a°= ZJI a+aJ1 —+a’. (4.3

Now, put
Y = (4mao)? + (% + %) -2, (4.4)
X =a?, (4.5)
and
§=1-"% 8 =1-==, (4.6)

and after substituting (4.5), (4.6) and (4.7) in (4.4), we find
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Y —2X =-2,/6; + X /5, + X. 4.7)
Squaring the parties and rearrange the equation to find

Next, substitute (4.5), (4.6) and (4.7) into (4.8) to obtain

[(4naa)2 + (% + %) - 2]2 — 4G%(4mac)? — 4( - %) (1 - %) ~ 0,

a

(4.9
so that
5 My  M_ 2 .o 2 My | M_ MyM_
|(4mac)? + 2 + 2= — 2| — 462 (4mac)? — 4 + 4 (2= + ) — 4755 = 0. (4.10)
Dividing by —4(4mao)?, we find
) 1 _ 1 ﬂ & 1 MyM_ _
(4mao)? (4maoc)? ( a T a ) T (4maoc)? a?
2  Me Mo 1%
o | (4mao)? + 2+ 2= 2] =, (4.11)
therefore
.2 11 My | M- 1 MyM_ 1 2
as+ (4mao)? (4maoc)? ( a + a ) + (4mao)? a? 4(4maoc)? [((47-[610-)
2 2 My | M_ My, M\?] _
2)? +2((4mao)? - 2) (M +25) + (B + 1) ]_ 0. (4.12)
Rearrange this equation to obtain
.o _(MyAM) 2 1 (My M\? _
a“+1 (—Za ) (2mao) Grao)? ( — — ) =0, (4.13)
therefore
1.5 1[ (MM 2 1 (My M2 _
24 + 2 [1 ( 2a ) (2rag) (8mao)? ( a a ) ] o (4.14)
This equation is the equation of motion, where V (a) is the thin-shell potential.
1y MmN 2 1 (My M2
Via) = 2 [1 ( 2a ) (2rag) (8maoc)? ( a a ) ] (4.15)
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The equation (4.14) can be rewritten as

§a2 +V(a) = 0.

(4.16)

This equation implies that V(a) is not the type of external potential usually found in

classical mechanics. The reason being that “the total energy” vanishes

identically.

Accordingly, every perturbation of the kinetic energy term in (4.16) will be

compensated with a perturbation of the potential.
4.2 Stability of The Thin-shell

To analyze the stability of the thin-shell, we should consider V(a) |,

V"' (a) around an assumed static solution, a,,.

Now, we will find V(a)|s=q,. From (4.15) we find

V(@lacy =21 = (M£2) - @magon)” - o (22 - 2£) ] = 0,

2 2ag (87Ta0 0'0)2 Qo Qo

and we can rewrite (4.17) in the form

- (B2 (aragp)? = i (e )’

2ag T (8maggy)? \ag ag

Multiply by (8may0,)? to obtain

My +M_ M, M_\2
(8may0p)? — (8mayoy)? ( +2ao ) — (4mayoy)* = (a—: - a_o) ,

Substituting o, from (3.116.a) we obtain

V'(a) and

(4.17)

(4.18)

(4.19)

(8ma,)? L (2—&—2\/1_ﬂ 1_&_&)_

(4may)?
e

2
2\/1—"2—: 1—Z—;+(1—Z—;)) =(”Z—:—Z—;)2,
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which can be rearranged
V(a)|a=a0 = 0. (4.21)

This equation implies the thin shell is in equilibrium at a = a,.

Now, we will find the first derivative of the potential d‘;ia) . From (4.15) we can
a=ay
find
av(a) _MyMo 1 N - , ,
da a=ag - 2a02 2a, (M+ + M_) 2a0(27'[0'0) 20_00-0(27'[0,0) +
4 (M+—M_)2 + 20} (M+_M_)2 B
ao(8magoy)? ag 0o (8may0y)? a0
2 My—M_\ (Mi+ML\
(87“1000)2( ag )( ag ) =0. (4.22)

We can write this equation in the form

M;:A;L - ZL (M, + M) — 2a,(2m0,)? — 20404 (2may)? =
0 QAo
_ 4 (M+—M_)2 _ 20} (M+—M_)2 +
ao(8magoo)? ao 0o (8magog)? ao
2 My-M_\ (Mi+M
e ) (500), 4.23)

Multiply by o, (8may0,)? to find

@) = 32?03 (M,+M_) — 32n%ay o (M} + M.) — m(8may)30s —

da lg=q,

20504(4may)* = — 2% (M>2 — 20} (M+a_M_)2 + 20, (M+(;)M_) (ML;ML). (4.24)

Ao Ao 0

From (3.116.a) we can find the first derivative of o, with respect to a

My My M_ ML

do 1 M M_ 1 Z g 27 g
doo| [ 1% _ 1——]— T e | (429
dalg=q, 4mao ag o 8mag | [{_M+ [1_M=

agp ap
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Substituting (3.116.a) and (4.25) into (4.24) and rearranging the equation it gives

av(a)

Ta =0.

a=ap

2
The second derivative of the potential a’via)

da?

, reads

a=ap

V'"(ay) > 0 implies stability
d?v(a)
da? lg=q,

0=

V'"(ay) < 0 implies instability

Example

Suppose the exterior space-time has the metric for a thin-shell
ds? = —rZdt? + dr? + r2d0? |

and the interior space-time

ds? = —dt? + dr? + r2dn? .

Contrast these equations with (3.1) to obtain
M (r)=M_(r)=¥_(r)=0,
and

Y. (r)= %lnr .

So the stress-energy tensor should have these components

2 2
Tyazdiag[o,ia 2 , a>0,

r2’ 4r2’ 4r2

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

notice the mass-energy density p = 0. It is a black point solution to the Einstein’s

equation.

The surface energy density is given by (3.112.c)
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o(a) =ay(ay) =0. (4.32)

The surface pressure is given by (3.113.c)

p(a) =——V1+a?, (4.33)
and at static space-time
a
po(ao) = o — . (4.34)

It is useful to rearrange the surface pressures into the form.

P(a) = Po(ao) ) (4-35)
so we have

1 — _ 1

Z 1+ a2 = 2 . (436)

Squaring the parties one obtains

2
.2 i
1+a°= (ao) ,
which can be rearranged
1.5, 1 a\?] _
~a +5[1—(a—0)]_0. (4.37)

This equation is the equation of motion, where V (a) is the thin-shell potential.

V(a) = %[1 _ (i)z] | (4.38)

Ao

Now, we should consider V(a) , V'(a) and V' (a) around an assumed static

av(a) d?v(a)

and

2
da a=ag da a=ag

equilibrium, a,. The closed forms of V(a)|gq=q, . are

found to be

V()] azq, = 0. (4.39)

The first derivative of the potential V'(a) is
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av(a) 1

da a=ay = _a_o . (440)
The second derivative of the potential V" (a) is
d2v(a) o (1)\?

e (a—o) <0 . (4.41)

As it is observed, both V'(a,) and V"' (a,) are non-zero and also V''(a,) <0

which indicates the thin-shell is not stable.
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Chapter 5

CONCLUSION

In this thesis, we have studied the Israel junction condition for a smooth joining of
two metrics at a time-like hypersurface. However, we have constructed spherically
symmetric thin-shell supported by two distinct space-time manifolds. We have used
cut and paste procedure in order to build a class of 4-dimensional space-times, with
3-dimensional time-like transition layer. We have studied the unit normal to the
junction surface and we have shown € = +1 which makes it space-like, indeed a

time-like hypersurface.

We have considered the extrinsic curvature and the discontinuity in the second

fundamental form (extrinsic curvature). We have analyzed the Lanczos equation.

We have also analyzed the equation of motion and performed a linearized stability
analysis, after obtaining the static solution. The stability analysis, then, has been
reduced to the study of the sign of the second derivative of an effective potential

evaluated at the static solution, a,

As an example, we presented the thin-shell with outside metric, a black point space-
time and inside a flat space-time. With an equation of state p = p,y, and o = g, = 0,

we showed that thin-shell is unstable.
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