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ABSTRACT 

The goal of this thesis is to give basic information about fractional calculus, and 

fractional differential equations of different types and study the existence and 

uniqueness of certain type of fractional differential equation, namely the Caputo type 

sequential fractional differential equations.  Fixed point theorems due to Banach, 

Krasnoselskii, and Leray-Schauder alternative criterion is applied to obtain the 

desired results. The results are well illustrated with the aid of examples. 

Keywords: sequential fractional derivative, integral boundary conditions,  fractional 

differential equation, fixed point theorems 
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ÖZ 

Bu tezin amacı, kesirli kalkülüs ve farklı tipteki kesirli diferansiyel denklemleri 

hakkındaki temel bilgileri vermek ve belirli tip kesirli diferansiyel denklemin, yani 

Caputo tipi ardışık kesirli diferansiyel denklemlerin varlığını ve tekliğini 

incelemektir. İstenen sonuçları elde etmek için Banach, Krasnoselskii ve Leray-

Schauder alternatif kriterlere göre sabit nokta teoremleri uygulanmaktadır. Sonuçlar, 

örnekler yardımıyla gösterilmiştir. 

Anahtar Kelimeler: dizisel kesirli türev, integral sınır koşulları, kesirli diferansiyel 

denklemler, sabit nokta teoremleri 

 

 

 

 

         

  



v 

 

DEDICATION  

 

 

 

 

 

 

 

 

 

 

 

To My Family 

 

  



vi 

 

ACKNOWLEDGMENT 

I appreciate and very thanks full for this big chance God gave me to come to EMU 

and have this kind of teachers in EMU who advise me, support me and gave me all I 

need during my graduation study, especially my best teacher Prof. Dr. Sonuç Zorlu 

Oğurlu. I would like to tell her I am so happy to have you as my supervisor and thank 

you for all your support, patience and continuous guidance through the research, and 

for your corrections in the text. Indeed, she is a brilliant advisor. 

Finally, I would like to extend my deep love and compassion to my parents and 

family members, actually without you I am nothing and I cannot do anything, God 

bless you all. I could continue and come to the end because of your encouragement, 

emotional supports that made me strong to achieve my aim.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................iii 

ÖZ ............................................................................................................................... iv 

ACKNOWLEDGMENT ............................................................................................. vi 

LIST OF ABBREVIATION .....................................................................................viii 

1 INTRODUCTION .................................................................................................... 1 

1.1 Brief History ...................................................................................................... 1 

2 REVIEW OF FRACTIONAL CALCULUS AND FRACTIONAL 

DIFFERENTIAL EQUATION .................................................................................... 3 

2.1 The Gamma Function......................................................................................... 3 

2.2 Beta Function ..................................................................................................... 3 

2.3 The Mittag-Leffler Function .............................................................................. 4 

2.4 Definition of Fractional Integral and Fractional Derivative ............................... 4 

2.4.1 The Abel’s Integral Equation ...................................................................... 4 

2.4.2 The Fractional Integral ................................................................................ 5 

2.4.3 The Fractional Derivative ........................................................................... 5 

3 EXISTENCE AND UNIQUENESS OF SOLUTION OF SEQUENTIAL 

FRACTIONAL DIFFERENTIAL EQUATIONS ....................................................... 9 

3.1 Dynamic Energy Flow ....................................................................................... 9 

3.2 Existence of Solutions ...................................................................................... 12 

3.2 Examples .......................................................................................................... 25 

4 CONCLUSION ....................................................................................................... 27 

REFERENCES ........................................................................................................... 28 

 



viii 

 

LIST OF ABBREVIATION 

FLDE                         First-Order Linear Differential Equations 

RHS                           Right Hand Side 

LHS                            Left Hand Side 

BVP                            Boundary Value Problem 

                             



1 

 

Chapter 1 

INTRODUCTION 

The subject of fractional calculus that is, calculus of integrals and derivatives of any 

arbitrary real and complex order has gained considerable popularity and importance 

during the past three decades or so, due to mainly to its demonstrated applications in 

numerous seemingly diverse and widespread fields of science and engineering. It does 

indeed provide several potentially useful tools for solving differential and integral 

equations, and various other problems involving special functions of mathematical 

physics as well as their extensions and generalizations in one and more variables.  

1.1 Brief History  

Fractional calculus was introduced on September 30, 1695. On that day, Leibniz 

wrote a letter to L’Hôpital, raising the possibility of generalizing the meaning of 

derivatives from integer order to non-integer order derivatives. L’Hôpital wanted to 

know the result for the derivative of order n = 1/2. Leibniz replied that “one day, 

useful consequences will be drawn” and, in fact, his vision became a reality. 

However, the study of non-integer order derivatives did not appear in the literature 

until 1819, when Lacroix presented a definition of fractional derivative based on the 

usual expression for the nth derivative of the power function (Lacroix 1819). Within 

years the fractional calculus became a very attractive subject to mathematicians, and 

many different forms of fractional (i.e., noninteger) differential operators were 

introduced: the Grunwald–Letnikow, Riemann–Liouville, Hadamard, Caputo, Riesz 

(Hilfer 2000; Kilbas et al. 2006; Podlubny 1999; Samko et al. 1993) and the more 
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recent notions of Cresson (2007), Katugampola (2011), Klimek (2005), Kilbas and 

Saigo (2004) or variable order fractional operators introduced by Samko and Ross 

(1993) [10].  

 

L’Hopital and Leibniz’s primary investigation for fractional calculus was the initial  

research showed a creative mind in mathematics, Fourier, Laplace, Euler were among 

those who involved with fractional calculus and the mathematics results.  

Caputo enhances the more established meaning of the Riemann-Liouville fractional 

derivative for purpose of utilizing integer order initial conditions to find a solution of 

these fractional order derivatives. In 1996 Kolowankar reformulate the Riemann-

Liouville fractional derivative so as to enable him differentiate no-where 

differentiable fractal functions [2]. 
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Chapter 2 

REVIEW OF FRACTIONAL CALCULUS AND  
FRACTIONAL DIFFERENTIAL EQUATION 

2.1 The Gamma Function 

It is known that the gamma function is basically attached to fractional calculus. The 

simplest clarification of the gamma function is just all-inclusive statement of the 

factorial for every real number. The gamma function is known by 

𝛤 ℎ = ∫ −   ℎ −    ,               ∀ℎ ∈ ℝ∞ ∕ {… . , − ,− ,− , }                      .  

Gamma function has same properties that make it more useful. For first we can see 

the equation given by,  𝛤 ℎ + = ℎ 𝛤 ℎ ,    when  ℎ ∈ ℕ+ ,             𝛤 ℎ = ℎ − !              .  

Also, we can describe gamma function as  , which later on will get to be 

distinctly appropriate for showing other types of the fractional integrals. 

=  +  +Γ α   .                                                                        .  

2.2 Beta Function 

It is known that the Euler Integral and the Beta function are very useful in fractional 

calculus. The depiction answer is not only the act of different gamma functions but 

rather additionally profits a shape that is ordinarily similar to the fractional 

derivative/integral of  few functions, primarily polynomials of the frame    and the 

Mittag- Leffer function. The Beta integral is characterized by (2.4) as 
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, = ∫ −  −  −  ,                   ℎ   , ∈ ℝ+                             .  

 and     , = Γ  Γ  Γ  + . 

2.3 The Mittag-Leffler Function 

Another huge function is Mittag-Leffler which has a pervasive use in the area of 

Fractional integral. In reality, the exponential function is exceptionally definite frame; 

the definition of the Mittag-Leffler is given by (2.5) [7]. 

                        = ∑  𝑘Γ  ℎ +  ,               >                                                .∞
ℎ =  

Also, in the two point of view,  and  , the Mittag-Leffler function is represented in 

such a way that 

 ,   = ∑  𝑘Γ ℎ +    ,     , > .                                  ∞
ℎ =           .  

2.4. Definition of Fractional Integral and Fractional Derivative  

2.4.1 The Abel’s Integral Equation 

Let < < . The integral equation (2.7) is called as the Abel’s equation  

= Γ  ∫  −  −   ,     >  .                              . 
  

2.4.2 The Fractional Integral 

In the Introduction part we said that the possibility of plan for fractional integrals and 

derivatives was a characteristic improvement of the fractional exponent and 

derivatives and integer order integrals. In addition, the normal detailing for the 

Fractional integral can be gotten specifically from a conventional articulation of the 
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rehashed integration of a function. This line is normally connected to the Riemann-

Liouville approach. (2.8) proves the recipe regularly perceived to Cauchy for 

assessing the ℎ reconciliation of the function  [8]. 

∫  … …∫ = − !∫ − 𝑛−    .                                          . 
  

Then n is restricted to be an integer. The main limitation is the usage of the factorial 

which in spirit has not any meaning for non-integer values. The gamma function is 

anyway a logical comprehensive of the factorial for all material. Therefore, by 

exchanging the factorial expression for the gamma function correspondingly, we can 

simplify equation (2.8) for all ∈ ℝ+, as shown in (2.9). 

 + ℎ = Γ ∫ ℎ −  −                                                       
  

− ℎ = Γ ∫ − ℎ   −                                          . 
  

The former equation is known as left side integral and the latter  as right side integral. 

2. 4. 3 The Fractional Derivative 

In view, the inversion of Abel’s equation (2.7) can be used to expand (2.8) and (2.9). 

We land at the function  given in the interval [ , ], each of expression (2.10) 

and (2.11) is called fractional derivative of order  where < <  are left sided 

and right sided respectively which are usually formed as Riemann-Liouville 

derivative.[8] 

+ = Γ − ∫ − −                                  . 
  

− = Γ − ∫ − −                                  . 
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Definition 2.5. For −  times absolutely continuous function  : [ , ∞ →  , the 

Caputo derivative fractional order q is characterized as 

  =  𝛤 𝑛−   ∫ − 𝑛 − −  𝑛 ,                          .    − < < , = [ ] +                                      with 

where [  q ] means the integral part of number q. 

Definition 2.6. [2] The sequential fractional differential for a sufficiently even 

function   is defined as  = ∙∙∙  𝑘 ,                                                                    .  

where  = ,∙∙∙, 𝑘   is a multi-index. 

Overall, the operator  in .  can either be Caputo or Riemann-Liouville or 

some other model of integer differential operator. For example, 

   ℎ = − 𝑛 − ( ) 𝑛 ℎ  ,          − < <                                   .   
where − 𝑛−  is fractional integral operator of order − . Here we complement 

that − ℎ = ℎ ,                = − .                                                         .   
Definition 2.7. Give (X,d) a chance to be a metric space and let ∶   →   be a 

mapping:  

(i) A point  ∈   is named a fixed point of   if  =  .  
(ii)  is known as contraction if there exists a fixed constant ℎ <   with the end goal 

that ( , ) ℎ , ,                    ,  ∈  .                                         (2. 16) 
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A contraction mapping is again perceived as Banach contraction. In the event that we 

substitute the inequality (2.16) with strict inequality and = , at that point f is called 

strictly contractive. On the off chance that (2.16) holds for  =  , then  is called 

non-expansive, and if (2.16) holds for fixed  <  ∞, then  is named Lipschitz 

continuous. 

Definition 2.8. Krasnoselskii’s Fixed Point Theorem [1]. Let  be a closed, convex, 

non-empty set in a Banach Space  , ‖. ‖  and  = +     be mapping with the 

end goal that: 

(i)  is continuous and compact, 

(ii) + ∈  for each , ∈ . 

(iii)  is a contraction mapping.  

Consequently,  has a fixed point. A cautious analysis of the confirmation make 

realized that (ii) requires just to test that + ∈  after  = + . The 

confirmation moreover yields a framework for the presentation such that  is in . [9] 

Definition 2.9. Let X be a convex set in a real vector space and let  :   → ℝ be a function. 

 f  is called convex if: + − + − ,                ∀ ∈ , ∀ ∈ [ , ]         
 f  is called strictly convex if: + − < + − ,                 ∀ ≠ ∈ , ∀ ∈ ,    
A function  is said to be strictly concave if  is strictly convex.     
Another significant theorem of nonlinear functional analysis is the Leray-Schauder 

nonlinear Alternative substantiated in 1934. At present there exist a few sorts of 

https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Concave_function
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Leray-Schauder sort options demonstrated by different methods. We letter that, the 

standard Leray-Schauder nonlinear Alternative has few entries to ordinary differential 

equations too. Our uses of Leray-Schauder sort other options to the learning of 

complement issues represent another method for use of this traditional outcome. 

 

Definition 2.10. Let , . , .  be a Hilbert Space and ⊂  a non-empty subset. 

Give : →  a chance to be a mapping. We say that  is compact on  if  is 

relatively compact and we say that f is absolutely continuous if  is continuous and 

for any bounded set ⊂ ,  is relatively compact. We will indicate by 𝜕  the 

boundary of . We will use similarly the accompanying traditional thought. We say 

that f is a completely continuous field, if  has a demonstration of form = −
, for all ∈ , where : →  is a completely continuous mapping [5]. 

Definition 2.11. (The Arzela-Ascoli Theorem) If a sequence { 𝑛}∞   in  is 

equicontinuous and bounded then it has a uniformly convergent subsequence, in this 

statement, [6] 

a) ⊂  is equicontinuous, funds for each >  there exists >    (which 

depends just on ) such that for , ∈ : , < ⇒ | − | <, ∀ ∈ , where  is the metric on . 

b) ⊂  is bounded, funds that there exists a positive constant < ∞ with 

the end goal that | |  for each ∈  and each ∈ .  
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Chapter 3 

EXISTENCE AND UNIQUENESS OF SOLUTION OF  
SEQUENTIAL FRACTIONAL DIFFERENTIAL  

EQUATIONS 

3.1 Dynamic Energy Flow 

We concentrate on the existence of solution for the sequential fractional in the 

differential equation of the form: 

∝ +  ∝− = ℎ( , ),                 ∈ [ , ]       , ∝                .  

improved with the boundary conditions  

= ,      ′ = ,     = ∫ − −𝛤 ,              >            .  

where ∝  mean the Caputo Fractional differential of request,   < < <  , h is 

known to be a continuous function, and  ,   are reasonably positive real numbers. At 

that point, we underline that the integral boundary condition (3.2) which can concur in 

the insight that importance of the indefinite function at the arbitrary position ∈ ,  is relative to Riemann-Liouville of the unknown function [1]. 

    ∫ − −𝛤 ,         where                      ∈  , .                             .   
In addition ∈  ,  for =    the integral boundary condition reduces to the 

standard type of a nonlocal integral condition,  

= ∫  . 



10 

 

The substances of the article are agreed as follows a fundamental result that places the 

function for characterizing a fixed point problem equivalent to the given problem 

(3.1), (3.2). The results are based on  Banach Contraction mapping principle rule, 

nonlinear option of Leray-Schauder alternative and Krasnoselskii’s fixed point 

theorem [4][5]. 

Lemma 3.1. The integral solution of the linear equation for ∈ [ , ],   

∝ +  ∝− =                          ∈ [ , ],     ∝                .    

complemented with the boundary condition (3.2) is     
= − + −∆ [ ∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 − 𝜏 𝜏𝑛  
− ∫ − − ∫ − 𝜏 −𝛤 − 𝜏 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 − 𝜏 𝜏 .                                                                   .  

Proof.   

By using (F.L.D.E) ∝ +  ∝− =              ∝  

∝−  ∝ +  ∝− = ∝−          ∝−  ∝ + ∝−  ∝− = ∝−            ′ + = ∝−  − −         { ∝−  ∝− = + + } 
Using (F.L.D.E) = ∫ = , 

then multiplying both sides by I, we get ′ +  = ∝−  − −  (   ∙ ) = ∝−  − −  
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∫ (   ∙ ) = ∫ ∝−  − −  . 
Multiplying both sides by − , we obtain 

 =   ∫ ∝−  − − .  
Thus, 

= − − − ∫ − − ∫
+ − ∫ ( ∝− )    
= − − − − − [ − + − ]
+ − ∫ ∫ − 𝜏 −𝛤 ∝ − 𝜏 𝜏  .
= − + − − + [ − + − ]
+ ∫ − ∫ − 𝜏 −𝛤 ∝ − 𝜏 𝜏 ,                                         .  

where , ,  are unidentified arbitrary constants. By the boundary condition (3.2) 

we get that  = , ℎ    = ,          ′ = , ℎ  = . 

Also, by             

= ∫ − −𝛤 ,                           >  

and  𝜏 = [ 𝜏 − + − 𝜏] + ∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 . 
Hence  



12 

 

∫ − −𝛤 𝜏
= [ − + − ] + ∫ − − ∫ − 𝜏 −𝛤 ∝ − 𝜏 𝜏 ,  

=
− + − 𝜁 [ ∫ − −𝛤 [ 𝜏 − + − 𝜏 + ∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 ] −

∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 ]. 
Then replacing the expressions of , ,  in (3.6) yields the solution  

= − + −∆ [ ∫ − −𝛤 ∫ − −𝑛 ∫ 𝑛−𝜏 −𝛤 ∝−𝑛 𝜏 𝜏 −
∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 ] + ∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 . 

We get the result, where  
 

∆= − + − − 𝛤 ++ − + ∫ − − − ≠  .                   .  

3.2 Existence of Solutions 

Let  = [ , ], ℝ  be a Banach space then for all continuous functions from[ , ] to 

R endowed with the sup norm characterized by‖ ‖ = sup{| |, ∈ [ , ]} < ∞.   

To make less difficult the substantiations in the coming theorems, we start with the 

limits for the integrals emerging in the results [2]. 

Lemma 3.2. Let ∈ [ , ],  , then the following hold: 

1. |∫ − −𝛤 ∫ − −𝑛 ∫ 𝑛−𝜏 −𝛤 ∝−𝑛 𝜏 𝜏 | ∝+ −𝛤 ∝ 𝛤 +
− − ‖ ‖ 

2. |∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 | ∝− 𝛤 ∝ ( − − )‖ ‖, 
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3. |∫ − − ∫ −𝜏 −𝛤 ∝− 𝜏 𝜏 | 𝛤 ∝ − − ‖ ‖ 

Proof. For (1)  

∫ − 𝜏 −𝛤 ∝ −𝑛 𝜏 = −∝ − 𝛤 ∝ − − 𝜏 −  | = ∝−𝛤 ∝  

∫ − −𝑛 𝑛∝−𝛤 ∝ ∝−𝛤 ∝ ∫ − −𝑛 = ∝−𝛤 ∝ − −𝑛  | = ∝−𝛤 ∝ [ − − ], 
hence we obtain 

|∫ − −𝛤 ∝−𝛤 ∝ [ − − ] |
‖ ‖  𝛤 ∝ 𝛤 ∫ − − ∝− − −   

= ∝+ −𝛤 ∝ 𝛤 ∫ − − = ∝+ −𝛤 ∝ 𝛤 + − − ‖ ‖. 

,(2) For 

∫ − 𝜏 −𝛤 ∝ − 𝜏 𝜏 = −𝛤 ∝ − ∫ − − 𝜏 − 𝜏 

                                               = −∝ − 𝛤 ∝ − − 𝜏 −  | = ∝−𝛤 ∝ , 
then 

∫ − − ∝−𝛤 ∝ ∝−𝛤 ∝ ∫ − −  

                                       = ∝−𝛤 ∝ − ∫ = ∝−𝛤 ∝ − [  |  

= ∝−𝛤 ∝ − − ‖ ‖. 

To prove (3), 

∫ − 𝜏 −𝛤 ∝ − 𝜏 𝜏 = −𝛤 ∝ − ∫ − − 𝜏 − 𝜏 

                                               = −∝ − 𝛤 ∝ − − 𝜏 −  | = ∝−𝛤 ∝ , 
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then  

∫ − − ∝−𝛤 ∝ ∝−𝛤 ∝ ∫ − −  

                                       = ∝ −𝛤 ∝ − ∫ =  ∝−𝛤 ∝ − [  |  

= ∝−𝛤 ∝ − − ‖ ‖. 

As we have  ‖ ‖ = sup{| |, ∈ [ , ]} we get  ∫ − − 𝛤 ∝ − − ‖ ‖. 

What's more, the proof of nearness, we get 

= ∈ [ , ] | − + −∆ | = |∆| − + −                                  .  

and   

 𝛬 = {| | ∝+ −𝛤 ∝ 𝛤 + − − + ∝−𝛤 ∝ ( − − , )} +  𝛤 ∝ − − , .       

At this point we change issue (3.1) and (3.2) as  = ,                    : →                                                 .  

= − + − ∆  

[ ∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 .                                                    .  

We note that the problem (3.1) and (3.2) has solution if the operator equation (3.10) 

has fixed point. 
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Theorem 3.2. Let  ℎ: [ , ] × →  be a continuous function then if the following the 

condition holds 

( ) | ℎ , − ℎ , | | − |,              ∀ ∈ [ , ],      , ∈ , 

where L is the Lipschitz constant then the boundary value problem (3.1) and (3.2) has 

a solution if  𝛬 < 𝐿  where 𝛬 is known by (3.9). 

Proof. To begin with, we exhibit that the operator S, given by =   maps C into 

itself. For that we see 

∈ [ , ] |ℎ , | = < ∞. 
Then for   ∈     we have  ‖ ‖

= ∈ [ , ] | − + −∆
∙ [ ∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 | 

Then to get the formula of ( ) we continue in the way that,  ‖ ‖ ∈[ , ] | − + −∆ | [| | ∫ − −𝛤 ∫ − −𝑛 ∫ 𝑛−𝜏 −𝛤 ∝−𝑛 |ℎ(𝜏, 𝜏 ) −
ℎ 𝜏, + ℎ 𝜏, | 𝜏 + ∫ − − ∫ −𝜏 −𝛤 ∝− |ℎ(𝜏, 𝜏 ) − ℎ 𝜏, +
ℎ 𝜏, | 𝜏 ] +
∫ − − ∫ −𝜏 −𝛤 ∝− |ℎ(𝜏, 𝜏 ) − ℎ 𝜏, + ℎ 𝜏, | 𝜏               
Then for simplicity, 
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‖ ‖
∈ [ , ] | − + −∆ | [| |∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛

∙ (|ℎ(𝜏, 𝜏 )   − ℎ 𝜏, | + |ℎ 𝜏, |) 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − (|ℎ(𝜏, 𝜏 ) − ℎ 𝜏, | + |ℎ 𝜏, |) 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − (|ℎ(𝜏, 𝜏 ) − ℎ 𝜏, | + |ℎ 𝜏, |) 𝜏  .         

Hence by using |ℎ 𝜏. | = , and  |ℎ , − ℎ , | | − |  formula we 

get  

‖ ‖ [| |∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 | − |
+ 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − | − | + 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − | − | + 𝜏  .         

‖ ‖ ‖ ‖ + { [| |∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − 𝜏  }. 

By using Lemma (3.2) we get  
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‖ ‖ ‖ ‖ + { [| | ∝+ −𝛤 ∝ 𝛤 + − − + ∝−𝛤 ∝ ( − − )]
+  𝛤 ∝ − − },     

and by (3.9) ‖ ‖ = ‖ ‖ + 𝛬 < ∞. 
Then we see “that S maps C into itself, for , ∈  and ∈ [ , ] “we get 

‖ − ‖ = ∈ [ , ] | − | 
∈ [ , ] | − + −∆ | [| |∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛

∙ |ℎ(𝜏, 𝜏 ) + ℎ(𝜏, 𝜏 )| 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − |ℎ(𝜏, 𝜏 ) − ℎ(𝜏, 𝜏 )| 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − |ℎ(𝜏, 𝜏 ) − ℎ(𝜏, 𝜏 )| 𝜏     

‖ − ‖{ [| |∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − 𝜏  }. 

By Lemma (3.2)  

‖ − ‖ ‖ − ‖{ [| | ∝+ −𝛤 ∝ 𝛤 + − − + ∝− 𝛤 ∝ ( − − )]
+  𝛤 ∝ − − }     
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              ‖ − ‖  = ‖ − ‖𝛬, 
where 𝛬 is given by (3.9) such that 𝛬 < 𝐿  , in this way S is a contraction along these 

lines. The desired result of theorem obtained by the contraction mapping principle.  

Theorem 3.3. Let  be a convex, bounded, closed, and nonempty subset of a Banach 

space in  and  ,  be the operators to such an extent that 

1) + ∈   when  , ∈ . 

2)  is continuous and compact. 

3) There exists ∈  such that  = + , where  is contraction mapping. 

Theorem 3.4. Assume that ℎ: [ , ] × →  is a jointly continuous function 

satisfying  

 Assume that the accompanying assumption holds.  When |ℎ , | ,   ∀ , ∈ [ , ] ×     𝑖 ℎ  ∈ [ , ],    then at 

that point the BVP (3.1) and (3.2) has one solution on [0,1] if  

[| | ∝+ −𝛤 ∝ 𝛤 + − − + ∝− 𝛤 ∝ ( − − )] < .                      .  

Proof. Let ∈[ , ] | | = ‖ ‖  we fix   𝛬‖ ‖                                                    .  

at the point when Λ is known (3.9) and suppose  = { ∈ : ‖ ‖ } describe the 

operator  and   on  as 

= ∫ −  − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 . 
= − + −∆  
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[ ∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ] 

where , ∈  , 
‖ − ‖ ∈ [ , ] | − + −∆ | 

[| |∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 | | 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − | | 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − | | 𝜏           

‖ ‖ { [| | ∝+ −𝛤 ∝ 𝛤 + −𝑘 − + ∝− 𝛤 ∝ ( − − )]
+  𝛤 ∝ − − } , 

So  + ∈  .   
In understanding by condition .  it can surely be made realized that  is 

Contraction mapping. The continuity of ℎ demonstrates that the operator  is 

continuous, besides  is uniformly bounded on   then 

‖ ‖  𝛤 ∝ − − ‖ ‖ 

As of now, we demonstrate the compactness of  by setting  𝛺 = [ , ] ×  , then 

defining ∈[ , ] | , | =  . Thus we get 
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| − |
= |∫ − − ∫ − −𝛤 ∝ − ℎ ,  
− ∫ − − ∫ − −𝛤 ∝ − ℎ ,  | 

Part1    ∫ − −𝛤 ∝− |ℎ( , )| = 𝑁𝛤 ∝− ∫ − − = 𝑁∝− 𝛤 ∝−  

{ − − | } = 𝛤 ∝ ∝−  

then  ∫ − − 𝑁𝛤 ∝ ∝− = 𝑁𝛤 ∝ ∝− − { | } = 𝑁𝛤 ∝ [| ∝− −
∝− − |]  . 

In the same way for Part2, we get  

| − | 𝛤 ∝ | ∝ − ∝ − | + | ∝ − ∝ − |               
𝛤 ∝ | ∝ − ∝| + | ∝ − − ∝ − | , 

which is independent of z and tends to zero as →  so  is relatively compact 

on . By the Arzela-Ascoli theorem,  is compact on . Hence all the thought of 

Theorem (3.3) are fulfilled and the deduction of Theorem (3.3) indicates that the BVP 

(3.1) and (3.2) has unique solution on [0,1]. 

Remark 3.5. In the Theorem 3.4, we can interchange the role of the operators    to get the second result we substitute (3.12) by this condition  

− −𝛤 ∝ < . 

In the next theorem we prove the existence for the BVP (3.1) and (3.2) by means of 

Leray-Schauder nonlinear Alternative. 
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Lemma 3.3. (Leray-Schauder nonlinear Alternative)  

When we have a Banach space of ,  be a closed subset and convex when ,  be 

an open subset of   and ∈ , assume that ℎ: ̅ →  is continuous and compact 

(when ℎ ̅  is a generally compact subset of  guide then [6] 

1. ℎ has a fixed point in ̅. 
2. (the boundary of  in )  is ∈ , and ∈ 𝜕  with ∈  ℎ . 

Theorem 3.7. Suppose that  ℎ: [ , ] × →  is jointly continuous function further, it 

is assumed that the following conditions hold: 

 There exists a non-decreasing function 𝜑: + → + and a function ∅ ∈ 

(C[ , ],  such that for all , ∈ [ , ] × , |ℎ , | ∅ 𝜑‖ ‖ . 

 There exists a constant >  such that Let   
𝑁𝜑 𝑁 ‖∅‖𝛬 >  where  𝛬 is given by 

(3.9). Then the BVP (3.1) and (3.2) has at least one solution on [0,1]. 

Proof. Assume the operator : →  where  

= − + −∆  

[ ∫ − −𝛤 ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏  . 

We “demonstrate that S maps bounded sets into bounded sets” in C [ , ], ). For 

positive number r, let = { ∈ [ , ], : ‖ ‖ } be a bounded set in [ , ], ), then  
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| | = | − + −∆ [ ∫ − −𝛤
× ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏  | 

∈ [ , ] | − + −∆ | [ ∫ − −𝛤
× ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ∅ 𝜏 𝜑 ‖ ‖ 𝜏 
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − ∅ 𝜏 𝜑 ‖ ‖ 𝜏 ]
+ ∫ − − ∫ − 𝜏 −𝛤 ∝ − ∅ 𝜏 𝜑 ‖ ‖ 𝜏   

              𝜑 ‖ ‖ ‖∅‖ { [| | ∝+ −𝛤 ∝ 𝛤 + − − + ∝− 𝛤 ∝ ( − − )]
+  𝛤 ∝ − − } 

             = 𝜑 ‖ ‖ ‖∅‖𝛬. 

Consequently  ‖ ‖  𝜑 ‖∅‖𝛬. 

Next we prove that S maps bounded sets into equicontinuous sets of  [ , ], .  Let , ∈ [ , ] with <  and ∈  where  is a bounded set of   [ , ], , 

then we set, 
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| − |
= |[ − + −∆ [ ∫ − −𝛤   
× ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]
+ ∫ − − ∫ − −𝛤 ∝ − ℎ ,  ]
− [ − + −∆ [ ∫ − −𝛤
× ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]
+ ∫ − − ∫ − −𝛤 ∝ − ℎ ,  ]| 

       | − + − − −∆ [ ∫ − −𝛤     
× ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 ℎ(𝜏, 𝜏 ) 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − ℎ(𝜏, 𝜏 ) 𝜏 ]|
+ |∫ ( − − − − − ) ∫ − −𝛤 ∝ − ℎ( , )  
+ ∫ − − ∫ − −𝛤 ∝ − ℎ ,  |  
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| − + − − −∆ [ ∫ − −𝛤
× ∫ − −𝑛 ∫ − 𝜏 −𝛤 ∝ −𝑛 𝜑 ∅ 𝜏 𝜏 
− ∫ − − ∫ − 𝜏 −𝛤 ∝ − 𝜑 ∅ 𝜏 𝜏 ]|
+ |∫ ( − − − − − ) ∫ − −𝛤 ∝ − 𝜑 ∅  
+ ∫ − − ∫ − −𝛤 ∝ − 𝜑 ∅  | . 

Clearly the correct hand side of the above imbalance tends to zero independent of ∈  as − → , as  satisfies the above assumptions, along these lines it takes 

after by the Arzela-Ascoli theorem that  : →  is completely continuous. The 

result will come from the Leray-Schauder nonlinear Alternative (Lemma 3.3) when 

we have proved the boundedness of the set of all solution to equation =  for ∈ [ , ]. Give  a chance to be an answer. At that point for ∈ [ , ] and utilizing 

the calculations utilized as a part of demonstrating that   is bounded | | = | | 
𝜑‖ ‖‖∅‖ { [| | ∝+ −𝛤 ∝ 𝛤 + − − + ∝− 𝛤 ∝ ( − − )]

+  𝛤 ∝ − − } 

              = 𝜑‖ ‖‖∅‖𝛬. 

Consequently,  

‖ ‖𝜑‖ ‖‖∅‖𝛬 . 
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In view of  there exists N with the end goal that ‖ ‖ ≠  let us set  = { ∈ [ , ], : ‖ ‖ < }. 
Take note of that the operator : ̅ →  [ , ],  is continuous and completely 

continuous from the choice of . For  ∈ ,  there is no ∈ 𝜕  which =  . 

Thus, by the Leray-Schauder nonlinear Alternative (Lemma 3.3), we conclude that  

has a fixed point ∈ ̅ which is a solution of problem (3.1) and (3.2). The completes 

the proof. 

3.2 Examples 

The following examples are concerned with the illustration of Theorem 3.2. 

Examples 3.2.1 Consider the problem  

{  
   + = √ + + 𝑖 + + − ,      

= ,    ′ = , ( ) = ∫                                      .  

Solution. Here         ∝= ,  ℎ( , ) = √ + + 𝑖 + + −  = ,    = ,        = /   ,         = / ,          =  

|ℎ , − ℎ , | | − + − − − |  | − |.                    
Then   ∆≈ , ,    ≈ , , 𝛬 ≈ ,  for  < 𝛬 ≈ ,  . Using 

Theorem 3.2, the problem (3.14) has a unique solution. 

Example 4.2.  Let us consider the problem (3.14) with  

ℎ( , ) = −√ + + . 
Solution. We check the conditions of Theorem 3.7 and the hypothesis  holds 

with 
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   ‖∅‖ = , 𝜑 ‖ ‖ = + ‖ ‖ . 

By assumption , we get    <  < . 

If  ≈ ,            = , ,  by applying Theorem 3.7, hence the 

problem (3.14) value ℎ( , )  has a solution on [0,1]. 
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Chapter 4 

CONCLUSION 

We have accomplished particular existence and uniqueness results of Caputo type 

sequential fractional differential equation using nonlinear alternative of Leray-

Schauder type with the Banach contraction mapping principle and Krasnoselskii’s 

fixed point theorem. We see that few new solitary results take after by settling the 

components entangled in the known problem. For example, in the event that we pick = , then the results of this study identify with the Caputo type sequential of 

fractional differential equation and boundary condition of fractional differential 

equation have the form  = ,      ′ = ,          = ∫ . 
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