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ABSTRACT

In recent years, sparse signhal estimation has become amtanpparadigm in the field of
signal processing due to its vast amount of applications. odgnthe wide range of
applications, system identification and echo cancelation likely two of the most
challenging signal estimation problems for many practd@nnels with sparse nature.
For such channels, due to low convergence speed and siénditivhighly correlated
inputs, conventional adaptive filtering algorithms such least-mean-square (LMS)
algorithm and its variants, recursive least-squares (Rlig8)ithm and Kalman filters are
incapable of exploiting the channel sparsity efficientlyo dvercome the difficulties
associated with sparse system identification and echo ledioce /,-norm constraint
LMS (l,-LMS) modifies the conventional LMS algorithm to capture aumtilize the
sparsity of the channel . This modification results in a zewoxt attraction to all
filter-taps. Thely-norm addition, however, causes the optimization problenbe

non-convex and hence not tractable.

In this thesis, we propose three different types of novelrspaadaptive filtering
algorithms to achieve faster convergence rate while detrgdhe mean-square deviation
(MSD). Furthermore, all the novel approaches are transfdrinto convex optimization
problem by imposing eithek-norm or logarithmic penalty on the filter-tap during the
adaptation process. The first algorithm is referred as wetbero-attracting leaky LMS
(WZA-LLMS) algorithm where the original cost function oféhleaky-LMS algorithm is
modified by an addition of a log-sum penalty that produces djusament term in the
update equation. The adjustment causes the proposedtiailgdo attract the zeros of

sparse channel and improves the performance. For systemtificktion and echo



cancelation setting, the proposed algorithm not only wétdver MSD for highly sparse
channels but converges at the same rate as the standardtzaming-LMS (ZA-LMS)
algorithm. In the case of fully non-sparse channels, the WZMS algorithm performs
better than both the LLMS and ZA-LMS algorithms in the santérsgs. These filters can
also be efficiently implemented for potential applicatiomcls as in finite-precision

hardware.

Due to an extra logarithmic cost function, however, the WIAAMS algorithm is
computationally complex. To reduce the complexity whildiaging lower MSD, a zero
attractor-variable step-size LMS (ZA-VSSLMS) algorithsnimtroduced. This algorithm
imposes anl;-norm penalty to the original quadratic cost function of M8SLMS
algorithm which captures the system sparsity during adiaptarocess. For highly sparse
channel, this process accelerates the final convergence iraptbves the error
performance. The convergence analysis for ZA-VSSLMS dlgoris studied when the
white process presents at the input of the system. The isgatphdition of the algorithm
is presented. Next, the steady-state mean square devi@l&D) analysis of the
algorithm is carried out. A steady-state MSD expressiorttierZA-VSSLMS algorithm
is derived mathematically in terms of the system paramedtargeneral white noise
process.A crucial upper bound of the zero-attractor ctletr¢p) which yields minimum
MSD is theoretically shown. The effect of both zero-attoactontroller ) and the
forgetting factor {) in ZA-VSSLMS are investigated. Furthermore, the behawiothe
ZA-VSSLMS algorithm is studied in the presence of noise wdifferent probability

density functions.

Finally, to further improve the ZA-VSSLMS filter when the spidy of the channel



decreases, with a slight cost in the number of computatiths, WZA-VSSLMS
algorithm is introduced by adding the same log-sum penaliy &/ZA-LLMS algorithm

into original cost function of VSSLMS algorithm.

The performance of the ZA-VSSLMS, WZA-VSSLMS and WZA-LLM&arithms are
examined with respect to the standard ZA-LMS, VSSLMS, lebMS, set-member- ship
normalized LMS (SM-NLMS) and LMS algorithms in system idéoéation, echo
cancelation and image deconvolution problems. Simulatesults show that the
theoretical and simulation results of the ZA-VSSLMS algan not only outperforms the
aforementioned algorithms but further are in good agre¢mmétn a wide range of

parameters, different channels, input signal and noisestyp

Keywords: Adaptive Filters, Sparse Signal, Compressive Sensing, BigSrithm, Zero

Attractor.
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Son yillarda, ayrik sinyal kestirimi, genis uygulama aklari sundugu icin, sinyal
islemede dnemli bir arastirma alani olarak ortaya ¢gtm Uygulama alanlari arasinda,
ayrik yapiya sahip gercek kanallar igin sistem tanilamganki giderme en dnemlileridir.
Bu tur kanallar icin, LMS, RLS ve Kalman benzeri gelendkssarlanir filtre
algoritmalari, ayrik yapiya sahip ozellikleri kullanamakta ve yavas yakinsama ve
ilintili gurtdltide disuk basarim saglama gibi solara yol agmaktadirlar. Ayrik yapiyi
kullanabilmek icin/0-norm kisiti eklenerek LMS algoritmasi giincellenmektedBu
deqgisiklik, filtre katsayilarinin sifira dogru yakkaglarini saglamaktadir. Bununla beraber,
lo-norm kisitinin eklenmesi, eniyilestirme probleminjlmikey olmaktan ¢ikarmakta ve

cOzimunu zorlastirmaktadir.

Bu tezde, daha hizli yakinsama ve ortalama karesel sapmt8D) azaltan U¢ 0zgin
ayrik uyarlanir filtre onerilmistir. Bunlara ek olarakjsikey olmayan eniyilestirme
problemleri, filtredd;-norm kisiti kullanilarak uyarlama adimlari sirasindddkey hale
donustiralmiistir. Onerilen birinci algoritma, agirlikh sifira yaklasara¢akli LMS
algoritmasi, WZA-LLMS, olarak adlandiriimis ve logarittrioplama dayal bir ek kisim
eklenerek maliyet islevi gincellenmistir. Kanalin yspda bulunan sifir katsayilarina
daha hizli yaklasilarak basarim artiriimaktadir. $mst@nilama ve yanki giderme
uygulamalarinda, ayrik kanallar icin daha dusik MS@eetdilmekte, yakinsama hizi ise
standard sifira yaklasan LMS algoritmasina (ZA-LMS) ilenber olmaktadir. Ayrik
olmayan kanallar i¢cin de, WZA-LLMS LLMS ve ZA-LMS algoritatarindan daha
yilksek basarim gostermektedir. Onerilen filtreler gercek donanimlarda etkin

algoritmalarin uygulamasinda da kullanilabilmektedir.

Vi



Eklenen logaritmik maliyet islevi nedeniyle WZA-LLMS algtmasi, yuksek islem
karmasikligina sahiptirislem karmasikligini azaltmak icin degisken adiny@kligiine
sahip ZA-VSSLMS algoritmasi tasarlanmistir. Bilinen \IS&S algoritmasind1-norm
kisiti eklenerek ayrik kanal yapisinin ozellikleri kullnistir. Yuksek ayrik ozellikleri
olan kanallarda, ZA-VSSLMS algoritmasi yuksek basarimstgrmektedir. Beyaz Gauss
guraltosu altinda, algoritma kuramsal olarak analidezek MSD sonucui turetilmistir.
Kalicildurum basarimina, sifirayaklastiricve o adim uzunlugu parametrelerinin etkileri
incelenmis vep icin Ust sinir belirlenmistir. Ayrica, farkh olasilidagilimina sahip gurulti

dagilimlarinin basarima etkisi arastirilmistir.

Son olarak, ZA-VSSLMS algoritmasini daha da iyilestirmek, maliyet islevine bir

logaritmik toplama terimi eklenerek WZA-VSSLMS elde edidtir.

Onerilen ZA-VSSLMS, WZA-VSSLMS, WZA-LLMS algoritmalarin, bilinen standard
algoritmalar ile basarimlari, sistem tanilama, yankiegide ve imge ters-evrisim
problemlerinde kiyaslanmistir. Benzetim ve kuramsalustar, onerilen ZA-VSSLMS
algoritmasinin, farkh gurultt dagihimlarinda dahailkgek basarim sagladigini
gostermektedir. Ayrica, kuramsal ve benzetim degefbatili parametre degerleri icin

ortusmektedir.

Anahtar Kelimeler: Uyarlanir filtre, Ayrik sinyal, Sikistirmali algilama, LMalgoritmasi,

Sifira-yaklasan.
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Chapter 1

INTRODUCTION

1.1 Introduction

For several decades, adaptive filters have been studied by raaearchers due to their
wide range of applications in electronic devices such agaligameras and smart phones
[1, 2, 3]. The advantage of self-modification of an adaptikerffor real-time input and its
iterative solution has resulted in its application in areesive range of problems including
system identification, channel estimation, echo caneglaind many others. To address
such problems, various adaptive algorithms have beena@selo reach optimal solution
based on a certain optimization criterion. Among theserélyos, least mean square
(LMS) algorithm and its variants [1]-[8] are some of the mpspular methods that have
been widely used for this purpose. However, these methdter $tom low convergence
rate, high power consumption and sensitivity to highly etated input for applications

where the systems are sparse in nature [9, 10].

In the recent years, sparse signal recovery has become éapapproach in the field of
signal estimation due to its vast range of applications.sTigpires the design of more
effective adaptive filters for the sparse signal recovegbjfam that leads to improved

performance in both convergence behavior and error costium

1.2 Understanding Sparse Signal
A sparse signal is one that contains only a few relativelgdaamplitudes while the rest

are zero or very small. Fig. 1.1 shows a typical sparse sitpaatesulted from an acoustic



echo path in a communication system [11]. As it can be seeriptbulse response of the
acoustic echo path has a few large active coefficients faleddly durations. Consequently,
the impulse response of an acoustic echo is composed ofynagligible coefficients
(zero or near-zero). As a result of this property, the impubsponse produces a sparse

signal.

1.5} b

Amplitude
S
wn o

-2 I I I I I
0 50 100 150 200 250

Delay

Figure 1.1: An acoustic echo path impulse response; a tygpease signal, [11].

Such a sparse structure in systems can be found in many rela aaplications such as
digital TV transmission [12], acoustic echo channel [13§l &ystem identification [14] .
Recently, Compressive Sensing (CS) [15] has emerged to b&dating area of research
in solving many inverse problems. Sparse signal procesdgiogmpressive sensing has an
excellent capability of reducing the sampling rate whicutts in lower implementation

cost [15].



1.3 Compressive Sensing

Compressive Sensing (CS) is a novel framework in signal ggsiog that allows
estimating a sparse signal via sampling at a much lower hate Wyquist rate [15]. The
main idea behind the CS theory is to solely acquire large inaas of the signal with
most of its coefficients have values close to zero using aguropnimization technique
for reconstruction [16, 17]. In general, estimating thgsarse signals involvel-norm

minimization of sparse vectav in the cost function of the form:

min ||w/||o. (1.1)
w

wherel||.||o denotes-norm that returns the number of nonzero entries in sparstore
w. This gives the minimization process the ability of atthagtall zero coefficients [18].
However, the cost function in (1.1) is a non-convex optiria@aproblem and often is very
hard to tackle. Many good alternative approximationg,afiorm such ag,-norm and a
log-sum penalty function [10] have been proposed to oveeceuth drawback, as these

are mathematically more tractable in the minimization pssc

1.4 Thesis Contributions

In this work, in order to reduce the effects of the main proidesuch as low convergence
rate and high power consumption of sparse signal estimatanexist in conventional
adaptive filtering schemes, three novel versions of LMStdaparse adaptive algorithms

are proposed:

1. A weighted zero-attracting leaky LMS (WZA-LLMS) algdrin [19] that achieves
enhanced performance in terms of both convergence rate &ty incorporating

a logarithmic penalty term into the main cost function oklg&MS algorithm.



2. A zero attractor-variable step-size LMS (ZA-VSSLMS) aithm [20] is
introduced which reduces the computational complexity parad to the

WZA-LLMS algorithm.

3. A weighted zero attractor-variable step-size LMS (WZASLMS) algorithm [20]
is proposed to further improve the ZA-VSSLMS filter performa when the sparsity

of the channel decreases.

For the proposed ZA-VSSLMS algorithm which captures théesyssparsity by imposing
the [;-norm penalty into the quadratic cost function of the VSSL&I§orithm during

adaptation process, the following studies are conducted:

1. The convergence analysis for ZA-VSSLMS algorithm [21§tisdied when the input

to the system is white.

2. A steady-state MSD expression for the ZA-VSSLMS alganiils derived in terms

of the system parameters for general white noise procegs [22

3. The crucial upper bound of zero-attractor controlg¢mghich yields minimum MSD

is theoretically presented [22].

4. The behavior of the ZA-VSSLMS algorithm is studied in tliegence of four noise

types: Gaussian, uniform, Laplacian, Impulsive. [22].

5. The effects of both the zero-attractor controllgr #nd the forgetting factora() in

ZA-VSSLMS algorithm are investigated [22].

The performance of the ZA-VSSLMS, WZA-VSSLMS and WZA-LLM&arithms are
evaluated with respect to the standard ZA-LMS, VSSLMS, yelaMIS, set-membership

normalized LMS (SM-NLMS) [23] and LMS algorithms in systedentification, channel

4



estimation, echo cancelation and image deconvolutionlpne® Simulation results show
that the theoretical and simulation results of the ZA-VSS.Mlgorithm are in good
agreement within a wide range of parameters, different mblannput signal and noise

types and outperform the aforementioned algorithms.

1.5 Thesis Outline

The structure of the thesis are arranged in the followingoréfter a brief introduction on
sparsity phenomena in signal processing and its applicatiadaptive filtering problem in
Chapter 1, In Chapter 2 a general background on the adapterniy and few LMS-type

algorithms, that will be used in all proposed techniquegivsn.

In Chapter 3 the proposed algorithms are described. Ingodati convergence analysis
for ZA-VSSLMS algorithm is studied when the white processsents at the input of the
system. The stability condition of the algorithm is preseint Furthermore, the
steady-state mean square deviation (MSD) analysis of tperiim is carried out. A
steady-state MSD expression for the ZA-VSSLMS algorithndesived in terms of the
system parameters for general white noise process. Thdakrupper bound of
zero-attractor controllerpj which yields minimum MSD is theoretically shown. The
effect of both zero-attractor controllep)(and the forgetting factora in ZA-VSSLMS
are investigated. Furthermore, the behavior of the ZA-ViSLalgorithm is studied in

the presence of noise with different probability distribus.

The superiority of the proposed methods are presentedghrthe simulation results in
Chapter 4 for a wide range of parameters, different chammglit signal and noise types.
We conclude the thesis in Chapter 5 by giving a summary ofébalts, discussions and

future work.



Chapter 2

REVIEW OF ADAPTIVE FILTERING

2.1 Background

Adaptive filtering is a popular technique that has been usedwide spectrum of signal
processing and communication problems. In many real wardtharios, it is dealt with
unknown time-varying processes which result in undesiistbdion of signals [25]. In
order to eliminate such unknown distortions, adaptiveesystare known to be efficient
tools for this purpose. By an adaptive system, we mean thielesigning finite impulse
response (FIR) filter which relies on a recursive algoritbrmdnverge to optimum Wiener
solution in some statistical sense [1]. In each succestvation, the output of adaptive
filter attempts to minimize the error signal with respecttsodesired response in order to
update the filter coefficients. In the coming sections, af lniéscription of three common
adaptive filtering algorithms, that will be used throughthus thesis, will be reviewed.

2.2 The Least-Mean-Square (LMS) Algorithm

The least-mean-square (LMS) adaptive algorithm, intreduzy Widrow and Hoff [3], is
the most widely used method that appears in many applicat&as, such as adaptive noise
cancelation [3], channel equalization [26] and systemtifieation [27], etc. The main
reason for the popularity of LMS algorithm is its robustnés®& computational complexity
and easy hardware implementation [1]. The LMS algorithmthasfollowing important

characteristics:

1. The optimum filter [1] solution can be efficiently estindtevithout computing

matrix inversion. Furthermore, the autocorrelation amassrcorrelation matrices



are not required [28].

2. A step-sizeyu, is readily selected in order to control the convergencedmnd

stability of the algorithm [29].

3. The algorithm is robust and stable in solving many prattadaptive signal

processing problems [3, 30, 31].

Table 2.1 summarize the LMS algorithm.

Table 2.1: The LMS algorithm (LMS)

Least-Mean-Square Algorithm

Data Input Signal :x(k)

Desired Responsé{ k)

Initialization | Set Filter-Tapw(0) =0

Select Step-Size:

Computation Fork =0,1,2,......,n

Error Vector:e(k) = d(k) — wT (k)x(k)

Update Filter-Tapw(k + 1) = w(k) + pe(k)x(k)

2.3 The Leaky Least Mean Square(LLMS)Algorithm

The leaky LMS algorithm (LLMS) has been proposed to mainlynbat the numerical
instability of the filter in the digital implementation of L&lalgorithm [1, 3]. A leakage
prevents overflow in finite-precision by providing a tradédsetween minimizing the
MSE and the energy in the filter's coefficients. This is acbeéely adding a regularization
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term (,-norm of filter-taps) into the cost function of the LMS algbrm [1]. Table 2.2

summarize the LLMS algorithm..

Table 2.2: LLMS Algorithm

Leaky Least-Mean-Square Algorithm algorithm AlgorithnL{(1S)

Data Input Signal :x(k)

Desired Responsée{ k)

Initialization | Set Filter-Tapw(0) =0
Select Step-Size:

Select Leakage Factor:; Small Positve Number. < 1

Computation Fork =0,1,2,......,n
Error Vector:e(k) = d(k) — wT (k)x(k)

Update Filter-Tapw(k + 1) = (1 — pv)w(k) + pe(k)x(k)

2.4 The Variable Step-Size LMS (VSSLMS) algorithm

The variable step size LMS (VSSLMS) algorithm was proposeeédtablish a balance
needed for faster convergence speed and lower MSE of the Uytithm with a fixed
step-sizeu [6]. By allowing each filter coefficient a separate time-\agystep-size, the
adaptation process is capable to accelerate the convergpaed by selecting a large step-
size at the beginning. As the VSSLMS algorithm reaches #eedst-state solution, the step-

sizey decreases in order to reduce MSE. Table 2.3 summarize theMS&lgorithm..



Table 2.3: The VSSLMS algorithm

Variable Step-Size Least-Mean-Square Algorithm (VSSLMS)

Data

Input Signal :x(k)

Desired Responsé{ k)

Initialization

Set Filter-Tapw(0) = 0

Select Variable Step-Size:(0) = pmaz

Computation

Fork=0,1,2,....n

Error Vector:e(k) = d(k) — wT (k)x(k)

Update Filter-Tapw(k + 1) = w(k) + p(k)e(k)x(k)
Step-Size Update :

Mmaz, if O‘N(k) + 762 (k) > Mmax

p(k+1) =¢ piim, if ap(k) + ve*(k) < fimin

au(k) +ve*(k), otherwise

o,y €10,1]

2.5 Sparse Adaptive Algorithms

Conventional adaptive algorithms, such as LMS and its ugsifl, 3, 6], Kalman filters

[7] and RLS [1], suffer from being sensitive to highly coatdd inputs, low convergence
and high-power consumption. Furthermore, the adaptivénoast mentioned above are
not capable taking advantage of a priori information avddaabout the system structure

such as sparsity. Using such a priori information can be eeugial in obtaining good

performance by the adaptive filtering algorithm.




Consequently, research studies have been conducted teesaddnese difficulties
experienced by adaptive schemes in the context of recemidygng field of sparse signal

processing [17, 18, 32, 33, 34].

In this work, new sparsity-aware adaptive filtering algamts are proposed within the

sparse signal processing framework for improved perfooaan
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Chapter 3

PROPOSED SPARSE ADAPTIVE FILTERING ALGORITHMS

3.1 Introduction

As stated before, the LMS-type adaptive filtering algorishenffer from low convergence
rate and high power consumption when a long impulse respoinge unknown system

contains many small (near-zero) amplitudes and a few langs.o In other words, the
system impulse response has a sparse structure. In many wuooation and signal

processing systems, identifying the sparse impulse regp@a challenging problem
[10, 35]. Under such scenarios, the conventional LMS-tygeréghms as well as the such
as RLS and Kalman filtering techniques, are incapable ofesdiing system sparsity and
hence fail to result in promising performance [17]. Thispines the development of
efficient adaptive filtering algorithms that utilize the sg@m nature of the system to be

estimated.

Motivated by the LASSO [36] and the recent developments enfibld of compressive
sensing [15], the sparsity is addressed by combiiagorm penalty function into the
original cost function of the LMS algorithm. Adding tlignorm to the cost function of
the LMS-type algorithm causes the optimization problemambn-convex. In order to
avoid this drawback, thé-norm is used as an approximation to thenorm [10]. This

gives the adaptation process the ability of attracting termearly zero) filter coefficients,
and is named zero-attracting LMS (ZA-LMS) algorithm[10].réweighed zero-attracting
LMS (RZA-LMS) algorithm is additionally developed in [10hat, by using modified
zeros-attractor term, employs a selective zero-forcinghraeism on the filter taps with
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small magnitude rather than uniformly forcing induce zeroal the filter taps. This
results in improved performance when the sparsity of théesysdecreases. In this
chapter, we design three new sparse LMS-type algorithnis zéto attractors based on
ZA-LMS and RZA-LMS algorithms that aim to achieve faster wergence rate while
decreasing the mean-square deviation (MSD) compared tdirgxiones. The first
algorithm is referred as weighted zero-attracting leaky S N\WZA-LLMS)algorithm
where a logarithmic penalty term is added into the leaky-Lagrithm cost function in
order to adjust the update equation. The adjustment cabsegrboposed algorithm to
attract the zeros of sparse channel and improves the pefmercompared to LLMS and
ZA-LMS algorithms. Furthermore, a zero attractor-varabbktep-size LMS
(ZA-VSSLMS) algorithm is introduced with a lower computatal complexity than the
WZA-LLMS algorithm . The ZA-VSSLMS algorithm imposes &norm penalty to the
original quadratic cost function of the VSSLMS algorithm ialh captures the system
sparsity during adaptation process. For highly sparsergfathis process accelerates the
convergence speed and improves the error performancehiBgarticular algorithm, the
convergence analysis of the algorithm is derived when thigewdrocess presents at the
input of the system and stability condition of the algoritispresented. In addition, the
steady-state MSD analysis of the algorithm is carried owtatail. A steady-state MSD
expression for the ZA-VSSLMS algorithm is derived in ternighe system parameters
for general white noise process. Most importantly, the i@ucipper bound of
zero-attractor controllerp] which yields minimum MSD is theoretically shown. Finally,
to further improve the performance of the ZA-VSSLMS aldgamt when the sparsity of
the channel decreases, with a slight cost in the humber opuatations, the weighted
zero-attracting-variable step-size LMS (WZA-VSSLMS) aithm is introduced by

adding the same log-sum penalty as in the WZ-LLMS algorithmto ioriginal cost

12



function of the VSSLMS algorithm.

The rest of this chapter is organized as follows. Sectiorb8&fly reviews the ZA-LMS
and RZA-LMS algorithms. In Section 3.3, the proposed WZAM% algorithm is
presented. In Section 3.4, the proposed ZA-VSSLMS will beviged together with
detailed analysis in both convergence (Section 3.5) andttaaly-state condition (Section
3.6) of the algorithm. Finally, in Section 3.7, the WZA-VS8E is derived which

provides further improvement over the ZA-VSSLMS algorithm

3.2 Review of the Zero Attracting Algorithms

3.2.1 The LMS Algorithm

Consider the input-output relation of a linear time-inaati (LTI) system described by

y(k) = hTx(k) + v(k), (3.1)
whereh is the actual system response of lengthT" is the transposition operatot(k)
is a white input signal,y(k) is the output and (k) is an additive noise process which is

independent from(k).

In the standard LMS algorithm, the cost functid(k) is defined as

J(k) = =e(k), (3.2)

e(k) = y(k) —w" (k)x(k), (3.3)
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with w(k) is the coefficient weight vector of the adaptive algorithntiaf length N.

By the steepest descent method, the filter coefficient véxigrdated according to

wik+1) = w(k) — gVJ(k:)

= W(k) + pe(k)x(k) (3.4)

where ;. is the adaptation step-size which controls the convergemck steady-state

behavior of the LMS algorithm.

3.2.2 ZA-LMS and RZA-LMS Algorithms
In order to estimate the sparse system, a new class of codegtiee filtering algorithmis

proposed [10] by adding thHe-norm penalty to the cost function given in 3.2 as follows

Tu(k) = 56 (k) + Nwk) 35)

where\ is a positive constant. By the gradient method, the tapsigpdate equation

takes the form,

wik+1) = w(k) - 2w k)

= W(k) + p(k)e(k)x(k) — pf(w(k)) (3.6)

wherep = Ay, and f(w(k)) is the sign functior{ f (w(k)) = sgn(w(k))).
Comparing (3.4) and (3.6), in (3.6) there is an extra teamf{(w(k))). This term forces the
tap coefficients to become zero. In other words, if the largalmer of the coefficients of

is zero, the zero-attractor will accelerate the convergdrghavior, controls the strength
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of the zero-attractor. Due to this, the algorithm is calledozattracting LMS (ZA-LMS).

The summary of the ZA-LMS algorithm is shown in Table 3.1.

Table 3.1: ZA-LMS Algorithm

Zero-Attracting Least- Mean Square Algorithm (ZA-LMS)

Data Input Signal :x(k)

Desired Responsée{ k)

Initialization | Set Filter-Tapw(0) =0
Select Step-Size:
Select Zero-Attractor Strength: = A\i ; p € [0, 1]; A is Small Positive

Constant.

Computation| Fork =0,1,2,......,n
Error Vector:e(k) = d(k) — wT (k)x(k)

Update Filter-Tapw(k + 1) = w(k) + u(k)e(k)x(k) — pf(w(k))

The shrinkage in the ZA-LMS algorithm does not differerdidhe zero taps from the
non-zero taps. Hence, its performance get worse in the ¢dsgscsparse systems. This is
due to the fact that the zero-attractor termpf(w(k)), in the ZA-LMS algorithm
uniformly updates all filter taps. So weighting the zeroaattor term in (3.6), will
enhance its performance if the system is less sparse [13.igachieved by replacing the
;- norm penalty with a log-sum penalty, which resemldjesorm more than thé norm,

into the cost function in (3.2) as
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N
Jo(k) = %eQ(k) + )\'Zlog (1 + |ZJ;|) (3.7)

where)\ and(’ are positive constants. Then, the same as before, by agptyengradient
method we get

sgn [W(k)]

Wk + 1) = wk) + p(k)e(k)x(k) = p= (k)]

(3.8)

, N
wherep = 45, ¢ = & and|w(k)| =y | > (w).

The weighted zero-attracting effect appears only on thes tdyat have magnitude
comparable toé— and there is a little shrinkage exerted on the taps whose itoagnis
much greater tha%. As a result of that, the bias of the weighted zero-attrgctimS
(RZA-LMS) algorithm can be reduced. The summary of the ZA& Blgorithm is shown

in Table 3.2.

3.3 Proposed Weighted Zero-Attracting Leaky-LMS Algorithm
By adding the cost function associated with LLMS algoritts}) fogether with a log-sum
penalty function as in the RZA-LMS algorithm, we propose Weighted zero-attracting

leaky-LMS algorithm which forms the new cost function as

L
Js(k) = %ez(k‘) +ow” (k)w(k) +4" ) log <1 + ‘Z’j‘) (3.9)
=1

with v is a small positive constant known as the leakage factor.

Applying the gradient decent method, the WZA-LLMS algamitlis updated recursively

16



Table 3.2: RZA-LMS Algorithm

Reweighted Zero-Attracting Least- Mean Square AlgoritiREA-LMS)

Data Input Signal :x(k)

Desired Responsé{ k)

Initialization | Set Filter-Tapw(0) = 0
Select Step-Size:
Select Zero-Attractor Strengthi = ‘“ Ay p € [0,1]; M and(’ are

Small Positive constants

Computation Fork =0,1,2,......,n
Error: e(k) = d(k) — wT (k)x(k)

Update Filter-Tapw(k + 1) = w(k) + pu(k)e(k)x(k) — pfﬁm((i))]\

as,

Wk +1) = (1 — po)w(k) + pe(k)x(k) — p% (3.10)

sgn W(n
1+Clw(n

with a segment zero attractor vectep . Simulation results in chapter 4 show that
the WZA-LLMS algorithm outperforms the LLMS and ZA-LMS algthms in terms of

convergence speed and MSD.
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3.4 Proposed Zero-attracting Variable Step-size LMS Algoithm

In this section, we propose a new approach called the z&actihg variable step-size
LMS (ZA-VSSLMS) algorithm that has the order of computatiboomplexity as that of
the LMS algorithm Q(V)) but with better performance compared with those of the-well
known LMS, VSSLMS and ZA-LMS algorithms. Unlike the ZA-LMSd RZA-LMS
algorithms, the ZA-VSSLMS algorithm employs a varying zattractor controllerp(k),
that results in improved MSD. It combines thenorm penalty function with the original

cost function of the VSSLMS to utilize the sparsity of thetsys.

Using the same cost function as in (3.5) and the error siguahdy (3.3), by the gradient

method, the ZA-VSSLMS update equation becomes

W(k + 1) = W(k) + p(k)e(k)x(k) — p(k)sgn(w(k)). (3.11)

Here,p(k) = Au(k) , sgn(.) is the pointwise sign function and k) is a variable step-size

[6] which is given by

Homaz if 1/ (k+1) > fimaes

p(k) = Lomin if 1/ (kE+1) < fimin (3.12)

W' (k+1) otherwise

\

where i, and.,,;, are the upper and lower bound ofk), respectively.

i (k 4+ 1) can be estimated in the following form

w(k+1) = ap/ (k) +ve*(k), (3.13)

with 0 < a < 1 andy > 0.
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3.4.1 Discussion

The recursive update formula in the VSSLMS algorithm, canibeved as

present filter past filter gradient
= + (3.14)
weights weights correction

where the filter taps are updated in the direction of the meggtadient. Also, the update

equations of the ZA-VSSLMS algorithm can be written as

present filter past filter gradient
= +
weights weights correction
Z€ero
+ (3.15)
attraction

where the zero attraction term in (3.15) (equivalentigk) f(w(k)) in (3.11), imposes an
attraction to zero on small filter-taps. Explicitly, for pipge value of filter-taps the zero
attractor term will subtract from the update equation artkeffilter-taps is negative, it will

add up to the update equation respectively.

In (3.11), p(k) results in a compromise between the adaptation quality @snspeed. A
large value ofp(k) leads to a faster convergence as the ability of zero-foroingeases.

At the same time, with the value @fk) increased, the steady-state misalignment also
increases. At steady state, due to the sparsity nature ribgapd filter weights are close

to zero. Therefore, those near-zero coefficiantg:) will move randomly in the small
neighborhood of zero, caused by both attraction and theiggradoise terms. Hence, a

largep(k) results in a large steady-state misalignment.

Furthermore, in (3.11)-p(k)sgn(w(k)) is bounded betweenp(k) andp(k) or —A ez
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and—\u..i,. Hence the convergence criterion of the ZA-VSSLMS algoniik expected
to be similar as that of the VSSLMS algorithm. We shall prdo$ imathematically in the

next section.

3.5 Convergence Analysis of the ZA-VSSLMS Algorithm

In this section, we analyze the convergence of the ZA-VSSlaig®rithm when the input
to the system is white. We start by defining the filter misaiigmt vector, mean and the
misalignment vector covariance matrix respectively. Oaltehese parameters are well-
defined, we use them to estimate the updated value of coearraatrix and hence deriving
the stability condition based on the trace of this matrix.rdjave present the stability
condition in terms of the input varianeg and filter lengthN. The filter's misalignment

vector can be defined as

8(k) = h — w(k). (3.16)

The mean and covariance matrices)ok), respectively, as

e(k) = E{8(k)}, (3.17)

S(k) = E{c(k)cT (k)}, (3.18)

where a zero mean vectofk) is computed as

c(k) = (k) — B{8(k)}. (3.19)

We also define the instantaneous mean-square-deviatioD)MShe following form
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J(k) = E{||6(k H}—ZA (3.20)

whereA;(k) represents thieth tap MSD given by

Ai(k) = E{||0:(F)|13} = Siu(k) + €/ (k), i=0,...,N—1. (3.21)

In equation (3.21)S;;(k) represents the diagonal elements of the auto-covariantiexma

S(k).

By combining (3.1), (3.3), (3.5), (3.16) and using the inelegence assumption we get

5k +1) = [1 = p(k)X(R)X" (K)]S(k) + p(k)x(k)o(k) — p(k)sgnlw(k)],  (3.22)

Taking the expectation of (3.22), we get

B{3(k+1)} = E{[l — p(k)x(k)X" ()]S(k) + u(k)x(k)o(k)

— p(k)sgniw(k)]}. (3.23)

Due to the independence betweeandv, the expectation of the second term
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becomes zero. Thus the expectation of (3.23) simplifies to

e(k+1) = (1 — E{u(k)}oz)e(k) — E{p(k)sgn[w(k)]}. (3.24)

Subtractingt{d(k + 1)} from both sides of equation (3.22) and substituting in (B.24

ck+1) = (I —ulk)x(k)X" (k)8 (k) + u(k)x(k)v (k)
— p(k)sgnw(k)] — e(k + 1)

= AR)(F) + p(k)x(k)v (k)

— (1= B{u(k)}o7)e(k) + p(k). (3.25)

Here
A(k) =1 — p(k)x(k)x" (k), (3.26)
p(k) = E{p(k)}E{sgnw(k)]} — p(k)sgn|w(k)]. (3.27)

Next, the termu(k)x(k)x* (k)e(k) is added to both side of (3.25) and by rearranging the
terms

we get

c(k + 1) = A(k)C(k) + u(k)x(k)o(k) + B(k)e(k) + p(k). (3.28)

In the above equation,

B(k) = E{pu(k)x(k)x" (k) } — p(k)x(k)X" (k). (3.29)
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Next, we estimat&(k + 1) based upon the independence amof¥g), v(k), andd (k) as

follows:

Sk+1) = E{ck+1c'(k+1)}
= E{A(k)c(k)c" (k)A" ()} + 2E{A(k)c(k)p" (k) }
+ E{B(k)e(k)e" (k)B(k)}
= (1 =2B{u(k)}o7 + 2B{1*(k)}o,)S(k) + E{u* (k) }ostr[S(k)]!
+2B{p(k)}(1 — 2E{u(k) }o) E{w(k)p" (k)} + E{p(k)p" (k)}
+ E{p? (k) Yoy (e(k)e’ (k) + trle(k)e” (k)]1) + E{u’(k)}ozoyl,

(3.30)

The estimate in (3.30) is obtained by calculating inputisfo moment [37] as well as the
symmetricity of the covariance matr§(k).

Applying the trace operator to the both sides of the (3.36Idg,

tr[S(k+1)] = (1—2E{p(k)}o; + (N +2)E{u*(k)}oy)tr[S(k)]
+tr(E{p(k)p" (k)}) + NE{1*(k)}oioy
+2E{p(k)}(1 — E{u(k)oz}) E{w(k)p" (k)}

+ (N + D) E{p?(k)}orel (k)e(k). (3.31)

In (3.31),p(k), E{w(k)}, E{w(k)pT(k)} ande(k) are all bounded.
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Thus, the adaptive filter is stable if the following holds

11— 2E{u(k)}o + (N + 2)E{i*(k)}old] < 1. (3.32)

This implies that ag — oo, E{u?(k)} = E{u(k)}* = p?(k). Hence the above equation
simplifies to

2

O<u(oo)<m.

(3.33)
This result shows that if; satisfies (3.33) the convergence of the ZA-VSSLMS is
guaranteed. It is worthy to note that the stability conditio (3.33) is similar to that the
standard LMS algorithm. The critical bound prfor which the LMS algorithm converges

in mean-square sense is given as [23]:

1
O<pu<

(3.34)

-
2Nz + D0 A

§=0

where \,,,.. corresponds to the largest eigenvalue of covariance m@triikor the white
input signal the stability condition in (3.34) reduces ta3@ as above. Furthermore, for
i << 1, the stability condition in (3.33) is identical to the NLM%$yarithm at steady
state [24]. Once the convergence criterion is known, wd sbatinue to examine the ZA-
VSSLMS algorithm by studying the behavior of adaptive fiteefficients at steady state

which is highly useful in actual design of the filter.

3.6 Mean-Square Deviation Analysis of ZA-VSSLMS Algorithm
In this section, we present the steady-state MSD analydiseoZ A-VSSLMS algorithm.
A steady-state MSD expression for the ZA-VSSLMS algoritlsnpiioved in terms of the

system parameters. More importantly, an upper-bound ote¢he-attractor controllerj
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which provides minimum MSD is derived. While the stabilitynzlition on the step size
(1) of ZA-VSSLMS is provided in presence of an additive Gaussvaiite noise in Section

3.4, the MSD analysis assumes any white noise distributias later shown in Chapter 4,
the theoretical and simulation results are in good agreefoea wide range of parameters,

different channel, input signal and noise types.

Now we derive the MSD expression for the proposed algorit@ar.analysis will be based

on the assumptions that:

1. The input signal is independent and identically disteouwith zero mean and

variances? [1].
2. The input-tap vectax(k) is independent fronw(7) for [ < k [1].

3. The observation noise has zero mean and variaheed is independent frox(%).

The variable step-size(k) in (3.13) can be estimated recursively as

plk+1) = 72 a'e*(k —1) (3.35)

e(k) = X7 (k)8 (k) + v(k). (3.36)

Inserting (3.16) and (3.35) into (3.11) gives the ZA-VSSLMSJate equation as,

O(k+1) = d(k) —x(k)X" (k)d(k)g(i, k) — yx(k)v(k)g(i, k)

+ Myg(i, k)sgn[w(k)] (3.37)

k—2
whereg(i, k) = > ale?(k —i —1).
=0
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Multiplying both sides of (3.37) by’ (k + 1) we obtain,

5(k+ 16T (k + 1) = 8(k)87 (k) — (75(k)5T(k)x(k)xT(k)
BT 0(0) = X3(0)sgnlw (9] )i, )
= (X 1801187 1)+ x(1) 8 )
= Xsgnlw(I8" (1) ) o) + (22T (307 ()

X(k)XT (k) + v*x(k)xT (k)8 (K)XT (k)v(k) — Ay

_ m2x<k>sgn[wT<k>]v<k>)g(z',k)g(z',k)
- (wsgn[w<k>167“<k>x<k>xT<k:> A sgnw(k)]

X" (k)v(k) — sz%gn[w(k)]sgn[WT(k)])g(l} k)g(i, k) (3.38)

In order to obtain the expression for the MSD, we need to cdenfhe expectation of
(3.38) ask — oo. However, computing the expectation of (3.38) in the owrdjimatrix

form is very difficult. To tackle this difficulty, we take adveage of both matrix stacking
operator [38] and Kronecker product property at the same.tirfihe matrix stacking
operator maps the columns of an arbitrary matrix into a singdlumn vector. This
process is called vectorization and denoted day(.). Then by Kronecker product
property [39], for given arbitrary matricesd, B and C of compatible sizes,

vec(ABC) = (CT @ A)vec(B) [40].
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Using the above, the expectation of (3.38) in the vector fash — o is:

vec (Ay) = vec(Ay) +VEE {XOOXZO ® XOOXZO] vec (Ay)

_ % (E[I ®xooxfo} +E{Xooxgo ® 'D vec (

A2 \2 N-
+ [7203 - — } Evec(R gn[|w;|vec(l) (3.39)
o

z =0

wherevec (Ay) = E|vec| 6,6%) } is a vector of sizeN? x 1, sgn[|w;|]] = 1 if

2

w; £1,€ = { (E(ew»j + ﬁ(_;")} andR = E[x..xL].

1—a)2(1+a

The detailed derivation of equation (3.39) can be found @Appendix.

Solving equation (3.39) at steady state we can get

vec(Ay) = { (E {I ® xooxfo] +E [xoongO ® I} ) E ()

20/ (B (¢2))" + (1 - ) E (e}
14+«

x E [XOOXZO ® XOOXZO)} } {(1 —a) ( [VU?} — 2;2\2] vec(R)

2oy N1
+ Z sgn[\wﬂ]vec(l)) } (3.40)
=0

Fory <« (1 — «), the term,

in (3.40) can be neglected. Additionally,/as— oo from (3.36)e(o0) ~ v(c0). Hence, we
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can assume thdt (%) = o2 andE (e2) = E (v}}). Therefore, equation (3.40) reduces to

et = 12 2O > (] omen ]*E[wafo@@'p_l
K )“6C(R) %z%sgnlwyl]vec(l)} (3.41)

From (3.41), we evaluate the mean square deviation (MS)eoptoposed algorithm by
computing the trace of the covariance matrix of the misalignt vector
(MSD = Tr(FE [(500530)}). To do so, we first applyec™(.) operation to both sides of

(3.41) and then using the propeffy (AB) = (vec(AT)) vec(B) [41].

For white input = o2I), the MSD is

;_n

VSD — N 2a(07)* + (1 —a)E(vé)} [702 Nl sgn|w;| } (3.42)

— n2)q2 v o2
2(1 a )UU :v 0% §=0

From (3.42) we note the following:

1. For relatively small\, the sparse VSSLMS algorithm will converge to the steady-

state if the conventional VSSLMS algorithm converges.

N-1
2. The term( 2’” + 3 NU2 > sgn[|wj|]> < 0 and, hence, the steady-state MSD of

7=0

the sparse VSSLMS algorithm will always be less than or eqoahat of the

conventional VSSLMS algorithm.

9 N
3. The term (70—3 — 2’” Z sgn[|wj|]> > 0 and hence an upper-bound of
=0

p(k) can be found to be:

28



N 2 +2
0 < p(k) < tonas v

(3.43)

N-1 :
2N = 3 sgnllw|
]:

This upper bound always guarantees better MSD than tha¢ M8SLMS algorithm.
It is also worthy to note that in a situation where the systeoompletely non-sparse,

the MSD expression in (3.42) reduces to

sp - N[O LB [ 2] gy

2(1 = a?)oy § z

The MSD in (3.44) is still lesser than that provided by equa(21) in [6].

3.7 Proposed Weighted ZA-VSSLMS Algorithm

To further improve the ZA-VSSLMS filter when the sparsityloéichannel decreases,
with a slight cost in the number of computations, the WZA-US is introduced
by adding the same log-sum penalty as in WZ-LLMS algorithto ioriginal cost

function of VSSLMS algorithm.

Using the same cost function given in equation(3.8), theatp@quation for the

WZA-VSSLMS algorithm becomes

sgn [W(k)]

T Cwik)] (3.43)

W(k +1) = W(k) + p(k)e(k)x(k) — p(k)

wherep(k) = Au(k) as before. All the properties of the WZA-VSSLMS algorithm
is similar to the RZA-LMS algorithm except the adaptatioresishe VSSLMS

algorithm which results in improved performance.
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Chapter 4

SIMULATION RESULTS

4.1 Introduction

In this chapter, we aim to evaluate the performance of thegsed algorithms

derived in Chapter 3, through various numerical simulation

In the following sectionsMATLAB Software is employed for the simulation of the
standard LMS, LLMS, VSSLMS, ZA-VSSLMS, WZA-LLMS, WZA-VSSUS and

set-membership normalized LMS (SM-NLMS) algorithms.

Simulations are performed in order to assess the effedssf the proposed
algorithms with a wide range of parameters in additive wh#aussian noise
(AWGN), general white noise with different probability tisutions and correlated

input signal for the following settings:

(a) system identification
(b) echo cancelation

(c) image deconvolution

Before we highlight the details of each conducted experigjewe shall briefly
discuss on the general nature of the above mentioned settihgre the proposed

algorithms are used respectively.
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Figure 4.1: Block diagram of the system identification.

4.2 System Identification

System identification attempts to estimate and determine itiput-output
relationship of an unknown dynamic model (system) baseg @midata available at
input-out of the unknown model. The block diagram of the eysidentification

problem is shown in Fig.4.1.

The identification problem requires a set of model structargalidation criterion
and an aim [42]. This technique have been applied in manylgmdbwhere the
analyze, predict, interaction and control strategy design an unknown model is

highly crucial [43].

In the context of classical adaptive filtering, however, tbaventional algorithms
are not suited for identifying an unknown sparse system. réfbee, in the
following section, we show that by applying the proposedrspalgorithms, the
identification problem can be further improved in terms off@enance criterion

(e.g. convergence speed, MSD).
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4.3 Experimental Results

In this section, we compare the theoretical and the expatmheesults of the
proposed algorithms in the system identification problepb]ishown in Fig. 4.1.
In all the experiments, if not explicitly mentioned othesej the input signal is
designed to be white with zero-mean and the observed ng(is§ (s assumed to be
a white random sequence [44] with zero-mean and variarfjeafljusted to provide
the desired signal-to-noise ratio (SNR) in each experiméntess stated otherwise,
all simulation results are averaged over 100 independemns.ru In addition,
throughout this chapter, the zero-attracting controlbmiameter(p) is strictly set to
be less than the theoretical upper-bounggfgiven in (3.43). The performance of

all experiments are evaluated using the MSD criterion ddfasefollows:

MSD(k)yp = 10logyy E||lh — w(k)||*. (4.1)

4.3.1 Unknown Sparse Systems ldentification with Different.engths and

Sparsity Levels

In order to investigate the tracking ability of the propoaégbrithms (ZA-VSSLMS,
WZA-VSSLMS and WZ-LLMS), here, we carry out number of expagnts similar

to the setup discussed in [10] but with different filter ldmghd sparsity level.

In the first experiment, the proposed WZA-VSSLMS and ZA-V&H algorithms
are compared with that standard VSSLMS algorithm. The st involves
identifying an unknown system with a filter lengti = 10, that has only one
filter-tap equal to one in the firsi00 iterations while the others remain zero(to
obtain a sparsity degree (#5). After 500 iterations, all theés random taps are set to
1 and the rest kept to be zero, i.e., a sparsity{%of Finally, after1000 successive
iterations all the taps are set to value$ and1 randomly, producing a completely
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Figure 4.2: Comparison of MSDs between the WZA-VSSLMS, ZA-
VSSLMS algorithms in AWGN. The filter length & = 10.

non-sparse system. In order to have a 30dB SNR, the simulatisume both the
input and noise signals are the white Gaussian random seggievith variances 1
and10~3, respectively. The remaining parameters For the VSSLMSsifellows:
tmin = 0.05, flmex = 0.07, v = 0.048 anda = 0.97. For the ZA-VSSLMS:
tomin = 0.05, fimez = 0.07, v = 0.048, o = 0.97 andp = 1 x 1073, For the
WZA-VSSLMS: fipin = 0.05, fimae = 0.07, v = 0.048, a = 0.97 and

p=1x 1073, Fig. 4.2 shows the average MSD curve for all algorithms in dB

As it can be seen from the MSD results, before3bi@” iteration, with a significantly
sparse system, the ZA-VSSLMS and the WZA-VSSLMS algorittinesconverge

speed is similar to that of the VSSLMS algorithm but with loweeady-state MSD

(1dB better). After thes00™" iteration, as the number of non-zero taps increases,

we see that the performance of the ZA-VSSLMS algorithm datates since the
shrinkage in the ZA-VSSLMS algorithm does not diffrentisibe zero taps from
non-zero ones. However, the WZA-VSSLMS algorithm convergkthe same rate

to same MSD as that of the VSSLMS algorithm even if the systenon-sparse.
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In the second experiment , the effectiveness of the propdsaa-LLMS algorithm
is tested with respect to the standard algorithms such &g-lddS and ZA-LMS.
With the similar procedures as in the first experiment, therfilength is set to be
N = 16 in this experiment. The SNR value is 30 dB as before and thaireng
parameters for the leaky-LMS are set to e= 0.035, v = 0.001. For the WZA-
LLMS: o = 0.035, v = 0.001, ¢ = 10 andp = 5 x 10~%. For ZA-LMS: 1 = 0.035

andp =5 x 1074

Fig.4.3 demonstrates the average mean-square-devatianaiboth algorithms all
in dB. It can be observed that in the case of system with higjregeof sparsity
(before the500™ iteration), the proposed WZA-LLMS algorithm has similar
convergence speed as those in the other algorithms exgegitis 1 dB lower MSD
than the leaky-LMS .In the nex0"" iterations, by increasing the sparsity level to
%50 (with 8 non-zero taps), we observe that the WZA-LLMS algorithmsveoges
with 30 iterations faster relative to the leaky-LMS at thensaMSD rate. In
addition, with reference to the ZA-LMS algorithm, it achesv9.5dB better MSD
result at moderately faster convergence speed. In thehéxterations where all
the filter-taps are set to one( fully non-sparse system signéhe performance of
the WZA-LLMS is almost identical to the leaky-LMS algorithbut much better

than the ZA-LMS algorithm.

We carry on with the performance of the WZA-LLMS algorithnr foorrelated
(non-white) input signal in the third experiment. The inpignalz(k) is generated

by using correlated first-order Gauassian-markov model
(x(k) = 0.8z(k — 1) 4+ v,(k)) [44] wherev,(k) is a white Gaussian process. In

addition, the abrupt changing time mechanism of the sinariathere the sparsity
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Figure 4.3: Comparison of MSDs in dB between the WZA-LLMS,-ENS
and LLMS algorithms in AWGN. The filter length i = 16.

level of the channel alters in the previous experiments djgsted to be a5000*"
and the10000"" iteration respectively. The observed noise and SNR le\eltize
same as before. Simulations are done with the following rpatars: For the
leaky-LMS: i = 0.015, v = 0.0001. For the WZA-LLMS: ;, = 0.015, v = 0.0001,
¢ =10andp = 2 x 1071 For ZA-LMS: . = 0.015 andp = 3 x 107°. Fig. 4.4

shows the average MSD curve for all algorithms in dB.

Referring to the MSD results obtained by the simulation jglly sparse region, the
WZA-LLMS has 400 iterations faster converges speed than the leaky-LMS but as
same as the ZA-LMS algorithm. In addition, the WZA-LLMS atigbm results in

3.5 dB lower MSD relative to LLMS algorithm. By increasing thember of non-
zero taps to eight, we observe that the WZA-LLMS algorithmsvwerges faster than
both algorithms with 0.5dB better MSD. in the case of conglain-sparse system,

the WZA-LLMS algorithm still has better performance botg@ithms.

To conclude this section, we repeat the same procedure dafotirth experiment
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Figure 4.4: Comparison of MSDs between the WZA-LLMS, ZA-LM8&d
LLMS algorithms for correlated input signal and filter lehgt = 16.

with filter length set to beV = 50 and implemented with 200 independent runs
explicitly. In this setting, the filter coefficients are dgsed such that the abrupt
change occurs at certain periods of time. Initially, a randap of the unknown
system is set to 1 and the rest are zeros. After each 150Qiotesa4 and 14
coefficients are set to ones and others to zeros, respgctived performance of the
ZA-VSSLMS algorithm is compared to those of the standard M8S, LMS and

ZA-LMS algorithms.

Once again, the simulation result confirms that for signifiyasparse systems all
proposed algorithm results in lower MSD compare to thoseeational LMS-type
algorithm as well as the sparse ZA-LMS algorithm. As theayssparsity decreases
to completely non-sparse scenario the performance difterbetween the proposed
sparse algorithm with respect to conventional adaptiveriiig algorithms becomes

smaller. However, it still performs comparably better thiamse conventional ones.
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Figure 4.5: Comparison of MSDs of the VSSLMS, ZA-VSSLMS, LM&d
ZA-LMS algorithms in AWGN. The filter length igV = 50.

4.3.2 The Effect of Zero-Attractor controller parameter On the
ZA-VSSLMS Algorithm in System Identification

In this section, we investigate the effect of the varyingapagter p on the
performance of the ZA-VSSLMS algorithm in the system id&sdtion setting .
The parametep in the ZA-VSSLMS algorithm that were defined in the equation
(3.11) controls the strength of the zero attractor in orderiricreases the
convergence speed and decreases the MSD, by forcing thefdgt@ataps to move

toward the origin. Its value is changing within an intervat p < 1.

In order to observe the effectiveness of the MSD analysisiti&n (3.6), One can
select all different value gf’s to be less than the theoretical upper-boung.ofjiven

in Eq. 3.43. By this, one can find the experimentally optinzdire ofp that results in
optimal performance in the ZA-VSSLMS algorithm through slation and employ

it in the real design problem.

To show this, we carry out two similar experiments with stighdifferent
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Figure 4.6: MSD vs of the ZA-VSSLMS, ZA-LMS, VSSLMS and LMS
algorithms in AWGN. The filter length i3/ = 10.

parameters. In the both experiments, as explained before, alf'the@e chosen
based on the upper-bound given in Eq. 3.43. In the first setting of system
identification problem, the channel was assumed to be of leNgth 20 with two
nonzero coefficients distributed randomB0Y{; sparsity). The observation noise
was assumed to be additive white Gaussian noise (AWGN) providing an SNR of 30
dB. The remaining parameters of the ZA-VSSLMS algorithm aig;, = 0.01,

tmaz = 0.1, v = 0.0001 anda = 0.97.

As we see in Fig. 4.6, with the proposed bound on the parametiee performance

of the ZA-VSSLMS algorithm keeps improving compared to those of ZA-LMS and
VSSLMS algorithms by changing thevalue until it reaches its minimum MSD at

P =3x107° (Peap—opt < Pupper)- At this optimal point, the ZA-VSSLMS algorithm
shows 1 dB and 1.5 dB improvements over the ZA-LMS and VSSLMS algorithms,
respectively. Withp > peyp—opt, the ZA-VSSLMS algorithm starts to lose its ability

to attract the zero taps and hence yields a higher MSD compared to standard LMS

and VSSLMS algorithms whem> 6 x 107°.
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Figure 4.7: MSD vsp of the ZA-VSSLMS and VSSLMS algorithms in
AWGN. The filter length iV = 256.

Similarly, we repeat the same experiment only for the ZA-VBIS and VSSLMS
algorithms for a filter length ofV = 256. Once again from Fig. 4.7, we confirm
that the performance of the ZA-VSSLMS algorithm follows ganbehavior as in
the previous simulation until it reaches the minimum MSDpat 4 x 10~ At
this point, the ZA-VSSLMS algorithm shows 4 dB improvemeweiothe standard

VSSLMS algorithm.

4.3.3 The Effect of forgetting factor On the ZA-VSSLMS Algorithm in System

Identification

The forgetting factor parameter given explicitly in (3.35) reveals the behavior of
the step-size in the ZA-VSSLMS algorithm and plays a vité @n the steady-state
performance of the algorithm. We derived that the MSD exqoesgiven in (3.42) is

directly proportional to the the step-size parameterf the ZA-VSSLMS algorithm.

In this section, we study the effect of parametesn the MSD performance of ZA-

VSSLMS for different values (0.2, 0.7 and 0.9) in the systdemtification problem.
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Figure 4.8: Theoretical and simulated MSD curves for the ZBSUMS
algorithm in AWGN with differentx’s.

X

In the following simulation, the channel is assumed to be of ledgth 4 with 1
nonzero coefficient distributed randomigh(o sparsity). The observation noise was
assumed to be AWGN with SNR set at 0 dB. The remaining parameters of the ZA-
VSSLMS algorithm arej,,;, = 0.001, fiyma = 0.1, 7 = 0.0001 andp = 3 x 107°

(the experimentally optimum value in Fig. 4.6).

Fig. 4.8 shows the average MSDs for 3 valuea.oFora = 0.2, The ZA-VSSLMS

has 3 dB and 4.5 dB lower MSD with respectdo= 0.7 and 0.9 respectively.
However, at the same, the ZA-VSSLMS algorithm converges to the steady-state
at a slower rate. Simulation results prove the validity of the theoretical studies that
carried out in Chaper 3. Moreover, it shows a trade-off [45, 46] between lower MSD

and faster convergence rate of the algorithm based on the value of parameter

4.3.4 The Effect of General White Noise parameters on the ZA-VSSLMS

Algorithm in System Identification

Similar to step-size parameter the overall MSD in (3.42) is affected by the noise

variance(o?) and the fourth momento?) respectively. Here we investigate the
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behavior of the ZA-VSSLMS algorithm is in the presence of twhnoise with

different probability distributions.

In this experiment, the channel was assumed to be the samp@Eyvious experiment
in Section (4.3.3). The observation noises were assumed téniform, Gaussian,
Laplacian and Impulsive respectively. The SNR is set at O @Bafl cases. The
remaining parameters of the ZA-VSSLMS algorithm arg;,, = 0.001, ft34: = 0.1,

v = 0.0001, a = 0.97 andp = 3 x 10~°. All Simulation results in this experiment

are averaged over 200 independent runs.

As it can be seen from Fig. 4.9, the ZA-VSSLMS performs beitera

uniformly-distributed noise environment as compared ® @aussian, Laplacian
and Impulsive distributed ones. The performance is the d$owen

Impulsive-distributed noise environment. The effect & tioise distribution is due
to the different values of the fourth momenf,(v}), MSD expression given in
(3.42). The theoretical values for this parameter with eesgo its standard
deviation ¢,) are1.8(c?), 3(c?) , 6(c?) and14(c?) respectively [47]. Once again,

Simulation results indicate excellent agreement with ki®tetical results.

4.3.5 The Effect of Non-White Input Signal on the ZA-VSSLMS

Algorithm in System ldentification

In this section, we consider the effect of a non-white inpgial on the steady state
performance of ZA-VSSLMS, the VSSLMS and , in particular, @ternative
variable-step size adaptive algorithm known as the setimeeship normalized

LMS (SM-NLMS), [23], algorithms in system identificationtiag.

In this experiment, the input is generated by using coreélafirst-order
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Figure 4.9: Theoretical and simulated MSD curves for the \Z3SLMS
algorithm with different noise types.

Guassian-Markov model:(k) = ayz(k — 1) 4+ u(k))[44] with a; = 0.8. The
channel was assumed to be the same as in previous sectiolNR&s set at 0 dB
and simulation results are the averaged deviation of 208peddent trials. The
remaining parameters of the ZA-VSSLMS algorithm aig;,, = 0.01, ft,,0, = 0.1,
v = 0.0001, « = 0.97 andp = 3 x 1075. For the VSSLMS algorithm,,,;,, = 0.01,
fimaz = 0.1, 7 = 0.0001 anda = 0.97. For the SM-NLMS algorithm#y = /502,
whereo? is the noise variance, and = 107°. Fig. 4.10 shows that befor&#0"
iteration, the ZA-VSSLMS shows maximum 4 dB lower MSD and téas
convergence rate compared to VSSLMS algorithm. Afteo* iteration, the
performance difference between ZA-VSSLMS and VSSLMS ailgor becomes
smaller. At steady state, however, the ZA-VSSLMS still parfis comparably
better than the VSSLMS. The SM-NLMS algorithm converges 1odB higher

MSD than the other algorithm.
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Figure 4.10: The MSD performance curve of the ZA-VSSLMS, VSIS
and SM-NLMS algorithms for non-white input.

4.4 Echo Cancelation

Acoustic Echo Cancellation (AEC) is perhaps one of the most challenging problem
in the domain of telecommunication systems [11, 48, 49]. over Several years,
various adaptive filtering algorithms have been proposed to address this problem to
deliver excellent performance [2, 23]. By emerging new technologies in the
telecommunication industry such as internet phones and hand-free telephone,
however, the demand for enhancing the speech/listening quality is still an active
area of research in recent years. The main task of an echo canceler is to identify a
replica of echo at the output of adaptive filter [50]. Fig. 4.11 shows the block

diagram of a typical echo canceler.

From Figure, x(k) represents a speech signal from the far-end side that is
transmitted in an acoustic room via a loudspeaker. A near-end speech\gignad,
then recorded the speech signal by microphone in the room and transmits back to

the far-end side.
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Figure 4.11: Schematic of an acoustic echo canceler.

This results in an acoustic echo path between the loudspeakiethe microphone.
In other word, the recorded signak) = u(k) + v(k), is composed of an echo
componenti(k) and the near-end speech signal comporéht. In such a scenario,
one can model the transfer function of the echo path usinglBrfiker f(k), that
turns the echo component as a filtered version of the lou#tepesggnal, (k) =

x(k) % f(k)).

The basic task of an acoustic echo canceler is to identifutik@own room impulse
response f(k), to effectively eliminate the echo signal from the micropaignal.
Consequently, the desired speech signal (with no echo)hwkitransmitted to the
far-end side has the forih(k) = s(k) — x(k) = w(k) [51]. It should be noted that

w(k) corresponds to an estimatefok)).

The problems of high power consumption and slow convergepeed makes the
traditional adaptive algorithms impractical to use for anwstic echo cancelation of
the sparse system [14, 35, 52]. In many practical situatittresimpulse response

of a classic echo path is long and sparse [53]. In other wdh#syegion where
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the impulse response coefficients have large magnitudelasvely small [53, 54].
By taking advantage of this property, we employ the propadgdrithms through
simulation in order to confirm the effectiveness of each m@ttompared to that of
conventional ones.

4.4.1 Experimental Results

In this section, we consider the convergence behavior of gheposed the
WZA-LLMS, WZA-VSSLMS and the ZA-VSSLMS algorithms and coame to
those of the LLMS, VSSLMS, ZA-VSSLMS and the SM-NLMS algabrit. All the
experiments is set up for an echo cancelation problem bynastig the room

impulse response such as shown in Fig. 1.1.

In the first experiment, We apply the proposed WZA-VSSLMSo&atgm to an
acoustic echo canceler consist of a 256-tap system with 28zam coefficient
distributed in a random fashion. The driving signal is whiteése with the desired
SNR level of 30 dB. The simulations are performed over 20@pethdent run.
Simulations are done with the following parameters: For teaky-LMS:

w=0.005, v = 0.002.

For the WZA-LLMS: 1 = 0.005, v = 0.002, ¢ = 10 andp = 4 x 10~%. For
ZA-LMS: ;1 = 0.005 andp = 3 x 1075, Fig. 4.12 shows the average MSD curve
for all algorithms in dB. As illustrated, the WZA-LLMS algtinm has the same
convergence speed relative to the ZA-LMS algorithm but vatB lower MSD.
With reference to the leaky-LMS, the WZA-LLMS algorithm has much ag000

iterations faster convergence speed with 3dB lower MSD.

In the similar fashion as the fist experiment of this sectitme convergence
performance of the ZA-VSSLMS algorithm is now tested and pgarad to those of
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Figure 4.12: Convergence behaviors of the proposed WZA-BlLaWorithm
in an acoustic echo cancelation setup. Filter length is: 256.

the standard VSSLMS, LMS and ZA-LMS algorithms. The filterdéh is same as
before with 10% nonzero coefficients distributed randoniiythis, the following
parameters were used : For the VSSLMS;,, = 0.008, ftmae = 0.012, v = 0.0048
anda = 0.97. For the ZA-VSSLMS .5, = 0.008, fimae = 0.012, p = 0.0001. For

the ZA-LMS : » = 0.005. The simulations are performed for 200 independent runs.
Fig. 4.13 demonstrates the averaged MSD curve for all dlgos in dB. As shown,
the ZA-VSSLMS algorithm converges to 2 dB and 9 dB lower MSDspared to

the VSSLMS, ZA-LMS algorithms respectively. In additionhet proposed
algorithm converges faster when room impulse response passes structure

implying the sensitivity of the ZA-VSSLMS to such a scenario

Finally to observe that the analytical results in Sectiod)are consistent with our
simulated result, we study the convergence behavior of thegsed ZA-VSSLMS
algorithm in echo canceler problem and compare its restitdse of VSSLMS and

SN-NLMS algorithm. In this experiment, the room impulsep@sse is assumed to
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Figure 4.13: Convergence rate of the proposed ZA-VSSLM®rdhgn in
acoustic echo cancelation setup driven by a white inputasidfilter length

is N = 256

be sparse with a total of 128 coefficienf§ (= 128); randomly 6 taps are setto 1
while the others are kept zero. The algorithms were simdlati¢h the following
parametersii,,i, = 0.001, fiyme = 0.004, v = 0.0001, o« = 0.97 andp = 5 x 107°.

For the VSSLMS algorithmys,,,;, = 0.001, fime: = 0.004, v = 0.0001 anda =

0.97. For the SM-NLMS algorithmy = /502 and~y = 1075.

As illustrated in Fig. 4.14, the ZA-VSSLMS algorithm conges to 1.5 dB lower
MSD compared to the VSSLMS algorithm. Moreover, The ZA-V&8& algorithm

converges much faster and to a 1.5 dB lower MSD than the SM-8llaigorithm.
This shows the advantage of the variable step-size upd#te MSSLMS algorithm

over that of the SM-NLMS algorithm.

4.5 Image Deconvolution

Blind image deconvolution [55], [56]-[58] addresses thelgpem of reconstructing
the true image from a corrupted observation image withounigathe knowledge of

either the original 2-D source or the degradation function.
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Figure 4.14: Convergence rate of ZA-VSSLMS, VSSLMS and SMVL
algorithms, for echo canceler driven by white input. The SNR is set at 0 dB.

No image is a perfect representation of the real world. All images have noise in them
caused by the detection process in the camera. All images are also blurred to some
extent, whether by focus problems, fundamental limitations or errors in the optics,
motion blur, or the effects of air currents in the atmosphere [59]. All of these blurring
effects can be modeled by a single Point-Spread Function (PSF) which is also known
as a linear shift-invariant blur(LSI). An observed image can be modeled by the 2-D
convolution of the true image with the PSF . Mathematically, this can be written as

[55]:

s(x,y) = p(x,y) * m(z,y), (4.2)
wherex represents the convolution operation in 2Dy, y) is the corrupted image,
p(z,y) is the true image anéh(z, y) is the Point Spread Function (PSF) given in

(4.7). In most systems, the PSF is unknown, or we may have partial information

about it. Common techniques for reconstructing images include
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Maximum-Likelihood (ML) approaches and the classical rodtbf Least-Squares
(LS), when the statistical properties of the noise are atham both cases, we are
lead to ill-posed problems and must ensure that appropegiglarizing measures
are taken [60]. When the input image has a sparse structuresnay be interested
in applying, to a certain extent, the proposed sparse adaglfjorithms in order to
gain a possible improvements in reconstruction perforrealefore we do that, it
is important to generalize the proposed 1-D adaptive filt@edel into 2-D

counterpart using the same approach [60, 61]. In the netibsewe show how 1-D

ZA-VSSLMS algorithm transforms into 2-D version and thersgg is addressed to

improve the performance of the filter in terms of both coneeige rate and MSD.

The extended version has relatively low computational demity (the

computational complexity of the proposed algorithn®igV?) which is of the same
order as that of the VSSLMS algorithm). In addition, The filb@s the ability of
updating its coefficients by scanning along both the hotaomand vertical
directions on a 2-D spatial coordinate providing betterlexgtion of information
as well as the casuality condotion in the cases that it ns{be].

4.5.1 The two-dimensional zero-attracting variable stefsize LMS

The update equation (3.11) can be readily extended to 2+D &rfollows:

Wit1(p1,p2) = Wi(p1,p2) + ek (p1, p2)Xi(li, l2)

— pesgn(Wi(p1, p2)) (4.3)

wherew, ; is the 2-D filter’s coefficient vector with dimensionsdfx N, X (I, l2)

is the filter input vector angd;, p»,l;,lo =0,1,..., N — 1, respectively.

More precisely, The filter input,.(, ) and coefficient vector,. . ; can be written
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as the column vectors in the following form:

Xi(l1,ls) =

Wk(p1>p2) =

The filter output can be evaluated by a 2-D convolution agvat

X(ll, lg)

X(ll,lg — N+ 1)

X(ll - N+ 17 l2)

X(ll—N+1,l2—N+1)

w(0, N —1)

W(N —1,0)

W(N —1,N —1)

N—-1N-1

y(l,l) =Y > wpy,pa)e

p1=0p2=0

x(ly — p1,lo — p2).

(4.4)

(4.5)

(4.6)

In the design of the 2-D filter, one should determine how tongba input data so

that it can be reused. There are many ways that data can lelf@&@3. In this thesis
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we use the same method discussed in [62] to exploit the diataeatly.

4.6 Experimental Results

In the first part of the experiments, the performance of treppsed 2-D filter is
compared to that of the 2-D VSSLMS algorithm in the image deotution setting.
The test image we used for comparison is a sparse image ‘€h&dard’ in the
shape of Fig. 4.15(a). Following parameters are used insihisilation: For the
2-D ZA-VSSLMS: finin, = 0.005, pimae = 0.009, v = 0.00048, o = 0.97 and
p = 4 x 107°. For the VSSLMSi,,i,, = 0.005, ftmee = 0.009, v = 0.00048 and

a = 0.97. The filter sizes in both cases arex 3.

Fig. 4.15(a) indicated the testimage ‘Checker Board’, Big5(b) shows the blurred
image which is obtained by using Eq. 4.2 whefte, y) is the original image and

s(x,y) is the3 x 3 Gaussian PSF described as follows:

—0.035 —0.65 —0.35
m(z,y) =1 045 0.09 0.45 (4.7)

0.13 —-0.65 0.13

Fig. 4.15(c) illustrates the image recovered by 2-D VSSLM8 &ig. 4.15(d)
shows the image recovered by the proposed 2-D ZA-VSSLMSidhgo. As it can
be seen from Fig. 4.14(d), the proposed sparse algorithoitsem a visually
improved restored image. Also, the proposed 2-D ZA-VSSL3§brthm yields
approximately 1.0 dB improvement over the 2-D VSSLMS aldgion in terms of

PSNR.

Even though the proposed algorithm performs better thar2tBeVSSLMS, its

performance will be much better if we further assume thatGlaessian PSF has
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relatively many near-zero entries. To show this, with thensasetting and

parameters above, both algorithms were simulated using$fregiven in (4.8).

Fig. 4.16(b) demonstrates the degraded image. Fig. 4.ilk(slrates the image
recovered by 2-D VSSLMS and Fig. 4.16(d) indicates the imagevered by the
proposed 2-D ZA-VSSLMS algorithm. As it can be seen, the psed algorithm
results in a much better performance (3.5 dB) than the 2-DL\K&Salgorithm when

the input is sparse and PSF has meany near-zero coefficients.

0.035 —0.0065 —0.035
h(z,y) = 10045 0.09 0.45 (4.8)

0.013 —-0.065 0.13

This shows, by assuming a sparse structure for the input @magiall PSF
coefficients and a proper input data reuse, one can desigifi@ardg 2-D filter that
considerably improve the performance of the adaptive filteFor an image
deconvolution setup the simulation results show higher Rmpared to 2-D

VSSLMS algorithm.
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(a) (b)

(c) (d)

Figure 4.15: a) Test image, b) Degraded image, d) Recovered image by 2-D
VSSLMS (PSNR=27.10 dB) and d) Recovered image by 2-D ZA-VSSLMS
(PSNR=28.1 dB)
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i

(€) (d)

Figure 4.16: a) Test image, b) degraded image, d) Recovered image by 2-D
VSSLMS (PSNR=30.5 dB) and d) Recovered image by 2-D ZA-VSSLMS
(PSNR=34 dB)
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

Sparsity is a feature present in many practical signals gsiss. Efficient signal
processing techniques which can exploit the sparsenepsiyare very attractive
from an implementation perspective. In this thesis, a setovkl sparsity-aware
adaptive filtering algorithms are proposed. The proposgdréhms modifies the
cost function of the conventional LMS, LLMS, VSSLMS algtwits in order to
utilize the system sparsity. These modifications resultedatiracting zero or
near-zero coefficients of adaptive filter-taps that sigaifity improve the

performance of the adaptive filter in terms of both the cogwece rate and MSD.

The ZA-LLMS and ZA-VSSLMS algorithms have been proposed isimilar
optimization strategy by incorporating the-norm into the cost function of the
LLMS and VSSLMS algorithms respectively.  The performaneeprioves
significantly when the impulse response of the channel iBlfigparse. For a less
sparse channel, however, the performance of the propggseatm based adaptive
fillers may deteriorate as the attractor term uniformly ésrahe filter-taps to
become zero. To overcome this difficulty, by employing theyalathmic
approximation to thé,-norm, the WZA-LLMS and the WZA-VSSLMS algorithms

are proposed.
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For the ZA-VSSLMS algorithm, the convergence analysis hesnbpresented to
determine the stability condition. Moreover, the steaties analysis has been
carried out to derive the MSD expression for a general whipeii which is crucial
in the real filter implementation. Furthermore, the upperrizbon the zero-attractor
controller (p) which yields minimum MSD has been theoretically derivece Néve
shown that by choosing the zero attracting controller patamjp) smaller than that
of the theoretical upper-bound the superiority of the ZASEMS algorithm is
guaranteed. A 2-D extension of the ZA-VSSLMS has been pteden produce

excellent results in imaging applications where sparsigssumed.

The behavior of the ZA-VSSLMS algorithm has been investidah the presence
of four noise types. In order to achieve improved perforneaihy selecting optimal
parameters, the effects of both the zero-attractor cdatr@l) and the step-sizey

on the MSD performance of ZA-VSSLMS algorithm have beenisiid

The performance of the ZA-VSSLMS, WZA-VSSLMS and WZA-LLMgarithms
are compared with the standards ZA-LMS, VSSLMS, leaky-LI8BI-NLMS and
LMS algorithms in system identification, channel estimatiecho cancelation and
image deconvolution problems. Results show that the thieateand simulation
results of the ZA-VSSLMS algorithm are in good agreemenhinias wide range of
parameters, different channel, input signal and also ngEes and outperform the

standard algorithms.

5.2 Future Work

The tracking analysis of the proposed algorithms in bothtistary and
non-stationary environments could be a potential studyfdture work. Another

area for investigation is to come up with more interestingli@ations and scenarios
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where sparse adaptive filtering can deliver promising perémce. Finally, the
development of an efficient hardware implementation of treppsed algorithms

can be included in the future study.
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Appendix A: Proof of the MSD result in equation 3.38

Here we show how we obtain mathematically the result stated in equation (3.39)
from (3.38). By using the Kronecker product property [39], for a given arbitrary
matricesA, B andC' of compatible sizesyec(ABC) = (CT @ A)vec(B). Then,

the expression given in (3.39) can be transformed into the followngy) form and

taking the expectation of both sides yields,

E [vec <6(k; + 167 (k + 1))] =F [vec (8(k)o" (k) }
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+ E{v(k) [ — A (R)XT (k) g (i, k) + v2x(k)XT (k)

(k)8 (k)g(i, k)g(i, k) — vx(k)d" (k)g(i, k)
+ (k)87 (k)x(k)X" (k) g(i, k)g i, k)
= X*x(k)sgn[w” (k)]g (i, k)g(i, k) — My*sgn[w(k)]
X" (k)g(i, k)g(i, k‘)] }

(A.1)

In steady-state we can assume the following:

1-E{e;_; 1ei_ ;1 =E{e;_,  } E{ei_;_,} fori# j.[65]

2- The expressiongy(i, k)), (g(i, k)) (g(, k)) and (6(k)6" (k)) are assumed to be
independent.

Hence, employing the above assumptions we obtain (refeexb ®ection for the

proof):

20 (B (&) | E(e)

0ol ta) (1o (A-2)

E{(g(i, k) (9(i, k))} =
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and

E(e3)

11—«

E{g(ik)} =
From (A.1) it is easy to show that the expectation of the kasntis zero £{.} = 0).
Now let us evaluate the expectations of te @ and@, individually.

Starting by tem@ and using the independence assumption,

E My (k)sgn[w” (k)] (93, k)]

= ME [(h—w(k))sgn|w" (k)] x E[g(i, k)] (A.3)

To find expectation of (A.3) at steady state, we need to coeplw,,|. To do so,
by applying the above assumption (2), we calculate the d¢apen of equation

(3.37) in the article a§im we obtain,
—00

E[d] = (1 — M) E[d.] + ME[sgn(wm)]

1l -« 11—«

%E[sgn(woo)]. (A.4)

xT

Substituting the result of (A.4) in (3.16) &s— oo we get,

Ewa] =h— %E[sgn(wm)], (A.5)

xT
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or in scalar form, (A.5) can be written as

A .
Elwj o] = hj — gE[Sgn(wj,oo)L JjeENZ (A.6)

xT

wherej € N7 is the index that corresponds to a non-zero (NZ) coefficiBgt[9],

for sufficiently smallgig, the sign of (A.6) is,
E[sgn (wje)] = sgnlhy] (A.7)
And hence, using (A.6) and (A.7) gives

|1 jeNZ
Ewjoo] Elsgn (wjeo)] = (A.8)
2 E? [sgn(wj)] J€Z

Additionally, from (A.7), it is straight forward to show théor j € NZ we have,
E [hjsgn (w;0)] = by (A.9)

Substituting (A.6), (A.8), (A.9) in (A.3) and letting? [sgn (w; )] = 0if j € Z, the

expectation in equation(A.3) at steady state reduces to,

N E(e2) jeNZ

ME [(h —w(k)sgnW! (B)]] Elgli k)] =4 77 (A.10)
0 jeZ

In similar way it is easy to verify that the expectations ofne@ and@

in equation (A.1) are as follows,
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M E [X(k)X" (k)o(k)sgn[w" (k)]g (i, k)g(i, k)]

7;%‘2 ff(f)ge(%ll) + i(—f’;z vec(R) j e NZ
_ (A.11)
0 jeZz
and
Ny*E [sgn[w(k)]sgn[w” (k)]g(i, k)g(i, k)]
22 sgnﬂwjﬂ{ dtaic3) MC ag}vec(n i €NZ
_ = (A.12)

0 jeZz
The expectations of ter@ and in equation(A.1) are identical to ter@ and

@, respectively.

As k — oo, letvec (Ay) = Elvec(&oéi))] be a vector of sizeV? x 1, ¢ =

2a(E(ego))2 E'(e4 ) T . .
T T Ta?) andR = E[x..X..]. Hence, substituting the results of (A.10),

(A.11) and (A.12) into (A.1) and using assumption (2) we get

vec (Ay) = vec(Ay) +VEE {XOOXZO ® XOOXZO] vec (Ay)

_ %‘%3) (E[I @xooxfo} +E{xooxfo ® ID vec (Ay)

2v2)\?
+ {720'3 — 702 } Evec(R)

N-1

)\2 2
52 sgnlluJoec(1)

xT

which is identical to equation (3.39) in the Section (3.6).
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Appendix B :Proof of equationA.2

Recalling thaty (i, k) = i a‘e?(k — 1 — 1), we want to evaluate the expectation of

the form,
k—2 k—2
E{g(i,k)g(i, k)} = Za”jE{ez(k —i—1)e*(k—j— 1)} (A.13)
i=0 j=0

To calculate the above expectation we divide (A.13) into two cases as following:

Case |: when = j, ask — oo

k—2 k-2 1
o/ﬂE{ —i—1)e*(k—j — 1)} = ——F(et)

1 —a?
=0 7=0

Case Il: wheni # j, ask — oo and by assumption (2) in A.1., in Appendix I, we

have,

N

-2

N

-2

ai+ﬂ'E{e2(k—i—1)e2(k—]—1} Zzaaﬂ (€2))" (A.14)

=0 5=0
(i#7)

-
Il
o
.
Il
o

Combining the results of case (1) & (), the expectation of (A.13) becomes,

2a (B ()" | E(el)

(&)

E{g(’i, k‘)g(’i, k)} = (1 — a)2(1 n a) (1 _ a2)

Which is identical to (A.2).
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