
Propositional Logic for Knowledge Representation

and Formalization of Reasoning

Kurdman Abdulrahman Rasol

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Applied Mathematics and Computer Science

Eastern Mediterranean University

June 2017

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Mustafa Tümer

Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Applied Mathematics and Computer Science.

Prof. Dr. Nazim Mahmudov

 Chair, Department of Mathematics

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Applied

Mathematics and Computer Science.

Prof. Dr. Rashad Aliyev

 Supervisor

Examining Committee

1. Prof. Dr. Rashad Aliyev

2. Asst. Prof. Dr. Ersin Kuset Bodur

3. Asst. Prof. Dr. Müge Saadetoğlu

iii

ABSTRACT

The purpose of this master thesis is to investigate the basic concepts of propositional

logic for knowledge representation and formalization of reasoning in Artificial

Intelligence.

The different properties of logical propositions are discussed. The basic and derived

logical connectives are used to establish the compound statements, and the truth

tables are constructed to investigate the properties of logical connectives. Such

propositions as tautology, satisfiability, contradiction, contingency, logical

entailment and logical equivalence are analyzed. Three algebraic normal forms -

negation normal form, disjunctive normal form and conjunctive normal form are

studied. Horn clauses are implemented. Two forms of valid inferences as modus

ponens and modus tollens are considered. Some examples are provided to better

understand the main properties of propositional logic.

Keywords: Propositional Logic, Logical Connectives, Normal Forms, Horn Clauses,

Modus Ponens, Modus Tollens

iv

ÖZ

Bu tezin amacı önermeler mantığının yapay zeka alanında bilgi gösterimi ve akıl

yürütme biçimselliştirmesi için temel kavramları incelemektir.

Mantık önermelerinin farklı özellikleri tartışılır. Temel ve türetilmiş mantık

bağlaçları kullanarak bileşik önermeler oluşturulur, ve doğruluk tabloları kurarak

mantık bağlaçlarının özellikleri araştırılır. Totoloji, tatmin edilebilirlik, çelişki,

beklenmedik durum, mantıksal gerektirme ve mantıksal denklik gibi önermeler

incelenir. Üç cebirsel normal form - olumsuzluk normal formu, ayırıcı normal formu

ve bağlayıcı normal formları irdelenir. Horn cümlecikleri uygulanır. Modus ponens

ve modus tollens gibi iki geçerli sonuç çıkarma yöntemleri incelenir. Önermeler

mantığının daha iyi anlaşılması için bazı örnekler verilir.

Anahtar Kelimeler: Önermeler mantığı, Mantık bağlaçları, Normal formlar, Horn

cümlecikleri, Modus Ponens, Modus Tollens

v

ACKNOWLEDGMENT

First of all, thanks to Almighty God for peace and wisdom to enhance me to start and

complete my master study.

I would like to express my gratitude to my supervisor, Prof. Dr. Rashad Aliyev for

his continuous support and guidance. Prof. Dr. Rashad Aliyev is a reference of a

professional person who helped me so much during this whole work and no words

can express how thankful I am to him, and I am very much honored that I worked

under his supervision.

Last but not least, I would like to thank my parents, Mr. Abdulrahaman Rasol and

Mrs. Qomri Khaled with whom I have such successful life and proud of both of

them. I thank my brothers and sisters, and all my friends. I appreciate all the times

they visited, called, chatted and e-mailed with words of faith, encouragement and

wisdom that carried me daily through this process. Thanks to my brother Mezgeen

Rasol for his encouragements in whole my life.

Finally, I would like to express my appreciation to everyone who made these years in

North Cyprus a wonderful experience for me.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

ACKNOWLEDGMENT .. v

LIST OF TABLES .. viii

1 INTRODUCTION .. 1

2 REVIEW OF EXISTING LITERATURE ON PROPOSITIONAL LOGIC 6

3 PROPOSITIONS AND LOGICAL CONNECTIVES…………...….…………....12

 3.1 Proposition…………………………………………………………………….12

3.1.1 Compound proposition ... 12

3.1.2 Standard form of proposition…………………………………………… 13

3.1.3 Categorical proposition……………………...…………………………..13

3.2 Logical connectives……………………………………………………………14

3.3 Notation history of logical connectives……………………………………….16

3.4 Truth tables for logical connectives .. 18

3.4.1 Truth table for AND connective ... 20

3.4.2 Truth table for OR connective .. 20

3.4.3 Truth table for NOT connective ... 21

3.4.4 Truth table for Implication connective ... 22

3.4.5 Truth table for Equivalence connective .. 22

3.4.6 Truth table for NAND connective .. 24

3.4.7 Truth table for NOR connective ... 24

3.4.8 Truth table for XOR connective ... 25

3.5 Order of precedence of logical connectives .. 26

vii

3.6 Tautology, satisfiability, contradiction, contingency, logical entailment and

logical equivalence………………………………………………………………...28

3.6.1 Tautology .. 28

3.6.2 Satisfiability……………………………………………………………...29

3.6.3 Contradiction………………………………………………………….....29

3.6.4 Contingency…………………………………………………………......30

3.6.5 Logical entailment…...………………………………………………......31

3.6.6 Logical equivalence…………………………………………………......32

3.7 Some properties of logical connectives.. ... 34

3.8 Properties of Implication ... 36

4 ALGEBRAIC NORMAL FORMS AND TWO FORMS OF VALID

INFERENCES…….………………………………………………………………...37

4.1 Algebraic normal forms……………………………………………………….37

4.1.1 Negation Normal Form (NNF) ... 37

4.1.2 Disjunctive Normal Form (DNF) ... 38

4.1.3 Conjunctive Normal Form (CNF) .. 40

4.2 Horn Clauses ... 41

4.3 Two forms of valid inferences .. 42

4.3.1 Modus Ponens... 42

4.3.2 Modus Tollens .. 44

5 CONCLUSION ... 46

REFERENCES ... 47

viii

LIST OF TABLES

Table 1: Basic logical connectives ………………………………………16

Table 2: Some basic and deriving logical connectives in example……………...….17

Table 3: Truth table for AND connective………………………..………………….20

Table 4: Truth table for OR connective……...……………………………………...21

Table 5: Truth table for NOT connective…………………………………………...22

Table 6: Truth table for Implication connective…………………………………….23

Table 7: Truth table for Equivalence connective..…………………………………..23

Table 8: Truth table for NAND connective……..…………………………………..24

Table 9: Truth table for NOR connective……………….…………………………..25

Table 10: Truth table for XOR connective…………...……………………………..26

Table 11: Precedence of logical connectives………………………………………..27

Table 12: Truth table for tautology verification of formula A ˅ ¬ (A ˄ B)...………28

Table 13: Truth table for satisfiability verification of formula A ˄ ¬B…..…………29

Table 14: Truth table for contradiction verification of formula

 A ˄ ¬B ˄ (A → B)………………………………………………………………….30

Table 15: Truth table for contingency verification of formula ¬A → (A ˄ B)…..…31

Table 16: Entailment holding between A and (A ˅ B), and non-entailment holding

between A and (¬A ˅ ¬B)...32

Table 17: Truth table for first De-Morgan’s law……………………………………33

Table 18: Truth table for second De-Morgan’s law…………………………………33

Table 19: Truth table for verification of logical equivalence of formula

¬A ˅ BA → B...34

Table 20: Truth table for modus ponens…………………………………………….44

ix

Table 21: Truth table for modus tollens…………………………………………….45

1

Chapter 1

1 INTRODUCTION

Artificial Intelligence (AI) is a branch of computing and engineering that is used in

many areas and mimics the human intelligence and behavior, and it is concerned

with simulation of intelligent actions in computers. So AI is a study of “intelligent

agents” in which devices are used to identify the environment to boost. AI is very

useful to let machines think and act like human being to solve different complex

problems.

The study of principles of correct analysis is known as logic and it is derived from

the Greek word “logos” which means sentence, reason, thought, rule, ratio or what is

spoken and contains a systematic study of the form of arguments. When there is a

connection between expectations of arguments and conclusion or result then it will

be called a valid argument which is very important in logic.

There are different types of logic known as formal, informal, symbolic and

mathematical logics.

Representing and reasoning with knowledge is playing a central role in AI.

Knowledge representation is committed to representing information about the world

in such a way that a computer system can be able to solve complicated tasks. It is

2

very difficult to talk to experts in any system or organization in terms of codes or

organizational ways rather than easy and straightforward daily talks.

Knowledge is information about any specific area to solve different kind of problems

within this area, and knowledge is used to solve a number of problems and it must be

mentioned that knowledge should be represented by a computer. The knowledge is

known as representation scheme, and representation is any kind of knowledge that

shows the inner and internal workout and structure of data and its output, and when

there is a complete representation of knowledge then it is stored by an intelligent

agent.

All knowledge representation languages are based on different types of logic.

Propositional logic is an excellent tool to represent knowledge in many AI problems.

Propositional logic is a branch of logic which deals with ways of accompanying or

adjusting all propositions, statements or sentences to create more complicated

(compound) propositions. The simplest statements are treated as individual units, so

propositional logic does not study those logical properties.

The history of logic starts from Aristotle (384-322 BC), but Aristotle’s practical

writing about logic is related to a logic of categories and quantifiers like “all” and

“some” which are not conducted in propositional logic. Aristotle adopted two rules

for great importance in propositional logic which are called “Law of Excluded

Middle” and “Law of Contradiction”.

In later 3
rd

 century BCE a serious study about logical operators like “and”, “or” and

“if…then…” was conducted by Stoic philosophers. Stoic philosopher Chrysippus

3

(280-205 BCE) represented a work related to propositional logic by making out a

number of different ways of making complicated boundaries for arguments. The

basic reasoning design like Diagenes Laertius, Aextus Empirius was presented by

Chrysippus and other philosophers.

Some advanced works on Stoics were launched in the form of small steps in later

centuries. Some works were done by Galen (129-210 BCE), Boethius (480-525

BCE), Peter Abelard (1079-1142 BCE), William of Ockham (1288-1947 BCE).

Augustus DeMorgan (1806-1871 BCE), George Boole (1815-1864 BCE) and

Gottlob Frege (1848-1925 BCE) presented some advanced works.

Propositional logic has specific syntax and semantic to be used for designing

proposition and clarifying its logic and meaning.

Every language has different and unique syntax and semantic rules regardless it’s a

real life language or a computer language.

Syntax of proposition in propositional logic is the adjustment of words and

expression to design and make well-formed sentences in any language; in other

words, syntax is a set of rules to design a sentence in a particular language. Nouns,

pronouns, adjectives, verbs etc. make a sentence but syntax is used to adjust every

part to make proper sentence which has a meaning. To understand it better, let’s

consider the following combination of words: “I good at studying am university very

a”; this combination of words does not form any meaning, but if syntax is to be

applied on these words, a meaningful sentence will be like “I am studying at a very

good university”.

4

Syntax is also known as grammar for language and propositional logic; there are

some components which are used in grammar for propositional logic: connectives

(operators), grouping symbols etc.

The meaning of the sentence is defined by the semantics of a propositional logic. The

interpretation is related to semantics of a propositional logic. The interpretation is

determined by the sentence or propositional variable. The semantics can be used to

represent different statements and their Boolean values - true or false values about

the world.

The interpretation of the sentence or formula in a propositional logic can be defined

in the following forms: a sentence becomes satisfiable if it is true in some

interpretations; a sentence becomes unsatifiable if it is true in no interpretation; and a

sentence is valid if it is true in all interpretations.

The atomic propositions which can be represented by true or false logical values can

be combined for some reasons. The symbols like ¬, ˄, ˅, →, ↔ are logical

connectives or operators which are used in propositional logic. By using the logical

connectives it is possible to establish propositional formulas. Well-Formed Formula

(WFF) can be constructed by using single atomic propositions represented by capital

letters A,B,C,…,Z, their negations, and joining any two single atomic propositions

by using the logical connectives. WFF makes the statement meaningful and

unambiguous.

One of the useful tools to analyze a propositional logic is the truth table which has a

tabular form of representation of all possible combinations of true or false values of

5

the input statements resulting in finding the truth value of the output compound

statement; so several atomic statements can be combined into a single statement by

using logical connectives, and there is a distinct truth table for each logical

connective.

Truth table is also effective way to represent such compound propositions as

tautology, contradiction, contingency and logical equivalence.

Modus Ponens and Modus Tollens are two rules of inference for propositional logic

and they are described in Schematic Form.

6

Chapter 2

2 REVIEW OF EXISTING LITERATURE ON

PROPOSITIONAL LOGIC

The paper [1] presents a finite predicate logic corresponding to the fragment of first

order logic, and this fragment allows usage of equality and quantification. The model

of this logic can be interpreted as Herbrand universe. The formulae of this logic can

be effectively translated to the Bernays-Schonfinkel formulae. The proposed logic

helps optimally encode planning problems. In comparison with the propositional

approach, the reasoning with the presented logic is exponentially more efficient.

Moreover, the proposed method is also effective to find optimal form of

propositional encodings.

In [2] the resolution approach in a linguistic propositional based on truth values is

proposed to establish main concept of symmetrical refined hedge algebra which is

effectively used for the application to the intelligent reasoning system. The syntax

and semantic of the linguistic propositional logic are determined. The linguistic

information processing focusing on linguistic variables is supported. The resolution

rule and procedure for soundness and completeness results are investigated.

A generalization of propositional logic approach which allows using the truth values

in the continuous interval 0 and 1 is described in [3], and this generalized form is

called Minimal Polynomial Logic (MPL). The representation of propositions in MPL

7

is done using multi-variate polynomials. The simplest form of the polynomial logic

denoted as PL 0 is also studied. This study shows that PL 0 is an efficient logic to

prove some particular results about classical logic. Both MPL and PL 0 are

implemented and the relationships of both logic techniques with the concepts of

fuzzy logic and probabilistic logic are determined.

Argumentation has been one of the increasingly core studies in human reasoning in

Artificial Intelligence. Argumentation has also been one of the objectives to be used

for bringing together the propositional logic and non-monotonic reasoning in one

unified frame. The paper [4] aims to investigate the connection between

argumentation and propositional logic. This connection is useful for supporting a

non-monotonic reasoning in Artificial Intelligence. A new logic of arguments which

is called Argumentation Logic (AL) is formulated. The relation of argumentation

logic with the propositional logic is studied, and the properties of argumentation

logic are investigated.

The effectively propositional logic is a fragment of first-order predicate logic to be

translated into propositional logic. Both propositional resolution and resolution with

generalization are used for effectively propositional logic in [5]. A generalization

rule shows that in comparison with resolution, the suggested resolution with

generalization has exponentially shorter proofs. The sort assignments for the

generalization process are provided.

Constructing the plausible mathematical model for understanding human reasoning

and intelligence is important in Artificial Intelligence. The intelligent agents with

8

abilities of deductive and inductive reasoning are developed by using computational

model [6]. The agents can learn a generalized knowledge and arithmetic and

propositional logic from examples. The agents are able to learn syntax and logical

laws. The performance of the agent overcomes the average human performance in

terms of accuracy. The proposed model is implemented using Haskell functional

programming language. The learning process is described in case of propositional

logic. The application areas of the presented agents are theorem proving, intellectual

pedagogical systems etc.

The contexts were firstly introduced as a solution mechanism of the generality

problem in artificial intelligence. The paper [7] studies the logical properties of

contexts. The propositional language of context is investigated in terms of its syntax

and semantics. The proof system based on Hilbert style is considered for general

propositional language to provide the optimal results of the soundness and

completeness of the system.

The paper [8] is about the controllability and definability as two strong forms of

dependence involving variables in propositional knowledge base. The computational

complexity issues are analyzed. It is mentioned that the controllability is a weaker

form of dependence compare to definability. The applications of both forms are

done, and one of the applications is decision under incomplete knowledge which is

related to high complexity of controllability, and another application is the

hypothesis discrimination.

To solve an extremely hard problem in the sports scheduling domain, a new and

extremely competitive approach called the round robin problem is offered in [9]. The

9

combination of a traditional propositional logic based problem encoding and local

search satisfiability algorithms provides a determination of feasible schedules for the

round robin problem much faster in comparison with other existing methods used for

the same problem. The performed experiments for solving the round robin problem

for different number of teams show the suitability of scheduling after combining the

above two approaches.

The paper [10] introduces the linear propositional logic system using true value

domain from linear symmetrical hedge algebra. The syntax, semantics, and inference

of this logic system are presented. The resolution inference rule and resolution

principle are defined for this logic system. The t-norm and t-conorm operations of

Gödel are used to define the logical connectives for a linear propositional logic. The

resolution inference rule is obtained by implementing the concept of reliability. The

clauses of inference rule which have linguistic truth values with contradictory nature

are defined. The maximal reliability of each clause of inference rule is determined.

The paper [11] considers the rules for developing strategies for students to solve

propositional logical exercises in learning environment called LogEx. This learning

environment intends rewriting a logical formula in normal form. LogEx provides a

development of a domain reasoner for logic, and students can reach such learning

goals as recognizing and applying rules correctly, proving the equivalence of

formulae etc.

Dalal’s approximation strategy has some limitations for full propositional logic. The

family of logics Limited Bivalence is used for approximation of classical logic [12].

Each approximation step is realized in a polynomial time.

10

Cellular Automata with binary states on monoids is studied in [13], and it enables

using formulae in propositional logic. The main properties of transition functions for

Cellular Automata are defined. The multiplication of formulae on monoids is

performed, and the basic properties of the multiplication are discussed.

The propositional discourse logic (PDL) is one of the modern normal forms of

propositional logic establishing the facts about truth or falsity of the statements in a

finite discourse, and is related to the structure of natural discourse logic [14]. The

main properties of PDL is making reasoning in the presence of inconsistency by

minimizing the number of assumptions, and avoiding a problematic behavior of

logical connectives in case of having paradox situations. The directed graphs

represent the referential structure of discourses.

In [15] the propositional logic of imperfect information also called IF-propositional

logic is defined in terms of extensive form semantic games. The partitional structure

of these games under imperfectness of information is studied. The time consistency

plays an ambiguous role in analyzing the games, and this qualification is especially

useful when the same information set is visited several times during playing the

game. The application of this type of propositional logic in quantum theory and

quantum logic is specified.

An intelligent tutorial program called P-logic Tutor which plays double roles as

educational tool and a research environment is described in [16]. The important

properties of this program are to teach students the basic concepts of propositional

logic and providing them abilities in theorem-proving concepts. The implementation

of this tutorial system program is done in Java programming language.

11

In the paper [17] a fuzzy propositional modal logic (FPML) and its semantics called

fuzzy Kripke semantics are presented. Besides describing the properties of the fuzzy

reasoning procedure, the possibility for the realization of the reasoning procedure on

computer is studied. The soundness and completeness of the FPML system are

studied.

Fuzzy logic is an important tool for representation of human reasoning in the

presence of uncertainty. The fuzzy interpretation of such logical connectives as

conjunction, disjunction, negation, implication and bi-implication is presented in

[18]. The fuzzy interpretation of logical connectives leads to the cases in which the

set of fuzzy tautologies exactly coincide with the set of classical tautologies. The

propositional fuzzy logic is based on t-norm. The classical propositional logic can

also be modeled by fuzzy connectives.

12

Chapter 3

PROPOSITIONS AND LOGICAL CONNECTIVES

3.1 Proposition

Proposition is an interpretative sentence which is used to express the given statement,

suggestion, idea, plan or opinion to represent true or false values, but a proposition

can’t be both true and false at the same time. For example, the statement “Tomorrow

it will be rainy” can be true or false but not both at the same time.

It’s very important to note that not any sentence can represent a proposition, for

example, “The movie is interesting” or “Black roses are beautiful”; in these

sentences it’s not possible to give a single answer as yes or no, true or false, because

maybe movie for some persons is interesting but for some other persons it doesn’t

have any interest at all, and maybe some people like black roses but some other

people dislike them; so it’s not a proposition.

The notations used for propositions are A,B,C,..,a,b,c,…, to describe the

propositional variables and to represent the statements which will get one of the

logical values: true or false. So it is to mention that True (T) and False (F) are two

constants used in propositional logic.

3.1.1 Compound proposition

A proposition that can further be distributed into many parts such that each

individual part acts like a proposition, is known as a compound proposition. In

13

compound proposition, every individual part has a unique value which is either true

or false. Some examples of compound propositions are as follows: if it will be rainy

tomorrow then I will not attend my friend, otherwise I will take some snacks with

tea, and if it will be sunny tomorrow then I will go to the beach.

3.1.2 Standard form of proposition

A proposition can be expressed in standard form which is also known as a symbolic

form. For example, in sentence used above it can be observed that there are some

small parts like A = It will be rainy tomorrow, B = I will not attend my friend, C = I

will take some snacks with tea, D = It will be sunny tomorrow, E = I will go to the

beach. To connect or join A, B, C, D and E with each other, some specific words like

if, then, otherwise are used.

The above proposition can be represented in standard form as if A then B, otherwise

C, and if D then E.

3.1.3 Categorical proposition

A proposition which is defined as a basic concept of Aristotle logic, and dealing with

two or more classes of objects, is called a categorical proposition. It is a proposition

which accepts or refuses all or some objects from one group carried by another

group.

Categorical proposition normally contains such parts as “Object Term” which is a

first category, “Predicate Term” is a second category, “Copula” which connects

different parts of categorical proposition, and “Quantifies” which are the words used

to determine the class of object associated with predicate class.

14

It should be noted that while considering a categorical proposition, some specific

terms like ”all”, “no” and “some” can be used for all categorical propositions. The

standard form of all of them will be as follows: All S are P, No S is P, Some S are P,

Some S are not P.

3.2 Logical connectives

To link, connect, join or attach two or more propositions or sub-propositions in

grammatically accurate way in which the meaning and purpose of a compound

sentence should not be meaningless, some specific symbols or words are used, and

these words or symbols are known as logical connectives or operators. Binary

connectives are widely and commonly used logical connectives and known as dyadic

connectives. In propositional logic there are some specific symbols which are used to

connect different propositions with each other to make compound proposition, and

these symbols represent logical connectives. These logical connectives are given

below:

1. NOT connective which is also called a negation connective, and in nature it’s a

unary operator;

2. AND connective which is also called a conjunction connective, and in nature it’s a

binary connective;

3. OR connective which is also called a disjunction connective, and in nature it’s a

binary connective;

4. Implication connective which contains conditional “if…then” statement, and in

nature it’s a binary connective;

15

5. Equivalence connective which contains necessary and sufficient condition “if and

only if” (sometimes shortly described as iff), and in nature it’s a binary connective;

6. NAND connective which is NOT of all ANDs, and in nature it is a binary

connective;

8. NOR connective which is NOT of any OR, and in nature it is a binary connective;

9. XOR connective which is OR but not both, and in nature it’s a binary connective.

It is important to note that NOT, AND, OR, implication, and equivalence are basic

and regularly used logical connectives. The connectives NAND, NOR, and XOR are

deriving connectives.

Among all others, only NOT connective is a unary logical connective that means it

needs at least one statement or expression to work; all other logical operators are

binary in nature which means that they need at least two statements or expressions to

work.

The logical connectives with quantifiers have logical constants of two major types

which are used as propositional logic and predicate logic in the academic system.

The basic connectives which are used in propositional logic are represented in Table

1.

16

 Table 1: Basic logical connectives

Negation NOT ¬, ~

Conjunction AND ˄

Disjunction OR ˅

Implication if….then →

Equivalence if and only if (iff) ↔

Some basic and deriving connectives can be used in examples represented in Table 2.

3.3 Notation history of logical connectives

The representation of True and False values of logical propositions can be done by

using the following specific symbols (notations): ┬ for True and ┴ for False.

Negation is denoted by ¬ symbol, and it was firstly introduced by Heiting in 1929.

The symbol ~ is another form to represent Negation, and it was firstly introduced by

Russell in 1908. Before this, Negation was represented by prime (´) and bar (̄).

Conjunction is represented by the symbol ˄ and was firstly introduced by Heiting in

1929. Before this, the symbol ∩ (intersection) was used to represent AND.

Disjunction is represented by the symbol ˅ and was firstly introduced by Russell in

1908, and before this it was represented by the symbol ∪ (union).

17

 Table 2: Some basic and deriving logical connectives in example

Logical

connective

Example

P = It is rainy Q = It is cool breeze

NOT (¬)

It is not rainy

¬P

AND (˄) It is rainy and cool breeze

P ˄ Q

OR (inclusive)

(˅)

It is rainy or cool breeze (or both)

P ˅ Q

 Neither ...

NOR

It is neither rainy nor cool breeze. ¬P ˄ ¬Q

OR

(Exclusive)

 (XOR)

It is rainy or cool breeze (but not both).

(P ˅ Q) ˄ ¬ (P ˄ Q)

Implication connective is represented by the symbol → and was firstly introduced in

1917 by Hilbert, and before this the symbol ⸧ was used by Russell in 1908, and the

symbol => was used by Vax.

Equivalence connective is represented by the symbol ↔, and was denoted by

different symbols in different times as follows: as symbol = in 1908 by Russell; as

symbol ↔ by Tarksi in 1940; as symbol ⸧⸦ by Gentzen; as symbol ~ by

Schonfinkell; and as symbol ⸦⸧ by Chazel.

18

Some authors also used letters to represent connectives at different times like Hilbert

in 1904 used u as conjunction, and it is abstracted from German “und” meaning

“and”, o for disjunction derived from German “oder” meaning “or”. In 1929,

Lukasiewicz used N for negation, K for conjunction, A for disjunction, C for

implication and E for equivalence connectives.

3.4 Truth tables for logical connectives

Truth table is based on binary values with combination of rows and columns and is

used to check and verify logical operators’ functionality, validity and scope. In broad

sense, a truth table is a mathematical table that is used for logics’ verification, and is

especially concerned about Boolean algebra, Boolean functions and propositional

calculus. Specifically, a truth table is used to calculate and check the truth and falsity

of a propositional expression. In a truth table the possible binary values are written to

predict and calculate the result under the condition that it should properly work for

any combination of logical values.

A compound statement is formed from the combination of two or more statements.

The number of rows in a truth table can be determined by a number of variables and

can be easily calculated using a simple formula “2
n”

. If there are two variables then

number of rows will be 2
2
 = 2×2=4, and if the number of variables is 5, then number

of rows will be 2
5
 = 2×2×2×2×2=32. A truth table contains one column for every

individual input variable A,B,…..,X,Y,Z, and there must be a column for all the

possible results of the logical operations for what the truth table is designed.

To understand the truth tables properly, the following crucial background should be

revised:

19

- A sentence is called a formula or a well-formed formula (WFF) in formal symbolic

language of propositional calculus;

- Atomic and compound are two main types of classes in propositional calculus, and

atomic formula is used to represent a simple declarative sentence. For example,

“Einstein was a scientist” is denoted by a single sentential constant, whereas

compound formula is a combination of atomic formulas which is formed by using the

logical connectives AND, OR, NOT, XOR etc.;

- The important issue in a truth table is to remember the true or false values of a

compound formula;

- A truth table is divided into two sides as right and left, where the left side is used to

mention all possible combinations of truth values which have to be used for atomic

formulas and propositions, and the right side of a truth table is used to show the

resultant truth values of atomic formulas which is considered as a compound

formula. So the right part allows determining for which conditions the compound

formula is true or false;

- Logical languages are based on perfect clarification and certainty while logical

connectives have their relations with natural language and can’t be defined or

explained by any means of natural language until an ambiguity in natural language is

eliminated.

All logical connectives can be proved by their functionality using truth tables.

20

3.4.1 Truth table for AND connective

While using AND or conjunction connective, there must be at least two statements to

perform this operation. If A and B are statements, then the conjunction A ˄ B is true

if and only if both of the statements A and B are true, otherwise it is false. If there are

more than two simple statements with possible pairs of true/false values then the

conjunction is true if all the statements have true values, otherwise if at least one of

the values of the statements is false then conjunction is false. Table 3 shows the truth

table for AND connective (with two statements).

 Table 3: Truth table for AND connective

A B A ˄ B

T T T

T F F

F T F

F F F

3.4.2 Truth table for OR connective

Application of OR or disjunction connective requires at least two simple statements

to work. If A and B are statements, then the disjunction A ˅ B is true if at least one

of the statements has true value, i.e. if either A or B has true values, or both of the

statements have true values, then the disjunction is true, otherwise it is false. If there

21

are more than two simple statements with possible pairs of true/false values then the

disjunction is true if at least one of the statements has true value. If all the values of

the statements are false, the disjunction is false. Table 4 shows the truth table for OR

connective (with two statements).

 Table 4: Truth table for OR connective

A B A ˅ B

T T T

T F T

F T T

F F F

3.4.3 Truth table for NOT connective

NOT or negation connective is a unary connective; so it needs only one statement to

perform operation to check the functionality. This connective gives true result if a

value of the statement is false, and if a value of the statement is true then result will

be false. Table 5 shows the truth table for NOT connective.

22

 Table 5: Truth table for NOT connective

A

¬ A

T

F

F

T

3.4.4 Truth table for Implication connective

Implication connective represented in “if….then” form needs at least two statements

to work. While using this connective, the result will be false only if precedent value

is true and subsequent value is false; in all other combinations of logical values of

statements the result will be true. Table 6 shows the truth table for Implication

connective.

3.4.5 Truth table for Equivalence connective

Equivalence connective is implemented if there are at least two statements. This

connective results true if precedent and subsequent parts have same status of being

true or being false; it means if both values of the statements are true or both values of

the statements are false, then Equivalence statement results true, otherwise this

connective results false. Table 7 shows the truth table for Equivalence connective.

23

 Table 6: Truth table for Implication connective

A B A → B

T T T

T F F

F T T

F F T

 Table 7: Truth table for Equivalence connective

A B A ↔ B

T T T

T F F

F T F

F F T

24

3.4.6 Truth table for NAND connective

The NAND connective is NOT of all AND’s and is a binary logical connective of

two statements. NAND operator is actually the complement or negation of AND

connective, and is read as NOT of A AND B. Table 8 shows the truth table for

NAND connective.

 Table 8: Truth table for NAND connective

A B A NAND B

T T F

T F T

F T T

F F T

3.4.7 Truth table for NOR connective

The NOR connective is NOT of OR and is binary logical connective of two

statements. This connective results true if both precedent and subsequent have same

false values, and this connective results false for all other combinations of pairs of

values of both statements. NOR is also read as NOT of A OR B. Table 9 shows the

truth table for NOR connective.

25

 Table 9: Truth table for NOR connective

A B A NOR B

T T F

T F F

F T F

F F T

3.4.8 Truth table for XOR connective

The XOR (exclusively OR) connective is a binary logical connective of two

statements. This logical connective results true if exactly one of two statements has

true value and these connective results false if either both statements have true values

or both statements have false values. Table 10 shows the truth table for XOR

connective.

26

 Table 10: Truth table for XOR connective

A B A XOR B

T T F

T F T

F T T

F F F

3.5 Order of precedence of logical connectives

The sequential hierarchy of nominal priority of values or numbers is known as order

of precedence which is normally used when there are multiple (more than one)

connectives in a single statement to make it clear which sequence and flow

expression will be processed and which connective will take first place and which

will come at the end and what will be the order of other connectives used in

expression. Connectives’ precedence or hierarchy is commonly used for compound

expressions.

The connectives’ precedence has been very meaningful for a long time, and it was

firstly called the “order of operations”. The rule for connective hierarchy is simple

and given below:

27

- Parentheses “()” in expressions have more priority from inside to outside in every

condition;

- Negation connective “¬” always has priority over all others;

- Conjunction or logical AND “˄” is processed after negation, if required;

- Disjunction or logical OR “˅” will take place afterwards;

- Implication “→” will take place after disjunction;

- Equivalence “↔” will take place at the end.

The precedence of logical connectives is represented in Table 11.

Table 11: Precedence of logical connectives

Connective Symbol Precedence

NOT ¬ 1

AND ˄ 2

OR ˅ 3

Implication → 4

Equivalence ↔ 5

28

3.6 Tautology, satisfiability, contradiction, contingency, logical

entailment and logical equivalence

3.6.1 Tautology

Tautology is a proposition which is always true for all the values of the propositional

variables.

Let’s use truth table to verify that the formula A ˅ ¬ (A ˄ B) is a tautology which is

represented in Table 12.

Table 12: Truth table for tautology verification of formula A ˅ ¬ (A ˄ B)

A B A ˄ B ¬ (A ˄ B) A ˅ ¬ (A ˄ B)

T T T F T

T F F T T

F T F T T

F F F T T

It is possible to see from the Table 12 that all logical values under the main operator

(last column) are true; it means that the compound proposition A ˅ ¬ (A ˄ B) is a

tautology.

29

3.6.2 Satisfiability

A formula is said to be satisfiable if and only if the negation of the formula is not a

tautology, or in other words, the formula is true under at least one interpretation.

Let’s use truth table to verify that the formula A ˄ ¬B is satisfiable (Table 13).

Table 13: Truth table for satisfiability verification of formula A ˄ ¬B

A B ¬B A ˄ ¬B

T T F F

T F T T

F T F F

F F T F

It is possible to see from the Table 13 that the second logical value under the main

operator (last column) is true, so the negation of the formula A ˄ ¬B is not a

tautology, so this formula is satisfiable.

3.6.3 Contradiction

A contradiction is a proposition which is always false for all the values of the

propositional variables.

30

Let’s use truth table to verify that the formula A ˄ ¬B ˄ (A → B) is a contradiction

which is represented in Table 14.

Table 14: Truth table for contradiction verification of formula A ˄ ¬B ˄ (A → B)

A B ¬B A → B A ˄ ¬B ˄ (A → B)

T T F T F

T F T F F

F T F T F

F F T T F

It is possible to see from the Table 14 that all the logical values under the main

operator (last column) are false; it means that the proposition A ˄ ¬B ˄ (A → B) is a

contradiction.

3.6.4 Contingency

Another proposition which plays an important role in a reasoning process is a

contingency. A contingency is a proposition which is neither a tautology nor a

contradiction.

Let’s use truth table to verify that the formula ¬A → (A ˄ B) is a contingency which

is represented in Table 15.

31

Table 15: Truth table for contingency verification of formula ¬A → (A ˄ B)

A B ¬A A ˄ B ¬A → (A ˄ B)

T T F T T

T F F F T

F T T F F

F F T F F

It is possible to see from the Table 15 that the propositional form ¬A → (A ˄ B) is a

contingency because there is at least one false value (in fact there are two false

values), and there is at least one true value (in fact there are two true values) under

the main operator (last column).

3.6.5 Logical entailment

The logical entailment in propositional logic means that if one proposition A entails

another proposition B, then for all true values of the proposition A the values of the

proposition B must be also true (one should not care about the false values of the

proposition A). The relationship “A entails B” in symbolic notation is represented as

A ǀ= B.

Table 16 shows that the entailment holds between A and (A ˅ B), but the entailment

does not hold between A and (¬A ˅ ¬B).

32

Table 16: Entailment holding between A and (A ˅ B), and non-entailment holding

between A and (¬A ˅ ¬B)

A B ¬A ¬B A ˅ B ¬A ˅ ¬B

T T F F T F

T F F T T T

F T T F T T

F F T T F T

3.6.6 Logical equivalence

The propositions A and B are called logically equivalent if the condition “A ↔ B is a

tautology” is met. Expressing in another form, A and B are logically equivalent if “A

entails B” and “B entails A”.

De-Morgan’s laws are popular in propositional logic. These laws can be described in

the following forms: 1) the negation of the logical connective AND involving two

statements A and B is logically equivalent to OR connective involving a negation of

each statement A and B: ¬(A ˄ B) ¬A ˅ ¬B; 2) the negation of the logical

connective OR involving two statements A and B is logically equivalent to AND

connective involving the negation of each statement A and B: ¬(A ˅ B)  ¬A ˄ ¬B.

33

De-Morgan’s laws can be better explained by using truth tables. Tables 17 and 18

describe truth tables for first De-Morgan’s law and second De-Morgan’s law,

respectively.

 Table 17: Truth table for first De-Morgan’s law

A B ¬A ¬B A ˄ B ¬(A ˄ B) ¬A ˅ ¬B

T T F F T F F

T F F T F T T

F T T F F T T

F F T T F T T

 Table 18: Truth table for second De-Morgan’s law

A B ¬A ¬B A ˅ B ¬(A ˅ B) ¬A ˄ ¬B

T T F F T F F

T F F T T F F

F T T F T F F

F F T T F T T

34

Let’s use truth table to verify the logical equivalence of the formula ¬A ˅ BA → B

which is represented in Table 19.

Table 19: Truth table for verification of logical equivalence of formula

¬A ˅ BA → B

A B ¬A ¬A ˅ B A → B

T T F T T

T F F F F

F T T T T

F F T T T

It is possible to see from the Table 19 that the logical values in the last two columns

are identical; it means that the compound propositions ¬A ˅ B and A → B are

logically equivalent.

3.7 Some properties of logical connectives

There are some characteristics associated with logical connectives and these

characteristics are known as properties of logical connectives. Below some properties

of logical connectives are given:

35

Associativity: Three statements A, B, and C should be involved, and the following

associativity properties can be defined: (A ˅ B) ˅ CA ˅ (B ˅ C), and (A ˄ B) ˄ C

A ˄ (B ˄ C).

Commutativity: For the statements A and B, the following commutative properties

can be defined: A ˅ B  B ˅ A, and A ˄ B  B ˄ A. It should be noticed that the

ordering of operands does not make any sense in getting the final result of the above

logical connectives.

Distributivity: This property also needs three statements A, B, and C to be involved,

and this property can be described as A ˄ (B ˅ C)  (A ˄ C) ˅ (B ˄ C).

Identity: This property can be described in the following forms: A ˄ T  A, and A

˅ F  A.

Idempotency: For the statement A, the following is always true: A ˄ A  A, and A

˅ A  A.

Absorption: For two statements A and B, this property can be described in the

following forms: A ˅ (A ˄ B) = A, and A ˄ (A ˅ B) = A.

Negation: This property can be also described in two forms: A ˄ (¬A)  F, and A ˅

(¬A)  T.

36

Involution: This property is described as ¬(¬A) = A. Another name of this property

is double complement, i.e. using double negation of any statement will result in

original statement.

3.8 Properties of Implication

Assume that A and B represent statements, then A => B means “A implies B”. The

first statement is called premise, and the second statement is called conclusion. The

implication A => B can be also written in the form A → B.

It should be noticed that the implication A => B should not necessarily produce the

implication B => A.

If both statements A and B are negated, i.e. ¬A and ¬B are considered, then the

implication should be reversed as ¬B => ¬A.

Suppose that two statements A and B have the arrangement (A ˄ (A → B)) → B, so

the reasoning will look like:

- Make sure that if A is true and then check that A → B is fulfilled or not and then

check B is true or not;

- If all the conditions are true, then first will be A ˄ (A → B) to imply B; so that (A ˄

(A → B)) → B gives true result ever;

- If A is false then the result will be (F ˄ (F → B)) → B which is true;

- F ˄ B = F such that F → B is true.

37

Chapter 4

ALGEBRAIC NORMAL FORMS AND TWO FORMS OF

VALID INFERENCES

4.1 Algebraic normal forms

In normal form, the multiple statements or propositions can be used together by

applying such logical connectives as AND, OR, XOR etc. In algebraic normal form

two equivalent formulas can be converted into the same normal form by showing

whether these formulas are same or not. Algebraic normal form (ANF) is not same as

other normal forms, and can be represented as a simple list of multiple variables. The

logical sentences can be converted into more standardized form by using logical

equivalences which are very important in computer science applications.

There are three basic types of algebraic normal forms: Negation Normal Form

(NNF), Conjunctive Normal Form (CNF), and Disjunctive Normal Form (DNF).

4.1.1 Negation Normal Form (NNF)

In negation normal form negation connective NOT (¬) is used in front of all

variables and only applied to variables. Other allowed connectives in this normal

form are conjunction (AND) and disjunction (OR), and it means that there is no

implication in negation normal form. In negation normal form the connective NOT

(¬) should go inside the statement as far as possible.

38

The rewrite rules are performed for computing the negation normal form, and some

of these rules are given below:

¬(A ˄ B) → ¬A ˅ ¬B

¬ (A ˅ B) → ¬A ˄ ¬B

¬ ¬A → A

We can apply the negation normal form in the following form:

¬ (A ˅ ¬C) = ¬A ˄ ¬ ¬C = ¬A ˄ C;

¬ (A ˄ ¬ (B ˄ C) = ¬ A ˄ ¬ ¬ (B ˄ C) = ¬ A ˄ (B ˄ C)

4.1.2 Disjunctive Normal Form (DNF)

The disjunctive normal form is a normal form which is a normalization disjunction of

conjunctive clauses of logical formula, in other words, it is OR of AND connectives

also known as products’ summation. If there is disjunction of single or multiple

conjunctions of literals and disjunctions is implicated strictly, then the logical

formula is considered to be in DNF, and if all the variables of disjunction normal

form occur strictly just once in every clause then it is called as Full Disjunctive

Normal Form (FDNF). The logical connectives which can be used in disjunctive

normal form are AND, OR and NOT. NOT operator can be processed as

propositional variable and can be only used as a part of a literal.

The following properties are characteristic to DNF:

39

- variables used in each term must be connected with AND logical connective;

- OR connective is used to bring the terms together;

- either the original variable or its negation must be used in each term;

- expression should not contain any another operation.

The following formulas are in DNF:

A ˄ B;

(A ˄ B) ˅ (¬A ˄ ¬B);

(A ˄ ¬B ˄ ¬C) ˅ (¬A ˄ B ˄ C).

The following formulas are not in DNF because of different reasons:

(A ˅ ¬B) ˅ (¬A ˄ B) (because in the first term OR logical connective is used);

(A ˄ ¬C) ˅ (A ˄ ¬B ˄ C) ˅ (A ˄ B ˄ ¬C) (because the first term does not contain the

variable B);

(¬A ˅ B) → (A ˄ ¬B) (because implication connective is used).

40

If the formula is not in DNF because of absence of the variable, it is possible to make

the given formula in DNF. Let’s consider the following formula which is not in

DNF:

F(A,B,C) = (A ˄ B ˄ C) ˅ (¬A ˄ B)

This formula can be brought to DNF in the following form:

F(A,B,C) = (A ˄ B ˄ C) ˅ (¬A ˄ B) = (A ˄ B ˄ C) ˅ (¬A ˄ B) ˄ (C ˅ ¬C) = (A ˄ B

˄ C) ˅ (¬A ˄ B ˄ C) ˅ (¬A ˄ B ˄ ¬C).

4.1.3 Conjunctive Normal Form (CNF)

The conjunctive normal form (CNF) is also known as Clausal Form because of

involving a combination of clauses and this form can involve a literal or its

complement in each term.

CNF can only involve the propositional connectives AND, OR and NOT, and no

another connective; the only connective which is used as a part of a literal is NOT

connective. CNF is also known as summations’ product.

The following formulas are in CNF:

A ˅ B;

(A ˅ B) ˄ (¬A ˅ B)

(A ˅ B ˅ ¬C) ˄ (A ˅ ¬B ˅ C) ˄ (A ˅ B ˅ ¬C).

41

The following formulas are not in CNF because of different reasons:

(A ˅ B) ˅ (¬A ˅ ¬B) (because the logical connective between terms is OR, but it

must be AND);

(A ˄ B) ˄ (¬A ˄ ¬B) (because the variables A and B are connected by AND logical

connective);

(A ˅ B ˅ ¬C) ˄ (A ˅ ¬B ˅ C) ˄ (A ˅ B) (because the last term does not contain the

variable C).

4.2 Horn Clauses

A logical formula which is in a specific rule-like form and provides good

specifications and characteristics to be used in logical programming, formal

specification and model theory is known as Horn Clause which is named after the

invertor of this clause - the logic expert Alfred Horn who proposed this theory in

1951.

In a Horn clause the disjunction of literals is considered, and there can be at most one

positive literal to be used in this disjunction. For example, the clauses A˅ ¬B, ¬A˅

¬B, A˅ ¬B ˅ ¬C, ¬A˅ ¬B ˅ ¬C are possible Horn clauses. The clauses A˅ B, A˅ B

˅ ¬C are not Horn clauses.

A Horn clause is a definite clause if it contains exactly one positive literal. For

example, ¬A ˅ B, ¬A ˅ B ˅ ¬C are the possible definite clauses.

42

The definite clause represented in the form ¬A ˅ ¬B ˅ C can be also described in

another form as A ˄ B → C.

A Horn clause can be described in the form of “condition => conclusion”. For

example, the clause represented as

parent (X,Y) ˄ parent (X,Z) => siblings (Y,Z)

is a Horn clause.

A Horn clause A ˄ B ˄ C => Q can be also described in another Horn clause form

¬A ˅ ¬B ˅ ¬C ˅ Q.

It should be also noticed that the logic programming language Prolog which is

popular in Artificial Intelligence is based on Horn clauses. Forward chaining which

is a data-directed reasoning and backward chaining which is a goal-directed

reasoning are based on Horn clauses.

4.3 Two forms of valid inferences

Two forms of valid inferences in propositional logic to be discussed below are

Modus Ponens and Modus Tollens.

4.3.1 Modus Ponens

Modus ponens in a propositional logic is a form of valid argument which means that

“A implies B, and A is true, so therefore B must be true”. Modus ponens is derived

from Latin words MODUS PONENDO PONENS that means the way to make it

confirmed, and is abbreviated to MP.

43

The history of modus ponens is associated with ancient era. Modus ponens is related

to another valid argument known as modus tollens, but these arguments have

different syntax and semantics.

Modus ponens is a rule of inference, and is also known as a “method of affirming” in

propositional logic.

As an example of modus ponens argument form, the following premises and

conclusion can be considered:

Premise 1: if student studies hard then he/she will get a good grade.

Premise 2: student will study hard.

Conclusion: student will get good grade.

Modus ponens can be symbolized as

A → B

A

B

or in another form ((A → B) ˄ A) → B, where A and B are statements. The truth

table for modus ponens is constructed in Table 20.

44

Table 20: Truth table for modus ponens

A B A → B (A → B) ˄ A ((A → B) ˄ A) → B

T T T T T

T F F F T

F T T F T

F F T F T

4.3.2 Modus Tollens

Modus Tollens in propositional logic is another form of valid argument and means

“A implies B, and not B, so therefore not A”. Modus tollens is a deductive form with

two premises and one conclusion, and so modus tollens is a syllogism.

Modus tollens is derived from Latin word MODUS TOLLENDO TOLLENS which

means the way to refuse the consequent, and is abbreviated to MT. The history of

Modus tollens is also related with ancient era.

Modus tollens is also known as a “method of denying” in propositional logic.

As an example of the modus tollens argument form the following premises and

conclusion can be considered:

45

Premise 1: if the traffic is busy, Tom will be late for school.

Premise 2: Tom was not late for school.

Conclusion: the traffic was not busy.

Modus tollens can be symbolized as

A → B

¬B

¬A

or in another form ((A → B) ˄ ¬B) → ¬A, where A and B are statements.

The truth table for modus tollens is constructed in Table 21.

Table 21: Truth table for modus tollens

A B A→B ¬B (A → B)

˄ ¬B

¬A ((A → B) ˄

¬B) → ¬A

T T T F F F T

T F F T F F T

F T T F F T T

F F T T T T T

46

Chapter 5

CONCLUSION

Propositional logic is a very useful tool for reasoning process, and this logic provides

the establishment of a reason to describe the truth or falsehood of the logical

statement.

This master thesis represents the propositional logic and its functionality with uses in

details and shows how this logic can be used for knowledge representation and

reasoning process.

In this thesis such terminologies of a propositional logic as proposition which is a

statement that can get one of truth values - true or false, logical connectives which

are used to establish compound statements, different types of propositions as

tautology, satisfiability, contradiction, contingency and logical equivalence,

negation, disjunctive and conjunctive normal forms denoted as NNF, DNF, and CNF

respectively, Horn clauses which are logical formulas with at most one positive

literal, and two forms of valid inferences - modus ponens and modus tollens, are

discussed with their properties.

47

REFERENCES

[1] Navarro-Perez, J. A., & Voronkov, A. (2013). Planning with Effectively

Propositional Logic. Programming Logics, pp. 302-316.

[2] Nguyen, T-M-T., Tran, D.-K. (2016). Resolution Method in Linguistic

Propositional Logic. International Journal of Advanced Computer Science and

Applications (IJACSA), Vol. 7, No. 1, pp. 672-678.

[3] Poli R., Ryan M., & Sloman A. (1995). A New Continuous Propositional Logic.

Portuguese Conference on Artificial Intelligence (EPIA 1995), Progress in

Artificial Intelligence, pp 17-28.

[4] Kakas, A., Toni, F., & Mancarella P. (2013). Argumentation for Propositional

Logic and Nonmonotonic Reasoning. In the 11th International Symposium on

Logical Formalizations of Commonsense Reasoning, Proceedings.

[5] Navarro-Perez, J. A., & Voronkov, A. (2008). Proof Systems for Effectively

Propositional Logic. Automated Reasoning. 4th International Joint Conference,

IJCAR 2008 Proceedings, pp. 426-440.

[6] Nizamani, A. R., Strannegard, C. (2014). Learning Propositional Logic From

Scratch. The 28th annual workshop of the Swedish Artificial Intelligence Society

(SAIS).

48

[7] Buvac, S., & Mason, I. A. (1993). Propositional Logic of Context. AAAI-93

Proceedings, pp. 412-419.

[8] Lang, J., & Marquis, P. (1998). Two forms of dependence in propositional logic:

controllability and definability. AAAI-98 Proceedings.

[9] Bejar, R., & Manya, F. (2000). Solving the Round Robin Problem Using

Propositional Logic. Proceedings of the Seventeenth National Conference on

Artificial Intelligence and Twelfth Conference on Innovative Applications of

Artificial Intelligence, pp. 262-266.

[10] Nguyen, T.-M.-T., Vu, V.-T., Doan, T.-V., & Tran, D.-K. (2013). Resolution in

Linguistic Propositional Logic based on Linear Symmetrical Hedge Algebra.

Knowledge and Systems Engineering. Advances in Intelligent Systems and

Computing, vol 244, pp. 327-338.

[11] Lodder, J., Heeren, B., Jeuring, J. (2016). A Domain Reasoner for Propositional

Logic. Journal of Universal Computer Science, vol. 22, no. 8, pp. 1097-1122.

[12] Finger, M. (2004). Towards Polynomial Approximations of Full Propositional

Logic. Advances in Artificial Intelligence – SBIA 2004: Proceedings of 17
th

Brazilian Symposium of Artificial Intelligence.

[13] Ishida T., Inokuchi, S., & Kawahara Y. (2016). Propositional Logic and Cellular

Automata on Monoids. Journal of Cellular Automata, Vol. 12, pp. 27-45.

49

[14] Dyrkolbotn, S., & Walicki, M. (2014). Propositional discourse logic. Synthese,

191, pp. 863–899.

[15] Pietarinen, A.-V. (2001). Propositional Logic of Imperfect Information:

Foundations and Applications, Notre Dame Journal of Formal Logic, Volume 42,

Number 4, pp. 193-211.

[16] Lukins, S., Levicki, A., & Stacy, J.B. (2002). A Tutorial Program for

Propositional Logic with Human/Computer Interactive Learning. Proceedings of

the 33
rd

 SIGCSE technical symposium on Computer science education, pp. 381-

385.

[17] Zhang, Z., Sui, Y., Cao, C., & Wu, G. (2006). A formal fuzzy reasoning system

and reasoning mechanism based on propositional modal logic. Theoretical

Computer Science 368 (2006), pp. 149-160.

[18] Rene, B., Bedregal, C., & Cruz, A.P. (2006)..Propositional Logic as a

Propositional Fuzzy Logic. Electronic Notes in Theoretical Computer Science,

143, pp. 5–12.

