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ABSTRACT 

The purpose of this master thesis is to investigate the basic concepts of propositional 

logic for knowledge representation and formalization of reasoning in Artificial 

Intelligence.  

The different properties of logical propositions are discussed. The basic and derived 

logical connectives are used to establish the compound statements, and the truth 

tables are constructed to investigate the properties of logical connectives.  Such 

propositions as tautology, satisfiability, contradiction, contingency, logical 

entailment and logical equivalence are analyzed. Three algebraic normal forms - 

negation normal form, disjunctive normal form and conjunctive normal form are 

studied. Horn clauses are implemented. Two forms of valid inferences as modus 

ponens and modus tollens are considered. Some examples are provided to better 

understand the main properties of propositional logic. 

Keywords: Propositional Logic, Logical Connectives, Normal Forms, Horn Clauses, 

Modus Ponens, Modus Tollens 
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ÖZ 

Bu tezin amacı önermeler mantığının yapay zeka alanında bilgi gösterimi ve akıl 

yürütme biçimselliştirmesi için temel kavramları incelemektir. 

Mantık önermelerinin farklı özellikleri tartışılır. Temel ve türetilmiş mantık 

bağlaçları kullanarak bileşik önermeler oluşturulur, ve doğruluk tabloları kurarak 

mantık bağlaçlarının özellikleri araştırılır. Totoloji, tatmin edilebilirlik, çelişki, 

beklenmedik durum, mantıksal gerektirme ve mantıksal denklik gibi önermeler 

incelenir. Üç cebirsel normal form - olumsuzluk normal formu, ayırıcı normal formu 

ve bağlayıcı normal formları irdelenir. Horn cümlecikleri uygulanır. Modus ponens 

ve modus tollens gibi iki geçerli sonuç çıkarma yöntemleri incelenir. Önermeler 

mantığının daha iyi anlaşılması için bazı örnekler verilir. 

Anahtar Kelimeler: Önermeler mantığı, Mantık bağlaçları, Normal formlar, Horn 

cümlecikleri, Modus Ponens, Modus Tollens 
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Chapter 1 

1 INTRODUCTION 

Artificial Intelligence (AI) is a branch of computing and engineering that is used in 

many areas and mimics the human intelligence and behavior, and it is concerned 

with simulation of intelligent actions in computers. So AI is a study of “intelligent 

agents” in which devices are used to identify the environment to boost. AI is very 

useful to let machines think and act like human being to solve different complex 

problems. 

The study of principles of correct analysis is known as logic and it is derived from 

the Greek word “logos” which means sentence, reason, thought, rule, ratio or what is 

spoken and contains a systematic study of the form of arguments. When there is a 

connection between expectations of arguments and conclusion or result then it will 

be called a valid argument which is very important in logic.  

There are different types of logic known as formal, informal, symbolic and 

mathematical logics. 

Representing and reasoning with knowledge is playing a central role in AI. 

Knowledge representation is committed to representing information about the world 

in such a way that a computer system can be able to solve complicated tasks. It is 
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very difficult to talk to experts in any system or organization in terms of codes or 

organizational ways rather than easy and straightforward daily talks.  

Knowledge is information about any specific area to solve different kind of problems 

within this area, and knowledge is used to solve a number of problems and it must be 

mentioned that knowledge should be represented by a computer. The knowledge is 

known as representation scheme, and representation is any kind of knowledge that 

shows the inner and internal workout and structure of data and its output, and when 

there is a complete representation of knowledge then it is stored by an intelligent 

agent. 

All knowledge representation languages are based on different types of logic. 

Propositional logic is an excellent tool to represent knowledge in many AI problems.  

Propositional logic is a branch of logic which deals with ways of accompanying or 

adjusting all propositions, statements or sentences to create more complicated 

(compound) propositions. The simplest statements are treated as individual units, so 

propositional logic does not study those logical properties. 

The history of logic starts from Aristotle (384-322 BC), but Aristotle’s practical 

writing about logic is related to a logic of categories and quantifiers like “all” and 

“some” which are not conducted in propositional logic. Aristotle adopted two rules 

for great importance in propositional logic which are called “Law of Excluded 

Middle” and “Law of Contradiction”.  

In later 3
rd

 century BCE a serious study about logical operators like “and”, “or” and 

“if…then…” was conducted by Stoic philosophers. Stoic philosopher Chrysippus 
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(280-205 BCE) represented a work related to propositional logic by making out a 

number of different ways of making complicated boundaries for arguments. The 

basic reasoning design like Diagenes Laertius, Aextus Empirius was presented by 

Chrysippus and other philosophers. 

Some advanced works on Stoics were launched in the form of small steps in later 

centuries. Some works were done by Galen (129-210 BCE), Boethius (480-525 

BCE), Peter Abelard (1079-1142 BCE), William of Ockham (1288-1947 BCE). 

Augustus DeMorgan (1806-1871 BCE), George Boole (1815-1864 BCE) and 

Gottlob Frege (1848-1925 BCE) presented some advanced works. 

Propositional logic has specific syntax and semantic to be used for designing 

proposition and clarifying its logic and meaning.  

Every language has different and unique syntax and semantic rules regardless it’s a 

real life language or a computer language.  

Syntax of proposition in propositional logic is the adjustment of words and 

expression to design and make well-formed sentences in any language; in other 

words, syntax is a set of rules to design a sentence in a particular language. Nouns, 

pronouns, adjectives, verbs etc. make a sentence but syntax is used to adjust every 

part to make proper sentence which has a meaning. To understand it better, let’s 

consider the following combination of words: “I good at studying am university very 

a”; this combination of words does not form any meaning, but if syntax is to be 

applied on these words, a meaningful sentence will be like “I am studying at a very 

good university”.  
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Syntax is also known as grammar for language and propositional logic; there are 

some components which are used in grammar for propositional logic: connectives 

(operators), grouping symbols etc. 

The meaning of the sentence is defined by the semantics of a propositional logic. The 

interpretation is related to semantics of a propositional logic. The interpretation is 

determined by the sentence or propositional variable. The semantics can be used to 

represent different statements and their Boolean values - true or false values about 

the world.   

The interpretation of the sentence or formula in a propositional logic can be defined 

in the following forms: a sentence becomes satisfiable if it is true in some 

interpretations; a sentence becomes unsatifiable if it is true in no interpretation; and a 

sentence is valid if it is true in all interpretations.  

The atomic propositions which can be represented by true or false logical values can 

be combined for some reasons. The symbols like ¬, ˄, ˅, →, ↔ are logical 

connectives or operators which are used in propositional logic. By using the logical 

connectives it is possible to establish propositional formulas. Well-Formed Formula 

(WFF) can be constructed by using single atomic propositions represented by capital 

letters A,B,C,…,Z, their negations, and joining any two single atomic propositions 

by using the logical connectives. WFF makes the statement meaningful and 

unambiguous. 

One of the useful tools to analyze a propositional logic is the truth table which has a 

tabular form of representation of all possible combinations of true or false values of 
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the input statements resulting in finding the truth value of the output compound 

statement; so several atomic statements can be combined into a single statement by 

using logical connectives, and there is a distinct truth table for each logical 

connective. 

Truth table is also effective way to represent such compound propositions as 

tautology, contradiction, contingency and logical equivalence. 

Modus Ponens and Modus Tollens are two rules of inference for propositional logic 

and they are described in Schematic Form. 
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Chapter 2 

2 REVIEW OF EXISTING LITERATURE ON 

PROPOSITIONAL LOGIC 

The paper [1] presents a finite predicate logic corresponding to the fragment of first 

order logic, and this fragment allows usage of equality and quantification. The model 

of this logic can be interpreted as Herbrand universe. The formulae of this logic can 

be effectively translated to the Bernays-Schonfinkel formulae. The proposed logic 

helps optimally encode planning problems. In comparison with the propositional 

approach, the reasoning with the presented logic is exponentially more efficient. 

Moreover, the proposed method is also effective to find optimal form of 

propositional encodings. 

In [2] the resolution approach in a linguistic propositional based on truth values is 

proposed to establish main concept of symmetrical refined hedge algebra which is 

effectively used for the application to the intelligent reasoning system. The syntax 

and semantic of the linguistic propositional logic are determined. The linguistic 

information processing focusing on linguistic variables is supported. The resolution 

rule and procedure for soundness and completeness results are investigated.  

A generalization of propositional logic approach which allows using the truth values 

in the continuous interval 0 and 1 is described in [3], and this generalized form is 

called Minimal Polynomial Logic (MPL). The representation of propositions in MPL 
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is done using multi-variate polynomials. The simplest form of the polynomial logic 

denoted as PL 0  is also studied. This study shows that PL 0  is an efficient logic to 

prove some particular results about classical logic. Both MPL and PL 0  are 

implemented and the relationships of both logic techniques with the concepts of 

fuzzy logic and probabilistic logic are determined.  

Argumentation has been one of the increasingly core studies in human reasoning in 

Artificial Intelligence. Argumentation has also been one of the objectives to be used 

for bringing together the propositional logic and non-monotonic reasoning in one 

unified frame. The paper [4] aims to investigate the connection between 

argumentation and propositional logic. This connection is useful for supporting a 

non-monotonic reasoning in Artificial Intelligence. A new logic of arguments which 

is called Argumentation Logic (AL) is formulated. The relation of argumentation 

logic with the propositional logic is studied, and the properties of argumentation 

logic are investigated.   

The effectively propositional logic is a fragment of first-order predicate logic to be 

translated into propositional logic. Both propositional resolution and resolution with 

generalization are used for effectively propositional logic in [5]. A generalization 

rule shows that in comparison with resolution, the suggested resolution with 

generalization has exponentially shorter proofs. The sort assignments for the 

generalization process are provided. 

Constructing the plausible mathematical model for understanding human reasoning 

and intelligence is important in Artificial Intelligence. The intelligent agents with 
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abilities of deductive and inductive reasoning are developed by using computational 

model [6]. The agents can learn a generalized knowledge and arithmetic and 

propositional logic from examples. The agents are able to learn syntax and logical 

laws. The performance of the agent overcomes the average human performance in 

terms of accuracy. The proposed model is implemented using Haskell functional 

programming language. The learning process is described in case of propositional 

logic. The application areas of the presented agents are theorem proving, intellectual 

pedagogical systems etc.  

The contexts were firstly introduced as a solution mechanism of the generality 

problem in artificial intelligence. The paper [7] studies the logical properties of 

contexts. The propositional language of context is investigated in terms of its syntax 

and semantics. The proof system based on Hilbert style is considered for general 

propositional language to provide the optimal results of the soundness and 

completeness of the system.  

The paper [8] is about the controllability and definability as two strong forms of 

dependence involving variables in propositional knowledge base. The computational 

complexity issues are analyzed. It is mentioned that the controllability is a weaker 

form of dependence compare to definability. The applications of both forms are 

done, and one of the applications is decision under incomplete knowledge which is 

related to high complexity of controllability, and another application is the 

hypothesis discrimination. 

To solve an extremely hard problem in the sports scheduling domain, a new and 

extremely competitive approach called the round robin problem is offered in [9]. The 
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combination of a traditional propositional logic based problem encoding and local 

search satisfiability algorithms provides a determination of feasible schedules for the 

round robin problem much faster in comparison with other existing methods used for 

the same problem. The performed experiments for solving the round robin problem 

for different number of teams show the suitability of scheduling after combining the 

above two approaches.   

The paper [10] introduces the linear propositional logic system using true value 

domain from linear symmetrical hedge algebra. The syntax, semantics, and inference 

of this logic system are presented. The resolution inference rule and resolution 

principle are defined for this logic system. The t-norm and t-conorm operations of 

Gödel are used to define the logical connectives for a linear propositional logic. The 

resolution inference rule is obtained by implementing the concept of reliability. The 

clauses of inference rule which have linguistic truth values with contradictory nature 

are defined. The maximal reliability of each clause of inference rule is determined.  

The paper [11] considers the rules for developing strategies for students to solve 

propositional logical exercises in learning environment called LogEx. This learning 

environment intends rewriting a logical formula in normal form. LogEx provides a 

development of a domain reasoner for logic, and students can reach such learning 

goals as recognizing and applying rules correctly, proving the equivalence of 

formulae etc. 

Dalal’s approximation strategy has some limitations for full propositional logic. The 

family of logics Limited Bivalence is used for approximation of classical logic [12]. 

Each approximation step is realized in a polynomial time.    
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Cellular Automata with binary states on monoids is studied in [13], and it enables 

using formulae in propositional logic. The main properties of transition functions for 

Cellular Automata are defined. The multiplication of formulae on monoids is 

performed, and the basic properties of the multiplication are discussed. 

The propositional discourse logic (PDL) is one of the modern normal forms of 

propositional logic establishing the facts about truth or falsity of the statements in a 

finite discourse, and is related to the structure of natural discourse logic [14]. The 

main properties of PDL is making reasoning in the presence of inconsistency by 

minimizing the number of assumptions, and avoiding a problematic behavior of 

logical connectives in case of having paradox situations. The directed graphs 

represent the referential structure of discourses. 

In [15] the propositional logic of imperfect information also called IF-propositional 

logic is defined in terms of extensive form semantic games. The partitional structure 

of these games under imperfectness of information is studied. The time consistency 

plays an ambiguous role in analyzing the games, and this qualification is especially 

useful when the same information set is visited several times during playing the 

game. The application of this type of propositional logic in quantum theory and 

quantum logic is specified.  

An intelligent tutorial program called P-logic Tutor which plays double roles as 

educational tool and a research environment is described in [16]. The important 

properties of this program are to teach students the basic concepts of propositional 

logic and providing them abilities in theorem-proving concepts. The implementation 

of this tutorial system program is done in Java programming language. 
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In the paper [17] a fuzzy propositional modal logic (FPML) and its semantics called 

fuzzy Kripke semantics are presented. Besides describing the properties of the fuzzy 

reasoning procedure, the possibility for the realization of the reasoning procedure on 

computer is studied. The soundness and completeness of the FPML system are 

studied.  

Fuzzy logic is an important tool for representation of human reasoning in the 

presence of uncertainty. The fuzzy interpretation of such logical connectives as 

conjunction, disjunction, negation, implication and bi-implication is presented in 

[18]. The fuzzy interpretation of logical connectives leads to the cases in which the 

set of fuzzy tautologies exactly coincide with the set of classical tautologies. The 

propositional fuzzy logic is based on t-norm. The classical propositional logic can 

also be modeled by fuzzy connectives.  

 

 

 

 

 

 



12 

 

Chapter 3 

PROPOSITIONS AND LOGICAL CONNECTIVES 

3.1 Proposition 

Proposition is an interpretative sentence which is used to express the given statement, 

suggestion, idea, plan or opinion to represent true or false values, but a proposition 

can’t be both true and false at the same time. For example, the statement “Tomorrow 

it will be rainy” can be true or false but not both at the same time.  

It’s very important to note that not any sentence can represent a proposition, for 

example, “The movie is interesting” or “Black roses are beautiful”; in these 

sentences it’s not possible to give a single answer as yes or no, true or false, because 

maybe movie for some persons is interesting but for some other persons it doesn’t 

have any interest at all, and maybe some people like black roses but some other 

people dislike them; so it’s not a proposition. 

The notations used for propositions are A,B,C,..,a,b,c,…, to describe the 

propositional variables and to represent the statements which will get one of the 

logical values: true or false. So it is to mention that True (T) and False (F) are two 

constants used in propositional logic.  

3.1.1 Compound proposition 

A proposition that can further be distributed into many parts such that each 

individual part acts like a proposition, is known as a compound proposition. In 
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compound proposition, every individual part has a unique value which is either true 

or false. Some examples of compound propositions are as follows: if it will be rainy 

tomorrow then I will not attend my friend, otherwise I will take some snacks with 

tea, and if it will be sunny tomorrow then I will go to the beach.  

3.1.2 Standard form of proposition 

A proposition can be expressed in standard form which is also known as a symbolic 

form. For example, in sentence used above it can be observed that there are some 

small parts like A = It will be rainy tomorrow, B = I will not attend my friend, C = I 

will take some snacks with tea, D = It will be sunny tomorrow, E = I will go to the 

beach. To connect or join A, B, C, D and E with each other, some specific words like 

if, then, otherwise are used.  

The above proposition can be represented in standard form as if A then B, otherwise 

C, and if D then E. 

3.1.3 Categorical proposition 

A proposition which is defined as a basic concept of Aristotle logic, and dealing with 

two or more classes of objects, is called a categorical proposition. It is a proposition 

which accepts or refuses all or some objects from one group carried by another 

group.  

Categorical proposition normally contains such parts as “Object Term” which is a 

first category, “Predicate Term” is a second category, “Copula” which connects 

different parts of categorical proposition, and “Quantifies” which are the words used 

to determine the class of object associated with predicate class. 
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It should be noted that while considering a categorical proposition, some specific 

terms like ”all”, “no” and “some” can be used for all categorical propositions. The 

standard form of all of them will be as follows: All S are P, No S is P, Some S are P, 

Some S are not P. 

3.2 Logical connectives 

To link, connect, join or attach two or more propositions or sub-propositions in 

grammatically accurate way in which the meaning and purpose of a compound 

sentence should not be meaningless, some specific symbols or words are used, and 

these words or symbols are known as logical connectives or operators. Binary 

connectives are widely and commonly used logical connectives and known as dyadic 

connectives. In propositional logic there are some specific symbols which are used to 

connect different propositions with each other to make compound proposition, and 

these symbols represent logical connectives. These logical connectives are given 

below: 

1. NOT connective which is also called a negation connective, and in nature it’s a 

unary operator; 

2. AND connective which is also called a conjunction connective, and in nature it’s a 

binary connective; 

3. OR connective which is also called a disjunction connective, and in nature it’s a 

binary connective; 

4. Implication connective which contains conditional “if…then” statement, and in 

nature it’s a binary connective; 
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5. Equivalence connective which contains necessary and sufficient condition “if and 

only if” (sometimes shortly described as iff), and in nature it’s a binary connective; 

6. NAND connective which is NOT of all ANDs, and in nature it is a binary 

connective; 

8. NOR connective which is NOT of any OR, and in nature it is a binary connective; 

9. XOR connective which is OR but not both, and in nature it’s a binary connective. 

It is important to note that NOT, AND, OR, implication, and equivalence are basic 

and regularly used logical connectives. The connectives NAND, NOR, and XOR are 

deriving connectives.  

Among all others, only NOT connective is a unary logical connective that means it 

needs at least one statement or expression to work; all other logical operators are 

binary in nature which means that they need at least two statements or expressions to 

work.  

The logical connectives with quantifiers have logical constants of two major types 

which are used as propositional logic and predicate logic in the academic system. 

The basic connectives which are used in propositional logic are represented in Table 

1. 
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      Table 1: Basic logical connectives 

Negation NOT ¬, ~ 

Conjunction AND ˄ 

Disjunction OR ˅ 

Implication if….then → 

Equivalence if and only if (iff) ↔ 

 

Some basic and deriving connectives can be used in examples represented in Table 2. 

3.3 Notation history of logical connectives 

The representation of True and False values of logical propositions can be done by 

using the following specific symbols (notations): ┬ for True and ┴ for False. 

Negation is denoted by ¬ symbol, and it was firstly introduced by Heiting in 1929. 

The symbol ~ is another form to represent Negation, and it was firstly introduced by 

Russell in 1908. Before this, Negation was represented by prime (´) and bar ( ̄ ). 

Conjunction is represented by the symbol ˄ and was firstly introduced by Heiting in 

1929. Before this, the symbol ∩ (intersection) was used to represent AND. 

Disjunction is represented by the symbol ˅ and was firstly introduced by Russell in 

1908, and before this it was represented by the symbol ∪ (union). 
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                Table 2: Some basic and deriving logical connectives in example  

Logical 

connective 

Example 

P = It is rainy       Q = It is cool breeze 

NOT (¬) 

 

It is not rainy 

¬P 

AND (˄) It is rainy and cool breeze 

P ˄ Q 

OR (inclusive) 

(˅) 

It is rainy or cool breeze (or both) 

P ˅ Q 

     Neither ... 

NOR 

It is neither rainy nor cool breeze. ¬P ˄ ¬Q 

OR 

(Exclusive) 

 (XOR) 

It is rainy or cool breeze (but not both). 

(P ˅ Q) ˄ ¬ (P ˄ Q) 

 

Implication connective is represented by the symbol → and was firstly introduced in 

1917 by Hilbert, and before this the symbol ⸧ was used by Russell in 1908, and the 

symbol => was used by Vax. 

Equivalence connective is represented by the symbol ↔, and was denoted by 

different symbols in different times as follows: as symbol = in 1908 by Russell; as 

symbol ↔ by Tarksi in 1940; as symbol ⸧⸦ by Gentzen; as symbol ~ by 

Schonfinkell; and as symbol ⸦⸧ by Chazel. 
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Some authors also used letters to represent connectives at different times like Hilbert 

in 1904 used u as conjunction, and it is abstracted from German “und” meaning 

“and”, o for disjunction derived from German “oder” meaning “or”. In 1929, 

Lukasiewicz used N for negation, K for conjunction, A for disjunction, C for 

implication and E for equivalence connectives.  

3.4 Truth tables for logical connectives 

Truth table is based on binary values with combination of rows and columns and is 

used to check and verify logical operators’ functionality, validity and scope. In broad 

sense, a truth table is a mathematical table that is used for logics’ verification, and is 

especially concerned about Boolean algebra, Boolean functions and propositional 

calculus. Specifically, a truth table is used to calculate and check the truth and falsity 

of a propositional expression. In a truth table the possible binary values are written to 

predict and calculate the result under the condition that it should properly work for 

any combination of logical values.  

A compound statement is formed from the combination of two or more statements.  

The number of rows in a truth table can be determined by a number of variables and 

can be easily calculated using a simple formula “2
n”

. If there are two variables then 

number of rows will be 2
2
 = 2×2=4, and if the number of variables is 5, then number 

of rows will be 2
5
 = 2×2×2×2×2=32. A truth table contains one column for every 

individual input variable A,B,…..,X,Y,Z, and there must be a column for all the 

possible results of the logical operations for what the truth table is designed.  

To understand the truth tables properly, the following crucial background should be 

revised:  
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- A sentence is called a formula or a well-formed formula (WFF) in formal symbolic 

language of propositional calculus; 

- Atomic and compound are two main types of classes in propositional calculus, and 

atomic formula is used to represent a simple declarative sentence. For example, 

“Einstein was a scientist” is denoted by a single sentential constant, whereas 

compound formula is a combination of atomic formulas which is formed by using the 

logical connectives AND, OR, NOT, XOR etc.; 

- The important issue in a truth table is to remember the true or false values of a 

compound formula; 

- A truth table is divided into two sides as right and left, where the left side is used to 

mention all possible combinations of truth values which have to be used for atomic 

formulas and propositions, and the right side of a truth table is used to show the 

resultant truth values of atomic formulas which is considered as a compound 

formula. So the right part allows determining for which conditions the compound 

formula is true or false; 

- Logical languages are based on perfect clarification and certainty while logical 

connectives have their relations with natural language and can’t be defined or 

explained by any means of natural language until an ambiguity in natural language is 

eliminated.  

All logical connectives can be proved by their functionality using truth tables. 
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3.4.1 Truth table for AND connective 

While using AND or conjunction connective, there must be at least two statements to 

perform this operation. If A and B are statements, then the conjunction A ˄ B is true 

if and only if both of the statements A and B are true, otherwise it is false. If there are 

more than two simple statements with possible pairs of true/false values then the 

conjunction is true if all the statements have true values, otherwise if at least one of 

the values of the statements is false then conjunction is false. Table 3 shows the truth 

table for AND connective (with two statements). 

                     Table 3: Truth table for AND connective 

A B A ˄ B 

T T T 

T F F 

F T F 

F F F 

 

3.4.2 Truth table for OR connective 

Application of OR or disjunction connective requires at least two simple statements 

to work. If A and B are statements, then the disjunction A ˅ B is true if at least one 

of the statements has true value, i.e. if either A or B has true values, or both of the 

statements have true values, then the disjunction is true, otherwise it is false. If there 
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are more than two simple statements with possible pairs of true/false values then the 

disjunction is true if at least one of the statements has true value. If all the values of 

the statements are false, the disjunction is false. Table 4 shows the truth table for OR 

connective (with two statements). 

                    Table 4: Truth table for OR connective 

A B A ˅ B 

T T T 

T F T 

F T T 

F F F 

 

3.4.3 Truth table for NOT connective 

NOT or negation connective is a unary connective; so it needs only one statement to 

perform operation to check the functionality. This connective gives true result if a 

value of the statement is false, and if a value of the statement is true then result will 

be false. Table 5 shows the truth table for NOT connective. 
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                            Table 5: Truth table for NOT connective 

 

A 

 

¬ A 

 

T 

 

F 

 

F 

 

T 

 

3.4.4 Truth table for Implication connective 

Implication connective represented in “if….then” form needs at least two statements 

to work. While using this connective, the result will be false only if precedent value 

is true and subsequent value is false; in all other combinations of logical values of 

statements the result will be true. Table 6 shows the truth table for Implication 

connective. 

3.4.5 Truth table for Equivalence connective 

Equivalence connective is implemented if there are at least two statements. This 

connective results true if precedent and subsequent parts have same status of being 

true or being false; it means if both values of the statements are true or both values of 

the statements are false, then Equivalence statement results true, otherwise this 

connective results false. Table 7 shows the truth table for Equivalence connective. 
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                     Table 6: Truth table for Implication connective 

A B A → B 

T T T 

T F F 

F T T 

F F T 

 

                      Table 7: Truth table for Equivalence connective 

A B A ↔ B 

T T T 

T F F 

F T F 

F F T 
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3.4.6 Truth table for NAND connective 

The NAND connective is NOT of all AND’s and is a binary logical connective of 

two statements. NAND operator is actually the complement or negation of AND 

connective, and is read as NOT of A AND B. Table 8 shows the truth table for 

NAND connective. 

                     Table 8: Truth table for NAND connective 

A B A NAND B 

T T F 

T F T 

F T T 

F F T 

 

3.4.7 Truth table for NOR connective 

The NOR connective is NOT of OR and is binary logical connective of two 

statements. This connective results true if both precedent and subsequent have same 

false values, and this connective results false for all other combinations of pairs of 

values of both statements. NOR is also read as NOT of A OR B. Table 9 shows the 

truth table for NOR connective. 

 



25 

 

                     Table 9: Truth table for NOR connective 

A B A NOR B 

T T F 

T F F 

F T F 

F F T 

 

3.4.8 Truth table for XOR connective 

The XOR (exclusively OR) connective is a binary logical connective of two 

statements. This logical connective results true if exactly one of two statements has 

true value and these connective results false if either both statements have true values 

or both statements have false values. Table 10 shows the truth table for XOR 

connective. 
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                     Table 10: Truth table for XOR connective 

A B A XOR B 

T T F 

T F T 

F T T 

F F F 

 

3.5 Order of precedence of logical connectives 

The sequential hierarchy of nominal priority of values or numbers is known as order 

of precedence which is normally used when there are multiple (more than one) 

connectives in a single statement to make it clear which sequence and flow 

expression will be processed and which connective will take first place and which 

will come at the end and what will be the order of other connectives used in 

expression. Connectives’ precedence or hierarchy is commonly used for compound 

expressions.  

The connectives’ precedence has been very meaningful for a long time, and it was 

firstly called the “order of operations”. The rule for connective hierarchy is simple 

and given below: 
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- Parentheses “( )” in expressions have more priority from inside to outside in every 

condition; 

- Negation connective “¬” always has priority over all others; 

- Conjunction or logical AND “˄” is processed after negation, if required; 

- Disjunction or logical OR “˅” will take place afterwards; 

- Implication “→” will take place after disjunction; 

- Equivalence “↔” will take place at the end. 

The precedence of logical connectives is represented in Table 11. 

Table 11: Precedence of logical connectives 

Connective Symbol Precedence 

NOT ¬ 1 

AND ˄ 2 

OR ˅ 3 

Implication → 4 

Equivalence ↔ 5 
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3.6 Tautology, satisfiability, contradiction, contingency, logical 

entailment and logical equivalence 

3.6.1 Tautology 

Tautology is a proposition which is always true for all the values of the propositional 

variables. 

Let’s use truth table to verify that the formula A ˅ ¬ (A ˄ B) is a tautology which is 

represented in Table 12. 

Table 12: Truth table for tautology verification of formula A ˅ ¬ (A ˄ B) 

A B A ˄ B ¬ (A ˄ B) A ˅ ¬ (A ˄ B) 

T T T F T 

T F F T T 

F T F T T 

F F F T T 

 

It is possible to see from the Table 12 that all logical values under the main operator 

(last column) are true; it means that the compound proposition A ˅ ¬ (A ˄ B) is a 

tautology. 
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3.6.2 Satisfiability 

A formula is said to be satisfiable if and only if the negation of the formula is not a 

tautology, or in other words, the formula is true under at least one interpretation. 

Let’s use truth table to verify that the formula A ˄ ¬B is satisfiable (Table 13). 

Table 13: Truth table for satisfiability verification of formula A ˄ ¬B 

A B ¬B  A ˄ ¬B 

T T F F 

T F T T 

F T F F 

F F T F 

 

It is possible to see from the Table 13 that the second logical value under the main 

operator (last column) is true, so the negation of the formula A ˄ ¬B is not a 

tautology, so this formula is satisfiable. 

3.6.3 Contradiction 

A contradiction is a proposition which is always false for all the values of the 

propositional variables.  
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Let’s use truth table to verify that the formula A ˄ ¬B ˄ (A → B) is a contradiction 

which is represented in Table 14. 

Table 14: Truth table for contradiction verification of formula A ˄ ¬B ˄ (A → B) 

A B ¬B A → B A ˄ ¬B ˄ (A → B) 

T T F T F 

T F T F F 

F T F T F 

F F T T F 

 

It is possible to see from the Table 14 that all the logical values under the main 

operator (last column) are false; it means that the proposition A ˄ ¬B ˄ (A → B) is a 

contradiction. 

3.6.4 Contingency 

Another proposition which plays an important role in a reasoning process is a 

contingency. A contingency is a proposition which is neither a tautology nor a 

contradiction. 

Let’s use truth table to verify that the formula ¬A → (A ˄ B) is a contingency which 

is represented in Table 15. 
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Table 15: Truth table for contingency verification of formula ¬A → (A ˄ B) 

A B ¬A A ˄ B ¬A → (A ˄ B) 

T T F T T 

T F F F T 

F T T F F 

F F T F F 

 

It is possible to see from the Table 15 that the propositional form ¬A → (A ˄ B) is a 

contingency because there is at least one false value (in fact there are two false 

values), and there is at least one true value (in fact there are two true values) under 

the main operator (last column). 

3.6.5 Logical entailment 

The logical entailment in propositional logic means that if one proposition A entails 

another proposition B, then for all true values of the proposition A the values of the 

proposition B must be also true (one should not care about the false values of the 

proposition A). The relationship “A entails B” in symbolic notation is represented as 

A ǀ= B. 

Table 16 shows that the entailment holds between A and (A ˅ B), but the entailment 

does not hold between A and (¬A ˅ ¬B). 
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Table 16: Entailment holding between A and (A ˅ B), and non-entailment holding 

between A and (¬A ˅ ¬B) 

A B ¬A ¬B A ˅ B ¬A ˅ ¬B 

T T F F T F 

T F F T T T 

F T T F T T 

F F T T F T 

 

3.6.6 Logical equivalence 

The propositions A and B are called logically equivalent if the condition “A ↔ B is a 

tautology” is met. Expressing in another form, A and B are logically equivalent if “A 

entails B” and “B entails A”. 

De-Morgan’s laws are popular in propositional logic. These laws can be described in 

the following forms: 1) the negation of the logical connective AND involving two 

statements A and B is logically equivalent to OR connective involving a negation of 

each statement A and B: ¬(A ˄ B) ¬A ˅ ¬B; 2) the negation of the logical 

connective OR involving two statements A and B is logically equivalent to AND 

connective  involving the negation of each statement A and B: ¬(A ˅ B)   ¬A ˄ ¬B. 
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De-Morgan’s laws can be better explained by using truth tables. Tables 17 and 18 

describe truth tables for first De-Morgan’s law and second De-Morgan’s law, 

respectively. 

       Table 17: Truth table for first De-Morgan’s law 

A B ¬A  ¬B A ˄ B ¬(A ˄ B) ¬A ˅ ¬B 

T T F F T F F 

T F F T F T T 

F T T F F T T 

F F T T F T T 

      

      Table 18: Truth table for second De-Morgan’s law 

A B ¬A ¬B A ˅ B ¬(A ˅ B) ¬A ˄ ¬B 

T T F F T F F 

T F F T T F F 

F T T F T F F 

F F T T F T T 
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Let’s use truth table to verify the logical equivalence of the formula ¬A ˅ BA → B 

which is represented in Table 19. 

Table 19: Truth table for verification of logical equivalence of formula  

¬A ˅ BA → B 

A B ¬A  ¬A ˅ B A → B 

T T F T T 

T F F F F 

F T T T T 

F F T T T 

 

It is possible to see from the Table 19 that the logical values in the last two columns 

are identical; it means that the compound propositions ¬A ˅ B and A → B are 

logically equivalent. 

3.7 Some properties of logical connectives 

There are some characteristics associated with logical connectives and these 

characteristics are known as properties of logical connectives. Below some properties 

of logical connectives are given: 
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Associativity: Three statements A, B, and C should be involved, and the following 

associativity properties can be defined: (A ˅ B) ˅ CA ˅ (B ˅ C), and (A ˄ B) ˄ C

A ˄ (B ˄ C). 

Commutativity: For the statements A and B, the following commutative properties 

can be defined: A ˅ B   B ˅ A, and A ˄ B   B ˄ A. It should be noticed that the 

ordering of operands does not make any sense in getting the final result of the above 

logical connectives. 

Distributivity: This property also needs three statements A, B, and C to be involved, 

and this property can be described as A ˄ (B ˅ C)   (A ˄ C) ˅ (B ˄ C). 

Identity: This property can be described in the following forms: A ˄ T   A, and A 

˅  F   A.  

Idempotency: For the statement A, the following is always true: A ˄ A   A, and A 

˅ A   A. 

Absorption: For two statements A and B, this property can be described in the 

following forms: A ˅ ( A ˄ B) = A, and A ˄ (A ˅ B) = A. 

Negation: This property can be also described in two forms: A ˄ (¬A)   F, and A ˅ 

(¬A)   T. 
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Involution: This property is described as ¬(¬A) = A. Another name of this property 

is double complement, i.e. using double negation of any statement will result in 

original statement. 

3.8 Properties of Implication 

Assume that A and B represent statements, then A => B means “A implies B”. The 

first statement is called premise, and the second statement is called conclusion. The 

implication A => B can be also written in the form A → B. 

It should be noticed that the implication A => B should not necessarily produce the 

implication B => A. 

If both statements A and B are negated, i.e. ¬A and ¬B are considered, then the 

implication should be reversed as ¬B => ¬A. 

Suppose that two statements A and B have the arrangement (A ˄ (A → B)) → B, so 

the reasoning will look like: 

- Make sure that if A is true and then check that A → B is fulfilled or not and then 

check B is true or not; 

- If all the conditions are true, then first will be A ˄ (A → B) to imply B; so that (A ˄ 

(A → B)) → B gives true result ever; 

- If A is false then the result will be (F ˄ (F → B)) → B which is true; 

- F ˄ B = F such that F → B is true. 
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Chapter 4 

ALGEBRAIC NORMAL FORMS AND TWO FORMS OF 

VALID INFERENCES 

4.1 Algebraic normal forms 

In normal form, the multiple statements or propositions can be used together by 

applying such logical connectives as AND, OR, XOR etc. In algebraic normal form 

two equivalent formulas can be converted into the same normal form by showing 

whether these formulas are same or not. Algebraic normal form (ANF) is not same as 

other normal forms, and can be represented as a simple list of multiple variables. The 

logical sentences can be converted into more standardized form by using logical 

equivalences which are very important in computer science applications. 

There are three basic types of algebraic normal forms: Negation Normal Form 

(NNF), Conjunctive Normal Form (CNF), and Disjunctive Normal Form (DNF). 

4.1.1 Negation Normal Form (NNF) 

In negation normal form negation connective NOT (¬) is used in front of all 

variables and only applied to variables. Other allowed connectives in this normal 

form are conjunction (AND) and disjunction (OR), and it means that there is no 

implication in negation normal form. In negation normal form the connective NOT 

(¬) should go inside the statement as far as possible.  
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The rewrite rules are performed for computing the negation normal form, and some 

of these rules are given below: 

¬(A ˄ B) → ¬A ˅ ¬B 

¬ (A ˅ B) → ¬A ˄ ¬B 

¬ ¬A → A 

We can apply the negation normal form in the following form: 

¬ (A ˅ ¬C) = ¬A ˄ ¬ ¬C = ¬A ˄ C; 

¬ (A ˄ ¬ (B ˄ C) = ¬ A ˄ ¬ ¬ (B ˄ C) = ¬ A ˄ (B ˄ C) 

4.1.2 Disjunctive Normal Form (DNF) 

The disjunctive normal form is a normal form which is a normalization disjunction of 

conjunctive clauses of logical formula, in other words, it is OR of AND connectives 

also known as products’ summation. If there is disjunction of single or multiple 

conjunctions of literals and disjunctions is implicated strictly, then the logical 

formula is considered to be in DNF, and if all the variables of disjunction normal 

form occur strictly just once in every clause then it is called as Full Disjunctive 

Normal Form (FDNF). The logical connectives which can be used in disjunctive 

normal form are AND, OR and NOT. NOT operator can be processed as 

propositional variable and can be only used as a part of a literal.  

The following properties are characteristic to DNF: 
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- variables used in each term must be connected with AND logical connective; 

- OR connective is used to bring the terms together; 

-  either the original variable or its negation must be used in each term; 

- expression should not contain any another operation. 

The following formulas are in DNF: 

A ˄ B; 

(A ˄ B) ˅ (¬A ˄ ¬B); 

(A ˄ ¬B ˄ ¬C) ˅ (¬A ˄ B ˄ C). 

The following formulas are not in DNF because of different reasons: 

(A ˅ ¬B) ˅ (¬A ˄ B) (because in the first term OR logical connective is used); 

(A ˄ ¬C) ˅ (A ˄ ¬B ˄ C) ˅ (A ˄ B ˄ ¬C) (because the first term does not contain the 

variable B); 

(¬A ˅ B) → (A ˄ ¬B) (because implication connective is used).  
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If the formula is not in DNF because of absence of the variable, it is possible to make 

the given formula in DNF.  Let’s consider the following formula which is not in 

DNF: 

 

F(A,B,C) = (A ˄ B ˄ C) ˅ (¬A ˄ B) 

This formula can be brought to DNF in the following form: 

F(A,B,C) = (A ˄ B ˄ C) ˅ (¬A ˄ B) = (A ˄ B ˄ C) ˅ (¬A ˄ B) ˄ (C ˅ ¬C) = (A ˄ B 

˄ C) ˅ (¬A ˄ B ˄ C) ˅ (¬A ˄ B ˄ ¬C). 

4.1.3 Conjunctive Normal Form (CNF) 

The conjunctive normal form (CNF) is also known as Clausal Form because of 

involving a combination of clauses and this form can involve a literal or its 

complement in each term.  

CNF can only involve the propositional connectives AND, OR and NOT, and no 

another connective; the only connective which is used as a part of a literal is NOT 

connective. CNF is also known as summations’ product. 

The following formulas are in CNF: 

A ˅ B; 

(A ˅ B) ˄ (¬A ˅ B) 

(A ˅ B ˅ ¬C) ˄ (A ˅ ¬B ˅ C) ˄  (A ˅ B ˅ ¬C). 
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The following formulas are not in CNF because of different reasons: 

(A ˅ B) ˅ (¬A ˅ ¬B) (because the logical connective between terms is OR, but it 

must be AND); 

(A ˄ B) ˄ (¬A ˄ ¬B) (because the variables A and B are connected by AND logical 

connective); 

(A ˅ B ˅ ¬C) ˄ (A ˅ ¬B ˅ C) ˄  (A ˅ B) (because the last term does not contain the 

variable C).  

4.2 Horn Clauses 

A logical formula which is in a specific rule-like form and provides good 

specifications and characteristics to be used in logical programming, formal 

specification and model theory is known as Horn Clause which is named after the 

invertor of this clause - the logic expert Alfred Horn who proposed this theory in 

1951. 

In a Horn clause the disjunction of literals is considered, and there can be at most one 

positive literal to be used in this disjunction. For example, the clauses A˅ ¬B, ¬A˅ 

¬B, A˅ ¬B ˅ ¬C, ¬A˅ ¬B ˅ ¬C are possible Horn clauses. The clauses A˅ B, A˅ B 

˅ ¬C are not Horn clauses.  

A Horn clause is a definite clause if it contains exactly one positive literal. For 

example, ¬A ˅ B, ¬A ˅ B ˅ ¬C are the possible definite clauses.  
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The definite clause represented in the form  ¬A ˅ ¬B ˅ C can be also described in 

another form as A ˄ B → C. 

A Horn clause can be described in the form of “condition => conclusion”. For 

example, the clause represented as  

parent (X,Y) ˄ parent (X,Z) => siblings (Y,Z) 

is a Horn clause.  

A Horn clause A ˄ B ˄ C => Q can be also described in another Horn clause form 

¬A ˅ ¬B ˅ ¬C ˅ Q.  

It should be also noticed that the logic programming language Prolog which is 

popular in Artificial Intelligence is based on Horn clauses. Forward chaining which 

is a data-directed reasoning and backward chaining which is a goal-directed 

reasoning are based on Horn clauses. 

4.3 Two forms of valid inferences 

Two forms of valid inferences in propositional logic to be discussed below are 

Modus Ponens and Modus Tollens.  

4.3.1 Modus Ponens 

Modus ponens in a propositional logic is a form of valid argument which means that 

“A implies B, and A is true, so therefore B must be true”. Modus ponens is derived 

from Latin words MODUS PONENDO PONENS that means the way to make it 

confirmed, and is abbreviated to MP.  
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The history of modus ponens is associated with ancient era. Modus ponens is related 

to another valid argument known as modus tollens, but these arguments have 

different syntax and semantics.  

Modus ponens is a rule of inference, and is also known as a “method of affirming” in 

propositional logic.  

As an example of modus ponens argument form, the following premises and 

conclusion can be considered: 

Premise 1: if student studies hard then he/she will get a good grade. 

Premise 2: student will study hard. 

Conclusion: student will get good grade.    

Modus ponens can be symbolized as  

A → B 

A 

______ 

B 

or in another form ((A → B) ˄ A) → B, where A and B are statements. The truth 

table for modus ponens is constructed in Table 20. 
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Table 20: Truth table for modus ponens 

A B A → B (A → B) ˄ A     ((A → B) ˄ A) → B  

T T T T T 

T F F F T 

F T T F T 

F F T F T 

 

4.3.2 Modus Tollens 

Modus Tollens in propositional logic is another form of valid argument and means 

“A implies B, and not B, so therefore not A”. Modus tollens is a deductive form with 

two premises and one conclusion, and so modus tollens is a syllogism.  

Modus tollens is derived from Latin word MODUS TOLLENDO TOLLENS which 

means the way to refuse the consequent, and is abbreviated to MT. The history of 

Modus tollens is also related with ancient era.  

Modus tollens is also known as a “method of denying” in propositional logic. 

As an example of the modus tollens argument form the following premises and 

conclusion can be considered: 
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Premise 1: if the traffic is busy, Tom will be late for school. 

Premise 2: Tom was not late for school. 

Conclusion: the traffic was not busy.    

Modus tollens can be symbolized as  

A → B 

¬B 

______ 

¬A 

or in another form ((A → B) ˄ ¬B) → ¬A, where A and B are statements. 

The truth table for modus tollens is constructed in Table 21. 

 

Table 21: Truth table for modus tollens 

A B A→B ¬B (A → B) 

˄ ¬B  

¬A ((A → B) ˄ 

¬B) → ¬A 

T T T F F F T 

T F F T F F T 

F T T F F T T 

F F T T T T T 
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Chapter 5 

CONCLUSION 

Propositional logic is a very useful tool for reasoning process, and this logic provides 

the establishment of a reason to describe the truth or falsehood of the logical 

statement. 

This master thesis represents the propositional logic and its functionality with uses in 

details and shows how this logic can be used for knowledge representation and 

reasoning process.  

In this thesis such terminologies of a propositional logic as proposition which is a 

statement that can get one of truth values - true or false, logical connectives which 

are used to establish compound statements, different types of propositions as 

tautology, satisfiability, contradiction, contingency and logical equivalence, 

negation, disjunctive and conjunctive normal forms denoted as NNF, DNF, and CNF 

respectively, Horn clauses which are logical formulas with at most one positive 

literal, and two forms of valid inferences - modus ponens and modus tollens, are 

discussed with their properties.  
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