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ABSTRACT

Error-based Orthogonal Matching Pursuit (OMPg) employed in many image
denoising algorithms (e.g., K-means Singular Value Decomposition (K-SVD)
algorithm) tries to reconstruct the clean image patch by projecting the observed noisy
patch onto a dictionary and picking the atom with maximum orthogonal projection.
This approach does indeed minimize the power in the residual. However minimizing
the power in the residual does not guarantee that selected atoms will match the clean
image patch. This leaves behind a residual that contains structures from the clean
image patch. This problem becomes more pronounced at high noise levels. Firstly,
we develop a simple method to prove that autocorrelation of residual does not match
that of the contaminating noise. Then we propose a correlation-based sparse coding
algorithm that is better able to pick the atom that matches the clean patch. This is
achieved by picking atoms that force the residual patch to have autocorrelation
similar to the autocorrelation of contaminating noise. Autocorrelation-based sparse
coding and dictionary update stages are iterated and dictionaries are learned from
noisy image patches. Also, a new residual correlation based regularization for image
denoising is developed. The regularization can effectively render residual patches as
uncorrelated as possible. It allows us to derive analytical solution for sparse coding
(atom selection and coefficient calculation). It also leads to a new online dictionary
learning update. The clean image is obtained by alternating between the two stages
of sparse coding and dictionary updating. Experimental results of peak signal-to-
noise ratio (PSNR) and structural similarity index (SSIM) show that the proposed

algorithm can significantly outperform the K-SVD denoising algorithm, especially at



high noise levels.The proposed algorithm is compared with the K-SVD denoising
algorithm, BM3D, NCSR and EPLL algorithms. Our results indicate that the
proposed algorithm is better than K-SVD and EPLL denoising. The proposed
algorithm gives visual results that are comparable or better than BM3D and NCSR

algorithms.

Keywords: Correlation regularization, dictionary learning, image denoising, residual

correlation, sparse representation.
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Pek ¢ok goriintii temizleme algoritmasinda (6rnek: K-means tekil deger ayristirma
(K-SVD) algoritmasi) kullanilan hata-tabanli ortogonal eslestirme kovalama (Error-
based Orthogonal Matching Pursuit (OMPe)), temiz goriintii yamasini
tamimlayabilmek i¢in gdzlenen giriiltiilii yamanin izdiigiimii bir sozlik iizerine
yansitilir ve maksimum orthogonal izdiisiimlii atom segilir. Bu yaklagim, artik
isaretin giiclinli minimize eder. Ancak artik isaretin giliciinii minimize ermek, se¢ilen
atomlarin temiz goriintii yamasiyla eslesecegini garanti etmez. Bu durumda artik
isaret, temiz gOrlntli yamasindan yapilar igerir. Bu sorun, yiiksek giirtiltl
seviyelerinde daha belirgindir. Ilk olarak, artik isaretin oto-korelasyonunun
giiriiltityle eslesmedigini gosterecek basit bir yontem gelistirilmistir. Daha sonra,
temiz yama ile eslesen atomu segebilen, korelasyona dayanan bir seyrek kodlama
algoritmasi sunulmustur. Bu amagcla, artik isaret, giiriiltiiniin otokorelasyonuna
benzer bir otokorelasyona sahip olmaya zorlanmistir. Otokorelasyona dayanan
seyrek kodlama ve sozliikk giincelleme agsamalar1 yinelenmis ve sozlikler giirtiltilii
gorlintii yamalar1 ile egitilmistir. Bunun yaninda, goriintii temizleme igin, artik
isaretin korelasyonuna dayanan yeni bir diizenleme gelistirilmistir. Bu diizenleme,
artik yamalarin miimkiin oldugu kadar korelasyonsuz olmasini saglar. Bu durumda,
seyrek kodlama icin analitik ¢ozimler (atom se¢cme ve katsayr hesaplama) elde
edilebilir. Bu da yeni bir ¢evrimi¢i sozliik 6grenme giincellemesi gelistirilmesine
olanak saglar. Temiz goriintii, seyrek kodlama ve sozlikk giincelleme beraber
uygulanarak elde edilir. Denemeler sonucu elde edilen isaret giiriiltii oran1 ve yapisal
benzerlik indisi degerleri, Onerilen algoritmanin, O&zellikle yiiksek glriilti

degerlerinde, K-SVD algoritmasindan daha iyi yanitlar verdigini gostermektedir.



algoritma, K-SVD giiriiltii temizleme algoritmasi, BM3D, NCSR ve EPLL
algoritmalartyla karsilastirilmistir. Sonuglar, 6nerilen algoritmanin K-SVD ve EPLL
giiriiltii temizleme algoritmalarindan ¢ok daha iyi calistigim gostermektedir. Onerilen
algoritma, BM3D ve NCSR algoritmalriyla karsilastirilabilecek diizeyde veya daha

1yi gorsel sonudlar vermektedir.

Anahtar Kelimeler: Korelasyon diizenlemesi, sozlik Ogrenmesi, goriintii

temizleme, seyrek temsiliyet.
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Chapter 1

INTRODUCTION

1.1 Introduction

Noise is one of the major barriers in the way of quality data communication or data
processing. Data can be in the form of text, voice, image or video. In this research
work, we shall focus on data in the form of images. Images often contain noise due
to various reasons like deficiency in sensors, reduced illumination, or communication
errors. This noise should be removed in order to process or communicate image
properly. The process of recovering or reconstructing an image from noise is called
image denoising. This is considered as very important and simple inverse problem. It
has many applications especially in computer vision and in medical imaging.
Numerous attempts have been made to address this issue in last 50 years. However,
in last two decades, sparse representation and redundant dictionary learning based
approach has been one of the prominent methods for image denoising. Sparse
representation and dictionary learning based model is commonly known as sparse-
land model [1]. In this research work, we have focused on sparse-land model based
image denoising algorithms. Sparse representation of any signal is a linear
combinations of a few number of bases. These bases can be fixed such as wavelets,
contourlets, Fourier basis functions, and the discreet cosine transform. However, due
to their limitations, off-the-shelf bases are replaced by redundant set of trained bases

called dictionary. Dictionary is trained by available training data so that it becomes



adequate to its function. This process of bases training is also known as dictionary

learning.

K-means Singular Value Decomposition (K-SVD) is one of the benchmark methods
[1, 2] based on sparse-land model. In this algorithm, noisy image is divided small
overlapping square portions called patches. Then, current patch is assumed as
residual (removed noise) and error based Orthogonal Matching Pursuit (OMP,)
algorithm is applied to approximate the clean patch. Second step is to update the
dictionary based on known sparse representations. These two steps are iterated for
few times. Finally, recovered patches are combined to reconstruct the original image.
In this research work, the sparse coding and dictionary update stages are modified to

improve the performance of sparse-land model based image denoising algorithms.
1.2 Problem Definition

The performance of sparse representation and dictionary learning (sparse-land
model) based image denoising algorithms have been highly remarkable in the last
two decades. In these patch based image denoising algorithms, the objective is to
approximate the clean patch buried in noise. It is achieved by calculating the
maximum orthogonal projection (inner product) between noisy patch and dictionary
atom. An atom that gives maximum orthogonal projection and its corresponding
sparse coefficient are used to approximate the noisy patch. Hence, an atom that
matched clean image patch buried in noise is picked and noise (residual) is removed.
Initially it is assumed that patch itself is a residual. Then, each time an atom is
selected then new residual is calculated. This process continues till power of the
residual goes below the noise power of the contaminating noise. This process works

well at low noise levels but it fails at high noise levels [1]. It is due to fact that noise



process dominates the projection at high noise levels. In other words, when noise
power is greater than signal power then an atom that matches the contaminating
noise is selected and residual contains remnants from clean signal. This observation
calls for studying the statistical properties of residual. An atom that produces the
noise-like residual must be selected instead of an atom that produces maximum
orthogonal projection. It is to note that if an atom that matches the noise is selected
then contents of clean signal are lost in the form of residual. Hence, if atom that
matches the image patch is selected, the residual becomes similar to the

contaminating noise process.

In sparse coding stage, the information about statistics of the contaminating noise
must be included for the better approximation of clean signal. In standard noise
model, the additive white Gaussian noise (AWGN) with zero mean and known
variance is used. Therefore, residual must possess statistical properties similar to the
AWGN. In this research work, we develop a sparse coding stage where residual
correlation is considered for picking the correct atom. In other words, we study
correlation between the pixels in the residual during sparse coding stage. If pixels of
residual patch are highly correlated then the selected atoms did not match the clean
image patches. However, if pixels in the residual are highly uncorrelated then atom
that matches the clean image patch is picked. This is achieved by forcing the
autocorrelation of the residual patch to match the autocorrelation of contaminating
noise. To achieve this objective, correlation based regularization is developed in this

research work.

Our problem can be summarized as follows. Given a patch from noisy images, we

aim to find a sparse code such that it gives a good approximation of the clean image,



and the resultant residual is uncorrelated to the residuals of the neighboring patches

of the noisy image and also its internal patches are uncorrelated to each other.

1.3 Thesis Objectives

This thesis work is about understanding and analyzing the performance of sparse

representation and dictionary update stages in image denoising algorithms. The main

objectives of this research work are listed below:

1.

Analyzing the usage of sparse representation and dictionary update stages for
solving inverse problems in image processing.

Showing the reason behind limitation (given in literature) of sparse
representation based image denoising algorithms.

Based on acquired knowledge, proposing a suitable solution to eliminate or
at least reduce the magnitude of limitation of sparse representation based
image denoising algorithms.

Implementing a dictionary learning algorithm in wavelet domain and

analyzing its performance in image super-resolution.

1.4 Thesis Contribution

This research work is mainly focused on two major applications of image processing

namely image denoising and image super-resolution. Its major contributions to each

application are listed below:

1.

Demonstrating the impact of picking an atom that gives maximum
orthogonal projection on performance of image denoising.

Establishing the contribution of considering residual patch correlations for
sparse coding in improving the performance of image denoising.

Introducing a new sparse coding strategy that picks an atom based on

residual patch correlation to improve the performance of image denoising.



4. Developing a residual correlation regularization for sparse representation and
dictionary update stages.

5. Introducing a new sparse coding algorithm and dictionary update stage based
on residual correlation regularization for image denoising.

6. Presenting the performance of coupled K-SVD algorithm in wavelet domain

for image super-resolution.
1.5 Thesis Overview

In Chapter 2 sparse-land model and its two major steps are discussed in details. Also
brief literature review on types of sparse representation and dictionary learning
algorithms is conducted. Chapter 3 presents the proposed image denoising via
correlation-based sparse representation algorithm. It contains motivation,
mathematical formulation and complexity analysis of the proposed algorithm. Finally
its results are compared with state-of-the-art image denoising algorithms. In Chapter
4, we introduce a novel residual correlation regularization. A new sparse coding and
dictionary update stages based on developed regularization are presented. Simulation
results are compared with benchmark algorithms. Chapter 5 describes the coupled
K-SVD dictionary learning algorithm in wavelet domain for single image super-
resolution. Coupled K-SVD algorithm is implemented in wavelet domain. Dictionary
learning and super-resolution approaches are proposed. Chapter 6 presents thesis
conclusions. Also contribution of this thesis work is summarized. Future work based

on this thesis work is also discussed.



Chapter 2

STATE-OF-THE ART METHODS IN IMAGE

DENOISING

2.1 Introduction

Sparse-land model is one of the well-known models used for various applications of
image processing. Due to its simplicity and effectiveness, it has become the standard

model in the last two decades.

In this chapter, we shall discuss the methods used for sparse representation and also
we shall summarize the famous dictionary learning algorithms. Finally, image
denoising via sparse representation is summarized. However, since this research
work is mainly based on image denoising, hence firstly the major type image noises
are summarized in next section.

2.2 Types of Image Noises

Noise is defined as random unwanted signal that adds to desired signal and changes
its originality. Data in any form can be corrupted by noise during acquisition, coding,
transmission, and processing steps. Following are some well known types of noise.
2.2.1 Gaussian Noise

This model of noise is generated based on normal distribution with given mean and
variance. This noise highly affects the gray values of image. Mostly Gaussian noise
is generated by thermal vibration present inside atoms. The probability distribution

function (PDF) is given by:



P(g) = .
(9= G 2.1)

Here g is the value of pixel, ¢ is standard deviation and p is mean. Every Gaussian
noise is not always white noise. Gaussian colored noise can be generated by passing
white Gaussian noise through low pass or high pass filter [66].

2.2.2 White Noise

The term “white” is taken from white color where there are uniform emissions at all
frequencies. Hence, here white noise has uniform power spectrum. Each pixel is
uncorrelated from its neighboring pixel. Ideally, noise power in white noise is
infinite (ranges from negative infinity to positive infinity in frequency domain) [66].
2.2.3 Impulse Valued Noise

Impulse valued noise also known as Salt and Pepper Noise. All pixel values are not
affected by this kind of noise. Some of the pixels are changed due to Salt and Pepper
noise. The affected values are changed to highest values or lowest value present in
image. If pixel value is changed to lowest value due to the pepper noise than a dark

spot or dead pixel is created in an image [66].

Figure 2.1: Image with Salt and Pepper Noise



2.2.4 Quantization Noise

When amplitude of the data is quantized then this change in amplitude is known as
quantization error or quantization noise. It generally appears when analog
information is converted to digital information. This type of noise follows the
uniform distribution hence it is also known as uniform noise [66]. The PDF of

quantization noise is given as:

1 ifa<g<b
- == 2.2
P(g) b—a { 0 otherwise (22)
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Figure 2.2: Uniform Noise.
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Mean is given by u = aT and variance is o2 = %

2.2.5 Speckle Noise
The PDF of a speckle noise is defined as a gamma distribution. Due to its
multiplicative nature, it affects the radar, medical ultrasound and other such devices

[66].



2.2.6 Photon Noise

This noise is modeled by Poisson distribution. Hence, it is also known as Poisson
noise or Shot noise. Generally, this is produced due to electromagnetic waves such as
gamma rays, x-rays e-t-c. Due to random movement of photons in sources of such

rays the images obtained contains the spatial randomness [66].
2.3 Inverse Problems

Inverse problems are one of the very essential topics in the field of science. It is
defined as the mathematical model used to extract unknown information from
available observations [67]. In other words, we reverse the process in a sense that we
develop a model based on observed measurement to extract unknown information.
Therefore, given some previous knowledge about the lost data and some available
information, the objective is to obtain missing data. Generally, inverse problems are
ill posed and non linear. However, some additional information (regularization or
prior information) about the unknown data plays key role to develop a model. They
are very important in the field of signal processing, computer vision, medical

imaging, astronomy, remote sensing, machine learning and many other fields [67].

Mathematically, if system of linear equations has more unknowns than the number of
equations then either it has no solution or infinitely many solutions. Such system is
known as a system of underdetermined linear equations. This system is often used to
formulate a number of problems in image processing. For example image scale-up,
image denoising, image super-resolution and many more. These problems are known
as inverse problems. One can find infinite many solutions to these inverse problems.

Image fusion is one of the inverse problems where information from two or more

input images is combined to form a single input which contains more information



than any of the input images [68]. The source separation is another useful inverse
process where original signal is recovered from combined signal that is formed by
the number of signals mixed together [69]. Image super resolution is a process of
recovering high resolution image from number of low resolution images available
[70].

2.4 Image Denoising

Image denoising is one of the well known inverse problems. Noise should be
removed from any form of data in order to improve the quality of data or prevent it
from being lost. In literature, there are many methods to remove noise from data.
Since, useful data to be extracted from noisy one is unknown, therefore, one of the
well known method is to develop a model to best fit the noise in the data. Therefore,
noise is modeled such that it becomes prominent and then it becomes easy task to
remove it. Sparse representation and dictionary learning method is one of the very
successful methods to denoise data. It projects the noisy data on a low dimensional
subspace formed by linear combination of few atoms. This low dimensional
projection makes sure that noise does not fit in this space and hence denoising is

achieved.

In order to model a noise, it is very important to know the properties of noise. Some
types of image noises are summarized in next section.

2.5 Regularization

One of the major hindrances in solving inverse problems is to find a suitable single
solution out of infinite many solutions. A well known method to do this is a
regularization function. This function examines the desirability of solutions and helps

to find an appropriate solution. In literature, many regularization functions are used
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like smoothness, adaptive smoothness, total variation and energy. However, sparse
representation is one of the widely used regularization functions.

2.6 Sparse Representation

A solution to underdetermined system of linear equations having fewest nonzero
entries is known as sparse representation or sparse approximation. Recently, finding
the sparse solutions to underdetermined linear systems have become much more
practical. Especially, data like image and video can also be sparsely represented

using transform-domain methods.

Bases used for representation can be fixed like wavelets, contourlets, Fourier basis
functions, and the discrete cosine transform. However, we shall focus on online basis

training called dictionary learning.

A signal can be sparsely represented by searching a suitable basis from a
dictionary.This sparse approximation process can be formulated as:

argmin ||a||y s.t ||x — Dal|; < e. (2.3)
a

Note that s. t refers to “subject to”.

The ||.]]o and|]. ||, operators denote £, and £, norm respectively. Whereas, x is
signal for approximation, a € R™ is sparse coefficient vector, D € R™*X is a
dictionary (n is length of atoms (columns) in dictionary, K is number of atoms) and ¢
IS maximum acceptable representation error. This is sparsest approximation for a

signal x € R"since it uses the £, norm (number of nonzero entries in a).

11



In the last decade, dictionaries trained over example signals have become the topic of
interest. Especially, redundant (over-complete) dictionaries (K > n) have great
significance in image processing.

In terms of sparsity level, (2.1) can also be formulated as follows:

argmin ||x — Dall; s.t||a||lp < S (2.4)

a

where S is sparsity limit.

This vector selection problem is computationally expensive and a non-deterministic
polynomial-time (NP)-hard problem. The pursuit methods are used to solve this
problem. Brief description of these sparse approximation methods is presented in

next section.
2.7 Types Of Sparse Representation Algorithms

Sparse representation algorithms are divided into two major categories namely
greedy algorithms and convex relaxation algorithms. This categorization is based
mainly on the type of norm used to solve this NP hard problem. In greedy
algorithms, the signal approximation process is carried out by minimizing the
o norm iteratively. The algorithms such as matching pursuit (MP) [47, 48],
orthogonal matching pursuit (OMP) [50, 44] and order recursive matching pursuit
(ORMP) algorithms [52] are greedy algorithms. Whereas, convex relaxation
approaches uses £; minimization to further minimize the computational cost of the

process.
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2.7.1 Sparse Coding Based On Greedy Algorithms

In this section, well known greedy sparse approximation algorithms [55] are
summarized with perspective of image processing. These methods work iteratively.
Since this is a vector search process, the signal is represented iteratively with one
atom at a time drawn from the dictionary till representation error goes below certain
level. If bases are orthogonal then an atom that gives maximum inner product with a
signal is picked. Mallat and Zhang in [43] gave basic greedy algorithms that led to
other such algorithms.

2.7.1.1 Use of Matching Pursuit (MP) For Sparse Representation

Let signalx be represented by Q; = [d; ... d;] number of atoms chosen from a
dictionary D = [d; ... d;] during iteration i. Then, MP iteratively solves the the
following to sparsely represent signal :

. a2
ardgi'rorllimllx d;a;||; (2.5)

Here a; = [a; ... a;] are the coefficients for selected atoms. Hence the
approximation of x is given by X = d;a;. Firstly, residual is initialized as r; = x,
and then an atom d that gives maximum orthogonal projection with residual r;is
picked for approximation. Hence, this inner product is given by d’r; (Note that
d; and r; are in vector form). Finally, residual is updated as r; = x — X.

This process is repeated at each iteration until representation error goes below a
certain level or maximum sparsity limit is reached [43].

2.7.1.2 Difference Between Matching Pursuit And Orthogonal Matching Pursuit
OMP algorithm is a modified version of the previously defined MP algorithm [43].
As discussed in the last section about MP, OMP also finds the best atom similarly

and updates the residual for fixed number of iterations until stopping criteria is met.
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However, the way of selecting an atom is different. In OMP, the atom that is selected
for signal representation is eliminated from D. Hence, an atom that is selected once
cannot be selected again. An atom d; that gives maximum orthogonal projection with
residual r;_is selected as follows.

argmax |dl-Trl-_1 | (2.6)

If Q; is the matrix of all the atoms selected then the representation coefficients are
updated as a; = Qfx. Here Q = Q;(QTQ;)~! is the Moore-Penrose pseudo-
inverse of matrix Q;. Finally, residual is updated before going to the next iteration.
The advantage of OMP is that it does not consider the same atoms for selection
again. Hence, computational complexity is reduced because number of atoms to be
considered is reduced after each iteration.

2.7.2 Sparse Representation Algorithms Based On L1 Norm

The computational complexity of minimizing the £,-norm is considered as major
drawback of matching pursuit algorithms. Hence, in convex relaxation algorithms
fo-norm is relaxed with the £; norm. The main advantage of using the £,norm is the
reduced computational complexity of sparse representation. Also, this reduction
leads to standard optimization approaches [50] for sparse representation.

2.7.2.1 LASSO And Basis pursuit Sparse Representation Algorithms

Sparse representation of any given signal can be obtained by the basis pursuit (BP)
algorithm which uses the #; norm [45],

argmin ||a||; s.t x = Da (2.7)
a

It is to note that the £; norm considers the value of entries only and not the number

of entries.
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The least absolute shrinkage and selection operator (LASSO) algorithm [57] is a type
of BP algorithm. It is commonly known as basis pursuit denoising (BPD). In this
algorithm, some restrictions are introduced in the £;norm. This is given as follows:

argmin ||x — Da||; s.t |||l < S (2.8)
a

where S is the sparsity limit. LASSO is the commonly used sparse approximation
algorithm because sparsest solution can be obtained under the right conditions.
2.7.2.2 Sparse Representation Based On L-p Norm

The Focal Underdetermined System Solver (FOCUSS) approximation algorithm uses

the £, (p < 1) norm for sparse representation. This is achieved by solving,

argmin ||al||, s.t x = Da (2.9)
(14

It is also used in many different applications since it has advantages of both classical

optimization and learning-based algorithms.
2.8 Training Of Dictionary Atoms

Dictionary D is the collection of bases used to sparsely represent any given signal.
These bases are arranged in each column of a matrix. A dictionary may contain
fixed bases like Fourier basis functions, wavelet frames, Gabor, etc. However,
dictionary can also be trained from randomly chosen signals. In the last decade, over
complete trained dictionaries are proved to be the best fit to a variety of signals [12],

whereas, fixed dictionaries are unable to represent a wide variety of signals.

The dictionary is trained using random signals based on controlled parameters such
that it adapts to the best signal approximation. This dictionary training is also known

as dictionary learning (DL) [12]. This learning makes sure that trained dictionary
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bases are optimal in representing a given signal and also representation is as sparse

as possible.

Let X = [xq, X5, ..., X3y ] € R pe the random training signals. The representation
coefficients A € R¥*M are updated based on given signal and trained dictionary.

Hence, DL is formulated as following optimization problem,

f(D,A) = argmin||X — DA||%. (2.10)
DA

|| |lr denotes the Frobenius norm.

Here D is a matrix of trained atoms [dy, d,, ..., dx] € R™X_ It is to note that initially
during DL the sparse coefficient and dictionary atoms are unknowns. Therefore, this
process is divided into two stages. During the first stage, the dictionary is assumed to
be known and initialized with any random signals and sparse representation
coefficients are obtained. Then, sparse approximation coefficients are fixed and
dictionary is updated in the second stage. In the next sections, the most relevant of
the state-of-the-art DL algorithms are summarized.

2.8.1 Use Of The Method Of Optimized Directions (MOD)

The MOD [49, 51] is a technique to design a frame and it is used with vector
selection methods such as matching pursuit algorithms. In this method, dictionary
update is considered as least square (LS) problem. In other words, under-determined
set of equations are solved by LS solution using pseudo-inverse D = XA™.
Dictionary is obtained by alternating between sparse approximation and dictionary

update stages. MOD is proved to give local optimal solution.
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2.8.2 Dictionary Learning Algorithm Based On K-SVD

The K-SVD dictionary learning algorithm is a well known method to train a
dictionary for a number of signal processing applications [54]. In this algorithm the
dictionary is trained based on singular value decomposition and it also uses the k-
means clustering algorithm. The K-SVD algorithm tries to solve the following

objective function for updating any atom d:

K 2 2
j=1 F ];tk F
= ||E, - diaf],
k Kkl p (2.11)

In the KSVD algorithm, a partial residual matrix E; is instrumental in updating
sparse approximation and the dictionary atom jointly. The above defined function f
is minimized by determining the best rank-one approximation to partial residual
matrix E,. It is to note that each atom is updated independently. The main steps of
this algorithm are listed below (for updating an atom d},).
I.  The locations of training signals that have used the atom d,, are defined in
label matrix (Ay,).
[1.  Put those training signals in columns of matrix E,.
1. Now find the solution of best rank-one approximation of matrix (E;) and
update the dictionary atom d;, and coefficients a;,. Generally, SVD is used to

find this solution.

It is to note that sparse approximation coefficients are not modified during dictionary

update stage. Furthermore, a matrix (Ej) with its rank-one approximation is confined
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to a particular set of signals that use the kth atom in the sparse coding stage.
Algorithm 1 summarizes the main steps of the K-SVD algorithm.

2.8.3 Online Dictionary Learning (ODL)

The computational complexity is one of the constraints in developing dictionary
learning algorithms. In the literature, most of the dictionary learning algorithms are
based on accessing all given training signals at each iteration. Therefore, when the
set of training signals is very large then the efficiency of these algorithms decreases.
ODL [13, 56] is designed to overcome this problem or at least reduce the magnitude
of it. This algorithm considers stochastic approximations and it uses a small subset
of the training for processing. The authors [13, 56] also proved that this algorithm
converges to the optimum solution. It is to note that training samples are assumed to
be i.i.d (independent, identically distributed), hence all the training vectors are

independent of each other. ODL tries to minimize the objective function given

1 o1 2
D, = argmin > = ||x; — Deg|13 + Al
DeC =1

11
= argmin= (=T, (D"DA,) — T.(D"B,)) (2.12)
pec T 2

Here T is the number of iterations. C is a space where all dictionary atoms are
normalized. B, and A, are the matrices containing the information about previous

iterations. They are formed as shown in algorithm 2 [9,40].
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Algorithm 1:K-SVD dictionary learning algorithm

1: Input

2: X € R™M: noisy patches, D € R™X: dictionary, 2: noise power
3: S:sparsity level

4: N: number of iterations

5: OUTPUT: D, A

6:procedure

7: Initially let: D « Dg,i « 1

8: whilei < N do

9: fork =1:K do

10: setAp, «ic12,..,ms.tA,; #0
11: set Ek «— [X— Zj;tk d]a]T]Ak
12: [U,W,V] « SVD(E})

13: d, < u

14: Ay, < 011V]

15: endfor

16: i=i+1

17: endwhile

Algorithm 2:Dictionary update stage of ODL

1: Input

2:D = [dy, ..., dg] € R™K (initialized dictionary)
3:4=[ay,.. ax] ERVK =Y a;al

4:B = [by,...,bg] e RV =% x;a!

5: procedure

6: Initialization:D < Dg,i < 1

7: forj =1:K do

8: Update the jth column to optimize (2.10)
1

9: u]-<—5(b]-—Daj)+dj

10: d =

7 argmax ; (||u;[]2,1) i
11: endfor
12: endprocedure

2.9 Image Denoising Via Sparse-Land Model

Elad et al., [1] developed a sparse-land model based image denoising algorithm. It is
considered as one of the benchmark methods for image denoising. In this section we
shall define how this approach works. Let the image X be divided into overlapping
patches (vectorized form of n X n portions of the image). Assume that a clean

patch x¢ is corrupted with AWGN w with zero mean and variance o2 such that the
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observed noisy patch is given byx = x° + w. For convenience assume that patches

are arranged as column vectors.

Given a noisy patch x, we initialize a dictionaryD. In the sparse representation
framework, the task of approximating x¢ involves the selection of atoms from a
given dictionary D € R"*K where n and K are length and number of atoms
respectively. When the k" atom d, is selected, the approximation of x¢can be
expressed as x¢ = d; a;, where a; is the representation coefficient. Once the sparse
coding coefficients of all the patches in the training set are computed, the dictionary
update stage is performed. The sparse coding and dictionary update stages are
iterated a few times and the dictionary that will be used to approximate the clean

image is obtained.

The process of iterating between sparse coding and dictionary update continues until
representation error goes below certain threshold level or sparsity limit is reached.
This can be formulated as

a = argmin|lal|l, s.t|lx —Dal} < ¢ (2.13)

a

Where ¢ is bounded representation error, ||.||, operator represents the £, norm and
[|-]lo i1s the £3 norm. However, the solution to (2.11) is non-deterministic
polynomial-time (NP)-hard and hence it is computationally expensive. This
optimization task can be rewritten as:

a= argmin|x - Dall} + ullall, (2.14)
a
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Now the constraint has turned to a penalty. In this image denoising method,
orthogonal matching pursuit (OMP) is used for sparse coding stage due to its
simplicity [1]. After the sparse coding stage, each column is updated independently
using KSVD dictionary learning as mentioned in the previous section [2]. Sparse
coding and dictionary update stages are alternated for few iterations. Finally, image

is reconstructed as:

— . 2
X¢ = argmin 2[X° - XI5 + ZHD% — Ry X°||] (2.15)
7

Note that X represents noisy image, X° is clean image and R;;is binary matrix to

extract patch from specified locations [1].
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Chapter 3

IMAGE DENOISING VIA CORRELATION BASED
SPARSE REPRESENTATION AND DICTIONARY

LEARNING

3.1 Introduction

Algorithms based on the sparse and redundant representation model have been
successfully applied to the image denoising problem. K-means Singular Value
Decomposition (K-SVD) based dictionary learning is one of the most important
works along this line of research [1, 2]. K-SVD denoising is a patch based algorithm
and it learns a dictionary from the noisy image to approximate the clean image. In
the dictionary learning stage, the algorithm initializes the current patch as the
residual and employs error based Orthogonal Matching Pursuit (OMP,) algorithm to
approximate the clean patch. The OMP, algorithm picks the atom that gives
maximum orthogonal projection and calculates the new residual based on the
selected atom. When the residual power goes below the noise power, the next patch
in the training set is processed. Once the sparse coding coefficients of all patches in
the training set are evaluated, the dictionary update stage is performed. The sparse
coding and dictionary update stages are iterated a few times and the dictionary that

will be used to approximate the clean image is obtained.
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Note that the residual formed during the sparse coding stage is supposed to be similar
to the contaminating noise. In this research work, a sparse coding method based on
analysis of properties of the residual is proposed. In the proposed algorithm, we
pick an atom such that residual formed is as similar to the noise as possible. In order
to achieve this, we considered the autocorrelation property of the AWGN. Additive
means it is added to already present intrinsic noise. White represents the uniformity
in power distribution. Finally, it is Gaussian because it is generated by normal
distribution. Hence, we obtain autocorrelation of the residual and pick an atom that

produces the autocorrelation of residual similar to that of the contaminating noise.

The proposed algorithm is compared with the K-SVD [1] denoising algorithm,
BM3D [6] and EPLL [14] algorithms. Our results indicate that the proposed
algorithm is significantly better than K-SVD and EPLL denoising. At the noise level
100, the improvement over the K-SVD denoising algorithm for Barbara and
Fingerprint images is 1.14 dB and 2.64 dB respectively. The proposed algorithm

gives results that are visually comparable with the BM3D algorithm.
3.2 Background

Objective of the error based Orthogonal Matching Pursuit (OMPg) algorithm is to
minimize the power in the residual. To minimize the residual power, OMP, picks the
atom that gives maximum orthogonal projection. In order for the maximum
projection based OMP, algorithm to work properly, the atom that is picked must
match the clean image patch. However, when the noise is additive and its power is
high relative to the clean image patch, the projection of noisy patch onto the

dictionary atoms is dominated by noise. Thus, the atom that maximizes absolute
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projection is very likely to match the noise instead of the clean image patch. This is

the main drawback of the OMP, atom selection algorithm.

We note once again that, when the atom that matches the image patch is picked, the
residual gets closer to the contaminating noise process. If one knows or can estimate
the statistics of the contaminating noise, then this information can be incorporated
into the sparse coding algorithm. K-SVD denoising algorithm assumes that the
contaminating noise is additive, white and Gaussian (AWGN) with zero mean and
known variance and it uses maximum projection based OMP, algorithm to select
atoms that match the clean image patch. However, OMP, exploits only the variance
information. OMP, terminates the atom selection process when the residual power
goes just below the contaminating noise power. At high noise levels the variance
information alone is insufficient in making sure that the correct atom is selected. This
leaves the pixels in the residual patch highly correlated. Highly correlated residual
patch pixels is a manifestation of the fact that the selected atoms did not match the
clean image patches. In order to make sure that the atom that matches the clean
image patch is selected one needs to force the autocorrelation of the residual patch to

match the autocorrelation of contaminating noise.

There exist image denoising algorithms that exploit correlations [3, 4, 5, 6, 7].
However, none of these algorithms embed correlation reduction in the framework of
sparse representation via learned dictionaries. Also other image denoising algorithms
in the literature like [8, 9, 10, 11] have different approach than our proposed

correlation based approach.
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In this research work, we first show that the atom which gives maximum projection
does not necessarily minimize residual correlations. We then develop a simple
strategy that takes into account the residual patch correlations. We achieve this by
making a simple modification to the OMP. algorithm. We consider slightly bigger
size patches and for each atom in the dictionary we first form the residual and then
estimate its autocorrelation. Since the residual must have autocorrelation similar to
the autocorrelation of the noise process, the atom selection should ideally continue
till the autocorrelation of the residual acceptably matches the autocorrelation of the
noise. If, for example, the noise is known to be AWGN with zero mean and variance
a? as in [1], then the atom selection continues till the power in the residual (zero lag
autocorrelation) goes down to noise power o2 and nonzero lag autocorrelations
approach zero. We refer to this sparse coding algorithm as OMP.. We then use the
two stage dictionary learning approach employed in [1, 2] where the sparse coding
stage is replaced with the proposed OMP, algorithm to learn the dictionary that will
be used to approximate the clean image. The proposed denoising algorithm that

employs OMP. is referred to as K-SVD. denoising.

Simulations indicate that proposed K-SVD. algorithm produces better results both
visually and in terms of Peak Signal to Noise Ratio (PSNR) when compared to K-
SVD for images that are rich in high frequency content and strong pixel correlations
like Barbara and Fingerprint images. The improvement over K-SVD denoising is
1.14 dB and 2.64 dB for Barbara and Fingerprint images respectively at o =
100. Also it outperforms EPLL [14] denoising significantly at all noise levels in
terms of PSNR as well as visual results obtained. Visual results obtained by K-SVD,

algorithm are as good if not better than state of the art BM3D algorithm. Whereas,
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BM3D denoising algorithm recover images with high PSNR as compared to
proposed K-SVD. algorithm. However, margin of difference in PSNR obtained by
BM3D and K-SVD. algorithm decreases with increase in noise level and also for
images that are rich in high frequency content.

3.3 Motivation And Problem Definition

Assume that a clean patch x¢ is corrupted with AWGN w with zero mean and

2

variance ¢“ such that the observed noisy patch is given by x = x“ +w. For

convenience assume that patches are arranged as column vectors.

In the sparse representation framework the task of approximating x¢ € R™ involves
the selection of atoms from a given dictionary D € R™¥ When the kth atom d,, is
selected, the approximation of x°can be expressed as x¢ = d, a, where a; is the
representation coefficient. The residual is then given by:

~

r=x—-x=x-X+w=e+w, (3.1)
where e is the error in the representation.

We note that as one continues to select more atoms that match the clean image patch,
then power in the error e is expected to decrease and thus the residual is expected to
behave like the noise w. More specifically the residual r is expected to have the
statistical properties of the noise process w.

Let us consider the projection based approach employed in the OMP, algorithm for
selecting atoms that approximates the clean image patch. The projection of the noisy

patch onto the dictionary atoms d; (i = 1,2, ..., k) can be expressed as,

d{x = df (x* + w) = [|d] || 12| cos (0c o7 ) + 1 1| W] cos (8,,,7)  (32)
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Here 6, ,r and 6, ,r are the angles between the dictionary atom d; and clean patch

vector x“and the noise w respectively. ||x€|| and ||w]| are square roots of the powers
in the clean image patch and the w noise respectively. Also note that the dictionary
atoms are normalized to unit norm i.e., ||d7|| = 1. Given the noisy patch the aim is

to select the atom that gives maximum projection. When 6. ,r is small and w is
comparable to or greater than x, then the projection is dominated by the noise term
||lw|| cos (ew,d-T)' Thus, the atom d; that matches the noise term is likely to be

picked. When this happens the maximum projection based algorithm picks the atom

that matches the contaminating noise. This happens even if 6,. ,r is small i.e., the

similarity of the clean patch and the atom d;is high. This contradicts with the
premise of the OMP. algorithm which requires that the selected atom should match
the clean image patch. Therefore, at high noise levels the atom picked does not
match the clean image patch and thus the residual does not behave like the

contaminating noise.

We propose a remedy for this problem by incorporating additional constraints that
force the selected atom to match the clean image patch. This is achieved by forcing
the residual to behave like the contaminating noise. Thus, when atoms are selected
instead of maximizing absolute projections, we pick atoms that force residual
autocorrelation sequence to be similar to the autocorrelation sequence of the noise.
For an AWGN process, if one assumes thateand ware uncorrelated, then the
autocorrelation of the residual r is aj, = a} + ai = 026, + a$, wher a}/ and
a; are the autocorrelation sequences of the noisy patch and the error patch
respectively. We note that when atoms that match the clean image patch are selected,

the norm of the error decreases such that a2 > ||e||?and the autocorrelation of the
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residual then can be approximated as aj ~ o28), where &, is the Dirac delta
sequence. The 2D autocorrelation sequence A of a 2D residual patch Rcan be

estimated by,

Akl,kz = N Ri,jRi+k1,j+k2 (33)
L

Here i,j denotes the location of residual patch and k; and k,are horizontal and
vertical shifts (lags) from residual patch. Note that for simplicity in (3.3) border

effects are not explicitly shown.

Since the patch is of finite size, in order to make sure that the autocorrelation
estimates are statistically meaningful, we only consider small lags |kq], |k;| < 2.
Furthermore, for simplicity we reorder this two dimensional autocorrelation
sequence and rewrite it as a one dimensional sequence a;, such that aj, represents the
residual power (autocorrelation at zero lag) and aj (k # 0) are the nonzero lag

autocorrelations.

Now let us consider the sparse coding stage OMP, of the K-SVD denoising
algorithm. Given the dictionary D and the training patch x, OMP, solves,

@ = argmin||a|ly s.t ||lx — Da|l5 < € (3.4)
a

where ||. ||, and |]. ||, are €;and £, norms respectively and eis the representation
error. The first term in equation (3.4) forces the representation to be as sparse as
possible. The term Da is the approximation of x“and thus x — Da = x — x¢ is the

residual patch r.
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Therefore, the second term in (3.4) represents the power in the residual patch. To
solve (3.4) OMP. algorithm is used. OMP, in K-SVD denoising represents each clean
patch by picking atoms one at a time till either the power in the residual (zero lag
autocorrelation) goes just below 1.15 2 (as given in [1]) or the sparsity limit S,,,,
(maximum number of atoms allowed in the representation) is reached. In a way, the
OMP, algorithm assumes that the residual r should have the properties of the
contaminating noise process w, however it does not go beyond to take advantage of

the nonzero lag autocorrelations aj, (k # 0).
3.4 Proposed Correlation Based Sparse Coding Stage

We now turn to the formulation of the proposed strategy. Given the dictionary D, the
selection of sparse coding coefficients must ensure that the autocorrelation of the
residual patch at all lags must conform to the statistics of the contaminating noise.

Thus the sparse coding problem is formulated as,

& = argmin ||||, s. ¢ anz —o28,) < e (35)
a
k

As in (3.3), the first term is the sparsity constraint. The second term constrains the
autocorrelation of the residual and it forces it to behave like the autocorrelation of the
contaminating AWGN. It contains not only the power in the residual aj but also the

residual correlations at all nonzero lags aj,(k # 0).

The solution of (3.5) is very similar to the OMP. used in K-SVD denoising. Instead
of picking the atom that minimize residual power, we adopt a strategy that reduce the
residual power (autocorrelation at zero lag) and at the same time minimize sum of
nonzero lag correlations in absolute sense. To achieve this, we consider not only the

atom that gives maximum projection but a subset of atoms with large projections.
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For each atom in this subset, we form the new candidate residuals and estimate their
autocorrelation sequences using (3.3). We then pick the atom that reduces the
residual power and at the same time minimize the sum of nonzero lag
autocorrelations. With selected atom the new residual is formed and atom selection is
repeated for the new residual. Similar to the OMP; algorithm, the proposed algorithm
is terminated when the power in the residual goes just below the noise power a2 or
the sparsity level S,,., is reached. We formulate stopping criteria in terms of residual

power (zero lag correlations) as in [2].

The above description for OMP, assumes that the dictionary is known. However, if
one is to learn the dictionary from the noisy input patches, then the optimization

problem that one needs to solve is given by,

(@ D} = argrlr)linz lallo s.t ZZ““E — a2 < ¢ (3.6)
@ ; Tk

As in many dictionary learning algorithms [2, 12, 13], the solution of (3.6) is
approximated by a two stage process. In the first stage D is fixed and sparse
representation coefficient vectors a; are calculated. This is the same as the

optimization problem formulated in (3.4).

In the second stage the sparse representation coefficient vectors a; are fixed and the
dictionary is updated. For the dictionary update stage we ignore the nonzero lag
correlations and adopt the K-SVD dictionary update method [2]. After the sparse
coding (OMP.) and dictionary update stages are iterated several times, a local
minimum is reached. Once the dictionary is learned the sparse representation

coefficients can be calculated and the clean image can be reconstructed as in [1]. The
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proposed correlation reduction strategy for the sparse coding stage OMP. is given in

Algorithm 3.

Algorithm 3:Proposed Correlation-Based Sparse Coding Algorithm: OMP,

1: Input

2: x;: noisy patches (i = 1,2,3, ..., P), D: dictionary, a: noise power
3:Smax :Maximumnumber of atoms in the representation of x;

4: K,,.. :Subset of atoms with large projection

5: procedure

6: fori=1,2,... ,Pdo

7: s=0;r= x;

8: Calculate residual correlation aj,

9: while a}) < o?ands < S,,44

10: project r onto D

11: Select K,,,,,, atoms with large projections
12: forl=1,2,..,Knu

13: Calculate residual ! = r — d'a',
14: Calculate residual correlationsail,
15: endfor

16: Pick atom d'othat reduces sum(abs(a;l))the most
17: s=s+1

18: r=r—dboab

19: endwhile

20: endfor

21: endprocedure

3.4.1 Complexity Analysis

In this section, the computational complexity of proposed algorithm is compared
with that of K-SVD [1] because proposed algorithm is also based on sparse-land
model as K-SVD [1]. Similar to the K-SVD algorithm, the computational complexity
of K-SVD, algorithm is evaluated by considering the sparse coding and dictionary
updated stages. These stages perform O(NKLJ) operations per pixel [1], where N is
patch size, K is number of dictionary atoms, J is number of iterations and L is
number of nonzero entries in each sparse coefficient vector. The proposed K-SVD,
algorithm differs from K-SVD algorithm only in the sparse coding stage. K-SVD

calculates only one residual for each patch whereas K-SVD,. considers a subset (i.e.,
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20 atoms) of atoms (Z,) and calculates Z; residuals. Then it further calculates the
autocorrelation sequences. It then compares the calculated autocorrelation sequences
with that of contaminating noise and determines the atom to be picked. Hence, the
proposed algorithm performs O(NZ, KLJ]) operations per pixel. For Barbara image at
noise level ¢ = 10, the average L is 2.96 for K-SVD whereas L is 5.13 for K-SVD,.
3.4.2 Limitations And Future Work

In this section, we would point out that the proposed algorithm is less effective for
images that do not possess significant high frequency content. Also at low noise
levels it does not perform significantly better. It is due to the fact that if there are no
sufficient nonzero lag correlations i.e., autocorrelation of residual is similar to that of
AWGN, our proposed algorithm will run the same as K-SVD [1] denoising

algorithm.

The other issue is that the proposed OMP, algorithm is computationally expensive
since it considers each atom in the dictionary and for each atom calculates the
resulting residual autocorrelation sequence. However, if one considers small subset
of atoms with large projections and autocorrelations with small lags, the
computational complexity can be significantly reduced with little loss in
performance. As a future work, it is possible to formulate different atom selection
strategies and stopping criteria that can more effectively balance the reduction in
residual power and nonzero lag autocorrelations; however our aim in this research
work is not to obtain the optimal strategy but rather motivate the concept of sparse
representation based correlation reduction and show its utility and effectiveness in

the denoising problem.
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3.5 Types Metrics Used To Compare the Performance

The peak signal-to- noise ratio (PSNR), structure similarity index measure and
feature similarity index measure (FSIM) are used to compare performance of the
proposed algorithm with state-of-the-art algorithms.

PSNR is measured as 10(log;255%/MSE) where MSE = - ||X — X||2. Where X and

X are the original and denoised images respectively.

SSIM is measured based on (3.6) as given in [64],

(2uymy + C1) (20, + C2)

SSIM (x, =
&Y = T T et ar T 6

(3.6)

Here x and y are original and recovered images respectively. u and o are mean and

standard deviation respectively. C; and C, are constants.

FSIM is measure based on (3.7). It is combination of phase congruency and gradient
magnitude measure as:

_5,(x). PGy (%)
FSIM = —— 00 (3.7)

Here PC is phase congruency measure and S; is similarity measure in terms of PC

and GMM as given in [63].
3.6 Simulation And Results

In this section we first briefly study the convergence of the proposed algorithm in
terms of nonzero lag autocorrelation reduction and compare it with the maximum
projection based OMPe algorithm in terms of speed of convergence and degree of

reduction achieved. Then PSNR results comparing the performance of K-SVD [1],
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EPLL [14] and BM3D [6] denoising with the proposed K-SVD. denoising algorithm
are presented. Finally, qualitative results of proposed algorithm are compared with
state of the art image denoising algorithms.

3.6.1 Convergence Of Proposed Sparse Coding Algorithm OMPc

In order to study and compare the convergence behavior of the proposed correlation
based OMP, and maximum projection based OMPe in terms of non zero lag
autocorrelation reduction, we start with the noisy Barbara image, extract patches of
size 16 x 16 and learn two dictionaries using K-SVD[1] and K-SVD,. algorithms.
Both algorithms are iterated 20 times. The experiment is repeated for ¢ = 15, 50
and 75. Note that after adding noise to the image there is possibility of pixel
saturation which means pixel value can exceed 255 (overflow) or at the same time it
can go below zero (underflow) considering gray scale image uint8 data type. In order
to avoid such effect the image is converted to larger data type (using Matlab
command “im2double”) before adding noise. For the K-SVD. algorithm
autocorrelations are calculated using maximum lag of 2 (|k|y, k|, < 2). In this
simulation we considered a subset of 20 dictionary atoms with largest projections. In
both algorithms dictionaries are initialized by randomly selected patches from the

training set. Dictionaries in both algorithms have K = 512 atoms.

At the end of each iteration, we form the residual, calculate the sum of absolute value
of nonzero lag autocorrelations and normalize it with the initial sum of absolute
value of nonzero lag autocorrelations. The results of this experiment are presented in
Figure 3.1. For all noise levels K-SVD, achieves a lower total of nonzero lag
autocorrelation at every iteration. Figure 3.1 clearly indicates that for all noise levels

considered and at every iteration K-SVD, algorithm achieves a lower nonzero lag
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autocorrelation level. For high noise levels K-SVD. achieves significant reduction in
nonzero lag autocorrelations. For ¢ = 50 and o = 75 the reduction at 20th iteration
IS 19% and 34% more when compared to K-SVD [1] algorithm. We note that even
though K-SVD. algorithm achieves significant reduction in nonzero lag
autocorrelations, it converges slower than the K-SVD algorithm especially at high
noise levels. The proposed OMP. algorithm does an excellent job in decorrelating the
residual patches and rendering their autocorrelation function much closer to the

autocorrelation of contaminating AWGN.

Sum of nonzero lag autocorrelations
Sum of nonzero lag autocorrelations

6 : . - a8l

5 10 15 2 5 10 15 2 5 10 15

Number of iterations Number of iterations Number of iterations
@ (b) e)

20

Figure 3.1: Sum of nonzero lag autocorrelations versus number of iterations for
Barbara image (a) 0 = 15 (b) 0 = 50 (¢) 0 = 75.

3.6.2 PSNR Results Comparison
We now present simulations comparing the performance of K-SVD, algorithm with

the K-SVD algorithm [1], EPLL [14] and BM3D algorithm [6] in terms of PSNR.

In the light of the results presented in Figure 3.1, dictionaries for both algorithms are

obtained after 20 iterations. The clean image is then reconstructed as in [1]. Table
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3.1 and Table 3.2 gives the Peak Signal to Noise Ratio (PSNR) results for several
benchmark images. This simulation is carried out for noise levels varying from 20 to

100.

In order to have fair comparison, patch sizes of 8, 12 and 16 corresponding
respectively to dictionary sizes of K = 256, K = 400 and K = 512 are considered
as shown in Table 3.2. As we analyze results in Table 3.2, K-SVDc achieves better
denoising results as patch size is increased and it outperforms K-SVD by a
significant margin. For patch size 8, K-SVD is slightly better than the K-SVDc
algorithm except for the fingerprint image (o = 50). When the patch size is 12 the
autocorrelation estimates become more accurate and K-SVDc performs better
denoising especially for images with high frequency content. K-SVDc outperforms

K-SVD at patch size 16 (K = 512) by significant margin.

Now best PSNR results obtained by both algorithms are compared. We thus compare
K-SVD at patch size 8 with K-SVDc at patch size 16. K-SVDc outperforms K-SVD
by a significant margin at high noise levels and for images with repeating structures
like Barbara and Fingerprint images. For the Fingerprint image at noise ¢ = 100, the
improvement is 2.64 dB. For Barbara image at ¢ = 100, K-SVDc outperforms K-
SVD by 1.14 dB. Also as shown in Table 3.1, proposed K-SVD. algorithm performs
significantly better than state-of-the-art EPLL [14] denoising algorithm for all
images at almost all noise levels. It is to note that the proposed algorithm does not
perform significantly better at low noise levels and/or for images that contain large
amounts of low-frequency contents. It is due to the fact that if autocorrelation of

residual is closely related to that of AWGN, then the proposed algorithm will turn
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into maximum projection-based image denoising scheme as same K-SVD [1]

denoising algorithm.

Figure 3.2: Comparison of denoising results for Fingerprint image with noise level o
varying from 20 to 100.

Figure 3.2 and Figure 3.3 show that for images that are rich in high frequency
contents the performance of proposed algorithm keeps improving as noise level is
increased with respect to state of the art algorithms. It demonstrates that the proposed
algorithm is highly effective to recover repeated structures at high noise levels. It
also reveals that performance of K-SVD [1] and EPLL [14] keeps decreasing as
noise level is increased when compared to proposed K-SVD. and BM3D [6]
algorithms. However, K-SVD, produces highly consistent results when compared to
the BM3D denoising algorithm. Whereas, visual results obtained by proposed

algorithm are as good as BM3D algorithm.
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Figure 3.3: Comparison of denoising results for Barbara image with noise level o
varying from 20 to 100.

Now, in order to further investigate the comparison, we plot difference in PSNR
results of all the algorithms with respect to KSVD image denoising algorithm.
Hence, we consider KSVD as a zero line reference (shown as straight line in Figure
3.4). From Figure 3.4 and Figure 3.5, we conclude that the performance of residual
correlation based algorithm keeps improving with respect to base line KSVD
algorithm. Also it produces highly consistent results with respect to BM3D
algorithm. It further verifies that the residual correlation information is highly
essential especially for the images that possess large quantity of high frequency
content and/or at high noise levels. It also proves that at high noise levels maximum
projection based sparse coding algorithms fail to pick correct atom at high noise

levels. As a result its performance keeps decreasing with increasing noise levels.
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Figure 3.5: Difference in PSNR comparison .
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Table 3.1: PSNR results in decibels. Top left: Results of K-SVD [1]. Top right: BM3D[6]. Bottom left EPLL
[Bottom right: Proposed Algorithm.

Avg

Sigma Barbara Boat Fingerprint Lena Building MRI Average AIJV‘Sl"I_\.ItR

KSVD
30.86 | 31.78 | 30.33 | 30.88 | 28.48 | 28.81 | 32.39 | 33.05 | 28.43 | 28.93 | 28.37 | 28.54 | 30.29 | 30.82

20 29.74 | 31.05 | 30.61 | 30.16 | 28.25 | 28.53 | 32.53 | 32.41 | 27.68 | 27.99 | 28.35 | 28.27 | 30.02 | 30.22 0.07
29.58 | 30.72 | 29.27 | 29.91 | 27.26 | 27.71 | 31.32 | 32.08 | 27.09 | 27.62 | 27.63 | 27.96 | 29.18 | 29.88

25 28.51 | 30.11 | 29.61 | 29.31 | 27.09 | 27.31 | 31.54 | 31.49 | 26.39 | 26.79 | 27.61 | 27.52 | 28.96 | 29.24 0.06
28.55 | 29.81 | 28.42 | 29.12 | 26.31 | 26.83 | 30.45 | 31.26 | 25.94 | 26.59 | 27.11 | 27.51 | 28.28 | 29.03

30 27.54 | 29.16 | 28.77 | 28.58 | 26.21 | 26.47 | 30.79 | 30.71 | 25.43 | 25.83 | 27.19 | 26.84 | 28.16 | 28.41 0.13
25.53 | 27.23 | 25.94 | 26.78 | 23.26 | 24.53 | 27.87 | 29.05 | 22.79 | 23.48 | 24.94 | 26.09 | 25.47 | 26.69

50 24.88 | 26.58 | 26.58 | 26.32 | 23.52 | 24.14 | 28.32 | 28.36 | 22.79 | 23.36 | 25.53 | 25.33 | 25.79 | 26.09 0.62
24.31 | 26.28 | 25.06 | 26.02 | 21.78 | 23.75 | 26.89 | 28.27 | 21.48 | 22.65 | 24.16 | 25.48 | 24.35 | 25.88

00 23.91 | 25.62 | 25.82 | 25.58 | 22.62 | 23.44 | 27.42 | 27.44 | 22.09 | 22.56 | 24.95 | 24.49 | 24.98 | 25.27 0.92
23.01 | 25.12 | 23.95 | 25.12 | 20.01 | 22.83 | 25.65 | 27.26 | 20.51 | 21.74 | 23.15 | 24.69 | 23.09 | 24.89

7 23.02 | 24.47 | 24.87 | 24.61 | 21.48 | 22.37 | 26.47 | 26.34 | 21.13 | 21.58 | 24.19 | 23.72 | 23.99 | 24.21 112
22.25 | 24.16 | 23.24 | 24.39 | 18.89 | 22.06 | 24.88 | 26.45 | 19.81 | 21.05 | 22.31 | 24.01 | 22.23 | 24.08

%0 22.45 | 23.53 | 24.08 | 23.83 | 20.43 | 21.55 | 25.64 | 25.35 | 20.49 | 20.97 | 23.41 | 22.99 | 23.16 | 23.38 115
21.84 | 23.62 | 22.81 | 23.97 | 18.33 | 21.61 | 24.49 | 25.95 | 19.57 | 20.67 | 22.06 | 23.59 | 21.65 | 23.61

100 22.13 | 22.98 | 23.66 | 23.27 | 19.82 | 20.97 | 25.33 | 24.87 | 20.02 | 20.45 | 23.08 | 22.46 | 22.76 | 22.78 113




Table 3.2: PSNR results in decibels at various patch sizes and dictionary sizes

Sigma Patch Size Barbara Boat Fingerprint House Lena
Value — and KSVD | BM3D | KSVDc | KSVD | BM3D | KSVDc | KSVD | BM3D | KSVDc | KSVD | BM3D | KSVDc | KSVD | BM3D | KSVDc

Dictionary atoms

8 X 8(K = 256) 30.86 30.05 30.33 29.81 28.48 28.22 33.17 31.46 32.39 31.18

20 12 X 12(K = 400) | 30.71 31.78 30.79 29.86 30.88 30.16 28.11 28.81 28.53 33.16 33.77 32.46 32.06 33.05 32.07

16 x 16(K =512) | 30.36 31.06 29.51 30.16 27.79 28.59 32.75 32.66 31.66 32.22

8 X 8(K = 256) 28.55 27.68 28.42 27.55 26.31 26.02 31.18 28.85 30.45 28.78

30 12 x 12(K = 400) | 28.35 29.81 28.59 27.83 29.12 28.21 25.75 26.83 26.33 31.46 32.09 30.64 30.09 31.26 30.11

16 X 16(K =512) | 27,83 29.16 27.29 28.29 25.38 26.41 30.92 30.76 29.59 30.25

8 X 8(K = 256) 25.53 24.56 25.94 24.66 23.26 23.35 27.97 2541 27.87 25.56

50 12 X 12(K = 400) | 25.36 27.23 25.97 2541 26.78 25.77 22.88 24.53 23.79 28.26 29.69 27.36 27.41 29.05 27.32

16 x 16(K =512) | 24.91 26.59 24.88 26.07 22.46 23.88 28.15 28.09 26.96 27.89

8 X 8(K = 256) 24.31 23.32 25.06 23.48 21.78 22.29 26.81 24.09 26.89 24.03

60 12 X 12(K = 400) | 24.06 26.28 25.02 24.65 26.02 24.88 21.71 23.75 2291 26.81 28.74 26.46 26.52 28.27 26.32

16 X 16(K =512) | 2361 25.62 24.11 25.38 21.24 23.11 26.44 27.14 25.91 27.01

8 X 8(K = 256) 23.01 21.81 23.95 20.99 20.01 20.87 25.23 22.27 25.78 22.66

75 12 X 12(K = 400) | 22.65 25.12 23.68 23.52 25.12 23.76 19.65 22.83 21.92 25.06 2751 24.99 25.37 27.26 24.99

16 X 16(K = 512) | 21.97 24.47 22.93 24.32 19.41 22.15 24.72 26.11 24.59 25.99

8 X 8(K = 256) 22.25 20.51 23.24 20.83 18.89 19.68 24.26 20.98 24.88 21.42

90 12 X 12(K = 400) | 21.69 24.16 22.74 22.69 24.39 22.87 18.16 22.06 21.07 23.95 26.48 23.83 24.44 26.45 24.01

16 X 16(K =512) | 21.03 23.53 21.99 23.55 17.85 21.41 23.08 24.89 23.52 25.15

8 X 8(K = 256) 21.84 19.81 22.81 20.08 18.33 18.95 23.64 20.17 24.49 20.66

100 12 X 12(K = 400) | 21.36 23.62 22.12 22.32 23.97 22.33 17.38 21.61 20.58 23.27 25.87 23.03 24.02 25.95 23.35

16 X 16(K = 512) | 20.64 23.11 21.63 22.93 17.12 21.12 22.46 24.19 23.14 24.48




3.6.3 Qualitative Comparison
In this section, we compare the proposed algorithm with state of the art image

denoising algorithms in terms of visual results obtained.

Figure 3.6 shows that K-SVD [1] and EPLL [14] fail to recover repeating structures
like ridges in Fingerprint image at high noise levels. However, proposed K-SVD.
algorithm does excellent job to denoise these images and it produces highly

competitive visual results when compared to BM3D algorithm.

Furthermore, Figure 3.7 shows a portion of the Barbara image reconstructed using K-
SVD, BM3D and K-SVD. for ¢ = 50. Visually it is clear that the textures in the
upper right corner, the stripes on the scarf near the hand are reconstructed fairly
correctly for the K-SVD. method. K-SVD [1] on other hand does a poor job in
recovering such fine structures. Similarly, visual results show that K-SVD; is as good
if not better than BM3D [6]. A closer investigation reveals that, the stripes on scarf
and on background are recovered much sharply by K-SVD, as compared to the state

of art BM3D denoising algorithm [6].

Similarly, Figure 3.8 also shows that fine structures of windows in building image
are better restored by the proposed K-SVD, denoising algorithm as compared to K-
SVD and EPLL algorithms. Visual results obtained by proposed K-SVD. image

denoising algorithm are as good as state of the art BM3D algorithm [6].

Figure 3.9 and Figure 3.10 show the dictionaries learned via K-SVD [1] and K-SVD,
algorithms. The best denoising results are obtained at K = 256 and K = 512

dictionary atoms for K-SVD and K-SVD; respectively. Therefore, number of atoms
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are based on best results produced by each algorithm. Dictionary obtained by K-
SVD. are highly structured. It is noted that first atom in both algorithms is reserved

for DC.

Figure 3.6: Visual comparison of Fingerprint image with ¢ = 100 (a) original image
(b) denoised by K-SVD [1] (c) denoised by EPLL [14] (d) denoised by BM3D [6]
(e) denoised by K-SVD,
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Figure 3.7: Barbara image reconstruction comparison with o = 50 (a) original image
(b) denoised by K-SVD [1] (c) denoised by EPLL [14] (d) denoised by BM3D [6]
(e) denoised by K-SVD.
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Figure 3.8: Visual comparison of Building image with ¢ = 60 (a) original image (b)
denoised by K-SVD [1] (c) denoised by EPLL [14] (d) denoised by BM3D [6]
(e) denoised by K-SVD,
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(a) (b)

Figure 3.9: The trained dictionary for Fingerprint image with o = 100 after
20 iterations. (a) K-SVD (b) K-SVD,

(a)

Figure 3.10: The trained dictionary for Barbara image with ¢ = 75 after
20 iterations. (a) K-SVD (b) K-SVD,

3.7 Conclusion

In this chapter, firstly it was shown through simple experiment that maximum
orthogonal projection based image denoising algorithms fail to pick correct atom
especially at high noise levels. Then, later in this chapter a new correlation reduction
strategy in the framework of sparse representation is proposed. Simulation results
obtained through proposed strategy show that incorporating residual correlations in

sparse representation does indeed improve the performance of image denoising
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problem. Hence, the purpose of this chapter was to show only the effectiveness of
residual correlation reduction based sparse coding in image denoising. However, in
next chapter, a comprehensive sparse coding algorithm is derived that is based on
new residual correlation regularization. Also, a new dictionary update stage is
derived that uses the proposed residual patch regularization to update the dictionary

atoms.
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Chapter 4

RESIDUAL CORRELATION REGULARIZATION

BASED IMAGE DENOISING

4.1 Introduction

Patch based denoising algorithms aim to reconstruct the clean image patch leaving
behind the residual as contaminating noise. It is very likely that the residual patch
contains remnants from the clean image patch. However, residual should possess
statistical properties of contaminating noise. In this chapter, we propose a new
residual correlation based regularization for image denoising. The regularization can
effectively render residual patches as uncorrelated as possible. It allows us to derive
analytical solution for sparse coding (atom selection and coefficient calculation). It
also leads to a new online dictionary learning update. The clean image is obtained
through alternating between the two stages of sparse coding and dictionary updating.
The performance of proposed algorithm is compared with state-of-the-art denoising
algorithms in terms of peak signal-to-noise ratio, structural similarity index and
feature similarity index, as well as through visual comparison. Experimental results
show that the proposed algorithm is highly competitive and often better than leading
denoising algorithms. The proposed algorithm is also shown to offer an efficient

complement to the benchmark algorithm of BM3D especially.

46



4.2 Background

The main objective in patch based image denoising algorithms that employ learned
dictionaries is to make sure that atoms that best match clean image patch are picked.
K-SVD [1] denoising for example does this by projecting the noisy patch onto the
dictionary atoms and picking the atom that gives maximum orthogonal projection.
As a result, at high noise levels, the residue usually contains structures from clean
image patch, thus it does not match the contaminating noise [36]. On the other hand,
after the sparse coding stage is completed, the residual is expected to possess
properties similar to those of contaminating noise. One such property is that the
residues of different patches should be uncorrelated. We adopt a strategy that will
render the residual patches uncorrelated for AWGN. This observation calls for
processing patches in groups by considering local neighborhoods and making sure
that the neighboring residuals are uncorrelated. Thus in selecting atoms for a given
patch, we determine the sparse coefficient that leaves behind a residual which is as

uncorrelated with the neighboring residuals as possible.

This approach was adapted in [36]. However, the sparse coefficients were not
estimated based on residual correlation and also dictionary update stage was similar

to the one proposed in [1].

In [36] large patches were used and the atom that rendered the correlation between
smaller sub-patches within the bigger patch was selected. Similarly, Riot et al. [38]
also proposed a variation in fidelity term to control the residual distribution. This is

achieved by considering statistical moments of residual and the correlation on
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patches. It differs from our proposed algorithm since it does not embed the

framework of sparse representation via learned dictionaries.

There also exist other image denoising algorithms based on residual correlations such
as [4, 5, 6, 7]. However, except [36] and [5], none of these algorithms are based on
sparse-land model. In [6], similar 2D image blocks are arranged in 3D groups. Then,
collaborative filtering is developed to denoise these 3D image blocks. In [4], web
images are used to match the noisy image patch. The accuracy of matching is
increased by graph based optimization and then image cubes (group of similar noisy
image patches) are filtered in the transform domain. He et al. [5] introduced a
correlation coefficient criterion. Meaningful structures are extracted from noisy
image using correlation based coefficient criterion. Also multi-scale sparse coding is
proposed to improve the performance. In [7], the importance of exploiting residual
image to improve performance of image denoising is discussed. The authors
proposed a algorithm based on mean-squared-error (MSE) and structural similarity

index measure (SSIM) estimation of residual image without any reference image.

In this chapter, we introduce a new residual correlation regularization based image
denoising algorithm. This regularization minimizes the correlation between
neighboring residual patches. We derive analytical solution for sparse coding (the
atom selection and coefficient estimation). We also propose a new dictionary update
that is based on the correlation regularization. The final clean image reconstruction is
obtained via alternating between the sparse coding and dictionary update stages. Our
experimental results show that the proposed algorithm is highly comparable and
often superior to the state-of-the-art denoising algorithms. The performance of the

proposed algorithm is compared with state-of-the-art algorithms at various noise
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levels ranging from 25 to 100. Experimental results show that the proposed algorithm
significantly outperforms K-SVD [1] and EPLL [14] in terms of the peak signal-to-
noise ratio (PSNR), especially at high noise levels and for images that are rich in
high frequency content (like Barbara and Fingerprint image). Also it outperforms K-
SVD [1] in terms of structural similarity index (SSIM) and produces competitive
SSIM results when compared to benchmarks for image denoising algorithms such as
KSVD [1] and NCSR [39]. The improvement over K-SVD denoising is 1.22 dB and
2.93 dB for Barbara and Fingerprint images respectively at ¢ = 100. A visual
comparison also suggests that the proposed algorithm allows denoising results that
are as good if not better than BM3D [6] and NCSR [39] algorithms.

4.3 Motivation And Problem Statement

We consider the standard model for the image denoising problem: A clean image is
corrupted by an additive white Gaussian (AWGN) uncorrelated noise. Let the image
be partitioned into overlapping patches and each patch is arranged as column vector
x € R", which is modeled as

x=x4+w (4.1)

Where x¢ is the clean patch and w is the noise patch. A dictionary D is given with
atoms k = 1,2, ..., K. If x¢is approximately represented by its code coefficients a,
i.e., X = Da, then the approximation error is e = x¢ — x¢ and the residue is:

r=x—x=x4+w—-—x=e+w (4.2)

This implies that if the code is correctly determined so that e = 0, then residue
r = w. As a result, the residue should possess the same statistical properties of the

contaminating noise. In maximum projection based algorithms, approximation of a
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noisy patch x is achieved by projecting it onto dictionary atoms and picking the atom
that gives the maximum projection. Note that the performance of maximum
projection based algorithms deteriorates as the noise level increases [40]. According
to [36], the projection coefficient on atom d, is

dix = dj(x° +w) = ||dil1x°]l cos(8ay ) + lldLIIwll cos(Ba, w)

= [1x°1] c5(0, ) + 11Wl| cos(Ba, ) 4.3)

where ||d};|| = 1 and 6, denotes the angle between vectors a and b. At high noise
levels where the magnitude of noise w is greater than that of the clean patch x¢,the
noise w dominates the maximum projection and thus would dictate the atom
selection process. The atom that matches the contaminating noise is then picked.
Consequently, the residual r contains remnants from clean signal and it would not

possess properties of the noise [36].

In this research work, we develop a new correlation based regularization to ensure
that the residuals of different patches are minimally correlated, hence they behave

like contaminating noise. Our problem can be summarized as follows.

Given a patch x formed from a noisy images, we aim to find a sparse code a, such
that the representation X = Da gives a good approximation of the clean image, i.e.,
x¢ =~ x‘and the resultant residue r = x — x° is uncorrelated with the residues of the

neighboring patches of the noisy image.
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4.4 Residual Correlation Regularization

4.4.1 Sparse Coding

Let the current patch being processed be denoted by x. Assume that M of its
immediate neighbors have been processed, and the corresponding residuals
arer™,m=1,2,..., M. We initialize its residue as r, = x. We shall then determine
the first atom by a regularization based on residual patch correlation regulation. We
then proceed to next patch by the same approach. And then similarly we pick second
atom for each patch. The process is repeated either the maximum number of atoms to
be used is reached or the residual power is reduced below the noise power. Assume
that we are going to pick the sth atom for x. Denote by r,_; the residual formed
after selection of s — 1 atoms. If the atom picked is d;_, and the corresponding
coefficient is ay, then the new residual is:

rs =Tg_ 41— di ag (4.4)

Our atom selection is performed by minimizing the following objective function:

M
1
Jeleg @) = 51Tl + ) Anlrlr| (45)
m=1

where 4,, > 0,m = 1,2, ..., M, are regularization weighting parameters,which can be
selected according to the level of the noise. Note that the first term in the right-hand
side of (4.5) represents a fidelity term, whereas the second term realizes the
regularization on residual correlation between the current residual r, and
neighboring residuals ™. Therefore, minimizing J. in (4.5) enforces the residual of

the current patch to be uncorrelated with those of neighboring patches as possible.
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Thus, the atom and the corresponding coefficient can be determined as
(ks, as) = argmin J. (ks, ) (4.6)

s s

Expanding J. (k,, a,) in terms of k. and a, we have:

]C(ks' aS)

M
1
= E(rs—l - dksas)T(rs—l - dksas) + 2 Am |(rs—1 - dksas)Trml

m=1

= %((ng?;sdks - zas(dks)TrS—l + rg—lrs—l) + Z%:l /1m |(rs—1 - dksas)TrmL

To solve (4.6) we take the derivative of J.(k,, a;) with respect to (w.r.t.) a:

(detailed steps are presented in Appendix A)

M
0
ai = _dgs(rs—l - dksas) - Z |Smlm d{srm| (4-7)
$ m=1
Where
Sm = Sgn ((Ts—1 — dksaS)Trm) (4.8)

with sgn being the sign function. Letting the derivative be equal to zero and noting:

M
o = dfr i+ Z S AL T (4.9)
m=1

Note that if A,, = 0, function in J. (4.5) gives the standard least square error (LSE)
expression. And the solution in equation (4.9) coincides with the very solution of the
corresponding LSE problem when no patch correlation regularization is used [1].
Furthermore, equation (4.9) shows explicitly how the LSE solution is modified when

any neighboring patch is used for regularization. There are two issues in calculating
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a, from (4.9):1) a, is dependent on atom d,, , which is yet to be determined, and
more importantly 2) a, itself also appears in the signs s,, of (4.9). Fortunately, Issue
1) can be resolved by examining all the atoms in the dictionary that have not been
selected for patch x. And for each atom considered, Issue 2) can also be
circumvented by testing all 3 (because sign can be +1,-1 or 0) combinations of
s,and selecting the combination that yields the least J.(k,, a;). As a results, (4.6) is
then solved. That is, we complete the sth atom selection and its coefficient
calculation. Proposed sparse coding stage is summarized in Algorithm 4. Flow chart

of proposed algorithm is presented in Figure 4.1.

Algorithm 4: Sparse Coefficient Estimation Based On Inter-patch Correlation
regularization

Input

1: x: noisy input patch, D= [d,], k = 1,2, ..., K: dictionary, a: noise level

2: S: Maximum number of atoms to be selected

3: M: number of neighbors

4:r™,m = 1,2, ..., M: the number of neighboring residuals of current patch x
EndInput

5. procedure

6: ro=x

7: fors =1,2,..,5do

8: Obtain m neighboring residuals of current patch x

9: if |rs_1]| > o2 then

10: fork =1,2,.. ,K do

11: forz=1,2,...,Zdo

12: For each combination of sign z, compute a using
equation (4.9) and save it with corresponding atom

13: Calculate (4.6) for current kg, a; and sign z

14: endfor

15: endfor

16: Select sign k and a, that minimizes (4.6)

17: ry =1, —d; ag

18: endif

19: endfor

20: endprocedure
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4.4.2 Dictionary Updating

The above described sparse coding stage assumed that the dictionary D is known and
fixed. If we wish to learn the dictionary from noisy image patches, we can resort to
the two stage dictionary learning algorithm employed in [2, 7, 13, 37], that is, we
alternate between the sparse coding stage and a new dictionary update stage. We now
consider the dictionary update stage; the new sparse coding stage was described in

the previous section.
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— Obtain current patch

Sequence of noisy
input patches

1

Obtain neighbors for current
patch

l

For each combination of sign z,
compute a, using equation (4.9)

|

Calculate (4.6) for current kg, a,
and sign z

1

Select sign k, and «, that
minimizes (4.6) the most

1

Calculate new residual

r¢="Ts1— dksas

Figure 4.1: The flow chart of proposed algorithm.
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Consider the tth iteration, with dictionary D,_;. Let the current patch be x,with
sparse code a,, and then the corresponding residue isr, = x, — D,_;a;. Similarly,
let r;be the residuals of the neighboring patches that have been processed under
D,_; with the corresponding code a;, i = 1,...,t — 1.The new dictionary can be

updated by minimizing the objective function (Detailed steps are presented in

Appendix B)
t t—1
1 2 T
Ja@) = £ > 13 + ) alrTr
i=1 i=1
1 t t—1
- ;[Z 1% = De|l3 + ) 4 (x, — Da)' (x; — D))
- - (4.10)
1 1 T T T
J.(D) = Z E(Tr(z) DA, — 2D"B, + x,x1))
+Tr(D"Df,_1ai{_y — D" g._1ai_ — Df,_1x{
+ g, 1xT
ge-1X¢) (4.11)
where
t (4.12)
A = Z aa =A,_ +a.al
i=1
t
B, = Z x;a =B, +x,al (4.13)
i=1
t—1
fo= D Asit =fia+de1s 1t (414)
i=1
t—1
g: = Z Aisixi =i+ 151X (4.15)
i=1
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With:

si = sgn((x;, — Da,)" (x; — Da;)) (4.16)

Function J; in (4.10) explicitly shows that the neighboring residual patches
contribute to the dictionary update. Note that if no neighborhood patch x; is used in
the constraints in equation 4.10, then the proposed dictionary update reduces to the
method of optimal directions for frame design [41]. We now solve for the new
dictionary D:

D, = argmin J; (D) (4.17)
D

Taking the derivative of the objective function in (4.11) w.r.t. D and setting it to be

zero (Detailed steps are presented in Appendix C), we have:

DA, —B.=0 (4.18)

where
Ac = A, + 20, f 0" (4.19)
Bc =B, +0)(ge—10c1" + feo1x:") (4.20)

The linear equation (4.18) can be approximately solved by:

D=D, ,+(B,—D,_{A)A;! (4.21)

Since the coefficient vectors a are sparse, when A; are selected to be small, the
coefficients of A, are generally diagonal. As a result, the kth column of D can be
approximately updated as

D =D+ (B.—D;1A)[diag(A.)]™ (4.22)
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And the kth column of dictionary can be calculate by an approximation followed by

a normalization:

1
uy — W(BC(: k) =D;_1A.C,k)) + D;_1(:, k)

D.(:, k) «

u
max([|gll2, 1) (4.23)

Note that A, and B, are related to the signs s;,i = 1, ...,t — 1, which are dependent
on D. To circumvent this dependency, we can in principle consider all combinations
of the possible signs. However, it would quickly become infeasible as t increases.
Nevertheless, we can practically overcome this problem in two ways:

1) We include only a small number of correlation terms in the objective function
(4.10) (e.g., let M = 2); and 2) we use D,_, instead of D, in determining the sign,
that is,

si =sgn((x; = Di1a)"(x; = Dy 1)), i=1,..,t —1 (4.24)

WNeighborhood of
processed patches

ﬁ Current Patch

XX

Figure 4.2 Neighborhood of processed patches
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4.5 Computational Complexity

In this section, we discuss the computational complexity of the proposed algorithm.
Recall that the K-SVD performs O(nKLP) operations per pixel [1], where n, K, L, P
are the size of the patch, the size of the dictionary atoms, the maximum number of
atoms selected, and the number of iterations, respectively.

Similar approach is adapted in the proposed algorithm, except that for each patch
being processed, we need to test for different combinations of signs in order to select
the atom and to update the dictionary. As a result, the computational cost of the
proposed algorithm becomes O(cnK?LP), where c is the number of sign
combinations considered at each atom selection (sparse coding) and updating.
Therefore, the proposed algorithm is computationally more expensive than K-SVD
[1]. On the other hand, we shall show in Section 4.6 that the correlation based
regularization can help produce much better results than the K-SVD, both
qualitatively and quantitatively. Note that the computational burden can be alleviated
by searching for suboptimal solutions of (4.6) and (4.17); for example, by selecting
atoms that reduce the objective function below certain threshold value. This shall
significantly decrease the computational complexity at the cost of minor loss in

performance.
4.6 Limitations And Future Work

In this section, the limitations of the proposed algorithm are discussed and also future

work is suggested.

Computation cost can further be improved as discussed in Section 4.5. Hence, further
investigation in this regard is suggested as a future work. Also performance of the

proposed algorithm is not as good at low noise levels as it is at high noise levels.
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Thus, this limitation also creates opportunity to further investigate and improve the

performance of the residual correlation based proposed image denoising algorithm.
4.7 Experimental Results And Comparison

This section compares the performance of the proposed algorithm with four state-of-
the-art algorithms of image denoising, namely, the K-SVD [1], BM3D [6], EPLL[14]
and NCSR [39] algorithm. Firstly, quantitative performance evaluation is performed.
Later, qualitative experiments are compared.

4.7.1 Quantitative Performance Evaluation

In this subsection, the quantitative performance of proposed algorithm is compared
with state-of-the-art algorithms. This quantitative comparison is conducted based on
PSNR (Peak Signal to Noise Ratio), SSIM (Structure Similarity Index Measure) and
FSIM (Feature Similarity Index Measure).

4.7.1.1 Comparison Based On PSNR Results
The PSNR is calculated as 10(log,9255%/MSE) where MSE = %HX — X||?>. Where

X and X are the original and denoised images respectively. The experiment is
performed through MATLAB program. We select some standard test images, all of
size 512 x 512. Then image segments of size 80 x 80 are extracted from each
image. These segments are further divided into 15 x 15 fully overlapping patches.
The AWGN noise w of power between 25 to 100 is generated. The number of
immediate neighborhood patches is set to be M = 2. We find one atom for the patch
and form its residual. Then, we move to next patch to pick its first atom and so on.
When we pick first atom for all the patches and formed their residuals then we pick
second atom for all the patches. This process continues until residual power goes
below noise power and/or maximum number of atoms to be picked is reached. Figure

4.2 shows that how sequentially patches are processed and neighborhood of
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processed patches is obtained. Finally, when sparse coefficients for all the patches
are estimated then dictionary is updated. Note that we process (denoise) 80 x 80
segments of image separately. Thus, we initialize dictionary of size 225 x 35 (n =

225, K = 35) with pre-chosen and fixed dictionary as given in [1].

The PSNR results are presented in Table 4.1. We evaluate the performance of
proposed algorithm for each image separately. In order to get clear comparison the

PSNR results for each image are shown in Figure 4.3.

As proposed algorithm is based on sparse-land model thus its performance is
compared with K-SVD [1]. Also, for fair comparison, different types of the standard
images are selected. For example, the images with abundance of high frequency
content like Barbara, Fingerprint and Straw images are tested. Furthermore, in order
to evaluate the performance at low noise levels and also at high noise levels the

AWGN noise with noise level with sigma from 25 to 100 is generated.

Let us evaluate the results of each image given in Figure 4.3. For the Barbara image,
the performance of proposed algorithm is better than state of the art KSVD [1] and
EPLL [14]. Contrary to K-SVD [1], performance of the proposed algorithm keeps
improving with increasing noise levels. On the other hand, for Barbara image, BM3D
[6] and NCSR [39] produce high PSNR results when compared to KSVD [1], EPLL

[14] and proposed algorithm.
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Table 4.1: PSNR results in decibels. Top left: Results of K-SVDI[1]. Top right:
NCSR [39]. Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left:
Proposed Algorithm.

Avg
Sigma Barbara Boat Fingerprint Lena Straw A{I)ﬂ\"tR
KSVD
2958 | 30.61 | 29.27 | 29.67 | 27.26 | 27.77 | 31.32 | 31.91 | 2545 | 2551
25 | 3072 | 2851 | 29.91 | 29.61 | 27.71 | 27.09 | 32.08 | 31.54 | 25.04 | 25.23 -0.02
2956 | -0.02 | 2913 | -014 | 2756 | 03 | 31.25 | 007 | 2565 | 02
2855 | 29.68 | 28.42 | 28.79 | 2631 | 26.97 | 3045 | 31.07 | 24.39 | 2471
30 | 2081 | 2754 | 2912 | 28.77 | 26.83 | 2621 | 31.26 | 30.79 | 24.22 | 24.39 1.08
2868 | 013 | 2844 | 002 | 2668 | 037 | 3052 | 007 | 24.88 | 0.49
2553 | 27.03 | 25.94 | 2652 | 23.26 | 24.48 | 27.87 | 29.01 | 22.08 | 2256
50 27.23 | 24.88 | 26.78 | 2658 | 2453 | 2352 | 29.05 | 28.32 | 2241 | 22.24 17
2579 | 026 | 2601 | 007 | 2386 | 06 | 2807 | 02 | 2265 | 057
22.98 | 24.76 | 23.95 | 24.67 | 20.04 | 22.65 | 2565 | 27.02 | 21.04 | 21.33
& 2512 | 23.02 | 2512 | 24.87 | 22.83 | 2148 | 27.26 | 2647 | 2152 | 21.29 115
2443 | 145 | 2441 | 046 | 2261 | 257 | 2635 | 07 | 2163 | 059
21.85 | 23.24 | 22.83 | 23.42 | 1831 | 21.34 | 2442 | 2566 | 2045 | 20.71
100 | 2362 | 2213 | 2397 | 2366 | 21.61 | 19.82 | 2595 | 2533 | 21.05 | 2081 1.08
2307 | 122 | 2325 | 042 | 2124 | 293 | 2472 | 03 | 2099 | 054
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Figure 4.3: The PSNR results comparison.
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Now let us analyze performance of the proposed algorithm with increasing noise
levels when compared to other image denoising results. In order to understand this,
we keep K-SVD[1] results as a zero reference. This reference line is shown in Figure
4.4 as a straight line at zero. Figure 4.4 shows that the difference in PSNR results of
the proposed algorithm keeps decreasing with increasing noise levels when
comapared to BM3D [6] and NCSR [39] algorithms. Hence, we conclude that
residual correlation regularization based image denoising is highly effective at high

noise levels.
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Figure 4.4: Difference in PSNR comparison for Barbara image.

Similarly, when we compare the results of Boat and Lena images given in Figure 4.3,
it is evident that proposed algorithm performs reasonably better than KSVD [1]
especially at high noise levels. However, for these images, the performance of

proposed algorithm is not as good as it is for Barbara image. Hence, we conclude that
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residual correlation regularization is more effective for images with plenty of high
frequency content. Let us verify this claim, by comparing the PSNR results of
Fingerprint and Straw images. As both of these images contain large quantities of
high frequency contents, performance of the proposed algorithm is better as
compared to its performance for Lena and Boat images. We can see from Figure 4.3
that the proposed algorithm outperforms KSVD and EPLL algorithms for the
Fingerprint and Straw images. Especially, for the Straw image, the performance of
the proposed algorithm exceeds BM3D at some noise levels. Also for the Fingerprint
image performance of the proposed algorithm is a good complement to the BM3D
and NCSR algorithms. Hence, it verifies our claim that the information of residual
correlation becomes effective when dealing with images that possess large quantity
of high frequency content. Figure 4.5 presents the difference in PSNR results of all

algorithms with zero reference KSVD for the Fingerprint image.

Fingerprint

difference in dB

| —$—EPLL BM3D P>+ NCSR = B = Proposed mmmmm Reference(KSVD)

15 | | |
25 30 50 75 100

Noise Level

Figure 4.5: Difference in PSNR comparison for Fingerprint image.
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It is evident from Figure 4.5 that the proposed residual correlation regularization
based image denoising algorithm keeps improving with increasing noise levels when
compared to state-of-the-art image denoising algorithms. Similarly, Figure 4.6
shows the difference in PSNR results for the Straw image. It shows that for the Straw
image the proposed algorithm produces best PSNR results for some noise levels

when compared to all other algorithms.

Straw

difference in dB
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u | I I
% 30 50 15 100
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Figure 4.6: Difference in PSNR comparison for Straw image.

Now, let us analyze the effect of number of neighboring residuals considered for
sparse coding and dictionary update stages. In order to evaluate this comparison, we
set M = 1and M = 2. Figure 4.7 presents PSNR results at noise levels 50, 75 and
100 when M =1 and M = 2. Figure 4.7 shows that performance of the proposed

algorithm improves when we increase the number of neighboring residuals. It shows
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that often performance of the proposed algorithm improves if more information
about neighboring residuals is incorporated during sparse coding and dictionary
update stages. In order to limit the computational cost we set M = 2 for our

experiments.

PSNR (dB)
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Figure 4.7: PSNR comparison when M = 1 and M = 2.

PSNR (dB)

4.7.1.2 Comparison Based On SSIM Results

In this section, we compare the proposed algorithm with state of the art algorithms
with respect to SSIM. Table 4.2 presents the SSIM results obtained for few standard
images at various noise levels. However, we plot these values to better understand

the behavior of proposed algorithm in terms of SSIM.

Figure 4.8 presents the comparison of proposed algorithm with state of the art
algorithms in terms of SSIM results. Similar to PSNR comparison, it is evident that
performance of the proposed algorithm is better for the Barbara, Fingerprint and

Straw images as compared to its performance for Lena and Boat images.
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If we evaluate the SSIM results, we come to know that proposed algorithm performs
better than KSVD and NCSR algorithms especially at high noise levels. However,
EPLL and BM3D perform better than KSVD, NCSR and proposed algorithm in

terms of SSIM.

Table 4.2: SSIM results. Top left: Results of K-SVD[1]. Top right: NCSR[39].
Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left: Proposed Algorithm.

Sigma Barbara Boat Fingerprint Lena Straw

0.651 | 0.796 | 0.676 | 0.681 | 0.908 | 0.923 | 0.721 | 0.735 | 0.095 | 0.081
25 0.851 | 0.797 | 0.811 | 0.811 | 0.922 | 0.922 | 0.833 | 0.841 | 0.711 | 0.458
0.782 0.711 0.915 0.743 0.741

0.574 1 0.703 | 0.638 | 0.649 | 0.891 | 0.905 | 0.668 | 0.684 | 0.172 | 0.141
30 0.823 | 0.743 | 0.781 | 0.789 | 0.906 | 0.899 | 0.801 | 0.801 | 0.638 | 0.312
0.734 0.698 0.903 0.714 0.685

0.356 | 0.499 | 0.462 | 0.486 | 0.775 | 0.844 | 0.442 | 0.535 | 0.314 | 0.342
50 0.629 | 0.495 | 0.669 | 0.673 | 0.861 | 0.828 | 0.696 | 0.686 | 0.414 | 0.311
0.583 0.523 0.819 0.563 0.414

0.213 |1 0.284 | 0.345 | 0.395 | 0.569 | 0.781 | 0.312 | 0.401 | 0.095 | 0.079
75 0.481 104010579 0.581 | 0.813 | 0.727 | 0.591 | 0.571 | 0.291 | 0.249
0.411 0.445 0.764 0.445 0.241

0.178 | 0.199 | 0.274 | 0.315 | 0.383 | 0.727 | 0.273 | 0.262 | 0.172 | 0.141
100 | 0.401 | 0.374 | 0.514 | 0.511 | 0.768 | 0.577 | 0.507 | 0.452 | 0.241 | 0.248
0.366 0.351 0.736 0.361 0.291

For the straw image the proposed algorithm outperforms all the algorithms at some
noise levels. Moreover, SSIM results for Barbara and Fingerprint presented in Figure
4.8 also verify the competitiveness of proposed algorithm with state of the art

denoising algorithms.

We conclude that structures of the recovered images are well preserved by the
proposed algorithms. Later, in this chapter, the visual comparison of the proposed

algorithm is also verifying the SSIM results.
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4.7.1.3 Comparison Based On FSIM Results

In this section, the proposed algorithm is compared with the state-of-the-art
algorithms. Similar to the SSIM comparison, the proposed algorithm outperforms
KSVD and NCSR in terms of FSIM as shown in Figure 4.9. However, EPLL and
BM3D produce better FSIM results when compared to KSVD, NCSR and proposed

algorithm.
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Figure 4.8: The SSIM results comparison.

We conclude that for the images that are rich in high frequency content like Barbara

and Fingerprint images, the performance of proposed algorithm is relatively better.
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Figure 4.9: The FSIM results comparison.

4.7.2 Qualitative Experiments

In this section, comparison of the visual results is presented. As in previous section,
we conclude that information about residual correlation is very essential for
recovering highly repeating structures at high noise levels. Thus, portion of Barbara

and Fingerprint images at high noise levels is denoised by all comparing algorithms.

As the noise level increases the regularization parameter A, is also increased from
0.5 to 1.With increased noise levels, the performance of the proposed algorithm

improves more in terms of both indices.

Firstly, we present results for high frequency portion of Barbara image Figure 4.10.

This image segment is corrupted with ¢ = 60 and then it is recovered by KSVD,
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EPLL, NCSR, BM3D and the proposed algorithm. It is clear from Figure 4.10 that
the repeating structures of the scarf and portion near the hand are well preserved by
proposed algorithm. It is to note that KSVD and EPLL do a poor job in recovering
such fine structures. Also, it shows that proposed algorithm performs as good if not

better than NCSR and BM3D algorithms.

Similarly, the portion of recovered Fingerprint image is presented in Figure 4.11. We
corrupt the segment of Fingerprint image with ¢ = 100. Then, we recover it with all

the algorithms to compare their qualitative performance.

Figure 4.10: Visual Comparison of Barbara image with o = 60 (a) Original image
(b) denoised by KSVD [1] (c) denoised by BM3D [6] (d) denoised by EPLL [14] (e)
denpoised by NCSR [39] (f) denoised by proposed algorithm

If we closely investigate the Figure 4.11, we find that KSVD and EPLL fail to
recover the ridges of Fingerprint image at ¢ = 100. Whereas, proposed algorithm
does excellent job to recover these fine structures at high noise level. Usually, these
structures are considered as “hard-to-recover”. As a result most of the image

denoising algorithms fail to preserve the structures of these portions after denoising.
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Especially, as result of selecting incorrect atom, maximum projection based
algorithms fail to recover these structures. However, information about the
correlation between neighboring residuals has proved to be useful in recovering such

fine structures.

Furthermore, visual results obtained in Figure 4.10 shows that the proposed

algorithm is as good if not better than BM3D and NCSR algorithms.

Figure 4.11: Visual Comparison of Fingerprint image with ¢ = 100 (a) Original
image (b) denoised by KSVD [1] (c) denoised by BM3D [6] (d) denoised by EPLL
[14] (e) denpoised by NCSR [39] (f) denoised by proposed algorithm
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Finally, we combine Barbara and Fingerprint image as shown in Figure 4.12. The
portion of Barbara image recovered for ¢ = 75 and the portion of Fingerprint image
denoised for o = 100 is presented in Figure 4.12. Visual results in Figure 4.12 verify
that proposed algorithm is highly effective to recover repeated structures at high
noise levels. For the o = 75, the stripes on the scarf are very well recovered by

proposed algorithm.

Proposed Algorithm

Figure 4.12: Visual Comparison for Barbara (¢ = 75) and Fingerprint (¢ = 100).

4.8 Comprehensive Performance Evaluation At High Noise Levels

According to motivation presented in Section 4.3, the performance of the proposed
residual correlation reduction based image denoising algorithm should be improving
with increasing noise levels. This phenomenon was observed in the experimental
results presented in Section 4.7. It is observed that producing better results at high
noise levels is the specialty of the proposed algorithm. In order to further investigate
this characteristic of the proposed algorithm the experiments are performed on
variety of images in next Sections. Also various types of noises are used in denoising
process to verify the persistence of the proposed algorithm. Finally, synthetic images

with high frequency content are created using fixed DCT (Discrete Cosine
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Transform) bases. The results of these synthetic images are evaluated using heat
map.

4.8.1 Performance Evaluation With Other Type Of Noises

The proposed algorithm is used for denoising AWGN in previous Section. However,

Gaussian noise can also be colored in nature which is commonly known as Addictive
White Colored Noise (ACGN). Also noise can be long tailed Laplacian noise. Now,
performance of the proposed algorithm is evaluated for denoising images containing
ACGN and Laplacian noise.

4.8.1.1 Denoising Images Corrupted With ACGN

ACGN can be generated by passing AWGN through a low pass or high pass digital
filter. Firstly, ACGN is produced by using FIR digital filter with frequency response

and impulse response as shown in Figure 4.13.

Power Spectrum Magnitude (dB)

Frequency

Impulse Response
T T T

Amplitude

K | L | | 1 L
USD 2 4 6 8 10 12

n (samples)

Figure 4.13: Frequency Response and Impulse Response of Digital Filter Used To
Generate ACGN.
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Table 4.3: PSNR results for ACGN in decibels. Top left: Results of K-SVDI[1]. Top
right: NCSR [39]. Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left:
Proposed Algorithm, Bottom Right: APSNR w.r.t KSVD.

Avg
APSNR

w.r.t
KSVD

Sigma Barbara Boat Fingerprint Lena Straw

2163 | 2114 | 2150 | 2031 | 2043 | 1934 | 2215 | 20.78 | 19.37 | 19.66
50 22.05 | 2499 | 21.77 | 26.81 | 19.23 | 2379 | 20.08 | 27.75 | 20.48 | 22.18 0.9
22.69 106 | 2312 | 1.62 | 20.63 0.20 2301 | 086 | 20.26 | 0.89
1843 | 17.63 | 1876 | 17.08 | 1757 | 1649 | 19.30 | 22.24 | 17.47 | 16.99
75 19.01 | 23.26 | 1882 | 2535 | 1849 | 22.01 18.49 | 2534 | 17.97 | 21.34 3.06
21.73 3.3 2248 | 372 | 1971 2.14 2183 | 253 | 21.09 | 362
1654 | 1408 | 17.01 | 1428 | 1533 | 1386 | 1694 | 14.45 | 1583 | 14.10
100 1692 | 22.64 | 16.85 | 24.22 | 1657 | 20.23 17.05 | 23.34 | 16.15 | 21.01 4.26
2111 457 | 2173 | 472 | 1895 3.62 2052 | 353 | 20.73 49

When ACGN (with zero mean and known variance) is added to clean images and the
proposed sparse coding and dictionary update stages are iterated few times then

image denoising results are obtained as presented in Table 4.3.

Note that proposed algorithm performs better in terms of PSNR when compared to
all algorithms except EPLL [14]. At noise level 100, it outperforms KSVD by 4.26
dB on average. Visual results for Barbara and Fingerprint images presented in Figure
4.14 and Figure 4.15 respectively shows that the proposed algorithm along with

EPLL [14] successfully recovers images as compared to other algorithms.
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Clean Image Noisy Image

Figure 4.14: Visual Comparison for Barbara (¢ = 50) Corrupted With ACGN.
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Noisy Image

Figure 4.15: Visual Comparison for Fingerprint (6 = 50) Corrupted With ACGN.
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4.8.1.2 Denoising Images Corrupted With Laplacian Noise
Now, performance of the proposed algorithm is evaluated for the images corrupted
with Laplacian noise (also called biexponential). The PSNR results obtained are

summarized in Table 4.4.

Table 4.4: PSNR results for Laplacian noise in decibels. Top left: Results ofK-SVDI1].
Top right: NCSR [39]. Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left:
Proposed Algorithm, Bottom Right: APSNR w.r.t KSVD.

Avg
APSNR
w.r.t
KSVD

Sigma Barbara Boat Fingerprint Lena Straw

23.87 | 26.88 | 24.21 | 2641 | 2201 | 2448 | 25.71 | 2890 | 2117 | 22.37
S0 | 2721 | 2451 | 2671 | 2596 | 2458 | 2331 | 28.93 | 2758 | 2226 | 2205 | -091
2272 | -115 | 2317 | -1.04 | 2052 | -1.49 | 2388 | -1.83 2213 | 096
2121 | 2452 | 22.08 | 2461 | 1882 | 22.61 | 23.25 | 26.73 19.79 | 2112
75 25.04 | 22.06 | 25.01 | 2434 | 2278 | 2122 | 27.36 | 25.84 21.39 | 21.09 0.73
2196 | 075 | 2263 | 055 | 1967 | 0.85 | 2311 | -0.14 2147 | 168
19.73 | 22.91 | 2077 | 2317 | 17.02 | 21.30 | 21.81 | 25.26 18.68 | 20.42
100 | 2365 | 21.88 | 23.87 | 2330 | 21.64 | 1967 | 25.90 | 2473 | 20.94 | 20.49 165
2150 | 177 | 2204 | 127 | 1897 | 195 | 2278 | 0.97 2101 | 233

The PSNR results obtained for Laplacian noisy images show that the proposed
algorithm does not perform as well as it has performed for AWGN and ACGN. It is
due to the fact that there are significant nonzero lag correlations in AWGN and
ACGN. Hence, residual correlation reduction method is much more effective when
there are good numbers of nonzero lag correlations which are supposed to be
minimized. The visual results for Laplacian noise are presented in Figure 4.15 and
4.16. It is observed that proposed algorithm produces better visual results when
compared to baseline method KSVD. Although, PSNR results of the proposed
algorithms are not better than EPLL, NCSR and BM3D algorithms, however, it

outperforms KSVD by 1.65 dB on average at noise level 100.
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Noisy Image

Figure 4.16: Visual Comparison (o = 50) Corrupted With Laplacian Noise.
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Clean Image Noisy Image

Figure 4.17: Visual Comparison (o = 50) Corrupted With Laplacian Noise.

Now, PSNR results obtained for the Laplacian and ACGN are compared in the

Figure 4.17, 4.18 and 4.20.
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Figure 4.18: PSNR results for ACGN and Laplacian Noise.
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Figure 4.19: PSNR results for ACGN and Laplacian Noise.
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Figure 4.20: PSNR results for ACGN and Laplacian Noise.
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Also, since the visual results of Barbara and Fingerprint images are presented.

Therefore, the SSIM results of these images are shown in Figure 4.21 and 4.22.
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Figure 4.21: SSIM results of Barbara Image for ACGN and Laplacian Noise.
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Figure 4.22: SSIM results of Fingerprint Image for ACGN and Laplacian Noise.
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4.8.2 Testing Variety Of Images At High Noise Levels

In previous sections the standard test images are used to compare performance of the
proposed algorithm with state-of-the-art algorithms. However, now the proposed
algorithm is evaluated for images with different structures in order to further study
the effectiveness of residual correlation reduction on image denoising. Well known
images like House, Pepper, Pirate and Mandril are chosen. Furthermore, the images
with distinctive features like text image and face image is also evaluated. The PSNR

results obtained are summarized in Table 4.5.

Table 4.5 PSNR results in decibels. Top left: Results of K-SVD[1]. Top right:
NCSR [39]. Middle left: BM3D [6]. Middle right: EPLL [14]. Bottom Left:
Proposed Algorithm, Bottom Right: APSNR w.r.t KSVD.

Avg
APSNR
Sigma House Pepper Pirate Text Image Mandril Face w.r.t
KSvV

D

28.37 | 30.05 | 26.11 | 26.42 | 25.04 | 25.34 | 21.01 | 22.03 | 22.78 | 23.22 | 25.69 | 26.43
50 29.69 | 28.96 | 26.68 | 26.46 | 25.55 | 25.59 | 20.91 | 20.93 | 23.03 | 23.31 | 26.88 | 26.58 | -0.56
27.98 | -0.39 | 25.31 | -0.81 | 24.31 | -0.73 | 20.57 | -0.44 | 23.24 | 0.46 | 24.65 | -1.04
2556 | 27.55 | 23.55 | 24.24 | 23.04 | 23.77 | 18.63 | 20.34 | 21.73 | 22.11 | 23.84 | 24.53
75 29.02 | 26.95 | 25.96 | 24.56 | 24.85 | 23.95 | 20.16 | 19.29 | 22.36 | 22.16 | 26.13 | 24.83 0.37
26.25 | 069 | 2438 | 0.83 | 23.38 | 0.34 | 19.03 | 0.67 | 22.34 | 0.61 | 22.97 | -0.87
2354 | 25.86 | 21.72 | 22.77 | 21.99 | 22.7 | 17.79 | 19.71 | 21.13 | 21.21 | 22.70 | 23.02
100 28.58 | 25.31 | 25.50 | 23.06 | 24.49 | 24.83 | 19.99 | 18.31 | 22.13 | 21.49 | 25.66 | 23.33 0.66
2447 | 093 | 22.64 | 092 | 2245 | 046 | 1855 | 0.78 | 21.95 | 0.82 | 22.79 | 0.09

From Table 4.5 it is obvious that the proposed algorithm keeps improving with
increasing noise levels. Also, it is evident that the residual correlation reduction
approach for image denoising is more effective for images with high frequency
content rather than flat images like House, Pepper or Text-image. However,
performance of the proposed algorithm is better for Mandril. Figure 4.23 shows that

the proposed algorithm is less effective for flat images such as text image.
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Figure 4.23: Visual Comparison of Text image (o = 50).
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4.8.3 Testing With High Frequency Synthetic Images

Now the images with desired effective bandwidth are generated in order to further
evaluate performance of the proposed algorithm. These images are generated by
randomly selecting DCT coefficients. The images are generated by selecting 5, 15
and 25 DCT coefficients. The coefficients are selected in order to control the
effective bandwidth of generated synthetic images. Six images are generated with
effective bandwidth of 0.1, 0.3, 0.5m,0.7m,0.97 and m respectively both in
horizontal and vertical directions. These images are varying from low effective
bandwidth to high effective bandwidth. Note that it is made sure that the selected
coefficients contain random weights. Finally, we test image denoising performance
of the proposed algorithm on these images. Images are tested at noise levels ranging
from 25 to 100. Performance of the proposed algorithm is compared with baseline
method KSVD. The PSNR values obtained are used to generate the heat map as
shown in Figure 4.24, 4.25, and 4.26. The horizontal axis corresponds to image
effective bandwidth ranging from 0.1 to m in both directions. The vertical axis is

the noise level ranging from o = 25 to o = 100.
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Figure 4.24: PSNR heat map of synthetic DCT images (with 5 coefficients)
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Figure 4.25: PSNR heat map of synthetic DCT images (with 15 coefficients)
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Figure 4.26: PSNR heat map of synthetic DCT images (with 25 coefficients)

The heat maps presented above show that as effective image bandwidth increases the
performance of the proposed algorithm improves. Also it gives clear indication that
at high noise levels the proposed algorithm performs better when compared to KSVD
algorithm. Better performance at high noise levels justifies the motivation and
problem definition of the proposed algorithm presented in section 4.3. Hence, we
conclude that the proposed algorithm is highly effective for the images with
abundance of high frequency content.

4.9 Conclusion

We presented a new residual correlation regularization that enhances the image
denoising performance. This regularization helps to make statistical properties of
residual to be similar to those of the contaminating noise. This is achieved by a new
method of sparse coefficient estimation based on proposed regularization. A new

dictionary update stage is developed based on residual correlation minimization. Our
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experimental results demonstrate that the proposed regularization and sparse
coefficient estimation is highly effective to recover fine structures at high noise

levels.

It is indeed true that BM3D produces best PSNR results often. However, it
introduces artifacts when it fails to obtain large amount of matched blocks [6]. Also,
BM3D algorithm is unable to separate the edges from noise at high noise levels. As a
result it can blur the edges. We have shown in Figure 4.11 that the proposed

algorithm is as good if not better than BM3D algorithm in terms of visual perception.

Also as mentioned earlier that for Barbara image the proposed algorithm does a fairly
good job in terms of PSNR. Furthermore, also for Fingerprint and Straw images the
proposed algorithm performs reasonably better. Note that all of the above mentioned
images are rich in high frequency content. Also note that contrary to BM3D,
performance of the proposed algorithm improves with increasing noise levels as
shown in Figure 4.4. Therefore, the reason behind comparing the proposed method
with BM3D algorithm is to show that residual correlation regularization is highly
effective when it is used to recover fine structures (like ridges in Fingerprint image)
at high noise levels and especially images that possess abundance of high frequency

content.

We conclude that the proposed algorithm have limitations in terms of PSNR when
compared to BM3D algorithm, nevertheless, it is as good if not better than BM3D
algorithm in terms of visual perception. Also, we can conclude that our residual
correlation regularization based algorithm performs significantly better both visually

and in terms of PSNR at high noise levels when compared to K-SVD [1] and EPLL
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[14]. Also in terms of FSIM and SSIM results the proposed algorithm outperforms
the KSVD and NCSR algorithms. It is thus a good complement to the state of the art

image denoising algorithms.
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Chapter 5

COUPLED KSVD DICTIONARY LEARNING
ALGORITHM IN WAVELET DOMAIN FOR SINGLE

IMAGE SUPER-RESOLUTION

5.1 Introduction

In the coupled K-Singular Value Decomposition (K-SVD) algorithm [35] coupled
low resolution (LR) and high resolution (HR) dictionaries are trained using singular
value decomposition (SVD). The best low-rank estimate is determined using SVD to
make sure that the sparse coding of the two resolution levels is similar. In this
chapter, we implement algorithm [35] in wavelet domain. Due to directionality and
persistence properties of wavelet domain, performance of coupled KSVD in SISR
(Single Image Super Resolution) is further improved. Also, in wavelet domain,
dictionaries that are trained are small in size and also they are highly structured.
Hence, instead of training one dictionary, multiple small dictionaries are trained to
reduce the computational cost. Furthermore, since they are structured, so the
performance of SISR is improved. For each low and high resolution scale, three pairs
of dictionaries of wavelet subband are designed. Firstly, sparse coding of low
resolution image is obtained by applying LR dictionary. Then using same sparse
coding and HR dictionary a high resolution image is reconstructed. This method

produces better high resolution images when compared to state of the art SISR
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algorithms. Performance of algorithms is compared with respect to PSNR and SSIM

results.
5.2 Background

SISR is a ill-posed inverse problem. One of the solution to this problem is by
introducing the constraint priors [21, 26, 32]. Sparsity is one of the well known prior
used to produce highly competitive results. Note that it has been proved that signal x
can be sparsely represented over dictionary D and this representation is unique and

reliable [16, 18, 25].

In order to better match the given signal, the signal-fitting characteristics of sparse
coding is used. Hence, the representation error is reduced and better approximation is
achieved but the computational cost is increased. In the literature, the idea of coupled
dictionary learning is given by Yang et al [28] and they further modified it in [29].
Firstly, the LR and HR patches are concatenated to form a single feature space. Thus,
the dictionaries trained contain features of both LR and HR patches. This problem is
addressed by alternatively optimizing LR and HR dictionaries [29]. Similarly in [35]
coupled K-SVD algorithm is presented that further improves the coupling by using
the best low-rank approximation given by the SVD. In literature there are many
algorithms [17, 31, 33] with improved coupling between LR and HR coefficients and
dictionaries with better representation power. The idea of designing multiple
dictionaries instead of single one has already been proven useful for sparse
representation of signals. In [34] Elad et al. has proposed a method to learn the multi-
scale dictionaries using wavelets which helps better capture the intrinsic image
features. Furthermore in [23] the author has proposed the wavelet domain dictionary

learning for single image super-resolution using K-SVD. Motivated by these ideas a
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dictionary learning algorithm based on coupled K-SVD in wavelet domain is

proposed and it is applied to the problem of Single Image Super-Resolution (SISR).

Now let us summarize the proposed SISR approach. Firstly, HR and LR patches are
extracted from training data set. Then, HR and LR wavelet coefficient subbands of
training images are obtained by two-level wavelet decomposition. Hence, HR and
LR subbands are Level 1 and Level 2 subbands respectively. Then, pair of
dictionaries is trained using the coupled K-SVD algorithm. Note that these pairs of
dictionaries are trained from vertical, horizontal and diagonal wavelet subbands.
Furthermore, one of basic points in coupled K-SVD algorithm is to enforce HR and
LR patch pair to be at similar indices. Other important point is that for HR and LR
patch pair similar sparse representation coefficient is used. Finally, it is to make sure
that original HR and LR patch pair dictionary is obtained using similar sparse
coding. This is achieved by alternatively calculating sparse coding for low resolution
and high resolution patches and using them to update to HR and LR dictionary atoms
with similar indices. We have divided image by patches of 6 x 6 size, each
dictionary contains 256 atoms and process is iterated 20 times. Each patch is
reconstructed using trained HR and LR dictionaries. At the reconstruction stage,
wavelet subband of LR image is obtained by 1 level wavelet decomposition. Now,
sparse coding of LR subband patch and HR dictionary is used to recover HR subband
patch. Finally, HR image is obtained by one level wavelet reconstruction. Note that
due to the persistence property of the wavelet coding the similarity between HR and
LR subband sparse coefficients is further improved. The proposed algorithm is
highly competitive if not better than state-of-the-art super-resolution algorithms. We
have compared performance of the proposed algorithm in terms of visual results and
also by quantitative results obtained. According to Peak-Signal to-Noise Ratio
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(PSNR) results comparison, the proposed algorithm produces PSNR improvement of
1.19 dB over the algorithm of [23]. This improvement is achieved because of
obtaining better estimate of high resolution subbands by implementing coupled K-
SVD dictionary learning in wavelet domain.
5.3 Image Super-Resolution
One of the well known regularization for SISR is sparsity. In order to reduce
computational cost the image is divided into patches [28]. In the patch based method,
each patch from HR and LR image are sparsely coded using HR and LR dictionary
respectively. This is given as

xy = Dyay (5.1)

x,~ Dyay (5.2)

where ay and a; are the representation coefficient vectors of x; and x; respectively.
The HR and LR images are related by the blurring down-sampling as

x, = Yxy=yYDyay ~ Dyay (5.3)

Note that D; = y¥Dy. Here ¥ is blurring and down-sampling operator.

In [29] and [35] two dictionaries are obtained by coupled dictionary training of LR
and HR patches. Finally, LR dictionary is used to find sparse representation of each
patch of the LR image. It is assumed that &¢; = ay. Then, reconstruction of HR patch
becomes simple by sparse code of corresponding LR patch and the HR dictionary, as

xy =~ Dyay =~ Dya, (5.4)
In wavelet domain based SISR approach [24], dictionary is trained by using [2] for

each LR subband. Then, high resolution dictionary is obtained by finding pseudo
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inverse of high resolution patches and low resolution sparse codes. However, this
approach does not implement any further coupling between HR and LR coefficients.

Thus, in [29] and [35] concept of coupled dictionary learning is introduced.
5.4 The Proposed Super-Resolution Approach

Effectiveness of training multiple dictionaries as a replacement for of single
dictionary is shown in [20]. Furthermore in [17,20] the training data is classified and
divided into clusters which proved to be highly effective. Then, for each classified
cluster a dictionary is trained. Based on such idea, structures and properties of
wavelet subbands are transferred in dictionaries using directionality characteristics of
Discrete Wavelet Transform (DWT). DWT can split image information into
horizontal, vertical and diagonal features. In order to utilize these features, coupled
K-SVD algorithm is implemented in the wavelet domain for SISR. When LR and HR
patch pairs are kept at same indices in coupled K-SVD algorithm then better
coupling between HR and LR sparse coding is achieved. Furthermore, in coupled K-
SVD the HR and LR dictionary atoms are updated using single sparse code. This is
achieved by alternative selection of HR and LR sparse codes to update HR and LR
dictionary atoms. The coupled K-SVD proves to be effective due to better
exploitation of the persistence property of wavelet codes at various resolution stages.
Thus, better coupling in sparse codes is achieved by implementing coupled K-SVD
on wavelet subband images.

5.4.1 Dictionary Learning Based On Proposed Method

For the training of the coupled dictionaries, we first extract a large number of HR/LR
image patch pairs from some predefined database containing clean images. In order
to form training detail subbands, the two-level decomposition is obtained for each

HR image. Moreover, the level-one (level-two) subbands are considered as HR (LR)
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training data. Also, wavelet interpolation is performed on each LR subband in order
to keep its directionality same as HR [28, 30, 35]. We get the training data by
developing pairs of HR and LR patches and then features from them are extracted.
Note that y = {h, v, d} represents horizontal, vertical and diagonal subbands. This
process of feature extraction is same as in [29]. Then, dictionaries of HR and LR

subband images are trained jointly as:

N
. 2 2
i, =D w2 = pal + I - Dha]
LR =g

stlladl < To[l@f]l, < 1lld]l, <1,

i=12..,N (5.5)

Where D} and Dy, denotes LR and HR dictionaries and w) and wy, represents LR

and HR subband images.

In the proposed method, coupled K-SVD algorithm [35] is used for training
dictionaries. Furthermore, we have chosen the Symlets wavelets [19] for DWT
analysis and synthesis. Using DWT one can easily distinguish between the
horizontal, vertical and diagonal details. The LR and HR subband dictionaries that is
horizontal, vertical and diagonal dictionaries are trained. The proposed dictionary

learning algorithm is given in Figure 5.3.
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Figure 5.1: Example of HR subbands dictionary atoms. (a) Vertical Detail
(b) Horizontal Detail (c) Diagonal Detail

Figure 5.1 shows portion trained high resolution subband dictionaries. Since these
dictionaries are trained on horizontal, vertical and diagonal wavelet subbands,
therefore, these subband structures can clearly be observed from Figure 5.1.

5.4.2 Image Reconstruction Based On Proposed Method

In proposed SISR algorithm, wavelet subbands of HR image are determined in order
to obtain original high resolution image. Note that LR image is also considered as
approximation wavelet subband of high resolution image. The given LR image is
first decomposed with a one-level DWT. Then LR image subband is up-converted to
the size of High Resolution image by wavelet interpolation, and finally we perform
overlapping of the patches on the interpolated Low Resolution image. For each LR
image patch, we compute its sparse representation with respect to learned dictionary

D§. This is performed by solving
argrynin”w{ - DZaZ”Z s.tlla)lo<S (5.6)

a

Here S represents sparsity, and the ||.||oand ||.||,are £oand £, norm respectively.
Note that £; norm minimization is used to solve this vector selection problem as

done in [29]. Furthermore, it is also assumed that the sparse representation of HR
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wavelet subbands is same as that of the low resolution wavelet subbands a} ~ a,
the high resolution subbands are given by

w), ~ Da), ~ Dha) (5.7)

The reconstructed HR patches are used to construct the HR image by tiling
operation, here for each pixel in overlapping region we take the average of many
predictions and constitute a final image. In this scenario we use full overlapping

mechanism. This Process is summarized in Figure 5.4.
5.5 Simulation And Results

In [23] DWT s used for image super-resolution; however, coupled dictionary
training is not implemented. Thus, in order to know the effect of coupled dictionary
training the proposed algorithm is compared with [23]. The proposed algorithm is
also compared with [29, 35] and bicubic interpolation. [29] is considered as one of
the state-of-the-art algorithm, thus, we compare its performance with the proposed

algorithm. PSNR can be determined as :

S, B, 2552
T () — 2@ D))

PSNR(X, f) =10 10g10 (58)

where x is original image and X is reconstructed image. Whereas, M X N represents
the dimensions of image. We select 6 x 6 patch size, and number of dictionary atoms
are set to be 256. Algorithm is run for 20 iterations. Note that the training set does

not include image to be super-resolved.

The PSNR, SSIM and visual results are obtained for the Kodak set and other

standard images. According to results the proposed algorithm outperforms Bicubic,
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[29], [35], and [23] algorithms. Figure 5.2 shows the PSNR results comparison for

standard test images.

It proves that the wavelet domain based coupled K-SVD algorithm is highly effective
in terms of PSNR. This is due to fact that proposed algorithm makes sure that there is
strong coupling between HR and LR sparse coefficients. Also, in terms of SSIM, the
proposed algorithm produces as good if not better than state of the art SISR

algorithms as shown in Figure 5.5.

PSNR (dB)
= »

B

=

Fingerprint Lena

I

PSNR (dB)

]
]
%

Bicubic ] 1 2 Proposed Bicubic B 1 2 Proposed

Figure 5.2: PSNR results comparison
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Figure 5.5: SSIM results comparison

Visual comparison is shown in Figure 5.6. Reconstructed images obtained with the
proposed algorithm, [23], [29], [35] and Bicubic interpolation for the image number
1 in the Kodak set. The proposed algorithm shows improvement over [35] and [29],

especially the continuity in diagonal patterns are well preserved.
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Figure 5.6: Visual comparison of the image number 1 in the Kodak set.
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(23]

Figure 5.7: Visual comparison of the Boat image.

Figure 5.7, 5.8, 5.9 and 5.10 show the visual comparison of standard test images. It is
evident that proposed algorithm perform significantly better than Bicubic, [29] and
[35] in terms of visual perception. Also, in terms of visual comparison, the proposed

algorithm is as good as [23].
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Figure 5.8: Visual comparison of the zoomed Lena image.
(a) Original Image, (b) Bicubic technique, (c) Algorithm of
[23], (d) Algorithm of [29], (e) Algorithm of [35], (f) Proposed
Algorithm.
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Figure 5.9: Visual comparison of the zoomed Peppers image.
(a) Original Image, (b) Bicubic technique, (c) Algorithm of
[23], (d) Algorithm of [29], (e) Algorithm of [35], (f) Proposed
Algorithm.
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Figure 5.10: Visual comparison of the zoomed Barbara image.
(a) Original Image, (b) Bicubic technique, (c) Algorithm of
[23], (d) Algorithm of [29], (e) Algorithm of [35], (f) Proposed
Algorithm.

Figure 5.11: Samples of images used in dictionary learning
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5.6 Conclusion

In this chapter implementation of coupled dictionary learning in the wavelet domain
for SISR is presented. Due to strong coupling between LR and HR sparse
coefficients, the performance of SISR is improved. According to PSNR and SSIM

results the proposed algorithm outperforms well known SISR algorithms.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In summary, this study is conducted to present a novel contribution in the field of
image processing. In this regard, a new approach to image denoising is developed.
This method is developed based on findings about limitation of maximum orthogonal
projection based sparse representation algorithm in image denoising. The proposed
image denoising algorithm is based on sparse-land model and it provides new
dimension to this line of research. In the proposed algorithm, information about
residual correlation is incorporated in sparse coding stage. To best of my knowledge,
this way of utilizing residual correlation regularization for sparse coding has not been
used before. It is proved through mathematical modeling and simulation results that
reducing residual correlation both internally and externally does indeed improve the
performance of image denoising. In chapter 3, a new strategy for sparse
representation verified our claim that minimizing residual correlation indeed
improves image denoising performance especially when image is corrupted by high
noise level. Another interesting finding is that the image with abundance of high
frequency contents improves significantly by correlation based approach. In chapter
4, coupled K-SVD algorithm is implemented in wavelet domain and it is used for
image super-resolution. A dictionary learning and super-resolution approach is
developed based on wavelet domain. This study is carried out to understand the

advantages of wavelet domain and also effectiveness of coupled K-SVD for image
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super-resolution. Simulation results show significant improvement in terms of PSNR
when compared to well known SISR algorithms. In Chapter 5, based on motivation
presented for algorithm in chapter 3, residual correlation regularization is developed
and employed in objective function of sparse representation and dictionary update
stage. This regularization makes sure that residuals are as uncorrelated to each other
as possible. Hence, residual possess statistical properties of contaminating noise.
Results are compared with state-of-the-art image denoising algorithms. Comparison
shows that it is highly competitive with state-of-the-art and often better especially at
high noise levels or in terms of visual results obtained. In Chapter 6, a SISR
algorithm is proposed in which super-resolution is attached by enforcing the
invariance of the sparse representation at various scales. Data is divided into three
clusters based on correlation between the patches and horizontal, vertical and non
directional templates. Simulation results are compared with benchmark SISR
algorithms.

6.2 Future Work

The performance of proposed algorithms presented in chapter 3 and chapter 4 can
further be analyzed by implementing them for computer vision algorithms such as
fingerprinting. Some of these future works are listed below.

6.2.1 Deep Learning

Learning through many layers of neural network is known as deep learning. Training
of a model through deep learning has proved to be very successful in image
denoising. The proposed algorithm can be pre-trained using stacked denoising auto-
encoders (SDA). This training of image patches based on residual reduction

information in deep network can lead to state-of-the-art image denoising results.
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6.2.2 Application in Computer Vision Algorithms

The proposed algorithm proved to be successful in recovering fine structures even at
very high noise levels especially for images like Fingerprint and Barbara images as
shown in Chapter 3 and Chapter 4. This algorithm may prove to be helpful in one of
the computer vision algorithms such as data fingerprinting. Such algorithms are used
to identify the original data for practical use based on its fingerprint as human beings
are identified through fingerprinting. The proposed algorithms can be tested for such
applications. Also the proposed algorithm can also be effective if implemented in
image classification where data to be classified is noisy. Also in case of pattern
recognition the proposed algorithm can be tested.

6.2.3 Simplifying Complexity of Algorithm by Proximal Calculus

One of the complexities in the proposed objective function is to determine the correct
sign by testing all of the possible signs which is a ad hoc solution of prospective
function. This can be alleviated by applying one of the proximal calculus methods as
given in [65]. Such methods are used to find the proximity operator of functions
present optimization problem [65]. Also usage of subderivative or subdifferential can
also prove to be useful in simplifying solution of the proposed optimization function.
According to property of sudifferential; a global minimum of the convex function
can be x, if subdifferential contains zero. Referring to subdifferetial for further
simplifying the objective function and hence reducing computational complexity can
be a good extension of this work.

6.2.4 Updating Multiple Dictionary Atoms

In dictionary update stage of the proposed algorithm, information of residual
correlations played important role in achieving competitive performance. The

process of updating one atom at one time is mostly used method. However, in
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proposed algorithm, we not only consider current residual but also neighboring
residuals, hence, it can be useful if dictionary atoms are also updated in groups with
based on information about dictionary atoms used by neighboring residuals.

6.2.5 Group Sparsity

The proposed algorithm can be more effective if sparse coefficients are picked for
group of neighboring patches or similar patches. Such sparse representation
coefficient estimation method is commonly known group sparsity method. The
performance of the proposed algorithm can further be if single sparse coefficient is
picked for neighboring residuals. Hence, implementing the proposed algorithm based
on group sparsity can be a good extension of this work.

6.2.6 Analyzing the Performance by Varying Patch Sizes

Performance of the proposed algorithm presented in Chapter 4 can also be tested for
various patch sizes as shown in Table 3.2. According to results obtained, one can
presume that the bigger patch sizes are useful at higher noise levels and smaller patch
sizes can be effective for low noise levels for the proposed algorithm.

6.2.6 Residual Correlation Based Single Image Super Resolution (SISR)

The proposed algorithm can prove to be effective in improving performance of the
SISR. This approach leads us to select an atom for current patch such that it becomes
highly correlated with neighboring patches. Thus, the proposed algorithm can be

tested for the inverse problem such as SISR.
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Appendix A: Derivation of expanded equation (4.6)
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Solution:

Let f = J.(k,, a;), then finding derivative (w.r.t.) a, gives:
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Appendix B: Simplifying equation (4.10)

t t—1
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Solution:

Let f, = Xioillx; — Da;||5and f, = Zf;i | (x; — Da,)" (x; — Dax;)|

Firstly, we simplify f,; (using Polarization property)

N =

fu =3 ) [0 = Da)" (x — Day)]
i=1

t
1
fa = EZ(xiTxi —-D xl'Tal' —D aiTxl' + D DT aiTai)
i=1

Let

A4, = le = aiaiT:At—l + “t“tT
B, =Y'_,=xial=B,_; + x.al
since Tr(A) = Tr(AT) ;  Here Tris a trace operator
then Tr(Dx;" ;) = Tr( DTx;a!)
Trace comes from Euclidean inner product on the real space of real

matrices i.e., ||AB||, =< A,B >:=Tr(A"TB)

Hence, in terms of trace of matrix,

1
f, = E(Tr(xtht — DB, — D"B, + D D"A,))

1
f, = E(Tr(xtht — 2D"B. + D D"A,))
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Now we simplify f, = ¥{2} 2] (x; — Da)" (x; — Da)|

t—1
— T
fy =[x = Da)” ) Ai(x - Day)
i=1
t—1 t—1 t—1 t—1
=) x;—aT DTZ x;+a,"D'D ) a; — xtTDz a;
i=1 i=1 i=1 i=1

Let 9,1 = X1 Aix; and fo_y = YiZ{ L
fo = (Tr(xtTgt_l — 1" D'gi 1 —x,"Df e +a, " DTth—l))
Now f = fo + [
1 T T T
f=5(rr@x ~ 2D"B, + DD4))
+ (Tr(xtTgt_l - at—lT DTgt—l - xtTth—l

+ at—lT DTth—l))
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Appendix C: Derivation of equation (4.17) to obtain

equation (4.21)

1
f=5(TrG"x;— 2D"B, + D D'A))(Tr(x." gi-1 — @1" D'g,y

- xtTth—l + at—lT DTth—l))

af 1
— =— (2DA; — 2B
35D 32 (2DA, ¢ +0)
+ O'/I(Zth—lat—lT - gt—lat—lT - ft—lxtT +0)

Note that g; is signum function.

of
aD =D(A, + ZUAft—lat—lT) —[B; + O'A(.gt—lat—lT + ft—lxtT)]

LetA; = A, + ZUAft—lat—lT and B; = B, + O-A(gt—lat—lT + ft—lxtT)

Hence;

af
%= DAC _BC

Let derivative be equal to zero, we have
DA, = B,
The approximate solution of above equation can be obtained by:
D =B A} + D,_ (I — A A})
D=B.A} + D,_, — D,_;AcA}

D=D,,—A:(Bc—D;14Ac)
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