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ABSTRACT 

Error-based Orthogonal Matching Pursuit (OMPe) employed in many image 

denoising algorithms (e.g., K-means Singular Value Decomposition (K-SVD) 

algorithm) tries to reconstruct the clean image patch by projecting the observed noisy 

patch onto a dictionary and picking the atom with maximum orthogonal projection. 

This approach does indeed minimize the power in the residual. However minimizing 

the power in the residual does not guarantee that selected atoms will match the clean 

image patch. This leaves behind a residual that contains structures from the clean 

image patch. This problem becomes more pronounced at high noise levels. Firstly, 

we develop a simple method to prove that autocorrelation of residual does not match 

that of the contaminating noise. Then we propose a correlation-based sparse coding 

algorithm that is better able to pick the atom that matches the clean patch. This is 

achieved by picking atoms that force the residual patch to have autocorrelation 

similar to the autocorrelation of contaminating noise. Autocorrelation-based sparse 

coding and dictionary update stages are iterated and dictionaries are learned from 

noisy image patches. Also, a new residual correlation based regularization for image 

denoising is developed. The regularization can effectively render residual patches as 

uncorrelated as possible. It allows us to derive analytical solution for sparse coding 

(atom selection and coefficient calculation). It also leads to a new online dictionary 

learning update. The clean image is obtained by alternating between the two stages 

of sparse coding and dictionary updating. Experimental results of peak signal-to-

noise ratio (PSNR) and structural similarity index (SSIM) show that the proposed 

algorithm can significantly outperform the K-SVD denoising algorithm, especially at  
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high noise levels.The proposed algorithm is compared with the K-SVD denoising 

algorithm, BM3D, NCSR and EPLL algorithms. Our results indicate that the 

proposed algorithm is better than K-SVD and EPLL denoising. The proposed 

algorithm gives visual results that are comparable or better than BM3D and NCSR 

algorithms. 

Keywords: Correlation regularization, dictionary learning, image denoising, residual 

correlation, sparse representation.  
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ÖZ 

Pek çok görüntü temizleme algoritmasında (örnek: K-means tekil değer ayrıştırma 

(K-SVD) algoritması) kullanılan  hata-tabanlı ortogonal eşleştirme kovalama (Error-

based Orthogonal Matching Pursuit (OMPe)), temiz görüntü yamasını 

tamımlayabilmek için gözlenen gürültülü yamanın izdüşümü bir sözlük üzerine 

yansıtılır ve maksimum orthogonal izdüşümlü atom seçilir. Bu yaklaşım, artık 

işaretin gücünü minimize eder. Ancak artık işaretin gücünü minimize ermek, seçilen 

atomların temiz görüntü yamasıyla eşleşeceğini garanti etmez. Bu durumda artık 

işaret, temiz görüntü yamasından yapılar içerir. Bu sorun, yüksek gürültü 

seviyelerinde daha belirgindir. İlk olarak, artık işaretin oto-korelasyonunun 

gürültüyle eşleşmediğini gösterecek basit bir yöntem geliştirilmiştir. Daha sonra, 

temiz yama ile eşleşen atomu seçebilen, korelasyona dayanan bir seyrek kodlama 

algoritması sunulmuştur. Bu amaçla, artık işaret, gürültünün otokorelasyonuna 

benzer bir otokorelasyona sahip olmaya zorlanmıştır. Otokorelasyona dayanan 

seyrek kodlama ve sözlük güncelleme aşamaları yinelenmiş ve sözlükler gürültülü 

görüntü yamaları ile eğitilmiştir. Bunun yanında, görüntü temizleme için, artık 

işaretin korelasyonuna dayanan yeni bir düzenleme geliştirilmiştir. Bu düzenleme, 

artık yamaların mümkün olduğu kadar korelasyonsuz olmasını sağlar. Bu durumda, 

seyrek kodlama için analitik çözümler (atom seçme ve katsayı hesaplama) elde 

edilebilir. Bu da yeni bir çevrimiçi sözlük öğrenme güncellemesi geliştirilmesine 

olanak sağlar. Temiz görüntü, seyrek kodlama ve sözlük güncelleme beraber 

uygulanarak elde edilir. Denemeler sonucu elde edilen işaret gürültü oranı ve yapısal 

benzerlik indisi değerleri, önerilen algoritmanın, özellikle yüksek gürültü 

değerlerinde, K-SVD algoritmasından daha iyi yanıtlar verdiğini göstermektedir.  
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algoritma, K-SVD gürültü temizleme algoritması, BM3D, NCSR ve EPLL 

algoritmalarıyla karşılaştırılmıştır. Sonuçlar, önerilen algoritmanın K-SVD ve EPLL 

gürültü temizleme algoritmalarından çok daha iyi çalıştığını göstermektedir. Önerilen 

algoritma, BM3D ve NCSR algoritmalrıyla karşılaştırılabilecek düzeyde veya daha 

iyi görsel sonuölar vermektedir.  

Anahtar Kelimeler: Korelasyon düzenlemesi, sözlük öğrenmesi, görüntü 

temizleme, seyrek temsiliyet. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Noise is one of the major barriers in the way of quality data communication or data 

processing. Data can be in the form of text, voice, image or video. In this research 

work, we shall focus on data in the form of images. Images often contain noise due 

to various reasons like deficiency in sensors, reduced illumination, or communication 

errors. This noise should be removed in order to process or communicate image 

properly. The process of recovering or reconstructing an image from noise is called 

image denoising. This is considered as very important and simple inverse problem. It 

has many applications especially in computer vision and in medical imaging. 

Numerous attempts have been made to address this issue in last 50 years. However, 

in last two decades, sparse representation and redundant dictionary learning based 

approach has been one of the prominent methods for image denoising. Sparse 

representation and dictionary learning based model is commonly known as sparse-

land model [1]. In this research work, we have focused on sparse-land model based 

image denoising algorithms. Sparse representation of any signal is a linear 

combinations of a few number of bases. These bases can be fixed such as wavelets, 

contourlets, Fourier basis functions, and the discreet cosine transform. However, due 

to their limitations, off-the-shelf bases are replaced by redundant set of trained bases 

called dictionary. Dictionary is trained by available training data so that it becomes 
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adequate to its function. This process of bases training is also known as dictionary 

learning. 

K-means Singular Value Decomposition (K-SVD) is one of the benchmark methods 

[1, 2] based on sparse-land model. In this algorithm, noisy image is divided small 

overlapping square portions called patches. Then, current patch is assumed as 

residual (removed noise) and error based Orthogonal Matching Pursuit (OMPe) 

algorithm is applied to approximate the clean patch. Second step is to update the 

dictionary based on known sparse representations. These two steps are iterated for 

few times. Finally, recovered patches are combined to reconstruct the original image. 

In this research work, the sparse coding and dictionary update stages are modified to 

improve the performance of sparse-land model based image denoising algorithms. 

1.2 Problem Definition 

The performance of sparse representation and dictionary learning (sparse-land 

model) based image denoising algorithms have been highly remarkable in the last 

two decades. In these patch based image denoising algorithms, the objective is to 

approximate the clean patch buried in noise. It is achieved by calculating the 

maximum orthogonal projection (inner product) between noisy patch and dictionary 

atom. An atom that gives maximum orthogonal projection and its corresponding 

sparse coefficient are used to approximate the noisy patch. Hence, an atom that 

matched clean image patch buried in noise is picked and noise (residual) is removed. 

Initially it is assumed that patch itself is a residual. Then, each time an atom is 

selected then new residual is calculated. This process continues till power of the 

residual goes below the noise power of the contaminating noise. This process works 

well at low noise levels but it fails at high noise levels [1]. It is due to fact that noise  
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process dominates the projection at high noise levels. In other words, when noise 

power is greater than signal power then an atom that matches the contaminating 

noise is selected and residual contains remnants from clean signal. This observation 

calls for studying the statistical properties of residual. An atom that produces the 

noise-like residual must be selected instead of an atom that produces maximum 

orthogonal projection. It is to note that if an atom that matches the noise is selected 

then contents of clean signal are lost in the form of residual. Hence, if atom that 

matches the image patch is selected, the residual becomes similar to the 

contaminating noise process.  

In sparse coding stage, the information about statistics of the contaminating noise 

must be included for the better approximation of clean signal. In standard noise 

model, the additive white Gaussian noise (AWGN) with zero mean and known 

variance is used. Therefore, residual must possess statistical properties similar to the 

AWGN. In this research work, we develop a sparse coding stage where residual 

correlation is considered for picking the correct atom. In other words, we study 

correlation between the pixels in the residual during sparse coding stage. If pixels of 

residual patch are highly correlated then the selected atoms did not match the clean 

image patches. However, if pixels in the residual are highly uncorrelated then atom 

that matches the clean image patch is picked. This is achieved by forcing the 

autocorrelation of the residual patch to match the autocorrelation of contaminating 

noise. To achieve this objective, correlation based regularization is developed in this 

research work. 

Our problem can be summarized as follows. Given a patch from noisy images, we 

aim to find a sparse code such that it gives a good approximation of the clean image, 
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and the resultant residual is uncorrelated to the residuals of the neighboring patches 

of the noisy image and also its internal patches are uncorrelated to each other. 

1.3 Thesis Objectives 

This thesis work is about understanding and analyzing the performance of sparse 

representation and dictionary update stages in image denoising algorithms. The main 

objectives of this research work are listed below: 

1. Analyzing the usage of sparse representation and dictionary update stages for 

solving inverse problems in image processing.  

2. Showing the reason behind limitation (given in literature) of sparse 

representation based image denoising algorithms. 

3. Based on acquired knowledge, proposing a suitable solution to eliminate or 

at least reduce the magnitude of limitation of sparse representation based 

image denoising algorithms. 

4. Implementing a dictionary learning algorithm in wavelet domain and 

analyzing its performance in image super-resolution. 

1.4 Thesis Contribution 

This research work is mainly focused on two major applications of image processing 

namely image denoising and image super-resolution. Its major contributions to each 

application are listed below: 

1. Demonstrating the impact of picking an atom that gives maximum 

orthogonal projection on performance of image denoising.  

2. Establishing the contribution of considering residual patch correlations for 

sparse coding in improving the performance of image denoising. 

3. Introducing a new sparse coding strategy that picks an atom based on 

residual patch correlation to improve the performance of image denoising. 
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4. Developing a residual correlation regularization for sparse representation and 

dictionary update stages. 

5. Introducing a new sparse coding algorithm and dictionary update stage based 

on residual correlation regularization for image denoising. 

6. Presenting the performance of coupled K-SVD algorithm in wavelet domain 

for image super-resolution. 

1.5 Thesis Overview 

In Chapter 2 sparse-land model and its two major steps are discussed in details. Also 

brief literature review on types of sparse representation and dictionary learning 

algorithms is conducted. Chapter 3 presents the proposed image denoising via 

correlation-based sparse representation algorithm. It contains motivation, 

mathematical formulation and complexity analysis of the proposed algorithm. Finally 

its results are compared with state-of-the-art image denoising algorithms. In Chapter 

4, we introduce a novel residual correlation regularization. A new sparse coding and 

dictionary update stages based on developed regularization are presented. Simulation 

results are compared with benchmark algorithms.  Chapter 5 describes the coupled 

K-SVD dictionary learning algorithm in wavelet domain for single image super-

resolution. Coupled K-SVD algorithm is implemented in wavelet domain. Dictionary 

learning and super-resolution approaches are proposed. Chapter 6 presents thesis 

conclusions. Also contribution of this thesis work is summarized. Future work based 

on this thesis work is also discussed. 
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Chapter 2 

1. STATE-OF-THE ART METHODS IN IMAGE 

DENOISING 

2.1 Introduction 

Sparse-land model is one of the well-known models used for various applications of 

image processing. Due to its simplicity and effectiveness, it has become the standard 

model in the last two decades.  

In this chapter, we shall discuss the methods used for sparse representation and also 

we shall summarize the famous dictionary learning algorithms. Finally, image 

denoising via sparse representation is summarized. However, since this research 

work is mainly based on image denoising, hence firstly the major type image noises 

are summarized in next section.  

2.2 Types of Image Noises 

Noise is defined as random unwanted signal that adds to desired signal and changes 

its originality. Data in any form can be corrupted by noise during acquisition, coding, 

transmission, and processing steps. Following are some well known types of noise. 

2.2.1 Gaussian Noise 

This model of noise is generated based on normal distribution with given mean and 

variance. This noise highly affects the gray values of image. Mostly Gaussian noise 

is generated by thermal vibration present inside atoms. The probability distribution 

function (PDF) is given by: 
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                                                          𝑃 𝑔 =
1

 2𝜋𝜎2
𝑒
−

(𝑔−𝜇 )2

2𝜎2  . 

 

(2.1) 

Here 𝑔 is the value of pixel, 𝜎  is standard deviation and 𝜇 is mean. Every Gaussian 

noise is not always white noise. Gaussian colored noise can be generated by passing 

white Gaussian noise through low pass or high pass filter [66]. 

2.2.2 White Noise 

The term “white” is taken from white color where there are uniform emissions at all 

frequencies. Hence, here white noise has uniform power spectrum. Each pixel is 

uncorrelated from its neighboring pixel. Ideally, noise power in white noise is 

infinite (ranges from negative infinity to positive infinity in frequency domain) [66]. 

2.2.3 Impulse Valued Noise 

Impulse valued noise also known as Salt and Pepper Noise. All pixel values are not 

affected by this kind of noise. Some of the pixels are changed due to Salt and Pepper 

noise. The affected values are changed to highest values or lowest value present in 

image. If pixel value is changed to lowest value due to the pepper noise than a dark 

spot or dead pixel is created in an image [66].  

 

Figure 2.1: Image with Salt and Pepper Noise 
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2.2.4 Quantization Noise 

When amplitude of the data is quantized then this change in amplitude is known as 

quantization error or quantization noise. It generally appears when analog 

information is converted to digital information. This type of noise follows the 

uniform distribution hence it is also known as uniform noise [66]. The PDF of 

quantization noise is given as: 

𝑃 𝑔 =
1

𝑏 − 𝑎
   
𝑖𝑓 𝑎 ≤ 𝑔 ≤ 𝑏 
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  . (2.2) 

 

 

Figure 2.2: Uniform Noise. 

 

Mean is given by 𝜇 =  
𝑎+𝑏

2
  and variance is 𝜎2 =

(𝑏−𝑎)2

12
. 

2.2.5 Speckle Noise 

The PDF of a speckle noise is defined as a gamma distribution. Due to its 

multiplicative nature, it affects the radar, medical ultrasound and other such devices 

[66]. 
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2.2.6 Photon Noise  

This noise is modeled by Poisson distribution. Hence, it is also known as Poisson 

noise or Shot noise. Generally, this is produced due to electromagnetic waves such as 

gamma rays, x-rays e-t-c.  Due to random movement of photons in sources of such 

rays the images obtained contains the spatial randomness [66]. 

2.3 Inverse Problems 

Inverse problems are one of the very essential topics in the field of science. It is 

defined as the mathematical model used to extract unknown information from 

available observations [67]. In other words, we reverse the process in a sense that we 

develop a model based on observed measurement to extract unknown information. 

Therefore, given some previous knowledge about the lost data and some available 

information, the objective is to obtain missing data. Generally, inverse problems are 

ill posed and non linear.  However, some additional information (regularization or 

prior information) about the unknown data plays key role to develop a model. They 

are very important in the field of signal processing, computer vision, medical 

imaging, astronomy, remote sensing, machine learning and many other fields [67].  

Mathematically, if system of linear equations has more unknowns than the number of 

equations then either it has no solution or infinitely many solutions. Such system is 

known as a system of underdetermined linear equations. This system is often used to 

formulate a number of problems in image processing. For example image scale-up, 

image denoising, image super-resolution and many more. These problems are known 

as inverse problems. One can find infinite many solutions to these inverse problems. 

Image fusion is one of the inverse problems where information from two or more 

input images is combined to form a single input which contains more information 
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than any of the input images [68]. The source separation is another useful inverse 

process where original signal is recovered from combined signal that is formed by 

the number of signals mixed together [69]. Image super resolution is a process of 

recovering high resolution image from number of low resolution images available 

[70].  

2.4 Image Denoising   

Image denoising is one of the well known inverse problems. Noise should be 

removed from any form of data in order to improve the quality of data or prevent it 

from being lost.  In literature, there are many methods to remove noise from data. 

Since, useful data to be extracted from noisy one is unknown, therefore, one of the 

well known method is to develop a model to best fit the noise in the data. Therefore, 

noise is modeled such that it becomes prominent and then it becomes easy task to 

remove it. Sparse representation and dictionary learning method is one of the very 

successful methods to denoise data. It projects the noisy data on a low dimensional 

subspace formed by linear combination of few atoms. This low dimensional 

projection makes sure that noise does not fit in this space and hence denoising is 

achieved.  

In order to model a noise, it is very important to know the properties of noise. Some 

types of image noises are summarized in next section. 

2.5 Regularization 

One of the major hindrances in solving inverse problems is to find a suitable single 

solution out of infinite many solutions. A well known method to do this is a 

regularization function. This function examines the desirability of solutions and helps 

to find an appropriate solution. In literature, many regularization functions are used 
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like smoothness, adaptive smoothness, total variation and energy. However, sparse 

representation is one of the widely used regularization functions. 

2.6 Sparse Representation 

A solution to underdetermined system of linear equations having fewest nonzero 

entries is known as sparse representation or sparse approximation. Recently, finding 

the sparse solutions to underdetermined linear systems have become much more 

practical. Especially, data like image and video can also be sparsely represented 

using transform-domain methods. 

Bases used for representation can be fixed like wavelets, contourlets, Fourier basis 

functions, and the discrete cosine transform. However, we shall focus on online basis 

training called dictionary learning.  

A signal can be sparsely represented by searching a suitable basis from a 

dictionary.This sparse approximation process can be formulated as: 

argmin
𝜶

||𝜶||0 𝑠. 𝑡 ||𝒙 − 𝑫𝜶||2 ≤  𝜀. (2.3) 

Note that 𝑠. 𝑡 refers to “subject to”. 

The  ||. ||0  and ||. ||2 operators denote ℓ0 and ℓ2  norm respectively. Whereas,  𝒙  is 

signal for approximation, 𝛂 ∈ ℝ𝑛 is sparse coefficient vector, D  ∈  ℝ𝑛×𝐾  is a 

dictionary (𝑛 is length of atoms (columns) in dictionary, 𝐾 is number of atoms) and 𝜀 

is maximum acceptable representation error. This is sparsest approximation for a 

signal 𝒙 ∈ ℝ𝑛since it uses the ℓ0 norm (number of nonzero entries in 𝛂). 
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In the last decade, dictionaries trained over example signals have become the topic of 

interest. Especially, redundant (over-complete) dictionaries (𝐾 > 𝑛 ) have great 

significance in image processing.  

In terms of sparsity level, (2.1) can also be formulated as follows: 

 argmin
𝜶

 ||𝒙 − 𝑫𝜶||2 𝑠. 𝑡 ||𝜶||0 <  𝑆 (2.4) 

where S  is sparsity limit.  

This vector selection problem is computationally expensive and a non-deterministic 

polynomial-time (NP)-hard problem. The pursuit methods are used to solve this 

problem. Brief description of these sparse approximation methods is presented in 

next section. 

2.7 Types Of Sparse Representation Algorithms 

Sparse representation algorithms are divided into two major categories namely 

greedy algorithms and convex relaxation algorithms. This categorization is based 

mainly on the type of norm used to solve this NP hard problem. In greedy 

algorithms, the signal approximation process is carried out by minimizing the 

ℓ0 norm iteratively. The algorithms such as matching pursuit (MP) [47, 48], 

orthogonal matching pursuit (OMP) [50, 44] and order recursive matching pursuit 

(ORMP) algorithms [52] are greedy algorithms. Whereas, convex relaxation 

approaches uses ℓ1 minimization to further minimize the computational cost of the 

process.  
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2.7.1  Sparse Coding Based On Greedy Algorithms 

In this section, well known greedy sparse approximation algorithms [55] are 

summarized with perspective of image processing. These methods work iteratively. 

Since this is a vector search process, the signal is represented iteratively with one 

atom at a time drawn from the dictionary till representation error goes below certain 

level. If bases are orthogonal then an atom that gives maximum inner product with a 

signal is picked. Mallat and Zhang in [43] gave basic greedy algorithms that led to 

other such algorithms. 

2.7.1.1 Use of Matching Pursuit (MP) For Sparse Representation  

Let signal𝒙  be represented by  𝑸𝑖 =  𝒅1 … 𝒅𝑖  number of atoms chosen from a 

dictionary  𝑫 =  𝒅1 … 𝒅𝑘  during iteration  𝑖 . Then, MP iteratively solves the the 

following to sparsely represent signal : 

argmin
𝒅𝑖 ,𝜶𝑖

 ||𝒙 − 𝒅𝑖𝜶𝑖||2
2 (2.5) 

Here  𝜶𝑖 =  𝜶1 … 𝜶𝑖 are the coefficients for selected atoms. Hence the 

approximation of 𝒙 is given by 𝒙 = 𝒅𝑖𝜶𝑖 . Firstly, residual is initialized as 𝒓𝑖 = 𝒙, 

and then an atom 𝒅 that gives maximum orthogonal projection with residual 𝒓𝑖 is 

picked for approximation. Hence, this inner product is given by 𝒅𝑖
𝑇𝒓𝑖  (Note that 

𝒅𝑖 and 𝒓𝑖  are in vector form). Finally, residual is updated as  𝒓𝑖 = 𝒙 − 𝒙 . 

This process is repeated at each iteration until representation error goes below a 

certain level or maximum sparsity limit is reached [43].  

2.7.1.2 Difference Between Matching Pursuit And Orthogonal Matching Pursuit  

OMP algorithm is a modified version of the previously defined MP algorithm [43]. 

As discussed in the last section about MP, OMP also finds the best atom similarly 

and updates the residual for fixed number of iterations until stopping criteria is met. 
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However, the way of selecting an atom is different. In OMP, the atom that is selected 

for signal representation is eliminated from 𝑫. Hence, an atom that is selected once 

cannot be selected again. An atom 𝒅𝑖  that gives maximum orthogonal projection with 

residual 𝒓𝑖−1is selected as follows. 

argmax
𝒅𝑖

|𝒅𝑖
𝑇𝒓𝑖−1| (2.6) 

If 𝑸𝑖  is the matrix of all the atoms selected then the representation coefficients are 

updated as  𝜶𝑖 = 𝑸𝑖
+𝒙 . Here 𝑸𝑖

+ = 𝑸𝒊(𝑸𝑖
𝑇𝑸𝒊)

−𝟏  is the Moore-Penrose pseudo-

inverse of matrix 𝑸𝑖 . Finally, residual is updated before going to the next iteration. 

The advantage of OMP is that it does not consider the same atoms for selection 

again. Hence, computational complexity is reduced because number of atoms to be 

considered is reduced after each iteration.  

2.7.2 Sparse Representation Algorithms Based On L1 Norm 

The computational complexity of minimizing the ℓ0-norm is considered as major 

drawback of matching pursuit algorithms. Hence, in convex relaxation algorithms 

ℓ0-norm is relaxed with the ℓ1 norm. The main advantage of using the ℓ1norm is the 

reduced computational complexity of sparse representation. Also, this reduction 

leads to standard optimization approaches [50] for sparse representation. 

2.7.2.1 LASSO And Basis pursuit Sparse Representation Algorithms 

Sparse representation of any given signal can be obtained by the basis pursuit (BP) 

algorithm which uses the ℓ1 norm [45], 

argmin
𝜶

||𝜶||1 𝑠. 𝑡 𝒙 = 𝑫𝜶       (2.7) 

It is to note that the ℓ1 norm considers the value of entries only and not the number 

of entries.  
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The least absolute shrinkage and selection operator (LASSO) algorithm [57] is a type 

of BP algorithm. It is commonly known as basis pursuit denoising (BPD). In this 

algorithm, some restrictions are introduced in the ℓ1norm. This is given as follows: 

argmin
𝜶

 ||𝒙 − 𝑫𝜶||2 𝑠. 𝑡 ||𝜶||1 <  𝑆 (2.8) 

where 𝑆 is the sparsity limit. LASSO  is the commonly used sparse approximation 

algorithm because sparsest solution can be obtained under the right conditions.  

2.7.2.2 Sparse Representation Based On L-p Norm 

The Focal Underdetermined System Solver (FOCUSS) approximation algorithm uses 

the ℓ𝑝  (𝑝 < 1) norm for sparse representation. This is achieved by solving, 

argmin
𝜶

||𝜶||𝑝  𝑠. 𝑡 𝒙 = 𝑫𝜶 (2.9) 

It is also used in many different applications since it has advantages of both classical 

optimization and learning-based algorithms. 

2.8 Training Of Dictionary Atoms 

Dictionary D is the collection of bases used to sparsely represent any given signal. 

These bases are arranged in each column of a matrix.  A dictionary may contain 

fixed bases like Fourier basis functions, wavelet frames, Gabor, etc. However, 

dictionary can also be trained from randomly chosen signals. In the last decade, over 

complete trained dictionaries are proved to be the best fit to a variety of signals [12], 

whereas, fixed dictionaries are unable to represent a wide variety of signals.  

The dictionary is trained using random signals based on controlled parameters such 

that it adapts to the best signal approximation. This dictionary training is also known 

as dictionary learning (DL) [12]. This learning makes sure that trained dictionary 
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bases are optimal in representing a given signal and also representation is as sparse 

as possible. 

Let 𝑿 =  𝒙1, 𝒙2, … , 𝒙𝑀 ∈ ℝ
𝑛×𝑀  be the random training signals. The representation 

coefficients  𝑨 ∈ ℝ𝑘×𝑀 are updated based on given signal and trained dictionary. 

Hence, DL is formulated as following optimization problem, 

           𝑓 𝑫, 𝑨 = argmin
𝑫,𝑨

||𝑿 − 𝑫𝑨||𝐹
2 . (2.10) 

  𝐹  denotes the Frobenius norm. 

Here 𝑫 is a matrix of trained atoms  𝒅1 , 𝒅2, … , 𝒅𝐾 ∈ ℝ
𝑛×𝐾. It is to note that initially 

during DL the sparse coefficient and dictionary atoms are unknowns. Therefore, this 

process is divided into two stages. During the first stage, the dictionary is assumed to 

be known and initialized with any random signals and sparse representation 

coefficients are obtained. Then, sparse approximation coefficients are fixed and 

dictionary is updated in the second stage. In the next sections, the most relevant of 

the state-of-the-art DL algorithms are summarized. 

2.8.1 Use Of The Method Of Optimized Directions (MOD) 

The MOD [49, 51] is a technique to design a frame and it is used with vector 

selection methods such as matching pursuit algorithms. In this method, dictionary 

update is considered as least square (LS) problem. In other words, under-determined 

set of equations are solved by LS solution using pseudo-inverse 𝑫 = 𝑿𝑨+.  

Dictionary is obtained by alternating between sparse approximation and dictionary 

update stages.  MOD is proved to give local optimal solution. 
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2.8.2 Dictionary Learning Algorithm Based On K-SVD 

The K-SVD dictionary learning algorithm is a well known method to train a 

dictionary for a number of signal processing applications [54]. In this algorithm the 

dictionary is trained based on singular value decomposition and it also uses the k-

means clustering algorithm. The K-SVD algorithm tries to solve the following 

objective function for updating any atom  𝒅𝑘 : 

𝑓 𝑫, 𝑨 =  𝑿 − 𝒅𝑗𝜶𝑗
𝑻

𝐾

𝑗=1

 

𝐹

2

=   𝑿 − 𝒅𝑗𝜶𝑗
𝑇

𝐽≠𝑘 

 − 𝒅𝑘𝜶𝑘
𝑇 

𝐹

2

 

=   𝑬𝑘 − 𝒅𝑘𝜶𝑘
𝑇 

𝐹

2
 

(2.11) 

In the KSVD algorithm, a partial residual matrix 𝑬𝑘  is instrumental in updating 

sparse approximation and the dictionary atom jointly. The above defined function 𝑓 

is minimized by determining the best rank-one approximation to partial residual 

matrix 𝑬𝑘 . It is to note that each atom is updated independently. The main steps of 

this algorithm are listed below (for updating an atom 𝒅𝑘). 

I. The locations of training signals that have used the atom 𝒅𝑘  are defined in 

label matrix (𝚲𝑘).  

II. Put those training signals in columns of matrix 𝑬𝑘 . 

III. Now find the solution of best rank-one approximation of matrix (𝑬𝑘) and 

update the dictionary atom 𝒅𝑘  and coefficients 𝜶𝑘 . Generally, SVD is used to 

find this solution. 

It is to note that sparse approximation coefficients are not modified during dictionary 

update stage. Furthermore, a matrix (𝑬𝒌) with its rank-one approximation is confined 
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to a particular set of signals that use the 𝑘𝑡𝑕  atom in the sparse coding stage. 

Algorithm 1 summarizes the main steps of the K-SVD algorithm. 

2.8.3 Online Dictionary Learning (ODL) 

The computational complexity is one of the constraints in developing dictionary 

learning algorithms. In the literature, most of the dictionary learning algorithms are 

based on accessing all given training signals at each iteration. Therefore, when the 

set of training signals is very large then the efficiency of these algorithms decreases. 

ODL [13, 56] is designed to overcome this problem or at least reduce the magnitude 

of it.  This algorithm considers stochastic approximations and it uses a small subset 

of the training for processing. The authors [13, 56] also proved that this algorithm 

converges to the optimum solution. It is to note that training samples are assumed to 

be i.i.d (independent, identically distributed), hence all the training vectors are 

independent of each other. ODL tries to minimize the objective function given  

𝑫𝑡 ≅ argmin
𝑫∈𝐶

1

𝑇
 

1

2
||𝒙𝑖 −𝑫𝜶𝑖||2

2 +

𝑡

𝑖=1

𝜆||𝜶||1

= argmin
𝑫∈𝐶

1

𝑇
(
1

2
𝑇𝑟 𝑫

𝑇𝑫𝑨𝑡 − 𝑇𝑟(𝑫𝑇𝑩𝑡)) 
(2.12) 

Here 𝑇  is the number of iterations. 𝐶  is a space where all dictionary atoms are 

normalized. 𝑩𝑡  and 𝑨𝑡  are the matrices containing the information about previous 

iterations. They are formed as shown in algorithm 2 [9,40]. 
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Algorithm 1:K-SVD dictionary learning algorithm 

1: Input 

2: 𝑿 ∈ ℝ𝑛×𝑀: noisy patches, 𝑫 ∈  ℝ𝒏×𝑲: dictionary, 𝜎2: noise power 

3: 𝑺:sparsity level 

4:  N: number of iterations 

5:  OUTPUT: 𝑫, 𝑨 

6:procedure 

7:         Initially let: 𝑫 ← 𝑫0,𝑖 ← 1 

8:          while 𝑖 ≤ 𝑁 do  

9:            for 𝑘 = 1:𝐾 do 

10:             set 𝚲𝑘 ← 𝑖 ⊆ 1,2, … ,𝑚  𝑠. 𝑡 𝑨𝑘,𝑖 ≠ 0 

11:                          set  𝑬𝑘 ← [𝑿 −  𝒅𝑗𝜶𝑗
𝑇

𝑗≠𝑘 ]𝚲𝑘  

12:                      [𝑼,𝑾, 𝑽] ← 𝑆𝑉𝐷(𝑬𝑘) 

13:                             𝒅𝑘 ← 𝒖1 

14:                             𝑨𝚲k
← 𝜎1,1𝒗𝟏

𝑻 

15:                   endfor 

16:                       𝑖 = 𝑖 + 1 

17:         endwhile 

 

Algorithm 2:Dictionary update stage of ODL 

1: Input 

2: 𝑫 =  𝒅1, … , 𝒅𝑲 ∈ ℝ
𝑛×𝐾 (initialized dictionary) 

3: 𝑨 =  𝒂1, … , 𝒂𝐾 ∈ ℝ
𝑛×𝐾 =  𝜶𝑖𝜶𝑖

𝑇𝑡
𝑖=1  

4:𝑩 =  𝒃1, … , 𝒃𝐾 ∈ ℝ
𝑛×𝐾 =  𝒙𝑖𝜶𝑖

𝑇𝑡
𝑖=1  

5:   procedure 

6: Initialization:𝑫 ← 𝑫0,𝑖 ← 1 

7: for 𝑗 = 1:𝐾 do  

8:     Update the jth column to optimize (2.10) 

9:                     𝒖𝑗 ←
1

𝑨𝒋𝒋
 𝒃𝑗 −𝑫𝑎𝑗  + 𝒅𝑗  

10:                      𝒅𝑗 =
1

argmax 𝑗 (||𝒖𝑗 ||2 ,1)
𝒖𝑗  

11:        endfor 

12:    endprocedure 

 

2.9 Image Denoising Via Sparse-Land Model 

Elad et al., [1] developed a sparse-land model based image denoising algorithm. It is 

considered as one of the benchmark methods for image denoising. In this section we 

shall define how this approach works. Let the image 𝑿 be divided into overlapping 

patches (vectorized form of 𝑛 × 𝑛  portions of the image). Assume that a clean 

patch 𝒙𝑐   is corrupted with AWGN 𝒘 with zero mean and variance 𝜎2 such that the 
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observed noisy patch is given by𝒙 = 𝒙𝑐 + 𝒘. For convenience assume that patches 

are arranged as column vectors. 

Given a noisy patch  𝒙 , we initialize a dictionary𝑫 . In the sparse representation 

framework, the task of approximating 𝒙𝑐  involves the selection of atoms from a 

given dictionary 𝑫 ∈ ℝ𝑛×𝐾  where 𝑛  and 𝐾  are length and number of atoms 

respectively. When the 𝑘𝑡𝑕  atom 𝑑𝑘  is selected, the approximation of 𝒙𝑐 can be 

expressed as 𝒙𝑐 = 𝒅𝑘𝜶𝑘 , where 𝜶𝒌 is the representation coefficient. Once the sparse 

coding coefficients of all the patches in the training set are computed, the dictionary 

update stage is performed. The sparse coding and dictionary update stages are 

iterated a few times and the dictionary that will be used to approximate the clean 

image is obtained. 

The process of iterating between sparse coding and dictionary update continues until 

representation error goes below certain threshold level or sparsity limit is reached. 

This can be formulated as 

𝜶 =     argmin
𝛼

 𝜶 0  𝑠. 𝑡  𝒙 − 𝑫𝜶 2
2 ≤  𝜀 (2.13) 

Where ε is bounded representation error, ||. ||2 operator represents the ℓ2 norm and 

||. ||0 is the ℓ0 norm.  However, the solution to (2.11) is non-deterministic 

polynomial-time (NP)-hard and hence it is computationally expensive. This 

optimization task can be rewritten as: 

𝜶 =     argmin 
𝜶

 𝒙 − 𝑫𝜶 2
2 +  𝜇||𝜶||0 (2.14) 
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Now the constraint has turned to a penalty. In this image denoising method, 

orthogonal matching pursuit (OMP) is used for sparse coding stage due to its 

simplicity [1]. After the sparse coding stage, each column is updated independently 

using KSVD dictionary learning as mentioned in the previous section [2]. Sparse 

coding and dictionary update stages are alternated for few iterations. Finally, image 

is reconstructed as:  

𝑿𝑐 =     argmin 
𝑿

   𝜆 𝑿𝑐 − 𝑿 2
2 +   𝑫𝜶𝑖𝑗 − 𝑹𝑖𝑗𝑿

𝑐 
2

2

𝑖𝑗

 (2.15) 

Note that 𝑿 represents noisy image, 𝑿𝑐  is clean image and 𝑹𝑖𝑗 is binary matrix to 

extract patch from specified locations [1]. 
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Chapter 3 

2. IMAGE DENOISING VIA CORRELATION BASED 

SPARSE REPRESENTATION AND DICTIONARY 

LEARNING 

3.1 Introduction 

Algorithms based on the sparse and redundant representation model have been 

successfully applied to the image denoising problem. K-means Singular Value 

Decomposition (K-SVD) based dictionary learning is one of the most important 

works along this line of research [1, 2]. K-SVD denoising is a patch based algorithm 

and it learns a dictionary from the noisy image to approximate the clean image. In 

the dictionary learning stage, the algorithm initializes the current patch as the 

residual and employs error based Orthogonal Matching Pursuit (OMPe) algorithm to 

approximate the clean patch. The OMPe algorithm picks the atom that gives 

maximum orthogonal projection and calculates the new residual based on the 

selected atom. When the residual power goes below the noise power, the next patch 

in the training set is processed. Once the sparse coding coefficients of all patches in 

the training set are evaluated, the dictionary update stage is performed. The sparse 

coding and dictionary update stages are iterated a few times and the dictionary that 

will be used to approximate the clean image is obtained.  
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Note that the residual formed during the sparse coding stage is supposed to be similar 

to the contaminating noise. In this research work, a sparse coding method based on  

analysis of  properties of  the residual is proposed. In the proposed algorithm, we 

pick an atom such that residual formed is as similar to the noise as possible. In order 

to achieve this, we considered the autocorrelation property of the AWGN. Additive 

means it is added to already present intrinsic noise. White represents the uniformity 

in power distribution. Finally, it is Gaussian because it is generated by normal 

distribution. Hence, we obtain autocorrelation of the residual and pick an atom that 

produces the autocorrelation of residual similar to that of the contaminating noise.  

The proposed algorithm is compared with the K-SVD [1] denoising algorithm, 

BM3D [6] and EPLL [14] algorithms. Our results indicate that the proposed 

algorithm is significantly better than K-SVD and EPLL denoising. At the noise level 

100, the improvement over the K-SVD denoising algorithm for Barbara and 

Fingerprint images is 1.14 dB and 2.64 dB respectively. The proposed algorithm 

gives results that are visually comparable with the BM3D algorithm. 

3.2 Background 

Objective of the error based Orthogonal Matching Pursuit (OMPe) algorithm is to 

minimize the power in the residual. To minimize the residual power, OMPe picks the 

atom that gives maximum orthogonal projection. In order for the maximum 

projection based OMPe algorithm to work properly, the atom that is picked must 

match the clean image patch. However, when the noise is additive and its power is 

high relative to the clean image patch, the projection of noisy patch onto the 

dictionary atoms is dominated by noise. Thus, the atom that maximizes absolute 
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projection is very likely to match the noise instead of the clean image patch. This is 

the main drawback of the OMPe atom selection algorithm.  

We note once again that, when the atom that matches the image patch is picked, the 

residual gets closer to the contaminating noise process. If one knows or can estimate 

the statistics of the contaminating noise, then this information can be incorporated 

into the sparse coding algorithm. K-SVD denoising algorithm assumes that the 

contaminating noise is additive, white and Gaussian (AWGN) with zero mean and 

known variance and it uses maximum projection based OMPe algorithm to select 

atoms that match the clean image patch. However, OMPe exploits only the variance 

information. OMPe terminates the atom selection process when the residual power 

goes just below the contaminating noise power. At high noise levels the variance 

information alone is insufficient in making sure that the correct atom is selected. This 

leaves the pixels in the residual patch highly correlated. Highly correlated residual 

patch pixels is a manifestation of the fact that the selected atoms did not match the 

clean image patches. In order to make sure that the atom that matches the clean 

image patch is selected one needs to force the autocorrelation of the residual patch to 

match the autocorrelation of contaminating noise. 

There exist image denoising algorithms that exploit correlations [3, 4, 5, 6, 7].  

However, none of these algorithms embed correlation reduction in the framework of 

sparse representation via learned dictionaries. Also other image denoising algorithms 

in the literature like [8, 9, 10, 11] have different approach than our proposed 

correlation based approach.    
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In this research work, we first show that the atom which gives maximum projection 

does not necessarily minimize residual correlations. We then develop a simple 

strategy that takes into account the residual patch correlations. We achieve this by 

making a simple modification to the OMPe algorithm. We consider slightly bigger 

size patches and for each atom in the dictionary we first form the residual and then 

estimate its autocorrelation. Since the residual must have autocorrelation similar to 

the autocorrelation of the noise process, the atom selection should ideally continue 

till the autocorrelation of the residual acceptably matches the autocorrelation of the 

noise. If, for example, the noise is known to be AWGN with zero mean and variance 

𝜎2 as in [1], then the atom selection continues till the power in the residual (zero lag 

autocorrelation) goes down to noise power 𝜎2  and nonzero lag autocorrelations 

approach zero. We refer to this sparse coding algorithm as OMPc. We then use the 

two stage dictionary learning approach employed in [1, 2] where the sparse coding 

stage is replaced with the proposed OMPc algorithm to learn the dictionary that will 

be used to approximate the clean image. The proposed denoising algorithm that 

employs OMPc is referred to as K-SVDc denoising.    

Simulations indicate that proposed K-SVDc algorithm produces better results both 

visually and in terms of Peak Signal to Noise Ratio (PSNR) when compared to K-

SVD for images that are rich in high frequency content and strong pixel correlations 

like Barbara and Fingerprint images. The improvement over K-SVD denoising is 

1.14 dB and 2.64 dB for Barbara and Fingerprint images respectively at 𝜎 =

100. Also it outperforms EPLL [14] denoising significantly at all noise levels in 

terms of PSNR as well as visual results obtained. Visual results obtained by K-SVDc 

algorithm are as good if not better than state of the art BM3D algorithm. Whereas, 
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BM3D denoising algorithm recover images with high PSNR as compared to 

proposed K-SVDc algorithm. However, margin of difference in PSNR obtained by 

BM3D and K-SVDc algorithm decreases with increase in noise level and also for 

images that are rich in high frequency content. 

3.3 Motivation And Problem Definition 

Assume that a clean patch 𝒙𝑐  is corrupted with AWGN 𝒘 with zero mean and 

variance 𝜎2  such that the observed noisy patch is given by  𝒙 = 𝒙𝑐 + 𝒘 . For 

convenience assume that patches are arranged as column vectors. 

In the sparse representation framework the task of approximating 𝒙𝑐 ∈ ℝ𝒏 involves 

the selection of atoms from a given dictionary 𝑫 ∈ ℝ𝒏×𝑲.When the 𝑘𝑡𝑕 atom 𝒅𝑘 is 

selected, the approximation of 𝒙𝑐can be expressed as 𝒙 𝑐 = 𝒅𝑘𝜶𝑘 , where 𝜶𝑘  is the 

representation coefficient. The residual is then given by: 

𝒓 = 𝒙 − 𝒙 𝑐 = 𝒙𝒄 − 𝒙 𝑐 + 𝒘 = 𝒆 + 𝒘, (3.1) 

where 𝒆 is the error in the representation.  

We note that as one continues to select more atoms that match the clean image patch, 

then power in the error 𝒆 is expected to decrease and thus the residual is expected to 

behave like the noise 𝒘. More specifically the residual 𝒓 is expected to have the 

statistical properties of the noise process 𝒘. 

Let us consider the projection based approach employed in the OMPe algorithm for 

selecting atoms that approximates the clean image patch. The projection of the noisy 

patch onto the dictionary atoms 𝒅𝑖   𝑖 = 1,2, … , 𝑘  can be expressed as, 

𝒅𝑖
𝑇𝒙 = 𝒅𝑖

𝑇 𝒙𝑐 + 𝒘 = ||𝒅𝑖
𝑇|| ||𝒙𝑐|| 𝒄𝒐𝒔  𝜃𝒙𝑐 ,𝒅𝑖

𝑇 + ||𝒅𝑖
𝑇|| ||𝒘|| 𝒄𝒐𝒔  𝜃𝒘,𝒅𝑖

𝑇  (3.2) 



27 

 

Here 𝜃𝒙𝑐 ,𝒅𝑖
𝑇  and 𝜃𝒘,𝒅𝑖

𝑇   are the angles between the dictionary atom 𝒅𝑖  and clean patch 

vector 𝒙𝑐and the noise 𝒘 respectively. ||𝒙𝒄|| and ||𝒘|| are square roots of the powers 

in the clean image patch and the  𝒘 noise respectively. Also note that the dictionary 

atoms are normalized to unit norm i.e., ||𝒅𝑖
𝑇|| = 1. Given the noisy patch the aim is 

to select the atom that gives maximum projection. When 𝜃𝒙𝑐 ,𝒅𝑖
𝑇  is small and 𝒘 is 

comparable to or greater than 𝒙𝑐 , then the projection is dominated by the noise term 

||𝒘|| 𝒄𝒐𝒔  𝜃𝒘,𝒅𝑖
𝑇 . Thus, the atom 𝒅𝑖  that matches the noise term is likely to be 

picked. When this happens the maximum projection based algorithm picks the atom 

that matches the contaminating noise. This happens even if  𝜃𝒙𝑐 ,𝒅𝑖
𝑇  is small i.e., the 

similarity of the clean patch and the atom 𝒅𝑖 is high. This contradicts with the 

premise of the OMPe algorithm which requires that the selected atom should match 

the clean image patch. Therefore, at high noise levels the atom picked does not 

match the clean image patch and thus the residual does not behave like the 

contaminating noise. 

We propose a remedy for this problem by incorporating additional constraints that 

force the selected atom to match the clean image patch. This is achieved by forcing 

the residual to behave like the contaminating noise. Thus, when atoms are selected 

instead of maximizing absolute projections, we pick atoms that force residual 

autocorrelation sequence to be similar to the autocorrelation sequence of the noise. 

For an AWGN process, if one assumes that 𝒆 and 𝒘 are uncorrelated, then the 

autocorrelation of the residual 𝒓  is  𝒂𝑘
𝑟 = 𝒂𝑘

𝑤 + 𝒂𝑘
𝑒 = 𝜎2𝛿𝑘 + 𝒂𝑘

𝑒 ,  wher 𝒂𝑘
𝑤  and 

𝒂𝑘
𝑒 are the autocorrelation sequences of the noisy patch and the error patch 

respectively. We note that when atoms that match the clean image patch are selected, 

the norm of the error decreases such that 𝜎2 ≫ ||𝒆||2and the autocorrelation of the 
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residual then can be approximated as 𝒂𝑘
𝑟 ≈ 𝜎2𝛿𝑘 where 𝛿𝑘  is the Dirac delta 

sequence. The 2D autocorrelation sequence 𝑨  of a 2D residual patch 𝑹 can be 

estimated by, 

𝑨𝑘1 ,𝑘2
=

1

𝑁
  𝑹𝑖,𝑗𝑹𝑖+𝑘1 ,𝑗+𝑘2

𝑗𝑖

 (3.3) 

Here 𝑖, 𝑗 denotes the location of residual patch and  𝑘1  and 𝑘2 are horizontal and 

vertical shifts (lags) from residual patch. Note that for simplicity in (3.3) border 

effects are not explicitly shown.  

Since the patch is of finite size, in order to make sure that the autocorrelation 

estimates are statistically meaningful, we only consider small lags  𝑘1 ,  𝑘2 ≤ 2. 

Furthermore, for simplicity we reorder this two dimensional autocorrelation 

sequence and rewrite it as a one dimensional sequence 𝒂𝑘
𝑟  such that 𝒂0

𝑟  represents the 

residual power (autocorrelation at zero lag) and 𝒂𝑘
𝑟 (𝑘 ≠ 0)  are the nonzero lag 

autocorrelations. 

Now let us consider the sparse coding stage OMPe of the K-SVD denoising 

algorithm.  Given the dictionary 𝑫 and the training patch 𝒙, OMPe solves,  

𝜶 = argmin
𝜶

 𝜶 0 𝑠. 𝑡  𝒙 − 𝑫𝜶 2
2 ≤  𝜀 (3.4) 

where  ||. ||2  and ||. ||0  are ℓ2 and ℓ0  norms respectively and 𝜀 is the representation 

error. The first term in equation (3.4) forces the representation to be as sparse as 

possible. The term 𝑫𝜶 is the approximation of 𝒙𝑐and thus 𝒙 − 𝑫𝜶 = 𝒙 − 𝒙 𝑐  is the 

residual patch 𝒓. 
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Therefore, the second term in (3.4) represents the power in the residual patch. To 

solve (3.4) OMPe algorithm is used. OMPe in K-SVD denoising represents each clean 

patch by picking atoms one at a time till either the power in the residual (zero lag 

autocorrelation) goes just below 1.15 𝜎2 (as given in [1]) or the sparsity limit 𝑆𝑚𝑎𝑥  

(maximum number of atoms allowed in the representation) is reached. In a way, the 

OMPe algorithm assumes that the residual 𝒓  should have the properties of the 

contaminating noise process 𝒘, however it does not go beyond to take advantage of 

the nonzero lag autocorrelations 𝒂𝑘
𝑟 (𝑘 ≠ 0). 

3.4 Proposed Correlation Based Sparse Coding Stage 

We now turn to the formulation of the proposed strategy. Given the dictionary 𝑫, the 

selection of sparse coding coefficients must ensure that the autocorrelation of the 

residual patch at all lags must conform to the statistics of the contaminating noise. 

Thus the sparse coding problem is formulated as, 

𝜶 = argmin 
𝜶

||𝜶||0 𝑠. 𝑡  (|𝒂𝑘
𝑟 − 𝜎2𝛿𝑘 |)

𝑘

≤  𝜀. (3.5) 

As in (3.3), the first term is the sparsity constraint. The second term constrains the 

autocorrelation of the residual and it forces it to behave like the autocorrelation of the 

contaminating AWGN. It contains not only the power in the residual 𝒂0
𝑟  but also the 

residual correlations at all nonzero lags 𝒂𝒌
𝒓(𝑘 ≠ 0). 

The solution of (3.5) is very similar to the OMPe used in K-SVD denoising. Instead 

of picking the atom that minimize residual power, we adopt a strategy that reduce the 

residual power (autocorrelation at zero lag) and at the same time minimize sum of 

nonzero lag correlations in absolute sense. To achieve this, we consider not only the 

atom that gives maximum projection but a subset of atoms with large projections. 
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For each atom in this subset, we form the new candidate residuals and estimate their 

autocorrelation sequences using (3.3). We then pick the atom that reduces the 

residual power and at the same time minimize the sum of nonzero lag 

autocorrelations. With selected atom the new residual is formed and atom selection is 

repeated for the new residual. Similar to the OMPe algorithm, the proposed algorithm 

is terminated when the power in the residual goes just below the noise power 𝜎2 or 

the sparsity level 𝑆𝑚𝑎𝑥  is reached. We formulate stopping criteria in terms of residual 

power (zero lag correlations) as in [2]. 

The above description for OMPc assumes that the dictionary is known. However, if 

one is to learn the dictionary from the noisy input patches, then the optimization 

problem that one needs to solve is given by, 

{𝜶 ,𝑫 } = argmin
𝜶,𝑫

 ||𝜶||0

𝑖

 𝑠. 𝑡   (|𝒂𝑘
𝑟 − 𝜎2𝛿𝑘 |)

𝑘𝑖

≤  𝜀 (3.6) 

As in many dictionary learning algorithms [2, 12, 13], the solution of (3.6) is 

approximated by a two stage process. In the first stage𝑫 is fixed and sparse 

representation coefficient vectors 𝜶𝑖  are calculated. This is the same as the 

optimization problem formulated in (3.4). 

In the second stage the sparse representation coefficient vectors 𝜶𝑖  are fixed and the 

dictionary is updated. For the dictionary update stage we ignore the nonzero lag 

correlations and adopt the K-SVD dictionary update method [2]. After the sparse 

coding (OMPc) and dictionary update stages are iterated several times, a local 

minimum is reached. Once the dictionary is learned the sparse representation 

coefficients can be calculated and the clean image can be reconstructed as in [1]. The 
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proposed correlation reduction strategy for the sparse coding stage OMPc is given in 

Algorithm 3. 

Algorithm 3:Proposed Correlation-Based Sparse Coding Algorithm: OMPe 

1: Input 

2: 𝒙𝑖: noisy patches (𝑖 = 1,2,3, … , 𝑃), 𝑫: dictionary, 𝜎2: noise power 

3:𝑆𝑚𝑎𝑥 :Maximumnumber of atoms in the representation of 𝒙𝑖  
4: 𝐾𝑚𝑎𝑥 :Subset of atoms with large projection 

5:   procedure 

6: for 𝑖 = 1,2, … , 𝑃 do  

7:  𝑠 = 0; 𝒓 =  𝒙𝑖  
8:                     Calculate residual correlation 𝒂𝒌

𝒓  

9:                      while 𝒂0
𝑟 < 𝜎2and𝑠 < 𝑆𝑚𝑎𝑥  

10:     project  𝒓 onto 𝑫 

11:                      Select 𝐾𝑚𝑎𝑥  atoms with large projections 

12:     for 𝑙 = 1,2, … , 𝐾𝑚𝑎𝑥  

13:      Calculate residual 𝒓𝑙 = 𝒓 − 𝒅𝑙𝜶𝑙 , 

14:                                           Calculate residual correlations𝒂𝑘
𝑟 𝑙 , 

15:           endfor 

16:                    Pick atom 𝒅𝑙0 that reduces sum(abs(𝒂𝑘
𝑟 𝑙 ))the most 

17:                    𝑠 = 𝑠 + 1 

18:                    𝒓 = 𝒓 − 𝒅𝑙0𝜶𝑙0  

19:  endwhile 

20:         endfor 

21:    endprocedure 

 

3.4.1 Complexity Analysis 

In this section, the computational complexity of proposed algorithm is compared 

with that of K-SVD [1] because proposed algorithm is also based on sparse-land 

model as K-SVD [1]. Similar to the K-SVD algorithm, the computational complexity 

of K-SVDc algorithm is evaluated by considering the sparse coding and dictionary 

updated stages. These stages perform O(NKLJ) operations per pixel [1], where N is 

patch size, K is number of dictionary atoms, J is number of iterations and L is 

number of nonzero entries in each sparse coefficient vector. The proposed K-SVDc 

algorithm differs from K-SVD algorithm only in the sparse coding stage. K-SVD 

calculates only one residual for each patch whereas K-SVDc considers a subset (i.e., 
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20 atoms) of atoms (𝑍𝑏 ) and calculates 𝑍𝑏  residuals. Then it further calculates the 

autocorrelation sequences. It then compares the calculated autocorrelation sequences 

with that of contaminating noise and determines the atom to be picked. Hence, the 

proposed algorithm performs 𝑂(𝑁𝑍𝑏𝐾𝐿𝐽) operations per pixel. For Barbara image at 

noise level 𝜎 = 10, the average L is 2.96 for K-SVD whereas L is 5.13 for K-SVDc.  

3.4.2 Limitations And Future Work 

In this section, we would point out that the proposed algorithm is less effective for 

images that do not possess significant high frequency content. Also at low noise 

levels it does not perform significantly better. It is due to the fact that if there are no 

sufficient nonzero lag correlations i.e., autocorrelation of residual is similar to that of 

AWGN, our proposed algorithm will run the same as K-SVD [1] denoising 

algorithm. 

The other issue is that the proposed OMPc algorithm is computationally expensive 

since it considers each atom in the dictionary and for each atom calculates the 

resulting residual autocorrelation sequence. However, if one considers small subset 

of atoms with large projections and autocorrelations with small lags, the 

computational complexity can be significantly reduced with little loss in 

performance. As a future work, it is possible to formulate different atom selection 

strategies and stopping criteria that can more effectively balance the reduction in 

residual power and nonzero lag autocorrelations; however our aim in this research 

work is not to obtain the optimal strategy but rather motivate the concept of sparse 

representation based correlation reduction and show its utility and effectiveness in 

the denoising problem. 
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3.5 Types Metrics Used To Compare the Performance 

The peak signal-to- noise ratio (PSNR), structure similarity index measure and 

feature similarity index measure (FSIM) are used to compare performance of the 

proposed algorithm with state-of-the-art algorithms. 

PSNR is measured as 10(𝑙𝑜𝑔102552/𝑀𝑆𝐸) where 𝑀𝑆𝐸 =
1

𝑛
||𝑿 − 𝑿 ||2. Where 𝑿  and 

𝑿  are the original and denoised images respectively.  

SSIM is measured based on (3.6) as given in [64],   

𝑆𝑆𝐼𝑀 𝑥, 𝑦 =
 2𝜇𝑥𝜇𝑦 + 𝐶1  2𝜎𝑥𝑦 + 𝐶2 

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
 (3.6) 

Here 𝑥 and 𝑦 are original and recovered images respectively. 𝜇 and 𝜎 are mean and 

standard deviation respectively. 𝐶1 and 𝐶2 are constants. 

FSIM is measure based on (3.7). It is combination of phase congruency and gradient 

magnitude measure as:  

𝐹𝑆𝐼𝑀 =
𝑆𝐿 𝑥 . 𝑃𝐶𝑚  𝑥 

𝑃𝐶𝑚 𝑥 
 (3.7) 

Here 𝑃𝐶 is phase congruency measure and 𝑆𝐿 is similarity measure in terms of PC 

and GMM as given in [63]. 

3.6 Simulation And Results 

In this section we first briefly study the convergence of the proposed algorithm in 

terms of nonzero lag autocorrelation reduction and compare it with the maximum 

projection based OMPe algorithm in terms of speed of convergence and degree of 

reduction achieved. Then PSNR results comparing the performance of K-SVD [1], 
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EPLL [14] and BM3D [6] denoising with the proposed K-SVDc denoising algorithm 

are presented. Finally, qualitative results of proposed algorithm are compared with 

state of the art image denoising algorithms. 

3.6.1 Convergence Of Proposed Sparse Coding Algorithm OMPc 

In order to study and compare the convergence behavior of the proposed correlation 

based OMPc and maximum projection based OMPe in terms of non zero lag 

autocorrelation reduction, we start with the noisy Barbara image, extract patches of 

size 16 × 16 and learn two dictionaries using K-SVD[1] and K-SVDc algorithms. 

Both algorithms are iterated 20 times. The experiment is repeated for 𝜎 = 15, 50 

and 75. Note that after adding noise to the image there is possibility of pixel 

saturation which means pixel value can exceed 255 (overflow) or at the same time it 

can go below zero (underflow) considering gray scale image uint8 data type. In order 

to avoid such effect the image is converted to larger data type (using Matlab 

command “im2double”) before adding noise. For the K-SVDc algorithm 

autocorrelations are calculated using maximum lag of 2  ( |𝑘|1, |𝑘|2 ≤ 2).  In this 

simulation we considered a subset of 20 dictionary atoms with largest projections. In 

both algorithms dictionaries are initialized by randomly selected patches from the 

training set. Dictionaries in both algorithms have 𝐾 = 512 atoms. 

At the end of each iteration, we form the residual, calculate the sum of absolute value 

of nonzero lag autocorrelations and normalize it with the initial sum of absolute 

value of nonzero lag autocorrelations. The results of this experiment are presented in 

Figure 3.1. For all noise levels K-SVDc achieves a lower total of nonzero lag 

autocorrelation at every iteration. Figure 3.1 clearly indicates that for all noise levels 

considered and at every iteration K-SVDc algorithm achieves a lower nonzero lag 
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autocorrelation level. For high noise levels K-SVDc achieves significant reduction in 

nonzero lag autocorrelations. For 𝜎 = 50 and 𝜎 = 75 the reduction at 20𝑡𝑕 iteration 

is 19% and 34% more when compared to K-SVD [1] algorithm. We note that even 

though K-SVDc algorithm achieves significant reduction in nonzero lag 

autocorrelations, it converges slower than the K-SVD algorithm especially at high 

noise levels. The proposed OMPc algorithm does an excellent job in decorrelating the 

residual patches and rendering their autocorrelation function much closer to the 

autocorrelation of contaminating AWGN. 

 

Figure 3.1: Sum of nonzero lag autocorrelations versus number of iterations for 

Barbara image (a) 𝜎 = 15 (b) 𝜎 = 50 (c) 𝜎 = 75. 

3.6.2 PSNR Results Comparison 

We now present simulations comparing the performance of K-SVDc algorithm with 

the K-SVD algorithm [1], EPLL [14] and BM3D algorithm [6] in terms of PSNR.  

In the light of the results presented in Figure 3.1, dictionaries for both algorithms are 

obtained after 20 iterations. The clean image is then reconstructed as in [1]. Table 
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3.1 and Table 3.2 gives the Peak Signal to Noise Ratio (PSNR) results for several 

benchmark images. This simulation is carried out for noise levels varying from 20 to 

100. 

In order to have fair comparison, patch sizes of  8 , 12  and 16  corresponding 

respectively to dictionary sizes of  𝐾 = 256, 𝐾 = 400 and 𝐾 = 512 are considered 

as shown in Table 3.2. As we analyze results in Table 3.2, K-SVDc achieves better 

denoising results as patch size is increased and it outperforms K-SVD by a 

significant margin. For patch size 8, K-SVD is slightly better than the K-SVDc 

algorithm except for the fingerprint image (𝜎 ≥ 50). When the patch size is 12 the 

autocorrelation estimates become more accurate and K-SVDc performs better 

denoising especially for images with high frequency content. K-SVDc outperforms 

K-SVD at patch size 16 (𝐾 = 512) by significant margin.  

Now best PSNR results obtained by both algorithms are compared. We thus compare 

K-SVD at patch size 8 with K-SVDc at patch size 16. K-SVDc outperforms K-SVD 

by a significant margin at high noise levels and for images with repeating structures 

like Barbara and Fingerprint images. For the Fingerprint image at noise 𝜎 = 100, the 

improvement is 2.64 dB. For Barbara image at 𝜎 = 100, K-SVDc outperforms K-

SVD by 1.14 dB. Also as shown in Table 3.1, proposed K-SVDc algorithm performs 

significantly better than state-of-the-art EPLL [14] denoising algorithm for all 

images at almost all noise levels. It is to note that the proposed algorithm does not 

perform significantly better at low noise levels and/or for images that contain large 

amounts of low-frequency contents. It is due to the fact that if autocorrelation of 

residual is closely related to that of AWGN, then the proposed algorithm will turn 



37 

 

into maximum projection-based image denoising scheme as same K-SVD [1] 

denoising algorithm. 

Figure 3.2: Comparison of denoising results for Fingerprint image with noise level 𝜎 

varying from 20 to 100. 

Figure 3.2 and Figure 3.3 show that for images that are rich in high frequency 

contents the performance of proposed algorithm keeps improving as noise level is 

increased with respect to state of the art algorithms. It demonstrates that the proposed 

algorithm is highly effective to recover repeated structures at high noise levels. It 

also reveals that performance of  K-SVD [1] and EPLL [14] keeps decreasing as 

noise level is increased when compared to proposed K-SVDc and BM3D [6] 

algorithms. However, K-SVDc produces highly consistent results when compared to 

the BM3D denoising algorithm. Whereas, visual results obtained by proposed 

algorithm are as good as BM3D algorithm.  
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Figure 3.3: Comparison of denoising results for Barbara image with noise level 𝜎 

varying from 20 to 100. 

Now, in order to further investigate the comparison, we plot difference in PSNR 

results of all the algorithms with respect to KSVD image denoising algorithm. 

Hence, we consider KSVD as a zero line reference (shown as straight line in Figure 

3.4). From Figure 3.4 and Figure 3.5, we conclude that the performance of residual 

correlation based algorithm keeps improving with respect to base line KSVD 

algorithm. Also it produces highly consistent results with respect to BM3D 

algorithm. It further verifies that the residual correlation information is highly 

essential especially for the images that possess large quantity of high frequency 

content and/or at high noise levels. It also proves that at high noise levels maximum 

projection based sparse coding algorithms fail to pick correct atom at high noise 

levels. As a result its performance keeps decreasing with increasing noise levels. 
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Figure 3.4: Difference in PSNR comparison . 

 

 

Figure 3.5: Difference in PSNR comparison . 

  



 

 

 

 

 

Table 3.1: PSNR results in decibels. Top left: Results of K-SVD [1]. Top right: BM3D[6]. Bottom left EPLL  

[Bottom right: Proposed Algorithm. 

 

Sigma Barbara Boat Fingerprint Lena  Building MRI  Average 

Avg 

∆𝑷𝑺𝑵𝑹  
w.r.t 

KSVD 

 

20 
30.86 31.78 30.33 30.88 28.48 28.81 32.39 33.05 28.43 28.93 28.37 28.54 30.29 30.82 

-0.07 
29.74 31.05 30.61 30.16 28.25 28.53 32.53 32.41 27.68 27.99 28.35 28.27 30.02 30.22 

25 
29.58 30.72 29.27 29.91 27.26 27.71 31.32 32.08 27.09 27.62 27.63 27.96 29.18 29.88 

0.06 
28.51 30.11 29.61 29.31 27.09 27.31 31.54 31.49 26.39 26.79 27.61 27.52 28.96 29.24 

30 
28.55 29.81 28.42 29.12 26.31 26.83 30.45 31.26 25.94 26.59 27.11 27.51 28.28 29.03 

0.13 
27.54 29.16 28.77 28.58 26.21 26.47 30.79 30.71 25.43 25.83 27.19 26.84 28.16 28.41 

50 
25.53 27.23 25.94 26.78 23.26 24.53 27.87 29.05 22.79 23.48 24.94 26.09 25.47 26.69 

0.62 
24.88 26.58 26.58 26.32 23.52 24.14 28.32 28.36 22.79 23.36 25.53 25.33 25.79 26.09 

60 
24.31 26.28 25.06 26.02 21.78 23.75 26.89 28.27 21.48 22.65 24.16 25.48 24.35 25.88 

0.92 
23.91 25.62 25.82 25.58 22.62 23.44 27.42 27.44 22.09 22.56 24.95 24.49 24.98 25.27 

75 
23.01 25.12 23.95 25.12 20.01 22.83 25.65 27.26 20.51 21.74 23.15 24.69 23.09 24.89 

1.12 
23.02 24.47 24.87 24.61 21.48 22.37 26.47 26.34 21.13 21.58 24.19 23.72 23.99 24.21 

90 
22.25 24.16 23.24 24.39 18.89 22.06 24.88 26.45 19.81 21.05 22.31 24.01 22.23 24.08 

1.15 
22.45 23.53 24.08 23.83 20.43 21.55 25.64 25.35 20.49 20.97 23.41 22.99 23.16 23.38 

100 
21.84 23.62 22.81 23.97 18.33 21.61 24.49 25.95 19.57 20.67 22.06 23.59 21.65 23.61 

1.13 
22.13 22.98 23.66 23.27 19.82 20.97 25.33 24.87 20.02 20.45 23.08 22.46 22.76 22.78 



 

             

 

 

            

 

            Table 3.2: PSNR results in decibels at various patch sizes and dictionary sizes

Sigma Patch Size Barbara Boat Fingerprint House Lena 

Value 
and 

KSVD BM3D KSVDc KSVD BM3D KSVDc KSVD BM3D KSVDc KSVD BM3D KSVDc KSVD BM3D KSVDc 
Dictionary atoms 

20 

8 × 8(𝑲 = 𝟐𝟓𝟔) 30.86 

31.78 

30.05 30.33 

30.88 

29.81 28.48 

28.81 

28.22 33.17 

33.77 

31.46 32.39 

33.05 

31.18 

12 × 12(𝑲 = 𝟒𝟎𝟎) 30.71 30.79 29.86 30.16 28.11 28.53 33.16 32.46 32.06 32.07 

16 × 16(𝑲 = 𝟓𝟏𝟐) 30.36 31.06 29.51 30.16 27.79 28.59 32.75 32.66 31.66 32.22 

30 

8 × 8(𝑲 = 𝟐𝟓𝟔) 28.55 

29.81 

27.68 28.42 

29.12 

27.55 26.31 

26.83 

26.02 31.18 

32.09 

28.85 30.45 

31.26 

28.78 

12 × 12(𝑲 = 𝟒𝟎𝟎) 28.35 28.59 27.83 28.21 25.75 26.33 31.46 30.64 30.09 30.11 

16 × 16(𝑲 = 𝟓𝟏𝟐) 27,83 29.16 27.29 28.29 25.38 26.41 30.92 30.76 29.59 30.25 

50 

8 × 8(𝑲 = 𝟐𝟓𝟔) 25.53 

27.23 

24.56 25.94 

26.78 

24.66 23.26 

24.53 

23.35 27.97 

29.69 

25.41 27.87 

29.05 

25.56 

12 × 12(𝑲 = 𝟒𝟎𝟎) 25.36 25.97 25.41 25.77 22.88 23.79 28.26 27.36 27.41 27.32 

16 × 16(𝑲 = 𝟓𝟏𝟐) 24.91 26.59 24.88 26.07 22.46 23.88 28.15 28.09 26.96 27.89 

60 

8 × 8(𝑲 = 𝟐𝟓𝟔) 24.31 

26.28 

23.32 25.06 

26.02 

23.48 21.78 

23.75 

22.29 26.81 

28.74 

24.09 26.89 

28.27 

24.03 

12 × 12(𝑲 = 𝟒𝟎𝟎) 24.06 25.02 24.65 24.88 21.71 22.91 26.81 26.46 26.52 26.32 

16 × 16(𝑲 = 𝟓𝟏𝟐) 23.61 25.62 24.11 25.38 21.24 23.11 26.44 27.14 25.91 27.01 

75 

8 × 8(𝑲 = 𝟐𝟓𝟔) 23.01 

25.12 

21.81 23.95 

25.12 

20.99 20.01 

22.83 

20.87 25.23 

27.51 

22.27 25.78 

27.26 

22.66 

12 × 12(𝑲 = 𝟒𝟎𝟎) 22.65 23.68 23.52 23.76 19.65 21.92 25.06 24.99 25.37 24.99 

16 × 16(𝑲 = 𝟓𝟏𝟐) 21.97 24.47 22.93 24.32 19.41 22.15 24.72 26.11 24.59 25.99 

90 

8 × 8(𝑲 = 𝟐𝟓𝟔) 22.25 

24.16 

20.51 23.24 

24.39 

20.83 18.89 

22.06 

19.68 24.26 

26.48 

20.98 24.88 

26.45 

21.42 

12 × 12(𝑲 = 𝟒𝟎𝟎) 21.69 22.74 22.69 22.87 18.16 21.07 23.95 23.83 24.44 24.01 

16 × 16(𝑲 = 𝟓𝟏𝟐) 21.03 23.53 21.99 23.55 17.85 21.41 23.08 24.89 23.52 25.15 

100 

8 × 8(𝑲 = 𝟐𝟓𝟔) 21.84 

23.62 

19.81 22.81 

23.97 

20.08 18.33 

21.61 

18.95 23.64 

25.87 

20.17 24.49 

25.95 

20.66 

12 × 12(𝑲 = 𝟒𝟎𝟎) 21.36 22.12 22.32 22.33 17.38 20.58 23.27 23.03 24.02 23.35 

16 × 16(𝑲 = 𝟓𝟏𝟐) 20.64 23.11 21.63 22.93 17.12 21.12 22.46 24.19 23.14 24.48 
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3.6.3 Qualitative Comparison 

In this section, we compare the proposed algorithm with state of the art image 

denoising algorithms in terms of visual results obtained. 

Figure 3.6 shows that K-SVD [1] and EPLL [14] fail to recover repeating structures 

like ridges in Fingerprint image at high noise levels. However, proposed K-SVDc 

algorithm does excellent job to denoise these images and it produces highly 

competitive visual results when compared to BM3D algorithm.   

Furthermore, Figure 3.7 shows a portion of the Barbara image reconstructed using K-

SVD, BM3D and K-SVDc for 𝜎 = 50. Visually it is clear that the textures in the 

upper right corner, the stripes on the scarf near the hand are reconstructed fairly 

correctly for the K-SVDc method. K-SVD [1] on other hand does a poor job in 

recovering such fine structures. Similarly, visual results show that K-SVDc is as good 

if not better than BM3D [6]. A closer investigation reveals that, the stripes on scarf 

and on background are recovered much sharply by K-SVDc as compared to the state 

of art BM3D denoising algorithm [6].  

Similarly, Figure 3.8 also shows that fine structures of windows in building image 

are better restored by the proposed K-SVDc denoising algorithm as compared to K-

SVD and EPLL algorithms. Visual results obtained by proposed K-SVDc image 

denoising algorithm are as good as state of the art BM3D algorithm [6].  

Figure 3.9 and Figure 3.10 show the dictionaries learned via K-SVD [1] and K-SVDc 

algorithms. The best denoising results are obtained at 𝐾 = 256  and 𝐾 = 512 

dictionary atoms for K-SVD and K-SVDc respectively. Therefore, number of atoms 
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are based on best results produced by each algorithm. Dictionary obtained by K-

SVDc are highly structured. It is noted that first atom in both algorithms is reserved 

for DC. 

Figure 3.6:  Visual comparison of Fingerprint image with 𝜎 = 100 (a) original image 

(b) denoised by K-SVD [1] (c) denoised by EPLL [14] (d) denoised by BM3D [6] 

(e) denoised by K-SVDc 
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Figure 3.7: Barbara image reconstruction comparison with 𝜎 = 50 (a) original image 

(b) denoised by K-SVD [1] (c) denoised by EPLL [14] (d) denoised by BM3D [6] 

(e) denoised  by K-SVDc 
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Figure 3.8: Visual comparison of Building image with 𝜎 = 60 (a) original image (b) 

denoised by K-SVD [1] (c) denoised by EPLL [14] (d) denoised by BM3D [6] 

(e) denoised by K-SVDc 
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Figure 3.9: The trained dictionary for Fingerprint image with 𝜎 = 100 after 

20  iterations. (a) K-SVD (b) K-SVDc 

 

 

Figure 3.10:  The trained dictionary for Barbara image with 𝜎 = 75 after 

20  iterations. (a) K-SVD (b) K-SVDc 

3.7 Conclusion 

In this chapter, firstly it was shown through simple experiment that maximum 

orthogonal projection based image denoising algorithms fail to pick correct atom 

especially at high noise levels. Then, later in this chapter a new correlation reduction 

strategy in the framework of sparse representation is proposed. Simulation results 

obtained through proposed strategy show that incorporating residual correlations in 

sparse representation does indeed improve the performance of image denoising 
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problem. Hence, the purpose of this chapter was to show only the effectiveness of 

residual correlation reduction based sparse coding in image denoising.  However, in 

next chapter, a comprehensive sparse coding algorithm is derived that is based on 

new residual correlation regularization. Also, a new dictionary update stage is 

derived that uses the proposed residual patch regularization to update the dictionary 

atoms.   
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Chapter 4 

1. RESIDUAL CORRELATION REGULARIZATION 

BASED IMAGE DENOISING 

4.1 Introduction 

Patch based denoising algorithms aim to reconstruct the clean image patch leaving 

behind the residual as contaminating noise. It is very likely that the residual patch 

contains remnants from the clean image patch. However, residual should possess 

statistical properties of contaminating noise. In this chapter, we propose a new 

residual correlation based regularization for image denoising. The regularization can 

effectively render residual patches as uncorrelated as possible. It allows us to derive 

analytical solution for sparse coding (atom selection and coefficient calculation). It 

also leads to a new online dictionary learning update. The clean image is obtained 

through alternating between the two stages of sparse coding and dictionary updating. 

The performance of proposed algorithm is compared with state-of-the-art denoising 

algorithms in terms of peak signal-to-noise ratio, structural similarity index and 

feature similarity index, as well as through visual comparison. Experimental results 

show that the proposed algorithm is highly competitive and often better than leading 

denoising algorithms. The proposed algorithm is also shown to offer an efficient 

complement to the benchmark algorithm of BM3D especially.  
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4.2 Background 

The main objective in patch based image denoising algorithms that employ learned 

dictionaries is to make sure that atoms that best match clean image patch are picked. 

K-SVD [1] denoising for example does this by projecting the noisy patch onto the 

dictionary atoms and picking the atom that gives maximum orthogonal projection. 

As a result, at high noise levels, the residue usually contains structures from clean 

image patch, thus it does not match the contaminating noise [36]. On the other hand, 

after the sparse coding stage is completed, the residual is expected to possess 

properties similar to those of contaminating noise. One such property is that the 

residues of different patches should be uncorrelated. We adopt a strategy that will 

render the residual patches uncorrelated for AWGN. This observation calls for 

processing patches in groups by considering local neighborhoods and making sure 

that the neighboring residuals are uncorrelated. Thus in selecting atoms for a given 

patch, we determine the sparse coefficient that leaves behind a residual which is as 

uncorrelated with the neighboring residuals as possible. 

This approach was adapted in [36]. However, the sparse coefficients were not 

estimated based on residual correlation and also dictionary update stage was similar 

to the one proposed in [1]. 

In [36] large patches were used and the atom that rendered the correlation between 

smaller sub-patches within the bigger patch was selected. Similarly, Riot et al. [38] 

also proposed a variation in fidelity term to control the residual distribution. This is 

achieved by considering statistical moments of residual and the correlation on 
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patches. It differs from our proposed algorithm since it does not embed the 

framework of sparse representation via learned dictionaries. 

There also exist other image denoising algorithms based on residual correlations such 

as [4, 5, 6, 7]. However, except [36] and [5], none of these algorithms are based on 

sparse-land model. In [6], similar 2D image blocks are arranged in 3D groups. Then, 

collaborative filtering is developed to denoise these 3D image blocks. In [4], web 

images are used to match the noisy image patch. The accuracy of matching is 

increased by graph based optimization and then image cubes (group of similar noisy 

image patches) are filtered in the transform domain. He et al. [5] introduced a 

correlation coefficient criterion. Meaningful structures are extracted from noisy 

image using correlation based coefficient criterion. Also multi-scale sparse coding is 

proposed to improve the performance. In [7], the importance of exploiting residual 

image to improve performance of image denoising is discussed. The authors 

proposed a algorithm based on mean-squared-error (MSE) and structural similarity 

index measure (SSIM) estimation of residual image without any reference image. 

In this chapter, we introduce a new residual correlation regularization based image 

denoising algorithm. This regularization minimizes the correlation between 

neighboring residual patches. We derive analytical solution for sparse coding (the 

atom selection and coefficient estimation). We also propose a new dictionary update 

that is based on the correlation regularization. The final clean image reconstruction is 

obtained via alternating between the sparse coding and dictionary update stages. Our 

experimental results show that the proposed algorithm is highly comparable and 

often superior to the state-of-the-art denoising algorithms. The performance of the 

proposed algorithm is compared with state-of-the-art algorithms at various noise 
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levels ranging from 25 to 100. Experimental results show that the proposed algorithm 

significantly outperforms K-SVD [1] and EPLL [14] in terms of the peak signal-to-

noise ratio (PSNR), especially at high noise levels and for images that are rich in 

high frequency content (like Barbara and Fingerprint image). Also it outperforms K-

SVD [1] in terms of structural similarity index (SSIM) and produces competitive 

SSIM results when compared to benchmarks for image denoising algorithms such as 

KSVD [1] and NCSR [39]. The improvement over K-SVD denoising is 1.22 dB and 

2.93 dB for Barbara and Fingerprint images respectively at  𝜎 = 100 . A visual 

comparison also suggests that the proposed algorithm allows denoising results that 

are as good if not better than BM3D [6] and NCSR [39] algorithms. 

4.3 Motivation And Problem Statement 

We consider the standard model for the image denoising problem: A clean image is 

corrupted by an additive white Gaussian (AWGN) uncorrelated noise. Let the image 

be partitioned into overlapping patches and each patch is arranged as column vector 

𝒙 ∈  ℝ𝒏, which is modeled as 

𝒙 = 𝒙𝑐 + 𝒘 (4.1) 

Where 𝒙𝑐  is the clean patch and 𝒘 is the noise patch. A dictionary 𝑫 is given with 

atoms 𝑘 = 1,2, … , 𝐾. If 𝒙𝒄 is approximately represented by its code coefficients 𝜶, 

i.e., 𝒙 𝒄 = 𝑫𝜶, then the approximation error is 𝒆 =  𝒙𝑐 − 𝒙 𝑐  and the residue is: 

𝒓 = 𝒙 − 𝒙 𝑐 = 𝒙𝑐 + 𝒘− 𝒙 𝑐 = 𝒆 + 𝒘     (4.2) 

This implies that if the code is correctly determined so that  𝒆 ≅ 0, then residue 

𝒓 ≈ 𝒘. As a result, the residue should possess the same statistical properties of the 

contaminating noise. In maximum projection based algorithms, approximation of a 
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noisy patch 𝒙 is achieved by projecting it onto dictionary atoms and picking the atom 

that gives the maximum projection. Note that the performance of maximum 

projection based algorithms deteriorates as the noise level increases [40]. According 

to [36], the projection coefficient on atom 𝒅𝑘  is 

𝒅𝑘
𝑇𝒙 = 𝒅𝑘

𝑇 𝒙𝑐 + 𝒘 =  𝒅𝑘
𝑇  𝒙𝑐 cos 𝜃𝒅𝑘 ,𝒙𝑐 +  𝒅𝑘

𝑇  𝒘 cos 𝜃𝒅𝑘 ,𝒘            

= ||𝒙𝑐|| cos 𝜃𝒅𝑘 ,𝒙𝑐 +  ||𝒘|| cos 𝜃𝒅𝑘 ,𝒘  (4.3) 

where  𝒅𝑘
𝑇 = 1 and 𝜃𝒂,𝒃 denotes the angle between vectors 𝒂 and 𝒃. At high noise 

levels where the magnitude of noise 𝒘 is greater than that of the clean patch 𝒙𝑐 ,the 

noise 𝒘  dominates the maximum projection and thus would dictate the atom 

selection process. The atom that matches the contaminating noise is then picked. 

Consequently, the residual 𝒓 contains remnants from clean signal and it would not 

possess properties of the noise [36]. 

In this research work, we develop a new correlation based regularization to ensure 

that the residuals of different patches are minimally correlated, hence they behave 

like contaminating noise. Our problem can be summarized as follows. 

Given a patch 𝒙 formed from a noisy images, we aim to find a sparse code 𝜶, such 

that the representation 𝒙 𝑐 = 𝑫𝜶 gives a good approximation of the clean image, i.e., 

𝒙 𝑐 ≈ 𝒙𝑐and the resultant residue 𝒓 = 𝒙 − 𝒙 𝑐  is uncorrelated with the residues of the 

neighboring patches of the noisy image. 
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4.4 Residual Correlation Regularization 

4.4.1 Sparse Coding 

Let the current patch being processed be denoted by 𝒙 . Assume that 𝑀 of its 

immediate neighbors have been processed, and the corresponding residuals 

are 𝒓𝑚 , 𝑚 = 1,2, … ,𝑀. We initialize its residue as 𝒓0 = 𝒙. We shall then determine 

the first atom by a regularization based on residual patch correlation regulation. We 

then proceed to next patch by the same approach. And then similarly we pick second  

atom for each patch. The process is repeated either the maximum number of atoms to 

be used is reached or the residual power is reduced below the noise power. Assume 

that we are going to pick the 𝑠𝑡𝑕 atom for 𝒙. Denote by 𝒓𝑠−1 the residual formed 

after selection of 𝑠 − 1  atoms. If the atom picked is  𝒅𝑘𝑠 , and the corresponding 

coefficient is 𝛼𝑠, then the new residual is:  

𝒓𝒔 = 𝒓𝒔−𝟏 −  𝒅𝑘𝑠𝛼𝑠 (4.4) 

Our atom selection is performed by minimizing the following objective function: 

𝐽𝑐 𝑘𝑠 , 𝛼𝑠 =
1

2
||𝒓𝑠||2

2 +  𝜆𝑚 |𝒓𝑠
𝑇𝒓𝑚 |

𝑀

𝑚=1

 (4.5) 

where 𝜆𝑚 > 0,𝑚 = 1,2, … ,𝑀, are regularization weighting parameters,which can be 

selected according to the level of the noise. Note that the first term in the right-hand 

side of (4.5) represents a fidelity term, whereas the second term realizes the 

regularization on residual correlation between the current residual 𝒓𝑠  and 

neighboring residuals 𝒓𝑚 . Therefore, minimizing 𝐽𝑐  in (4.5) enforces the residual of 

the current patch to be  uncorrelated with those of neighboring patches as possible.  
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Thus, the atom and the corresponding coefficient can be determined as 

 𝑘𝑠
∗, 𝛼𝑠

∗ = argmin
𝑘𝑠 ,𝛼𝑠

𝐽𝑐(𝑘𝑠 , 𝛼𝑠)  (4.6) 

Expanding 𝐽𝑐 𝑘𝑠 , 𝛼𝑠  in terms of 𝑘𝑠 and 𝛼𝑠, we have: 

𝐽𝑐 𝑘𝑠 , 𝛼𝑠  

=  
1

2
 𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 

𝑇
 𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 +  𝜆𝑚

𝑀

𝑚=1

| 𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 
𝑇
𝒓𝑚 | 

=  
1

2
 𝛼𝑠

2𝒅𝑘𝑠
𝑇 𝒅𝑘𝑠 − 2𝛼𝑠 𝒅𝑘𝑠 

𝑇
𝒓𝑠−1 + 𝒓𝑠−1

𝑇 𝒓𝑠−1 +   𝜆𝑚
𝑀
𝑚=1 | 𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 

𝑇
𝒓𝑚 |. 

To solve (4.6) we take the derivative of 𝐽𝑐(𝑘𝑠 , 𝛼𝑠) with respect to (w.r.t.) 𝛼𝑠 : 

(detailed steps are presented in Appendix A) 

𝜕𝑓

𝜕𝛼𝑠
= −𝒅𝑘𝑠

𝑇  𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 −  |𝑠𝑚𝜆𝑚

𝑀

𝑚=1

𝒅𝑘𝑠
𝑇 𝒓𝑚 |    (4.7) 

Where 

𝑠𝑚 = 𝑠𝑔𝑛   𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 
𝑇
𝒓𝑚  (4.8) 

with 𝑠𝑔𝑛 being the sign function. Letting the derivative be equal to zero and noting:  

𝛼𝑠 =  𝒅𝑘𝑠
𝑇 𝒓𝑠−1 +   𝑠𝑚𝜆𝑚

𝑀

𝑚=1

𝒅𝑘𝑠
𝑇 𝒓𝑚  (4.9) 

Note that if 𝜆𝑚 = 0, function in 𝐽𝑐  (4.5) gives the standard least square error (LSE) 

expression. And the solution in equation (4.9) coincides with the very solution of the 

corresponding LSE problem when no patch correlation regularization is used [1]. 

Furthermore, equation (4.9) shows explicitly how the LSE solution is modified when 

any neighboring patch is used for regularization. There are two issues in calculating 
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𝛼𝑠  from (4.9):1) 𝛼𝑠 is dependent on atom 𝒅𝑘𝑠 , which is yet to be determined, and 

more importantly 2) 𝛼𝑠 itself also appears in the signs 𝑠𝑚  of (4.9). Fortunately, Issue 

1) can be resolved by examining all the atoms in the dictionary that have not been 

selected for patch 𝒙 . And for each atom considered, Issue 2) can also be 

circumvented by testing all 3𝑀   (because sign can be +1,-1 or 0) combinations of 

𝑠𝑚and selecting the combination that yields the least 𝐽𝑐 𝑘𝑠 , 𝛼𝑠 . As a results, (4.6) is 

then solved. That is, we complete the 𝑠th  atom selection and its coefficient 

calculation. Proposed sparse coding stage is summarized in Algorithm 4. Flow chart 

of proposed algorithm is presented in Figure 4.1. 

Algorithm 4: Sparse Coefficient Estimation Based On Inter-patch Correlation 

regularization 

Input 

1: 𝒙: noisy input patch, 𝑫= [𝒅𝑘], 𝑘 = 1,2, … , 𝐾: dictionary, 𝜎: noise level 

2: 𝑆: Maximum number of atoms to be selected 

3: 𝑀: number of neighbors 

4: 𝒓𝑚 , 𝑚 = 1,2, … ,𝑀: the number of neighboring residuals of current patch 𝒙 

EndInput 

5:   procedure 

6:   𝒓𝟎 = 𝒙 

7: for 𝑠 = 1,2, … , 𝑆 do  

8:                Obtain 𝑚 neighboring residuals of current patch 𝒙 

9:                if  𝒓𝑠−1 > 𝜎2 then 

10:                           for 𝑘 = 1,2, … , 𝐾 do  

11:                                      for 𝑧 = 1,2, … , 𝑍 do  

12:                                             For each combination of sign z, compute 𝛼𝑠 using 

                                                   equation (4.9) and save it with corresponding atom 

13:                                             Calculate (4.6) for current 𝑘𝑠 , 𝛼𝑠 and sign 𝑧 

14:                                      endfor 

15:                            endfor 

16:               Select sign 𝑘𝑠 and 𝛼𝑠 that minimizes (4.6)  

17:                𝒓𝑠 =  𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 

18:                endif 

19:         endfor 

20:   endprocedure 
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4.4.2 Dictionary Updating 

The above described sparse coding stage assumed that the dictionary 𝑫 is known and 

fixed. If we wish to learn the dictionary from noisy image patches, we can resort to 

the two stage dictionary learning algorithm employed in [2, 7, 13, 37], that is, we 

alternate between the sparse coding stage and a new dictionary update stage. We now 

consider the dictionary update stage; the new sparse coding stage was described in 

the previous section. 
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Figure 4.1: The flow chart of proposed algorithm. 

 

 

Obtain current patch 

 

Obtain neighbors for current 

patch 

 

For each combination of sign z, 

compute 𝛼𝑠 using equation (4.9) 

  

 

 compute 𝛼𝑠 using equation (4.9) 
 

Calculate (4.6) for current 𝑘𝑠 , 𝛼𝑠 
and sign 𝑧 

 

Select sign 𝑘𝑠 and 𝛼𝑠 that 

minimizes (4.6) the most 

𝒓𝑠 =  𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 

 

Calculate new residual 
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Consider the 𝑡 th iteration, with dictionary 𝑫𝑡−1 . Let the current patch be 𝒙𝑡with 

sparse code 𝛼𝑡 , and then the corresponding residue is 𝒓𝑡 = 𝒙𝑡 −𝑫𝑡−1𝜶𝑡 . Similarly, 

let 𝒓𝑖be the residuals of the neighboring patches that have been processed under 

𝑫𝑡−1 with the corresponding code  𝜶𝑖 ,  𝑖 = 1,… , 𝑡 − 1 .The new dictionary can be 

updated by minimizing the objective function (Detailed steps are presented in 

Appendix B) 

𝐽𝑑 𝐷 =  
1

𝑡
  ||𝑟𝑖||2

2 + 𝜆𝑖|𝒓𝑡
𝑇𝒓𝑖|

𝑡−1

𝑖=1

𝑡

𝑖=1

  

=
1

𝑡
  ||𝒙𝑖 −𝑫𝜶𝑖||2

2

𝑡

𝑖=1

+  𝜆𝑖|(𝒙𝑡 −𝑫𝜶𝑡)
𝑇(𝒙𝑖 −𝑫𝜶𝑖)|

𝑡−1

𝑖=1

  
(4.10) 

  

𝐽𝑑 𝐷 =  
1

𝑡
  

1

2
 𝑇𝑟 𝑫𝑇𝑫𝑨𝑡 − 2𝑫𝑇𝑩𝑡 + 𝒙𝑡𝒙𝑡

𝑇    

+ 𝑇𝑟 𝑫𝑇𝑫𝒇𝑡−1𝜶𝒕−𝟏
𝑻 − 𝑫𝑇𝒈𝑡−1𝜶𝒕−𝟏

𝑻 −𝑫𝒇𝑡−1𝒙𝒕
𝑻       

+ 𝒈𝑡−1𝒙𝒕
𝑻   

(4.11) 

where 

𝑨𝑡 =   𝜶𝑖𝜶𝑖
𝑇 =

𝑡

𝑖=1

𝑨𝑡−1 + 𝜶𝑡𝜶𝑡
𝑇  

(4.12) 

𝑩𝑡 =  𝒙𝑖𝜶𝑖
𝑇 =

𝑡

𝑖=1

𝑩𝑡−1 + 𝒙𝑡𝜶𝑡
𝑇 (4.13) 

           𝒇𝑡 =  𝜆𝑖𝑠𝑖𝜶𝑖 =

𝑡−1

𝑖=1

𝒇𝑡−1 + 𝜆𝑡−1𝑠𝑡−1𝜶𝑡−1 (4.14) 

        𝒈𝑡 =  𝜆𝑖𝑠𝑖𝒙𝑖 =

𝑡−1

𝑖=1

𝒈𝑡−1 + 𝜆𝑡−1𝑠𝑡−1𝒙𝑡−1 (4.15) 



57 

 

With: 

𝑠𝑖 = 𝑠𝑔𝑛 (𝒙𝑡 −𝑫𝜶𝑡)
𝑇 𝒙𝑖 −𝑫𝜶𝑖   (4.16) 

Function 𝐽𝑑  in (4.10) explicitly shows that the neighboring residual patches 

contribute to the dictionary update. Note that if no neighborhood patch 𝒙𝑖  is used in 

the constraints in equation 4.10, then the proposed dictionary update reduces to the 

method of optimal directions for frame design [41]. We now solve for the new 

dictionary 𝑫: 

𝑫𝑡 = argmin
𝑫

𝐽𝑑(𝑫) (4.17) 

Taking the derivative of the objective function in (4.11) w.r.t. 𝑫 and setting it to be 

zero (Detailed steps are presented in Appendix C), we have: 

𝑫𝑨𝑐 − 𝑩𝑐 = 0 (4.18) 

where 

𝑨𝐶 =  𝑨𝑡 + 𝟐𝜎𝜆𝒇𝑡−1𝜶𝑡−1
𝑇  (4.19) 

𝑩𝐶 = 𝑩𝑡 + 𝜎𝜆 𝒈𝑡−1𝜶𝑡−1
𝑇 + 𝒇𝑡−1𝒙𝑡

𝑇  (4.20) 

The linear equation (4.18) can be approximately solved by: 

𝑫 = 𝑫𝑡−1 +  𝑩𝑐 −𝑫𝑡−1𝑨𝑐 𝑨𝑐
−1 (4.21) 

Since the coefficient vectors 𝜶 are sparse, when 𝜆𝑖  are selected to be small, the 

coefficients of 𝑨𝑐  are generally diagonal. As a result, the 𝑘𝑡𝑕 column of 𝑫 can be 

approximately updated as 

𝑫 = 𝑫𝑡−1 +  𝑩𝑐 −𝑫𝑡−1𝑨𝑐  𝑑𝑖𝑎𝑔(𝑨𝑐) −1 (4.22) 
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And the 𝑘th column of dictionary can be calculate by an approximation followed by 

a normalization: 

𝒖𝑘 ← 
1

𝑨𝑐(𝑘, 𝑘)
 𝑩𝑐 : , 𝑘 − 𝑫𝑡−1𝑨𝑐 : , 𝑘  + 𝑫𝑡−1 : , 𝑘  

𝑫𝑡 : , 𝑘  ←  
1

max  𝜇𝑘 2, 1 
𝒖𝑘  

(4.23) 

Note that 𝑨𝑐  and 𝑩𝑐  are related to the signs 𝑠𝑖 , 𝑖 = 1,… , 𝑡 − 1, which are dependent 

on 𝑫. To circumvent this dependency, we can in principle consider all combinations 

of the possible signs. However, it would quickly become infeasible as 𝑡 increases. 

Nevertheless, we can practically overcome this problem in two ways: 

1) We include only a small number of correlation terms in the objective function  

(4.10) (e.g., let 𝑀 = 2); and 2) we use 𝑫𝑡−1 instead of 𝑫𝑡  in determining the sign, 

that is, 

𝑠𝑖 = 𝑠𝑔𝑛 (𝒙𝑡 −𝑫𝑡−1𝜶𝑡)
𝑇 𝒙𝑖 −𝑫𝑡−1𝜶𝑖  , 𝑖 = 1,… , 𝑡 − 1 (4.24) 

 

 

 

Figure 4.2 Neighborhood of processed patches 
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4.5 Computational Complexity 

In this section, we discuss the computational complexity of the proposed algorithm. 

Recall that the K-SVD performs 𝑂(𝑛𝐾𝐿𝑃) operations per pixel [1], where 𝑛, 𝐾, 𝐿, 𝑃 

are the size of the patch, the size of the dictionary atoms, the maximum number of 

atoms selected, and  the number of iterations, respectively. 

Similar approach is adapted in the proposed algorithm, except that for each patch 

being processed, we need to test for different combinations of signs in order to select 

the atom and to update the dictionary. As a result, the computational cost of the 

proposed algorithm becomes 𝑂(𝑐𝑛𝐾2𝐿𝑃),  where 𝑐  is the number of sign 

combinations considered at each atom selection (sparse coding) and updating. 

Therefore, the proposed algorithm is computationally more expensive than K-SVD 

[1]. On the other hand, we shall show in Section 4.6 that the correlation based 

regularization can help produce much better results than the K-SVD, both 

qualitatively and quantitatively. Note that the computational burden can be alleviated 

by searching for suboptimal solutions of (4.6) and (4.17); for example, by selecting 

atoms that reduce the objective function below certain threshold value. This shall 

significantly decrease the computational complexity at the cost of minor loss in 

performance. 

4.6 Limitations And Future Work 

In this section, the limitations of the proposed algorithm are discussed and also future 

work is suggested. 

Computation cost can further be improved as discussed in Section 4.5. Hence, further 

investigation in this regard is suggested as a future work. Also performance of the 

proposed algorithm is not as good at low noise levels as it is at high noise levels. 
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Thus, this limitation also creates opportunity to further investigate and improve the 

performance of the residual correlation based proposed image denoising algorithm. 

4.7 Experimental Results And Comparison 

This section compares the performance of the proposed algorithm with four state-of-

the-art algorithms of image denoising, namely, the K-SVD [1], BM3D [6], EPLL[14] 

and NCSR [39] algorithm. Firstly, quantitative performance evaluation is performed. 

Later, qualitative experiments are compared.  

4.7.1 Quantitative Performance Evaluation 

 In this subsection, the quantitative performance of proposed algorithm is compared 

with state-of-the-art algorithms. This quantitative comparison is conducted based on 

PSNR (Peak Signal to Noise Ratio), SSIM (Structure Similarity Index Measure) and 

FSIM (Feature Similarity Index Measure). 

4.7.1.1 Comparison Based On PSNR Results  

The PSNR is calculated as 10(𝑙𝑜𝑔102552/𝑀𝑆𝐸) where 𝑀𝑆𝐸 =
1

𝑛
||𝑿 − 𝑿 ||2. Where 

𝑿  and 𝑿  are the original and denoised images respectively. The experiment is 

performed through MATLAB program. We select some standard test images, all of 

size  512 × 512 . Then image segments of size 80 × 80 are extracted from each 

image. These segments are further divided into 15 × 15 fully overlapping patches. 

The AWGN noise 𝒘 of power between 25 to 100 is generated. The number of 

immediate neighborhood patches is set to be 𝑀 = 2. We find one atom for the patch 

and form its residual. Then, we move to next patch to pick its first atom and so on. 

When we pick first atom for all the patches and formed their residuals then we pick 

second atom for all the patches. This process continues until residual power goes 

below noise power and/or maximum number of atoms to be picked is reached. Figure 

4.2 shows that how sequentially patches are processed and neighborhood of 
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processed patches is obtained.  Finally, when sparse coefficients for all the patches 

are estimated then dictionary is updated. Note that we process (denoise) 80 × 80 

segments of image separately. Thus, we initialize dictionary of size 225 × 35 (𝑛 =

225, 𝐾 = 35) with pre-chosen and fixed dictionary as given in [1].  

The PSNR results are presented in Table 4.1. We evaluate the performance of 

proposed algorithm for each image separately. In order to get clear comparison the 

PSNR results for each image are shown in Figure 4.3.   

As proposed algorithm is based on sparse-land model thus its performance is 

compared with K-SVD [1]. Also, for fair comparison, different types of the standard 

images are selected. For example, the images with abundance of high frequency 

content like Barbara, Fingerprint and Straw images are tested. Furthermore, in order 

to evaluate the performance at low noise levels and also at high noise levels the 

AWGN noise with noise level with sigma from 25 to 100 is generated. 

Let us evaluate the results of each image given in Figure 4.3. For the Barbara image, 

the performance of proposed algorithm is better than state of the art KSVD [1] and 

EPLL [14]. Contrary to K-SVD [1], performance of the proposed algorithm keeps 

improving with increasing noise levels. On the other hand, for Barbara image, BM3D 

[6] and NCSR [39] produce high PSNR results when compared to KSVD [1], EPLL 

[14] and proposed algorithm. 
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Table 4.1: PSNR results in decibels. Top left: Results of K-SVD[1]. Top right: 

NCSR [39]. Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left: 

Proposed Algorithm. 

Sigma Barbara Boat Fingerprint Lena Straw 

Avg 

∆𝑷𝑺𝑵𝑹  
w.r.t 

KSVD 

25 

29.58 30.61 29.27 29.67 27.26 27.77 31.32 31.91 25.45 25.51 

-0.02 30.72 28.51 29.91 29.61 27.71 27.09 32.08 31.54 25.04 25.23 

29.56  -0.02 29.13 -0.14  27.56 0.3  31.25 -0.07   25.65  0.2 

30 

28.55 29.68 28.42 28.79 26.31 26.97 30.45 31.07 24.39 24.71 

1.08 29.81 27.54 29.12 28.77 26.83 26.21 31.26 30.79 24.22 24.39 

28.68  0.13 28.44 0.02  26.68 0.37  30.52   0.07  24.88 0.49  

50 

25.53 27.03 25.94 26.52 23.26 24.48 27.87 29.01 22.08 22.56 

1.7 27.23 24.88 26.78 26.58 24.53 23.52 29.05 28.32 22.41 22.24 

25.79  0.26 26.01  0.07 23.86 0.6  28.07 0.2  22.65  0.57 

75 

22.98 24.76 23.95 24.67 20.04 22.65 25.65 27.02 21.04 21.33 

1.15 25.12 23.02 25.12 24.87 22.83 21.48 27.26 26.47 21.52 21.29 

24.43 1.45  24.41 0.46  22.61 2.57  26.35 0.7  21.63 0.59  

100 

21.85 23.24 22.83 23.42 18.31 21.34 24.42 25.66 20.45 20.71 

1.08 23.62 22.13 23.97 23.66 21.61 19.82 25.95 25.33 21.05 20.81 

23.07 1.22  23.25 0.42  21.24 2.93  24.72 0.3  20.99  0.54 

  

 

 

Figure 4.3: The PSNR results comparison. 
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Now let us analyze performance of the proposed algorithm with increasing noise 

levels when compared to other image denoising results. In order to understand this, 

we keep K-SVD[1] results as a zero reference. This reference line is shown in Figure 

4.4 as a straight line at zero.  Figure 4.4 shows that the difference in PSNR results of 

the proposed algorithm keeps decreasing with increasing noise levels when 

comapared to BM3D [6]  and  NCSR [39] algorithms. Hence, we conclude that 

residual correlation regularization based image denoising is highly effective at high 

noise levels.     

 

       Figure 4.4: Difference in PSNR comparison for Barbara image. 

Similarly, when we compare the results of Boat and Lena images given in Figure 4.3, 

it is evident that proposed algorithm performs reasonably better than KSVD [1] 

especially at high noise levels. However, for these images, the performance of 

proposed algorithm is not as good as it is for Barbara image. Hence, we conclude that 
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residual correlation regularization is more effective for images with plenty of high 

frequency content. Let us verify this claim, by comparing the PSNR results of 

Fingerprint and Straw images. As both of these images contain large quantities of 

high frequency contents, performance of the proposed algorithm is better as 

compared to its performance for Lena and Boat images. We can see from Figure 4.3 

that the proposed algorithm outperforms KSVD and EPLL algorithms for the 

Fingerprint and Straw images. Especially, for the Straw image, the performance of 

the proposed algorithm exceeds BM3D at some noise levels. Also for the Fingerprint 

image performance of the proposed algorithm is a good complement to the BM3D 

and NCSR algorithms. Hence, it verifies our claim that the information of residual 

correlation becomes effective when dealing with images that possess large quantity 

of high frequency content.  Figure 4.5 presents the difference in PSNR results of all 

algorithms with zero reference KSVD for the Fingerprint image. 

 

Figure 4.5: Difference in PSNR comparison for Fingerprint image. 
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It is evident from Figure 4.5 that the proposed residual correlation regularization 

based image denoising algorithm keeps improving with increasing noise levels when 

compared to state-of-the-art image denoising algorithms.  Similarly, Figure 4.6 

shows the difference in PSNR results for the Straw image. It shows that for the Straw 

image the proposed algorithm produces best PSNR results for some noise levels 

when compared to all other  algorithms. 

 

          Figure 4.6: Difference in PSNR comparison for Straw image. 

Now, let us analyze the effect of number of neighboring residuals considered for 

sparse coding and dictionary update stages. In order to evaluate this comparison, we 

set 𝑀 = 1 and 𝑀 = 2. Figure 4.7 presents PSNR results at noise levels 50, 75 and 

100 when 𝑀 = 1 and 𝑀 = 2. Figure 4.7 shows that performance of the proposed 

algorithm improves when we increase the number of neighboring residuals. It shows 
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that often performance of the proposed algorithm improves if more information 

about neighboring residuals is incorporated during sparse coding and dictionary 

update stages. In order to limit the computational cost we set 𝑀 = 2  for our 

experiments.  

 

Figure 4.7: PSNR comparison when 𝑀 = 1 and 𝑀 = 2. 

4.7.1.2 Comparison Based On SSIM Results  

In this section, we compare the proposed algorithm with state of the art algorithms 

with respect to SSIM.  Table 4.2 presents the SSIM results obtained for few standard 

images at various noise levels. However, we plot these values to better understand 

the behavior of proposed algorithm in terms of SSIM. 

Figure 4.8 presents the comparison of proposed algorithm with state of the art 

algorithms in terms of SSIM results.  Similar to PSNR comparison, it is evident that 

performance of the proposed algorithm is better for the Barbara, Fingerprint and 

Straw images as compared to its performance for Lena and Boat images. 
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If we evaluate the SSIM results, we come to know that proposed algorithm performs 

better than KSVD and NCSR algorithms especially at high noise levels. However, 

EPLL and BM3D perform better than KSVD, NCSR and proposed algorithm in 

terms of SSIM.  

Table 4.2: SSIM results. Top left: Results of K-SVD[1]. Top right: NCSR[39]. 

Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left: Proposed Algorithm. 

Sigma Barbara Boat Fingerprint Lena  Straw 

25 

0.651 0.796 0.676 0.681 0.908 0.923 0.721 0.735 0.095 0.081 

0.851 0.797 0.811 0.811 0.922 0.922 0.833 0.841 0.711 0.458 

0.782   0.711   0.915   0.743   0.741    

30 

0.574 0.703 0.638 0.649 0.891 0.905 0.668 0.684 0.172 0.141 

0.823 0.743 0.781 0.789 0.906 0.899 0.801 0.801 0.638 0.312 

0.734   0.698   0.903    0.714    0.685   

50 

0.356 0.499 0.462 0.486 0.775 0.844 0.442 0.535 0.314 0.342 

0.629 0.495 0.669 0.673 0.861 0.828 0.696 0.686 0.414 0.311 

0.583   0.523   0.819   0.563   0.414   

75 

0.213 0.284 0.345 0.395 0.569 0.781 0.312 0.401 0.095 0.079 

0.481 0.401 0.579 0.581 0.813 0.727 0.591 0.571 0.291 0.249 

0.411   0.445   0.764   0.445   0.241   

100 

0.178 0.199 0.274 0.315 0.383 0.727 0.273 0.262 0.172 0.141 

0.401 0.374 0.514 0.511 0.768 0.577 0.507 0.452 0.241 0.248 

0.366   0.351   0.736   0.361   0.291   

 

For the straw image the proposed algorithm outperforms all the algorithms at some 

noise levels. Moreover, SSIM results for Barbara and Fingerprint presented in Figure 

4.8 also verify the competitiveness of proposed algorithm with state of the art 

denoising algorithms.  

We conclude that structures of the recovered images are well preserved by the 

proposed algorithms. Later, in this chapter, the visual comparison of the proposed 

algorithm is also verifying the SSIM results.  
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4.7.1.3 Comparison Based On FSIM Results  

In this section, the proposed algorithm is compared with the state-of-the-art 

algorithms. Similar to the SSIM comparison, the proposed algorithm outperforms 

KSVD and NCSR in terms of FSIM as shown in Figure 4.9. However, EPLL and 

BM3D produce better FSIM results when compared to KSVD, NCSR and proposed 

algorithm. 

 

Figure 4.8: The SSIM results comparison. 

We conclude that for the images that are rich in high frequency content like Barbara 

and Fingerprint images, the performance of proposed algorithm is relatively better.  
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Figure 4.9: The FSIM results comparison. 

4.7.2 Qualitative Experiments 

In this section, comparison of the visual results is presented. As in previous section, 

we conclude that information about residual correlation is very essential for 

recovering highly repeating structures at high noise levels. Thus, portion of Barbara 

and Fingerprint images at high noise levels is denoised by all comparing algorithms. 

As the noise level increases the regularization parameter 𝜆𝑚  is also increased from 

0.5 to 1.With increased noise levels, the performance of the proposed algorithm 

improves more in terms of both indices.  

Firstly, we present results for high frequency portion of Barbara image Figure 4.10. 

This image segment is corrupted with 𝜎 = 60 and then it is recovered by KSVD, 
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EPLL, NCSR, BM3D and the proposed algorithm. It is clear from Figure 4.10 that 

the repeating structures of the scarf and portion near the hand are well preserved by 

proposed algorithm. It is to note that KSVD and EPLL do a poor job in recovering 

such fine structures. Also, it shows that proposed algorithm performs as good if not 

better than NCSR and BM3D algorithms. 

Similarly, the portion of recovered Fingerprint image is presented in Figure 4.11. We 

corrupt the segment of Fingerprint image with 𝜎 = 100. Then, we recover it with all 

the algorithms to compare their qualitative performance.  

 

Figure 4.10: Visual Comparison of Barbara image with 𝜎 = 60 (a) Original image 

(b) denoised by KSVD [1] (c) denoised by BM3D [6] (d) denoised by EPLL [14] (e) 

denpoised by NCSR [39] (f) denoised by proposed algorithm 

If we closely investigate the Figure 4.11, we find that KSVD and EPLL fail to 

recover the ridges of Fingerprint image at 𝜎 = 100.  Whereas, proposed algorithm 

does excellent job to recover these fine structures at high noise level. Usually, these 

structures are considered as “hard-to-recover”.  As a result most of the image 

denoising algorithms fail to preserve the structures of these portions after denoising. 
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Especially, as result of selecting incorrect atom, maximum projection based 

algorithms fail to recover these structures. However, information about the 

correlation between neighboring residuals has proved to be useful in recovering such 

fine structures.   

Furthermore, visual results obtained in Figure 4.10 shows that the proposed 

algorithm is as good if not better than BM3D and NCSR algorithms.  

 

Figure 4.11: Visual Comparison of Fingerprint image with 𝜎 = 100 (a) Original 

image (b) denoised by KSVD [1] (c) denoised by BM3D [6] (d) denoised by EPLL 

[14] (e) denpoised by NCSR [39] (f) denoised by proposed algorithm 
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Finally, we combine Barbara and Fingerprint image as shown in Figure 4.12. The 

portion of Barbara image recovered for 𝜎 = 75 and the portion of Fingerprint image 

denoised for 𝜎 = 100 is presented in Figure 4.12. Visual results in Figure 4.12 verify 

that proposed algorithm is highly effective to recover repeated structures at high 

noise levels. For the 𝜎 = 75, the stripes on the scarf are very well recovered by  

proposed algorithm. 

Figure 4.12: Visual Comparison for Barbara (𝜎 = 75) and Fingerprint (𝜎 = 100). 

4.8 Comprehensive Performance Evaluation At High Noise Levels 

According to motivation presented in Section 4.3, the performance of the proposed 

residual correlation reduction based image denoising algorithm should be improving 

with increasing noise levels. This phenomenon was observed in the experimental 

results presented in Section 4.7. It is observed that producing better results at high 

noise levels is the specialty of the proposed algorithm. In order to further investigate 

this characteristic of the proposed algorithm the experiments are performed on 

variety of images in next Sections. Also various types of noises are used in denoising 

process to verify the persistence of the proposed algorithm. Finally, synthetic images 

with high frequency content are created using fixed DCT (Discrete Cosine 
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Transform) bases. The results of these synthetic images are evaluated using heat 

map.      

4.8.1 Performance Evaluation With Other Type Of Noises 

The proposed algorithm is used for denoising AWGN in previous Section. However,  

Gaussian noise can also be colored in nature which is commonly known as Addictive 

White Colored Noise (ACGN).  Also noise can be long tailed Laplacian noise. Now, 

performance of the proposed algorithm is evaluated for denoising images containing 

ACGN and Laplacian noise. 

4.8.1.1 Denoising Images Corrupted With ACGN 

ACGN can be generated by passing AWGN through a low pass or high pass digital 

filter. Firstly, ACGN is produced by using FIR digital filter with frequency response 

and impulse response as shown in Figure 4.13. 

 
 

 
   Figure 4.13: Frequency Response and Impulse Response of Digital Filter Used To 

Generate ACGN. 
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Table 4.3: PSNR results for ACGN in decibels. Top left: Results of K-SVD[1]. Top 

right: NCSR [39]. Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left: 

Proposed Algorithm, Bottom Right: ∆𝑃𝑆𝑁𝑅  w.r.t KSVD. 

 

When ACGN (with zero mean and known variance) is added to clean images and the 

proposed sparse coding and dictionary update stages are iterated few times then 

image denoising results are obtained as presented in Table 4.3. 

 

Note that proposed algorithm performs better in terms of PSNR when compared to 

all algorithms except EPLL [14]. At noise level 100, it outperforms KSVD by 4.26 

dB on average. Visual results for Barbara and Fingerprint images presented in Figure 

4.14 and Figure 4.15 respectively shows that the proposed algorithm along with 

EPLL [14] successfully recovers images as compared to other algorithms.  

Sigma Barbara Boat Fingerprint Lena Straw 

Avg 

∆𝑷𝑺𝑵𝑹  
w.r.t  

KSVD 

50 

21.63 21.14 21.50 20.31 20.43 19.34 22.15 20.78 19.37 19.66 

0.9 22.05 24.99 21.77 26.81 19.23 23.79 20.08 27.75 20.48 22.18 

22.69 1.06 23.12 1.62 20.63 0.20 23.01 0.86 20.26 0.89 

75 

18.43 17.63 18.76 17.08 17.57 16.49 19.30 22.24 17.47 16.99 

3.06 19.01 23.26 18.82 25.35 18.49 22.01 18.49 25.34 17.97 21.34 

21.73 3.3 22.48 3.72 19.71 2.14 21.83 2.53 21.09 3.62 

100 

16.54 14.08 17.01 14.28 15.33 13.86 16.94 14.45 15.83 14.10 

4.26 16.92 22.64 16.85 24.22 16.57 20.23 17.05 23.34 16.15 21.01 

21.11 4.57 21.73 4.72 18.95 3.62 20.52 3.53 20.73 4.9 
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Figure 4.14: Visual Comparison for Barbara (𝜎 = 50) Corrupted With ACGN. 
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Figure 4.15: Visual Comparison for Fingerprint (𝜎 = 50) Corrupted With ACGN. 
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4.8.1.2 Denoising Images Corrupted With Laplacian Noise 

Now, performance of the proposed algorithm is evaluated for the images corrupted 

with Laplacian noise (also called biexponential). The PSNR results obtained are 

summarized in Table 4.4. 

Table 4.4: PSNR results for Laplacian noise  in decibels. Top left: Results ofK-SVD[1]. 

Top right: NCSR [39]. Middle left: BM3D [6]. Middle right EPLL [14]. Bottom Left: 

Proposed Algorithm, Bottom Right: ∆𝑃𝑆𝑁𝑅  w.r.t KSVD. 

 

The PSNR results obtained for Laplacian noisy images show that the proposed 

algorithm does not perform as well as it has performed for AWGN and ACGN. It is 

due to the fact that there are significant nonzero lag correlations in AWGN and 

ACGN. Hence, residual correlation reduction method is much more effective when 

there are good numbers of nonzero lag correlations which are supposed to be 

minimized. The visual results for Laplacian noise are presented in Figure 4.15 and 

4.16. It is observed that proposed algorithm produces better visual results when 

compared to baseline method KSVD. Although, PSNR results of the proposed 

algorithms are not better than EPLL, NCSR and BM3D algorithms, however, it 

outperforms KSVD by 1.65 dB on average at noise level 100.  

 

Sigma Barbara Boat Fingerprint Lena Straw 

Avg 

∆𝑷𝑺𝑵𝑹  
w.r.t 

KSVD 

50 

23.87 26.88 24.21 26.41 22.01 24.48 25.71 28.90 21.17 22.37 

-0.91 27.21 24.51 26.71 25.96 24.58 23.31 28.93 27.58 22.26 22.05 

22.72 -1.15 23.17 -1.04 20.52 -1.49 23.88 -1.83 22.13 0.96 

75 

21.21 24.52 22.08 24.61 18.82 22.61 23.25 26.73 19.79 21.12 

0.73 25.04 22.06 25.01 24.34 22.78 21.22 27.36 25.84 21.39 21.09 

21.96 0.75 22.63 0.55 19.67 0.85 23.11 -0.14 21.47 1.68 

100 

19.73 22.91 20.77 23.17 17.02 21.30 21.81 25.26 18.68 20.42 

1.65 23.65 21.88 23.87 23.30 21.64 19.67 25.90 24.73 20.94 20.49 

21.50 1.77 22.04 1.27 18.97 1.95 22.78 0.97 21.01 2.33 
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Figure 4.16: Visual Comparison (𝜎 = 50) Corrupted With Laplacian Noise. 
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Figure 4.17: Visual Comparison (𝜎 = 50) Corrupted With Laplacian Noise. 

Now, PSNR results obtained for the Laplacian and ACGN are compared in the 

Figure 4.17, 4.18 and 4.20. 

 

Figure 4.18: PSNR results for ACGN and Laplacian Noise. 
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Figure 4.19: PSNR results for ACGN and Laplacian Noise. 

 

 

Figure 4.20: PSNR results for ACGN and Laplacian Noise. 
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Also, since the visual results of Barbara and Fingerprint images are presented. 

Therefore,  the SSIM  results of these images are shown in Figure 4.21 and 4.22. 

 

Figure 4.21: SSIM results of Barbara Image for ACGN and Laplacian Noise. 

 

 

Figure 4.22: SSIM results of Fingerprint Image for ACGN and Laplacian Noise. 
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4.8.2 Testing Variety Of Images At High Noise Levels 

In previous sections the standard test images are used to compare performance of the  

proposed algorithm with state-of-the-art algorithms. However, now the proposed 

algorithm is evaluated for images with different structures in order to further study 

the effectiveness of residual correlation reduction on image denoising. Well known 

images like House, Pepper, Pirate and Mandril are chosen. Furthermore, the images 

with distinctive features like text image and face image is also evaluated. The PSNR 

results obtained are summarized in Table 4.5. 

 

Table 4.5 PSNR results in decibels. Top left: Results of K-SVD[1]. Top right: 

NCSR [39]. Middle left: BM3D [6]. Middle right: EPLL [14]. Bottom Left: 

Proposed Algorithm, Bottom Right: ∆𝑃𝑆𝑁𝑅 w.r.t KSVD. 

 

From Table 4.5 it is obvious that the proposed algorithm keeps improving with 

increasing noise levels. Also, it is evident that the residual correlation reduction 

approach for image denoising is more effective for images with high frequency 

content rather than flat images like House, Pepper or Text-image. However, 

performance of the proposed algorithm is better for Mandril. Figure 4.23 shows that 

the proposed algorithm is less effective for flat images such as text image. 

Sigma House Pepper Pirate Text Image Mandril Face 

Avg 

∆𝑷𝑺𝑵𝑹  
w.r.t 

KSV

D 

50 

28.37 30.05 26.11 26.42 25.04 25.34 21.01 22.03 22.78 23.22 25.69 26.43 

-0.56 29.69 28.96 26.68 26.46 25.55 25.59 20.91 20.93 23.03 23.31 26.88 26.58 

27.98 -0.39 25.31 -0.81 24.31 -0.73 20.57 -0.44 23.24 0.46 24.65 -1.04 

75 

25.56 27.55 23.55 24.24 23.04 23.77 18.63 20.34 21.73 22.11 23.84 24.53 

0.37 29.02 26.95 25.96 24.56 24.85 23.95 20.16 19.29 22.36 22.16 26.13 24.83 

26.25 0.69 24.38 0.83 23.38 0.34 19.03 0.67 22.34 0.61 22.97 -0.87 

100 

23.54 25.86 21.72 22.77 21.99 22.7 17.79 19.71 21.13 21.21 22.70 23.02 

0.66 28.58 25.31 25.50 23.06 24.49 24.83 19.99 18.31 22.13 21.49 25.66 23.33 

24.47 0.93 22.64 0.92 22.45 0.46 18.55 0.78 21.95 0.82 22.79 0.09 
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Figure 4.23: Visual Comparison of Text image (𝜎 = 50). 
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4.8.3 Testing With High Frequency Synthetic Images 

Now the images with desired effective bandwidth are generated in order to further 

evaluate performance of the proposed algorithm. These images are generated by 

randomly selecting DCT coefficients. The images are generated by selecting 5, 15 

and 25 DCT coefficients. The coefficients are selected in order to control the 

effective bandwidth of generated synthetic images. Six images are generated with 

effective bandwidth of 0.1 𝜋, 0.3 𝜋, 0.5𝜋, 0.7𝜋, 0.9𝜋  and  𝜋 respectively both in 

horizontal and vertical directions. These images are varying from low effective 

bandwidth to high effective bandwidth. Note that it is made sure that the selected 

coefficients contain random weights. Finally, we test image denoising performance 

of the proposed algorithm on these images. Images are tested at noise levels ranging 

from 25 to 100. Performance of the proposed algorithm is compared with baseline 

method KSVD. The PSNR values obtained are used to generate the heat map as 

shown in Figure 4.24, 4.25, and 4.26. The horizontal axis corresponds to image 

effective bandwidth ranging from 0.1𝜋  to 𝜋 in both directions. The vertical axis is 

the noise level ranging from 𝜎 = 25  to 𝜎 = 100. 
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Figure 4.24: PSNR heat map of synthetic DCT images (with 5 coefficients) 

 

 

 

 

 
 

Figure 4.25: PSNR heat map of synthetic DCT images (with 15 coefficients) 
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Figure 4.26: PSNR heat map of synthetic DCT images (with 25 coefficients) 

   

The heat maps presented above show that as effective image bandwidth increases the 

performance of the proposed algorithm improves. Also it gives clear indication that 

at high noise levels the proposed algorithm performs better when compared to KSVD 

algorithm. Better performance at high noise levels justifies the motivation and 

problem definition of the proposed algorithm presented in section 4.3.  Hence, we 

conclude that the proposed algorithm is highly effective for the images with 

abundance of high frequency content.  

4.9 Conclusion 

We presented a new residual correlation regularization that enhances the image 

denoising performance. This regularization helps to make statistical properties of 

residual to be similar to those of the contaminating noise. This is achieved by a new 

method of sparse coefficient estimation based on proposed regularization. A new 

dictionary update stage is developed based on residual correlation minimization. Our 
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experimental results demonstrate that the proposed regularization and sparse 

coefficient estimation is highly effective to recover fine structures at high noise 

levels.   

It is indeed true that BM3D produces best PSNR results often. However, it 

introduces artifacts when it fails to obtain large amount of matched blocks [6]. Also, 

BM3D algorithm is unable to separate the edges from noise at high noise levels. As a 

result it can blur the edges. We have shown in Figure 4.11 that the proposed 

algorithm is as good if not better than BM3D algorithm in terms of visual perception. 

Also as mentioned earlier that for Barbara image the proposed algorithm does a fairly 

good job in terms of PSNR. Furthermore, also for Fingerprint and Straw images the 

proposed algorithm performs reasonably better. Note that all of the above mentioned 

images are rich in high frequency content. Also note that contrary to BM3D, 

performance of the proposed algorithm improves with increasing noise levels as 

shown in Figure 4.4. Therefore, the reason behind comparing the proposed method 

with BM3D algorithm is to show that residual correlation regularization is highly 

effective when it is used to recover fine structures (like ridges in Fingerprint image) 

at high noise levels and especially images that possess abundance of high frequency 

content.  

We conclude that the proposed algorithm have limitations in terms of PSNR when 

compared to BM3D algorithm, nevertheless, it  is as good if not better than BM3D 

algorithm in terms of visual perception. Also, we can conclude that our residual 

correlation regularization based algorithm performs significantly better both visually 

and in terms of PSNR at high noise levels when compared to K-SVD [1] and EPLL 
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[14].  Also in terms of FSIM and SSIM results the proposed algorithm outperforms 

the KSVD and NCSR algorithms. It is thus a good complement to the state of the art 

image denoising algorithms. 
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Chapter 5 

2. COUPLED KSVD DICTIONARY LEARNING 

ALGORITHM IN WAVELET DOMAIN FOR SINGLE 

IMAGE SUPER-RESOLUTION 

5.1 Introduction 

In the coupled K-Singular Value Decomposition (K-SVD) algorithm [35] coupled 

low resolution (LR) and high resolution (HR) dictionaries are trained using singular 

value decomposition (SVD). The best low-rank estimate is determined using SVD to 

make sure that the sparse coding of the two resolution levels is similar. In this 

chapter, we implement algorithm [35] in wavelet domain. Due to directionality and 

persistence properties of wavelet domain, performance of coupled KSVD in SISR 

(Single Image Super Resolution) is further improved. Also, in wavelet domain, 

dictionaries that are trained are small in size and also they are highly structured. 

Hence, instead of training one dictionary, multiple small dictionaries are trained to 

reduce the computational cost. Furthermore, since they are structured, so the 

performance of SISR is improved. For each low and high resolution scale, three pairs 

of dictionaries of wavelet subband are designed. Firstly, sparse coding of low 

resolution image is obtained by applying LR dictionary. Then using same sparse 

coding and HR dictionary a high resolution image is reconstructed. This method 

produces better high resolution images when compared to state of the art SISR 



90 

 

algorithms. Performance of algorithms is compared with respect to PSNR and SSIM 

results. 

5.2 Background 

SISR is a ill-posed inverse problem. One of the solution to this problem is by 

introducing the constraint priors [21, 26, 32]. Sparsity is one of the well known prior 

used to produce highly competitive results. Note that it has been proved that signal 𝒙 

can be sparsely represented over dictionary 𝑫 and this representation is unique and 

reliable [16, 18, 25]. 

In order to better match the given signal, the signal-fitting characteristics of sparse 

coding is used. Hence, the representation error is reduced and better approximation is 

achieved but the computational cost is increased. In the literature, the idea of coupled 

dictionary learning is given by Yang et al [28] and they further modified it in [29]. 

Firstly, the LR and HR patches are concatenated to form a single feature space. Thus, 

the dictionaries trained contain features of both LR and HR patches. This problem is 

addressed by alternatively optimizing LR and HR dictionaries [29]. Similarly in [35] 

coupled K-SVD algorithm is presented that further improves the coupling by using 

the best low-rank approximation given by the SVD. In literature there are many 

algorithms [17, 31, 33] with improved coupling between LR and HR coefficients and 

dictionaries with better representation power. The idea of designing multiple 

dictionaries instead of single one has already been proven useful for sparse 

representation of signals. In [34] Elad et al. has proposed a method to learn the multi-

scale dictionaries using wavelets which helps better capture the intrinsic image 

features. Furthermore in [23] the author has proposed the wavelet domain dictionary 

learning for single image super-resolution using K-SVD. Motivated by these ideas a 
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dictionary learning algorithm based on coupled K-SVD in wavelet domain is 

proposed and it is applied to the problem of Single Image Super-Resolution (SISR).   

 Now let us summarize the proposed SISR approach. Firstly, HR and LR patches are 

extracted from training data set. Then, HR and LR wavelet coefficient subbands of 

training images are obtained by two-level wavelet decomposition. Hence, HR and 

LR subbands are Level 1 and Level 2 subbands respectively. Then, pair of 

dictionaries is trained using the coupled K-SVD algorithm. Note that these pairs of 

dictionaries are trained from vertical, horizontal and diagonal wavelet subbands. 

Furthermore, one of basic points in coupled K-SVD algorithm is to enforce HR and 

LR patch pair to be at similar indices. Other important point is that for HR and LR 

patch pair similar sparse representation coefficient is used. Finally, it is to make sure 

that original HR and LR patch pair dictionary is obtained using similar sparse 

coding.  This is achieved by alternatively calculating sparse coding for low resolution 

and high resolution patches and using them to update to HR and LR dictionary atoms 

with similar indices. We have divided image by patches of 6 × 6  size, each 

dictionary contains 256 atoms and process is iterated 20 times. Each patch is 

reconstructed using trained HR and LR dictionaries. At the reconstruction stage, 

wavelet subband of LR image is obtained by 1 level wavelet decomposition. Now, 

sparse coding of LR subband patch and HR dictionary is used to recover HR subband 

patch. Finally, HR image is obtained by one level wavelet reconstruction. Note that 

due to the persistence property of the wavelet coding the similarity between HR and 

LR subband sparse coefficients is further improved. The proposed algorithm is 

highly competitive if not better than state-of-the-art super-resolution algorithms. We 

have compared performance of the proposed algorithm in terms of visual results and 

also by quantitative results obtained. According to Peak-Signal to-Noise Ratio 
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(PSNR) results comparison, the proposed algorithm produces PSNR improvement of 

1.19 dB over the algorithm of [23]. This improvement is achieved because of 

obtaining better estimate of high resolution subbands by implementing coupled K-

SVD dictionary learning in wavelet domain. 

5.3 Image Super-Resolution 

One of the well known regularization for SISR is sparsity. In order to reduce 

computational cost the image is divided into patches [28]. In the patch based method, 

each patch from HR and LR image are sparsely coded using HR and LR dictionary 

respectively. This is given as 

𝒙𝐻 ≈ 𝑫𝐻𝜶𝐻 (5.1) 

𝒙𝐿 ≈ 𝑫𝐿𝜶𝐿  (5.2) 

where 𝜶𝐻 and 𝜶𝐿are the representation coefficient vectors of 𝒙𝐻 and 𝒙𝐿 respectively. 

The HR and LR images are related by the blurring down-sampling as  

𝒙𝐿 =  𝜓 𝒙𝐻 ≈ 𝜓𝑫𝐻𝜶𝐻 ≈ 𝑫𝐿𝜶𝐻 (5.3) 

Note that 𝑫𝐿 = 𝜓𝑫𝐻. Here 𝜓 is blurring and down-sampling operator.  

In [29] and [35] two dictionaries are obtained by coupled dictionary training of LR 

and HR patches. Finally, LR dictionary is used to find sparse representation of each 

patch of the LR image. It is assumed that 𝜶𝐿 ≈ 𝜶𝐻. Then, reconstruction of HR patch 

becomes simple by sparse code of corresponding LR patch and the HR dictionary, as 

𝒙𝐻 ≈ 𝑫𝐻𝜶𝐻 ≈  𝑫𝐻𝜶𝐿 (5.4) 

In wavelet domain based SISR approach [24], dictionary is trained by using [2] for 

each LR subband. Then, high resolution dictionary is obtained by finding pseudo 
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inverse of high resolution patches and low resolution sparse codes. However, this 

approach does not implement any further coupling between HR and LR coefficients. 

Thus, in [29] and [35] concept of coupled dictionary learning is introduced.  

5.4 The Proposed Super-Resolution Approach 

Effectiveness of training multiple dictionaries as a replacement for of single 

dictionary is shown in [20]. Furthermore in [17,20] the training data is classified and 

divided into clusters which proved to be highly effective. Then, for each classified 

cluster a dictionary is trained. Based on such idea, structures and properties of 

wavelet subbands are transferred in dictionaries using directionality characteristics of 

Discrete Wavelet Transform (DWT). DWT can split image information into 

horizontal, vertical and diagonal features. In order to utilize these features, coupled 

K-SVD algorithm is implemented in the wavelet domain for SISR. When LR and HR 

patch pairs are kept at same indices in coupled K-SVD algorithm then better 

coupling between HR and LR sparse coding is achieved. Furthermore, in coupled K-

SVD the HR and LR dictionary atoms are updated using single sparse code. This is 

achieved by alternative selection of HR and LR sparse codes to update  HR and LR 

dictionary atoms. The coupled K-SVD proves to be effective due to better 

exploitation of the persistence property of wavelet codes at various resolution stages. 

Thus, better coupling in sparse codes is achieved by implementing coupled K-SVD 

on wavelet subband images.  

5.4.1 Dictionary Learning Based On Proposed Method 

For the training of the coupled dictionaries, we first extract a large number of HR/LR 

image patch pairs from some predefined database containing clean images. In order 

to form training detail subbands, the two-level decomposition is obtained for each 

HR image. Moreover, the level-one (level-two) subbands are considered as HR (LR)  
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training data. Also, wavelet interpolation is performed on each LR subband in order 

to keep its directionality same as HR [28, 30, 35]. We get the training data by 

developing pairs of HR and LR patches and then features from them are extracted. 

Note that 𝑦 =  𝑕, 𝑣, 𝑑  represents horizontal, vertical and diagonal subbands. This 

process of feature extraction is same as in [29]. Then, dictionaries of HR and LR 

subband images are trained jointly as:  

min
𝑫𝐿
𝑦

,𝑫𝐻
𝑦

,𝜶𝑖

=  𝒘𝐿
𝑦
−𝑫𝐿

𝑦
𝜶𝑖 2

2
𝑁

𝑖=1

+  𝒘𝐻
𝑦
−𝑫𝑯

𝒚
𝜶𝑖 2

2
 

s.t  𝜶𝑖 0  ≤  𝑇0,  𝒅𝐿
𝑦
 

2
≤ 1,  𝒅𝐻

𝑦
 

2
≤ 1, 

𝑖 = 1,2, … , 𝑁 (5.5) 

Where 𝑫𝐿
𝑦

 and 𝑫𝐻
𝑦

 denotes LR and HR dictionaries and  𝒘𝐿
𝑦

 and 𝒘𝐻
𝑦

 represents LR 

and HR subband images. 

In the proposed method, coupled K-SVD algorithm [35] is used for training 

dictionaries. Furthermore, we have chosen the Symlets wavelets [19] for DWT 

analysis and synthesis. Using DWT one can easily distinguish between the 

horizontal, vertical and diagonal details. The LR and HR subband dictionaries that is 

horizontal, vertical and diagonal dictionaries are trained. The proposed dictionary 

learning algorithm is given in Figure 5.3. 
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Figure 5.1: Example of HR subbands dictionary atoms. (a) Vertical Detail  

(b) Horizontal Detail (c) Diagonal Detail 

Figure 5.1 shows portion trained high resolution subband dictionaries. Since these 

dictionaries are trained on horizontal, vertical and diagonal wavelet subbands, 

therefore, these subband structures can clearly be observed from Figure 5.1.   

5.4.2 Image Reconstruction Based On Proposed Method 

In proposed SISR algorithm, wavelet subbands of HR image are determined in order 

to obtain original high resolution image. Note that LR image is also considered as 

approximation wavelet subband of high resolution image. The given LR image is 

first decomposed with a one-level DWT. Then LR image subband is up-converted to 

the size of High Resolution image by wavelet interpolation, and finally we perform 

overlapping of the patches on the interpolated Low Resolution image. For each LR 

image patch, we compute its sparse representation with respect to learned dictionary 

𝑫𝑦
𝐿 . This is performed by solving 

argmin
𝜶𝐿
𝑦

 𝒘𝐿
𝑦
−𝑫𝐿

𝑦
𝜶𝐿
𝑦
 

2
 𝑠. 𝑡 ||𝜶𝐿

𝑦
||0 < 𝑆 (5.6) 

Here 𝑆  represents sparsity, and the ||. ||0 and  ||. ||2 are ℓ0 and ℓ2 norm respectively. 

Note that ℓ1  norm minimization is used to solve this vector selection problem as 

done in [29]. Furthermore, it is also assumed that the sparse representation of HR 
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wavelet subbands is same as that of the low resolution wavelet subbands 𝜶𝑳
𝒚
≈ 𝜶𝐻

𝑦
, 

the high resolution subbands are given by 

𝒘𝐻
𝑦
≈ 𝑫𝐻

𝑦
𝜶𝐻 
𝑦
≈  𝑫𝐻

𝑦
𝜶𝐿
𝑦

 (5.7) 

The reconstructed HR patches are used to construct the HR image by tiling 

operation, here for each pixel in overlapping region we take the average of many 

predictions and constitute a final image. In this scenario we use full overlapping 

mechanism. This Process is summarized in Figure 5.4. 

5.5 Simulation And Results 

In [23] DWT is used for image super-resolution; however, coupled dictionary 

training is not implemented. Thus, in order to know the effect of coupled dictionary 

training the proposed algorithm is compared with [23].  The proposed algorithm is 

also compared with [29, 35] and bicubic interpolation. [29] is considered as one of 

the state-of-the-art algorithm, thus, we compare its performance with the proposed 

algorithm. PSNR can be determined as :   

𝑃𝑆𝑁𝑅 𝒙, 𝒙  = 10 log10

  2552𝑁
𝑗=1

𝑀
𝑖=1

  ( 𝒙 𝑖, 𝑗 − 𝒙 (𝑖, 𝑗) )𝑁
𝑗=1

𝑀
𝑖=1

 (5.8) 

where 𝒙 is original image and 𝒙  is reconstructed image. Whereas, 𝑀 × 𝑁 represents 

the dimensions of image. We select 6 × 6 patch size, and number of dictionary atoms 

are set to be 256. Algorithm is run for 20 iterations. Note that the training set does 

not include image to be super-resolved. 

The PSNR, SSIM and visual results are obtained for the Kodak set and other 

standard images. According to results the proposed algorithm outperforms Bicubic, 
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[29], [35], and [23] algorithms. Figure 5.2 shows the PSNR results comparison for 

standard test images.  

It proves that the wavelet domain based coupled K-SVD algorithm is highly effective 

in terms of PSNR. This is due to fact that proposed algorithm makes sure that there is 

strong coupling between HR and LR sparse coefficients. Also, in terms of SSIM, the 

proposed algorithm produces as good if not better than state of the art SISR 

algorithms as shown in Figure 5.5. 

 

 

Figure 5.2: PSNR results comparison 
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Figure 5.3: Proposed Dictionary Learning Approach 
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Figure 5.4: Proposed super-resolution approach 
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Figure 5.5: SSIM results comparison 

Visual comparison is shown in Figure 5.6. Reconstructed images obtained with the 

proposed algorithm, [23], [29], [35] and Bicubic interpolation for the image number 

1 in the Kodak set. The proposed algorithm shows improvement over [35] and [29], 

especially the continuity in diagonal patterns are well preserved. 
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Figure 5.6: Visual comparison of the image number 1 in the Kodak set. 
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Figure 5.7: Visual comparison of the Boat image. 

Figure 5.7, 5.8, 5.9 and 5.10 show the visual comparison of standard test images. It is 

evident that proposed algorithm perform significantly better than Bicubic, [29] and 

[35] in terms of visual perception. Also, in terms of visual comparison, the proposed 

algorithm is as good as [23].  
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Figure 5.8: Visual comparison of the zoomed Lena image. 

(a) Original Image, (b) Bicubic technique, (c) Algorithm of 

[23], (d) Algorithm of [29], (e) Algorithm of [35], (f) Proposed 

Algorithm. 
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Figure 5.9: Visual comparison of the zoomed Peppers image. 

(a) Original Image, (b) Bicubic technique, (c) Algorithm of 

[23], (d) Algorithm of [29], (e) Algorithm of [35], (f) Proposed 

Algorithm. 
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Figure 5.10: Visual comparison of the zoomed Barbara image. 

(a) Original Image, (b) Bicubic technique, (c) Algorithm of 

[23], (d) Algorithm of [29], (e) Algorithm of [35], (f) Proposed 

Algorithm. 

 

 

 

 

 

 

 

 

 

Figure 5.11: Samples of images used in dictionary learning  
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5.6 Conclusion 

In this chapter implementation of coupled dictionary learning in the wavelet domain 

for SISR is presented. Due to strong coupling between LR and HR sparse 

coefficients, the performance of SISR is improved. According to PSNR and SSIM 

results the proposed algorithm outperforms well known SISR algorithms. 
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Chapter 6 

3. CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In summary, this study is conducted to present a novel contribution in the field of 

image processing. In this regard, a new approach to image denoising is developed. 

This method is developed based on findings about limitation of maximum orthogonal 

projection based sparse representation algorithm in image denoising. The proposed 

image denoising algorithm is based on sparse-land model and it provides new 

dimension to this line of research. In the proposed algorithm, information about 

residual correlation is incorporated in sparse coding stage. To best of my knowledge, 

this way of utilizing residual correlation regularization for sparse coding has not been 

used before. It is proved through mathematical modeling and simulation results that 

reducing residual correlation both internally and externally does indeed improve the 

performance of image denoising. In chapter 3, a new strategy for sparse 

representation verified our claim that minimizing residual correlation indeed 

improves image denoising performance especially when image is corrupted by high 

noise level. Another interesting finding is that the image with abundance of high 

frequency contents improves significantly by correlation based approach. In chapter 

4, coupled K-SVD algorithm is implemented in wavelet domain and it is used for 

image super-resolution. A dictionary learning and super-resolution approach is 

developed based on wavelet domain. This study is carried out to understand the 

advantages of wavelet domain and also effectiveness of coupled K-SVD for image 
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super-resolution. Simulation results show significant improvement in terms of PSNR 

when compared to well known SISR algorithms. In Chapter 5, based on motivation 

presented for algorithm in chapter 3, residual correlation regularization is developed 

and employed in objective function of sparse representation and dictionary update 

stage. This regularization makes sure that residuals are as uncorrelated to each other 

as possible. Hence, residual possess statistical properties of contaminating noise. 

Results are compared with state-of-the-art image denoising algorithms. Comparison 

shows that it is highly competitive with state-of-the-art and often better especially at 

high noise levels or in terms of visual results obtained. In Chapter 6, a SISR 

algorithm is proposed in which super-resolution is attached by enforcing the 

invariance of the sparse representation at various scales. Data is divided into three 

clusters based on correlation between the patches and horizontal, vertical and non 

directional templates. Simulation results are compared with benchmark SISR 

algorithms. 

6.2 Future Work 

The performance of proposed algorithms presented in chapter 3 and chapter 4 can 

further be analyzed by implementing them for computer vision algorithms such as 

fingerprinting. Some of these future works are listed below. 

6.2.1 Deep Learning 

Learning through many layers of neural network is known as deep learning. Training 

of a model through deep learning has proved to be very successful in image 

denoising.  The proposed algorithm can be pre-trained using stacked denoising auto-

encoders (SDA). This training of image patches based on residual reduction 

information in deep network can lead to state-of-the-art image denoising results. 
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6.2.2 Application in Computer Vision Algorithms 

The proposed algorithm proved to be successful in recovering fine structures even at 

very high noise levels especially for images like Fingerprint and Barbara images as 

shown in Chapter 3 and Chapter 4. This algorithm may prove to be helpful in one of 

the computer vision algorithms such as data fingerprinting.  Such algorithms are used 

to identify the original data for practical use based on its fingerprint as human beings 

are identified through fingerprinting. The proposed algorithms can be tested for such 

applications. Also the proposed algorithm can also be effective if implemented in 

image classification where data to be classified is noisy. Also in case of pattern 

recognition the proposed algorithm can be tested. 

6.2.3 Simplifying Complexity of Algorithm by Proximal Calculus 

One of the complexities in the proposed objective function is to determine the correct 

sign by testing all of the possible signs which is a ad hoc solution of prospective 

function. This can be alleviated by applying one of the proximal calculus methods as 

given in [65]. Such methods are used to find the proximity operator of functions 

present optimization problem [65]. Also usage of subderivative or subdifferential can 

also prove to be useful in simplifying solution of the proposed optimization function. 

According to property of sudifferential; a global minimum of the convex function 

can be 𝑥0  if subdifferential contains zero. Referring to subdifferetial for further 

simplifying the objective function and hence reducing computational complexity can 

be a good extension of this work. 

 6.2.4 Updating Multiple Dictionary Atoms 

In dictionary update stage of the proposed algorithm, information of residual 

correlations played important role in achieving competitive performance. The 

process of updating one atom at one time is mostly used method. However, in 
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proposed algorithm, we not only consider current residual but also neighboring 

residuals,  hence, it can be useful if dictionary atoms are also updated in groups with 

based on information about dictionary atoms used by neighboring residuals.  

6.2.5 Group Sparsity 

The proposed algorithm can be more effective if sparse coefficients are picked for 

group of neighboring patches or similar patches. Such sparse representation 

coefficient estimation method is commonly known group sparsity method. The 

performance of the proposed algorithm can further be if single sparse coefficient is 

picked for neighboring residuals. Hence, implementing the proposed algorithm based 

on group sparsity can be a good extension of this work. 

6.2.6 Analyzing the Performance by Varying Patch Sizes 

Performance of the proposed algorithm presented in Chapter 4 can also be tested for 

various patch sizes as shown in Table 3.2. According to results obtained, one can 

presume that the bigger patch sizes are useful at higher noise levels and smaller patch 

sizes can be effective for low noise levels for the proposed algorithm. 

6.2.6 Residual Correlation Based Single Image Super Resolution (SISR) 

The proposed algorithm can prove to be effective in improving performance of the 

SISR. This approach leads us to select an atom for current patch such that it becomes 

highly correlated with neighboring patches. Thus, the proposed algorithm can be 

tested for the inverse problem such as SISR.   
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Appendix A: Derivation of expanded equation (4.6) 

𝐽𝑐 𝑘𝑠 , 𝛼𝑠  

=  
1

2
 𝛼𝑠

2𝒅𝑘𝑠
𝑇 𝒅𝑘𝑠 − 2𝛼𝑠 𝒅𝑘𝑠 

𝑇
𝒓𝑠−1 + 𝒓𝑠−1

𝑇 𝒓𝑠−1 +   𝜆𝑚

𝑀

𝑚=1

| 𝒓𝑠−1 − 𝒅𝑘𝑠𝛼𝑠 
𝑇
𝒓𝑚 | 

 

Solution: 

Let 𝑓 = 𝐽𝑐 𝑘𝑠 , 𝛼𝑠 , then finding  derivative (w.r.t.) 𝛼𝑠 gives: 

 

𝜕𝑓

𝜕𝛼𝑠
=  

1

2
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𝑇
𝒓𝑠−1 + 0 +  0 −  𝜆𝑚

𝑀

𝑚=1

𝒓𝑚  𝒅𝑘𝑠
𝑇   

𝜕𝑓

𝜕𝛼𝑠
=  −𝒅𝑘𝑠

𝑇  𝒓𝑠−1 − 𝛼𝑠𝒅𝑘𝑠  −  |𝑠𝑚  𝜆𝑚

𝑀

𝑚=1

𝒓𝑚  𝒅𝑘𝑠
𝑇 | 

 

Letting derivative be equal to zero, 

 

−𝒅𝑘𝑠
𝑇  𝒓𝑠−1 − 𝛼𝑠𝒅𝑘𝑠  −  |𝑠𝑚  𝜆𝑚

𝑀
𝑚=1 𝒓𝑚  𝒅𝑘𝑠

𝑇 | = 0 

 

−𝒅𝑘𝑠
𝑇 𝒓𝑠−1 + 𝛼𝑠𝒅𝑘𝑠

𝑇 𝒅𝑘𝑠 − |𝑠𝑚  𝜆𝑚
𝑀
𝑚=1 𝒓𝑚  𝒅𝑘𝑠

𝑇 | = 0 

 

−𝒅𝑘𝑠
𝑇 𝒓𝑠−1 + 𝛼𝑠 −  |𝑠𝑚  𝜆𝑚

𝑀
𝑚=1 𝒓𝑚  𝒅𝑘𝑠

𝑇 | = 0 

 

𝛼𝑠 =  𝒅𝑘𝑠
𝑇 𝒓𝑠−1 +   𝑠𝑚𝜆𝑚

𝑀

𝑚=1

𝒅𝑘𝑠
𝑇 𝒓𝑚  
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Appendix B: Simplifying equation (4.10) 

𝐽𝑑 𝐷 =  
1

𝑡
  ||𝑟𝑖||2

2 + 𝜆𝑖|𝒓𝑡
𝑇𝒓𝑖|

𝑡−1

𝑖=1

𝑡

𝑖=1

  

=
1

𝑡
  ||𝒙𝑖 −𝑫𝜶𝑖||2

2

𝑡

𝑖=1

+  𝜆𝑖|(𝒙𝑡 −𝑫𝜶𝑡)
𝑇(𝒙𝑖 −𝑫𝜶𝑖)|

𝑡−1

𝑖=1

  

Solution: 

Let   𝑓𝑎 =   ||𝒙𝑖 −𝑫𝜶𝑖 ||2
2𝑡

𝑖=1  and 𝑓𝑏 =   𝜆𝑖|(𝒙𝑡 −𝑫𝜶𝑡)
𝑇(𝒙𝑖 −𝑫𝜶𝑖)|𝑡−1

𝑖=1  

Firstly, we simplify  𝑓𝑎 ; (using Polarization property) 

𝑓𝑎 =
1

2
   𝒙𝑖 −𝑫𝜶𝑖 

𝑇 𝒙𝑖 −𝑫𝜶𝑖  

𝑡

𝑖=1

 

𝑓𝑎 =
1

2
  𝒙𝑖

𝑇𝒙𝑖 −𝑫 𝒙𝑖
𝑇𝜶𝑖 −𝑫 𝜶𝑖

𝑇𝒙𝑖 +  𝑫 𝑫𝑻 𝜶𝑖
𝑇𝜶𝑖 

𝑡

𝑖=1

 

Let  

𝑨𝑡 =  = 𝜶𝑖𝜶𝑖
𝑇𝑡

𝑖=1 = 𝑨𝑡−1 + 𝜶𝑡𝜶𝑡
𝑇 

𝑩𝑡 =  = 𝒙𝑖𝜶𝑖
𝑇𝑡

𝑖=1 = 𝑩𝑡−1 + 𝒙𝑡𝜶𝑡
𝑇  

since 𝑻𝒓(𝑨) = Tr(𝑨𝑻) ;      Here Tr is a trace operator 

then  𝑻𝒓(𝑫𝒙𝑖
𝑇𝜶𝑖) = Tr( 𝑫𝑻𝒙𝑖𝜶𝑖

𝑇) 

Trace comes from Euclidean inner product on the real space of real 

matrices i.e., ||𝑨𝑩||𝟐 =< 𝐴,𝐵 >: = 𝑇𝑟(𝑨𝑻𝑩) 

 

Hence, in terms of trace of matrix, 

𝑓𝑎 =
1

2
 Tr 𝒙𝑡

𝑇𝒙𝑡 −  𝑫𝑻𝑩𝑡 −  𝑫𝑻𝑩𝑡 +  𝑫 𝑫𝑻𝑨𝑡   

𝑓𝑎 =
1

2
 Tr 𝒙𝑡

𝑇𝒙𝑡 −  2𝑫𝑻𝑩𝑡 +  𝑫 𝑫𝑻𝑨𝑡   
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Now we simplify 𝑓𝑏 =   𝜆𝑖|(𝒙𝑡 − 𝑫𝜶𝑡)
𝑇(𝒙𝑖 −𝑫𝜶𝑖)|𝑡−1

𝑖=1  

𝑓𝑏 =   (𝒙𝑡 −𝑫𝜶𝑡)
𝑇 𝜆𝑖(𝒙𝑖 −𝑫𝜶𝑖)

𝑡−1

𝑖=1

  

𝑓𝑏 =   𝒙𝑡
𝑇 𝒙𝑖

𝑡−1

𝑖=1

− 𝜶𝑡
𝑇  𝑫𝑻 𝒙𝑖

𝑡−1

𝑖=1

+ 𝜶𝑡
𝑇  𝑫𝑻𝑫 𝜶𝑖

𝑡−1

𝑖=1

− 𝒙𝑡
𝑇𝑫 𝜶𝑖

𝑡−1

𝑖=1

  

Let  𝒈𝑡−1 =  𝜆𝑖𝒙𝑖
𝑡−1
𝑖=1  and 𝒇𝑡−1 =  𝜆𝑖𝜶𝑖

𝑡−1
𝑖=1  

𝑓𝑏 =   𝑇𝑟 𝒙𝑡
𝑇𝒈𝑡−1 − 𝜶𝑡−1

𝑇  𝑫𝑻𝒈𝑡−1 − 𝒙𝑡
𝑇𝑫𝒇𝑡−1 + 𝜶𝑡−1

𝑇  𝑫𝑻𝑫𝒇𝑡−1   

Now 𝑓 = 𝑓𝑎 + 𝑓𝑏  

𝑓 =
1

2
 𝑇𝑟 𝒙𝑡

𝑇𝒙𝑡 −  2𝑫𝑻𝑩𝑡 +  𝑫 𝑫𝑻𝑨𝑡  

+  𝑇𝑟 𝒙𝑡
𝑇𝒈𝑡−1 − 𝜶𝑡−1

𝑇  𝑫𝑻𝒈𝑡−1 − 𝒙𝑡
𝑇𝑫𝒇𝑡−1

+ 𝜶𝑡−1
𝑇  𝑫𝑻𝑫𝒇𝑡−1   
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Appendix C: Derivation of equation (4.17) to obtain    

                       equation (4.21) 

 

𝑓 =
1

2
 𝑇𝑟 𝒙𝑖

𝑇𝒙𝑖 −  2𝑫𝑻𝑩𝑡 +  𝑫 𝑫𝑻𝑨𝑡   𝑇𝑟 𝒙𝑡
𝑇𝒈𝑡−1 − 𝜶𝑡−1

𝑇  𝑫𝑻𝒈𝑡−1

− 𝒙𝑡
𝑇𝑫𝒇𝑡−1 + 𝜶𝑡−1

𝑇  𝑫𝑻𝑫𝒇𝑡−1   

 

𝜕𝑓

𝜕𝑫
=

1

2
  2𝑫𝑨𝑡 − 2𝑩𝑡 + 0 

+  𝜎𝜆 2𝑫𝒇𝑡−1𝜶𝑡−1
𝑇 − 𝒈𝑡−1𝜶𝑡−1

𝑇 − 𝒇𝑡−1𝒙𝑡
𝑇 + 0  

    Note that 𝜎𝜆  is signum function. 

𝜕𝑓

𝜕𝑫
= 𝑫 𝑨𝑡 + 2𝜎𝜆𝒇𝑡−1𝜶𝑡−1

𝑇 −  𝑩𝑡 + 𝜎𝜆 𝒈𝑡−1𝜶𝑡−1
𝑇 + 𝒇𝑡−1𝒙𝑡

𝑇   

 

Let 𝑨𝐶 =  𝑨𝑡 + 𝟐𝜎𝜆𝒇𝑡−1𝜶𝑡−1
𝑇 and 𝑩𝐶 = 𝑩𝑡 + 𝜎𝜆 𝒈𝑡−1𝜶𝑡−1

𝑇 + 𝒇𝑡−1𝒙𝑡
𝑇  

Hence; 

𝜕𝑓

𝜕𝑫
= 𝑫𝑨𝐶 −𝑩𝐶  

Let derivative be equal to zero, we have 

𝑫𝑨𝐶 = 𝑩𝐶  

The approximate solution of above equation can be obtained by:  

𝑫 = 𝑩𝐶𝑨𝐶
+ +  𝑫𝑡−1(𝐼 − 𝑨𝐶𝑨𝐶

+) 

𝑫 = 𝑩𝐶𝑨𝐶
+ +  𝑫𝑡−1 −𝑫𝑡−1𝑨𝐶𝑨𝐶

+ 

𝑫 = 𝑫𝑡−1 − 𝑨𝐶
+(𝑩𝐶 −𝑫𝑡−1𝑨𝐶) 

 


