
A Distributed Multi Event Solution for
Recommender Systems Using Hadoop

Seyed Javad Seyedzadeh Kharazi

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
September 2018

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Assoc. Prof. Dr. Ali Hakan Ulusoy
 Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

 Prof. Dr. Işık Aybay
 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Assoc. Prof. Dr. Adnan Acan
 Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Adnan Acan ___________________________________

2. Assoc. Prof. Dr. Mehmet Bodur ___________________________________

3. Asst. Prof. Dr. Mehtap Köse Ulukök ___________________________________

iii

ABSTRACT

Big data is a phenomenon that takes central stage in industry and academia arising

from the advent of online services and mobile applications. Improving the efficiency

of data processing and analysis has become a challenging issue. While a number of

methods from different communities have been proposed for solving the “Big Data”

problems, we worked with multi-event Intelligent Systems that offer efficient

mechanisms, which significantly reduce the costs of processing large volume of data

and improve data processing quality. Social networks could benefit from recommender

systems in order to optimize the queries and ads they display for each special user.

Among different approaches to analyze user data and making recommendations, we

employed Collaborative Filtering with Cosine Similarity criterion for item-based

similarity recognitions. In the implemented method, a Holonic multi-event system

(HMES) is designed to process a portion of Amazon database in a distributed manner.

The use of Hadoop and map-reduce technology is aimed to make more accurate and

faster predictions and recommendations. Different evaluation standards such as

Perfect Hit (PHIT), and Mean Percentage Rank (MPR) are used to examine and

compare the proposed method with other conventional methods. The results obtained

in this thesis are satisfactory compared to the results of the evaluation given in the

literature.

Keywords: recommender system, hadoop, multi event, artificial intelligence, big data,

holonic

iv

ÖZ

Büyük veri, çevrimiçi hizmetlerin ve mobil uygulamaların ortaya çıkmasından

kaynaklanan endüstri ve akademi merkezini alan bir olgudur. Veri işleme ve analiz

verimliliğinin artırılması zorlu bir konu haline gelmiştir. “Büyük Veri” sorunlarının

çözümü için farklı topluluklardan bir takım yöntemler önerilmişken, çok sayıda

verinin akıllıca işlenmesi ve veri işleme kalitesini iyileştirme maliyetlerini önemli

ölçüde azaltan etkili mekanizmalar sunan Çok-olaylı Akıllı Sistemler ile çalıştık.

Sosyal ağlar, her bir özel kullanıcı için görüntüledikleri sorguları ve reklamları

optimize etmek amacıyla öneri sistemlerinden yararlanabilir. Kullanıcı verilerini

analiz etmek ve önerilerde bulunmak için farklı yaklaşımlardan ötürü, maddeye dayalı

benzerlik tanımları için İşbirlikçi Filtrelemeyi Kosine Benzerlik kriteri ile birlikte

kullandık. Önerilen yöntemde, bir Holonik Çok-olaylı sistem (HMES), Amazon

veritabanının bir kısmını dağıtılmış bir şekilde tasarlamaktadır. Hadoop ve harita

azaltma teknolojisinin kullanılması daha doğru, daha hızlı tahminler ve önerilerde

bulunmayı amaçlamaktadır. Önerilen metodu diğer geleneksel yöntemlerle incelemek

ve karşılaştırmak için, Mükemmel Vuruş (PHIT) ve Ortalama Yüzde Oranı (MPR)

gibi farklı değerlendirme kriterleri kullanılmaktadır. Literatürde verilen değerlendirme

sonuçlarıyla karşılaştırıldığında bu tezde elde edilen sonuçlar memnuniyet vericidir.

Anahtar Kelimeler: Öneri Sistemi, Hadoop, Çok Olaylı, Yapay Zeka, Büyük Veri,

Holonik

v

DEDICATION

I would like to dedicate this thesis to my family – to my beloved parents

Mr. Reza Seyedzadeh and Mrs. Haideh Yousefi for their endless support,

to my loving sisters Negin and Narges for keeping my spirit up with all the innocence

and their never-ending motivations, and to my brother Jalal for his constant

encouragement to accomplish the thesis work. Last but not least, this thesis is

dedicated to my special friend Selin Tansu Tunç who has accompanied me through

every effort and thought of this thesis.

vi

ACKNOWLEDGMENT

First and separated of all, I would like to express my deepest appreciation to my

advisor, Assoc. Prof. Dr. Adnan Acan for giving me an opportunity to work with and

for his advice, encouragement and constant support. I would like to thank him also for

his invaluable feedback and comments throughout the course of this project and on the

thesis. He always gave me his time, even on his vacations. He has been a source of

motivation, and I thank him for his gracious and benevolent support.

I want to thank Prof. Dr. Işık Aybay, Assoc. Prof. Dr. Önsen Toygar and Asst. Prof.

Dr. Ahmet Ünveren who plant the first seeds of this work throughout the courses and

personal guidances, and also the rest of the faculty members of Computer Engineering

department and the staff for all their hard work and dedication. They made my study

at the Eastern Mediterranean University, a pleasant and memorable one.

I would like to thank my thesis committee members Assoc. Prof. Dr. Mehmet Bodur

and Asst. Prof. Dr. Mehtap Köse Ulukök for reviewing my thesis.

I would like to thank Armin Mehri for his valuable inputs on debugging the system. I

would also thank Amin Hosseini Marani for timely code reviews and his feedback on

result distribution. I would also thank Selin Tansu Tunç for her advices on the literature

of the thesis and her efforts on the linguistic competence of the work.

And finally, I must thank my family for supporting me during the development of this

work with no complaints and continuing, loving support.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION ... v

ACKNOWLEDGMENT ... vi

LIST OF TABLES .. xi

LIST OF FIGURES ... xii

1 INTRODUCTION .. 1

1.1 Foreword .. 1

1.2 Problem Statement ... 4

1.3 Research Hypothesis and Questions ... 5

1.4 Research Objectives ... 6

1.5 Thesis Structure .. 7

2 LITERATURE REVIEW.. 8

2.1 Recommender Systems .. 8

2.1.1 User-Based Information ... 9

2.1.2 A simpler Search .. 10

2.1.3 Affecting by Similar Users’ Features .. 10

2.1.4 Up-to-date Information .. 10

2.1.5 Reduce Costs ... 10

2.2 How a Recommender System Works ... 11

2.3 Recommender Systems Based on Knowledge ... 14

2.4 Content-Based Recommender Systems .. 17

2.5 Recommender Systems Based on Similarity Calculation 19

viii

2.5.1 Asymmetric User Similarity Model ... 20

2.5.2 Mean Measure of Divergence Similarity ... 21

2.6 Recommender Systems Based on Collaborative Filtering 23

2.6.1 Matrix Factorization .. 23

2.6.2 Random Descent Gradient ... 26

2.6.3 Alternation Least Square (ALS) .. 26

2.6.4 Add Bias .. 27

2.6.5 Additional Input Resources ... 28

2.6.6 Temporal Dynamics ... 29

2.6.7 Input with Different Reliability Levels .. 31

2.7 Use of Genetic Algorithm for Matrix Factorization ... 32

2.8 Cosine Similarity Criterion for the Item-based Similarity 33

2.9 Holonic Multi-agent Systems ... 38

2.10 Review Repetition .. 41

3 PROPOSED METHOD .. 42

3.1 Introduction to the Implemented Method ... 42

3.2 Agents and Events in a Multi-event System .. 43

3.2.1 “NewEntry” Event ... 43

3.2.2 “OnUpdate” Event ... 44

3.2.3 “ItemSimilarity” Agent .. 45

3.2.4 “Predictor” Agent .. 47

3.2.5 “Recommender” Agent .. 48

3.3 Real-time Parallel Execution .. 49

3.4 Continuous Updating Feature ... 50

3.5 More on the Holonic Structure ... 50

ix

3.6 A Distributed Solution using Hadoop and map-reduce Technology................ 51

3.7 Methodology Closure ... 54

4 EXPERIMENTS AND RESULTS ... 56

4.1 Dataset .. 57

4.2 Programming languages, Settings and Parameters ... 58

4.3 Evaluation Criteria ... 61

4.3.1 Perfect Hit (PHIT) ... 61

4.3.2 Mean Percentage Rank .. 62

4.4 Experiments and Results .. 63

4.5 Evaluations Summary ... 67

5 CONCLUSION AND FUTURE WORK.. 68

5.1 Conclusion .. 68

5.2 Future Work ... 71

REFERENCES ... 73

APPENDICES ... 79

Appendix A: Pseudo-code of MMD used in the comparisons of chapter 4 80

Appendix B: Pseudo-code of Asymmetric Similarity used in the comparisons of

chapter 4 ... 81

Appendix C: Pseudo-code of matrix factorization method using Genetic Algorithm

used in the comparisons of chapter 4 ... 82

Appendix D: Pseudo-code of Descent Gradient used in the comparisons of chapter

4 .. 83

Appendix E: Pseudo-code of Cosine Similarity method used in the comparisons of

chapter 4 ... 84

x

Appendix F: Pseudo-code of Total Average method used in the comparisons of

chapter 4 ... 85

xi

LIST OF TABLES

Table 2.1: The recommender system in the predictive role of user interest rates

(Horvath, 2012) .. 14

Table 2.2: The recommender system in the role of the proposer of the item (Horvath,

2012) .. 14

Table 2.3: Similarity of films based on the calculation of the relationship (2-22)

(Sarwar, Karypis, Konstan, & Riedl, Item-based collaborative filtering

recommendation algorithms, 2001) ... 35

Table 2.4: Similarity of users based on the calculation of the relationship (2-21)

(Sarwar, Karypis, Konstan, & Riedl, Item-based collaborative filtering

recommendation algorithms, 2001) ... 35

Table 4.1: Parameters used in the simulations .. 60

xii

LIST OF FIGURES

Figure 2.1: Showing the behavior of the Recommender System 9

Figure 2.2: A multi-agent system with four agents (Fischer, Schillo, & Siekmann,

2003) .. 39

Figure 2.3: Representation of a hypothetical Holonic with 5 agents (Fischer, Schillo,

& Siekmann, 2003) .. 40

Figure 3.1: Designed Holonic multi-event recommender system flowchart 54

Figure 3.2: Schematic of the interaction of agents in the proposed Holonic model .. 54

Figure 4.1: A sample section of the Amazon data files in MS Excel 58

Figure 4.2: Comparing the PHIT assessment method for all introduced methods 64

Figure 4.3: Comparing the MPR assessment method for all introduced methods 65

Figure 4.4: Runtime comparison for all introduced methods 66

1

Chapter 1

1 INTRODUCTION

1.1 Foreword

Expansion of data storage and processing technologies has made life much easier in

aspect of data management and analysis. It is now possible to store and retrieve huge

amounts of data in less time than ever before by benefiting of the modern methods. It

is hard to find a company, organization or even a small shop that is not willing to use

computer in order to categorize and manage its information. Improvement of data

storage capabilities and hardware abilities both got together and formed the concept of

big data everywhere around us. Data mining is devised to help us analyze these big

data and interpret and attain a specific direction of the raw data.

Online shops, polling websites and social networks are facing the presence of a huge

number of users and have become a huge base of raw data of users with access because

of storing all the relative information. Whether if the sites are designed for sales or

polling or even entertainment purposes, they will use their data in order to improve the

quality of the site and provide their services to increase audiences, and sooner or later

they should give up their places to those competitors whom are putting more effort on

data process. If online stores know what their customers intend to buy along with other

products, they will definitely boost sales. It is enough to offer the item Y to the

customer at the time of purchasing the item X, provided that the store knows as a fact

that the customer who bought item X was also interested in item y. Of course, the

2

customer will also benefit of this and will be able to make purchases more easily with

offers from the store. In social networks, data analysis can also be beneficial to the site

operators. If it is known which content the user likes more, the operators should expect

the user to spend more time on their social platform by managing to show them similar

contents of their interests. This can also be used to benefit of displaying relative ads

on the side of the platform. It is obvious that displaying well-received ads are more

welcomed than annoying the audience by irrelevant advertisements that they are not

interested in.

Recommender systems are defined as a technology that is extended in the environment

where items are to be recommended to users, or the opposite. These systems help users,

customers, or readers to find a content, product, or article of their own interest.

Naturally, these systems will not be able to offer without proper and correct

information about users and their items (such as movies, music, and books). A custom-

built RS is a must to recommend the most valuable information to the customers of an

online store (Wu, Zhang, & Lu, 2015). Hence, one of their most basic goals is to collect

information according to the users' preferences and also the existing items in the

system. There are various sources and methods for collecting such information. An

approach is explicit data collection, in which the user explicitly announces what he

likes (for example, by rating a song or placing 5 stars for a movie). The other method

is implicit information, which is a bit more difficult to collect. In this case, the system

must record the user's tastes by controlling and following its behaviors and activities

(for example, what the user is listening to or what content they are watching or who

they are associated with, should be observed). In addition to the implicit and explicit

information, some systems use users' personal information. For example, age, gender,

and nationality of users can be a good source for cognition of the user. This kind of

3

information is called demographic data, which a group of recommender systems is

based on (Resnick & Varian, 1997).

In the recent years, many researches have been conducted in the area of data collection,

and several articles have been proposed and published. Sometimes the queries that a

user makes on the system, or the expression of their request details, will guide the

system not only to identify the user's item, but also will help the system identify new

information such as volume, power consumption and even custom colors of the user's

items, and use them in future recommendations. In general, user query records are a

huge and useful resource for tracking the user's tastes and interests. Having this

information stored and processed, the result can be used to improve the efficiency of

future suggestions offered by the recommender system.

The systems that behave based on queries are known as knowledge-based

recommender systems. Another type of recommender system is the content-based

model. In these systems, users' behavioral similarity will only be based on their

writings and comments and on the keywords of the texts. Each text will be evaluated

and categorized based on the keywords in that text. In addition to that, the keywords

of a text based on the characteristics of an item (which has a user's opinion recorded

for it), expresses the degree of satisfaction or discontent of the user with respect to the

specified attributes. In content-based systems, the system, by extracting keywords that

are repetitive words in the texts and essentially define the semantic direction of the

user, determines and addresses the degree of satisfaction or dissatisfaction of the user

and adjusts its recommendations based on the user's writings.

4

1.2 Problem Statement

One of the methods for analyzing user information in recommender systems is the use

of neighboring and similarity calculation methods. This method uses previous user

behaviors and analyzes the relationships between users and the dependencies of those

behaviors on products (such as selecting an item, or clicking on a link, etc.) to identify

a user and item of interest to him or her. In fact, whatever is stored in this system is

the history of the behavior of the user in the face of products, services or comments

and hence, this recorded information is important. One of the most successful

neighboring models is the cosine similarity calculation method used in recent years. In

the cosine similarity method, based on the data in the database (online store, social

network, etc.), a user-item matrix is formed, which includes the user's rating to an item

or selection of the item by the user. This matrix is also called the rank matrix

(Parambath, 2013).

One of the two main problems in calculating the cosine similarity is the speed of this

model, because for each user, all other users need to be analyzed so that common

products can be introduced to users. This reduction of speed may not be very tangible

for a thousand users, but when it is about a few million users of a huge platform such

as Amazon, it will certainly not be ignored. Speed reduction is not just dependent on

the number of users and the number of items is also very influential. A couple of tens

of millions of products on Amazon should be reviewed for each pair of users, or at

least a large subset of them will be analyzed, which will definitely impose a lot of

computing load to any system. Using Hadoop technology to perform distributed

calculations is an ideal idea for such a high-volume recommender system that deals

more with live streams of data.

5

Using Hadoop alone will not solve the problem of reviewing a huge amount of data

from a massive database such as Amazon. There are no proper facilities such as cluster

servers available on the scale of laboratory, and it should be possible to run the model

on even simpler systems with lower performances. The map-reduce technology in the

Hadoop is the perfect solution to fix this problem. Using map-reduce will only allow

the executable part of the database to enter the RAM and only the same section will be

processed. Of course, how to combine the output of each run up of Hadoop is a

challenge that is discussed along with the use of averaging in the third chapter.

The second problem with the cosine similarity of the recommender system is the need

to train the entire train set at once, while it is impossible for large website servers that

record thousands of new comments every second. If the whole train set has to be

trained every time, it may be necessary to repeat this operation every day or every

hour. In the proposed method, a Holonic system is designed using a multi-agent

definition. Each agent has a separate task and can operate in parallel with other agents.

The other feature of the Holonic multi-event System (HMES) is the ability to use

multiple operating agents per run and even using multiple agents of the same type, thus

expecting the speed to increase impressively without decreasing accuracy.

1.3 Research Hypothesis and Questions

The research ahead is based on the hypotheses that will be presented briefly below.

These assumptions are considered in implementing the proposed model and comparing

similar methods and finally the simulations:

 The basic hypothesis is that the information of each user, the items, and their

ratings, plus the time of the recorded comment, is the accessible data.

 The score for each item is between 1 and 5, and the value of 0 for each element

of the rating matrix means the absence of the user i's response to the item j.

6

 The matrix elements update simultaneously, and the error will be recalculated

after the changes are made.

 Simulation of all models will take place on the same computer.

Along with the hypothesis, before starting the research and starting the simulations,

fundamental questions will be raised about the existing methods and the implemented

method that will be answered directly or implicitly during the research.

1. Does using a HMES method cause speed enhancement?

2. How will a HMES method change the error rate?

3. What is the difference in runtime between the implemented model and similar

models?

4. Will implementation of map-reduce and combining of the results have a

positive or negative effect on the final results?

5. Which of the suggested or compared methods has a better performance?

1.4 Research Objectives

The main purpose of the research is to investigate the proposed method in comparison

with mathematical models, neighborhood similarity and matrix factorization such as

gradient descent in terms of accuracy and speed in finding the least error. During the

research, a model will be proposed, which, in addition to having the characteristics of

the HMES algorithm, has the ability to run parallel and also increase the accuracy and

speed, not only with respect to the simple models of the cosine similarity algorithm,

but also has advantages than the other regular models such as the descending gradient.

The other goal of this research is as follows:

 Increasing the execution speed of the entire program

 Increasing the accuracy of the recommender system

 Review the similar calculation methods and find the best model

7

1.5 Thesis Structure

Having the introduction to the thesis conducted, we will continue with the rest of the

work by explaining the structure of the thesis. In the second chapter, literature review

of the research and the principles of the work will be elaborated in detail. In this

chapter, we will examine the general methods of recommender systems in detail and

explore several commonly used methods by giving the definitions and examples. In

the third chapter of the study, methodology of the proposed method combining of

cosine similarity calculation, the map-reduce library of the Hadoop framework and the

Holonic multi-event system will be explained. The fourth chapter will contain a review

of the performed simulations and an analysis of the conducted experiments. At the end

of this research, chapter five is aimed to provide the suggested future work on the

subject and an overall conclusion of the study.

8

Chapter 2

2 LITERATURE REVIEW

2.1 Recommender Systems

The Recommender System, based on the collection of user behavioral information,

can make suggestions, such as what music to listen or what to read, and even what

goods to choose and buy from the sales site, by providing data mining techniques. A

desirable RS is a system that using the dynamic and state-of-the-art data processing

methods provides semantic data, which can be personified for different users

(Aggarwal, 2016).

Almost any Internet user is somehow familiar with Recommender Systems, and they

have worked with at least one of the existing types. Websites such as amazon.com and

many shopping sites, review sites, and critique films like MovieLens are recommender

systems that filter and share information with intelligent methods by collecting and

retrieving user opinions. This is a Collaborative Filtering (Adomavicius & Tuzhilin,

2005). Figure 2-1 shows what is happening behind the scenes of a Recommender

System in simple language.

9

Figure 2.1: Showing the behavior of the Recommender System

In a nutshell, the work of the system can be described in such a way that a user will be

considered as a goal for the system by entering the site. The Recommender system will

offer suggestions to increase productivity (increase sales, item selection, content

display, or user satisfaction) based on user’s interests and other users who are similar

to that particular user. These suggestions are based on other users' preferences. The

preferences are that when user x and other users choose the item y and if the other

users prefer the item z, then the item z will be a candidate item to be introduced to x.

Style information and user choices are all stored in the database until they are refined

and processed at a time when people with the same interest are found. The main

features of a recommender system can be summarized as follows:

2.1.1 User-Based Information

The most important feature of an RS is to collect data based on user behavior on the

site and the interests of users who are registered on the site. The significance of this

feature becomes bold when it comes to knowing that some systems should make a

recommendation according to a simulation of user behavior and only based on

estimations.

10

2.1.2 A simpler Search

If what the user's orientation and interest in choosing items is known, proposing to

them will not only help the system but will also help the user to search in a space that

has never before had the chance to search that space or was not easily accessible to

him.

2.1.3 Affecting by Similar Users’ Features

Users who have behaved similarly to a user’s behavior in choosing items can better

guide system to recommend him. Those who share an interest in choosing items like

computer games may have other common interests. While an extensive variety of data

is available thanks to the growth of social media and e-commerce, the science of

BigData logical analysis could derive a benefit of the existence of modern data

architectures of non-relational data to grow even bigger (Venkatraman, Fajd, Kaspi, &

Venkatraman, 2016).

2.1.4 Up-to-date Information

The Recommender system, based on a database of all users and items, can provide

suggestions in line with the interests of users. For a more productive system of

proposers, the database of these systems should always be up to date, because as a

matter of fact, the interests and choices of users are changing rapidly and differently.

2.1.5 Reduce Costs

The information in the database of a recommender system, without any cost and only

with the help of users, will be recorded in the system, and based on different methods

of data analysis and processing a new offer is presented. No cost will be charged to

extract users' characteristics, such as sending questionnaires to users (Resnick &

Varian, 1997).

11

In general, recommender systems can be divided into four main categories

(Adomavicius & Tuzhilin, 2005):

 Knowledge-based Systems: Depending on the needs and characteristics of the

user, relevant suggestions are provided.

 Content Based Recommender Systems: These types of systems, through

indexing and content analysis methods, keywords, tagging, graphing of

relevant content and similar techniques, attempt to establish a conceptual

relationship between the existing items and the item of user’s interest.

 Recommender Systems Based on Collaborative Filtering: It is the most

popular approach and it assumes that a popular pattern in the past is likely to

be popular now. This approach benefits by making use of social media crowd

sourcing and other recent socio-technological developments (Schafer,

Frankowsk, Herlocker, & Sen, 2007).

 Hybrid Based Recommender Systems: Using both content-based and

collaborative filtering techniques together.

This research has a special focus on collaborative filtering and matrix factorization

model in recommender systems, and the final implemented method would be based on

the matrix factorization model. Considering that the content-based recommender

system is also a quite popular approach, this section will explain both methods together

and various mathematical models will be introduced to evaluate the methodology of

the proposed method and existing methods.

2.2 How a Recommender System Works

Before examining the various models used in the recommender systems, it is necessary

to investigate the details of recommending and the recommender system to be precise

to resolve any ambiguity. Based on the exact definition of the problem in this section

12

and the defined symbols, the recommender system problem assumptions will be

constructed.

In the definition of the user with the U symbol, the characteristics of a user, such as

height, weight, age, sports interest, and so on, are marked with an AU. The XU symbol

represents the behavior and specific user-specific information. X contains sensitive

information, many of which are not readily available due to user inactivity in some

areas. This information can include user-clicked links or individual comments about

various items. A set of items (or existing elements on a site) is identified by the “I”

symbol, and the properties of each component will be displayed with Aitem.

Determining the impact of user behavior on an item’s properties and the impact of item

features on sales is very costly. Therefore, it is necessary to use methods that can help

identify the implicit effect of an item on the user and also the implicit effect of users

on the selection of items.

In a recommendation system, the method of examining information and proposing

options (goods, services, movies, and books) is very essential; Additionally, collecting

data from users has a significant impact on determining the cost and efficiency of the

designed system. The information is extracted and stored in two implicit and explicit

forms:

 Implicit Information: Based on the user's behavior on the system (site),

information such as shopping, viewed links, videos, and comments are stored.

 Explicit Information: Many sites use survey and polling mechanisms in place

of scoring to simplify the extraction of user information. This information can

be used to rank existing items, score a movie or a good, and even list the

selected items.

13

The Recommender system must provide a model based on the set of user attributes U,

set of item characteristics I, and user feedback (privileges) that, by presenting new

offers, can provide sales efficiency for an online store or other similar services.

Although, the presentation of an intelligent model based on mathematical relationships

to solve this issue may seem simple at first glance, but when we know that the

information available from users is not always complete, as well as the many items

that are not provided enough information about by users, the procedure becomes very

complicated. One of the most critical problems is when the system cannot predict about

the user’s sensation about an item when he chose item 1 and does not chose item 2;

Did he ever see this item and refuse to purchase it?

The Recommender systems, based on explicit and implicit information, are presented

in the two categories of item recommending models (implicit information) and the user

interest rate predictor models (explicit information). Of course, this categorization is

not based solely on explicit and implicit information, but both categories of

information can be used for both the recommendation and predictive system models

(Resnick & Varian, 1997).

Table 2.1 shows the scores of people to movies based on the degree of interest. Anyone

can grade a movie from 1 to 5. The goal is to predict a movie score that has not been

viewed by a user named Steve so far. If we can guess Steve's point of the film, we will

definitely be able to recognize that whether Steve likes the movie or not, and if the

system offers a movie will he purchase it or no. Finally, a score of 4 or 5 would be a

good benchmark to buy the offer for Steve.

14

Table 2.1: The recommender system in the predictive role of user interest rates
(Horvath, 2012)

 Titanic Pulp Fiction Iron Man Forrest
Gump

The
Mummy

Joe 1 4 5 3

Ann 5 1 5 2

Mary 4 1 2 5

Steve ? 3 4 4

Table 2.2 shows user purchases, where each user's purchase is displayed with a value

of one. The recommender system model for buying movies should predict that in case

this movie is offered to Steve, will he buy it or not. This prediction must be done based

on Steve's and other users’ past purchases. In the following sections of this chapter, a

brief review of the recommender systems will be addressed.

Table 2.2: The recommender system in the role of the proposer of the item (Horvath,
2012)

 Titanic Pulp Fiction Iron Man Forrest
Gump

The
Mummy

Joe 1 1 1 1

Ann 1 1 1 1

Mary 1 1 1 1

Steve ? 1 1 ? 1

2.3 Recommender Systems Based on Knowledge

In such systems, user information and his needs play the most important role in

determining the offer. A user's data is received and categorized in various domains and

forms (Burke, Knowledge-based recommender systems, 2000):

15

 Bounding Variables: Determining specific bounds for goods and specific

items. For example, buying a car worth less than $100,000 worth or introducing

films produced between 2000 to 2010.

 Determine Application: Determine the abilities and characteristics of an item

qualitatively. For example, a suitable car for a family or a drama movie.

 Getting information through communication with the system: In this case,

it requires the processing of natural language and, of course, a verbal interface

between the system and the user.

Depending on the user's profile and the properties of an item, two dependencies will

be created. The first category is the affiliation of the items and their characteristics.

For example, a family car cannot be less than a certain amount and weight. Another

category is the dependency between user requests. For example, a safe car for all

occupants and a price of more than $50,000 will not include all vehicles at a price of

more than $50,000, and those that are not safe under the system's criteria will be

removed.

Before examining existing and applicable items based on user-entered profiles,

affiliations that affect one another or create new dependencies must be calculated and

listed. For example, a family car must be large, and this large means that at least this

car should have four passenger seats. A vehicle with four passenger seats must have 4

or more doors. Four passenger seats and four doors must have four airbags. And this

list goes on like this.

After entering the requested item's specification and calculating the dependencies

between item properties and the user's request, the problem should be solved by one

16

of the ways to solve the problem of satisfying the constraints. One of the known

methods in this area is the CSP method, or Constraint satisfaction problem (Constraint

satisfaction method) (Koren, Bell, & Volinsky, 2009). Based on the constraints and

the impact of constraints on one another, an option that does not violate any constraints

(or the least constraints violation) should be selected. Another method is to use queries

with logical relations "and" and "or" and provide results for the final choice to the user.

When the user is referring to the recommender system to select an item, the system

should provide the implemented item concerning the existing items. Therefore,

methods that work on the basis of existing samples and calculate the similarity of items

are very acceptable. To calculate the similarity between existing items and user

requests, the weight of each request based on the importance of the user must be

determined. Of course, the price of a car may be much more important to a user than

the color of a car, while for other user car security and color may have the same

importance. Finally, the most relevant item will be selected according to the relation

(2-1) to the requested items (Burke, Knowledge-based recommender systems, 2000).

(2-1)
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖,𝑅𝑅𝑅𝑅𝑅𝑅) =

∑ 𝑤𝑤𝑟𝑟 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑟𝑟)𝑟𝑟∈𝑅𝑅𝑅𝑅𝑅𝑅

∑ 𝑤𝑤𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅𝑅𝑅

In relation (2-1), the similarity of item “i” is compared to the requested specification

(REQ) and for each item a number between zero and one is specified. The most similar

item on the user request has the largest number, compared to other items based on the

similarity criterion (Burke, Evaluating the dynamic properties of recommendation

algorithms, 2010). sim(i,r) determines the most similar item according to the user's

request r and the weight of each request will be determined according to the user's

17

value. For example, in car purchasing, security is definitely more important than car

color, or at least for some users is more important.

Although for knowledge-based recommender systems, different methods are presented

and introduced that their examination of all of them in this study is not possible due to

the lack of similarity to the proposed solution, but it can be summarized in several

sentences to one of the strongest learning machines called k-nearest neighbor (KNN).

Based on the list of available items and request(s), the nearest neighbor in the n-

dimensional space of the requested problem will examine the closest items to the user's

requests. This method can better explore the search space and offer close proximity to

user requests because it does not just decide on a request and considers similarities in

all dimensions (Lathia, Hailes, Capra, & Amatriair, 2010).

2.4 Content-Based Recommender Systems

Based on the content of the text or texts written by a user and according to the user's

past interests and current user interests, the recommender system should be able to

provide suggestions in line with the user's interests. User-defined specifications can be

explicitly stated (such as price, car or video production rate), or the program

automatically extracts information from the user's written text (Lops, Gemmis, &

Semeraro, 2011). One of the most common ways of extracting implicit information is

to find the words used by the texts in the site's database and to formulate a feature

vector based on keywords and check their existence (display with zero and one) based

on the user's text. The TF-IDF model, based on the number of repetitions and the

effects of repetitions in different texts, is very useful in extracting keyword attribute

vector. The TF-IDF criterion of the TF multiplier, which is based on the effect of the

number of repetitions of words, is obtained in the IDF, which is the word effect in all

texts, as shown in (2-2) and (2-3). The criterion for each item on the site is a number

18

indicating the user's interest in the item. The zero value indicates that the user is not

interested in user-written texts. The higher the number is, the larger the user's interest

rate (because of more repetition) of the desired item (Phelan, McCarthy, & Smyth,

2009).

)2-2(
𝑇𝑇𝑇𝑇(𝑤𝑤,𝑑𝑑) =

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑤𝑤,𝑑𝑑)
max{𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑤𝑤′,𝑑𝑑)|𝑤𝑤′ ≠ 𝑤𝑤}

)3-2(

𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤,𝐷𝐷) = 𝑙𝑙𝑙𝑙𝑙𝑙
|𝐷𝐷|

|{𝑑𝑑 ∈ 𝐷𝐷|𝑤𝑤 ∈ 𝑑𝑑}|

In the relationship (2-2), the TF value is calculated based on the number of repetitions

of the word "w" (freq), in the text d and its ratio to the maximum number of repetitions

of the word in that text. The value of the IDF is also calculated by dividing the total of

the texts into the number of texts that contain the word, which can be calculated in

relation (2-3). After finding the keywords and the number of them repeatedly, it is time

to determine the items that the user has chosen in the past similar to them (regarding

specifications). Accordingly, several different methods can be used, which in brief are

some of them:

 Cosine Vector Similarity: From the internal multiplication, the vector of the

item's selected attribute in the past and the current items and its division into

the multiplication of these features is obtained. This defined relation is the

same cosine angle of the two feature vectors, which, if its value is zero, it means

the verticality of the two feature vectors and their total difference

(Adomavicius & Tuzhilin, 2005). This criterion can be used to find similarity

between the choices of a user and other users.

 The k-nearest Neighbor Method: In the item properties space, a search will

be made based on the item's attribute that has been selected in the past and the

19

k-neighbors will be compared to select and suggest the same item to the

selected item in the past. To calculate the similarity of simple criteria such as

the Euclidean distance in the n-dimension, or the Mahalanobis distance, or

even the cosine vector similarity, can be used (Horvath, 2012).

 Rocchio’s Method: The Rocchio’s model uses the positive and negative

feedback provided by the user on each item. This model converges to a

prototype that expresses the user's ideal item by repeating the algorithm

presented on the feeds and the items. From now on, the suggestion to the user

of the similarity of the items in the database to the ideal item will be found

(Zanker, Felfernig, & Friedrich, 2011).

 Machine learning: One of the common methods is the use of learning

machines to learn the relationship between the features of selected items and

user feedback. Once the training process has been completed, the designed

machine must be able to guess and predict the user's interest in the specified

item by retrieving the new inputs of the same items. Learning machines,

decision tree, Support Vector Machine are among the commonly used methods

(Horvath, 2012).

2.5 Recommender Systems Based on Similarity Calculation

One of the most common methods for calculating the rating and similarity of various

users' items is similarity methods. Based on the similarity of users or items, these

methods find similar items and then offer the ones with most similarities as

recommendations. The cosine similarity calculation method is one of the most famous

of these models, which is fully explained in the next chapter and in the proposed

method section. In this section, two methods of asymmetric user similarity and MMD

will be explained.

20

2.5.1 Asymmetric User Similarity Model

Usually we are calculating the similarity to a triangular matrix of the side. If two u and

v vectors are similar to 0.8, for the most similar relationships sim(u,v) = sim(v,u) =

0.8, it does not matter which first ones. For example, if a user "u" has a share of three

items with a user "v," or two of the items most closely resemble each other, it does not

matter whether checking "v" first or second. But in the asymmetric model, this story

will generally be different, and the model will act to the same extent based on which

target user. For example, if a user "u" has three items and "v" ten items and all three

products u are in the v list, then the cosine computational method will be similar to

those of 1.0, while this number is not the correct criterion for the similarity of the two

models. Based on the look of the asymmetric model, "u" is completely similar to "v"

since all "u" choices are made by the user "v," so probably the other seven are also of

interest to "u." On the other hand, only 0.3 of the v choices with u is shared, and v may

be very similar to other users and have many choices. As a result, it cannot be said that

if the user "u" chooses a new product, it will also be attractive for v. This double-sided

look will help you calculate the likeness of two users in a more realistic way. The

phrase 2-4 shows how to calculate the similarity for both user’s u and v. The number

of first user items “u” has a lot of similarities. For above example, the value will be

sim (u, v) = 1 and sim (v, u) = 0.3. The number of items per user will have a direct

impact on the determination of similarity, and if the number of subscriptions of the

two users is high over the whole of the first user items, similarity will also be high

(Pirasteh, Hwang, & Jung, 2015).

)2-4(
𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣) =

|𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|
|𝐼𝐼𝑢𝑢|

21

The method presented in Expression 2-4 is not an appropriate analogy, since the

consideration of the number of subscriptions alone may not reflect the exact

relationship and similarity. The Expression 2-5, by adding the amount of subscription

to the total items, attempts to reduce the impact of the number of items of a particular

user and increase the effect of the proportion of similarity of each user to the total of

the two user items (Pirasteh, Hwang, & Jung, 2015).

)2-5(
𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣) =

|𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|
|𝐼𝐼𝑢𝑢|

∗
2 ∗ |𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|
|𝐼𝐼𝑢𝑢| + |𝐼𝐼𝑣𝑣|

The MSD method is a symmetric method for calculating similarity, which, unlike two

expressions 2-4 and 2-5, is determined by the scores of users. The MSD calculation

method is visible in the expression 2-6 (Shardanand & Maes, 1995). Finally, using the

MSD symmetric method and the asymmetric method introduced in Expression 2-5, a

final composition is presented in Expression 2-7, which has the characteristics of the

effect of the number of items in it, and, of course, the rating of users to the goods is

also effective. The value of L in Expression 2-7 is a threshold defined to normalize

MSD output values, which can be modified based on experience and error testing. The

authors of this paper considered the default value for L 16 (Pirasteh, Hwang, & Jung,

2015).

)2-6(
𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢, 𝑣𝑣) =

∑ (𝑟𝑟𝑢𝑢,𝑝𝑝 − 𝑟𝑟(𝑣𝑣,𝑝𝑝))2𝑝𝑝∈|𝐼𝐼𝑢𝑢∩𝐼𝐼𝑣𝑣|

|𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|

)2-7(

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢, 𝑣𝑣) =
𝐿𝐿 −𝑀𝑀𝑀𝑀𝑀𝑀(𝑢𝑢, 𝑣𝑣)

𝐿𝐿
|𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|

|𝐼𝐼𝑢𝑢|
∗

2 ∗ |𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|
|𝐼𝐼𝑢𝑢| + |𝐼𝐼𝑣𝑣|

2.5.2 Mean Measure of Divergence Similarity

The MMD method, like similar methods, has a special emphasis on subscribing to two-

user products, with the difference that the criterion of subscribing to scoring is valid.

22

For example, if two users with similar ratings of 3 are for two products, they will be

more similar until the two users have voted for a product. In other words, the focus in

this way has changed from goods to points, and the number of similar points in the

users has the same behavior and quality. The phrase 2-8 shows how to calculate the

MMD. The variable “r” in the following statement represents the score from 1 to 5 (the

lower and the upper score limit for a rating site). The theta value also includes the

number of ranks the user enters with the value of r (Mahara, 2016).

)2-8(𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣) =
1

1 + (1
𝑟𝑟 ∗ ∑ {(𝜃𝜃𝑢𝑢 − 𝜃𝜃𝑣𝑣)2 − 1

|𝐼𝐼𝑢𝑢| −
1

|𝐼𝐼𝑣𝑣|}𝑖𝑖=1:𝑟𝑟)

The MMD method is successful in calculating the same behavior of users, but, as it

has been said, it is not able to consider similar products. For this reason, the authors

introduced the proposed method to combine and use the two jaccard models and cosine

similarity with the implemented method. In the jaccard method, the number of item

subscriptions expresses similarity, and thus two users who have more items with each

other will be more important. In the case of cosine similarity, we also know that the

similarity of users' points of view on direct and indirect affluent goods has a negative

effect. The expressions 2-9 and 2-10 show the jaccard calculation formula and the final

version of cjacMD, which combines cosine, jaccard, and MMD (Shardanand & Maes,

1995).

)2-9(
𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 =

|𝐼𝐼𝑢𝑢⋂𝐼𝐼𝑣𝑣|
|𝐼𝐼𝑢𝑢 ∪ 𝐼𝐼𝑣𝑣|

)2-10(𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

= 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
+ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝑀𝑀𝑀𝑀𝑀𝑀

23

2.6 Recommender Systems Based on Collaborative Filtering

In collaborative Filtering methods, there are two dominant categories, the former being

defined and presented based on neighborhood models, and the second one is includes

Latent Factor methods (Resnick & Varian, 1997). In the neighborhood-based methods,

the goal is to calculate the relationship between users or the relationship between items.

In this method, the rating of an item or a user is determined based on their neighbors.

In contrast to neighboring methods, methods that are based on the Latent Factor tend

to compute and find hidden relationships between users and items (Bellogin, Cantador,

Diez, Castells, & Chavarriaga, 2013). These Latent Factors do not have a precise

definition or constant behavior, but are extracted and prepared using methods such as

matrix decomposition as new dimensions and a new interface matrix between users

and items. In the next section, firstly the methods that act based on the neighborhood

of the item will be examined, and then the Latent Factor methods will be introduced

and presented.

2.6.1 Matrix Factorization

The main purpose of the matrix factorization method is to generate two matrices of the

item and the user in such a way that the multiplication of these two matrices is the rank

matrix (which represents the rank of each user per item). This technique has been well

known in recent years due to the combination of acceptable scalability and accurate

prediction accuracy. The most suitable data for matrix factorization are data with

explicit and high-rated feedback that includes explicit inputs in which users have

expressed their interest in the items. For example, Neflix collects star ratings for

movies, and Tivo users specify their preferences and interests to television shows

based on the Thumbs-Up and Thumbs-Down buttons (similar to likes or dislikes).

24

Typically, explicit feedback results in a sparse matrix, since each user is likely to only

score a small percentage of items (Parambath, 2013).

One of the matrix factorization capabilities is that it enables a combination of

additional privileges. When explicit feedback is not available, the recommender

systems can deduce the preferences and interests of users based on implicit feedback,

which indirectly reflects the views and reflects the behavior of users, including the

purchase date, site visit history, search patterns, and even mouse movements. Implicit

feedback typically indicates the presence or absence of an event.

Matrix factorization models map users and items into a shared Latent Factors lying in

the f dimension, such that the user-item interaction is modeled as the internal

multiplication in that space. Accordingly, each item i is associated with a qi∈Rf vector

and each user u corresponds to a vector pu∈ Rf. For an item given i, qi elements are

expanded and modified to determine the effect of the underlying factors on its positive

or negative path. For a given user u, the pu elements show the amount of user's desire

to the items with positive and negative values. The multiplication of the dot

𝑞𝑞𝑖𝑖𝑇𝑇𝑝𝑝𝑢𝑢represents the interaction between the user “u” and the “I” item. This

approximation of the user u to the item i shown with 𝑟𝑟𝑢𝑢𝑢𝑢 is estimated as follows

(Parambath, 2013):

(2-11) 𝑟̂𝑟𝑢𝑢𝑢𝑢 = 𝑞𝑞𝑖𝑖𝑇𝑇𝑝𝑝𝑢𝑢

The main challenge is to calculate the mapping of each item and user to vectors𝑞𝑞𝑖𝑖, 𝑝𝑝𝑢𝑢 ∈

 ℝ𝑓𝑓. After calculating the proposing system of this mapping, it can simply estimate the

score that the user gives to each item based on relation (2-11). Such a model is close

to dividing the Singular Value Decomposition unique value, which is a good way to

25

identify the semantic factors involved in data retrieval. The use of SVD in the

collaborative refinement domain requires the user-item rating score. This problem is

usually encountered in cases where a large portion of the values is lost because of the

lack of user-item matrix sparse. The conventional SVD is unclear when knowledge of

the matrix is not complete. Also, the uncertainty of several relatively low-level inputs

strongly affects the system's risk of over-fitting (Parambath, 2013) (Adomavicius &

Tuzhilin, 2005).

Recent systems are based on relying on the assignment and filling of lost scores and

clumping the scoring matrix. Although this assignment can be very costly, it will

increase the amount of data. In addition, inaccurate assignment can significantly distort

information. Also, most of the recent work offers a direct modeling of the observed

scoring, and thus prevents over-fitting due to regularization. In order to learn the

vectors of the 𝑝𝑝𝑢𝑢, 𝑞𝑞𝑖𝑖factor, the square error system (relation (2-12)) minimizes the

known scoring set (Parambath, 2013).

(2-12) � (𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑞𝑞𝑖𝑖𝑇𝑇𝑝𝑝𝑢𝑢)2 + 𝜆𝜆 (‖𝑞𝑞𝑖𝑖‖2 + ‖𝑝𝑝𝑢𝑢‖2)
(𝑢𝑢 ,𝑖𝑖)∈𝐾𝐾

𝑞𝑞∗,𝑝𝑝∗
𝑚𝑚𝑚𝑚𝑚𝑚

The proposed system learns the model based on matching previously reviewed scores.

Although the goal is to generalize previous scores in line with future predictions and

unknown scores; therefore, this system should prevent the fitting of the data observed

by regulating the parameters learned that their amounts are fined. The parameter λ

controls the level of regularity and is usually determined by Cross-validation. Ruslan

Salakhutdinov and Andriy Mnih (2007) presented a probabilistic function for

regularization.

26

The two approaches to minimizing the relation (2-12) are the randomized descent

gradient as well as the least squares of variables that are discussed below.

2.6.2 Random Descent Gradient

Simon Funk introduced an optimal randomized descent gradient optimization

algorithm that runs on all training rankings. For each instruction given, the system

predicts the 𝑟𝑟𝑢𝑢𝑢𝑢 system and calculates the corresponding error (Parambath, 2013)

(Gemulla, Nijkamp, Haas, & Sismanis, 2011).

(2-13) 𝑒𝑒𝑢𝑢𝑢𝑢 ≝ 𝑟𝑟𝑢𝑢𝑢𝑢 − 𝑞𝑞𝑖𝑖𝑇𝑇 𝑝𝑝𝑢𝑢

Then the parameters are updated with the value of γ (which is a normalization

parameter) and in the opposite direction of the gradient.

𝑞𝑞𝑖𝑖 ⟵ 𝑞𝑞𝑖𝑖 + 𝛾𝛾 . (𝑒𝑒𝑢𝑢𝑢𝑢.𝑝𝑝𝑢𝑢 − 𝜆𝜆 . 𝑞𝑞𝑖𝑖)

𝑝𝑝𝑖𝑖 ⟵ 𝑝𝑝𝑢𝑢 + 𝛾𝛾 . (𝑒𝑒𝑢𝑢𝑢𝑢. 𝑞𝑞𝑖𝑖 − 𝜆𝜆 .𝑝𝑝𝑢𝑢)

2.6.3 Alternation Least Square (ALS)

Since 𝑝𝑝𝑢𝑢, 𝑞𝑞𝑖𝑖are unknown, relation (2-13) is not a convex relation. However, if we put

one of them in a constant way, the optimization problem becomes a second-degree

relation and can be solved optimally. Therefore, methods based on the least squares of

the variables, rotate between fixing pu and qi.

When pu is proved, the system reconstructs qi by solving a least squared problem, and

vice versa. This ensures that relation (2-13) is decreasing in each step until

convergence (Parambath, 2013).

Although in general the randomized descending gradient of the least squares of the

variable is simpler and faster, the ALS is desirable in at least two cases. The first case

27

is where the system can use parallelization. In the ALS, the system calculates each qi

as non-dependent, and to calculate the effect of other item factors, and also calculates

each pu independently of other user factors. This potentially broadens the

parallelization of the algorithm. The second concern is regarding the centralized

systems on implicit data. Because the training set cannot be sparse, the implementation

of the loop on any training sample alone is not feasible. ALS can handle these issues

efficiently.

2.6.4 Add Bias

One of the advantages of the matrix decomposition approach in collaborative filtering

is its flexibility to deal with different data and other program requirements. This

requires attention to the relation (2-12) in the learning process. Relation (2-12)

attempts to capture the interaction between the users and the items that produce

different scores. Although most of the variation observed in the scores are based on

the effects of the user and item, and independent of any other interactions. For

example, shared data refinement shows great systematic tendencies for some users to

give a higher rating than the rest, and also show greater tendency for some items to

receive a higher score than the rest. As such, some of the products are widely better

than other products.

Therefore, it is not wise to explain the value of a complete score based on an interaction

as 𝑞𝑞𝑖𝑖𝑇𝑇𝑝𝑝𝑢𝑢. Instead, the system tries to detect a portion of these values that the user scores

individually or identifies the values that the bias can explain for the items (Relation

(2-14)) (only the real interaction of the part Latent Factor modeling). A first-order

estimate of the bias involved in rui's score is given by the following equation

(Parambath, 2013):

28

(2-14) 𝑏𝑏𝑢𝑢𝑢𝑢 = 𝜇𝜇 + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑢𝑢

Here, the observed score is divided into 4 elements. 1) Global average, 2) Item's bias,

3) User's bias, 4) User interaction with an item. This causes each element to explain

only the part of a corresponding signal. Systems based on minimizing the error

function will be trained (equation (2-15)) (Parambath, 2013).

(2-15)
 �

(𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑢𝑢𝑇𝑇 𝑞𝑞𝑖𝑖)2 +
𝜆𝜆 (‖𝑝𝑝𝑢𝑢‖2 + ‖𝑞𝑞𝑖𝑖‖2 + 𝑏𝑏𝑢𝑢2 + 𝑏𝑏𝑖𝑖2)

(𝑢𝑢 ,𝑖𝑖)∈𝐾𝐾
𝑞𝑞∗,𝑝𝑝∗ ,𝑏𝑏∗

𝑚𝑚𝑚𝑚𝑚𝑚

2.6.5 Additional Input Resources

Typically, when many users offer a low rating and ranking, it is difficult to reach a

general conclusion based on their tastes and interests. One way to overcome this

problem is to add additional resources to information about users.

Recommender systems can use tacit feedback to evaluate and evaluate users'

preferences and preferences. In fact, they can provide an explicit rating, without

considering and collecting the user's desire. A retailer can use their customers

'purchases or from customers' visit dates to learn user desires. In addition, they can use

them to estimate the ratings that may be offered by buyers.

For simplicity, consider an item with the implicit feedback of zero and one. N(u)

represents a set of items that the user prefers to buy them or rate them in a way. In this

way, the system is made up of users based on the items they implicitly prefer. Here is

a new set of item factors. The item i is expressed by 𝑥𝑥𝑖𝑖 ∈ ℝ𝑓𝑓. Similarly, a user who

points to items within N(u) is identified by the following vector (Parambath, 2013):

� 𝑥𝑥𝑖𝑖
𝑖𝑖 ∈𝑁𝑁(𝑢𝑢)

29

Normalizing this collection is usually helpful. For example, it can be normalized to the

following equation (Parambath, 2013):

|𝑁𝑁(𝑢𝑢)|−0.5 � 𝑥𝑥𝑖𝑖
𝑖𝑖 ∈𝑁𝑁(𝑢𝑢)

Other sources of information identify user attributes, for example, demographic or

demographic data. Again, in order to simplify, consider the positive and negative

attributes that the user has with the set of features A(u). This feature set can include

gender, age, national number, economic level, and other characteristics. Based on a

unique factor vector 𝑦𝑦𝑎𝑎 ∈ ℝ𝑓𝑓corresponding to each attribute, a user is identified by a

set of its properties (Parambath, 2013):

� 𝑦𝑦𝑎𝑎
𝑎𝑎 ∈𝐴𝐴(𝑢𝑢)

The matrix decomposition model should integrate all the signal sources that are

enhanced by the presence of the user (Relation (2-16)) (Parambath, 2013).

(2-16) 𝑟̂𝑟𝑢𝑢𝑢𝑢 = 𝜇𝜇 + 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑢𝑢 + 𝑞𝑞𝑖𝑖𝑇𝑇[𝑝𝑝𝑢𝑢 + |𝑁𝑁(𝑢𝑢)|−0.5 � 𝑥𝑥𝑖𝑖
𝑖𝑖 ∈𝑁𝑁(𝑢𝑢)

+ � 𝑦𝑦𝑎𝑎
𝑎𝑎 ∈𝐴𝐴(𝑢𝑢)

]

2.6.6 Temporal Dynamics

So far, the proposed models have been introduced statically. In fact, the image of the

product and its popularity are continually changing and emerging as a new product.

Similarly, users' desire can evolve and can be changed. Therefore, the system should

consider the effects when it shows dynamism.

The matrix decomposition approach is appropriate for applying time effects and can

increase accuracy with respect to it. Matrix decompositions by considering distinct

30

phrases allow the system to have distinctly different behaviors at different times.

Specifically, the following phrases change over time:

 Items orientations 𝑏𝑏𝑖𝑖(𝑡𝑡)

 User orientations 𝑏𝑏𝑢𝑢(𝑡𝑡)

 Also, the users preferences 𝑝𝑝𝑢𝑢(𝑡𝑡)

The first-time effect is that the popularity of an item can change over time. For

example, movies can be added to or removed from popular movie listings based on the

impact of external factors. Therefore, in this 𝑏𝑏𝑖𝑖 model, which represents the orientation

of an item, it is considered as a function of time. The second time impact allows users

to change their scores over time. For example, a user rating a particular 4-star movie

can later change its score to 3 stars. It should also be noted that the evaluator's identity

could change over time. In this model, the parameter 𝑏𝑏𝑢𝑢 is also designed as a function

of time (Parambath, 2013).

The temporal dynamics proceed as stated. They continue to affect the user's desires

and the interaction between users and items. Users change their interest over time. For

example, a fan of psychological-style plays may become a fan of criminal movies next

year. Similarly, people's perspective about actors and directors can change over time.

These issues have been applied to this model, considering user factors as a function of

time. But unlike people, items are static and they do not change over time. Therefore,

the relation (2-14) can be rewritten with the application of temporal dynamics (2-17)

(Parambath, 2013).

(2-17) 𝑟̂𝑟𝑢𝑢𝑢𝑢 = 𝜇𝜇 + 𝑏𝑏𝑖𝑖(𝑡𝑡) + 𝑏𝑏𝑢𝑢(𝑡𝑡) + 𝑞𝑞𝑖𝑖𝑇𝑇𝑝𝑝𝑢𝑢(𝑡𝑡)

31

2.6.7 Input with Different Reliability Levels

In some settings, all observed scores do not have the same level of confidence and

weight. For example, widespread advertising for a particular item cannot properly

reflect the features of that item. Similarly, the system may face users who seek to rank

differently for that product in order to advertise specific products.

Another example relates to a system made with tacit feedback. In such systems that

are currently interpreting the behavior of the user, it is difficult to determine precisely

the priorities and desires of the user. Hence, the system works with a binary

representation that offers both “willingness to product” and “unwillingness to product”

state. In such cases, determining the confidence coefficient of these estimates is a

valuable issue. The determination of the confidence coefficient can be based on

existing numerical values that indicate the frequency of the actions. For example, how

long the user spent viewing a show or with what frequency bought an item. These

numerical values represent the degree of assurance in each observation. There are

various factors that do not have a particular impact on the user's perspective; they may

cause a momentous event. Though events that occur alternately have reflect on user

feedback with higher probability.

The matrix decomposition model can accept various levels of confidence so that it

allocates less weight to less obvious observations. If the confidence of 𝑟𝑟𝑢𝑢𝑢𝑢 is shown

with 𝑐𝑐𝑢𝑢𝑢𝑢, then the function model will result in the following cost (Parambath, 2013):

(2-18)
 �

𝑐𝑐𝑢𝑢𝑢𝑢(𝑟𝑟𝑢𝑢𝑢𝑢 − 𝜇𝜇 − 𝑏𝑏𝑢𝑢 − 𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑢𝑢𝑇𝑇 𝑞𝑞𝑖𝑖)2 +
 𝜆𝜆 (‖𝑝𝑝𝑢𝑢‖2 + ‖𝑞𝑞𝑖𝑖‖2 + 𝑏𝑏𝑢𝑢2 + 𝑏𝑏𝑖𝑖2)

(𝑢𝑢 ,𝑖𝑖)∈𝐾𝐾
𝑞𝑞∗,𝑝𝑝∗ ,𝑏𝑏∗

𝑚𝑚𝑚𝑚𝑚𝑚

32

2.7 Use of Genetic Algorithm for Matrix Factorization

A genetic algorithm is a tool by which the machine can simulate the natural selection

mechanism. This is done by searching the problem space to find a superior answer,

and not necessarily optimal. The genetic algorithm can be called a general search

method that mimics the laws of natural biological evolution. In fact, genetic algorithms

use Darwin's natural selection principles to find the optimal formula for predicting or

matching patterns. Genetic algorithms are often a good option for regression-based

prediction techniques. The genetic algorithm, which is the method of optimization

inspired by the nature of the living organism that can be categorized as straightforward

and random search as a numerical method. This algorithm is a repetition-based

algorithm, and its initial principles have been adapted from genetic science as

previously mentioned and invented by imitation of some observed processes in natural

evolution. This algorithm is used in a variety of problems such as optimization,

identification, and control of the system, image processing, and hybrid problems, the

determination of topology and the training of artificial neural networks and decision-

making systems (Salomon, 1996).

The Genetic algorithm as an optimization computational algorithm, with consideration

of a set of spatial points in each computational recurrence, effectively searches for

different areas of the answer space. In the search mechanism, though, the value of the

objective function of the entire solution space is not computed, but the calculated value

of the objective function for each point is in the mean value of the target function for

each point and in the averaging of the target function in all sub-spaces where that point

is dependent It is interfered with, and these sub-spaces are statistically equated in terms

of the objective function. This mechanism is Implicit Parallelism. This process leads

to the search for space in the regions where the mean of the statistical function of the

33

objective function is high and the possibility of an absolute optimal point in them is

greater. Because in this method, unlike the replication methods, the search space is

searched comprehensively, there is less possible convergence to a local optimal point

(Srinivas & Patnaik, 1994).

In the genetic algorithm, a set of design variables is encoded by strings of Fixed Length

or Variable, which in their biological systems refers to them as chromosomes or

individuals. Each strand or chromosome shows a response point in the search area.

The structure of the strings, a set of parameters that is represented by a particular

chromosome, is a genotype and its decryption is a phenotype. Each repeat step is called

generations and sets of responses in each generation called the population. Genetic

Algorithm By providing a user-user matrix and an item-item, the R-matrix is split into

two U and I matrices, so that the multiplication of these two matrices has the least error

in rebuilding the training set. Genetic Algorithm Initially generates random values for

both matrices and improves parameters. By reducing the RMSE error, the training set

goes up to the global optimal problem. Finally, the best answer is to contain two user-

user and item-item arrays, each multiplied by a new R 'matrix, which includes the

unknown values of the R matrix, and has new suggestions within itself.

2.8 Cosine Similarity Criterion for the Item-based Similarity

The collaborative filtering method, as previously discussed, is based on other users'

feedbacks on finding the user-favorite item. In identifying the user x’s favorite items,

two major categories of solutions, one based on the user's behavior and the other one

based on the item's profile, are proposed and presented. The method which makes

suggestions based on the user's behavior finds the most similar user (s) based on the

user’s profile characteristics and introduces their interests as a suggestion to the user

x. The basis of the item profile-based solution is to focus on the items which the user

34

chooses and is similar to other items regarding technical specifications and appearance.

The relations (2-19) and (2-20) represent the method of calculating the most common

user based on user x and the most similar item based on the item selected by user x

(Schafer, Frankowsk, Herlocker, & Sen, 2007). The sim function in relations (2-19)

and (2-20), means finding the similarity between two users or two items. In (2-4) and

(2-5), the value of k, which is the sigma subfield, represents the size of U' or I' where

U' represents users which are similar to the user Ui and I' represents goods similar to

Iu .

(2-19) 𝑁𝑁𝑖𝑖
𝑢𝑢,𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑈𝑈′ � 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)

𝑣𝑣∈𝑈𝑈′,𝑣𝑣≠𝑢𝑢
𝑈𝑈′⊆𝑈𝑈𝑖𝑖,|𝑈𝑈′|=𝑘𝑘

(2-20) 𝑁𝑁𝑢𝑢
𝑖𝑖,𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼′ � 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗)

𝑗𝑗∈𝐼𝐼′,𝑗𝑗≠𝑖𝑖
𝐼𝐼′⊆𝐼𝐼𝑢𝑢,|𝐼𝐼′|=𝑘𝑘

Based on the relations (2-19) and (2-20) for each user and each item, we will have

choices that will either suggest an simcv(i,j) item or introduce users similar to x.

Relying on a user based on the similarity criterion is not a reliable solution to predict

the future behavior of the user x; with the help of the k-nearest neighbor method, one

can search for and find the average behavior of the items or similar users in the

multidimensional space of the problem and offer the outcome as a suggestion. The

relationship (2-21) and (2-22), using averaging on the k-neighbor of the user or the

proposed item, will give a more accurate result to the output (Schafer, Frankowsk,

Herlocker, & Sen, 2007).

(2-21)
𝜙𝜙𝑢𝑢𝑢𝑢 =

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝑣𝑣∈𝑁𝑁𝑖𝑖
𝑢𝑢,𝑘𝑘

𝑘𝑘

35

(2-22)
𝜙𝜙𝑢𝑢𝑢𝑢 =

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝑁𝑁𝑢𝑢
𝑖𝑖,𝑘𝑘

𝑘𝑘

For a closer look at what has been told about the nearest neighbor and the similarity

criterion in collaborative filtering based on the neighbor, the example of the films

watched by four users is plotted and evaluated according to the ratings each user has

given to the films. Table 2.3 shows the similarity of each film based on its

predetermined characteristics and based on the trigonometric vector criteria. On the

other hand, Table 2.4 shows the similarity of users’ selections with one another,

namely, the calculation of the relationship (2-21).

Table 2.3: Similarity of films based on the calculation of the relationship (2-22)
(Sarwar, Karypis, Konstan, & Riedl, Item-based collaborative filtering
recommendation algorithms, 2001)

Simcv(I,j) Titanic Pulp
Fiction Iron Man Forrest

Gump
The

Mummy
Titanic 1.0 0.87 0.67 0.82 0.67

Pulp Fiction - 1.0 0.87 0.71 0.87

Iron Man - - 1.0 0.41 0.67

Forrest Gump - - - 1.0 0.41

The Mummy - - - - 1.0

Table 2.4: Similarity of users based on the calculation of the relationship (2-21)
(Sarwar, Karypis, Konstan, & Riedl, Item-based collaborative filtering
recommendation algorithms, 2001)

Simcv(u,v) Joe Ann Mary Steve

Joe 1.0 0.75 0.75 0.87

Ann - 1.0 0.75 0.58

Mary - - 1.0 0.58

Steve - - - 1.0

36

By calculating the relation (2-21) for a user named Steve and items Titanic and Forrest

Gump, we see that the user may be more interested in the Titanic movie.

𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,2 = {𝐽𝐽𝐽𝐽𝐽𝐽,𝐴𝐴𝐴𝐴𝐴𝐴},𝜑𝜑𝑆𝑆𝑆𝑆 =

𝑎𝑎𝑐𝑐𝑐𝑐(𝑆𝑆, 𝐽𝐽) + 𝑎𝑎𝑐𝑐𝑐𝑐(𝑆𝑆,𝐴𝐴)
2

=
0.87 + 0.58

2
= 0.725

𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,2 = {𝐴𝐴𝐴𝐴𝐴𝐴,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀},𝜑𝜑𝑆𝑆𝑆𝑆 =

𝑎𝑎𝑐𝑐𝑐𝑐(𝑆𝑆, 𝐽𝐽) + 𝑎𝑎𝑐𝑐𝑐𝑐(𝑆𝑆,𝑀𝑀)
2

=
0.58 + 0.58

2
= 0.58

The method used was the similarity calculation method based on the similarity of the

users (nearest neighbor of the relation (2-21)). Another way, as suggested before, is

the similarity method based on the similarity of item properties. In the example below,

you will see that this method also gives a vote for the Titanic film to introduce to Steve.

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,2 = {𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼},𝜑𝜑𝑆𝑆𝑆𝑆 =

𝑎𝑎𝑐𝑐𝑐𝑐(𝑇𝑇,𝑃𝑃) + 𝑎𝑎𝑐𝑐𝑐𝑐(𝑇𝑇, 𝐼𝐼)
2

=
0.87 + 0.67

2

= 0.77

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,2 = {𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼},𝜑𝜑𝑆𝑆𝑆𝑆 =

𝑎𝑎𝑐𝑐𝑐𝑐(𝐹𝐹,𝑃𝑃) + 𝑎𝑎𝑐𝑐𝑐𝑐(𝐹𝐹, 𝐼𝐼)
2

=
0.71 + 0.41

2
= 0.56

Finding one or more items and to offer them to a user is not the only aim consistently.

Sometimes knowing the user's potential score to a movie, product or one of the

provided services will be very effective in improving or modifying the existing system.

In collaborative filtering, methods are presented based on users' average behavior in

choosing similar items and also the average points of the items by users, to guess the

score of an item by a particular user. Relationships (2-23) and (2-24) calculate the user

u’s score to the item I based on the similarity of the two users (according to the selected

items) (Sarwar, Karypis, Konstan, & Riedl, Item-based collaborative filtering

recommendation algorithms, 2001).

37

(2-23)
𝜑𝜑𝑢𝑢𝑢𝑢 = 𝜑𝜑𝑢𝑢���� +

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)𝑣𝑣∈𝑁𝑁𝑖𝑖
𝑢𝑢,𝑘𝑘

. (𝜑𝜑𝑣𝑣𝑣𝑣 − 𝜑𝜑𝑣𝑣����)

∑ |𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢, 𝑣𝑣)|𝑣𝑣∈𝑁𝑁𝑖𝑖
𝑢𝑢,𝑘𝑘

(2-24)
𝜑𝜑𝑢𝑢���� =

∑ 𝜑𝜑(𝑢𝑢, 𝑖𝑖)𝑖𝑖∈𝐼𝐼𝑢𝑢
|𝐼𝐼𝑢𝑢|

The relationship (2-24) is how to calculate the average user rating for all of his selected

items. Relationships (2-25) and (2-26) also calculate an item's score for a particular

person based on similar items (Sarwar, Karypis, Konstan, & Riedl, Item-based

collaborative filtering recommendation algorithms, 2001).

 (2-25)
𝜑𝜑𝑢𝑢𝑢𝑢 = 𝜑𝜑𝚤𝚤� +

∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗)𝑗𝑗∈𝑁𝑁𝑢𝑢
𝑖𝑖,𝑘𝑘

. (𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝚥𝚥���)

∑ |𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖, 𝑗𝑗)|𝑣𝑣∈𝑁𝑁𝑢𝑢
𝑖𝑖,𝑘𝑘

 (2-26)
𝜑𝜑𝚤𝚤� =

∑ 𝜑𝜑(𝑢𝑢, 𝑖𝑖)𝑢𝑢∈𝑈𝑈𝑖𝑖

|𝑢𝑢𝑖𝑖|

The trigonometric vector cannot properly measure the variance and average scores in

calculating the similarity between two users or two items. Therefore, the cosine-

correlation similarity criterion shown in (2-27) and (2-28) is respectively used for the

user and item (Sarwar, Karypis, Konstan, & Riedl, Application of Dimensionality

Reduction in Recommender System - A Case Study, 2000).

 (2-27)
𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑝𝑝(𝑢𝑢, 𝑣𝑣) =

∑ (𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝑢𝑢����)𝑖𝑖∈𝐼𝐼𝑢𝑢𝑢𝑢

(𝜑𝜑𝑣𝑣𝑣𝑣 − 𝜑𝜑𝑣𝑣����)

�∑ (𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝑢𝑢����)𝑖𝑖∈𝐼𝐼𝑢𝑢𝑢𝑢

2 ∗ �∑ (𝜑𝜑𝑣𝑣𝑣𝑣 − 𝜑𝜑𝑣𝑣����)𝑖𝑖∈𝐼𝐼𝑢𝑢𝑢𝑢

2

 (2-28)
𝑠𝑠𝑠𝑠𝑚𝑚𝑝𝑝𝑝𝑝(𝑖𝑖, 𝑗𝑗) =

∑ (𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝑢𝑢����)𝑢𝑢∈𝑈𝑈𝑖𝑖𝑖𝑖

(𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝚥𝚥���)

�∑ (𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝚤𝚤�)𝑢𝑢∈𝑈𝑈𝑖𝑖𝑖𝑖

2 ∗ �∑ �𝜑𝜑𝑢𝑢𝑢𝑢 − 𝜑𝜑𝚥𝚥����𝑢𝑢∈𝑈𝑈𝑖𝑖𝑖𝑖

2

The similarity function in relations (2-27) and (2-28), based on the Pearson correlation

similarity criterion for users and items, can be used. The behavior of the similarity

38

criterion in the above relationships is based on the effect of the average behavior of

users (items) similar to the user u (item i) and using relationships (2-27) to (2-28).

The implemented method can predict the interest of users in various items, and these

predictions are based solely on the history of the user’s behavior and regardless of the

intermediate relationship of the factors determining the ratings, or causes, such as how

to attract users.

2.9 Holonic Multi-agent Systems

A multi-agent system will be able to complete a project by defining different tasks and

events for different agents with a mutual yet public purpose. For example, in a smart

home, each of the home appliances can be an agent or some controlling agents may be

in charge of controlling several parameters at homes such as the temperature or

electricity usage. Although the tasks have a direct relation to the number of intelligent

agents and controlling factors, the entire project is one, and the goal of the whole

system is to reduce energy consumption in the smart home. Hence, with the clever

design of a multi-agent system, it will be possible to decentralize the task and provide

a quicker and more accurate functioning (Hoek & Wooldridge, 2008).

Multi-agent systems are used to manage and complete complex projects. In such

projects, the controlling and influencing factors are more than one, so each agent will

be responsible for reviewing, controlling, and performing the assigned tasks. Another

important feature of multiprocessing is its interactive behavior. Usually, a problem in

the world of technology will be taken into the domain of multi-agent systems when

the segmented sectors will also need to interact with each other. For instance,

remember the example of a smart home. If all of the controllers can be managed with

a central controlling system, maybe less time and cost will be needed compared to a

39

multi-agent system. However, the problem will be taken to the domain of multi-agent

systems when exact implementation of tasks of each section is required individually

and also the interaction between all the sections is a must to complete the project. For

example, if the central control system is constantly checking the conditions while the

whole smart home is to being cabled, the real-time functioning of the system will be

very costly. But if each autonomous agent independently examines the possible

condition changes, it may result in a lower cost for the whole system. The main

challenge remains unresolved, and that is the discussion of the interaction of intelligent

agents. What is the reason for the need for interaction? The answer, however, is very

simple; when an air conditioner is supposed to reduce force a few degrees due to the

high power consumption of the refrigerator in the other room, it will be necessary to

have a simple exchange of messages and making decisions.

The principles of independence and exchanges are two important principles in the

formation of a multi-agent system. Figure 2.2 shows a representation of a hypothetical

model of multi-agent systems. In the system below, there are four independent agents

that communicate with each other, each of which identifies the output or input of the

other agent. In the following mode, there is no factor to control other factors (Fischer

et. al., 2003).

Figure 2.2: A multi-agent system with four agents (Fischer, Schillo, & Siekmann,

2003)

40

The word Holon was first used by A. Koestler in 1967, which means a structure

composed of similar units. In the process, the Holonic became an entity that was made

up of parts called the atomic. Each atom contained a series of tasks and processes that

worked independently, but to eventually complete the project, there was a need for

collective engagement. The difference between a Holonic and a multi-agent system is

the existence of an observer in the system. This observer has the task of controlling

exchange messages, checking errors, setting up the sub-agents, and stopping them.

This Holonic observer is designed to increase the optimal interaction at the level of the

Holonic so that each agent will call/stop at the required time, and each event is urgently

called to the position when needed. Figure 2.3 shows a depiction of a Holonic

demonstration model in which four agents are controlled by the central A supervisor

(Fischer, Schillo, & Siekmann, 2003) (Gaud, Gechter, Galland, & Koukam, 2007)

Figure 2.1: Representation of a hypothetical Holonic with 5 agents (Fischer, Schillo,

& Siekmann, 2003)

Recommendation systems are usually single-agent systems that, based on user-rated

scores for items, try to make predictions of other products of interest to the users. If it

is possible to implement a system in a single-agent form, the implementation of a

multi-agent version of the same system will not only burden the addition of extra

complexity to the system, but it will also require more computational costs and more

41

memory space (Fischer, Schillo, & Siekmann, 2003) (Rodriguez, Gaud, & Galland,

2014).

At first glance, there may be no need to use a Holonic or multi-agent system to design

a recommendation system. However, after leaving the frame of academic experiments

and entering the implementation of algorithms on real-world servers and electronic

commerce websites, it will be a completely different issue. At any given moment, tens

of thousands of new rating points are registered to different items by users on a website

like Amazon. On the other hand, several new products (items) will be added by the

vendors every minute, and most importantly, all data is not kept on a single server. In

other words, we do not have to deal with a system that contains training and test

information, and we are dealing with a large amount of previous information, current

processing, new goods, and, of course, new purchases. The more different and

independent tasks of a recommendation system extracted, the higher the chance of

designing a high-quality Holonic with more processing speed, higher accuracy, and

performance.

2.10 Review Repetition

In this chapter, the recommender systems and the issue of advancement of the system

were introduced and discussed. Various methods have also been mentioned for the

design and construction of recommender systems. One of the successful models is the

matrix factorization method and similarity and neighborhood algorithms, which make

the initial prediction and improvement of the decomposed matrix based on the methods

mentioned above very important. Finally, Holonic multi-agent systems has been

explained briefly. In Chapter 3, the proposed method for solving the recommender

system problem will be introduced and examined, using a Holonic cosine similarity

algorithm in a distributed manner.

42

Chapter 3

3 PROPOSED METHOD

3.1 Introduction to the Implemented Method

With the expansion of the Web and social networks, the world is encountering with

electronic commerce and online shopping service providers with millions of records

from tens of thousands of users who have commented on hundreds of thousands of

merchandises. In such a large volume of data, the use of traditional algorithms with

high processing time is practically impossible. For instance, Amazon stores more than

10,000 sales and more than a thousand comments every second in each state of the

United States. It is not only time-consuming but also cost-effective regarding

computational load to process all the existing data -which are generally in the size of

several Gigabytes- and then expect to use the results for a new user and suggest a new

recommendation.

To design an efficient, high-speed and real-time system, new methods that can update

their information without having to re-learn all of data are needed. These methods

should only decrease the quality of predictions and suggestions at the minimum level

if they do not increase. It is only by using a quick and real-time system that it is possible

to create a new list of offers by entering a new product or user, causing the sale of new

goods, create interest for the new user, and, of course, extending the user's time spent

on the site. In this chapter, we will first discuss the agents and events in the suggested

multi-event system, then the parallel computing side of the work will be explained.

43

To design a Holonic system, it is necessary to design and identify the agents and events

of the system. An event in a Holonic system involves an out-of-system event (system

input) or an event that has been deliberately compromised by a system. For example,

in the case of Smart House, the system will be logged in to the courier consumption

event by arriving at the period of the energy consumption peak. Or, in another

example, when the monthly consumption reaches the critical point, the system calls

the maximum saving event. Obviously, in each defined event, certain operations and

processes occur that is specific to that event. The definition of the agent is also clear

for the Holonic system, which includes its main tasks in the various events. For

example, for a cooler, the cooler temperature is reduced / increased, for the controller

of the lights, the lights are off / up, and so on.

3.2 Agents and Events in a Multi-event System

In order to be more precise on defining the structure of the system, the implemented

model is named as a distributed multi-event system rather than a multi-agent system.

The reason behind this clarification is the importance of the two principles of multi-

agent systems: Independence and Interactions of the agents. In the implemented

model, the canon of the work is focused on the roles of the events while the agents are

playing the role of the functions in the background. In another word, the model is

benefiting from the multi-event structure of the system to provide the solution. Also,

the model can function properly without any need of the agents to interact with each

other.

3.2.1 “NewEntry” Event

As previously mentioned, in a recommendation system with a huge amount of rating

records that is updated at any time, it is not possible to study all records at intervals

from the beginning to the moment. It is necessary to find methods that require minimal

44

processing and calculations during the process for the system to be updated. That is

why the main event of the implemented method is a new Entry event. This event will

be activated whenever a new record has entered the system that includes a user rating

for a product i. The purpose of creating this event is to calculate the favorable item

similar to the item i. In the next step, users who have already selected the same item

similar to the item i, will be selected by the cosine similarity approach and the new

item will be introduced to them. By launching the program and entering the first rating

record, similar items are found and offered to users. As the program receives more

records, the calculated similarities will be more accurate. Therefore it is expected that

as the time goes on, the proposed system error will be reduced due to an increase in

the dataset. In the defined event, the intent and purpose is to find items, similar to the

item I that is rated by user u, and then introduce it to him. Hence, if for example the

user u, record a rating for the item on the first day, then the items similar to itself will

be introduced to him. But if the user does not give a new rating in the next days, then

the list of the recommended items will not be updated. The lack of updating the list is

because this event should generally run once by the related agents.

3.2.2 “OnUpdate” Event

A new event named onUpdate has been introduced to avoid the problem of not

updating without a new rating. In this event, it is tried to find n similar users (n is a

small number between 1-10), after each new rating has been given by the user u, and

they will also be updated. Each time the event is called, the corresponding agent first

has the task of finding n similar users and then, based on the new list, find similar items

and updates the list if needed. To make the system update calculations do not slow

down the system, after reviewing every m records and every m times of calling

newEntry, the onUpdate agent will be called (m is a number between 1-10). Therefore,

45

every couple of seconds, the old users will also be confronting a change and updating

the list, if they find new users.

3.2.3 “ItemSimilarity” Agent

There are two categories of agents for calculating the list of recommended items,

updating and calculating prediction errors controlled by the central supervisor, which

is itself an agent. The first agent, ItemSimilarity, is responsible for calculating the

similarity of items and finding similar products for each user; thus, it identifies the

recommended items for each user. This agent also specifies the similar users for

updating inside the onUpdate event. Each agent can operate in any event or remain

inactive. The ItemSimilarity agent operates on both events. In the NewEntry event,

this agent first uses relation 2-28 to identify the items of the same type as the item I in

the new record. The number of similar items can be between 0 and I (the total number

of items). The similarity of the items, as stated above, is determined by the user's

interest and the item's features are neglected. This will also increase the processing

speed. After specifying the number of similar items, the current user u who was

interested in item I, will be introduced to a list of similar items. Note that the output of

equation 2-28 or the cosine similarity is a number between 1 and 5, depending on the

threshold (value 3), its high values will be suitable as a recommendation. The

algorithm 3-1 is a demonstration of ItemSimilarity agent.

46

In the OnUpdate event, the agent ItemSimilarity will also use the relation 2-28 to

calculate similar users to the user i. Then all of the n users that have the highest value,

meaning that they have the most similarity to the user u, are selected. In this event,

after assigning the similar users, the value is taken to the output to be passed by the

supervising agent to the computing agent. Each agent can be called once or multiple

times and can be killed afterward. By doing so, each agent will even be able to compute

and find the similar products with the least computational system and with sufficient

level of access to the server. Algorithm 3-1 is a demonstration of the behavior of the

agent ItemSimilarity.

Algorithm 3.1: pseudo-code function of ItemSimilarity agent

47

3.2.4 “Predictor” Agent

The next agent is named Predictor, which is responsible for calculating the error and

recording the predicted results. This agent only activates on the NewEntry event, and

if the prediction records reach a specified number, it calculates the system's error

regarding actual and predicted values. Based on the abilities of the system in use and

the processing volume, this amount can be changed and adjusted. For example, in the

simulations, after every 1,000 predictions made in the system, the error value of the

specified values, that is, the predicted scores are recorded relative to the actual values,

and ultimately, the error rate is calculated based on the average of the values calculated

and then will be sent to the output. Another task for this agent is to create a new

recommendation for each user that has been calculated in the previous section, and the

middle results are stored in a file. This file can be collected at the end on a shared

server or by a shared-memory sharing method to be available to other servers. This

will make it easy to review and offer new items to new users anywhere in the world.

Algorithm 3-2 contains an executable pseudo code of predictor agent.

Algorithm 3.2: pseudo-code function of Predictor agent

48

3.2.5 “Recommender” Agent

As discussed earlier, in any multi-agent Holonic system, we need a central observer or

central agent as the supervisor. This is the role of the Recommender agent in the

proposed model. This agent first receives incoming records including the ratings. With

a simple preprocess, the agent will first categorize the rating, item number, and user

number, and then it will activate the newEntry by manually calling the event. It should

be noted that at the beginning of the running of the central Recommender agent, the

two Prediction and ItemSimilarity agents will run to the required number (depending

on the servers or data volume). Then by activating the new Entry event, both agents

are automatically activated, because they both implement and override the event within

themselves. The ItemSimilarity agent according to the new score, the user's number

and the items, find the similar items for the user and sets each item in the list between

1 and 5 for the user (the values above 3 means that this item is suitable for a

recommendation). The predictor agent is also activated by storing the new 1000

records each time and calculates the prediction error.

In the continuation of the activity, the Recommender agent invokes the onUpdate event

by recording and predicting new ratings for each value n (number from 100 to 1000),

then activates ItemSimilarity agent inside the event, and m represents the user similar

to the current user. The ItemSimilarity agent's output which is the similar users will

get back to Recommender and this agent will start to calculate recommended items

again by re-calling the newEntry event for every similar user and finally updates the

list of items. This way, if a user does not have a new activity, he will still have the

chance to be updated when recording a few ratings. The main feature of the designed

model is the simultaneous operation of intelligent agents, such that the Recommender

agent can split a task into two other agents, and at the same time, other sample agents

49

from the same type as this agent are made to speed up the process. The algorithm 3-3

is a pseudo-code implementation of the Recommendation agent.

Algorithm 3.3: pseudo-code function of Recommender agent

3.3 Real-time Parallel Execution

The proposed method solves the two main problems of a recommender system in

large-scale sites and databases. The first problem was the need to train the whole train

set over time. For example, a system that uses matrix factorization to predict new

ratings needs to be redefined for new items or new users that have no value to

recalculate the user-product matrices. On the other hand, the use of a system that runs

consecutively causes only one part of the calculation of the similarity of the product

or the similarity of the user or the prediction of the new ratings and the calculation of

the error run at any moment, while in the introduced Holonic model each section can

run in parallel and without any dependency on the other sections. Along with this

feature, the proposed system, unlike most of the other approaches that require a large

50

number of records to start the prediction, can start the process of recommending from

the first moment, even with two products and two users.

3.4 Continuous Updating Feature

Another important ability of the proposed approach is the continuous updating of the

information and a list of proposed products. In the onUpdate event, users similar to the

current user are selected, and their items are also updated. The main reason for

designing this idea is that when a new user or a new rating is registered in the system,

there is a possibility that the rated item may not exist in the list of similar users' list.

Therefore, by choosing the users similar to the current user u, it will be possible to

examine the interest rate and rating of the item in question (item i) according to the

Cosine equation. Also, if a user has not been updated for a long time, and if the similar

items and users have not recorded any ratings during this time, they will change the

user's wish list and his recommended items.

3.5 More on the Holonic Structure

The ability to define more than 1 set of the intelligent agents for the Holonic (other

than the Recommender agent), is another feature of the implemented model. It is not

necessary for an agent to take responsibility for reviewing and calculating all the new

ratings when a new score is entered into the system every second. Instead, some agents

equal to the number of available computers, servers or even internal processors of a

computer can be defined to speed up the calculation process. Since each agent is

separate and independent, and the results are transferred to the supervisor at the same

time, the calculations are performed separately, and of course, the results are stored in

a shared file that can be shared.

51

The design of Holonic multi-event system may increase the speed, efficiency, and

improvement of accuracy due to multiple updates, but there is still a challenge.

Defining and designing different agents does not mean the parallel execution of all

samples of an agent, and each agent ought to wait for agents of the same type due to

resource limitations. There is a need for a parallelization method or assignment of

processing resources to each agent. Without the design of a model with parallel

implementation or assigning more than one resource to intelligent agents, the

implementation of the program will be very slow. Suppose a case of processing

Amazon data with 19 gigabytes, using a computer that can only use 8 gigabytes or 16

gigabytes of RAM each time, by folding the entire data into the hypothetical 20 MB

sections and converting to about 1000 new datasets; it will probably require the system

to run the procedure for thousands of times to complete the operation.

3.6 A Distributed Solution using Hadoop and map-reduce Technology

Using the Hadoop system and map-reduce technology will solve this problem. map-

reduce technology is designed to solve problems with bulk datasets. Usually, a map-

reduce model consists of two parts of the map and Reduce, and sometimes with an

intermediate stage named Merge. The main task of the map-reduce framework is to

provide a mechanism for data entry that includes massive information, instead of fully

entering the main memory of the computer, which will also be accompanied by the

filling and error of the RAM, to enter the main memory in separated sets of data. The

framework provides the mechanism for dividing data and input files and data streams,

and the encoder does not need to struggle with input methods or disunite them. The

main challenge in using the map-reduce framework is the use of two main stages so

that the problem-solving method can be linked in separate segments (Thusoo, et al.,

2009).

52

A simple example may slightly simplify the explanation above. Suppose we have 200

million records and aim to find the maximum number in this record. Due to the

inability to load all data into a single computer, and by rewriting the Map function in

the map-reduce framework, the maximum value for each section of the dataset being

received will be calculated. In the next step that refers to the Reduce function, all the

values will be received. Suppose the system sends a million data to the Map function

every time and therefore there will exist 20 maximum values. Now in the Reduce

function, the remaining values will also be examined to find the maximum value, and

the final value is the optimal maximum value of the dataset.

In addition to data segmentation, the Hadoop technology provided in the form of a

framework, allows each section of the data to be run on the part of the resources

(processor and RAM). For example, a computer with a 2-core processor can

simultaneously execute two map functions and increase the speed of the program. Note

that the Hadoop framework automatically does the allocation of resources and

executing codes. In addition to allocating local resources, Hadoop can distribute data

on the server resources, or even if we have some computers on a network, the data and

computing operations can be distributed on each computer. This operation will

increase the speed and efficiency with two constraints: first, if the map function for

each run is independent, and secondly if the final result can be cumulated within the

Reduce function.

The problem is not always this simple. For example, suppose there are 20 million

sample data that has to be divided into 10 clusters, each of which has N features. If 20

runs take place with one million data per map, and each time there are 10 clusters, we

will probably have 20 * 10 clusters with minimal common features because different

53

samples are checked in each map function. In such a case, a solution should be

designed that allows the final results to be uniformly integrated with the appropriate

combination in the Reduce function.

The proposed method has been implemented on the map-reduce frameworks in

Hadoop to increase the processing speed and efficiency, as well as the possibility of

distributing the designed model. With this condition, we will be able to calculate each

segment of the dataset individually and on a separate resource, and then the results of

separate performances will be combined using the method developed in the Reduce

function. In the map section, the designed recommender system model has been run

on each of the dataset segments separately. Then based on the existing users, items,

and the recorded ratings, the ratings for items with no scores will be predicted, and

new scores will be recommended to them. The output of this section includes new

predicted ratings for each user.

In the Reduce section, these results need to be combined. For instance, a user may

receive n new products as a recommendation in a run, while it will receive m new

items as another recommendation in a different run. The current user must receive m

+ n recommended items in the new version. On the other hand, there may be a

commonality between these items, or an item that is being recommended in an

implementation may receive a low rating in another run, in which case the ratings must

be combined. Outputs of each running of the map function must be saved in a file on

every run. When there are multiple ratings for one item or multiple ratings by one user,

the average of the ratings needs to be calculated. Calculating the average in the

integration section has solved this challenge. Thus, if conflicting and different values

are recorded for a user-item, an average value will be recorded by calculating the

54

average of the features of the item and interest of the user. The implemented model is

fully represented in the flowchart shown in Figure 3.1. Figure 3.2 also shows the

relationship between the agents designed in the Holonic.

Figure 3.1: Designed Holonic multi-event recommender system flowchart

Figure 3.2: Schematic of the interaction of agents in the proposed Holonic model

3.7 Methodology Closure

In this section of the thesis, the proposed method and the details of the operation of the

designed model were discussed. The implemented method uses the cosine equation

introduced in the 2-28 relation in the calculation of item-item or user-user similarities.

55

The HMES has been used for a faster and separate calculation of the different segments

of a large dataset or a data stream. This also contributes to a quicker update of the

database (knowledge base) of the proposed system. On the other hand, this will cause

a platform to be provided that each agent will try to predict ratings for other items that

the user has not given any scores to, separately from other agents. By implementing

the proposed model on the map-reduce Hadoop framework, the possibility that the

program was designed to be distributed on local and distributed network resources has

become possible. In the next chapter, various experiments are designed to evaluate the

implemented method. Also, several similar and different models are simulated for

reviewing and comparing the proposed method with the usual methods of the proposed

system, the results of which are presented in the form of charts and tables in the next

chapter.

By implementing the implemented model on the Hadoop map-reduce framework, it

became possible to run the designed program on local resources and distributed on the

network. In the next chapter, various experiments are designed to evaluate the

proposed method. Also, various similar yet different models are simulated for

reviewing and comparing the proposed method with the usual methods of a

recommender system, the results of which are presented in the form of statistical charts

and tables in the next chapter.

56

Chapter 4

4 EXPERIMENTS AND RESULTS

In the previous chapter, a new method of recommending an item to a user has been

introduced. The main focus of the proposed method is to work on massive bulks of

data or live data stream. That is why the implemented method uses successive learning

during runtime instead of one-shot learning. In addition to that, the new system

recommends users new suggestions based on the similarity of the items as soon as new

information is received. By increasing the number of records, this operation will

reduce the prediction error, but this will increase the processing speed and, of course,

do not require initial calculations every time.

The use of several Holonic and Hadoop framework in the implemented method, have

made it possible to distribute the computing load on several resources. In addition to

that, since the intelligent agents are independent, one can perform several similar tasks

to increase the procedure's speed by using the agents in a parallel timeline. Ultimately,

the use of a central observer agent, occasionally called supervisor, will maximize the

coordination between the designed agents and events. This chapter will examine the

test conditions to analyze the results produced by the proposed model. Moreover, to

compare the fairness of the implemented method with similar methods on the subject,

another experiment has been designed, which is discussed in the following chapter. In

the following sections, firstly the data used will be reviewed. Later on, the parameters

57

and evaluation criteria of the experiment will be introduced and explained. Finally, the

results of the tests will be analyzed, and a final conclusion of the analysis will be stated.

4.1 Dataset

To investigate and test a recommender system that is suitable for processing massive

densities of data, one might safely say that no data resource is better than Amazon's

public data sets. The full Amazon data is available to download at

http://jmcauley.ucsd.edu/data/amazon/. From the "ratings only" category, a list of

different items, including user ratings for different items can be downloaded.

Generally, "ratings" files are .csv files which their values are separated by the comma

mark (,). Each row of this dataset consists of a user ID, an item ID, a user's rating score

to the product, and a system login time indicating the exact time which the rating has

been recorded on the system. Figure 4.1 shows a sample section of a list called

ratings_Musical_Instruments.csv. For example, in the first line, the user with the ID

number A1YS9MDZP93857, has given a rating of 3 points to the item 6428320, and

this record was recorded at the system time of 1394496000. The total files on Amazon,

which include only recorded rating scores, are about 2.3 Gigabytes, including 83

million and 680,000 registered records (McAuley & Yang, 2016).

In the applied implementations, 80% of the dataset is used for training the train set,

and 20% of it is used for testing. Because the system's performance is based on step-

by-step learning and is not in a constant manner, available items for any given record

for any user will be predicted. If the predicted items are from the test dataset, then the

error based on the actual and predicted values will be calculated, and these similarity-

recommendation calculations will continue until the end of the training set. Finally, a

final calculation will be made for the error of the recommender system and test set. It

should be noted that due to the need to compare with other methods, which are usually

http://jmcauley.ucsd.edu/data/amazon/

58

much slower than the proposed method, only 100,000 records were tested and

calculated, and all data was not checked since other methods require several days to

be calculated and recorded.

Figure 4.1: A sample section of the Amazon data files in MS Excel

4.2 Programming languages, Settings and Parameters

To have a fair experiment, all simulations on the implemented model and comparable

models have been done on a single laptop. The laptop has a 5-core processor with two

physical cores, each capable of 2.5 GHz. The RAM used in the device has a storage

capacity of 6 GB, and the SARL programming language has been used to implement

the proposed model and the 2016 MATLAB for implementing the comparable models.

The implemented model has been coded using SARL, which is considered to be

tailored for designing Holonic systems. A simplified model of all of the compared

methods (MMD, SVD, Asymmetric, GA matrix factorization, ALS, Gradient descend,

and Cosine similarity) have been implemented and used using Matlab. The pseudo-

codes of these Matlab implementations are given in the appendix of this thesis.

SARL programming language is a language specific to the programming of multi-

agent and Holonic systems. The language, which is part of the Janus 2.0 project, is

59

designed in Java and is presented in the Ellipse IDE. The following link is provided to

download the directly embedded version of eclipse:

 http://www.sarl.io/download/index.html. SARL is very similar to Java or the mother

language C with some small differences and limitations in coding, which makes

learning and using of this language very easy. This programming language enables the

user to define events and agents, and automatically manages the events and

synchronization of the operation. All events required by an agent such as start-up and

termination have been designed in SARL, and if necessary, the user can add personal

events to the set as well (Rodriguez, Gaud, & Galland, 2014).

The parameters included in the runtime and the tests are listed in Table 4-1. Changing

these parameters has a serious influence on the speed and accuracy of the

implementation of the program and the quality of the performance of the recommender

system. The reason of this impact is that the defined values will determine the time of

saving and merging the results, and by varying these values, the effect of the sparseness

of the matrix will increase or decrease, resulting a direct effect in averaging; as the

final average is the predicted number of the recommender system, the changes in this

value will also be effective on the prediction error value. Other values, such as the

number of similar users, will reduce or increase the sensitivity of updating.

At least 1000 records in the implemented simulations are required for the system to

activate the similar users and item rating update phases. In other words, before the

entry of 1000 records, the designed system will not enter the similar user phase. In

simulating much larger data, of course, this number needs to be much larger, say, ten

thousand or a hundred thousand because at the beginning of the process, users are

different and the procedure of updating users and similar items will only slow down

60

the execution of the program. After activating the similar user update phase, with the

arrival of every 100 new rating records, ten similar users will be found, and their list

of items will be updated. As the number of records that are to be used for updating

increases, the speed of the program will be increased. However, the updating process

itself will be slower. Also, increasing the number of similar users from 10 to more

numbers will increase the variety, but will be accompanied by a slowdown in the

implementation of the program.

Table 4.1: Parameters used in the simulations

Minimum number of records to start updating the similar users 1000

Number of records to repeat updates 100

The number of similar users per update 10

Minimum number of records to save the results of each Hadoop
run 5000

The number of records to save the results of each Hadoop run 1000

As mentioned in the previous chapter, each Hadoop run must have intermediate results

saved and integrate the middle results at the end or during the execution of the

program. An intermediate file of the predicted results from the current Hadoop run will

be saved after reviewing at least the first 5,000 records. There may be only one Hadoop

run on a system at any time, or there may be a run on each core of the system, and

have several Hadoop runs in parallel, or even have many runs on different servers to

speed up the process. Using the shared file, it is easy to integrate the results so that all

servers can use up-to-date information. For this reason, after 5,000 runs, the new

prediction data is stored in the file, and after that, by every 1,000 new records that enter

the system, each Hadoop run will save the new data. In this way, this information,

along with other data from the parallel / serial Hadoop runs, should eventually be

61

merged by averaging the calculated prediction results. With the increase of 5,000 and

1,000, the results will have less fluctuation because they will include more changes to

records, but obviously, the process of updating will be slower.

All values listed in Table 4-1 are values that are based on the experience of different

implementations, these values are set to not increase the error as much as possible, but

also increase the speed of the program execution. By increasing the size of the data,

changing the speed of the system on which the model will run on, or the degree of

sparseness (the ratio of user ratings to the entire item-user matrix), these parameters

should be re-adjusted and tested according to that system.

4.3 Evaluation Criteria

To evaluate the implemented method and compare it with other conventional methods,

it is necessary to introduce the same evaluation criteria for all and to examine the result

on its basis. In this section, the usual evaluation methods for the comparison of the

proposed system will be introduced. These evaluation criteria apply to all simulations

performed for the proposed model and other comparative methods, and the results and

their comparison are available in detail in the next section.

4.3.1 Perfect Hit (PHIT)

As the first criteria of evaluation, the "perfect hit" or "PHIT" which is a common tool

of comparison is used. In this method, the estimation of accurate predictions is

calculated. The reason for using this method is to assess the effectiveness of the

proposed method in the real world. In each recommender system, the output of the

process is integer values with decimal pointed accuracy. For example, a prediction

may be 2.5 or 2.03 or 2.98, while it is known that the real values for each registered

rating are natural numbers that do not have decimals. For this reason, the calculated

value of 2.98 must be changed into 3, and then the error is calculated with the real

62

value. In addition to that, another operation that occurs in the calculation of PHIT is

that the value one is considered in the number of perfectly correct predictions and the

value of 0 is considered for each false prediction. In this case, the total of correct

predictions divided by the total predictions of the test set will determine the correct

detection percentage. This assessment method is a good way to determine the quality

of a recommender system for real systems because in the real world it is necessary that

the predicted values are as close as possible to real values and the predictions can be

used. Equation 4-1 shows how to calculate PHIT. Round means rounding the number

to the nearest natural number and also P is the predicted value that is compared with

the actual value of R. Finally, if the values are equal, the difference between the two

numbers is 0, and as a result a number is added to the sum, otherwise no value will be

added to the sum (Ronen, Koenigstein, Ziklik, & Nice, 2013) (Bobadilla, Serradilla,

& Hernando, Collaborative filtering adapted to recommender systems of e-learning,

2009).

(4-1)
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑃𝑃𝑢𝑢,𝑖𝑖 − 𝑅𝑅𝑢𝑢,𝑖𝑖� == 0𝑢𝑢,𝑖𝑖

𝑁𝑁

4.3.2 Mean Percentage Rank

 Another evaluation method named Mean Percentage Rank exists that is used to

determine the quality of the recommender system. This method calculates the

proportion of correct predictions alongside half of the correct predictions as the total

value. The Mean Percentage Rank benchmark attempts to determine the effect of

correct predictions by reducing the impact of false predictions. Therefore, the small

differences between the two proposed systems mean that the two systems are operating

very similar to each other and the value of the better model's work will be further

determined by increasing this value. In equation 4-2 the way of calculating the

63

percentage rank is shown. The value of CF, which is short for correct frequency,

determines the number of correct predictions and the F signifier means false

predictions. The final total will be calculated by dividing to the total predictions. The

percentage rank will be calculated for each number. For example, if there are 5 rating

values, a rank percentage will be calculated for each rating, and finally, the total

average will determine the Mean Percentage Rank (Herlocker, Konstan, Terveen, &

Riedl, 2004).

(4-2)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

𝐶𝐶𝐶𝐶 + 0.5𝐹𝐹
𝑁𝑁

In the next section of this chapter, the evaluation methods and quality of each model

will be reviewed. In addition to the evaluation methods introduced, the simulation

runtime for each model will also be introduced as the fifth benchmark. No matter how

good a method is regarding quality, the runtime is very important. Increasing precision

as much as a few percentage points, if accompanied by a lower speed and a longer

duration of the program as big as several hours or days, may not be a good solution.

Therefore, it is very important to consider the time factor in a recommender system

that deals with massive amounts of data and data streams.

4.4 Experiments and Results

The next evaluation method that has been compared is the PHIT benchmark, which

focuses on the correct prediction ratio. This figure is plotted for all four models of the

previous figure in Figure 4.2. The PHIT method shows how many fractions of the

predictions have been made completely. Given the following figure, it is clear that all

three methods are typically above 97% in the correct predictions, and the difference

between the three models in the true prediction is negligible. To better understand the

superiority of the methods on each other, the displayed range is 5% from 95% to 100%.

64

The implemented method is 2% better than the best method available in the following

figure.

Figure 4.2: Comparing the PHIT assessment method for all introduced methods

All three of the compared methods with more than 97 percent have shown a high

prediction accuracy and only differ in the third digit, indicating that they have almost

the same ability and, of course, the ability to accurately predict the test set. Perhaps

using a combination method with the presence of three methods or two methods of the

three methods as the base model in the suggested HMES recommender system can

relatively improve the final model, which is presented in the next chapter.

The Mean Percentage Rank, as already mentioned, is an appropriate evaluation method

to determine the error rate in the prediction along with the correct predictions. Figure

4.3 shows the MPR behavior for each of the four introduced models. Depending on

how much MPR value is closer to the maximum rating score limit (5 at Amazon

dataset), the number of true predictions is much higher than the false predictions. The

implemented method has a better performance in MPR, and compared with other

comparable methods, the proportion of error is less for each rating. When the MPR is

high, and the prediction error is low, it means that the ratings in the data are distributed

65

uniformly, and the correct field predictions are not specific to one particular score, and

the system can predict scores from 1 to 5 successfully. Sometimes, in some

recommender systems, the average behavior of 4-2 is easier to predict, and systems

can predict values of 4-2 in an over-fit manner. And a weakness of this aspect can be

easily detected by the MPR evaluation method (Bobadilla, Serradilla, & Bernal, A new

collaborative filtering metric that improves the behavior of recommender systems,

2010).

Figure 4.3: Comparing the MPR assessment method for all introduced methods

After reviewing all the evaluation methods, it is the time to compare the execution

time of all the introduced models. No matter how precise the predictions are or how

low the error values, a method has to get a solution within a limited time, and if the

calculation process takes too long, then the method is not suitable for a recommender

system that is supposed to work on big data or live data streams. Figure 4.4 shows the

comparison of the time of each of the eight models. The proposed method examines

all considered records in less than a minute. It should be noted that only 100,000

records have been tested in the experiments, and the reason for that is that methods

such as neighboring methods and matrix factorization are too slow. The suggested

66

method required only 52 seconds to complete the entire work, and the closest model

in the matter of runtime are SVD or LS with about 7 minutes of runtime.

Figure 4.4: Runtime comparison for all introduced methods

The matrix factorization method with genetic algorithm has spent a lot of time, which

is about 15,000 seconds, due to the need for this evolutionary algorithm to repeat itself.

Neighboring methods all have very low execution speeds, which is the main reason

for it is the serial operation of the calculations. In neighboring methods, computational

equations should be rented for each pair of users, and if there are 1,000 users, then

21,000 repeats of the loop are required to complete the entire algorithm. Under these

circumstances, it seems that the use of neighboring methods, even though they are

highly precise, cannot be used in huge recommender systems because of the high

volume of equations. In contrast, matrix factorization techniques such as SVD and

descending gradients are getting to a result more quickly because of a higher speed

and despite a bigger error, which they have. In this situation, the proposed method

seems to be an extremely fast recommender system that combines precision and fast

67

execution. It may be possible to combine the matrix degradation and implemented

HMES systems together and create a recommender system with higher precision and

also increase the precision concerning state-of-the-art solutions.

4.5 Evaluations Summary

Experiments conducted on Amazon's data set show the superiority of the suggested

method compared to other comparative approaches. The methods that are being

compared are all the usual and popular methods that today have many admirer fans.

Of course, all of the above-mentioned methods have come up with a faster computing

process by parallelization or computing-reduced models, although they will not be

comparable to the proposed model due to the one-stage learning/training behavior. The

implemented recommender system, in addition to reducing the computational time,

also greatly improves the accuracy of the predicting of ratings, which makes this a

suitable model for implementation on massive data sets. On the other hand, the use of

the Hadoop has helped the model also have the ability to implement segmentation

based recommending computations.

68

Chapter 5

5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

Recommender systems, considering their users' information, are trying to improve

their behavior to increase sales, attract more customers, and correct their problems. A

recommender system can be used on social networks to increase the positive feedback

rate; sometimes huge Internet shops use these systems to increase the purchases, as

well as some service providing websites, which use these systems to get a better

understanding of how users are interested in their services. Different methods have

been designed and introduced to improve the behavior of recommender systems, and

each has been successful in improving the system based on one or more mathematical

and artificial intelligence models. Although none of the methods are the same and each

method has a unique behavioral system, all of these models follow the same goal,

which is increasing the benefits of using recommender systems. The basis of these

systems in all cases is based on the item (product, service or information) and the user.

In a sales website, or a movie rental service, or even social networks, if the item is

considered to be a product, a movie, or a related advertisement; everything is divided

into two domain and user categories that have tight links to each other. Of course, if

there were explicit information about what opinion each of the users had about the

items of a website, without the use of any third-party system, some suitable

recommendations could have been provided for the users. Since providing a

69

questionnaire for all items or asking users to comment on all items is impossible and

inaccessible, methods that make the best estimation about the interests of users are

needed to be used.

Some methods based on the similarity of items and others based on the similarity of

users, decide to predict and provide an estimation of the interest of users in items.

Other models have also been developed to make recommendations by combining the

user-user and item-item similarities to each other. Among these, one of the most

famous and most successful ways is the cosine similarity method (Ricci et. al., 2010).

The cosine similarity method, based on the current user ratings and opinions of the

users, makes it possible to estimate the interest of users in other items.

The reason for this method's popularity is the simplicity of the implementation and

availability of the information required by this system. Although the user ratings of a

website about its items are presented in multi-million matrices, it should not be

overlooked that this information is always available in the system and accessing to

them is possible with only a few simple queries in the database. Unlike this model, in

methods that work based on the similarity of items or even users to each other, not

only that the calculated are not 100% reliable, but there are different standards for

similarity, which makes other methods much more complex than the matrix

factorization approach.

Holonic systems are used in the implemented method with the goal that each agent

takes on some of the tasks and, of course, intelligent agents can work together in

parallel. In the Holonic recommender system, considering an agent as the supervisor,

several versions of a particular agent can be produced if needed. In this way, in addition

70

to improving the quality, calculation speed will also greatly increase. Two agents will

operate under the supervisor's control. The first one's duty is to calculate the similarity

of the items to each other and to assign the product's rating to the users. The other

factor has the task of calculating the error of each user's proposed items and storing

intermediate data.

Item Similarity agent produces items list for each user based on the Cosine Similarity

of both users and items. This agent then finds item intersections for those users who

are similarly based on the Cosine Similarity. Cosine Similarity is chosen as the core

similarity basis of the suggested method since it is simple to implement and probably

lower complexity of the model. It is decided to benefit from map-reduce technology

of Hadoop framework in order to make the system quicker. Using map-reduce will

help the model to process big-data on divided smaller parts, which enables the system

to distribute each part into server clusters, simple computers or even the processors of

a computer.

In the conducted experiments and analysis in Chapter 4, and comparing the results of

the implemented method with other methods, the proposed method can be able to

reduce the prediction error, and in this case, undoubtedly, the suggested approach was

the best method studied among all models. According to the test results of the

compared models in PHIT and MPR assessments, the closest models to the proposed

method were the cosine similarity model and the asymmetric model. The reason why

the implemented method works better than the simple cosine similarity model is to

update the recommendations of each user by increasing the size of the data. The cosine

method will calculate the similarity for each user once, whereas the proposed method

71

will repeat the calculation with the frequency of the number of Hadoop runs or the

number of intermediate updates of the operation.

In the discussion of time comparison, the implemented method is not comparable with

the introduced serial operating models due to its parallel execution capabilities and

also due to the fact that there is no need for a serial review of the program. This runtime

will be surely reduced if implemented on server hardware, which is another strong side

of the implemented model.

5.2 Future Work

In the recent years, a lot of studies have been dedicated to recommender systems, and

now researchers are trying to improve the existing methods. Hence new methods are

introduced and presented annually. In this section of the paper, there are some

suggested ideas that can be applied to the proposed model and the context of multi-

agent systems in order to improve the approach and increase the possibility of its

implementation.

The first approach that is suggested as future work is to compare the speed of the

designed model based on running on a cluster with the same conditions with other

methods. Large social media or massive online marketplaces all have very powerful

systems and servers to process their information, and one of their tools is the

mentioned cluster system. If the suggested model can be implemented in parallel with

a cluster, then a more accurate comparison can be made of the possibility of

implementing the proposed method in the real world.

Various methods have been introduced to improve the quality of the work of the

recommender system so far, as in this study seven known methods have been

72

introduced and compared. The main strength of the implemented method is the use of

Holonic, and then provides a mechanism to improve performance on one or more

systems, and this same strength point can be used with other similar methods. For

example, parts of the main user-product matrix or rating matrix can be divided into

smaller matrices, and then apply matrix analysis methods in parallel by Hadoop and

by running different agents on each matrix. Methods such as the Asymmetric Cosine

model or other similarity models can be used instead of Cosine Similarity, and these

methods are expected to have the same or close accuracy to the proposed method and

may even improve it.

One of the main weaknesses of academic models and of course the implemented

method is that the feedback from the users on a recommendation after they receive it

is not influential. When the system gives a user a few new recommendations, if the

user visits those offers, which will be a positive feedback for the system. Otherwise,

the specified offer will, in fact, be a mistake or failure for the system. Taking it to a

higher level, a customer's purchase of a previously recommended item would be a

bonus score to a recommendation. If the user is convinced to purchase a recommended

item, it definitely is a big step forward for the system. It is suggested to innovate a

mechanism where the Predictor agent that is already in charge of performing the error

calculation, determine the feedback and then, based on machine learning or by

changing other parameters, improve the prediction status during the execution of the

program, and stop a permanent, ineffective or low-valued process from running

further.

73

REFERENCES

Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-Art and Possible

Extensions. Knowledge and Data Engineering, IEEE Transactions on., 734-

749.

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Springer Publishing

Company.

Bellogin, A., Cantador, I., Diez, F., Castells, P., & Chavarriaga, E. (2013). An emprical

comparison of social, collaborative filtering, and hybrid recommenders. ACM

Trans. Intell. Syst. Technol., 1-29.

Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filtering metric

that improves the behavior of recommender systems. Knowledge-Based

Systems, 23(6), 520-528.

Bobadilla, J., Serradilla, F., & Hernando, A. (2009). Collaborative filtering adapted to

recommender systems of e-learning. Knowledge-Based Systems, 261-265.

Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library

and information systems, 175-186.

74

Burke, R. (2010). Evaluating the dynamic properties of recommendation algorithms.

RecSys '10 Proceedings of the fourth ACM conference on Recommender

systems, 225-228.

Gaud, N., Gechter, F., Galland, S., & Koukam, A. (2007). Holonic multiagent

multilevel simulation application to real-time pedestrians simulation in urban

environment. IJCAI'07 Proceedings of the 20th International joint conference

on Artificial intelligence (pp. 1275-1280). Hyderabad: Morgan Kaufmann

Publishers Inc.

Gemulla, R., Nijkamp, E., Haas, P. J., & Sismanis, Y. (2011). Large-Scale Matrix

Factorization with Distributed Stochastic Gradient Descent. Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 69-77). ACM.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

collaborative filtering recommender systems. ACM Transactions on

Information Systems (TOIS), 22(1), 5-53.

Hoek, W. V., & Wooldridge, M. (2008). Multi-Agent Systems. Foundations of

Artificial Intelligence, 887-928.

Horvath, T. (2012). Recommender systems. Tutorial at the conference at Znalosti

2012. Mikulov: Pavol Jozef Safarik University.

75

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for

Recommender Systems. Computer, 42(8), 30-37.

Lathia, N., Hailes, S., Capra, L., & Amatriair, X. (2010). Temporal diversity in

recommender systems. SIGIR '10 Proceedings of the 33rd international ACM

SIGIR conference on research and development in information retrieval, 210-

217.

Lops, P., Gemmis, M. d., & Semeraro, G. (2011). Content based recommender

systems: state of the art and trends. In Recommender systems handbook (pp.

73-105).

Mahara, T. (2016). A new similarity measure based on mean measure of divergence

for collaborative filtering in sparse environment. Procedia Computer Schience,

450-456.

McAuley, J., & Yang, A. (2016). Addressing complex and subjective product-related

queries with customer reviews. Proceedings of the 25th International

Conference on World Wide Web (pp. 625-635). International World Wide Web

Conferences Steering Committee.

Parambath, S. A. (2013). Matrix Factorization Methods for Recommender Systems.

Umea University.

76

Phelan, O., McCarthy, K., & Smyth, B. (2009). Using Twitter to recommend Real-

time tropical news. Proceedings of the third ACM conference on Recommender

systems (pp. 385-388). New York: ACM.

Pirasteh, P., Hwang, D., & Jung, J. J. (2015). Exploiting matrix factorization to

asymmetric user similarities in recommendation systems. Knowledge-Based

Systems, 83, 51-57.

Resnick, P., & Varian, H. R. (1997). Recommender Systems. Communications of the

ACM, 56-58.

Ricci, F., Rokach, R., & Shapira, B. (2010). Recommender Systems Handbook.

Springer Publishing Company.

Rodriguez, S., Gaud, N., & Galland, S. (2014). SARL: a general-purpose agent-

oriented programming language. 2014 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology. Warsaw: IEEE Computer Society

Press.

Ronen, R., Koenigstein, N., Ziklik, E., & Nice, N. (2013). Selecting content-based

features for collaborative filtering reccommenders. Proceedings of the 7th

ACM conference on Recommender systems, RecSys '13 (pp. 407-410). New

York: ACM.

Salakhutdinov., R., & Mnih, A. (2007). Probabilistic Matrix Factorization. NIPS, 605-

614.

77

Salomon, R. (1996). Re-evaluating genetic algorithm performance under coordinate

rotation of benchmark functions. A survey of some theoretical and practical

aspects of genetic algorithms. BioSystems, 263-278.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of Dimensionality

Reduction in Recommender System - A Case Study. Minneapolis: University of

Minnesota - Army HPC Research Center.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative

filtering recommendation algorithms. Proceedings of the 10th international

conference on World Wide Web WWW '01 (pp. 285-295). Hong Kong: ACM.

Schafer, J. B., Frankowsk, D., Herlocker, J., & Sen, S. (2007). Collaborative Filtering

Recommender Systems. The adaptive web, 291-324.

Shani, G., & Gunawardana, A. (2015). Evaluating Recommendation Systems. In

Recommender Systems Handbook (pp. 265-308). Springer.

Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for

automating word of mouth. International Conference on Computer-Human

Interactions. New Work: ACM Press/Addison-Wesley Publishing Co.

Srinivas, M., & Patnaik, L. .. (1994). Genetic Algorithms: A survey. Computer, 27(6),

17-26.

78

Venkatraman, S., Fajd, K., Kaspi, S., & Venkatraman, R. (2016). SQL Versus NoSQL

Movement with Big Data Analytics. Int. J. Inform. Technol. Comput. Sci., 59-

66.

Wu, D., Zhang, G., & Lu, J. (2015). A fuzzy preference tree-based recommender

system for personalized business-to-business e-services. IEEE Trans. Fuzzy

Syst., 29-43.

Zanker, M., Felfernig, A., & Friedrich, G. (2011). Recommender systems: An

Introduction. New Tork: Cambridge University Press.

79

APPENDICES

80

Appendix A: Pseudo-code of MMD used in the comparisons of

chapter 4

81

Appendix B: Pseudo-code of Asymmetric Similarity used in the

comparisons of chapter 4

82

Appendix C: Pseudo-code of matrix factorization method using

Genetic Algorithm used in the comparisons of chapter 4

83

Appendix D: Pseudo-code of Descent Gradient used in the

comparisons of chapter 4

84

Appendix E: Pseudo-code of Cosine Similarity method used in the

comparisons of chapter 4

85

Appendix F: Pseudo-code of Total Average method used in the

comparisons of chapter 4

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENT
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Foreword
	1.2 Problem Statement
	1.3 Research Hypothesis and Questions
	1.4 Research Objectives
	1.5 Thesis Structure

	2 LITERATURE REVIEW
	2.1 Recommender Systems
	2.1.1 User-Based Information
	2.1.2 A simpler Search
	2.1.3 Affecting by Similar Users’ Features
	2.1.4 Up-to-date Information
	2.1.5 Reduce Costs

	2.2 How a Recommender System Works
	2.3 Recommender Systems Based on Knowledge
	2.4 Content-Based Recommender Systems
	2.5 Recommender Systems Based on Similarity Calculation
	2.5.1 Asymmetric User Similarity Model
	2.5.2 Mean Measure of Divergence Similarity

	2.6 Recommender Systems Based on Collaborative Filtering
	2.6.1 Matrix Factorization
	2.6.2 Random Descent Gradient
	2.6.3 Alternation Least Square (ALS)
	2.6.4 Add Bias
	2.6.5 Additional Input Resources
	2.6.6 Temporal Dynamics
	2.6.7 Input with Different Reliability Levels

	2.7 Use of Genetic Algorithm for Matrix Factorization
	2.8 Cosine Similarity Criterion for the Item-based Similarity
	2.9 Holonic Multi-agent Systems
	2.10 Review Repetition

	3 PROPOSED METHOD
	3.1 Introduction to the Implemented Method
	3.2 Agents and Events in a Multi-event System
	3.2.1 “NewEntry” Event
	3.2.2 “OnUpdate” Event
	3.2.3 “ItemSimilarity” Agent
	3.2.4 “Predictor” Agent
	3.2.5 “Recommender” Agent

	3.3 Real-time Parallel Execution
	3.4 Continuous Updating Feature
	3.5 More on the Holonic Structure
	3.6 A Distributed Solution using Hadoop and map-reduce Technology
	3.7 Methodology Closure

	4 EXPERIMENTS AND RESULTS
	4.1 Dataset
	4.2 Programming languages, Settings and Parameters
	4.3 Evaluation Criteria
	4.3.1 Perfect Hit (PHIT)
	4.3.2 Mean Percentage Rank

	4.4 Experiments and Results
	4.5 Evaluations Summary

	5 CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Future Work

	REFERENCES
	APPENDICES
	Appendix A: Pseudo-code of MMD used in the comparisons of chapter 4
	Appendix B: Pseudo-code of Asymmetric Similarity used in the comparisons of chapter 4
	Appendix C: Pseudo-code of matrix factorization method using Genetic Algorithm used in the comparisons of chapter 4
	Appendix D: Pseudo-code of Descent Gradient used in the comparisons of chapter 4
	Appendix E: Pseudo-code of Cosine Similarity method used in the comparisons of chapter 4
	Appendix F: Pseudo-code of Total Average method used in the comparisons of chapter 4

