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ABSTRACT 

Chemical Named Entity Recognition (ChemNER) is the first step for a large number 

of consequent Information Extraction (IE) tasks in the chemistry related sciences and 

drug development domains. Extraction of drug-drug interactions, chemical 

compounds‘ resolution, and creation of question answering systems are examples of 

such applications. Any improvement in the quality of NER process in this context 

may affect the performance of subsequent tasks which shows the importance of this 

preliminary step in IE applications.  In this thesis we studied this problem by 

proposing a modular architecture to improve the performance of ChemNER systems. 

This thesis has three main contributions to the overall task. The first contribution is 

the design of a new rule based tokenizer which improves the quality of data 

preprocessing phase. Due to the highly imbalanced nature of the data used in the 

NER task, overall performance of the classifiers used is usually not as good as those 

used in some other common classification tasks. Hence, a new sentence based 

undersampling approach specifically to be used for the NER problems is proposed as 

the second contribution for the given problem. The proposed undersampling 

approach tries to remove the insignificant samples from the training data aiming at 

preserving the structure of the given sentences as much as possible. We name it as 

Balance Undersampling (BUS) approach since it tries to keep almost an equal 

number of negative samples surrounding the positives. The third contribution of this 

thesis is to use the Particle Swarm Optimization algorithm as a heuristic classifier 

selection method together with the Naïve Bayesian combination approach to form a 

classifier ensemble from a large pool of classifiers created using undersampled data 

with different sampling ratios and various feature sets. All experiments during this 
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study are conducted using the BioCreative IV ChemDNER corpus which is the most 

comprehensive data set in the domain.  

Keywords: Chemical Named Entity Recognition, Tokenization, Undersampling, 

Classification, Classifier Ensemble, Particle Swarm Optimization. 
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ÖZ 

Kimsayal Adlandırılmış Varlık Tanıma (KAVT) kimya ve eczacılık ile ilgili 

alanlarda bilgi çıkarımı öncesi yapılması gereken ilk işlemlerden biridir. İlaçlar arası 

etkileşimlerin çıkarılması, kimyasal bileşenlerin çözünürlüğünün ortaya çıkarılması 

ve otomatik soru-cevap sistemlerinin yapımı bu işlemlerden bazılarıdır. Bu sebepten 

dolatyı KAVT basamağında yapılacak tüm iyileştirmeler, takip eden sistemlerinin 

başarısını büyük ölçüde etkilemektedir. Bu tezde KAVT problemi ele alınmış ve 

KAVT sistemlerinin başarımını artırmak için birimsel bir mimari önerilmiştir. Bu 

anlamda tezin literatüre üç temel katkısı vardır. Birinci katkı olarak metin önişleme 

işlemleri sırasında performamsı artırmak için yeni bir kural-tabanlı alıntı ayırıcı 

önerilmiştir. KAVT işleminde kullanılan verinin doğal nedenlerle sınıflar arası 

dengesiz olmasından dolayı, sınıflandırıcıların başarımı genellikle yüksek 

olmamaktadır. Bu nedenle, ikinci katkı olarak cümle-tabanlı yeni bir alt-örnekleme 

yöntemi önerilmiştir. Önerilen yöntem, eğitme veri kümesinde bulunan önemsiz 

örnekleri cümlenin yapısını en az bozacak şekilde çalışmaktadır. Tüm olumlu 

örneklerin sağ ve sol taraflarından eşit miktarda olumsuz örneği eğitme veri 

kümesinden çıkardığı için önerilen yönteme Dengeli Alt-örnekleme (DAÖ) ismi 

verlimiştir. Üçüncü katkı ise, çoklu sınıflandırcı yöntemi kullanılmasıdır. Bu 

yöntemin kullanılmasında Parçacık Apaçık Eniyileme yöntemi algoritması 

sınıflandırıcı seçimi için kullanılmış, seçilen sınıflandırıcılar ise Bayesçi Birleştirme 

yöntemi ile birleştirilerek alt-örneklenmiş örnekler kullanılarak eğitilmiş büyük bir 

sınıflandırıcı topluluğu elde edilmiştir. Bu çalışmada, ilgili alanda en büyük bütünce 

olarak bilinen BioCreative IV ChemDNER bütüncesi kullanılmıştır. 
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Chapter 1 

INTRODUCTION  

1.1 Motivation 

The main aim of Natural Language Processing (NLP) is to design and implement 

software that can process, comprehend and generate natural language text. Even 

though natural language understanding remains an important challenge, text mining 

which emerged as an important research field in NLP, focuses on discovering hidden 

information from unstructured textual documents. Many practical text mining 

applications including Information Retrieval (IR), Information Extraction (IE), and 

Question Answering (QA) systems have been developed in the past few decades. IE 

is one of the basic and important applications of text mining that involves extraction 

of desired information by transforming facts in texts into structured representation 

[1]. Recent progress in scientific research and practice in pharmaceutical and 

chemical fields have caused proliferation of information in unstructured textual 

format [2], [3]. Scientific ideas, hypothesis, facts, and conclusions derived from 

scientific experiments, as well as academic or industrial conclusions are published in 

the form of unstructured documents. In recent years the chemical domain has been 

facing a large amount of textual data published daily. The accumulation of vast 

amounts of scientific text in chemical domain triggered an urgent requirement for the 

development of text mining techniques to extract valuable information from this 

huge volume of literature [4], [5]. Text mining in the chemical domain may enable 
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and support drug discovery and development process by assisting the scientists to 

quickly screen through millions of documents and discover novel insights.  

Due to the abundance and continuous accumulation of unstructured scientific text, 

chemical domain has become one of the most active domains of text mining.  The 

high production rate of literature in this domain is the main obstacle to timely 

processing of text by human experts. Therefore, the use of text mining techniques to 

extract meaningful and useful knowledge within a reasonable frame has become 

mandatory.   

IE as one of the main subtasks of text mining, aims to automatically extract 

structured information from unstructured or semi structured text. Information 

extraction encompasses a number of subtasks including question answering, relation 

extraction, event detection, text summarization, and co-reference resolution. Most of 

these tasks have been introduced by the Message Understanding Conference (MUC) 

and financed by Defense Advanced Research Project Agency (DARPA) to 

encourage the development of new and better methods of IE [6]. The fundamental 

step of IE, affecting the performance of all mentioned subtasks is Named Entity 

Recognition (NER) which aims to identify and categorize existing priori specified 

named entities in a given text. The ―Named Entity‖ (NE) task appeared for the first 

time in the Sixth MUC conference [7]. The list of class types in NER tasks are 

generally predefined and the task can be defined as classifying a portion of text as a 

NE mention and associating the NE with one of the predefined class types. For 

example, consider the text ―Michel took an Acetaminophen. He had headache 

because of too much alcohol that he drunk last night.‖ In this text there are four 

entities with different class types as shown in Table 1.1. 
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                                     Table 1.1: A sample of named entity classification 

Named Entity Class Type 

Michel Person 

Acetaminop

hen 
Drug 

alcohol Chemical 

Last night Time 

 

NER as a classification task, borrows some algorithmic techniques from the machine 

learning domain as well as NLP. Moreover, considering it as a kind of sequence 

labeling task [8],  NER suffers from common challenging issues in this field such as 

lack of standard feature sets, class imbalance problem in machine learning approach, 

difficulties in defining regular expressions, and creating comprehensive repository of 

named entities.  

Quality of the output of NER systems has direct impact on the quality of subsequent 

tasks since they make use of the NEs. For instance, final results of extraction of 

pathways, metabolic reaction relation, drug-protein interactions in biochemical 

domain are greatly affected by outcomes of NER process. Hence efficient detection 

of named entities in given text is essential for the majority of text mining 

applications in all domains and especially in the chemical domain. 

The work described in this thesis focuses on NER in the chemical domain in the 

context of supervised machine learning approach. Chemical NER is concerned with 

the identification of chemical entities such as chemical descriptors, CAS registry 

numbers brand names and drug names [9], [10], [11].  Chemical NEs extracted from 

text are used in many processes including drug discovery, chemical research and 
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manufacturing processes and thus are of immense value for the pharmaceutical and 

drug industries. [12]. However, the high rate of growth in chemical literature has 

made it increasingly difficult to get acceptable results in a reasonable time frame. 

Initial research on chemical NER aimed at designing dictionary or rule based 

systems. However, the performance of such systems has been affected by 

comprehensiveness of dictionaries or generality of extracted rules. Therefore, 

subsequent work focused on constructing systems using machine learning 

approaches by exploiting wide variety of features and hybrid methods combining 

different strategies. These systems mostly try to maximize recognition performance 

by computing discriminative set of features or enhancing the outcomes of existing 

NER systems [13-20]. An alternative to finding the best performing classification 

system is to combine sufficiently efficient classifiers, weak learners, in a multi 

classifier system (MCS) or classifier ensemble [21], [22], [23]. 

Even though NER systems in the newswire domain have achieved high 

performances, F-score around 96% [24], due to the special intricacies of the literature 

in the chemical domain, performance of NER systems in this domain, is still far from 

satisfactory ( F-score of around 87% [25] ). The relatively poor performances in this 

domain mainly are generally attributed to several reasons: i) Diversity in chemical 

nomenclatures; chemical entity mentions within literature can be found in different 

forms such as: systematic or semi systematic names, brand name, formula [12], ii) 

Extensive use of abbreviations, ambiguous names, homonyms, and existence of non-

usual characters and symbols inside entity names, iii) Inconsistent use of white 

spaces and special characters such as punctuation marks caused to the existence of 

different forms of tokenization for the same names, iv) Continuous generation of 

domain specific names some of which are used only for short periods, v) Chaining of 
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NEs with conjunctions and disjunctions in the sentence, vi) Scarcity of freely 

available, comprehensive and well annotated dataset with complete annotation 

guidelines.  

In addition to these problems a chemical NER system which uses machine learning 

approaches usually suffers from the class imbalance problem [26]. Observation on 

the available data sets reveals that the number of named entities of interest, which are 

considered as positive samples, are drastically lower than the other segments of texts 

that are called negative samples.  

This thesis proposes a novel framework for chemical NER that identifies the 

chemical entities in a given unstructured natural language text. The underlying 

classification architecture utilizes Conditional Random Fields (CRFs) [27] which is a 

machine learning algorithm. The first stage of the framework is a novel tokenizer 

called ChemTok [28] that accepts unstructured text and produces a list of tokens.  

ChemTok is designed to handle the peculiarity of the language used in chemical/drug 

domain. Feature extraction stage augments the tokenized text with features that are 

widely used in NER systems. In order to overcome the class imbalance problem, a 

number of classifiers are trained using undersampled data. Due to the special nature 

of NER as a sequence labeling problem, we propose a novel undersampling 

algorithm called Balanced Undersampling (BUS) for this stage.   

1.2 Methodology 

In this study we describe a framework to recognize chemical named entities in 

unstructured text. ChemDNER dataset [29] released by BioCreative IV [30] is 

utilized for training the classifiers used since the aforementioned dataset is the most 
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comprehensive and standard dataset available in the chemical domain. ChemDNER 

corpus includes three datasets: training, development and test set. Preliminary 

experiments on the dataset revealed the tokenization problems when standard 

tokenizers are used in the chemical domain [31]. Therefore, we proposed and 

implemented a more effective tokenizer, ChemTok [28] that can handle the special 

notations used in chemical/drug domain. ChemTok, employs a set of rules extracted 

from the ChemDNER training data. We tested and showed the performance of 

ChemTok on different data sets in the same domain. 

Another novelty in our framework is the undersampling method we used for 

alleviating the class imbalance which is an inherent characteristic of NER in all 

domains and particularly in the chemical domain. A new undersampling method 

namely balanced under sampling which strives to keep the syntactic structures of 

training samples intact as much as possible while balancing the negative/positive 

ratio in the dataset is proposed. The output of BUS is a new training data set based 

on the desired ratio between negative and positive samples.  

In the proposed framework, we train a large number of CRF classifiers using 

different combinations of well-known features and undersampled data. To use the 

strengths of different classifiers together, a newly designed classifier ensemble 

system using Particle Swarm Optimization (PSO) for classifier selection and Naïve 

Bayesian approach to combine classifiers, is applied to combine the outputs of 

predictors. Results show that both the proposed tokenization algorithm and the 

balanced undersampling method have positive impact on the classification 

performance of individual classifiers. Moreover, the proposed ensemble method 

further improves the performance.  
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1.3 Summary of Thesis Contributions 

Developed framework in this study makes several contributions to the NER field in 

general and specifically to the chemical NER problem. These can be summarized as 

follows: 

 A new tokenization method applicable for both chemical and biomedical 

context is devised. Experiments on the effect of tokenization on NER tasks 

show that it is more efficient than the commonly used tokenizer in this field.  

 To deal with class imbalance problem in sequenced data used in the pattern 

recognition field, a new undersampling approach that has improved NER 

performance of classifiers is devised.  

 Constriction Factor Method (CFM) as a kind of particle swarm optimization 

algorithm [32] is used in classifier selection phase of MCS in order to 

statically select experts. 

 Naïve Bayesian combination method [33] is applied individually and also 

along with an evolutionary algorithm in classifier combination phase of the 

MCS for the NER task. 

 The number of diverse classifiers used as members of the classifier repository 

for the final MCS is very high compared to the MCSs previously used for this 

problem [25], [34-36].  

1.4 Research Objectives 

The main objectives of this study are summarized as follows: 

 To investigate the effects of tokenization on overall performance of NER 

systems and to develop a more efficient and domain-appropriate tokenizer for 

chemical domain. 
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 To investigate the effects of class imbalance phenomenon on the performance 

of chemical NER systems and propose a novel method for undersampling in 

NER. 

 To develop a framework in order to identify chemical NEs in an efficient way 

by means of MCSs. 

 To investigate current tools and available systems for chemical NER task. 

1.5 Thesis Outline  

The remaining of this dissertation is organized as follows: In Chapter 2 a brief 

explanation on biomedical text mining and its applications is followed by a 

discussion on chemical NER problem and existing strategies used to resolve this type 

of problems. Moreover, an in-depth literature review on Chemical NER is presented 

in the same chapter. Chapter 3 presents an overview of multiple classifier systems 

and its main components including classifier selection methods and combination 

approaches. Chapter 4 provides the background knowledge on the class imbalanced 

problem in different contexts. The strategies and algorithms to decrease the adverse 

effect of class imbalance on the performance of classifiers are presented in detail in 

the same chapter. The architecture of the proposed framework is presented and 

explained in Chapter 5. Additionally Chapter 5 contains a general discussion on 

different parts of the proposed system, extracted features and prototype of individual 

classifiers. In chapter 6 the results of employing the proposed system is provided. 

Finally, in Chapter 7, a summary of the discussion on the results and future work 

direction in this area are presented. Explanation of classifier evaluation metrics, 

details of CRFs‘ algorithm, and individual classifiers performances are given in 

appendices.  
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Chapter 2 

BACKGROUND AND RELATED WORK 

2.1 Introduction 

Recent developments in life sciences and especially in biomedical/chemical fields 

have triggered the explosive growth of literature in computer readable unstructured 

textual format. Processing of such voluminous information in turn, necessitated 

natural language processing and text mining techniques to automatically extract 

hidden information in order to make desired knowledge readily available to the 

experts in the field. The most important and challenging aspect of processing 

unstructured text, or text mining, is extracting specific facts, objects, events, and 

relations. Named entity recognition is generally a prerequisite to other text mining 

subtasks such as relation and event extraction, summarization and question 

answering. This chapter reviews the biomedical text mining research and its 

application on chemical literature in section 2.2. NER in chemical domain and the 

challenges faced in this research field are discussed in Section 2.3.  Section 2.4 

presents current strategies used in NER systems.  A detailed literature review on 

chemical NER is provided in Section 2.5. 

2.2 Biomedical and Chemical Text Mining  

Text mining attempts to discover or extract implicit knowledge hidden within 

unstructured text [37]. Research on text mining has dramatically increased in life 

sciences especially in biomedical and chemical domains, where journal articles, 

books, reports, patents etc. are being produced in an increasingly higher pace in the 
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past few years. The rapid production of knowledge makes it difficult for scientists to 

keep up to date [38], thus, there is an immediate demand to enable access to the 

useful desired information. Biomedical Text Mining (BioTM) refers to the text 

mining process applied on the biomedical, chemical and drug literature. It is a new 

research field spanning a number of research fields such as NLP, text mining, 

bioinformatics, cheminformatics, medicine and drug development and computational 

linguistics. The basic goal of BioTM is to allow experts in field to extract knowledge 

from relevant documents thus facilitating new discoveries in more efficient manner 

[39], [40]. The main developments, in this area have been focused on the 

identification of biological or chemical entities such as drugs, genes, proteins, 

chemical compounds etc. within the given free text [41]. Text mining and 

information extraction methods have also been applied to extract the information 

related to biological and chemical processes, events, and relationships. However 

since these applications require NER as a preliminary task, it is crucial to improve 

the NER process. 

A large number of scientific events such as shared tasks or competitions, which have 

been conducted on different applications of BioTM in recent years, show the 

increased interest and requirement in these fields. Text Retrieval Conference (TREC) 

chemical track 2011 [42], Joint workshop on Natural Language Processing in 

Biomedicine and its Applications (JNLPBA), Bio-Entity recognition challenge [10], 

BioNLP shared task 2013 [43], Critical Assessment of Information Extraction 

systems in Biology (BioCreative) IV and V (2013 and 2015 respectively) [30], [44], 

[45], Linking literature, Information and Knowledge for Biology (BioLINK SIG 

2013) [46] are examples of such shared tasks.  The main aim of all aforementioned 
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events was to find efficient methods to extract useful information from the 

unstructured documents in the biomedical, chemical and drug related fields. 

The chemical track of TREC 2011 focused on evaluation of search technologies for 

retrieval and knowledge discovery of digitally stored information on chemical 

patents and academic journal papers. The aim of Bio-Entity recognition task at 

JNLPBA program was to identify entities in the domain of molecular biology that 

corresponded to the instances of concepts that are of interest to scientists. The 

BioLINK SIG has been regularly held since 2001 and its main focus is on the 

development of tools for biomedical text mining. BioCreative IV and V challenges 

included various tasks in biomedical fields. Both of them have organized special 

tracks on information extraction from chemical texts. These tracks were divided into 

two parts: chemical named entity recognition and chemical document classification.  

Figure 2.1 illustrates an overview of IE task in biomedical field and clearly shows the 

importance of NER in this framework. The first step in the general IE framework 

involves selecting the required documents that will be used from the vast amounts of 

documents available to the public. The selected documents are then normalized and 

annotated with mentions of interests. In the next step NER is applied to the 

normalized documents. Methods used for NER are discussed in detail in subsequent 

sections of this chapter. Named entities recognized at the NER step can then be 

utilized for populating ontologies or as input for other tasks such as relation 

discovery, summarization and question answering.  
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2.3 Chemical Named Entity Recognition 

A named entity is a phrase that clearly identifies one item from a set of others which 

have similar attributes. For instance persons, dates, geographic locations and 

organization names are examples of named entities in newswire domain. 

 
Figure 2.1: Overview of IE task in biomedical domain 

In the chemical context a named entity can refer to drug names, chemical 

compounds, formulas, abbreviations etc. that appear in given document possibly in 

different formats. In chemical literature, locating such entities is crucial for many 

tasks such as identification of relationships or interactions between the entities and 

the retrieval of documents of interest. The process of recognition of chemical entity 

mentions from unstructured text and assigning the pre-determined class labels to 

them is known as ―Chemical Named Entity Recognition ―ChemNER‖ or ―Chemical 

Semantic Tagging‖. Use of text mining approaches in drug discovery and chemical 
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research has been an active area of research interest in recent years [47]. Class labels 

for chemical entity mentions can be categorized by their structures such as: 

abbreviation, systematic, semi-systematic [45]. The majority of related work in this 

field has been done on the detection of genes and protein names in biomedical texts 

and very few studies focused on the chemical compounds or drug related terms until 

recently [48].  

2.3.1 Difficulties Appear in Chemical NER Process 

As mentioned in Chapter 1, due to several reasons such as ambiguity, different 

nomenclature, writing style etc. the performance of named entity recognition systems 

in biomedical and especially chemical context achieved less success than newswire 

domain. Some of the main causes of the difficulties in chemical literature are 

described in more detail below. 

 Lack of a universal standard for chemical entity representation:   

Usually chemical entities are referenced in documents in different forms 

including common names (trade name), data base identifiers, systematic 

nomenclature, CAS registry numbers, International Chemical Identifiers 

(InChI) [49], Simplified Molecular-Input Line-Entry System (SMILES) 

codes [50], or schematic structures and images. Different coding and 

identification approaches have different word formation characteristics 

described by their own guidelines which makes it difficult to recognize the 

chemical NEs easily. Figure 2.2 depicts an example of various naming 

methods that can be used in literature to represent the same entity. 

In general, naming approaches can be divided into two groups: systematic 

and non-systematic. Systematic nomenclature uses a set of rules to name 

chemical compounds. Even though the most widely used systematic 
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method is the one created by International Union of Pure and Applied 

Chemistry (IUPAC) [51], many other systematic naming approaches such 

as CAS Index Names, InChI, and SMILES, may be utilized by the 

researchers in this field. 

 

 
              Figure 2.2: Diversity in the representation of chemicals 

         

In addition to the systematic nomenclature, there is a widespread use of 

generic and trade names in the texts due to their popularity or simplicity. For 

instance an entity with IUPAC name ―3,7-dihydro-1,3,7-trimethyl-iH-purine-

2,6-dione‖ is commonly used with the name ―coffein‖. The ambiguity of 

chemical names especially in their common or trivial forms is another cause 

of difficulty in the recognition of chemical information given in texts.  

Different chemicals which have different physio-chemical properties can be 

referred using their trivial name [52]. For example ―acetylacetone” may refer 

to either one of its two tautomeric forms, ―keto‖ or ―enol‖. In that case 

recognizing and identifying the chemical unambiguously becomes very 

difficult. 
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Use of semi-systematic naming method provides another unique challenge in 

chemical NER. Entities that are named semi-systematically usually contain a 

mixture of both systematic name and nonsystematic name fragments. For 

example in the name “3’,5’-dichloromethothotrexate” ,  the chunks ―di” and 

―chloro” are generated using systematic naming method whereas 

methoraxate is trivial drug name.  

 Presentation of Chemical information in image format: Patent documents 

are usually available as images of texts documents (e.g. PDF or TIFF).  Such 

documents are often converted from those file formats to text by means of 

Optical Character Recognition (OCR). OCR documents usually have 

interpretation errors or loss of graphical images that may contain chemical 

structure diagrams. For example ―EXAMPLE 22. Amino-3,4‖ may be 

converted to ―EXAMPLE 22- Amino-3  4.‖ [3]. 

 Difficulties in mining patents: Patent documents are often written by patent 

agents or attorneys who are not familiar with scientific writing standards [53]. 

To formulate the claims in patents, usually a narrative style is used. For 

instance the patent writers may express a claim in the broadest way possible, 

making formulation ambiguous and prone to misinterpretation. 

 Widespread and inconsistent use of abbreviations: Despite the widespread 

use of abbreviations in chemical texts, the lack of a standard and unique 

procedure for abbreviation construction makes their detection very difficult. 

The position of the first mention of abbreviations may also differ. In some 

texts, abbreviations appear after the entity names whereas in others they 

appear before the actual entity name. Furthermore, the abbreviations may be 

introduced by a complete sentence or a phrase or it may be separated from 
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rest of the text with parentheses, comma, or dashes. For example, some 

abbreviations are produced from the first letter of the components of a multi 

token entity mention such as AAAD for ―Aromatic Amino Acid 

Decarboxylase‖. On the other hand some abbreviations are made of initials of 

the syllable. For example 5-HMF for “5-HydroxyMethyl-Furfural” [54].  

 Nested named entities: In the chemical NER domain it is very common to 

use an entity name inside another entity name. This phenomenon is known as 

nested named entities. The nested named entity problem makes recognition of 

the entities difficult and is often ignored in NER studies and only the 

outermost entities commonly are taken into account [55].  

 Continuous addition of new names: Biomedical and chemical domains are 

rapidly developing research fields and thus vast amounts of publications are 

being produced as outcomes of new discoveries and research. Hence the rate 

of newly added named entities to the literature is high and it makes 

dictionary-based NER systems inefficient.  

2.4 Approaches to Implement Chemical NER Systems 

The approaches used for creating NER systems can be categorized into three groups: 

dictionary based approaches, context or learning based approaches and rule or 

morphology based approaches. Furthermore any combination of these three methods, 

known as hybrid approach [56] can also be used. The following subsections describe 

the different methods focusing on chemical literature and provide information on 

their characteristics.  

2.4.1 Dictionary Based Methods 

Dictionary based methods refer to a family of techniques that discover entity 

mentions in text by looking up the existence of the entities in a predefined repository 
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or dictionary. Hence, constructing dictionaries of good quality and implementation of 

efficient search or look up algorithms are mandatory for dictionary based methods. A 

critical aspect for success of dictionary based methods is to create dictionaries that 

are as comprehensive as possible. Dictionaries can be generated manually or 

automatically from related resources such as public chemical databases which 

usually contain lists of words that are grouped together based on their semantic 

similarities. A commonly used resource is Unified Medical Language Systems 

(UMLS) [57].  

Even though it might seem like an advantage to combine a number of dictionaries 

together, size of combined dictionaries that may contain several millions of entries is 

usually much larger than a typical dictionary. For example, Joint Chemical 

Dictionary (JoChem) [18] consists of more than 2 million synonyms, while typical 

dictionaries containing gene names contains tens of thousands of entries. The most 

comprehensive dictionary for drugs and chemical compounds is the JoChem, which 

is created by merging several lexical resources such as PubChem [58], DrugBank 

[59], and Mesh terms [60]. Another example for chemical dictionary is ChemSpider 

[61] which in comparison to JoChem, it has fewer but higher quality entries. 

A drawback of dictionary based methods is the need for extensive manual curation to 

maintain the dictionaries, add new entries and eliminate redundant entries. Another 

drawback is that dictionaries are not very effective in looking up incorrectly or 

differently spelled words; it is necessary to enhance either the dictionaries or the look 

up algorithms to allow the potential orthographic or spelling variations. Usually a 

string comparison metric such as Levenshtain distance method [62], which produces 
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an overhead on the lookup function of the dictionary based methods, is utilized to 

find matches even when there is spelling variations in strings.  

2.4.2 Learning Based Methods 

In Machine Learning-based NER systems, the purpose of NER approach is to 

convert the identification problem into a classification task and employ a 

classification model to solve it. In this approach, the system looks for patterns and 

relationships in text to make a model using statistical models and machine learning 

algorithms. [20]. 

The main idea behind learning based methods is to infer general patterns or models 

from sample instances that can be used subsequently to make predictions or classify 

unseen data; thus they require data to learn from. Learning process can be performed 

in three ways: Supervised learning (SL), Semi Supervised learning (SSL), and 

Unsupervised Learning (USL).  

Almost all variants of SL approach typically consist of learning or deducing a 

―model‖ from a large set of annotated data known as train data that is usually 

enhanced by addition of discriminative features. The model created is then used to 

label or recognize entity mention in unlabeled data.   

Unsupervised learning (UL) approaches make deductions using unlabeled input data. 

The most commonly employed UL approach is clustering where the unlabeled train 

data is separated into a number of clusters using distance or similarity metrics. After 

the clusters are formed using the input data, new data is easily categorized by 

computing its distance from or similarity to each of the clusters. UL techniques 
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typically rely on lexical resources such as MeSh, and UMLS, lexical patterns, and 

statistics computed on large unannotated data sets [63].  

Semi-Supervised learning (SSL) or weakly supervised methods are combination of 

supervised and unsupervised approaches where a small set of annotated data is 

utilized to start learning process in addition to larger amount of unannotated data.  

The most frequently used approach to create NER systems is the supervised learning 

method. CRFs [72] introduced in 2001, has been extensively used for NER and 

similar tasks ever since. CRFs are described in detail in Appendix B. Hidden Markov 

Models (HMM) [64], Maximum Entropy Markov Models (MEMM) [65], Structured 

Support Vector Machine (SSVM) [66] are other supervised machine learning 

algorithms that have been employed in this area. One of the difficulties in supervised 

machine learning approaches is the need for labeled or annotated training data, where 

the quality of the annotation has significant effect on the success of the approach. 

2.4.3 Rule Based Methods 

In rule based approaches a set of usually hand crafted rules are used to identify the 

entity mentions [67]. Manually hand crafted rule sets include syntactic and 

grammatical rules. In some cases rules are used in combination with dictionaries. In 

general two types of rules can be used in this approach: i) Context based rules that 

rely on the context of the words in the text [14] [68], ii) Pattern based rules that 

depend on the morphological or orthographic patterns of the words. [69]   

If the experts are provided with the adequate resources and may derive 

comprehensive rule sets, rule based approaches may perform well, but if data is 

changed even slightly the cost of maintaining the rules may be quite high.  
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2.5 Previous Work on Chemical NER 

Despite the importance of chemical NER, only a few of the chemical NER systems 

have been made publicly accessible [20]. Nevertheless, a considerable number of 

strategies and approaches for the recognition of chemicals in text have been 

proposed. There are some bottlenecks in implementation and comparison of the 

performances of such systems including: i) Lack of comprehensive train/test data set, 

ii) Difficulty in defining annotation guidelines of what actually forms a chemical 

entity name, iii) Diversity in terms of textual data sources and scopes used for data 

set creation. In this section a literature review on chemical NER is given. The 

corpora available in this research field are presented in the following subsections and 

the evaluation metrics used in this context are presented in Appendix A.  

2.5.1 Chemical Corpora for NER Task 

Current work in chemical text mining increasingly focused on the use of supervised 

machine learning approaches for NER problems [70]. Availability of a large 

manually annotated text corpus is necessary to develop such systems.  

There are only few chemical corpora with manually labeled entities to use in text 

mining tasks unlike many other domains including biomedical domain. There are 

more than 36 corpora in biological area [71], a few of which contain chemical 

entities besides other types of entities. In addition to biological corpora, some other 

corpora have been developed specifically for chemical domain. Information about 

existing corpora is summarized in Table 2.1.  

As shown in Table 2.1, ChemDNER is the largest and most comprehensive corpus in 

terms of the number of articles used in the chemical and drug domain. This corpus is 
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constructed using PubMed articles from different branches of chemistry and 

pharmacy, such as applied chemistry, pure chemistry, physical chemistry, organic 

chemistry etc. All experiments in this thesis are conducted using the ChemDNER 

corpus. 

 

 Table 2.1: Description of available chemical corpora 
Corpus Main Focus No. Of used 

articles 

Availability 

GENIA [72] Biological besides 

some chemicals 

1999 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 

CRAFT [73] Biology 97 http://bionlp-corpora.sourceforge.net/CRAFT/ 

PennBioIE CYP 

1.0. [74] 

Biology 1100 https://catalog.ldc.upenn.edu/LDC2008T20 

EU-ADR  [75] Biology 300 http://euadr.erasmusmc.nl/sda/euadr_corpus.tgz 

ADE [76] Biology 3000 Not Available 

DDI [77] Drug 700 https://www.cs.york.ac.uk/semeval-

2013/task9/index.php%3Fid=data.html 

EDGAR [78] Biomedical 103 Not Available 

Metabolites and 
Enzymes [79] 

Metabolic 296 http://www.nactem.ac.uk/metabolite-corpus/metabolite-
corpus-09012013.zip 

IUPAC training 

[15] 

Chemical (IUPAC 

names) 

463 http://www.scai.fraunhofer.de/chem-corpora.html 

SCAI [80] All Chemical Names 100 http://www.scai.fraunhofer.de/chem-corpora.html 

PubMed [81] Compounds, 
reagents, chemical 

adjectives enzymes 
and prefix 

42 Not Available 

Sciborg [81] All chemical names 42 Not Available 

European Patent 

Office and the 

CheBI [17] 

All chemical names 40 http://chebi.cvs.sourceforge.net/viewvc/chebi/chapati/patent

sGoldStandard 

ChemDNER 
[11] 

Chemical 
compounds and 

drugs 

10000 http://www.biocreative.org/tasks/biocreative-iv/chemdner/ 

 

2.5.2 Literature Review 

NER in the biological domain has mainly focused on identifying gene or protein 

names, where a number of effective systems have been developed during the past 

few years [82],[83] such as BANNER [84], ProMiner [85], tmVar [86] and GNAT 

[87]. In contrast, chemical NER has received less attention. The earliest work on 

recognition of chemicals was performed in the late nineties. Heym et al. [88] 
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presented an algorithm to recognize and segment chemical words by matching the 

strings of characters with some stored words, similar to dictionary based method. 

Their work can be considered as the starting point for Chemical NER problem. 

Kemp and Lynch [89] developed a statistical method to detect chemical compound 

names in Standard Generalization Markup Language (SGML) patent texts. Wilbur et 

al. [90] implemented a system using both dictionary and learning approaches. To 

implement their dictionary based method, they created a list of chemical morpheme 

segments using the algorithm presented by Registry File Basic Name Segment 

dictionary [91]. The algorithm matches the longest left-most segment with character 

strings given in text. Furthermore they employed the naïve Bayesian algorithm in 

machine learning approach. The Open Source Chemistry Analysis Routines (OSCAR 

3) developed by Corbett et al. [92] in 2008 to identify chemical entities is based on 

Maximum Entropy Markov Models (MEMM) [65]. It is tested on SCAI Corpus and 

PubMed Corpus, none of which are freely available. Jessop et al. [93] implemented 

OSCAR 4 by refactoring OSCAR 3. Rocktäschel et al. [94] reports that OSCAR 4 

yielded a minor increase in performance compared to OSCAR 3. Klinger et al. [15] 

created a chemical NER system to detect IUPAC and IUPAC like entities using 

CRFs [64] algorithm. The implemented system is not freely available and does not 

cover trivial or drug names.  Hetten et al. [18] implemented a combined dictionary 

for drug names, abbreviations, and small molecules using names extracted from the 

UMLS, MeSH, CheBI, DrugBank, HmdB, KEGG, and ChemIDplus. In 2008 

Segura-Bedmar et al. [95], developed DrugNER system for recognition of drug 

names. They combined the UMLS MetaMAp Transfer (MMTx) program [96] and 

rules of nomenclature by the World Health Organization International 

Nonproprietary Names (HOINNs) program [97]. To evaluate the system, they used 
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their own DrugNER corpus, and reported a very high performance. ChemSpot is 

another state of the art chemical NER system created by Rocktäschel et al. [94]. It is 

implemented using a hybrid approach combining CRFs to identify systematic named 

entities and an exhaustive dictionary to detect other names such as brands, drugs, or 

small molecules.  

Due to the sparsity of annotated corpora for training, failure in covering all types of 

chemical entities, and lack of publicly available annotating guidelines, it was not 

possible to evaluate efficiency of the proposed chemical NER systems until 2013. 

BioCreative IV organized a track on chemical/drug NER (ChemDNER), and invited 

researchers to develop their systems using presented corpus in 2013. 26 research 

teams have participated in task. Common characteristics of all teams were the use of 

the corpus to train systems or to adapt and fine-tune previously created systems. All 

participants employed the official evaluation library presented by BioCreative to 

evaluate and improve their systems during the development phase. Summary of 

techniques used for implementation of systems, subtasks of NLP attempted by the 

participants, and types of post processing employed are shown in Table 2.2. The first 

row of the table shows the reference number of the articles, which discuss the work 

and the rank of the system proposed for the ChemDNER task in terms of the 

achieved F-scores. Additionally, Table 2.3 summarizes the features used by the 

participating systems. 
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          Table 2.2: Overview of the methods used for ChemDNER in BioCreative IV 

 1[25] 2[98] 3[36] 4[99] 5[100] 6[101] 7[102] 8[103] 9[104] 10[105] 11[106] 12[21] 13[107] 14[108] 15[109] 16[22] 17[110] 18[34] 19[23] 20[111] 21[112] 22[113] 23[114] 24[35] 25[41] 26[19] 

      Techniques                           

  Machine Learning 

CRFs × ×  × × × × ×  ×   ×  × × × × × × × ×  × ×  

SVM ×      ×   ×     ×    ×  ×      

Log. Regression                   ×        

Max. Entropy             ×              

Random Forests                    ×       

Rule Based ×  ×      ×       ×          × 

Dictionary                           

Dictionary × × × × × × ×  × × ×  × ×  ×  × × × × × × × × × 

Only Dictionary           × ×           ×    

NLP                           

Tokenization ×   × × × × × × × × × ×  × × × ×  × ×  × × × × 

Sentence Splitting ×   × × × × × × × × × ×  ×   ×   ×    × × 

POS tagger ×   × × × × × × ×  ×    ×     ×     × 

Nomenclature rules ×  × × ×    ×  ×   ×       ×   ×   

Lemmatization ×   × × × × ×        ×   ×        

Stemming     ×  ×      ×  × ×  ×  × ×      

Shallow parsing      ×   ×                  

External CNER × × × × ×    ×  × ×  ×  ×     ×   × × × 

Post Processing × × × × × × ×  ×  × × × ×  ×  × ×  × × × × × × 
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Table 2.2 shows that most of the presented systems are hybrid systems making use of 

dictionaries and machine learning approaches. It also depicts that CRFs were used by 

the majority of the participants. Out of the 26 participating systems, only 6 used 

SVM as the learning approach. Log regression and Max Entropy are used only by 

one system. Only two systems [36], [104] used solely rule based approaches, which 

lead them into third and ninth position in chemical NER rank. Two systems [113], 

[114] over three, which used only dictionary lookup approach using considerable 

databases and terminologies, could achieve satisfactory results (rank 11 and 12). 

Moreover all participating teams applied at least one of preprocessing tasks from 

NLP domain in their systems. Except for six systems (2, 8, 10, 15, 17, 20) all others, 

used post processing to improve the outcomes of NER systems. The following 

discussion presents the methodologies for most of the systems mentioned above.  

Leaman et al. [25] implemented tmChem which achieved the highest performance. 

They employed a model combination approach to combine two different created 

models. The differences of their models are on the tokenization methods, feature sets, 

CRFs parameters, and post processing approaches. The first model is an adaptation 

of BANNER [84]. They used a finer tokenization method than BANNER‘s default 

that was tuned for gene or disease detection. CRF with order of 1 is used to train first 

model. To create the second model, they used CRF++ library [115] by repurposing a 

part of tmVar system for identifying genetic variants [86]. The order of CRF in 

second model is set to 2. After model creation phase, they combined models to get a 

final chemical NER system. 
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  Table 2.3: Overview of used features by participating teams in ChemDNER task of BioCreative IV 

 1[25] 2[98] 3[36] 4[99] 5[100] 6[101] 7[102] 8[103] 9[104] 10[105] 11[106] 12[21] 13[107] 14[108] 15[109] 16[22] 17[110] 18[34] 19[23] 20[111] 21[112] 22[113] 23[114] 24[35] 25[41] 26[19] 

Word Level Features                           

Numerical/Digit × ×  × × × × ×     ×    × ×  × ×   ×   

Word Punctuation × ×  × × × × ×       ×  × ×   ×   ×  × 

Word case × ×  × ×  × ×  ×   ×  ×   ×   ×   ×  × 

N- gram × ×  × × ×  ×     ×  ×   ×   ×   ×  × 

Word Morphology ×   × × × × ×  ×       × ×  × ×      

Word Patterns ×   × × ×       ×  ×  × ×   ×   ×   

Word Length    × × ×       ×  ×   ×   ×  × ×  × 

POS ×   × × × × ×  ×      ×     ×     × 

Special Character ×     × ×      ×  ×   ×   ×   ×   

Whitespace × ×   ×   ×       ×   ×        × 

Other  ×              ×           

Lookup Features                           

Chemical lexicons ×   × × × ×           × ×  ×  ×   × 

Stop Words                    × ×  × ×  × 

Other  ×           ×          × ×   

Document Features                           

Mentions in training    × ×  ×      ×    × × × × ×      

Multiple mentions   ×                  ×      

Other  ×      ×          ×   ×      
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Lu et al. [98] implemented a system using CRFs model and word clustering features. 

To create the CRF model, they mixed word level and character level CRFs models. 

They also created clustering features using PubMed articles based on the one-level or 

multi-level clusters. Lowe et al. [36] implemented LeadMine as another NER system 

by combining the rule based and dictionary based approaches together. Most of the 

dictionaries used by LeadMine are automatically derived from publically available 

resources to identify trivial names. Also it encoded expertly curated rules to describe 

systematically named entities. Batista-Navaro et al. [99] developed ChER as 

chemical NER system by incorporating specialized preprocessing analytics and rich 

feature sets for machine learning in addition to post processing for abbreviation 

detection. Huber et al. [100] retrained ChemSpot [94] using other features derived 

from the output of individual components used in ChemSpot plus other chemical 

resources. Moreover they used outputs of OCSAR 4 [93] as input features. Campos 

et al. [101] developed a supervised learning based method to extract chemical 

compounds from given documents. Their proposed system uses a rich feature set 

such as linguistics, orthographical, morphologic, and dictionary matching features. 

They developed a system using two frameworks: Gimli [116] for feature extraction 

and machine training and Neji [117] system for post processing. Tang et al. [103] 

implemented another machine learning based system using CRFs and SSVM [66] 

and different sets of features including orthographic, morphologic and domain 

knowledge features. Furthermore, they used word representation features including 

Brown clustering [1118], random indexing [119], and skip-gram [120]. Another 

chemical entity recognition system is created by Munkhdalai et al. [103]. It 

incorporates domain knowledge from chemical and biomedical context with word 

representations. They extended BANNER along with presentation of semi supervised 
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learning method that efficiently exploits unlabeled data for entity recognition. The 

key feature of this method is learning of word representations from a vast amount of 

textual data for feature extraction. Cocoa [121] is an existing entity recognizer for the 

biological domain. Ramanan and Nathan [104] have adapted the output of Cocoa to 

detect chemical entities. At first, they trimmed the generic entity terms which were 

irrelevant to the chemical context and excluded them. Then they added dictionary 

entries to handle unusual entity names in the given abstracts. Zitnik and Bajec [105] 

proposed a novel NER system using different types of CRFs whose outputs are input 

to SVM classifier to combine. Irmer et al. [106] presented a system using a modular 

text processing pipeline. They integrated it with a number of modules into the 

OCMiner which is a pipeline for unstructured information processing based on the 

Apache UIMA framework [122]. Additionally, they made use of a kind of dictionary 

based method for the annotation of chemicals. Another hybrid system which 

combines dictionaries with a rule based approach is developed by Akhondi et al. 

[21]. Different number of available dictionaries including ChEBI [17], ChEMBL 

[122], ChemSpider [61], DrugBank [123], HmDB [124], NPC [125], TTD [125], 

PubChem [126], JoChem [18], and UMLS [57] are employed by this system to 

extract nonsystematic chemical entities. Xu et al. [115] designed a three step pipeline 

consisting of a preprocessing module, a recognition module, and post processing 

module. For the learning part of the recognition module they employed features 

frequently used in NER systems such as linguistics, character features, word shape, 

contextual features, and word representation features. Kumar et al. [109] developed a 

domain independent model creating three systems using CRFs and one using SVM. 

Then they combined the results of those systems. In the training phase they used 

domain independent feature sets without considering external resources related to the 
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context. Yoshioka and Dieb [22] implemented a classifier using the outputs of well-

known chemical NER systems e.g. OSCAR 4 and ChemSpot along with some 

linguistic features such as POS. They showed that ChemSpot by itself is good at 

precision and in contrast OSCAR 4 is good at recall. Thus to take advantage of these 

two systems they fed the output of these classifiers as input feature to a CRF and 

created a new classifier. Named Entity Recognizer of Chemicals (NEROC) [110] is 

another NER system for chemical context. Its basic architecture is exactly the same 

as the system introduced in [22]. The only difference between two systems is the 

feature sets employed and the toolboxes utilized to create final systems; NEORC 

made use of more features compared to the system proposed in [22]; NEORC uses 

Mallet toolkit [127] whereas other one uses CRF++ [115]. Another ensemble 

approach is introduced by Khabsa and Giles [34] which is based on employing 

multiple classifiers and output probabilities that represent the confidence score for 

each entity. They used a modified version of ChemXSeer [128] along with 

ChemSpot and OSCAR 4 for the implementation of their approach. Ravikumar et al. 

[23] extended BioTagger-GM [129], a system for gene names detection, and 

MedTagger [130] a clinical related entity recognizer. They used three machine 

learning algorithms; CRFs, SVM, and logistic regression [131]. Then they combined 

the results of different systems and did some post processing for parenthetical 

alignment errors and removing false positives appearing in the train data. Li et al. 

[112] developed another kind of hybrid system combining the machine learning 

approach with hand crafted dictionary extracted from training data. They used CRFs 

with common orthographic and morphological features. In the dictionary based phase 

they tried to find entities from test data, which have been seen before in training data. 

Moreover, they did some post processing such as removal of wrapping brackets and 
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symbols appearing at the end. Shu et al. [113] participated in the task by 

implementing a system using CRFs as learning algorithm and common 

orthographical and morphological feature set. Additionally they used some linguistic 

features such as part of speech tags. Another dictionary based solution to ChemNER 

problem was DBCHEM presented by Ata and Can [114]. It is based on database 

queries for chemical/drug identification. They prepared a database with 145 million 

entries including chemical compound and drug names, their synonyms, and 

molecular formulas. They utilized PubChem Power User Gateway (PUG) [126] to 

create a database. Usie et al. [35] implemented CheNER as hybrid system. It uses 

CRFs with different types of features in addition to dictionary features extracted 

from dictionaries such as JoChem, PubChem, and ChEBI. Additionally it makes use 

of outputs of OSCAR 4 and ChemSpot for combination. Lana-Serrano et al. [19] 

proposed a rule based approach using semantic information for Chemical/drug entity 

detection by means of ChEBI ontology and the MeSH Meta thesaurus [60] to extract 

semantic information. Also they integrated MetaMap tool [96], ANNIE POS tagger 

and pharmacological databases such as DrugBank. Dai et al. employed machine 

learning approach with representative tag scheme and fine grained tokenization 

approach [123]. Most commonly used tag representation scheme for NER task is 

IOB2 [132], but they used IOBES scheme with combination of fine grained 

tokenization results. They implemented two types of tokenization in their task; 

Coarse grained tokenization where the standard Penn Treebank tokenization rules 

[124] are used, and fine grained tokenization where firstly coarse tokenization is 

applied on data then generated tokens are tokenized again through following two 

steps. First, insertion of separations before and after symbols like hyphens and 

dashes, second, separation at the locations between letters and digits, as well as at 
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character locations where a lower case letter is followed by an uppercase letters. 

Finally they combined that scheme with the fine grained tokenizer to use during their 

machine learning phase.  

2.5.5 Publicly Available Chemical NER Systems 

Recent research in text mining applications especially NER in chemical context 

resulted in a number of commercial or freely available tools and products for the 

task. ProMiner [125] is a commercial NER system that was originally developed for 

identification of genes and protein names in biological texts. It has later been 

optimized for chemical NER purpose. InfoChem developed a system namely 

ICANNOTATOR [126] which is able to extract chemical entities including trade, 

trivial and systematic names. Moreover it can detect standard chemical identifiers 

such as CAS register numbers or InChi. ChemAXon implemented D2S (Document 

to structure) [108], to identify chemical named entities in the documents with 

different formats such as PPT, PDF, DOC, and ODT. It can also subsequently map 

the recognized mentions to their structures. Peregrine [18] is a dictionary based 

publicly available tool applicable for chemical/drug NER task. Chemical Entities 

Recognition Skill Cartridge (CER) from the TEMIS (TextMIning Solutions) [133] 

allows users to load and use precompiled dictionaries for their chemical/drug NER 

tasks.  In contrast to CER, Whatisit [134], an online text processing system which 

does not allow users to replace or modify underlying dictionaries. EBI developed 

another publically available web based system, EbiMed [134], to recognize the drugs 

and chemical named entities in Medline repository. GATE [135] (General 

Architecture for Text Engineering) is an open source text mining platform that 

provides customizable and re-trainable algorithms which can be used for 

chemical/drug entity mention recognition. SIIP [136] (Strategic IP Insight Platform) 
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gives an interactive platform for patent literature processing. It provides chemical 

annotation services by making use of combination of rules and dictionaries. In 

particular, it uses negative dictionary (i.e. a dictionary of terms that should not be 

identified as chemicals) to filter out the identified potential mentions. ChemFrag 

[137] is another rule based NER system from IBM which employs some rules for 

identifying organic chemical names. ChemBrowser [138] is a chemistry specific 

NER engine which has been implemented using hybrid approach, allows users to 

quickly merge different NER strategies together for a given solution. 

ChemicalTagger [139] is an open source NER system which uses OSCAR for 

recognition of chemical and drug compounds. ChemEx [140] is another open source 

system to facilitate the chemical data curation by extracting chemicals, organisms 

and assays from large collection of texts. It can also handle both text and image in 

documents. The text detective module uses some rules and dictionaries to recognize 

chemicals, genes, diseases, and organisms in documents. CYP34A introduced by 

Feng et al. [141], is a text mining engine for information extraction on chemical 

interactions. It is created based on dictionary approach in order to recognize 

chemicals. 

However, no evaluation on the performance of mentioned systems has been made 

publicly available. 
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Chapter 3 

MULTIPLE CLASSIFIER SYSTEMS  

3.1 Introduction 

One solution to increase the performance of the classification tasks is to create one 

classifier with the highest possible performance. In this case choosing the most 

suitable classification algorithm and fine tuning its parameters along with extracting 

the most discriminative and useful features are necessary to achieve the highest 

possible performance. However, because of the large number of classification 

algorithms and possible parameters, choosing the most suitable algorithm and finding 

the optimum values of the parameters is not always trivial. Moreover, selection of the 

best subset of features among very large number of features further complicates the 

process of finding the best classifier. 

Another solution is to design a Multiple Classifier System (MCS) using a set of 

classifiers with relatively good performances. In this case, each input is classified by 

making a joint decision using all or a subset of the classifiers in the MCS. It has been 

shown that MCS or classifier ensemble is usually more accurate than the individual 

members of the ensemble in many applications [142], [143].  

To create an MCS, each individual classifier is trained using training samples labeled 

with corresponding class labels. Training data is often enriched with discriminative 

features extracted from the given data itself or using external resources. Each 
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classifier maps the input vector X to a specific class, Yi, among N possible class 

labels. Outputs of a classifier can be of the following types [144]: 

 Abstract: the classifier output is a single label from the set of labels. This 

type of output is also known as hard or crisp outputs.   

 Rank: each classifier produces a list of all possible classes ordered from 

the most likely class to the least likely. For example in the case where 

there are 3 possible class labels, for a given input sample the output would 

be y = {y3, y1, y2}, where the class label in the first position is ranked as 1, 

the class label in position two is ranked as 7 etc. 

 Measurement: In this case, output for each input data is a list of all 

possible classes with their corresponding confidence score computed by 

the classification algorithm.  As an example consider the 3 class problem; 

for a specific input sample the output of the classifier may be y= {0.24, 

0.44, 0.22}, which shows that the probability of the given sample being 

from class y1 is 0.24, from y2 is 0.44 and finally for being from y3 is 0.22.  

Joint decision of an ensemble of individual classifiers is computed using the types of 

outputs according to the combination scheme employed. The prevalent combination 

schemes used in MCSs are explained in the next section. 

One of the most crucial decisions in MCS framework is classifier selection for the 

ensemble which refers to deciding which classifiers should be employed in the 

ensemble making the joint decision. Clearly classifiers with very poor classification 

performance are not expected to be very useful in making aggregate decision. In the 

same way, combining a number of similar classifiers is not expected to bring any 

benefit. The classifiers that are to be included in an MCS should not be identical. In 
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other words they should not make similar classification errors. This property is called 

diversity. Diversity in the regions where classifiers make mistakes is an intuitive 

criterion that can be used to choose which classifiers will be added to the ensemble to 

improve the classification performance. There are several approaches to achieve 

diverse classifiers:  

i. Using different classification algorithm such as HMMs, SVM, CRFs, 

Decision Tree, etc. 

ii. Using the same classification algorithm with different values for 

parameters. 

iii. Training various classifiers using different training data or subsets of 

training data instead of whole data set. 

iv. Using different types or combinations of features.  

Designing an MCS involves decisions on the architecture of the base classifiers; the 

type of outputs that will be combined, the selection criteria used to choose the base 

classifiers, Di, from the repository and the fusion function f such that D(x) = f(D1(x), 

D2(x), …, DL(x)), where, Di(x) is the prediction of i
th

 classifier given input x. 

3.2 Criteria Used for Classifier Selection 

Selection of the most suitable classifiers from a pool of all candidates is one of the 

most important steps in designing an MCS. In general, classifier selection methods 

can be categorized under two groups: Static Classifier Selection (SCS) and Dynamic 

Classifier Selection (DCS). In SCS, the same set of classifiers is used to predict all 

unlabeled samples. On the other hand, in DCS, a different set of classifiers may be 

used to produce the joint decision for each unseen pattern. The objective of both 

strategies is to achieve the highest possible classification performance. In SCS 
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approach to find the optimum subset of classifiers, after training the base classifiers 

on training data, combination results using development data are used to select the 

members of the ensemble. The ensemble with the highest performance on the 

development data is used to classify unseen data. In the cases that there is no 

development data, n-fold cross validation [145] can be employed as an alternative. In 

DCS, the classifiers that will participate in the joint decision is determined 

dynamically based on the performance of the classifier on the similar input values in 

training data [144].  

The classifier selection criteria employed has great impact on the final performance 

of MCS. The simplest, most intuitive approach is to consider the individual 

performance of the base classifiers such that k top performing classifiers are selected 

for the ensemble. However as mentioned earlier, if selected classifiers make the same 

classification mistakes, combining them will not improve the overall performance. 

Therefore performance of individual classifiers alone cannot be a good selection 

criteria. 

An ideal ensemble includes highly performing classifiers which disagree with each 

other as much as possible [146]. Disagreement among classifiers refers to making 

mistake in different regions of input data and it is known as diversity [144], [147]. A 

number of diversity measures have been proposed as classification selection criteria 

in [144] including: Q statistics, Correlation, Disagreement measure, generalized 

diversity, and double fault measure.  

However most of the studies have shown that there is not a strong correlation 

between the performances of combined classifiers in an ensemble and diversity 
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measures [148], [149], and [150].  Another intuitive approach to choose diverse 

classifiers is to include classifiers with different success on various cases.  

The performance of the ensemble can also be used as a selection criterion. The 

problem with this case is the cost of exploring the solution space containing all 

possible subsets of candidate classifiers, especially when the number of classifiers is 

large. Another difficulty in this case is the need for development data in addition to 

unlabeled test data to evaluate the ensemble‘s outcome. Using n-fold cross validation 

or reserving a predefined portion of training data as development data are two 

possible solutions to the problem.  

Besides the methods mentioned previously as selection criteria, there are two popular 

methods, namely Bagging [151] and Boosting [152] which are also employed to 

improve diversity among classifiers by altering the training data seen by each 

individual classifier. Bagging approach trains each individual classifier of the 

ensemble using bootstrapped samples of training data with replacement. On the other 

hand Boosting methods adapt the selection probability of samples over the time, 

based on performance of the most previously created classifiers such that the samples 

misclassified by the previous classifiers are more likely to be selected for training 

new classifiers. 

3.3 Search Algorithms used for Classifier Selection in MCS 

In order to choose the most optimum ensemble of classifiers which produce the 

highest classification accuracy, the search space containing all the possible 

combination of individual classifiers must be explored.  Different search methods are 

available for this purpose. Greedy search solutions attempt to systematically find the 
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optimal ensemble by considering the effect of adding specific classifier into or 

removing it from the ensemble. Evolutionary search strategies on the other hand, 

form a population of ensembles and perform optimal search by evolving the 

population and selecting the ensemble with the highest performance. The most 

frequently used approaches to find an optimal ensemble are presented in the 

following subsections. 

3.3.1 Single Best (SB) 

The simplest and most straightforward approach to classifier selection is to select the 

highest performing classifier among all candidates. In MCS, usually single best 

classifier is used as a benchmark to compare the performance of the ensemble 

produced. 

3.3.2 N Best (NB) 

In this case N classifiers that have highest performance are selected from the 

classifier pool. This method is also computationally cheap and it merely involves 

calculating the performances of individuals and sorting them in ascending order. But 

it does not take diversity and joint performance into account. 

3.3.3 Forward Selection (FS) 

Forward Selection [153] is a greedy search algorithm that produces an ensemble by 

recursively adding more classifier to the initial ensemble that usually contains only 

one classifier, the single best individual classifier. At each iteration, a new classifier 

is selected from the pool and added to the candidate ensemble. If the performance of 

the new ensemble is superior to that of the former ensemble, new classifier is added 

to the ensemble otherwise it is discarded. The process continues until all classifiers in 

pool are considered for addition to the ensemble. 
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3.3.4 Backward Elimination (BE) 

Backward Elimination [153] is another type of greedy search algorithm. In contrast 

to the FS algorithm, it starts with a target set containing all members of the classifier 

pool. Then in each iteration, the weakest performing classifier is removed from the 

set with the aim of improving the performance of the ensemble. If removing a 

classifier results in any improvement on overall performance of ensemble, the 

classifier is eliminated, else it remains in the ensemble. The elimination process is 

continued until all classifiers are examined. 

3.3.5 Evolutionary Algorithms 

Given a large number of classifiers in repository, an intelligent or evolutionary 

classifier selection process, rather than a greedy approach, becomes a crucial issue in 

MCS design process due to the size of search space. Successes of evolutionary 

algorithms in classifier selection process have been shown through several studies on 

different applications [154].  

Population based evolutionary algorithms have been more prevalent in classifier 

selection process. Genetic algorithms received more attention among all others in 

this area [154], [155]. There are also other algorithms that can be used beside the 

genetic algorithm such as Particle Swarm Optimization (PSO) [156], Tabu Search 

[157], and Bee Colony [158]. In this thesis PSO is employed as part of the designed 

ensemble approach. PSO is an evolutionary algorithm that is applicable to vast 

amount of problems. In addition to being computationally simple, PSO has powerful 

search mechanism based on bird flocks principle [156]. In this algorithm, a 

population of individuals is evolved toward the solution space of an optimization 

problem by means of the evolutionary operators, which produce new solutions from 

the current populations.  Through the evolution process, at the end of each iteration, 
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candidate solutions are evaluated. If the population does not contain the optimal 

solution, evolution continues until an optimal solution is found. Even though PSO in 

its original version was proposed to solve real-valued problems, it is also applicable 

for discrete issues. The Constriction Factor Method (CFM) which is a modified 

version of the basic PSO, shows better convergence properties in comparison to the 

basic algorithm [32], [159], [160, [161], [162]. Hence, CFM version of PSO was 

employed in this thesis.  

3.4 Combination Methods used in MCS 

Classifiers selected for ensemble should be combined in some way in order to 

produce a final joint decision. Different combination approaches are applicable at the 

aggregation stage of a MCS, depending on the output type of individual classifiers. 

Some of the most commonly used combination methods are described in the 

following discussion.  

3.4.1 Majority Voting Method 

Majority Voting [144] is the most commonly used method in general voting 

category. It takes the abstract outputs of all classifiers in an ensemble as input and 

determines the label which received the majority of votes. 

Weighted majority voting approach is a type of voting method where a weight that 

reflects accuracy or reliability of each classifier for its predictions is utilized. In this 

case weights are considered during aggregation of votes by increasing or decreasing 

the impact of predictions of individual classifiers. In the weighted majority approach, 

the weights used can be taken as a constant weight for each classifier or each 

individual classifier can have a different weight for each possible class based on the 
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strength of that classifier for predicting samples from each class. The latter is then 

referred to as class-based weighted majority voting.  

In addition to the majority strategy, voting approaches can also be applied in 

unanimity or plurality forms [144]. In the unanimity voting approach, the ensemble‘s 

output for each pattern is labeled as a specific class, if almost all members of the 

ensemble agree on that label. On the other hand in the plurality mode, only the half 

number of members plus one need to agree on a class label. 

3.4.2 Algebraic Combination Methods 

If the outputs of classifiers are from measurement type, algebraic combination 

schemes including Sum Rule, Product Rule, Max Rule, Median Rule, and Mid Rule 

can be employed to combine the members of the selected ensemble [144]. These 

rules are easy to implement. For example in the case of Sum Rule, summation of 

scores of all classifiers for each class label should be calculated for a given input 

pattern. Then the class label with the highest score is denoted as the decision of the 

ensemble. For the product rule the approach is similar to Sum Rule; but instead of 

summation, product of scores is used to calculate final decision. For Max, Median, 

and Mid Rules the given input pattern gets a label with the maximum measurement 

achieved using maximum, median, and mid of all scores of classifiers in ensemble 

respectively per each class label. 

3.4.3 Naïve Bayesian Combination Method 

Using Naïve Bayesian approach for uncertain combinations helps in understanding 

the differences between individual performances and in the case of limited training 

data, incorporates some sort of existent prior knowledge about their abilities [163]. 

The assumption is that for a given class label, classifiers are mutually independent 
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(conditional independence). Here,       denotes the probability that sample x is 

labeled by classifier    as belonging to class    
   class list (predicted label for 

sample x with Ei is    
). The result of conditional independence is shown in equation 

(3.1). 

   ̅|                 |    ∏     |   
 
                                     (3.1)                                 

where L shows the number of classifiers and     represents the class k from the label 

set. Then, the required posterior probability for labeling x is shown as equation (3.2). 
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Since the denominator is not based on the   , this part is ignored; as such, calculation 

of the support for class    is done in the following manner, shown in Formula (3.3):  
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To calculate a N×N confusion matrix     for each classifier,   , the results of 

applying it on development data set should be observed. Here N represents the 

number of the classes. The     [k][   ] of this matrix,       

 , shows the number of 

data elements which originally had the class label of   , and were assigned to class 

   
 through   .    Determines the total number of class    samples. Taking 
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the probability estimate    (  |  ) , and 
  

 
  , n shows the total number of samples, as 

a prior probability for class   , equation (3.3) can be modified as equation (3.4).  
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In equation (3.3), if zero is taken as the estimate of    |    , it automatically 

nullifies   
   , and the other estimate values are not taken into account. Titterington 

et al. [166] proposed a novel formula for Naïve Bayesian combination as a solution 

for this problem which is given in equation (3.5): 
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Where B is a constant, which should be determined individually for various 

classification tasks. Titterington has proposed values 1, 0.8, or 0.5 for B. Formula 

(3.5) has been used as the combination strategy for the selected classifiers in this 

study. 
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Chapter 4 

CLASS IMBALANCE PROBLEM 

4.1 Introduction 

Classification is a popular and important task of pattern recognition which aims to 

map a given input data into one of predefined class labels. There are many 

algorithms developed for different classification problems. Generalization ability of a 

classifier is the judgment measure for its performance which is usually demonstrated 

by error rate or overall accuracy.  

Classification algorithms mostly assume that misclassification rates for different 

classes have the same cost and treat them equally during the learning phase. In these 

cases the learning process is done by aiming at achieving maximum overall accuracy 

[165], [166].  However this is not the case for all real world applications. There are 

plenty of problems that have unequal cost of misclassification for individual classes, 

such as fraud detection in banking transactions, telecommunication risk management 

systems, fault prediction in software engineering [167] etc. 

Named entity recognition in biological and chemical context also suffers from equal 

error rate phenomenon discussed above since the classification algorithms treat the 

named entity samples and non-entities equally Thus they are favored in the 

recognition of samples from classes which are in the majority class. For example, in 

the chemical NER problem an entity of interest is much less likely to occur in text 
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than non-entities. On the other hand rare samples from specific classes are usually 

costly and more important.  

The Class Imbalance Problem (CIP) is when number of samples from some classes 

are much more than the number of samples from other classes. . The direct impact of 

this problem on the chemical NER task has caused to dedicate an individual chapter 

to the CIP and involving strategies. Additionally, related studies which tackled the 

CIP in NER context are represented at the end of the current chapter.   

4.2 What is the Class Imbalance Problem (CIP)? 

Class imbalance problem refers to the category of classification problems in which 

the number of samples from some classes is much more than samples belonging to 

other classes i.e. skewed class distribution. In such conditions standard classifiers 

usually tend to be favored by the classes related to majority of samples and ignore 

others. Since classifiers mostly focus on overall accuracy, this leads to lower 

performances resulted from ignoring the different kinds of classification errors [165]. 

For instance, consider a classifier that wants to learn from a data set containing 95 

samples with a specific class and just 5 samples from the second class. If all data are 

labelled as the first class, overall accuracy would still be 95%. Hence, here accuracy 

will not be an appropriate evaluation metric when CIP is an innate characteristic of 

data.  

In practice CIP is addressed with binary classification problems where multi class 

problems are usually translated to a sort of two-class problems. As the samples from 

rare class are of greater interest than those samples that belong to the other, the minor 

objects are referred as positives and majority samples are known as negatives. 
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Another important concept related to the CIP is the ratio between the negative 

samples (Nmaj) and positives (Nmin) which is known as Imbalance Ratio (IR), 

Imbalance Rate (IR), or Imbalanced Degree (ID). Normally IR is computable 

according to equation (4.1): 

      IR= 
    

    
                                                     (4.1) 

There is no standard or agreement about the exact value for the imbalanced degree 

required for a data set to be considered as ―imbalanced‖. However, most 

professionals agree that a data set with IR value around 10 would be modestly 

imbalanced, and a data set with IR value above 100 is extremely imbalanced [168]. 

There are two more subtle points about IR. First, class imbalance should be defined 

with respect to a specific data set and since the class labels for test data are not 

known, imbalance ratio is calculated based on the distribution of samples within the 

training data. The second point is concerned about the actual size of training data 

used for IR calculation. It is important to know that the CIP for a data set with 20,000 

positive samples and 2,000,000 negatives is quite different from a data set with 20 

positives and 2000 negative samples, even though the IRs are same. 

CIP can be categorized into two types: ‗between classes‘ imbalance and ‗within 

classes‘ imbalance. Between classes imbalance points outs to the class distribution 

only, such that some resampling techniques can help to decrease its effect on the 

classification performance [169]. In the within classes case, samples from the minor 

class are included in some sub clusters, where samples that belong to some of the 

clusters are very rare in comparison to the members of other clusters [170]. Between 
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classes imbalance is also known as the rare class problem, while within class is 

referred as the rare case problem [171]. 

Many solutions have been proposed to deal with the CIP at both data and algorithmic 

levels. Data level approaches include some preprocessing tasks on training data 

aiming to achieve a balanced set as much as possible. Resampling techniques 

including oversampling and undersampling belong to this category. On the other 

hand, algorithmic solutions try to enforce the learning process with respect to rare 

classes. One class learning and cost sensitive classification are two mostly used 

solutions at this level. Another strategy is the ensemble learning strategy which has 

shown great success in general classification tasks. Detailed information on each 

strategy is given in the next section.  

4.3 Solutions to CIP 

Generally speaking, many studies have been carried out to deal with the CIP in 

different application domains. All approaches can be categorized in one of the three 

categories discussed below: resampling, algorithmic and ensemble methods. In the 

following subsections the most widely used and popular methods for each category 

are presented. 

4.3.1 Resampling Techniques 

Resampling methods are data-level strategies which aim to adjust the distribution of 

the training data. Resampling can be done either by oversampling or undersampling 

approaches. Oversampling tries to increase the number of positive samples to 

balance the majority and minority classes. Likewise, undersampling eliminates some 

negative samples until the data set becomes relatively balanced. In both approaches 

the data sets obtained after resampling is composed of almost balanced numbers of 
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samples belonging to the minor and major classes. However, both mentioned 

techniques have their own drawbacks. Oversampling by duplicating exact copies of 

positive patterns can lead to overfitting [172]. By removing negative samples using 

undersampling, it is possible to lose some potential useful information for 

recognition purpose which may rely on removed samples [173]. 

4.3.1.1 Oversampling 

The simplest type of oversampling is Random Oversampling (ROS) which replicates 

randomly selected positive samples in the given training data until a desired degree 

of class distribution is achieved. Synthetic Minority Oversampling Technique 

(SMOTE) presented by Chawla et al. [174] creates synthetic positive examples 

instead of merely copying existing positive samples in the given data set. In this 

method newly generated samples will be added to the current data. To create a new 

positive sample, SMOTE first selects a positive sample randomly and finds its K 

nearest positive neighbors. The distance between selected sample and each one of its 

neighbors is computed next and the difference vector where each dimension is 

multiplied by a random value in [0, 1] is added to the selected positive example. 

Result of this summation is added to the data set as a new synthetically created 

positive sample. Borderline SMOTE [175] is a modification of SMOTE where only 

borderline samples are considered to be used in SMOTE. It assumes that the 

instances near classification boundaries (border line instances) are more likely to be 

misclassified and thus they are more important. If most nearest neighbors of a 

positive sample belong to the negative class, then that border line sample is treated as 

a sample likely to be misclassified. Another development on the basic SMOTE is 

Adaptive Synthetic sampling (ADASYN) [176]. It creates positive samples 

adaptively according to their distributions where for difficult positive samples more 
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synthetic samples is created in comparison to easy ones. Difficulty or easiness of 

samples determines by the neighborhood of positive samples.  

4.3.1.2 Undersampling 

Random Undersampling (RUS) is a non-heuristic approach that removes negative 

samples from the data set randomly to achieve a preset balance ratio between 

negatives and positives. However, it may also cause the elimination of useful 

information from the negative samples. Tomek links introduced by Tomek [177] is a 

commonly used undersampling approach where given two examples a and b from 

different classes, a from positive class and b from negative, the (a, b) pair is called 

the Tomek link if there is no such example c, such that d (a, c) < d (a, b) or d (b, c) < 

d (a, b), where d (a, b) defines the distance between a and b. In such a case, the 

negative samples from the link is removed. The main drawback of this method is the 

high computational cost of finding Tomek links among samples [176]. Condensed 

nearest neighbor (CNN) [178] and One Sided Selection (OSS) [179] can also be used 

for undersampling purpose. CNN aims to find samples away from decision 

boundaries where the main idea is to find a subset of the training data where all 

samples could be correctly predicted by using 1-KNN in the found subset. One sided 

selection uses CNN to remove redundant negative samples first. Subsequently the 

Tomek links method is applied on the obtained set to remove borderline and noisy 

negative samples. Edited Nearest Neighborhood (ENN) [180] removes samples 

where label is different than at least is differ than two of its 3 nearest neighbors. 

Neighborhood cleaning rule (NCR) [181] removes the negative samples that are 

misclassified by 3-NN. Meanwhile if positive samples are miss-predicted by 3-NN, 

its negative neighbors are removed.  
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4.3.1.3 Hybrid Techniques  

In order to take advantages of undersampling or oversampling methods together, 

some techniques, which combine both strategies, have been developed. By means of 

combined methods it is possible to make data sets balanced without neither losing 

too much useful information nor suffering from overfitting. For Example 

SMOTE+ENN and SMOTE+Tomek are two successful hybrid methods presented in 

[182]. 

4.3.2 Algorithmic Techniques 

These approaches try to adopt classification algorithms to enforce the learning with 

respect to the rare classes. The main idea is to adjust the bias of the classifiers 

internally [183]. Being algorithm- specific is the main weakness of these approaches. 

Most of these methods involve applying search strategies that are well suited for 

detecting rare samples in data when common patterns are abounded.  

4.3.3 Ensemble Learning 

Ensemble learning is one of the major approaches to deal with CIP in different 

applications. It allows individual classifiers to emphasize the positive class regions 

differently and take advantage of their combination to decrease the risk of 

overfitting.  The main aim of existing ensemble techniques is on how to rebalance 

the training data for each base classifier and how to create the cost sensitive 

ensemble. Bagging and AdaBoost [184] are two commonly used ensemble methods 

in this area. It is important to know that applying the original Bagging algorithm for 

imbalanced class distribution, is not useful since every bootstrapped subset of 

training data will still be imbalanced. Furthermore, it could be even more favored on 

the negative class compared to the original data set [185]. The simplest way is to 

correct the skewness of data in each subset using sampling methods and build the 
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base classifiers from data with more balanced class distribution. Some representative 

ensemble methods for imbalanced data based on Bagging approach are: AB-SVM 

[186], Bagging Ensemble Variation (BEV) [186], Easy Ensemble and Balance 

Cascade method [187]. AdaBoost builds classifiers sequentially with subsequent 

classifiers focusing on misclassified samples from training data by former classifiers. 

Therefore, it can be considered as an accuracy oriented algorithm since it emphasizes 

misclassified samples. Also it treats all classes equally such that classifiers with 

higher accuracies will receive higher weights. For imbalanced data, since rare 

samples contribute less to the overall classification accuracy, learning strategy will 

tend to bias towards the majority class. Therefore the original AdaBoost will not 

work well for recognizing rare cases. For CIP cases, AdaBoost can evolve in two 

ways; first integration with resampling techniques and second cost sensitive boosting 

[169]. For the first one some methods such as SMOTEBoost [188], JOUSBoost 

[189] are developed. For the second approach AdaCost [190] or RareBoost [191] can 

be listed as developed methods. 

4.4 CIP in Named Entity Recognition 

Named Entity Recognition, being a classification task also suffers from the class 

imbalance problem. As mentioned earlier, the main aim of NER is to find mentions 

of interests in the given text while the rest of the document is not as significant. 

Thus, entity mentions are considered as positive samples and other text segments as 

negatives. Since in any given text the number of positives is much less than the 

number of negatives, CIP poses to be a natural problem for NER. The number of 

studies carried out to investigate the CIP particularly in the NER context is very few. 

The simplest way to deal with CIP in the context of NER is the stop word filtering 

method. Since usually stop words in a language do not carry much useful 



52 

 

information, and due to the fact that usually they are not entities of interest, removing 

them from the given data the number of negative samples can be decreased. The 

main drawback of this approach is lowering precision through increasing the number 

of False Positives. Removing stop words which do not belong to entities and keeping 

the ones within the entities from the training data causes the classifier to learn and 

predict every such token in test data as positive thus making a false positive 

prediction. Massimiliano et al. [192] introduced the instance filtering approach where 

firstly the usefulness probability of tokens in text is calculated and tokens with lower 

probability are eliminated.  They applied their method on both training and test data 

to decrease the time needed for both learning and generalization processes by 

downsizing the data sets. The possibility of losing positive samples as well as useful 

negative ones in this approach exists. Maragoudakis et al. [193] applied Tomek Link 

method on training data to decrease the number of negative samples. Tomanek and 

Hahn [194] used an altered version of active learning method to reduce the number 

of negative through learning phase. 
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Chapter 5 

PROPOSED FRAMEWORK   

5.1 Proposed System Architecture  

The presented framework relies on combination of three individual concepts in 

machine learning which lead to an increase in classification performance. The 

tokenization strategy is considered firstly as the data preprocessing step. A more 

effective rule-based tokenizer, ChemTok [28], is designed for this purpose. The 

second investigated issue is the effect of class imbalance on the overall performance 

of classifiers for the NER task. A novel undersampling method, balanced 

undersampling, is implemented for this purpose.  The main idea behind the proposed 

method is to maintain the presence of negative samples around positive ones as much 

as possible while achieving a more balanced negative-positive ratio to provide more 

information to the learning algorithms about the neighboring samples. Finally the 

effect of combination of an ensemble of classifiers for improving the quality of the 

resultant NER system‘s performance is considered. A new ensemble scheme using 

particle swarm optimization for classifier selection and Naïve Bayesian approach as 

the combination method is proposed in this thesis. The underlying architecture of the 

proposed approach incorporates all three novelties together and is shown in Figure 

5.1.
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Figure 5.1: Proposed System Architecture 
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As depicted in Figure 5.1, there are five main modules in the proposed system 

including: preprocessing, resampling, feature extraction, classifier training and 

ensemble learning. The preprocessing module is responsible for preparing the given 

data for the subsequent steps. In this module two main operations are performed on 

raw data: separation of individual sentences by detection of their boundaries and 

tokenization using the proposed tokenizer, ChemTok. More details on this module 

are given in section 5.3. As mentioned in Chapter 4, class imbalance is a natural 

characteristics of data used in NER problems. Hence, to decrease the effect of the 

imbalance problem the output of the preprocessing module is passed on to the 

resampling module. This module resamples the data at various ratios and makes it 

available for the next step. The proposed BUS utilized in this framework is presented 

in section 5.4. After undersampling the training data, different number of features is 

extracted using the feature extraction module. Commonly used feature sets in the 

NER domain plus some domain specific features using external dictionaries are 

created using this module. Section 5.5 gives detailed information about all features 

used. Using different training data with various feature sets from previous stages as 

well as different classification parameters, CRFs classifiers are trained in the next 

step. Details of classifier training are given in section 5.6. Subsequently, the 

proposed heuristic ensemble scheme is utilized using the classifiers trained in the 

previous step on development data. The ensembling module is designed based on the 

constriction factor method version of PSO for classifier selection and Naïve Bayesian 

method for classifier combination. This module is explained in section 5.7. After 

training the ensembling module using development data and selecting the subset of 

classifiers, the selected subset is tested using test data.  
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5.2 Data Used 

In this thesis the ChemDNER corpus released for chemical/drug NER task at the 

BioCreative IV [45] event is used. ChemDNER task of BioCreative IV focused on 

the detection of mentions of chemical compounds and drugs, in particular those 

chemical entity mentions that can subsequently be linked to a chemical structure 

[20]. The  entity mentions, which exist in the data sets mentioned, belong to the one 

of 7 different classes: “ABREVIATION”, “FORMULA”, 

“IDENTIFIER”, ”SYSTEMATIC”, “TRIVIAL”, “FAMILY”, and “MULTIPLE”. 

Hence, other tokens within the text, which do not belong to any of the entity 

mentions above, are considered to belong to the ―OUT‖ class. In this study we 

labeled all tokens that do not belong to entities as ―OUT‖ and those tokens belonging 

to one of mentioned classes are labeled as ―CHEMICAL‖. This conversion also has 

been applied by some participants in the task, particularly by the first ranked system, 

tmChem [25]. 

The ChemDNER corpus is currently the most comprehensive publicly available 

chemical related data set for the NER task in the chemical domain. The corpus 

consists of three individual parts; training, development, and test data sets. The train 

and development sets contain 3500 abstracts each, and the test data set contains 3000 

abstracts. Table 5.1 shows the details of each data set. All sets include raw abstracts 

and annotation files listing each named entity together with its exact position in the 

corresponding abstract using character offsets. Tag representation scheme used in 

this thesis is IOB2 [132], which is the commonly used labeling method for the NER 

in biomedical field. Here, instead of labeling whole token as an entity mention, we 

make use Beginning (B), Inner (I), and Outside (O) labels to tag the token as follows: 
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‗B‘ is used for the first token starting a mention, ‘I‘ is used for any further token in 

the mention, and ‗O‘ is used for all other tokens not part of any mentions. The last 

two columns of Table 5.1 show the ratio of negative samples (number of tokens from 

OUT-class) to the number of positives (B-CHEMICAL tokens and I-CHEMICAL) 

for the training data in the form of average (column C9) and maximum imbalance 

ratio (IR) (column C10). Considering these ratios, it is clear that the given data is 

highly imbalanced.  

           

 

Table 5.1: Statistics of ChemDNER Corpus 
 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Train 3500 584 30418 3651 8520 899343 102228 41009 24.42 113 

Development 3500 593 30445 3701 8677 893180 101724 40129 - - 

Test 3000 522 24655 3514 7563 772847 94871 30820 - - 

[C1: Number of total documents for each data set, C2: Number of documents w/o 

entities, C3: Number of all sentences, C4: Number of sentences w/o entity, C5: 

Number of unique chemicals, C6: Number of tokens excluding sentences w/o 

entity, C7: Number non entity tokens for sentences w/o entity, C8: Number of 

tokens belonging to an entity, C9: Average Negative-Positive (imbalance) ratio, 

C10: Maximum Negative-Positive (imbalance) ratio.] 

 

5.3 Data Preprocessing  

Data used for NER needs to be in proper format for the subsequent classifier training 

phase. Since the given input samples for NER process are sentences, the first step is 

sentence boundary detection. Then, all sentences must be tokenized into segments 

which can be used as samples. Data resampling and feature extraction are also 

important steps of data preprocessing, but because of the special significance of these 

tasks in our proposed framework, we studied them in separate sections.   

5.3.1 Sentence Boundary Detection 

Sentence boundary detection is a NLP related task which decides where sentences 

begin and end. Most NLP applications require that the input text is divided into 
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sentences. Named entity recognition task also needs texts to be segmented into 

sentences. However, often this task is challenging because of the presence of 

punctuation marks. For instance, even though periods are normally used to show the 

end of a sentence, they may also be used as a decimal points, and ellipsis or as part of 

abbreviations and email addresses. Based on statistics, about 47% of the period 

marks refer to the abbreviations in Wall Street Journal corpus [195]. Therefore 

considering period marks alone is not sufficient to correctly identify the sentence 

boundaries. Excessive use of punctuation marks in biological and chemical related 

texts further exacerbates the problem. We used the sentence detector module from 

Apache OpenNLP [196] in our study to separate individual sentences. This module 

uses the following rules to identify the end of sentences: i) if the end character is a 

period, it ends a sentence, ii) if the preceding token is in the hand compiled list of 

abbreviations, then it does not end a sentence, iii) if the next word after a period is 

capitalized, it ends a sentence.  

5.3.2 Tokenization with ChemTok 

Tokenization is the most important basic step for NER process using machine 

learning strategies where the given raw text is broken into tokens. Tokenization 

approaches can vary depending on the context [197]. Breaking text into white space 

separated segments, known as white space tokenization, can be thought as the 

simplest tokenization method which may be acceptable in newswire domain. 

However, in some other contexts such as biological, chemical, or drug development 

science, segmentation of text only by white spaces is not appropriate due to the 

inconsistent use of spaces, variety of the nomenclatures utilized in the field, presence 

of punctuation marks inside named entities, nonstandard orthography, existence of 

ambiguous punctuation etc. [48],[198]. During this study we developed an effective 
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rule based tokenizer, ChemTok [28], which utilizes rules extracted from training 

data. The main innovation of ChemTok is the use of the extracted rules with the aim 

of merging the tokens formed at previous text breaking steps. Thus it can produce 

longer and more discriminative tokens. We have shown in our experiments that 

ChemTok outperforms the performance of two state-of-the-art tokenizers in the 

domain, tmChem [25], and ChemSpot [94]. Figure 5.2 presents the algorithm of 

ChemTok. The algorithm simply tokenizes raw text at white spaces in the first step. 

Then, two lists are utilized in the second step. The first list contains domain specific 

affixes such as ‗Hyper‘, ‗Anti‘, ‗Amino‘, constructed from external sources listed in 

[199], [200]. 

The second list includes all chemical entities from ChemDNER training data. If a 

given token contains a substring that is found in the first list, then the token is 

segmented at the corresponding affix boundary. For example the tokens 

‗Antiherpetic‘, ‗hyperinsulinaemia‘, ‗Aminoacid‘ are split at this step. These 

conjoined tokens are separated into two tokens since these tokens can also be used 

separately as part of NEs. After this step, the second list is used to decide whether a 

token should be considered for further tokenization or not. If the token is found in 

this list, it is assumed that the NE boundaries are correctly segmented and no further 

tokenization is required. The tokens not found in the second list may be further 

tokenized at different delimiters such as Greek letters, punctuation marks, and case 

changes of alphabetical characters if they exist within the token. Following this step, 

recombination rules are applied on the tokens resulting in from previous steps in 

order to generate longer and thus more discriminative tokens. Table 5.2 illustrates the 

rules with an example for each.  
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Figure 5.2: ChemTok Algorithm 

Rule 1 is for merging the tokens that were split incorrectly at punctuation marks. 

Rule 2 combines the balanced containers around digits into the token, which is 

crucial for the recognition of formula entities in chemical domain. Rule 3 is used 

because previous step splits all words that start with uppercase, followed by sequence 

of lower cases including the common English words such as the ones which appear 

as the first word in a sentence. According to Rule 4, the list of known chemical 

names containing chemical compounds, basic chemical elements, amino acid names 
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and amino acid chains [199],[201] is used to merge tokens. Then all tokens in plural 

form are broken into two tokens: one token for the base form of the word and one 

token for the plurality suffix such as ‗s‘, ‗es‘ or ‗ies‘. Representing the chemical 

entities in their base form makes recognition task easier. 

In addition to the suitability of ChemTok for chemical texts, our experiments showed 

that it can also be used successfully on other biomedical domains using different data 

sets [28]. 

 

   Table 5.2: Rules used in Step 3 of the ChemTok Algorithm 
Rule 

no. 

Rule Explanation Example 
Tokens after Step 2 Merged Token 

1 Numeric tokens which are separated by ‗.‘ or 
‗,‘ or ‗/‘ or ‗-‗ or ‗_‘are integrated into a single 

token. 

125 
, 

12 

, 
12 

125,12,12 

2 If concatenated tokens from Rule 1 are 

surrounded by balanced containers such as 

parentheses, braces, and brackets, both 
container tokens are conjoined into the token. 

( 

1-3 

) 

(1-3) 

3 Single uppercase tokens which are followed 

by sequence of lowercase letters as the next 

token are re-combined to a single token. 

C 

ommon 

Common 

4 If the concatenation of consecutive tokens is 

found in the list of known chemical names, 

they are merged into one token. 

Na 

CL 

NaCL 

 

 

In general, the advantages of using ChemTok can be listed as follows: generation of 

longer discriminative tokens, decrease in the number of incorrectly segmented NEs, 

improvement in the performance of consequent NER classifiers which uses such 

tokenized data, decrease in the classifier learning time by reducing the number of 

samples used in classifier training phase. The competitive results obtained from the 

use of ChemTok compared to other tokenizers of state of the art ChemNER system 

are presented in Chapter 6.     
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5.4 Balanced Under Sampling  

It can clearly be seen from Table 5.1 that class imbalance problem exists in the given 

training data when the tokens, which are parts of entity mentions (―CHEMICAL‖), 

are considered as positive samples and others from the ―OUT‖ class as negative 

ones. Imbalance in the number of samples from different classes is one of essential 

causes of the increase in the number of positive samples (named entities of 

interested) that are incorrectly identified as negatives (False Negative). The existence 

of False Negatives can affect the overall performance of a system by decreasing the 

recall value and consequently reducing the F-score as the classifier performance 

measure. Different strategies which deal with CIP in classification problems were 

discussed previously in Chapter 4. In the context of named entity recognition, the 

recognition goal is to correctly identify the named entities (positive entities). 

Negative entities, i.e. tokens which belong to the negative class (―OUT‖ class) are 

not of interest to recognize, but they can provide potentially useful information for 

learning algorithms considering their positions in a given sentence. This is because 

usually classifiers learn from tokens surrounding positive tokens i.e. tokens which 

belong to the positive class (―B-CHEMICAL‖ or ―I-CHEMICAL‖). Random 

undersampling [202] a well-known approach used for the CIP eliminates the negative 

samples randomly from the whole data. However, RUS may remove the negative 

samples around the positive ones, which are potentially useful in NER. In this thesis, 

a new undersampling strategy is devised to decrease the number of negatives while 

preserving the structure of sentences by keeping equal number of tokens which 

belong to the negative class on both left and right hand sides of each entity in a 

sentence since the information given by tokens at the vicinity of entities is very 

useful to improve the classifiers‘ performance. Thus, the method is named as 



63 

 

balanced undersampling. The BUS algorithm is shown in Figure 5.3. For each 

sentence given in the training data, BUS is used with an input sampling ratio (Rs). If 

the input ratio is greater than the imbalance ratio of the original sentence, there is no 

need to undersample and the sentence is left unchanged. Otherwise, for each named 

entity in an individual sentence, negative tokens are selected until the desired input 

sampling ratio is achieved. In the first round the negative token closest to the 

beginning of an entity from the right side is selected if it exists; and in the second 

round the negative token closes to the end of the entity is selected if it exists. In fact, 

unlike other popular methods, instead of removing negative tokens, BUS selects the 

negative tokens of the sentence that will be included in the undersampled data.  

Figure 5.4 illustrates three examples of undersampling using proposed BUS 

algorithm. All tokens in a sentence belonging to different class types, OUT, B-

CHEMICAL, and I-CHEMICAL are considered as an array for the sentence with 

values O, B, and I respectively. The numbers in the cells in undersampled version of 

the sentences indicate the order in which each negative token is selected by the 

algorithm. Negative tokens that are not selected by BUS are shown with ×.  In the 

examples given, the desired input undersampling ratio, Rs is assumed as 3. For case 1 

above, since the number of negative tokens needed are more than the existing ones in 

the sentence, the sentence is left unchanged and all negative tokens are selected. In 

case 2, the sentence contains 3 entities with 2 tokens each (B-CHEMICAL and I-

CHEMICAL) resulting in 6 positive tokens. In order to get the desired ratio of 3, the 

sentence should contain a maximum of 18 negative tokens. The algorithm treats the 

sentence as an array of tokens and marks all positive tokens of the array as selected 

as discussed above. The negative tokens to be kept are selected one by one using the 

BUS algorithm until the desired ratio is achieved. In case 3, the sentence contains 3 
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entities with 1 token each. Therefore, only 9 negative tokens should remain in the 

resultant sentence. As discussed before, BUS considers the first token on the left 

hand side of each entity to be selected first.  

N=number of tokens in S 

Np=Total number of tokens with B- and I- tag in S 

Nn=Total number of tokens with O tag in S 

Ns=Number of selected tokens with O tag in S 

K=number of entities in S 

startk=Location of the first token of entity k 

endk=Location of the last token of entity k 

Rs= Desired sampling ratio 

If Np=0 

    Take the sentence out 

     Finish 

else:  

     Mark all positive tokens in S as selected 

     If Rs <= Nn/Np  /*no need for undersampling*/  

 mark all O tagged tokens in S as selected and return S 

     else /*Choose a subset of the negative tokens starting from the closest neighbors of the 

entity*/ 

        Ns=0 

 for k=1 ..K  

leftk=startk -1 

rightk=endk +1 

end for 

end0=0 

startk+1=N 

   loop 

              for k=1 ..K 

        If leftk>=0 and leftk>endk-1 and token at leftk is not selected/*S[leftk] is not 

selected*/ 

    mark token at leftk as selected 

      Ns = Ns+1 

                                leftk = leftk-1 

                        end if 

     if Rs<= Ns/Np return S 

  end for  

        for k=1 ..K 

         If rightk<=N and rightk<startk+1 and token at rightk is not selected /*S[leftk] is 

not selected*/ 

    mark token at rightk as selected 

      Ns=Ns+1 

                                rightk = rightk+1 

               end if 

         if Rs<= Ns/Np return S 

   end for  

 end loop 

end if 

Undersampled sentence  All tokens that are marked as selected in S in the same order 

they appear in S. 

Figure 5.3: Balanced Undersampling Algorithm applied on each sentence 
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However, in this example case, the rightmost entity is the last token in the sentence. 

Therefore, only negative samples from the left side of this entity will be selected. 

 
Figure 5.4: Examples show balanced undersampling 

 

Applying BUS on training data guarantees that there are no sentences in the training 

data set whose imbalance ratio is greater than Rs. Moreover, using different values 

for Rs, will lead to the production of training data with different number of tokens 

which belong to the negative class, hence different imbalance ratios. The efficiency 

of BUS in this domain compared to the two other common undersampling methods, 

Random undersampling and stop word filtering is shown by conducting a series of 

experiments using different feature sets. Details on results achieved are presented in 

Chapter 6. 

5.5 Feature Extraction 

Feature extraction is a common task for a large number of disciplines such as 

machine learning, pattern recognition, data mining and statistics [203]. Feature 

extraction starts from an initial set of data and derives values or features intended to 

be informative and discriminative, which facilitate the consequent learning and 
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generalization tasks. Depending on the task at hand, there are some common features 

that can be extracted from data. The extracted features are expected to contain the 

relevant information from the input data that may be used effectively in performing 

the targeted task. To study the effect of undersampling on the performance of NER 

system and also to create a set of different classifiers to use in the ensemble learning 

module in the next step, different features have to be extracted. Features commonly 

used in other studies in the literature are extracted from data using the feature 

extraction module. In addition to single features extracted, combination of features, 

as applied in our studies in the domain, are also used. Each token by itself is 

considered as a basic feature. Moreover, preceding and following tokens of the 

current token are considered as ―context features‖ since the tokens surrounding 

named entities provide useful information for recognition. Takuechi and Collier 

showed the positive effect of using preceding and following tokens in addition to the 

current one on the recognition performance of biomedical NER systems [204]. 

Following subsections explain the basic features used in depth.  

5.5.1 Orthographic Features 

Orthographic features provide information on the structure of words such as 

capitalization, combination of numbers and letters in a token, use of mix cases, 

presence of punctuation marks, existence of foreign characters like Greek letters etc. 

The investigation of the training data revealed that some of the entities of interests 

contain special word formation patterns, such as use of more than two punctuation 

marks, or existence of combination of alphabets and numbers etc. that may give a 

clue about their identification of entities. In the experiments, orthographic feature is 

represented using a binary vector. Table 5.3 shows the extracted orthographic with 

an example for each. 
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            Table 5.3: Orthographic features with examples 

Feature Example Feature Example 

UpperCase IL-2 UpperOther 2-M 

InitCap D3 LowerUpper 25-Dihydroxyvitamin 

TwoUpper FasL UpperDigits AP-1 

AlphaOther AML1/ETO LowerOther dehydratase/dimerization 

Hyphen product-albumin Allupper DNA, GR, T 

Upper_or_Digit 3H Greek NF-Kappa, beta 

Digits 40 lowerDigits gp39 

AlphaDigit IL-1beta StartHyphen -mediated 

 

Each of the orthographic features in Table 5.3 corresponds to a single binary entry in 

the feature vector. For instance the feature vector for ―Sulfamate‖ can be seen as:  

1100010001000000. 

5.5.2 Morphological Features 

Morphological features refer to the affixes (prefixes and suffixes) of a token. Simply 

N characters from the beginning or the end of the token can be considered as affixes. 

Usually these type of features are known as N-gram characters where the exact 

number of elements of the feature vector depends on the value of N and use of 

prefixes or suffixes in isolation versus in combination. For example, assuming N 

equals to 3 and taking the prefixes and suffixes separately, the length of feature 

vector is 6 for each token. Morphological information has been used extensively by 

other researchers in different NER tasks.  

5.5.3 Space Features 

Space features determine whether there is a space before or after a token based on its 

position in a given sentence. The binary feature vector of length of 3 is used to 

represent these features where the first entry shows the existence of a space before 

the token, the second one shows the existence of a space after the token and the third 

one corresponds to the existence of space for both before and after the token. 
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ChemSpot [95], one of the state of the art chemical NER system, uses space features 

extensively. 

5.5.4 Bag of Words Features 

The bag-of-words model is a simple representation of text used in natural language 

processing and information retrieval (IR). In this model, text is represented as a bag 

of words, disregarding grammar and even word order [205]. In the NLP related tasks 

it is common to weigh terms by various schemes instead of showing the existence or 

nonexistence of a word in the given document. The most popular of those are term 

frequency (tf) and term frequency – inverse document frequency (tf-idf) [206]. We 

applied both representation schemes in this thesis. tf (t,D) simply shows the number 

of occurrences of term, t in the document D. The inverse document frequency idf (t, 

Corpus) is a measure that shows how much information the word provides. In other 

words it determines whether the word is common or rare across all given documents. 

It is the logarithmically scaled ratio of the total number of documents in the corpus to 

the total number of documents which contain the term. idf is often given as:                                 

idf (t, Corpus) =   
 

|              |  
                                          (5.1)                   

where, M shows the total number of documents in the corpus, M=|Corpus| and                                             

|              | : the number of documents where the term t appears. It is 

common to sum up the denominator by 1 to avoid division by zero in case the term 

does not exist in the documents. Hence tf-idf can be calculated according to:                

tfidf (t, D, corpus) =tf (t, D) * idf (t, Corpus)                                      (5.2)                                             

A high tf–idf weight can be obtained by a high term frequency in the given document 

and a low document frequency of the term in the corpus. Hence, the lower weights 

tend to filter out common terms.                         

https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Logarithmic_scale
https://en.wikipedia.org/wiki/Frequency_%28statistics%29
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5.5.5 Word Shape 

Word shape features are another kind of word representation schemes based on the 

appearance of a token as well as the order and number of its constituent characters. 

Three types of word shape features are created for each token in our experiments. 

The first one is a simple word shape feature, in which each character from special 

categories such as digits, upper case letters, lower case letters, punctuation marks, 

and Greek characters is replaced by their representative characters. For example if 

we consider D, U, L, P, and G as representative letters for the mentioned character 

groups respectively and O for other characters that do not belong to mentioned ones, 

then word shape of word ―β-13-Galactosidase‖ is ―GPDDULLLLLLLLLLLL‖ . The 

second type of word shape features is the squeezed word shape feature which can be 

seen as the summarized version of the simple word shape feature. In this case, 

instead of repeating representative letters, they are followed by their number of 

occurrences (for the cases where the number of occurrences is greater than 1). The 

squeezed word shape of above example is given as ―GPD2UL12‖.  The last form of 

word shape feature is the digital sign of each token, which shows the number of 

constituent characters in a predefined order. For instance, if the order representative 

characters is in the form of D, U, L, P, G, and O, then the digital sign of the given 

example is given as ―2112110‖.  

5.5.6 Output of OSCAR classifier 

Using class predictions of other well performing NER systems as a feature is a 

common approach in the design of NER systems. OSCAR [94] is a state-of-the-art 

chemical NER system. Its output is used as features in our task. Our experiments 

show that using this feature alone outperforms some other classifiers using other 

individual features. 
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5.5.7 Domain Specific Features  

These features are binary type features, which illustrate the existence or nonexistence 

of tokens in predefined lists [199], [201] of common chemical or drug names, 

chemical elements, abbreviation of chemical elements, and  amino acids. Moreover 

the existence of most well-known chemical affixes (prefixes and suffixes) [200] for 

each token are considered.  

5.5.8 Lexical Features 

Grammatical roles of tokens in the data are considered as lexical features. These 

include part-of-speech (POS) tags, phrase position and base noun phrase tags. 

Description of these features is given blow: 

 POS Tag: The effect of POS features in the recognition of named entities 

in the biological domain has been tested previously by various researchers 

and different views on its impact have been reported [206]. Because of the 

similarities between biological and chemical domains, it has been used as 

a feature in our experiments. Since none of the released data sets in the 

ChemDNER corpus include POS tags, the Genia tagger [207] tool, which 

is trained on both the newswire and biomedical domains, is used for 

adding POS tags to the tokens. 

 Phrase Tag: Phrase boundaries are expected to coincide with the 

boundary of multi-token names. All data sets in the corpus were tagged for 

all phrase tags including Noun, Verb, Adverb, SBAR, Prepositional, 

Adjective phrases using the IOB2 representation. Genia tagger was used 

for extracting this feature. 

 Base Form: This feature shows the base form of the word.  
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5.5.9 Word Clustering Feature 

Different researchers have shown that utilizing unlabeled data can improve the 

quality of NER systems [208], [209], [210]. Hence, training and development data 

without their labels are mixed together to get large amount of unlabeled data. Since 

Brown clustering was successfully applied in NER in [211], it is also applied as a 

cluster creation approach for words used to create unlabeled data set for our 

experiments. Brown‘s algorithm is a hierarchical clustering algorithm, which clusters 

the words that have a higher mutual information of bigrams [118]. The output of the 

algorithm is a dendrogram. A path from the root of the dendrogram represents a word 

and can be encoded with a bit sequence. The prefixes of length 50 of such encodings 

is chosen as the word clustering feature, which produced 10368 clusters.  

5.5.10 Feature Sets Used 

The aforementioned features are used in isolation as well as in various combinations. 

Only the combinations of features that were proven to be useful in previous NER 

studies have been used in our experiments. All 19 feature sets used during the 

experiments are illustrated in Table 5.4.  

5.6 Classifier Training 

All baseline classifiers using different feature sets listed in Table 5.4 are trained 

using SimpleTagger interface of Mallet [128] with default parameters, where the 

number of iterations was set to 500 and Gaussian variance was 10. Mallet toolkit 

makes use of CRFs as its classification algorithm (more detail about CRFs is 

provided in Appendix B). The classification performance of the baseline classifiers 

trained using the train data in its original form (without undersampling) on 

development and test data are shown in Table 5.5. 
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         Table 5.4: Feature sets used in experiments 
 Domain Context Cluster Context Morphological Ortho OSCAR Lexical Space tf tfidf Word Shape 

F1 √ √ √ √ √ √ √ √ √ √ √ 

F2 √  √ √ √  √ √   √ 

F3 √  √ √ √ √ √ √   √ 

F4 √           

F5  √          

F6    √        

F7    √ √       

F8    √   √     

F9    √    √    

F10    √   √ √    

F11    √   √ √   √ 

F12    √       √ 

F13     √       

F14      √      

F15       √     

F16        √    

F17        √ √   

F18        √  √  

F19           √ 

 

The best performing classifier on development and test data is classifier E1, which 

uses the combination of all features (F1). Moreover, it is clear that almost all 

classifiers suffer from low recall value in comparison to corresponding precision 

values as a consequence of highly imbalanced data. Since the sampling ratio for 

which the classifier will be maximized, (Rbest), for training data is not known 

beforehand, the sampling process is done for a range of input sampling ratios (Rs). 

Furthermore, since the best classification performance for classifiers trained using 

different feature sets is likely to occur at different Rbest values, BUS is applied on 

training data with Rs in the range [2:50] incremented by one to find the best value for 

sampling ratio experimentally. The number of all sentences in the given training data 

is 30418, of which 3651 sentences do not include any chemical NEs. 
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Table 5.5: Performance of baseline classifiers 

with different feature sets on development and 

test data 

 

Development Test 

 Recall Precision F Score Recall Precision F-score 

E1 77.54 85.19 81.19 77.55 85.25 81.21 

E2 74.16 82.97 78.32 73.21 84.35 78.39 

E3 77.29 84.57 80.77 76.45 84.96 80.48 

E4 51.39 75.5 61.15 51.28 77.54 61.73 

E5 54.36 75.26 63.13 54.22 77.22 63.71 

E6 67.35 76.87 71.8 67.5 79.38 72.96 

E7 69.11 72.52 70.77 64.68 78.31 70.85 

E8 65.71 77.53 71.13 65.48 79.71 71.9 

E9 68.4 79.86 73.69 67.92 81.97 74.29 

E10 72.31 75.67 73.95 68.01 81.63 74.2 

E11 72.47 80.83 76.42 71.55 82.69 76.72 

E12 67.99 77.28 72.34 65.1 78.3 71.09 

E13 52.43 75.32 61.82 52.13 77.36 62.29 

E14 65.45 80.66 72.26 63.77 78.17 70.24 

E15 49.74 72.72 59.07 49.18 74.52 59.25 

E16 56.66 79.57 66.19 56.34 81.34 66.57 

E17 51.3 79.02 62.21 50.33 80.53 61.95 

E18 50.19 76.19 60.52 30.48 79.96 44.14 

E19 56.83 73.12 63.96 55.75 76.08 64.35 

 

Table 5.6 shows the percentage as well as the number of sentences whose sampling 

ratios can be categorized into different Rs ranges in the training data. Moreover, the 

average sampling ratio for each range is also depicted. 

 

          Table 5.6: Distribution of training data 
Range Percentage of existed sentences Exact number of sentences Average N/P 

[2,10] 20.03% 5364 5.04 

(10,20] 16.82% 4504 10.43 

(20,30] 21.12% 5655 20.31 

(30,40] 19.59% 5246 30.12 

(40,50] 22.29% 5969 40.02 

(50,∞ ) 0.1% 29 50.04 

[2,∞ ) 100% 26767 20.93 
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As illustrated in Table 5.6 the majority of sentences in the training data have 

imbalance ratios between 40 and 50. Therefore, 50 is chosen as the upper bound 

during sampling experiments. The 49 different training data sets using sampling 

ratios between 2 and 50 are created for every classifier, which uses a different feature 

set. This results in an initial ensemble of 950 classifiers (19×49=931 classifiers 

trained with undersampled data)+19 classifiers trained using original data. The 

performance of all 950 classifiers on both development and test data are given in 

Appendix C. The results are discussed in detail in Chapter 6.   

The 950 classifiers trained are used by the ensemble learning module described in the 

next section to select the most appropriate subset of classifiers and combine them in 

order to benefit from MSC. The diversity between classifiers is due to the variation 

in the undersampling ratios used on training data as well as the differences between 

features used during classifier generation process. 

5.7 Classifier Ensemble Scheme 

This module is responsible of selecting the best performing subset of classifiers 

among all classifiers in the initial pool with the aim of increasing classification 

performance. Metaheuristic algorithms provide a reasonable equilibrium between 

search complexity and solution quality which enables the application of these 

algorithms to a vast number of problems. Static classifier selection is one of those 

problems that can be solved by this type of algorithms. In this study, PSO is used as 

the underlying classifier selection technique. The constriction factor method as a 

variant of basic PSO is employed in the presented model. Hereafter in this 

dissertation the word PSO, refers to the constriction factor method version. Unlike 

other metaheuristic algorithms, PSO has a flexible and appropriate mechanism to 
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enhance and adapt the local and global exploration abilities [212]. In addition it has 

been shown that PSO outperforms the other metaheuristic techniques [213]. 

Furthermore, its characteristics such as simplicity in concept, implementation 

easiness, and computational efficiency make this method suitable for our 

experiments. The proposed system makes use of PSO to choose a set of classifiers 

from the, pool which when combined, makes more reliable predictions compared to 

initial classifiers. Therefore, in the presented ensemble approach, only a set of 

classifiers is selected such that their overall cumulative prediction abilities for all 

classes show the better results in comparison to the combination of others. The Naive 

Bayesian combination approach is used to merge the outputs of the selected 

classifiers. Details of the proposed scheme are presented in the following sections. 

5.7.1 Implementation of the Ensemble Scheme using PSO 

In the PSO algorithm, each possible solution of the problem is represented as a 

particle, which can be assumed like the chromosome in genetic algorithms. Since 

PSO is a population based algorithm, it needs initialization. Hence, the population of 

solutions at the beginning can be generated randomly. Population evolves by 

considering the positions and speeds of particles. At the end of the evolution phase, 

the most appropriate solution according to the objective function is selected as the 

best solution for the problem. The original PSO algorithm was presented to solve real 

valued problems, where each entry of the solution vector could take any real number 

based on the constraints of the problem at hand. For the proposed system we need 

binary vectors, where each entry corresponds to an individual classifier in the pool. 

To create binary solution vectors by the evolution process of PSO, the binary version 

of PSO, known as BPSO [212], is employed in the proposed architecture. The only 

difference between PSO and BPSO is in the ways that the entries of the particles are 
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updated. In PSO, after computing the speed of each particle, the current value of 

particle plus its speed is taken as the new particle‘s value. In contrast, in BPSO, the 

new binary value of positions is calculated according to equation 5.3:   

         {
               
           

                                                                                                                                    

where S (.) is a sigmoid function, S (x) =  
 

     
   and Vid , corresponds to the speed 

of d
th

 entry of i
th

 particle.  The value if Vid in BPSO algorithm is also limited in [Vmin, 

Vmax]. In the cases that computed Vid exceeds the Vmax or it becomes less than Vmin, it 

is replaces with Vmax and Vmin respectively.  

Each solution vector represents a different ensemble member. If the value of an entry 

is 1, this means that the corresponding classifier is allowed to contribute to the 

ensemble, otherwise, the classifier is not allowed to participate in the joint decision 

for the final prediction. The length of the particles or solution vectors is determined 

by the number of candidate classifiers in the classifiers repository. In our 

experiments in the worst case the length of the solution vectors is 950. At the 

initialization phase, the entries of each particle are randomly set to either 1 or 0. The 

fitness of each particle is defined as the F-score achieved by the combination of 

classifiers whose corresponding entries are 1. In order to label a given test sample, 

the class receiving the maximum combined score is selected as the collaborative 

decision. When Naïve Bayesian combination approach is applied, the combined 

score of a particular class yi for each given sample is defined as in equation 5.4: 

                 F(yi) = 
  

 
 {∏

      

 
 

 

 

    

 
   }

 

                                              (5.4)                                                               

where    is the number of samples from class yi  in the development data, N is the 

total number of classes in the corpus.       
 is the number of  samples whose true 
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class labels was yi  and is assigned by classifier j to class S.  L denotes the number of 

classifiers participating in the ensemble. B is the Titterington coefficient which is 

discussed in the Section 3.4.3.  

The classifier selection based on BPSO, depicted in Figure 5.5, begins with a 

randomly initialized population of particles and evolves by means of updating the 

particles‘ speed and subsequently changing their positions. 

The velocity and positions of particles would be updated according to the equations 

5.5 and 5.3 respectively. 

vid = χ (vid +c1r1(pBestid - xid)+c2r2(gBestid - xid))                                  (5.5)                                             

where c1 and c2  are acceleration coefficients. Let φ= c1 + c2 then χ would be defined 

as the constriction factor according to equation 5.6. 

   
 

|    √     |
    ,       for                                                  (5.6)

 
Figure 5.5: BPSO Algorithm 
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The population size, and constriction factor have important impact on the quality of 

the solution found in the CFM version of PSO. In some studies the appropriate 

ranges of values for the mentioned parameters are suggested for different kinds of 

problems [213], [214], [215]. However, the Vmin and Vmax are considered to be -6 and 

6 according similar to the work has been done in [218]. Table 5.7 shows the 

suggested ranges of candidate values per each parameter. 

 

                             Table 5.7: Parameter ranges 

Parameter Range Slope 

φ (4.00,5] 0. 1 

Iterations  [100,300] 50 

N (Pop size) [1,3] × Particle size 1 

 

In the ensemble training phase, the different parameters for BPSO are selected based 

on the given values in Table 5.6 using validation data. Moreover, Titterington 

parameter for Bayesian combiner is chosen. Naïve Bayesian combination method 

needs to have a confusion matrix to combine independent classifiers. 25% of 

development data is used for creating the confusion matrices using trained classifiers 

with different feature sets. Remaining development data is used for tuning the needed 

parameters of presented ensemble scheme. The selected best performing subset of 

classifiers after tuning the model‘s parameter is applied on test data using same 

confusion matrices created on small portion of development data. Three series of 

experiments are conducted by varying N, φ, and iterations with the given slope for 

each in turn, and keeping the other two parameters unchanged respectively. 

Acceleration coefficients which adjust the relative velocity toward the local and 

global best particle (C1 and C2 respectively), are both considered equal (C1 = C2 = 



79 

 

φ/2).  For each parameter tuning process, the algorithm is run for up to 300 iterations 

and the value of parameters which corresponds to the best classification performance 

are selected.  

The value of φ is selected as 4.2 when N=100, and number of iterations is set to 300. 

It is clear from equation 5.6 that increasing the value of φ will cause a decrease in the 

value of constriction factor χ. A larger χ means that the search distance of every step 

for each particle becomes larger. This in turn allows avoiding local exploitations and 

facilitates global explorations. On the contrary, in this case the algorithm cannot 

achieve the refinement of the optimal solution. A smaller χ will decrease the search 

distance and will direct more attention on local exploitations and the algorithm can 

hardly cover the search space. The optimal value for χ is related to the type of 

function that needs to be optimized. For unimodal functions, large values of χ may 

refine the solution whereas for multimodal functions small values of χ are usually 

generate better results.   

Since the size of particles in the experiments is very large, the range [100, 200] 

together with slope value 50 is taken into account instead of proposed values in 

Table 5.6 as the population size. The selected value for population size is 200. A 

large population size may causes an increase in the reliability of algorithm but it is 

nevertheless required for more solution evaluations and increase the computing effort 

for convergence. For all sets of experiments in this dissertation, the Titterington 

factor,  , for Naïve Bayesian combiner is assumed as 1. Titterington in his work 

suggested that   can be taken as 0.5, 0.8, or 1. Hence, to find the optimum value, 

after choosing the aforementioned parameters above, the experiments are repeated 



80 

 

twice for         , and      . Experiments have shown that using     

generates slightly better results. 

The number of all candidate classifiers in the initial pool is very large. Moreover, it 

has been shown during experiments that some classifiers perform poorly. It is 

expected that including such classifiers in the ensemble may have a negative effect 

on the ensemble‘s overall performance. Hence members from the pool are divided 

into five subsets in ascending order of performances. All experiments have been 

repeated for all new subsets. The results on the development data show that using 

only the classifiers which achieved an F-score greater than 70% among all 950 

classifiers generate better results in comparison to the other subsets as well as using 

the full ensemble of 950 classifiers. As a result, the number of classifiers included in 

the initial pool is limited to 515. In the next Chapter the results of using this new 

subset of 515 classifiers are presented and discussed. 
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Chapter 6 

RESULTS AND DISCUSSION 

6.1 Introduction 

In this chapter the performance of each individual module in the proposed 

architecture is discussed in detail. The efficiency of the tokenizer is presented and 

compared to some commonly used tokenizers in the next section. The characteristics 

of each individual classifier and effects of different undersampling approaches 

follow next. The effect of using multiple classifier approaches is investigated in the 

final part of the chapter. 

6.2 Effect of Tokenization Method 

In this section we compare the results of the proposed tokenizer, ChemTok, to two 

other well-known tokenizers in this domain: ChemSpot [94] tokenizer, and the 

tokenizer module of tmChem [25], the best ranked ChemNER system in BioCreative 

IV shared task. The result of using only the white space tokenizer as a basic approach 

for tokenization is also presented as a baseline. Table 6.1 shows the number and 

average length of tokens produced by each of the mentioned tokenizers used for the 

corpus described in Chapter 5. Additionally the number of incorrectly segmented 

entity names is given in the third column for each data set. 

It can be seen in Table 6.1 that the white space tokenizer tokenizes text into fewer 

number of longer tokens but produces very large number of incorrectly segmented 

entities compared to the rest. On the other hand it can be observed that even though 
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ChemTok produces slightly longer tokens compared to ChemSpot and tmChem, the 

number of incorrectly segmented entities is minimized, showing that the boundaries 

of NEs are correctly identified by the proposed tokenizer. 

Table 6.1: Comparison of number of tokens (NT), average token length (ATL), 

and number of incorrectly segmented entities (NISE) for various tokenizers 

Data Set ChemSpot tmChem White Space Tokenizer ChemTok 

 NT ATL NISE NT ATL NISE NT ATL NISE NT ATL NISE 

ChemDNER 

Train 907405 4.62 40 965056 4.35 11 718244 5.84 9189 899343 4.66 6 

Development 901610 4.64 36 958475 4.36 11 714287 5.85 9174 893180 4.68 3 

Test 779700 4.63 8 828001 4.36 3 513630 5.85 7804 772847 4.67 3 

 

 

The concept we refer to as the incorrectly segmented entities is important since the 

NER classifiers will not be able to identify NEs correctly if the entity mentions are 

not segmented at the right boundaries. In addition to incorrect segmentation 

problems associated with the white space tokenization, several other factors lead to 

incorrect segmentation even when other types of tokenizers are used. For instance, 

often an entity name appears in its plural form in text, such as ‗salicylates‘ or 

‗clonidines‘ where the actual entity mention is annotated as ‗salicylate‘ or 

‗clonidine‘. Such plural forms are usually incorrectly segmented by many tokenizers. 

Since this issue is taken into account in the proposed method, ChemTok does not 

suffer from problem related with plural forms. Finally, sometimes NEs are joined to 

other parts of text due to mistakes during various stages of text preprocessing as in 

the example of ‗CONCLUSIONGlucose‘ where the annotators mark ‗Glucose‘ as 

the NE but a tokenizer which uses a rule to split NEs at the point where there is a 

case change will incorrectly segment the NE to ‗lucose‘. The second and third types 
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of incorrect segmentation are very difficult to detect. In order to further investigate 

the impact of the mentioned tokenization methods on NER performance, 

classification experiments are performed using data segmented by each of the four 

tokenizers. As classification algorithm, CRFs classifier is employed to conduct the 

experiments. All systems are trained using common features in [28].Table 6.2 shows 

the overall performances achieved when the classifiers are trained on BioCreative 

train data and tested on development and test data sets. 

                            Table 6.2: NER performance of classifiers using ChemDNER   

corpus 

 Development Test 

Tokenizer Recall Precision F-Score Recall Precision F-Score 

ChemSpot 77.31 84.43 78.46 74.62 83.68 78.89 

tmChem 71.57 81.36 76.15 71.47 82.29     76.50 

White Space 66.98 86.21 75.39 68.25 84.33 75.44 

ChemTok 76.76 87.49 81.77 76 88.78 81.89 

 

It can be seen from Tables 6.2 that the overall NER performance of the classifiers 

which use white space tokenization is very inferior compared to that of all other 

classifiers mainly due to the large number of incorrectly segmented entities. On the 

other hand, the performance of the classifiers utilizing ChemTok is higher than the 

others. The higher improvement over the other tokenizers when BioCreative data set 

is used for testing can be attributed to the fact that ChemTok uses rules extracted 

from BioCreative training data set. However, the good performance of ChemSpot has 

been shown to generalize to other data sets in the experiments presented in [28]. 

Since ChemTok has resulted in best NER performance, it has been used through all 

classification tasks in this study. 



84 

 

6.3 Effect of Undersampling  

A total of 19 feature sets were utilized in the experiments presented in this chapter. 

These feature sets contain features used commonly in NER tasks as well as features 

specific to the chemical domain. All base features extracted from the data are given 

in section 5.5 and all 19 feature sets created by combination of different base features 

are presented in section 5.5.10. In this section the effect of the proposed balanced 

undersampling approach along with two other popular undersampling methods 

namely random undersampling and stop word filtering on classification performance 

of classifiers trained using these feature sets is discussed. The performance of all 

classifiers using undersampled training data with different sampling ratios for both 

BUS and RUS methods is given in Appendix C. Results are based on the 

generalization on both development and test data. Due to the random selection of 

negative samples by the RUS method, all sampling experiments with this approach, 

are repeated 5 times and the averaged results are presented. 

Figures 6.1 - 6.3 show the effect of different undersampling approaches on each 

individual evaluation measure; recall, precision, F-score; for each classifier applying 

on test data. Results obtained for BUS and RUS algorithms are given for the 

sampling ratio for which the maximum F-score is achieved. 
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Figure 6.1: Effect of undersampling on Recall 

 

 
Figure 6.2: Effect of undersampling on Precision 

 

 
Figure 6.3: Effect of undersampling on F-score 
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As it can be seen from Figure 6.1, applying RUS improves the recall value of all 

baseline classifiers except for E1, E3, E5, and E11. However, applying BUS improves 

the recalls value of all classifiers while applying SWF increases the recall for some 

classifiers. In general the amount of improvement in recall is more when BUS is 

applied compared to RUS. 

Considering Figure 6.2, it can be seen that the precision of almost all classifiers is 

decreased by all undersampling approaches, only E15 and E18 have shown to slightly 

improve when BUS is applied. However, the amount of degradation in precision 

values for all classifiers when BUS is applied is less than the two other methods.  

Table 6.3 shows the detailed performance of baseline classifiers using different 

feature sets which are trained using original training data to the performance of 

classifiers trained using different undersampling strategies. The results presented in 

Table 6.3 for the BUS and RUS approaches shows the classification performance at 

best sampling ratios (Rbest) determined as explained in section 5.6 experimentally. 

For example considering classier E2, Figure 6.4 shows the baseline performance and 

the sampling ratio, Rbest, for which the maximum classification performance is 

achieved in terms of F-score (Rbest=36,F-score=80.39) 
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Figure 6.4: Rbest selection for classifier E2  

In Figure 6.4, the performance of classifier trained with original training data without 

undersampling is 78.32%, however the maximum improvement using undersampled 
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         Table 6.3: Classification performance using different undersampling 

approaches 

Classifiers 
 Development Test 

Recall Precision F score Rbest Recall Precision F score 

E1 

Baseline 77.54 85.19 81.19 - 77.55 85.25 81.21 

BUS 80.99 82.41 81.69 41 79.8 82.73 81.24 

RUS 77.74 81.35 79.5 47 74.99 80.78 77.78 

Stop Word Filtering 72.95 63.56 67.94 - 73.6 62.35 67.51 

E2 

Baseline 74.16 82.97 78.32 - 73.21 84.35 78.39 

BUS 79.08 81.75 80.39 36 78.23 83.42 80.74 

RUS 76.2 80.12 78.11 45 75.24 82.25 78.59 

Stop Word Filtering 73.42 60.82 66.53 - 76.34 59.98 67.18 

E3 

Baseline 77.29 84.57 80.77 - 76.45 84.96 80.48 

BUS 81.02 82.48 81.74 41 80.11 83.26 81.65 

RUS 78.2 80.52 79.34 42 75.69 80.37 77.96 

Stop Word Filtering 73.31 65.98 69.45 - 71.38 67.85 69.57 

E4 

Baseline 51.39 75.5 61.15 - 51.28 77.54 61.73 

BUS 57.61 73.42 64.56 32 57.44 75.62 65.29 

RUS 53.8 71.4 61.36 38 53.27 73.88 61.9 

Stop Word Filtering 70.63 41.66 52.41 - 66.29 41.23 50.84 

E5 

Baseline 54.36 75.26 63.13 - 54.22 77.22 63.71 

BUS 59.62 70.84 64.75 16 59.17 72.48 65.15 

RUS 55.2 70.43 61.89 32 50.23 67.84 57.72 

Stop Word Filtering 67.33 48.54 56.41 - 69.6 42.03 52.41 

E6 

Baseline 67.35 76.87 71.8 - 67.5 79.38 72.96 

BUS 71.46 74.05 72.73 49 71.61 76.63 74.04 

RUS 70 72.25 71.11 11 70.75 69.47 70.09 

Stop Word Filtering 71.49 56.28 62.98 - 72.73 55.73 63.1 

E7 

Baseline 69.11 72.52 70.77 - 64.68 78.31 70.85 

BUS 72.56 72.28 72.46 50 72.18 73.25 72.71 

RUS 67.79 72.33 69.99 50 65.96 73.21 69.4 

Stop Word Filtering 61.86 62.24 62.05 - 69.08 56.91 62.41 

E8 

Baseline 65.71 77.53 71.13  65.48 79.71 71.9 

BUS 70.66 74.81 72.68 50 70.45 77.12 73.63 

RUS 67.94 72.64 70.21 41 67.81 75.38 71.39 

Stop Word Filtering 71.34 56.84 63.27 - 60.35 59.32 59.83 

E9 

Baseline 68.4 79.86 73.69 - 67.92 81.97 74.29 

BUS 77.11 75.27 76.18 7 77.48 77.36 75.68 

RUS 72.11 74.85 73.45 30 71.66 77.35 74.4 

Stop Word Filtering 68.73 60.87 64.56 - 72.64 56.1 63.31 

E10 

Baseline 72.31 75.67 73.95 - 68.01 81.63 74.2 

BUS 71.27 80.78 75.73 50 71.75 78.44 74.95 

RUS 74.25 72.34 73.28 9 72.47 73.34 72.9 

Stop Word Filtering 71.69 57.59 63.87 - 72.44 53.78 61.73 

E11 

Baseline 72.47 80.83 76.42 - 71.55 82.69 76.72 

BUS 76.28 78.1 77.18 46 75.22 80.09 77.58 

RUS 73.35 76.34 74.82 24 70.77 77.11 73.8 

Stop Word Filtering 74.69 61.26 67.31 - 74.57 56.61 64.36 

E12 

Baseline 67.99 77.28 72.34 - 65.1 78.3 71.09 

BUS 71.68 74.56 73.09 37 71.43 77.09 74.15 

RUS 69.06 72.32 70.65 27 71.33 76.46 73.81 

Stop Word Filtering 71.87 52.85 60.91 - 72.44 59.79 61.73 

      (Ei corresponds to classifier trained and tested using feature set Fi in Table 5.4) 
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       Table 6.4: (Continued.) 

Classifiers 
 Development Test 

Recall Precision F score Rbest Recall Precision F score 

E13 

Baseline 52.43 75.32 61.82 - 52.13 77.36 62.29 

BUS 58.86 72.49 64.97 28 58.33 74.42 65.4 

RUS 56.94 68.65 62.25 16 56.59 70.69 62.86 

Stop Word Filtering 66.38 39.4 49.45 - 67.49 38.75 49.33 

E14 

Baseline 65.45 80.66 72.26 - 63.77 78.17 70.24 

BUS 73.97 75.79 74.87 26 71.54 73.6 72.56 

RUS 72.94 71.87 72.4 39 68.94 68.54 68.74 

Stop Word Filtering 72.35 55.92 63.08 - 70.36 52.04 59.83 

E15 

Baseline 49.74 72.72 59.07 - 49.18 74.52 59.25 

BUS 60.05 72.91 65.86 37 59.64 74.97 66.43 

RUS 58.09 71.32 64.03 50 57.56 73.23 64.46 

Stop Word Filtering 58.01 11.56 19.28 - 58.87 11.3 18.96 

E16 

Baseline 56.66 79.57 66.19 - 56.34 81.34 66.57 

BUS 61.31 76.55 68.09 16 60.74 78.08 68.33 

RUS 58.48 73.62 65.18 13 57.03 74.61 64.65 

Stop Word Filtering 70.68 49.55 58.25 - 70.79 44.45 54.61 

E17 

Baseline 51.3 79.02 62.21 - 50.33 80.53 61.95 

BUS 62.13 75.78 68.28 16 61.64 77.65 68.72 

RUS 59.02 73.26 65.37 16 58.91 76.01 66.38 

Stop Word Filtering 71.56 40.51 51.73 - 71.36 37.11 48.83 

E18 

Baseline 50.19 76.19 60.52 - 30.48 79.96 44.14 

BUS 58.83 73.65 64.16 25 36.44 80.3 50.13 

RUS 55.21 70.15 61.79 13 32.4 76.64 45.55 

Stop Word Filtering 69.84 40.61 51.36 - 61.73 26.76 37.34 

E19 

Baseline 56.83 73.12 63.96 - 55.75 76.08 64.35 

BUS 60.72 72.79 66.21 28 60.73 75.11 67.16 

RUS 58.37 71.37 64.22 49 57.94 73.51 64.8 

Stop Word Filtering 72.06 49.3 58.55 - 73.94 49.05 58.97 

      (Ei corresponds to classifier trained and tested using feature set Fi in Table 5.4)

The results presented in Table 6.3 can be summarized as follows: 

 The performance of classifiers using different feature sets varies.  

 It can be seen that using stop word filtering as the undersampling method 

degrades the classification performance. This is mainly due to the fact that 

each sentence contains many stop words and removing stop words which 

are not part of entities (negative samples) and keeping the ones which are 

within entities from the training data causes the classifier to learn and 

predict every such token in test data as positive thus making a false 

positive prediction decreasing precision.  
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 Employing RUS improves the performance of classifiers (E4, E13, E14, E15, 

E17, E18, and E19). However the amount of improvements for classifiers 

using feature sets E4, E13, E14, and E19 is less than others in terms of F-

score. Nevertheless it can be observed that the recall performance of all 

classifiers except E1 improves and the precision scores degrade, resulting 

in classifiers which are more balanced in terms of precision-recall scores. 

 On the other hand, using BUS, improves the performances of all 

classifiers. In this case the recall values are further improved where the 

loss in precision values are less compared to results obtained using RUS. 

As a result, classifiers, which are more balanced in terms of precision-

recall values, are obtained achieving higher F-scores. The main reason for 

this improvement is due to the fact that when BUS is used the negative 

samples neighboring the positive samples are mainly preserved as 

explained in Chapter 5. 

 The maximum improvement applying BUS is achieved by classifier E15 

which performs as the worst baseline classifier. For this case improvement 

is 6.98% in terms of F-score using test data. On the other hand, the 

minimum improvement is achieved by classifier E1, which is the baseline 

classifier with the highest F-score. It is important to note that for the case 

of E15 the gap between precision and recall using original data (not 

undersampled) is the largest whereas this gap is minimal for the case of E1. 

Therefore, it can be deduced that BUS contributes to the generation of 

more balanced classifiers when the original precision-recall gap is bigger.  

 By comparing results on development and test data, it can be seen that 

using BUS method, all classifiers which achieve an improvement in F-
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score on development data using Rbest value as the undersampling ratio 

also achieve an improvement on test data for the same undersampling 

ratio, Rbest . The best performing classifier on test data is E3 using Rbest=41. 

The amount of improvement is 1.17% in F-score compared to the classifier 

which is trained using the original data. 

Further analysis of Table 6.3 reveals that the Rbest value at which the classifiers 

perform best on development data are different for classifiers using different feature 

sets. Table 6.4 shows the Rbest value for each classifier using BUS and the amount of 

classification gain in terms of F-score on test data compared to the respective 

baseline classifiers. 

 
                               Table 6.5: Rbest values for different classifiers using BUS 

Classifier Rbest Amount of Improvement (%) 

E1 41 0.5 

E2 36 2.35 

E3 41 0.97 

E4 32 3.56 

E5 16 1.62 

E6 49 1.08 

E7 50 1.62 

E8 50 1.55 

E9 7 1.39 

E10 50 0.75 

E11 46 0.86 

E12 37 0.75 

E13 28 3.15 

E14 26 2.32 

E15 37 6.79 

E16 16 1.76 

E17 16 6.07 

E18 25 5.99 

E19 28 2.25 
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In the next section we discuss the classification results achieved when a pool of 

classifiers obtained using different Rbest values are selected and combined using 

different methods.  

6.4 Effect of Classifier Combination  

In this section the performance of the proposed scheme for classifier ensemble is 

compared to the performance of 11 other MCS approaches implemented as part of 

this thesis. In addition, the proposed method is compared to the single best (SB) 

classifier which is E3 using Rbest=41. The classifiers that make up the pool are created 

by applying the BUS method with different sampling ratios (Rs) in the range [2:50] 

using different 19 feature sets. Since the classifiers in the pool are desired to have a 

relatively good performance in addition to being diverse from each other, only the 

classifiers whose performances in terms of F-score was greater than 70% are 

included in the initial pool. This resulted in 515 classifiers in the initial pool. 6 

different ensembles are formed using: i) classifiers selected using PSO, ii) classifier 

selected using FS, iii) classifier selected using BE, iv) the set of all classifiers, v) the 

set of all baseline classifiers trained using full data and vi) the set of all classifiers 

using undersampled data with BUS method. All ensembles are combined using 2 

methods; Naïve Bayesian approach and majority voting. The single best classifier in 

the pool is assumed as the baseline classifier. All MSCs implemented are given in 

Table 6.5 below.  

BPSO is the proposed ensemble scheme which uses particle swarm optimization as 

the population based classifier selection algorithm along with Naïve Bayesian 

method as the combination approach. To investigate the effect of combination 

approach on the ensemble, we repeated the experiments using majority voting 
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approach which is the most commonly used classifiers combination method used in 

MCSs (MVPSO). Forward Selection and Backward Elimination as static classifier 

selection methods are also implemented using both majority voting and Naïve 

Bayesian combination methods (BFS, MVFS, MVBE, and BBE).

 

        Table 6.6: MCS methods investigated 

No Selection Method Combination Method   Abbreviation 

1 PSO Naïve Bayesian Approach BPSO 

2 PSO Majority Voting MVPSO 

3 Forward Selection Naïve Bayesian Approach BFS 

4 Forward Selection Majority Voting MVFS 

5 Backward Elimination Majority Voting MVBE 

6 Backward Elimination Naïve Bayesian Approach BBE 

7 All members of Pool Majority Voting MVFULL 

8 All members of Pool Naïve Bayesian Approach BFULL 

9 - - SB 

10 All baselines W/O Sampling Majority Voting MVAWOS 

11 All baselines W/O Sampling Naïve Bayesian Approach BAWOS 

12 All baselines With Sampling Majority Voting MVAWS 

13 All baselines With Sampling Naïve Bayesian Approach BAWS 

 

The pool of all 515 classifiers is also considered as the Full set. The set of classifiers 

which are trained using original training data and 19 different feature sets are also 

considered (MVAWOS, BAWOS). Furthermore, the best performing 19 classifiers 

for each feature set are combined using the Bayesian and majority voting approaches 

(BAWS, MVAWS). It is important to note that SB, MVFULL, MVAWS, and 

MVAWOS do not use development data at any stage of the ensembling process 

whereas all other ensembles use the development data set at some stage of ensemble 

constitution. 
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The classification results achieved by each ensemble described above are presented 

in Table 6.6. 

                   Table 6.7: Performance of different MSCs on test data 

MCS Recall Precision F-score 

No. 

Selected 

Classifiers 

BPSO 84.97 86.61 85.78 49 

MVPSO 83.58 86.68 85.1 51 

BFS 83.79 84.31 84.04 58 

MVFS 84.33 83.05 83.69 61 

MVBE 78.28 82.43 80.30 176 

BBE 79.41 81.60 80.49 188 

MVFULL 77.25 75.92 76.58 515 

BFULL 76.45 77.46 76.95 515 

SB 80.11 83.26 81.65 1 

MVAWOS 79.02 81.99 80.48 19 

BAWOS 78.93 81.93 80.40 19 

MVAWS 80.96 83.66 82.29 19 

BAWS 80.57 83.69 82.10 19 

 

As it can be seen from the above table, some of the ensemble approaches (BPSO, 

MVPSO, BFS, MVFS, MVAWS, and BAWS) outperform the single best classifier 

while the performance of other classifiers (MVBE, BBE, MVFULL, BFULL, 

MVAWOS, BAWOS) rank below the single best. However, regardless of the 

combination method used, all static classifier selection approaches except forward 

selection method perform worse than the single best classifier. Moreover 

combination of different fixed number of classifiers using MVFULL, BFULL, 

MVAWOS, BAWOS methods perform worse than the single best classifier in terms 

of F-score, clearly showing the significance of selecting an optimal subset of 

classifiers from the repository of initially created classifier (MVAWS and BAWS 

outperform the single best classifier). We first compare the performance of 

combination of classifiers without using any selection process to the single best 

classifier. The single best classifier achieves an F-score of 81.65% whereas the 
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performance of the combination of all 515 classifiers in the pool using majority 

voting and Naïve Bayesian combination approaches are 76.58% and 76.95% 

respectively, ranking at the bottom of list. In fact the performance degrades by 5.07% 

in the case of MVFULL and 4.7% for BFULL. This is mainly because the full set of 

classifiers include many low recall high precision classifiers due to classifiers 

generated using different under sampling ratios, which do not perform well. Thus, 

the combination of such classifiers is not expected to improve the performance. 

Similarly MVAWOS and BAWOS do not outperform the SB classifier, but the 

results achieved are slightly better. This is again due to the fact that classifiers which 

use full data, have low recall-high precision characteristics. When compared to the 

performance of the SB classifier as the baseline, MVAWOS and BAWOS systems 

have shown a degradation in performance by 1.17% and 1.25% respectively. 

Considering the MVAWS and BAWS systems when 19 classifiers whose 

performances have been increased using BUS are combined, it is seen that their 

performances are 82.29% and 82.1% for MVAWS and BAWS respectively. The 

improvement in classification achieved is mostly because of the nature of classifiers 

used for combination, where the recall values of such classifiers are improved after 

the undersampling process and the classifiers become more balanced in terms of 

recall-precision values compared to those which use original imbalanced data. It can 

also be seen that the combination method (majority voting vs Naïve Bayesian do not 

significantly affect the performance). 

We next compare the effect of using classifier selection algorithms prior to 

combining the members of the selected ensemble. Employing the backward 

elimination approach for static selection of optimal subset of classifiers among the 

pool of 515 classifiers with different combination methods improves the performance 
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of the ensemble by 3.72% and 3.54% using MVBE and BBE methods respectively 

compared to MVFULL and BFULL methods. However, neither of the ensembles 

formed using BE outperform the performance of the SB classifier. Considering the 

number of selected classifiers by each method (176 classifiers using MVBE and 188 

by means of BBE) it can be deduced that given the possibility to choose the optimal 

subset of classifiers, the combination may generate improved results regardless of the 

method used for combination.  

It can be seen that, using forward selection as the selection strategy to find a well 

performing subset of classifiers from the pool can outperform the single best 

classifier by 2.04 % and 2.39 % using majority voting with 61 selected classifiers 

and Naïve Bayesian combination with 58 selected classifiers respectively. It can be 

concluded that the Naïve Bayesian approach acts as a better combination approach 

than the majority voting approach. 

Overall, the proposed ensemble method using PSO as the selection approach and 

Naïve Bayesian method for combination (BPSO) achieved the best result among all 

other 11 ensemble approaches. The performance of the MCS produced by proposed 

BPSO scheme is 85.78% in F-score, which outperforms the single best classifier by 

4.13 %. Comparing the performance of BPSO to BFS and BBE approaches, we can 

deduce that using a heuristic method to search a large solution space created by large 

number of classifiers (in our case the size of search space was (515 ^ 2 ) -1 ), is the 

best choice among other basic search approaches. Additionally, in order to test the 

effect of the Naïve Bayesian combination method on the selection process employed, 

we implemented the MVPSO system using majority voting. MVPSO has also 

outperformed the single best classifier‘s performance considerably. The classification 
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performance is 85.1% in terms of F-score, where the amount of improvement over 

SB classifier‘s performance is 3.45%. The parameters adjusted for the BPSO scheme 

are employed during the implementation of MVPSO as well.  

It should be noted that, although the BPSO approach performs better than the 

MVPSO scheme by 0.68%, it cannot be deduced that using the Naïve Bayesian 

method will always reveal better results than using majority voting approach. This is 

due to the fact that in these types of ensemble schemes, the performance of the 

ensemble depends on the classifier selection criteria. If for example some parameters 

of the selection method such as the number of iterations or population size etc. 

change, it is possible to generate slightly different results. 

6.4.1 Discussion on Classifiers Selected using Different Ensemble Schemes 

The last column of Table 6.6 depicts the number of selected classifiers using each 

MCS approach. As mentioned in the previous section only the classifiers, whose 

performance was greater than 70% in terms of F-score, were included in the initial 

pool. By applying this constraint, the number of members in the repository decreased 

to the 515 from the possible 950. Moreover, this constraint lead to elimination of 

some classifiers which were trained using some of the feature sets described in 

Chapter 5. Table 6.7 illustrates the feature sets used in the classifiers selected by 

different ensemble schemes discussed. 
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Table 6.8: Feature sets used by different ensembles 
 BPSO MVPSO BFS MVFS MVBE BBE MVFULL BFULL SB MVAWOS BAWOS MVAWS BAWS 

F1 √ √ √ √   √ √  √ √ √ √ 

F2 √ √ √ √   √ √  √ √ √ √ 

F3 √ √ √ √ √ √ √ √ √ √ √ √ √ 

F4          √ √ √ √ 

F5          √ √ √ √ 

F6 √ √   √ √ √ √  √ √ √ √ 

F7 √ √   √ √ √ √  √ √ √ √ 

F8 √ √  √ √ √ √ √  √ √ √ √ 

F9 √ √  √ √ √ √ √  √ √ √ √ 

F10 √ √ √ √ √ √ √ √  √ √ √ √ 

F11 √ √ √ √ √ √ √ √  √ √ √ √ 

F12 √ √ √ √  √ √ √  √ √ √ √ 

F13          √ √ √ √ 

F14 √ √ √ √ √ √ √ √  √ √ √ √ 

F15          √ √ √ √ 

F16          √ √ √ √ 

F17          √ √ √ √ 

F18          √ √ √ √ 

F19          √ √ √ √ 

 

As it can be seen from the table, except for the last four ensembles (MVAWOS, 

BAWOS, MVAWS, and BAWS), all other ensemble approaches contain classifiers, 

which  use only 11 out of the original 19  feature sets, (feature sets 1, 2, 3, 6-12, and 

14). The last four ensemble schemes contain classifiers which uses all 19 feature sets, 

since they combine all individual classifiers with or without undersampled data. 

We next compare the individual classifiers shared by different ensembles. Table 6.8 

shows the percentage of shared classifiers between different MCS approaches. 

Combination of all classifiers (MVFULL, and BFULL) and the combinations of 19 

baseline classifiers (MVAWOS, MVAWS, BAWOS, BAWS ) are excluded from the 

table because for the full combination cases it is clear that 100% of other classifiers 

are shared since the combination of all classifiers is the superset.
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                Table 6.9: Percentages of classifiers shared between pairs of MCSs 

 BPSO MVPSO BFS MVFS BBE MVBE 

BPSO  76.38% 

(41) 

30.61% 

(15) 

28.78% 

(14) 

12.42% 

(6) 

10.42% 

(5) 

MVPSO   29.21% 

(15) 

27.24% 

(13) 

9.7% 

(5) 

7.84% 

(4) 

BFS    87.93% 

(51) 

1.72% 

(1) 

3.44% 

(2) 

MVFS     3.27% 

(2) 

3.27% 

(2) 

BBE      57.38% 

(101) 

 

The first observation that can be made from the table is the fact that the classifier 

selection algorithm is the primary deciding factor on the classifiers to be included in 

the final ensemble rather than the combination method. For example, comparing the 

BPSO and MVPSO ensembles we can see that 83.67% of the classifiers in the BPSO 

ensemble are the same as the classifiers in the MVPSO ensemble. However, the 

percentages of shared classifiers between BPSO and MVPSO and any other 

ensemble is not more than 31%. Similar arguments can be made for other ensembles, 

which use the same selection algorithm but different combination methods. 

Secondly, the fact that the percentage of classifier shared between an ensemble, 

which uses the PSO algorithm for selection versus other selection schemes (FS and 

BE), is less than 30 % indicates that the PSO scheme is successful in selecting a 

diverse set of well performing classifiers in a large space. 

Table 6.10 shows the shared selected classifiers using BPSO and MVPSO. The first 

column shows the feature sets used during classifier creation and the second column 
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shows the sampling ratios which is applied to training data using the feature sets 

mentioned.  

Table 6.10: Shared classifiers between BPSO and MVPSO and 

the respective sampling ratios used 

 Sampling Ratio 

F1 5, 7, 14, 19, 21, 41, 0 

F2 8, 11, 12, 21, 26, 27, 36, 0 

F3 5, 7, 10, 16, 17, 27, 41, 0 

F9 51 

F10 14, 17, 19, 23, 28, 31, 0 

F11 13, 20, 39, 28 

F12 21, 37, 50 

F14 15, 17, 30 

 

It can be seen that, firstly only a few number of feature sets among all 19
 
are very 

effective in improving the classification performance (i.e. 8 out of 19 feature sets are 

used in the final ensemble). In addition, considering the distribution of sampling 

ratios for classifiers trained with undersampled data shows that the majority of the 

classifiers are sampled with sampling ratios in the range [10, 20]. It is important to 

note that the average imbalance ratio for the train data was found to be 24.42 as 

given in Table 5.1. This result may hint that only classifiers trained with 

undersampled data at sampling ratios below the average are well performing 

classifiers when grouped together in an ensemble. However, this points requires 

further investigation. In the second column, 0 represents training data without any 

undersampling. This fact validates our point for including the 19 classifiers trained 

with original data together with the 931 classifiers which were trained with 

undersampled data in the original ensemble of 950 classifiers. 
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6.5 Error Analysis  

We have performed error analysis on the results obtained in order to gain an insight 

about the type of misclassifications made and the possible reasons that may account 

for the errors. 

Table 6.11 shows the number of False Positives (FPs) and False Negatives (FNs) for 

each of the systems discussed in the previous section using the ChemDNER test data. 

It can be observed that for all methods the majority of false predictions are FNs 

resulting in lower recall. However, when the proposed system is compared to the SB 

system, it can be seen that there is a significant decrease in the number of FNs with a 

slight increase in FPs. 44% of all false predictions are classified as FPs and 56% as 

FNs for the case of the SB system as opposed to 47% FPs and 53% FNs for the 

BPSO method resulting in a more balanced classifier ensemble. 

Further analysis of the train and test data provides some insight for reasons 

accounting for the false predictions. As mentioned in Chapter 5 we use the IOB2 tag 

scheme for representing each token as part of the entity (―B-EntityClass‖ if it is the 

first token of the entity and ―I-EntityClass‖ if it is not the first token) and ―O‖ to  

mark a token as a non-entity token. 

The evaluation script used to calculate the performance of the classifiers however 

uses strict evaluation which requires that all parts of the entity are correctly 

recognised in order to classify it as a True Positive. However, analysis of the 

ChemDNER test data shows that around 5% of tokens are annotated by the 

annotators as both  ―B-EntityClass‖ and ―I-EntityClass‖ depending on the position of 

the token. Typical examples are entity mentions which begin with a lower case letter. 
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                    Table 6.11: Number of FPs and FNs on ChemDNER Test Data 

 TP FP FN 

BPSO 20129 3112 3561 

MVPSO 20561 3160 4039 

BFS 20432 3802 3953 

MVFS 19538 3988 3631 

MVBE 19418 4139 5388 

BBE 19647 4430 5094 

MVFULL 17123 5431 5043 

BFULL 17445 5076 5374 

SB 19187 3858 4764 

MVAWOS 18329 4026 4866 

MVAWS 19981 3903 4699 

BAWOS 18396 4057 4911 

BAWS 18192 3545 4387 

 

 

Such cases account for most of the FP mistakes since the classifier ensemle is 

sometimes not capable of distinguishing between the two cases as the entity 

mentions are the same except from their positions within the entity. We name such 

errors as Type I Errors. The first two rows of Table 6.10 show example sentences for 

this first case. Similarly around 4% of tokens are marked as both ―I-EntityClass‖ and 

―O‖ class and 4.5% are marked as both ―B-EntityClass‖ and ―O‖ class by the 

annotators. The classifier is clearly unable to correctly predict such entity mentions 

which account for majority of the FN predictions. We name such errors as Type II 

Errors. Examples of Type II Errors are given in the last 4 rows of Table 6.12. 
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Table 6.12: Example Sentences for Type I and Type II Errors 

Example Sentence 
PubMed ID / 

Reference 
Annotation 

Error 

Type 

―Alternatively, when TMS diazomethane is used as the dipole, the resulting 2-

pyrazoline obtained after desilylation may be reduced with NaCNBH3 to provide 

the trans azakainate analog exclusively.‖ 

[23481645]/[217] 
I-

CHEMICAL 
Type I 

 

―The 1,3-dipolar cycloaddition of diazomethane with trans-dibenzyl glutaconate 

yields a 1-pyrazoline, which may be reduced directly to the pyrazolidine.‖ 
[23481645]/[217] 

B-

CHEMICAL 

―Similar concentrations of non-decolorized (unpurified, high anthraquinone) Aloe 

vera extracts tested in other studies have resulted in an increased incidence and 

severity of diarrhea and colon adenomas and carcinomas.‖ 

[23500775]/[218] 
B-

CHEMICAL Type II 

 

―Safety of purified decolorized (low anthraquinone) whole leaf Aloe vera (L) 

Burm.‖ 
[23500775]/[218] O 

―Three PEMs are considered: Nafion, sulfonated polystyrene (sPS) that forms the 

hydrophilic subphase of segregated sPS-polyolefin block copolymers, and random 
sPS-polyethylene copolymer.‖ 

[23205740]/[219] 
I-

CHEMICAL 

Type II 

―The adsorption of human serum fibrinogen on polystyrene latex particles was 
studied using the microelectrophoretic and concentration depletion methods.‖ 

[23421850]/[220] O 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

In this thesis, a novel framework for the chemical named entity recognition task 

using a machine learning approach is proposed. The proposed architecture consists of 

five different modules; data preprocessing, undersampling, feature extraction, 

classifier training, and classifier ensemble. Furthermore, a new approach is proposed 

for the first, second and the fifth module. For the data preprocessing module, a new 

rule based tokenizer, ChemTok [28], which is designed especially to be used in the 

chemical or biological domain, is proposed. The main idea behind the proposed 

tokenizer is to create longer discriminative tokens as much as possible while 

preventing incorrectly segmentation of text. ChemTok uses the rules extracted from 

the training data set in ChemDNER corpus.  

Due to the imbalanced nature of the data used in the chemical NER problem, usually 

the classifiers trained are biased towards the majority classes. Since the data used in 

NER are sentences, making use of commonly used undersampling methods such as 

random undersampling in order to decrease class skewness is not very effective. 

Therefore, during this study a new undersampling strategy to be used in particular 

with NER is proposed. Since it is known that machine learning algorithms make use 

of information provided by surrounding samples around sample to be predicted, our 

proposed undersampling method mainly focuses on selecting negative samples from 

each sentence in such a way as to keep the positions of negative and positive samples 
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in the sentence, thus preserving the sentence structure as much as possible. Since it 

works in a systematic way to choose negative samples around each positive sample, 

achieving close to equal number of negatives on both left and right hand sides of 

each positive sample, we name it balanced undersampling. Experiments have shown 

that the performance of the classifiers trained using undersampled training data by 

means of BUS perform better for all kind of feature sets extracted. 

As a third contribution of the thesis, a new ensemble scheme is proposed which uses 

particle swarm optimization algorithm as a heuristic population based approach to 

select a best performing subset of classifiers from a large pool of classifiers and 

combine the selected classifiers with Naïve Bayesian fusion approach. Classifiers in 

the pool are trained using the proposed undersampling method on training data with 

different feature sets. For each feature set, the training data is undersampled at 

different sampling ratios such that 515 classifiers are created. Investigation of the 

results achieved by each ensemble scheme shows that the proposed approach can 

outperform 11 other MCSs in terms of entity recognition performance.  

Finally, using the proposed system a classification performance which ranks it within 

the six best systems that competed in BioCreative IV ChemDNER is achieved.  

Future work includes making use of effective post processing methods to further 

improve classification performance. In addition, combination of the proposed 

architecture with other solutions provided for NER such as dictionary methods or 

rule-based strategies, may also be addressed as the next step. Moreover, using 

Bagging and Boosting [180] approaches with classifiers, which are trained using 

undersampled data, can be considered. 
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Appendix A: Performance Evaluation for NER Systems 

To evaluate the performance of NER systems, the three well known confusion matrix 

based measures are used: i) Precision, represents the ability of a system to detect only 

relevant entities, ii) Recall, shows the  ability of a system to recognize all the relevant 

entities, iii) F-score, is a harmonic mean of precision and recall [221]. 

Computing the measurements involves following counts based on the given 

confusion matrix: 1) True Positive (TP), the number of positive samples correctly 

recognized. 2) False Negative (FN), the number of positive samples incorrectly 

recognized as negative. 3) True Negative (TN): the number of negative samples 

correctly recognized and 4) False Positive (FP), the number of negative samples 

incorrectly recognized. Then Precision and Recall can be calculated according to the 

Formulas A.1, and A.2 respectively: 

              
  

     
  ,                (A.1)   

           
  

     
                     (A.2) 

The general formula to compute F-Score for positive real β is as following: 

          
   

        
                   (A.3) 

where   shows the impact of precision over recall. Traditional F-Score or balanced 

F-Score is calculated for     and known as   . 
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Appendix B: Conditional Random Fields (CRFs) 

Conditional random fields (CRFs) are a class of statistical modelling method often 

applied in pattern recognition and machine learning, where they are used 

for structured prediction. Whereas an ordinary classifier predicts a label for a single 

sample without regard to "neighboring" samples, a CRF can take context into 

account; e.g., the linear chain CRF popular in named entity recognition predicts 

sequences of labels for sequences of input samples [222]. 

CRFs are a type of discriminative undirected probabilistic graphical model. It is used 

to encode known relationships between observations and construct consistent 

interpretations. It is often used for labeling or parsing of sequential data, such as 

natural language text or biological sequences [222] and in computer vision 

[27]. Specifically, CRFs find applications in shallow parsing [223], named entity 

recognition [71], gene finding and peptide critical functional region finding [224], 

among other tasks, being an alternative to the related hidden Markov 

models (HMMs).  

B.1 The CRF Model 

Let x1: N be he observations (e.g. words in a sentence), and y1: N the hidden labels 

(e.g. tags or class labels). A linear chain CRF defines a conditional probability 

according to equation B.1:                                                                                                                                                                                                                                   

      |      
 

 
    ∑ ∑                      

 
 
                                 (B.1)                          

The Scalar Z is the normalization factor to make it a valid probability. It defined as 

the sum of exponential number of sequences (B.2):   

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Structured_prediction
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Discriminative_model
https://en.wikipedia.org/wiki/Markov_random_field
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Sequence_labeling
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Shallow_parsing
https://en.wikipedia.org/wiki/Named_entity_recognition
https://en.wikipedia.org/wiki/Named_entity_recognition
https://en.wikipedia.org/wiki/Gene_prediction
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Hidden_Markov_model
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Z =∑     ∑ ∑                      
 

 
        

        (B.2),                                                    

where f () as feature function and λ as parameter of CRF, can take arbitrary real 

values, and the whole exp function will be non-negative. λi can be assume as weight 

of fi (). 

B.2 Feature Functions 

The feature functions are the key elements of CRF. They take a sentence, the 

position of i
th

 word in the sentence, the label of current word, and label of the 

previous word as input,                   . These are arbitrary functions that 

produce a real value; usually they are adjusted to produce binary values. Consider the 

following examples in the context of POS tagging problem: 

A.                    = 1 if yi=ADVERB and the i
th

 word ends in‖-ly‖; 0 

otherwise. If the weight λ1 associated with this feature is large and 

positive, then this feature is essentially telling that we prefer labeling 

where words ending in ―-ly‖ get labeled as ADVERB.  

B.                   =1 if i=1, yi=VERB, and the sentence ends in a question 

mark; 0 otherwise. Again, if the weight λ2 associated with this feature is 

large and positive, then labeling that assign VERB to the first word in a 

question are preferred. (E.g. ―Is this yours?) 

To build a conditional random fields, just feature functions and corresponding 

weights should be defined. The mentioned weights of feature functions will be 

determined during CRF training process. 

B.3 CRF Training 

Associated weight to feature functions can be found using different techniques such 

as: Gradient ascent, penalized log-likelihood criteria, pseudo log-likelihood, voted 
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perceptron, etc. [226]. They are different mainly in the objective function they try to 

optimize.  Considering gradient ascent, assume there is a bunch of annotated 

sentences. Randomly initialize the weights to shift these randomly initialized weights 

to the correct ones for each training sentence: 

 Go through each feature function fi , and compute the gradient of the log 

probability of the training example with respect to λi : 

 

   
        |   ∑                 

   - ∑     |    ∑                   
    

The first term in the gradient is the contribution of feature fj under the true 

label, and the second term is the expected contribution of fj under the 

current model. 

 Move λj in the direction of the gradient: 

λj= λj +  ∑  
 
  

   
  

 
      

   - ∑     |    ∑                   
     , where   

is some learning rate. 

 Previous steps will be repeated until some stopping conditions is reached. 

B.4 CRF Inference 

After learning the weights of feature functions, learnt model should be applied on 

unlabeled samples to find optimum set of labels. The naïve way is to compute P(Y|X) 

for every possible label sequences, and then choose the label that maximizes this 

probability. This way is not rational, since there are T
m 

possible labels for a tag set of 

size T and sentence of length m. A better way is to use a dynamic programming 

algorithm to find the optimal labels, such as Viterbi algorithm [227] in HMM. 
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Appendix C: Details of Individual Classifiers 

C.1 Results of applying BUS and RUS methods using different feature sets (F1-

19) on Development and Test data 

Rs in the given tables in section D.1 shows the desired sampling ratios. The last one 

in each table (e.g. Rs = 51) shows the baseline classifier‘s performance without any 

undersampling. 

       Table C1.1: Effect of BUS and RUS on Development and Test data using 

Feature F1 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 86.52 60.04 70.89 
 

79.55 60.16 68.51  85.95 60.37 70.92  78.43 61.06 68.66 

3 85.02 68.15 75.66 
 

81.28 65.68 72.65  84.13 68.52 75.53  80.11 66.00 72.37 

4 84.75 71.60 77.62 
 

79.8 69.24 74.15  83.88 72.04 77.51  79.03 70.37 74.45 

5 83.86 74.33 78.81 
 

80.47 72.64 76.35  83.07 74.84 78.74  79.17 73.30 76.12 

6 83.84 75.59 79.5 
 

81.15 72.25 76.44  83.01 75.81 79.25  80.13 72.94 76.37 

7 83.3 76.88 79.96 
 

79.54 74.74 77.07  82.52 77.09 79.71  78.76 75.61 77.15 

8 82.59 77.79 80.12 
 

79.65 75.52 77.53  81.65 78.02 79.79  78.71 75.96 77.31 

9 82.06 78.50 80.24 
 

79.88 75.45 77.60  81.03 78.64 79.82  79.04 76.45 77.72 

10 82.32 79.26 80.76 
 

79.58 76.31 77.91  81.10 79.21 80.14  78.42 77.41 77.91 

11 82.33 77.53 79.86 
 

78.10 75.62 76.84  80.89 77.28 79.04  76.85 76.49 76.67 

12 82.10 80.12 81.1 
 

79.60 77.32 78.44  81.05 80.29 80.67  78.54 78.14 78.34 

13 80.59 80.33 80.46 
 

78.40 77.59 77.99  79.16 80.13 79.64  75.97 77.12 76.54 

14 82.30 80.63 81.46 
 

78.83 78.41 78.62  81.09 80.81 80.95  77.41 79.27 78.33 

15 81.39 80.51 80.95 
 

79.00 78.60 78.80  80.42 80.71 80.56  76.62 78.02 77.31 

16 80.72 81.14 80.93 
 

77.89 77.30 77.59  79.76 81.46 80.60  76.96 78.26 77.60 

17 80.86 81.11 80.98 
 

78.19 77.58 77.88  79.53 81.32 80.42  77.06 78.23 77.64 

18 81.11 81.03 81.07 
 

78.29 79.04 78.66  79.83 81.26 80.54  77.01 79.43 78.20 

19 81.3 81.43 81.36 
 

78.09 79.19 78.64  80.15 81.75 80.94  76.97 80.05 78.48 

20 80.99 81.31 81.15 
 

78.01 79.18 78.59  79.68 81.53 80.59  77.11 79.77 78.42 

21 81.66 81.61 81.63 
 

78.86 79.23 79.04  80.45 81.97 81.20  77.58 80.07 78.81 

22 80.83 81.34 81.08 
 

78.05 79.22 78.63  79.69 81.77 80.72  76.70 79.86 78.25 

23 81.35 81.81 81.58 
 

78.27 79.47 78.87  80.14 82.02 81.07  77.03 80.16 78.56 

24 80.88 81.47 81.17 
 

78.29 79.97 79.12  79.66 81.72 80.68  75.91 79.25 77.54 

25 81.22 81.44 81.33 
 

78.38 79.83 79.10  79.95 81.63 80.78  77.18 80.36 78.74 

26 80.92 82.00 81.46 
 

78.25 79.80 79.02  79.56 81.86 80.69  76.87 80.45 78.62 

27 78.60 79.95 79.27 
 

77.83 74.62 76.19  77.47 80.60 79.00  77.14 74.65 75.87 

28 81.01 81.89 81.45 
 

77.92 80.02 78.96  79.76 82.27 81.00  76.99 81.03 78.96 

29 80.72 82.03 81.37 
 

78.17 79.75 78.95  79.42 82.35 80.86  77.09 80.38 78.70 

30 79.96 81.66 80.80 
 

76.59 78.76 77.66  78.80 81.69 80.22  75.53 79.74 77.58 
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   Table C1.1 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

31 81.03 81.74 81.38 
 

76.91 79.09 77.98  80.01 82.14 81.06  75.84 79.68 77.71 

32 80.94 82.26 81.59 
 

77.72 80.19 78.94  79.78 82.65 81.19  76.70 80.68 78.64 

33 81.18 81.76 81.47 
 

78.08 79.60 78.83  80.09 82.09 81.08  76.74 80.10 78.38 

34 79.74 81.87 80.79 
 

76.74 78.46 77.59  78.25 82.42 80.28  75.86 79.05 77.42 

35 80.92 82.12 81.52 
 

78.31 80.05 79.17  79.72 82.52 81.10  75.85 79.61 77.68 

36 80.98 81.39 81.18 
 

77.53 80.36 78.92  79.74 81.62 80.67  74.95 79.79 77.29 

37 80.87 82.48 81.67 
 

77.02 80.49 78.72  79.68 82.94 81.28  75.94 81.43 78.59 

38 80.47 82.17 81.31 
 

77.9 80.58 79.22  79.46 82.53 80.97  76.69 81.34 78.95 

39 80.62 82.19 81.40 
 

77.79 80.19 78.97  79.36 82.58 80.94  76.49 80.71 78.54 

40 81.04 82.08 81.56 
 

78.02 80.36 79.17  79.97 82.58 81.25  76.86 81.03 78.89 

41 80.99 82.41 81.69 
 

77.87 80.18 79.01  79.80 82.73 81.24  76.86 80.81 78.79 

42 80.94 82.29 81.61 
 

78.7 80.2 79.44  79.64 82.64 81.11  76.31 79.50 77.87 

43 80.99 82.08 81.53 
 

77.95 79.68 78.81  79.83 82.39 81.09  76.87 80.58 78.68 

44 80.84 82.17 81.50 
 

77.40 80.15 78.75  79.75 82.59 81.15  76.48 80.79 78.58 

45 80.64 82.44 81.53 
 

78.1 80.53 79.3  79.71 83.10 81.37  76.98 81.35 79.10 

46 81.02 82.25 81.63 
 

77.93 80.55 79.22  79.79 82.48 81.11  76.81 81.40 79.04 

47 80.63 82.56 81.58 
 

77.74 81.35 79.5  79.42 83.02 81.18  74.99 80.78 77.78 

48 80.73 82.56 81.63 
 

77.89 80.35 79.1  79.46 82.92 81.15  77.03 81.30 79.11 

49 81.09 82.03 81.56 
 

77.14 80.32 78.7  79.89 82.49 81.17  75.93 80.79 78.28 

50 80.67 81.79 81.23 
 

77.92 80.49 79.18  79.68 82.34 80.99  75.41 79.90 77.59 

51 77.54 85.19 81.19 
 

77.54 85.19 81.19  76.57 85.79 80.92  76.57 85.79 80.92 

 

 

 

Table C1.2: Effect of BUS and RUS on Development and Test data using Feature 

F2 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 84.91 58.03 68.94 
 

78.59 56.83 65.96  84.82 58.64 69.34  78.87 58.35 67.08 

3 84.22 66.85 74.54 
 

80.24 65.27 71.98  83.67 67.75 74.87  79.45 66.29 72.28 

4 83.32 70.17 76.18 
 

79.74 68.39 73.63  82.68 71.35 76.6  79.37 70.04 74.41 

5 82.64 73.04 77.54 
 

80.10 70.06 74.74  82.01 74.78 78.23  79.56 71.77 75.46 

6 82.10 74.83 78.30 
 

78.88 71.69 75.11  81.32 76.47 78.82  78.55 73.65 76.02 

7 82.08 75.48 78.64 
 

79.05 73.38 76.11  81.41 77.34 79.32  78.27 75.33 76.77 

8 80.01 76.66 78.30 
 

78.13 74.33 76.18  78.95 78.17 78.56  76.04 74.94 75.49 

9 81.13 77.44 79.24 
 

78.22 75.49 76.83  80.44 79.14 79.78  77.48 77.82 77.65 

10 80.31 77.90 79.09 
 

77.81 75.76 76.77  79.48 79.55 79.51  75.69 76.66 76.17 
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 Table C1.2 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

11 80.9 78.48 79.67 
 

77.91 76.33 77.11  80.06 80.05 80.05  76.99 78.79 77.88 

12 80.37 78.76 79.56 
 

77.44 76.12 76.77  79.73 80.79 80.26  76.77 78.34 77.55 

13 79.82 79.26 79.54 
 

77.06 76.67 76.86  79.12 81.17 80.13  76.27 78.86 77.54 

14 79.84 79.82 79.83 
 

77.2 77.1 77.15  78.94 81.6 80.25  76.48 79.59 78.00 

15 79.85 79.74 79.79 
 

76.92 77.61 77.26  79.09 81.6 80.33  76.18 79.79 77.94 

16 79.82 79.59 79.70 
 

76.80 77.05 76.92  79.12 81.50 80.29  75.84 79.14 77.45 

17 79.83 80.05 79.94 
 

76.49 78.77 77.61  78.93 82.02 80.45  75.6 80.87 78.15 

18 80.34 79.09 79.71 
 

77.09 77.97 77.53  79.15 80.65 79.89  74.87 78.82 76.79 

19 79.52 80.58 80.05 
 

76.62 78.47 77.53  78.69 82.44 80.52  75.81 80.88 78.26 

20 79.69 80.00 79.84 
 

77.04 78.30 77.66  79.13 81.97 80.52  76.26 80.79 78.46 

21 79.12 80.96 80.03 
 

76.92 78.29 77.6  78.34 82.72 80.47  74.95 79.29 77.06 

22 79.37 80.83 80.09 
 

76.50 78.85 77.66  78.38 82.47 80.37  74.38 79.57 76.89 

23 78.95 80.68 79.81 
 

76.96 78.63 77.79  78.29 82.64 80.41  74.58 79.44 76.93 

24 79.45 80.61 80.03 
 

76.37 78.81 77.57  78.66 82.38 80.48  75.70 81.16 78.33 

25 79.67 80.58 80.12 
 

76.46 79.46 77.93  78.97 82.62 80.75  75.61 81.52 78.45 

26 79.46 80.97 80.21 
 

76.89 78.95 77.91  78.70 82.77 80.68  76.01 81.17 78.51 

27 79.62 80.71 80.16 
 

75.72 78.90 77.28  78.69 82.52 80.56  74.92 80.82 77.76 

28 79.99 80.02 80.00 
 

76.34 78.60 77.45  79.12 81.62 80.35  75.69 81.08 78.29 

29 79.06 81.33 80.18 
 

76.00 78.74 77.35  78.11 83.03 80.49  75.40 81.07 78.13 

30 79.32 80.90 80.1 
 

76.73 79.48 78.08  78.41 82.68 80.49  74.36 80.05 77.10 

31 79.49 80.78 80.13 
 

76.48 79.23 77.83  78.73 82.72 80.68  75.62 81.43 78.42 

32 79.43 80.92 80.17 
 

76.45 79.05 77.73  78.71 82.82 80.71  75.94 81.47 78.61 

33 79.75 79.29 79.52 
 

74.91 77.66 76.26  78.55 80.79 79.65  74.27 79.93 77.00 

34 79.25 81.07 80.15 
 

76.39 79.13 77.74  78.60 83.07 80.77  75.95 81.66 78.70 

35 79.18 81.03 80.09 
 

76.44 78.93 77.67  78.63 83.19 80.85  75.73 81.48 78.50 

36 79.08 81.75 80.39 
 

75.60 78.59 77.07  78.23 83.42 80.74  75.11 80.85 77.87 

37 79.15 80.83 79.98 
 

75.97 79.64 77.76  78.42 82.79 80.55  75.3 81.91 78.47 

38 79.36 81.00 80.17 
 

76.06 79.21 77.60  78.75 83.06 80.85  75.47 81.83 78.52 

39 78.90 81.36 80.11 
 

76.26 79.27 77.74  78.23 83.28 80.68  75.73 81.70 78.6 

40 79.06 80.96 80.00 
 

76.49 79.54 77.99  78.18 82.76 80.40  74.42 80.48 77.33 

41 78.77 81.38 80.05 
 

59.83 69.85 64.45  78.00 83.18 80.51  59.75 72.27 65.42 

42 79.30 81.33 80.30 
 

76.36 79.18 77.74  78.53 83.18 80.79  75.70 81.66 78.57 

43 79.07 81.05 80.05 
 

76.67 79.42 78.02  78.29 82.79 80.48  74.49 79.99 77.14 

44 79.02 80.76 79.88 
 

76.12 79.45 77.75  78.29 82.30 80.24  74.03 80.40 77.08 
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  Table C1.2 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

45 79.25 81.44 80.33 
 

76.20 80.12 78.11  78.39 83.35 80.79  75.24 82.25 78.59 

46 79.38 81.06 80.21 
 

76.65 79.33 77.97  78.58 82.89 80.68  75.9 81.65 78.67 

47 78.67 81.45 80.04 
 

76.59 78.91 77.73  77.9 83.39 80.55  75.9 81.07 78.4 

48 78.81 81.25 80.01 
 

74.79 78.37 76.54  77.90 83.01 80.37  73.99 80.49 77.10 

49 79.09 81.27 80.17 
 

76.24 79.72 77.94  78.38 83.32 80.77  75.44 81.95 78.56 

50 78.75 81.61 80.15 
 

76.02 79.09 77.52  77.81 83.31 80.47  75.46 81.43 78.33 

51 74.16 82.97 78.32 
 

74.16 82.97 78.32  73.21 84.35 78.39  73.21 84.35 78.39 

 

   

 

  Table C1.3: Effect of BUS and RUS on Development and Test data using Feature 

F3 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 86.67 59.79 70.76 
 

80.47 59.08 68.14  86.42 60.08 70.88  80.18 60.37 68.88 

3 85.29 67.21 75.18 
 

82.46 65.68 73.12  84.98 67.38 75.16  81.36 66.14 72.96 

4 85.09 71.42 77.66 
 

81.65 69.76 75.24  84.33 72.09 77.73  80.83 70.76 75.46 

5 84.41 74.07 78.90 
 

81.20 72.23 76.45  83.51 74.76 78.89  80.16 73.32 76.59 

6 83.56 76.11 79.66 
 

80.08 73.56 76.68  82.76 76.77 79.65  79.24 75.01 77.07 

7 83.15 76.12 79.48 
 

80.53 74.08 77.17  82.54 76.87 79.60  79.73 75.22 77.41 

8 83.08 77.38 80.13 
 

79.9 74.93 77.34  82.55 78.44 80.44  79.21 76.22 77.69 

9 82.99 78.03 80.43 
 

79.87 76.01 77.89  82.19 78.48 80.29  78.89 77.43 78.15 

10 81.92 78.98 80.42 
 

79.70 76.50 78.07  81.31 79.54 80.42  77.65 76.33 76.98 

11 82.07 79.31 80.67 
 

79.59 77.06 78.30  81.26 79.68 80.46  78.47 78.14 78.30 

12 81.61 79.49 80.54 
 

78.52 76.72 77.61  80.77 80.14 80.45  77.62 77.97 77.79 

13 81.79 79.98 80.87 
 

79.04 77.37 78.20  80.75 80.45 80.60  78.10 78.33 78.21 

14 81.94 80.27 81.10 
 

78.83 77.85 78.34  81.10 80.97 81.03  78.17 79.06 78.61 

15 81.03 79.48 80.25 
 

77.41 76.53 76.97  80.14 80.01 80.07  76.47 77.83 77.14 

16 81.45 81.72 81.58 
 

78.64 78.93 78.78  80.49 82.29 81.38  77.78 80.00 78.87 

17 79.39 81.11 80.24 
 

77.24 77.14 77.19  78.47 82.07 80.23  76.13 78.04 77.07 

18 80.97 80.81 80.89 
 

78.68 78.71 78.69  80.11 81.49 80.79  77.54 79.82 78.66 

19 81.40 80.90 81.15 
 

77.30 78.17 77.73  80.14 81.61 80.87  76.34 79.17 77.73 

20 81.92 81.03 81.47 
 

78.51 79.29 78.9  80.93 81.64 81.28  77.60 80.43 78.99 

21 81.02 81.63 81.32 
 

78.45 78.92 78.68  79.95 82.26 81.09  77.62 80.10 78.84 

22 81.28 80.98 81.13 
 

78.38 79.60 78.99  80.57 81.88 81.22  77.41 80.77 79.05 
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  Table C1.3 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

23 81.00 81.61 81.3 
 

78.73 79.63 79.18  80.06 82.30 81.16  77.73 80.58 79.13 

24 81.42 81.61 81.51 
 

78.34 79.69 79.01  80.43 82.20 81.31  77.37 80.94 79.11 

25 81.19 81.51 81.35 
 

78.18 79.95 79.06  80.12 82.12 81.11  75.83 79.76 77.75 

26 78.05 80.06 79.04 
 

80.59 72.66 76.42  77.02 81.00 78.96  80.11 72.70 76.23 

27 81.48 81.71 81.59 
 

78.20 79.71 78.95  80.39 82.33 81.35  77.19 80.80 78.95 

28 80.53 81.47 81.00 
 

77.07 78.56 77.81  79.80 82.29 81.03  76.08 79.61 77.80 

29 80.96 82.01 81.48 
 

77.43 77.64 77.53  80.09 82.61 81.33  76.86 78.66 77.75 

30 81.13 81.95 81.54 
 

78.48 71.23 74.68  80.14 82.69 81.40  77.40 71.37 74.26 

31 81.09 82.08 81.58 
 

78.23 79.77 78.99  80.25 82.85 81.53  77.35 80.96 79.11 

32 80.91 81.75 81.33 
 

76.92 78.78 77.84  79.73 82.41 81.05  76.22 80.15 78.14 

33 80.40 80.06 80.23 
 

76.47 78.89 77.66  79.42 81.03 80.22  75.46 80.26 77.79 

34 81.61 81.17 81.39 
 

77.99 80.10 79.03  80.66 82.00 81.32  76.94 81.48 79.14 

35 81.20 81.71 81.45 
 

78.03 79.55 78.78  80.37 82.40 81.37  77.08 80.6 78.80 

36 80.58 81.66 81.12 
 

76.71 78.94 77.81  79.43 82.19 80.79  75.92 80.13 77.97 

37 81.98 79.43 80.68 
 

76.37 78.48 77.41  81.13 80.08 80.60  75.69 79.88 77.73 

38 80.78 81.83 81.30 
 

78.2 79.86 79.02  79.79 82.50 81.12  75.78 79.62 77.65 

39 80.83 81.97 81.40 
 

78.29 79.97 79.12  79.86 82.67 81.24  77.31 81.16 79.19 

40 80.99 82.06 81.52 
 

78.29 79.74 79.01  79.79 82.69 81.21  76.09 79.56 77.79 

41 81.02 82.48 81.74 
 

78.17 80.21 79.18  80.11 83.26 81.65  77.25 81.41 79.28 

42 80.79 82.25 81.51 
 

77.86 80.61 79.21  79.86 83.07 81.43  75.69 80.37 77.96 

43 81.12 82.26 81.69 
 

75.04 78.37 76.67  80.26 83.13 81.67  73.98 79.21 76.51 

44 81.02 82.15 81.58 
 

78.20 80.52 79.34  80.15 83.06 81.58  77.28 81.80 79.48 

45 80.63 82.43 81.52 
 

77.00 79.08 78.03  79.51 82.91 81.17  76.09 80.29 78.13 

46 78.13 80.24 79.17 
 

69.00 77.24 72.89  77.29 81.60 79.39  68.82 75.99 72.23 

47 80.49 81.53 81.01 
 

77.61 80.07 78.82  79.40 82.08 80.72  75.36 79.70 77.47 

48 80.74 82.74 81.73 
 

77.75 80.59 79.14  79.7 83.35 81.48  76.7 81.53 79.04 

49 81.41 81.81 81.61 
 

78.14 80.42 79.26  80.43 82.68 81.54  77.35 81.81 79.52 

50 80.97 82.27 81.61 
 

77.97 80.27 79.10  79.96 83.02 81.46  77.22 81.61 79.35 

51 77.29 84.57 80.77 
 

77.29 84.57 80.77  76.45 84.96 80.48  76.45 84.96 80.48 
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Table C1.4: Effect of BUS and RUS on Development and Test data using Feature F4 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 64.57 47.11 54.48 
 

51.56 42.27 46.46  64.77 48.10 55.20  52.38 43.69 47.64 

3 55.90 57.47 56.67 
 

57.46 50.02 53.48  56.41 59.54 57.93  57.32 50.44 53.66 

4 62.1 62.05 62.07 
 

55.88 61.78 58.68  62.18 63.42 62.79  55.83 63.81 59.55 

5 60.45 66.79 63.46 
 

57.65 65.39 61.28  60.55 68.87 64.44  56.89 66.72 61.41 

6 59.87 68.12 63.73 
 

56.29 66.41 60.93  59.48 70.08 64.35  55.27 67.76 60.88 

7 54.40 67.54 60.26 
 

55.65 60.83 58.12  53.97 70.03 60.96  55.15 62.30 58.51 

8 53.70 67.44 59.79 
 

47.55 60.66 53.31  53.40 69.40 60.36  47.72 63.00 54.31 

9 57.51 70.56 63.37 
 

54.63 67.49 60.38  57.04 72.75 63.94  54.51 70.30 61.41 

10 49.51 65.93 56.55 
 

45.37 59.32 51.42  49.64 68.17 57.45  45.15 60.34 51.65 

11 58.58 71.49 64.39 
 

54.58 69.75 61.24  58.32 74.00 65.23  54.36 72.46 62.12 

12 57.60 71.94 63.98 
 

48.48 65.6 55.76  57.46 74.55 64.90  48.32 67.84 56.44 

13 56.33 70.66 62.69 
 

54.04 69.08 60.64  55.63 73.55 63.35  52.85 71.35 60.72 

14 55.61 70.49 62.17 
 

53.56 64.99 58.72  55.52 73.12 63.12  53.22 67.01 59.32 

15 58.28 72.24 64.51 
 

54.08 70.50 61.21  58.15 74.57 65.34  54.11 73.18 62.22 

16 39.70 64.02 49.01 
 

36.30 64.61 46.48  40.28 65.79 49.97  36.35 66.30 46.96 

17 49.22 67.79 57.03 
 

47.65 64.10 54.66  49.40 68.55 57.42  45.63 67.69 54.51 

18 55.98 72.12 63.03 
 

46.46 62.45 53.28  55.78 74.53 63.81  46.48 64.86 54.15 

19 57.68 72.38 64.20 
 

51.82 66.81 58.37  57.32 74.65 64.85  51.64 69.19 59.14 

20 48.66 67.08 56.40 
 

9.27 43.82 15.30  48.27 69.08 56.83  9.35 46.11 15.55 

21 55.06 70.91 61.99 
 

51.62 70.06 59.44  55.13 73.76 63.10  51.31 72.35 60.04 

22 46.92 68.25 55.61 
 

43.39 65.50 52.20  46.76 70.48 56.22  44.63 68.38 54.01 

23 58.12 72.29 64.44 
 

49.6 69.08 57.74  57.94 74.69 65.26  49.86 71.89 58.88 

24 54.05 70.85 61.32 
 

50.63 69.95 58.74  53.63 73.34 61.96  50.20 72.04 59.17 

25 57.06 71.89 63.62 
 

53.47 69.84 60.57  56.61 74.03 64.16  53.31 72.57 61.47 

26 57.39 73.36 64.40 
 

51.79 68.54 59.00  57.32 75.67 65.23  51.66 71.46 59.97 

27 55.27 69.79 61.69 
 

51.03 69.62 58.89  54.26 74.32 62.73  52.20 70.75 60.08 

28 56.90 72.37 63.71 
 

53.86 71.15 61.31  56.44 74.63 64.27  52.27 72.55 60.76 

29 54.62 70.88 61.70 
 

52.53 68.16 59.33  54.37 73.31 62.44  52.55 70.64 60.27 

30 56.61 73.36 63.91 
 

49.25 63.93 55.64  56.31 75.73 64.59  49.56 66.61 56.83 

31 54.85 72.58 62.48 
 

52.04 70.34 59.82  55.02 74.68 63.36  51.61 73.2 60.54 

32 57.61 73.42 64.56 
 

24.69 60.69 35.10  57.44 75.62 65.29  24.52 61.76 35.10 

33 56.33 73.08 63.62 
 

50.23 69.64 58.36  55.96 75.39 64.24  49.91 71.95 58.94 

34 56.05 73.39 63.56 
 

53.13 70.77 60.69  55.69 75.28 64.02  53.39 73.79 61.95 

35 56.40 73.44 63.81 
 

50.49 69.45 58.47  55.76 75.44 64.12  50.48 72.29 59.45 
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Table C1.4 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

36 56.60 72.50 63.57 
 

51.64 69.57 59.28  56.19 74.93 64.22  51.21 71.83 59.79 

37 52.40 72.58 60.86 
 

49.97 63.23 55.82  52.04 74.59 61.31  49.77 65.91 56.71 

38 56.79 73.22 63.97 
 

53.80 71.40 61.36  56.34 75.62 64.57  53.27 73.88 61.90 

39 55.81 73.44 63.42 
 

52.57 70.22 60.13  55.48 75.50 63.96  52.49 73.06 61.09 

40 54.86 71.69 62.16 
 

43.81 67.59 53.16  54.81 74.49 63.15  43.61 69.24 53.51 

41 54.17 71.57 61.67 
 

50.33 69.52 58.39  53.83 73.79 62.25  49.97 71.95 58.98 

42 52.19 69.24 59.52 
 

48.68 69.58 57.28  52.31 72.13 60.64  48.62 71.50 57.88 

43 51.03 68.24 58.39 
 

31.90 63.27 42.41  51.01 70.85 59.31  31.56 64.38 42.36 

44 53.12 69.99 60.40 
 

15.70 27.50 19.99  53.44 73.15 61.76  15.20 27.47 19.57 

45 55.38 72.31 62.72 
 

52.89 70.39 60.40  55.73 74.89 63.90  52.85 72.71 61.21 

46 54.61 71.46 61.91 
 

52.08 70.46 59.89  54.45 73.81 62.67  51.79 73.05 60.61 

47 52.12 69.81 59.68 
 

48.15 69.39 56.850  51.99 71.98 60.37  47.81 71.96 57.45 

48 53.92 69.92 60.89 
 

48.98 69.41 57.43  53.84 72.43 61.77  50.29 73.54 59.73 

49 55.54 73.16 63.14 
 

49.91 67.86 57.52  55.04 75.28 63.59  49.96 70.77 58.57 

50 54.43 69.97 61.23 
 

50.95 70.10 59.01  53.88 71.81 61.57  49.30 72.98 58.85 

51 51.39 75.50 61.15 
 

51.39 75.50 61.15  51.28 77.54 61.73  51.28 77.54 61.73 

 

 

 

Table C1.5: Effect of BUS and RUS on Development and Test data using Feature F5 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 69.51 41.73 52.15 
 

57.22 43.00 49.10  69.46 42.17 52.48  57.00 43.61 49.41 

3 65.54 52.53 58.32 
 

57.91 53.82 55.79  65.17 53.39 58.69  57.82 55.51 56.64 

4 63.23 57.47 60.21 
 

57.8 48.47 52.73  62.25 58.17 60.14  56.93 49.27 52.82 

5 62.40 61.69 62.04 
 

55.06 55.62 55.34  62.27 63.23 62.75  54.78 56.72 55.73 

6 58.67 61.01 59.82 
 

58.85 51.58 54.98  58.13 62.16 60.08  57.92 51.99 54.80 

7 61.14 67.21 64.03 
 

57.72 63.73 60.58  60.76 68.98 64.61  57.91 66.03 61.70 

8 59.48 66.46 62.78 
 

56.43 62.62 59.36  58.81 67.73 62.96  56.17 64.34 59.98 

9 59.63 66.19 62.74 
 

56.02 65.12 60.23  59.12 67.55 63.05  55.93 66.97 60.95 

10 56.68 68.25 61.93 
 

55.11 64.81 59.57  56.25 70.09 62.41  54.25 65.79 59.47 

11 58.69 69.72 63.73 
 

55.75 63.69 59.46  58.36 71.42 64.23  55.92 65.54 60.35 

12 58.36 68.23 62.91 
 

54.66 65.83 59.73  57.50 69.40 62.89  54.73 68.02 60.66 

13 59.19 70.20 64.23 
 

55.94 67.66 61.24  58.80 71.81 64.66  56.02 69.98 62.23 
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Table C1.5 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

14 58.57 70.34 63.92 
 

55.61 65.24 60.04  58.27 72.30 64.53  55.11 66.95 60.46 

15 57.61 68.79 62.71 
 

53.83 66.66 59.56  57.38 70.61 63.31  53.60 68.67 60.21 

16 59.62 70.84 64.75 
 

49.80 64.56 56.23  59.17 72.48 65.15  49.60 66.36 56.77 

17 56.65 69.06 62.24 
 

51.46 66.92 58.18  56.08 70.54 62.48  51.45 69.30 59.06 

18 56.52 68.45 61.92 
 

53.90 65.26 59.04  55.65 69.68 61.88  53.67 67.47 59.78 

19 58.06 71.15 63.94 
 

54.08 68.94 60.61  57.80 73.04 64.53  53.97 71.28 61.43 

20 58.44 71.35 64.25 
 

55.00 69.51 61.41  57.93 73.07 64.63  54.81 71.78 62.16 

21 56.69 69.89 62.6 
 

53.07 66.66 59.09  55.74 71.38 62.6  52.91 68.75 59.80 

22 57.76 69.73 63.18 
 

53.88 68.22 60.21  56.98 70.80 63.14  53.75 70.50 61.00 

23 58.14 71.29 64.05 
 

47.97 63.77 54.75  57.83 73.29 64.65  48.15 65.56 55.52 

24 58.10 68.99 63.08 
 

54.21 68.49 60.52  58.13 71.11 63.97  53.95 70.45 61.11 

25 56.44 70.56 62.72 
 

54.18 68.56 60.53  56.33 72.54 63.42  54.10 70.78 61.33 

26 55.16 70.05 61.72 
 

28.54 37.81 32.53  54.93 72.40 62.47  27.39 37.25 31.57 

27 56.50 69.12 62.18 
 

53.35 65.43 58.78  56.40 71.08 62.89  52.96 67.25 59.26 

28 56.96 69.03 62.42 
 

53.41 69.26 60.31  56.57 70.33 62.70  52.74 71.06 60.54 

29 55.45 68.27 61.20 
 

45.38 62.6 52.62  55.24 70.13 61.80  44.82 63.92 52.69 

30 55.28 69.50 61.58 
 

50.78 68.31 58.25  55.07 71.44 62.20  51.78 71.64 60.11 

31 54.70 70.02 61.42 
 

41.94 58.27 48.77  54.46 72.22 62.10  41.44 59.38 48.81 

32 58.62 71.91 64.59 
 

55.20 70.43 61.89  58.48 73.85 65.27  55.53 72.94 63.06 

33 54.15 69.67 60.94 
 

53.82 59.41 56.48  53.93 72.05 61.69  53.09 60.40 56.51 

34 58.24 71.91 64.36 
 

45.38 60.97 52.03  57.74 73.59 64.71  45.45 62.89 52.77 

35 54.49 69.51 61.09 
 

24.43 55.29 33.89  54.69 71.97 62.15  23.58 56.59 33.29 

36 52.60 67.55 59.14 
 

51.5 61.95 56.24  52.59 69.92 60.03  51.47 63.45 56.84 

37 57.10 69.97 62.88 
 

53.55 68.02 59.92  57.12 71.85 63.64  53.21 70.24 60.55 

38 54.76 69.67 61.32 
 

50.43 66.17 57.24  54.48 71.89 61.99  50.23 67.84 57.72 

39 56.13 68.19 61.58 
 

43.74 64.10 52.00  55.66 69.68 61.89  43.32 65.50 52.15 

40 55.12 70.64 61.92 
 

49.36 66.52 56.67  54.93 73.06 62.71  49.38 68.20 57.28 

41 55.59 70.16 62.03 
 

52.48 68.34 59.37  55.60 72.28 62.85  52.46 70.75 60.25 

42 53.12 67.18 59.33 
 

50.95 63.97 56.72  52.85 69.23 59.94  50.60 65.37 57.04 

43 56.15 68.28 61.62 
 

45.60 59.13 51.49  55.86 69.97 62.12  45.21 60.42 51.72 

44 55.86 67.30 61.05 
 

51.93 65.48 57.92  55.65 69.24 61.71  52.2 67.78 58.98 

45 57.18 72.06 63.76 
 

39.18 66.70 49.36  57.03 74.05 64.44  38.48 68.13 49.18 

46 51.21 65.40 57.44 
 

48.35 62.78 54.63  51.04 67.34 58.07  48.13 64.06 54.96 

47 57.24 70.17 63.05 
 

53.40 66.35 59.17  57.19 72.38 63.89  53.51 68.71 60.16 
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Table C1.5 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

48 50.11 65.32 56.71 
 

48.79 61.05 54.24  49.74 66.5 56.91  47.52 63.18 54.24 

49 56.37 69.85 62.39 
 

51.45 63.83 56.98  56.42 71.81 63.19  51.13 65.61 57.47 

50 53.91 70.22 60.99 
 

50.28 63.17 55.99  53.84 72.75 61.88  50.01 64.58 56.37 

51 54.36 75.26 63.13 
 

54.36 75.26 63.13  54.22 77.22 63.71  54.22 77.22 63.71 

 

 

 

Table C1.6: Effect of BUS and RUS on Development and Test data using Feature F6 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 79.99 38.57 52.04 
 

73.16 49.26 58.87  80.24 38.87 52.37  72.73 49.93 59.21 

3 79.03 50.67 61.75 
 

73.08 55.48 63.07  78.47 51.11 61.90  72.59 56.33 63.43 

4 77.78 57.30 65.99 
 

73.39 54.83 62.58  77.30 58.00 66.27  72.83 55.59 62.85 

5 76.30 62.52 68.73 
 

72.95 62.29 67.19  75.88 63.83 69.34  72.57 63.80 67.90 

6 75.75 64.64 69.76 
 

72.53 64.31 68.18  75.37 66.29 70.54  72.52 66.31 69.28 

7 74.85 67.00 70.71 
 

72.33 65.37 68.67  74.64 68.96 71.69  72.24 67.10 69.58 

8 74.51 68.01 71.11 
 

71.72 66.81 69.18  73.87 69.95 71.86  71.65 68.91 70.25 

9 73.05 68.22 70.55 
 

71.77 67.23 69.42  72.89 70.60 71.73  71.78 69.46 70.61 

10 73.50 68.77 71.06 
 

70.96 67.92 69.40  73.00 70.70 71.83  70.66 69.91 70.28 

11 73.19 70.24 71.68 
 

70.97 67.39 69.12  72.78 72.29 72.53  70.75 69.47 70.09 

12 73.16 69.87 71.48 
 

71.09 69.62 70.35  72.80 71.99 72.39  71.01 71.88 71.44 

13 72.01 70.82 71.41 
 

70.99 69.01 69.98  71.75 73.25 72.49  70.88 71.25 71.06 

14 71.05 71.22 71.13 
 

71.04 69.50 70.26  70.79 73.46 72.10  70.95 71.73 71.33 

15 72.57 71.40 71.98 
 

70.27 69.18 69.72  72.46 73.95 73.20  69.90 71.14 70.51 

16 72.35 71.74 72.04 
 

70.68 70.11 70.39  72.09 73.89 72.98  70.48 72.38 71.42 

17 72.49 72.02 72.25 
 

70.3 70.96 70.63  72.42 74.47 73.43  70.24 73.23 71.7 

18 72.31 72.47 72.39 
 

70.64 70.99 70.81  72.30 74.99 73.62  70.53 73.40 71.93 

19 72.21 72.34 72.27 
 

70.10 70.69 70.39  72.21 74.87 73.52  69.97 72.98 71.44 

20 71.88 72.04 71.96 
 

70.10 71.06 70.58  71.65 74.23 72.92  70.08 73.52 71.76 

21 69.86 72.78 71.29 
 

70.32 71.38 70.85  69.41 75.07 72.13  70.21 73.63 71.88 

22 72.20 72.20 72.20 
 

70.28 71.00 70.63  72.05 74.40 73.21  70.16 73.37 71.73 

23 71.86 72.74 72.30 
 

70.41 70.83 70.62  71.77 74.94 73.32  70.28 73.14 71.68 

24 71.96 72.96 72.46 
 

70.43 71.45 70.94  71.9 75.31 73.57  70.28 73.75 71.97 

25 72.39 72.77 72.58 
 

70.3 71.48 70.88  72.06 74.87 73.44  70.09 73.74 71.87 

26 71.77 73.12 72.44 
 

70.12 71.17 70.64  71.85 75.39 73.58  70.07 73.37 71.68 
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Table C1.6 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

27 71.10 72.88 71.98 
 

63.54 69.66 65.98  71.15 75.13 73.09  63.45 71.91 66.93 

28 71.70 73.17 72.43 
 

70.06 70.88 70.47  71.74 75.56 73.6  69.83 72.96 71.36 

29 71.70 73.46 72.57 
 

70.17 71.79 70.97  71.59 75.71 73.59  70.08 74.22 72.09 

30 70.68 71.31 70.99 
 

70.25 71.82 71.03  70.21 72.93 71.54  70.09 74.06 72.02 

31 71.69 73.50 72.58 
 

69.77 71.75 70.75  71.8 75.96 73.82  69.64 74.01 71.76 

32 71.29 73.76 72.5 
 

70.12 71.70 70.90  71.07 76.01 73.46  70.02 73.99 71.95 

33 71.57 73.21 72.38 
 

70.11 71.72 70.90  71.18 75.15 73.11  69.87 73.81 71.79 

34 71.87 73.50 72.68 
 

69.71 71.74 70.71  71.83 75.88 73.80  69.54 74.03 71.71 

35 69.14 70.94 70.03 
 

69.5 71.88 70.67  68.8 72.60 70.65  69.4 74.16 71.69 

36 71.34 73.31 72.31 
 

69.89 71.86 70.86  71.33 75.78 73.49  69.85 74.26 71.99 

37 71.85 73.41 72.62 
 

69.82 71.96 70.87  71.88 75.91 73.84  69.67 74.26 71.89 

38 71.11 72.33 71.71 
 

70.23 71.90 71.06  70.92 74.52 72.68  70.05 74.24 72.08 

39 71.95 73.42 72.68 
 

70.22 71.79 70.99  71.71 75.73 73.67  70.09 74.07 72.03 

40 71.21 73.78 72.47 
 

69.74 71.39 70.55  71.26 76.34 73.71  69.37 73.41 71.33 

41 71.80 73.59 72.68 
 

68.98 69.35 69.12  71.75 75.95 73.79  68.81 71.38 70.02 

42 71.77 73.36 72.56 
 

70.00 72.25 71.11  71.78 75.70 73.69  69.99 74.66 72.25 

43 71.36 73.87 72.59 
 

69.82 71.49 70.64  71.49 76.42 73.87  69.59 73.62 71.55 

44 70.72 72.46 71.58 
 

70.02 72.12 71.05  70.32 74.33 72.27  69.90 74.51 72.13 

45 70.75 73.87 72.28 
 

70.14 72.00 71.06  70.72 76.14 73.33  70.04 74.36 72.13 

46 71.31 73.72 72.49 
 

68.82 70.95 69.86  71.54 76.32 73.85  68.51 72.94 70.64 

47 71.22 73.90 72.54 
 

70.00 71.72 70.85  71.39 76.53 73.87  69.9 74.08 71.93 

48 71.13 73.92 72.50 
 

69.45 72.10 70.75  71.15 76.36 73.66  69.39 74.55 71.87 

49 71.46 74.05 72.73 
 

70.07 72.07 71.05  71.61 76.63 74.04  69.89 74.41 72.07 

50 68.91 70.65 69.77 
 

69.67 72.16 70.89  68.49 72.37 70.38  69.63 74.56 72.01 

51 67.35 76.87 71.8 
 

67.35 76.87 71.8  67.50 79.38 72.96  67.50 79.38 72.96 

 

  

 

 Table C1.7: Effects BUS and RUS on Development and Test data using Feature F7 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 72.11 61.88 66.60 
 

70.18 51.83 59.63  71.48 61.89 66.34  70.36 53.23 60.61 

3 72.43 58.74 64.87 
 

44.71 37.28 40.66  71.62 60.00 65.30  44.33 37.27 40.49 

4 72.48 67.07 69.67 
 

71.53 62.66 66.8  71.83 67.35 69.52  71.00 63.95 67.29 

5 71.34 65.43 68.26 
 

62.02 50.12 55.44  70.91 67.12 68.96  61.93 50.29 55.51 
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Table C1.7 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

6 70.48 67.06 68.73 
 

68.07 64.45 66.21  69.92 69.15 69.53  69.19 64.91 66.98 

7 70.47 67.42 68.91 
 

67.47 62.11 64.68  70.37 69.9 70.13  67.22 62.27 64.65 

8 72.83 69.66 71.21 
 

69.54 68.36 68.94  72.28 70.34 71.30  67.84 69.34 68.58 

9 68.58 68.60 68.59 
 

66.23 64.71 65.46  68.08 70.77 69.4  67.24 66.57 66.9 

10 73.05 67.91 70.39 
 

67.99 67.61 67.8  69.74 72.06 70.88  69.54 67.12 68.31 

11 72.73 69.12 70.88 
 

67.78 68.00 67.89  72.1 69.73 70.9  67.18 70.40 68.75 

12 72.54 69.79 71.14 
 

67.81 68.62 68.21  72.08 70.61 71.34  66.07 71.37 68.62 

13 69.2 70.71 69.95 
 

69.6 65.59 67.54  69.18 73.62 71.33  70.38 65.99 68.11 

14 69.12 71.13 70.11 
 

63.22 56.03 59.41  69.08 73.65 71.29  63.08 56.33 59.51 

15 68.79 71.23 69.99 
 

66.74 66.50 66.62  68.8 74.18 71.39  65.95 66.92 66.43 

16 72.00 66.55 69.17 
 

66.33 67.46 66.89  71.37 67.22 69.23  64.31 69.48 66.8 

17 71.25 67.95 69.56 
 

66.23 64.86 65.54  70.66 68.75 69.69  65.04 66.22 65.62 

18 72.66 68.93 70.75 
 

67.45 70.00 68.7  69.06 74.32 71.59  70.55 68.18 69.34 

19 73.62 70.75 72.16 
 

68.48 71.55 69.98  73.11 71.65 72.37  67.36 73.20 70.16 

20 68.28 71.21 69.71 
 

68.17 66.27 67.21  68.45 74.23 71.22  69.26 66.95 68.09 

21 73.69 69.84 71.71 
 

67.11 70.07 68.56  73.12 70.74 71.91  67.17 72.89 69.91 

22 72.48 68.40 70.38 
 

65.62 70.48 67.96  66.89 74.68 70.57  68.97 67.55 68.25 

23 72.85 69.59 71.18 
 

66.21 70.62 68.34  72.53 70.35 71.42  65.74 73.25 69.29 

24 73.43 68.60 70.93 
 

66.43 70.53 68.42  67.98 74.94 71.29  70.10 67.68 68.87 

25 68.36 71.99 70.13 
 

67.12 68.44 67.77  68.29 74.92 71.45  67.84 68.95 68.39 

26 68.1 71.92 69.96 
 

48.44 43.96 46.09  67.88 74.56 71.06  48.55 44.34 46.35 

27 73.04 71.19 72.10 
 

66.83 70.54 68.63  72.44 72.03 72.23  66.76 73.15 69.81 

28 67.49 70.46 68.94 
 

59.88 48.96 53.87  66.94 72.56 69.64  59.61 49.18 53.90 

29 73.46 67.73 70.48 
 

65.38 70.67 67.92  68.52 75.14 71.68  71.34 66.78 68.98 

30 73.84 69.73 71.73 
 

66.28 71.00 68.56  73.28 70.36 71.79  64.84 73.74 69.00 

31 72.04 71.40 71.72 
 

66.74 70.23 68.44  71.46 72.05 71.75  65.24 73.38 69.07 

32 73.08 71.26 72.16 
 

66.87 71.08 68.91  72.41 72.03 72.22  66.85 73.82 70.16 

33 73.79 69.65 71.66 
 

56.35 57.32 56.83  73.34 70.63 71.96  55.97 58.95 57.42 

34 70.71 70.41 70.56 
 

66.65 70.42 68.48  67.67 74.73 71.02  67.28 69.84 68.54 

35 73.52 68.50 70.92 
 

66.96 70.71 68.78  68.52 75.03 71.63  70.13 67.90 69.00 

36 68.33 72.12 70.17 
 

71.79 64.34 67.86  67.62 74.23 70.77  71.01 64.84 67.78 

37 68.46 70.37 69.40 
 

66.90 62.44 64.59  68.01 72.69 70.27  66.3 62.84 64.52 

38 67.87 73.13 70.40 
 

72.43 64.39 68.17  67.86 75.89 71.65  71.97 64.87 68.24 

39 67.97 72.37 70.10 
 

71.68 64.36 67.82  68.10 75.54 71.63  72.99 66.55 69.62 
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 Table C1.7 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

40 71.95 67.90 69.87 
 

67.91 67.40 67.65  71.36 68.41 69.85  66.17 67.71 66.93 

41 71.98 68.93 70.42 
 

65.26 71.11 68.06  68.02 75.27 71.46  70.06 68.16 69.10 

42 67.70 72.89 70.20 
 

71.06 64.59 67.67  67.49 75.67 71.35  70.84 65.29 67.95 

43 70.74 69.16 69.94 
 

64.79 70.63 67.58  67.78 75.05 71.23  68.30 68.11 68.20 

44 73.69 68.91 71.22 
 

66.41 70.97 68.61  68.21 75.57 71.70  70.28 68.05 69.15 

45 73.16 68.46 70.73 
 

66.57 70.60 68.53  68.14 75.12 71.46  70.01 67.82 68.90 

46 73.31 67.52 70.30 
 

64.49 71.61 67.86  67.39 75.95 71.41  71.31 66.64 68.90 

47 72.76 70.61 71.67 
 

66.83 71.25 68.97  72.28 71.45 71.86  64.96 73.76 69.08 

48 70.52 70.68 70.60 
 

66.5 70.72 68.55  68.13 75.37 71.57  68.19 69.73 68.95 

49 69.54 72.99 71.22 
 

66.37 70.03 68.15  68.72 73.65 71.1  64.75 72.69 68.49 

50 72.65 72.28 72.46 
 

67.79 72.33 69.99  72.18 73.25 72.71  65.96 73.21 69.40 

51 69.11 72.52 70.77 
 

69.11 72.52 70.77  64.68 78.31 70.85  64.68 78.31 70.85 

 

 

 

Table C1.8: Effect of BUS and RUS on Development and Test data using Feature F8 

  

 

 

 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 77.28 53.89 63.50 
 

71.04 54.17 61.47  77.25 54.32 63.79  69.78 53.96 60.86 

3 76.09 61.14 67.8 
 

71.08 60.16 65.17  75.45 61.65 67.86  69.16 60.22 64.38 

4 75.16 65.26 69.86 
 

70.92 62.66 66.53  74.47 66.32 70.16  70.66 64.23 67.29 

5 74.44 67.45 70.77 
 

70.94 64.59 67.62  73.97 68.94 71.37  70.84 66.69 68.70 

6 73.68 68.51 71.00 
 

70.61 66.34 68.41  73.29 70.3 71.76  70.46 68.75 69.59 

7 73.48 69.73 71.56 
 

69.89 67.49 68.67  73.24 71.70 72.46  70.10 70.14 70.12 

8 73.17 69.35 71.21 
 

68.89 66.98 67.92  72.76 71.17 71.96  68.67 69.52 69.09 

9 72.37 70.97 71.66 
 

68.95 69.42 69.18  71.9 72.86 72.38  67.58 70.70 69.1 

10 72.32 71.53 71.92 
 

69.14 69.64 69.39  71.99 73.86 72.91  69.23 72.42 70.79 

11 72.17 71.97 72.07 
 

69.11 69.83 69.47  71.61 74.24 72.90  67.91 71.05 69.44 

12 71.65 72.09 71.87 
 

67.65 69.17 68.4  71.43 74.46 72.91  67.77 71.94 69.79 

13 72.04 71.33 71.68 
 

68.85 69.44 69.14  71.59 73.21 72.39  68.66 72.09 70.33 

14 71.58 72.83 72.20 
 

68.85 70.56 69.69  70.86 74.72 72.74  67.3 71.46 69.32 

15 71.63 72.56 72.09 
 

68.68 71.16 69.9  71.22 74.73 72.93  67.03 72.51 69.66 

16 71.31 72.62 71.96 
 

68.53 71.33 69.9  71.02 74.89 72.9  66.88 72.46 69.56 

17 70.66 73.32 71.97 
 

68.22 71.11 69.64  70.08 75.24 72.57  66.51 72.10 69.19 

18 69.94 72.77 71.33 
 

66.21 70.33 68.21  69.50 74.55 71.94  66.21 72.89 69.39 
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Table C1.8 (Continued.) 

 

 

 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

19 71.25 73.74 72.47 
 

68.67 71.33 69.97  70.94 75.87 73.32  68.21 73.37 70.7 

20 70.99 73.49 72.22 
 

67.21 70.34 68.74  70.64 75.56 73.02  66.97 72.96 69.84 

21 70.79 73.11 71.93 
 

66.56 70.55 68.5  70.32 74.92 72.55  66.65 73.49 69.90 

22 71.29 73.77 72.51 
 

68.06 71.96 69.96  71.20 75.91 73.48  68.16 74.68 71.27 

23 71.14 73.90 72.49 
 

67.9 72.22 69.99  70.97 75.97 73.38  67.84 74.75 71.13 

24 71.05 73.38 72.2 
 

67.93 71.77 69.80  70.75 75.45 73.02  67.92 74.37 71.00 

25 70.94 74.23 72.55 
 

67.32 72.14 69.65  70.84 76.40 73.52  66.57 73.92 70.05 

26 71.45 73.54 72.48 
 

68.08 70.30 69.17  71.24 75.62 73.36  67.54 72.22 69.80 

27 70.86 74.27 72.52 
 

67.26 71.72 69.42  70.7 76.44 73.46  67.10 73.88 70.33 

28 70.85 73.84 72.31 
 

67.17 68.55 67.85  70.79 76.03 73.32  66.70 70.44 68.52 

29 70.34 74.21 72.22 
 

67.86 72.41 70.06  69.9 76.48 73.04  66.13 73.53 69.63 

30 70.87 74.38 72.58 
 

68.08 72.29 70.12  70.69 76.48 73.47  67.93 75.05 71.31 

31 71.10 73.80 72.42 
 

68.27 71.65 69.92  70.92 76.11 73.42  67.67 73.76 70.58 

32 70.68 73.76 72.19 
 

67.88 72.28 70.01  70.52 76.12 73.21  67.80 74.86 71.16 

33 70.81 74.20 72.47 
 

67.71 72.26 69.91  70.68 76.54 73.49  67.58 74.91 71.06 

34 70.61 73.69 72.12 
 

67.47 72.22 69.76  70.36 75.99 73.07  67.13 74.48 70.61 

35 70.92 73.64 72.25 
 

66.53 71.19 68.78  70.83 76.07 73.36  66.53 73.91 70.03 

36 70.42 74.73 72.51 
 

66.28 71.36 68.73  70.07 76.99 73.37  65.85 73.39 69.42 

37 70.74 74.47 72.56 
 

58.75 68.98 63.46  70.47 76.73 73.47  58.2 71.20 64.05 

38 70.53 74.82 72.61 
 

66.93 71.77 69.27  70.22 77.04 73.47  66.54 74.09 70.11 

39 70.74 74.31 72.48 
 

67.70 72.47 70.00  70.60 76.67 73.51  67.76 75.32 71.34 

40 69.95 72.85 71.37 
 

66.04 71.05 68.45  69.12 74.35 71.64  65.80 73.45 69.41 

41 70.58 74.72 72.59 
 

67.94 72.64 70.21  70.47 77.20 73.68  67.81 75.38 71.39 

42 70.38 74.37 72.32 
 

66.57 71.35 68.88  70.27 76.88 73.43  66.42 73.92 69.97 

43 70.73 73.37 72.03 
 

66.16 71.40 68.68  70.46 75.45 72.87  66.06 73.96 69.79 

44 70.43 74.52 72.42 
 

67.43 72.04 69.66  70.4 76.88 73.5  67.02 74.64 70.63 

45 70.54 74.54 72.48 
 

67.75 72.62 70.10  70.33 76.91 73.47  67.63 75.32 71.27 

46 70.54 74.57 72.50 
 

27.57 23.58 25.42  70.65 77.11 73.74  28.88 24.86 26.72 

47 70.34 74.58 72.40 
 

67.61 72.81 70.11  70.20 77.03 73.46  67.54 75.53 71.31 

48 70.22 74.39 72.24 
 

66.93 71.79 69.27  69.95 76.56 73.11  66.60 73.94 70.08 

49 70.57 74.71 72.58 
 

67.68 72.48 70.00  70.47 76.95 73.57  67.49 75.11 71.10 

50 70.66 74.81 72.68 
 

67.24 72.63 69.83  70.45 77.12 73.63  67.01 75.37 70.94 

51 65.71 77.53 71.13 
 

65.71 77.53 71.13  65.48 79.71 71.9  65.48 79.71 71.90 
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Table C1.9: Effect of BUS and RUS on Development and Test data using Feature F9 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 75.23 66.83 70.78 
 

75.66 56.67 64.80  75.80 68.65 72.05  75.76 57.99 65.69 

3 78.44 72.01 75.09 
 

75.62 62.13 68.21  78.67 74.00 76.26  75.47 63.61 69.03 

4 77.79 74.21 75.96 
 

75.49 60.37 67.09  78.12 76.12 77.11  75.58 61.82 68.01 

5 75.91 71.44 73.61 
 

74.74 67.71 71.05  76.47 73.92 75.17  74.49 69.83 72.08 

6 73.57 74.96 74.26 
 

74.65 69.17 71.81  74.12 77.31 75.68  74.68 71.74 73.18 

7 77.11 75.27 76.18 
 

74.54 70.01 72.20  77.48 77.36 77.42  74.45 72.71 73.57 

8 73.97 71.92 72.93 
 

70.11 70.58 70.34  73.84 74.50 74.17  70.4 72.75 71.56 

9 73.69 72.41 73.04 
 

68.33 73.72 70.92  73.09 74.92 73.99  68.19 75.36 71.60 

10 73.49 76.22 74.83 
 

73.42 71.95 72.68  73.98 78.55 76.20  73.4 74.46 73.93 

11 73.89 72.95 73.42 
 

70.99 71.45 71.22  74.40 75.26 74.83  70.54 74.07 72.26 

12 75.16 76.89 76.02 
 

73.22 73.40 73.31  75.41 79.12 77.22  73.05 76.12 74.55 

13 72.47 76.40 74.38 
 

71.48 71.18 71.33  72.87 79.03 75.83  72.56 74.86 73.69 

14 73.01 76.86 74.89 
 

71.68 72.43 72.05  73.22 79.28 76.13  71.67 75.00 73.30 

15 73.38 75.25 74.30 
 

71.50 72.82 72.15  74.17 77.91 75.99  70.87 75.41 73.07 

16 71.80 75.81 73.75 
 

69.80 73.19 71.45  72.48 78.31 75.28  70.94 75.74 73.26 

17 73.47 75.78 74.61 
 

71.23 73.82 72.50  74.35 78.69 76.46  70.79 76.32 73.45 

18 74.12 75.93 75.01 
 

71.08 73.25 72.15  74.64 78.54 76.54  70.56 75.83 73.10 

19 71.72 76.10 73.85 
 

70.2 73.52 71.82  72.15 78.86 75.36  69.85 75.78 72.69 

20 73.27 77.35 75.25 
 

70.65 74.02 72.30  73.45 79.58 76.39  70.27 76.54 73.27 

21 73.07 75.67 74.35 
 

71.03 73.25 72.12  73.76 78.36 75.99  70.61 75.90 73.16 

22 73.10 77.31 75.15 
 

70.85 75.58 73.14  73.44 79.60 76.40  70.26 77.90 73.88 

23 71.86 74.60 73.20 
 

67.44 75.23 71.12  71.43 77.39 74.29  66.49 77.81 71.71 

24 72.72 77.29 74.94 
 

70.47 73.92 72.15  72.92 79.53 76.08  70.06 76.86 73.30 

25 72.46 75.07 73.74 
 

66.25 72.83 69.38  71.97 77.92 74.83  66.54 75.03 70.53 

26 74.77 76.10 75.43 
 

71.44 72.35 71.89  75.58 78.75 77.13  70.74 74.33 72.49 

27 72.96 76.73 74.8 
 

70.06 74.49 72.21  73.48 79.15 76.21  69.60 76.99 73.11 

28 72.89 77.07 74.92 
 

70.70 74.14 72.38  73.41 79.63 76.39  70.41 76.78 73.46 

29 71.33 76.94 74.03 
 

68.60 72.95 70.71  71.98 79.18 75.41  69.26 76.42 72.66 

30 74.80 76.57 75.67 
 

72.11 74.85 73.45  75.51 78.98 77.21  71.66 77.35 74.40 

31 72.13 75.06 73.57 
 

67.50 74.89 71.00  71.94 77.57 74.65  67.85 77.36 72.29 

32 71.19 77.15 74.05 
 

69.57 73.47 71.47  71.69 79.46 75.38  70.53 76.15 73.23 

33 72.17 76.01 74.04 
 

68.86 75.02 71.81  71.57 78.61 74.92  67.75 77.53 72.31 

34 71.94 75.58 73.72 
 

64.27 74.59 69.05  71.42 78.15 74.63  64.21 76.83 69.96 

35 71.95 75.44 73.65 
 

37.34 46.12 41.27  71.54 78.04 74.65  37.43 46.99 41.67 

36 70.74 77.19 73.82 
 

68.52 74.29 71.29  71.10 79.62 75.12  68.16 76.96 72.29 
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 Table C1.9 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

37 72.16 76.16 74.11 
 

67.57 74.90 71.05  71.78 78.77 75.11  67.85 77.26 72.25 

38 71.90 75.93 73.86 
 

66.64 76.65 71.30  71.52 78.78 74.97  67.06 78.77 72.44 

39 72.36 75.98 74.13 
 

67.76 75.75 71.53  71.16 79.60 75.14  68.97 77.09 72.80 

40 72.68 75.74 74.18 
 

68.69 74.46 71.46  73.23 78.07 75.57  69.65 77.41 73.33 

41 71.60 76.27 73.86 
 

67.89 74.40 71.00  70.98 79.06 74.8  68.32 77.09 72.44 

42 71.81 75.05 73.39 
 

67.16 74.77 70.76  71.51 77.85 74.55  67.68 76.82 71.96 

43 71.00 77.81 74.25 
 

69.63 74.39 71.93  71.59 79.90 75.52  69.15 77.18 72.94 

44 72.07 76.31 74.13 
 

68.05 76.00 71.81  71.69 79.11 75.22  68.45 78.52 73.14 

45 71.99 75.62 73.76 
 

67.07 75.58 71.07  70.51 79.61 74.78  68.42 76.69 72.32 

46 71.94 75.89 73.86 
 

66.19 75.84 70.69  71.60 78.66 74.96  66.48 78.06 71.81 

47 71.60 76.04 73.75 
 

66.64 76.05 71.03  71.08 78.83 74.75  66.82 78.28 72.10 

48 71.38 75.94 73.59 
 

67.20 75.64 71.17  70.93 79.34 74.9  67.76 77.14 72.15 

49 71.69 77.05 74.27 
 

70.03 74.11 72.01  71.97 79.00 75.32  69.55 76.74 72.97 

50 71.72 74.60 73.13 
 

65.24 76.40 70.38  68.69 80.35 74.06  68.03 75.28 71.47 

51 68.4 79.86 73.69 
 

68.40 79.86 73.69  67.92 81.97 74.29  67.92 81.97 74.29 

 

 

 

Table C1.10: Effect of BUS and RUS on Development and Test data using Feature 

F10 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 78.3 67.46 72.48 
 

76.06 55.85 64.41  77.90 67.46 72.31  75.77 56.28 64.59 

3 77.48 69.49 73.27 
 

76.06 60.51 67.40  76.85 69.4 72.94  76.15 62.32 68.54 

4 77.43 71.88 74.55 
 

75.33 63.40 68.85  76.77 71.86 74.23  74.78 64.96 69.52 

5 76.70 69.53 72.94 
 

73.88 66.57 70.03  76.41 69.57 72.83  71.92 68.50 70.17 

6 77.08 71.77 74.33 
 

74.75 68.81 71.66  76.52 71.84 74.11  72.75 69.04 70.85 

7 76.64 72.19 74.35 
 

72.83 69.03 70.88  76.25 72.39 74.27  72.70 71.49 72.09 

8 77.11 72.72 74.85 
 

73.78 71.95 72.85  76.72 72.84 74.73  71.90 72.91 72.40 

9 76.93 74.09 75.48 
 

74.25 72.34 73.28  76.23 74.02 75.11  72.47 73.34 72.90 

10 76.37 72.69 74.48 
 

72.05 71.53 71.79  73.05 75.44 74.23  72.42 71.07 71.74 

11 76.34 72.72 74.49 
 

72.30 71.93 72.11  73.21 75.97 74.56  73.01 71.43 72.21 

12 75.74 73.52 74.61 
 

71.17 71.99 71.58  75.00 73.59 74.29  69.14 74.75 71.84 

13 76.15 73.85 74.98 
 

71.84 72.75 72.29  75.55 73.95 74.74  69.72 75.12 72.32 

14 75.97 73.20 74.56 
 

71.48 72.87 72.17  72.46 76.82 74.58  72.63 71.93 72.28 
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Table C1.10 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

15 75.54 73.68 74.6 
 

71.59 71.60 71.59  75.01 73.92 74.46  70.88 73.80 72.31 

16 76.27 73.32 74.77 
 

70.70 73.24 71.95  75.69 73.34 74.50  68.87 75.80 72.17 

17 76.09 73.54 74.79 
 

71.60 72.11 71.85  75.45 73.64 74.53  69.50 74.50 71.91 

18 72.84 74.89 73.85 
 

71.52 71.26 71.39  72.36 77.31 74.75  72.49 71.32 71.90 

19 75.03 73.85 74.44 
 

70.66 72.58 71.61  71.86 76.28 74.00  71.21 72.21 71.71 

20 75.87 73.39 74.61 
 

70.96 73.76 72.33  71.89 77.85 74.75  72.32 72.05 72.18 

21 75.51 72.82 74.14 
 

70.78 70.91 70.84  74.86 72.94 73.89  69.97 72.64 71.28 

22 75.09 73.19 74.13 
 

70.26 72.99 71.60  74.79 73.30 74.04  68.10 74.84 71.31 

23 75.90 73.77 74.82 
 

71.25 74.02 72.61  72.23 77.98 74.99  72.38 72.42 72.40 

24 75.70 73.55 74.61 
 

70.84 74.07 72.42  71.58 77.95 74.63  72.07 72.20 72.13 

25 76.01 73.94 74.96 
 

70.19 73.60 71.85  75.6 74.07 74.83  69.58 75.89 72.60 

26 74.47 73.34 73.90 
 

68.59 74.21 71.29  71.03 78.29 74.48  72.32 71.80 72.06 

27 75.93 73.56 74.73 
 

70.55 74.24 72.35  71.44 78.10 74.62  72.40 72.29 72.34 

28 75.4 73.27 74.32 
 

69.59 73.94 71.70  72.12 78.03 74.96  73.19 71.83 72.50 

29 72.87 75.19 74.01 
 

72.39 70.47 71.42  72.08 77.71 74.79  73.25 72.00 72.62 

30 71.9 75.49 73.65 
 

69.1 68.81 68.95  71.49 78.00 74.60  68.79 68.70 68.74 

31 75.72 72.90 74.28 
 

70.29 72.49 71.37  75.39 73.18 74.27  69.49 74.18 71.76 

32 75.85 72.99 74.39 
 

71.03 73.46 72.22  71.84 77.22 74.43  72.11 71.50 71.80 

33 75.90 74.05 74.96 
 

70.92 74.05 72.45  75.19 74.22 74.70  68.55 76.44 72.28 

34 72.23 76.08 74.11 
 

71.25 71.76 71.50  71.74 78.62 75.02  72.13 71.68 71.90 

35 75.58 73.48 74.52 
 

70.25 74.38 72.26  70.96 78.11 74.36  71.98 72.15 72.06 

36 76.02 73.62 74.8 
 

71.26 74.07 72.64  72.18 78.06 75.00  72.43 72.24 72.33 

37 74.96 74.34 74.65 
 

71.33 73.96 72.62  72.12 78.03 74.96  72.72 72.78 72.75 

38 75.90 73.13 74.49 
 

69.54 74.56 71.96  71.98 78.51 75.1  73.76 71.70 72.72 

39 75.86 73.59 74.71 
 

70.68 74.40 72.49  71.5 78.42 74.8  72.18 72.18 72.18 

40 72.48 75.41 73.92 
 

72.24 70.96 71.59  71.9 78.05 74.85  73.17 71.01 72.07 

41 72.73 75.19 73.94 
 

72.14 70.96 71.55  71.97 77.39 74.58  72.99 71.09 72.03 

42 75.31 72.86 74.06 
 

68.84 74.64 71.62  71.37 78.72 74.87  73.38 71.63 72.49 

43 74.93 72.44 73.66 
 

68.99 73.04 70.96  71.14 76.68 73.81  71.39 71.13 71.26 

44 72.59 76.11 74.31 
 

72.77 70.87 71.81  71.99 78.50 75.1  73.55 70.9 72.20 

45 75.69 72.84 74.24 
 

68.79 76.06 72.24  75.3 73.16 74.21  66.35 76.23 70.95 

46 71.96 76.08 73.96 
 

71.93 71.14 71.53  71.4 78.75 74.9  72.78 71.16 71.96 

47 75.65 72.96 74.28 
 

69.09 74.62 71.75  71.58 78.88 75.05  73.62 71.60 72.60 

48 75.79 72.45 74.08 
 

69.08 74.25 71.57  71.36 78.26 74.65  73.68 70.97 72.30 

49 75.84 73.30 74.55 
 

70.70 73.69 72.16  75.20 73.49 74.34  68.26 75.69 71.78 
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Table C1.10 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

50 71.27 80.78 75.73 
 

72.75 70.74 71.73  71.75 78.44 74.95  73.59 70.90 72.22 

51 72.31 75.67 73.95 
 

72.31 75.67 73.95  68.01 81.63 74.20  68.01 81.63 74.20 

 

 

 Table C1.11: Effect of BUS and RUS on Development and Test data using Feature 

F11 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 82.15 56.53 66.97 
 

77.18 55.85 64.8  81.95 57.50 67.58  76.96 57.06 65.53 

3 81.19 64.07 71.62 
 

76.88 61.27 68.19  80.71 65.18 72.12  76.39 62.40 68.69 

4 80.31 67.29 73.23 
 

76.09 65.06 70.14  79.62 69.06 73.96  75.87 66.93 71.12 

5 79.64 69.61 74.29 
 

76.06 67.29 71.41  78.89 71.43 74.97  75.73 69.63 72.55 

6 79.58 71.36 75.25 
 

76.06 69.3 72.52  78.71 73.02 75.76  75.52 71.43 73.42 

7 78.04 71.93 74.86 
 

76.03 69.64 72.69  77.36 74.13 75.71  74.11 70.77 72.40 

8 78.25 72.49 75.26 
 

75.18 71.41 73.25  77.07 74.32 75.67  73.23 72.51 72.87 

9 77.61 73.69 75.60 
 

74.47 72.04 73.23  76.54 75.70 76.12  72.67 73.04 72.85 

10 77.66 74.05 75.81 
 

71.64 70.63 71.13  76.68 76.14 76.41  71.01 72.39 71.69 

11 77.71 74.83 76.24 
 

74.86 71.57 73.18  76.72 76.85 76.78  74.01 73.82 73.91 

12 77.33 75.24 76.27 
 

75.06 72.43 73.72  76.32 77.28 76.8  73.18 73.54 73.36 

13 76.16 75.59 75.87 
 

74.66 72.17 73.39  75.31 77.46 76.37  73.86 74.34 74.10 

14 77.18 76.11 76.64 
 

74.08 74.24 74.16  76.05 78.02 77.02  73.25 76.26 74.72 

15 76.32 76.11 76.21 
 

72.79 73.03 72.91  75.16 77.87 76.49  72.05 75.55 73.76 

16 76.97 76.05 76.51 
 

74.30 74.31 74.30  75.92 78.26 77.07  72.17 75.50 73.80 

17 76.94 76.27 76.6 
 

73.93 74.27 74.10  75.85 78.40 77.10  73.11 76.77 74.90 

18 76.82 76.66 76.74 
 

73.38 68.79 71.01  75.72 78.74 77.20  72.68 70.35 71.5 

19 76.61 76.81 76.71 
 

73.50 75.25 74.36  75.62 78.82 77.19  71.43 76.32 73.79 

20 75.58 76.61 76.09 
 

72.45 73.05 72.75  74.68 78.39 76.49  71.76 75.34 73.51 

21 76.69 77.19 76.94 
 

73.66 75.39 74.51  75.56 79.06 77.27  72.81 77.78 75.21 

22 76.44 76.34 76.39 
 

72.28 73.64 72.95  75.52 78.20 76.84  71.67 76.29 73.91 

23 76.33 76.68 76.50 
 

73.57 74.69 74.13  75.53 78.95 77.20  72.62 76.64 74.58 

24 77.02 76.87 76.94 
 

73.35 76.34 74.82  75.91 78.50 77.18  70.77 77.11 73.8 

25 76.43 77.48 76.95 
 

74.22 74.55 74.38  75.41 79.50 77.40  73.44 76.84 75.10 

26 76.07 77.06 76.56 
 

69.59 74.39 71.91  75.11 78.95 76.98  68.5 76.37 72.22 

27 76.35 77.12 76.73 
 

73.17 75.99 74.55  75.44 79.12 77.24  72.34 78.37 75.23 
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Table C1.11 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

28 76.72 77.28 77.00 
 

73.3 74.59 73.94  75.60 79.04 77.28  72.35 76.52 74.38 

29 76.11 77.30 76.70 
 

72.95 75.70 74.30  75.21 79.41 77.25  72.13 78.05 74.97 

30 76.54 77.08 76.81 
 

73.14 74.96 74.04  75.15 78.40 76.74  72.30 77.24 74.69 

31 76.27 77.88 77.07 
 

73.12 75.90 74.48  75.05 79.76 77.33  71.09 76.82 73.84 

32 76.32 77.62 76.96 
 

73.41 75.76 74.57  75.29 79.60 77.39  72.63 78.23 75.33 

33 76.43 77.26 76.84 
 

72.99 75.68 74.31  75.39 79.14 77.22  72.31 78.29 75.18 

34 75.57 77.98 76.76 
 

73.3 76.01 74.63  74.46 79.63 76.96  70.63 76.62 73.50 

35 76.13 77.72 76.92 
 

72.23 74.57 73.38  75.34 79.99 77.6  71.18 76.19 73.60 

36 76.08 77.73 76.9 
 

72.56 75.16 73.84  74.99 79.57 77.21  71.86 77.53 74.59 

37 76.09 77.59 76.83 
 

72.54 76.27 74.36  75.07 79.52 77.23  71.73 78.75 75.08 

38 76.2 77.31 76.75 
 

73.38 76.02 74.68  75.24 79.45 77.29  71.05 77.05 73.93 

39 74.84 77.17 75.99 
 

72.07 74.38 73.21  73.89 78.74 76.24  71.25 76.92 73.98 

40 75.77 77.90 76.82 
 

73.35 76.09 74.69  74.83 79.98 77.32  70.89 77.11 73.87 

41 75.83 77.92 76.86 
 

73.59 75.51 74.54  74.83 79.90 77.28  72.55 77.66 75.02 

42 75.49 77.20 76.34 
 

72.66 75.30 73.96  74.62 79.14 76.81  70.80 76.58 73.58 

43 75.26 78.28 76.74 
 

72.9 75.82 74.33  74.09 80.67 77.24  72.14 78.44 75.16 

44 75.96 77.78 76.86 
 

72.84 76.43 74.59  74.97 80.09 77.45  71.96 78.90 75.27 

45 76.25 77.51 76.87 
 

73.55 75.73 74.62  75.28 79.85 77.5  71.38 76.90 74.04 

46 76.28 78.10 77.18 
 

73.36 75.92 74.62  75.22 80.09 77.58  72.34 78.29 75.2 

47 75.79 77.99 76.87 
 

71.62 73.73 72.66  74.82 80.18 77.41  70.77 75.34 72.98 

48 74.7 77.99 76.31 
 

71.55 74.55 73.02  73.37 79.7 76.4  70.81 77.06 73.8 

49 75.4 78.44 76.89 
 

73.50 74.26 73.88  74.13 80.28 77.08  72.86 76.38 74.58 

50 75.63 77.43 76.52 
 

72.89 74.92 73.89  74.65 79.49 76.99  71.94 76.93 74.35 

51 72.47 80.83 76.42 
 

72.47 80.83 76.42  71.55 82.69 76.72  71.55 82.69 76.72 

 

 

Table C1.12: Effect of BUS and RUS on Development and Test data using Feature 

F12 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 77.47 54.46 63.96 
 

72.19 53.99 61.78  77.55 55.16 64.47  71.95 55.11 62.41 

3 76.33 62.28 68.59 
 

71.78 59.75 65.21  76.12 63.38 69.17  71.37 61.35 65.98 

4 76.17 64.56 69.89 
 

71.52 60.90 65.78  75.63 65.78 70.36  70.94 61.96 66.15 

5 74.96 67.76 71.18 
 

71.57 63.73 67.42  74.72 69.77 72.16  71.26 65.23 68.11 
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Table C1.12 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

6 75.03 67.85 71.26 
 

71.76 65.21 68.33  74.63 69.72 72.09  71.42 67.00 69.14 

7 73.67 70.10 71.84 
 

70.70 66.56 68.57  73.46 72.65 73.05  69.82 68.58 69.19 

8 73.77 69.92 71.79 
 

70.3 68.00 69.13  73.27 72.10 72.68  69.87 70.24 70.05 

9 71.11 69.89 70.49 
 

68.62 67.51 68.06  70.65 72.03 71.33  68.48 70.03 69.25 

10 72.90 71.64 72.26 
 

69.65 69.22 69.43  72.53 74.30 73.40  69.49 72.05 70.75 

11 72.89 71.66 72.27 
 

69.62 69.07 69.34  72.58 74.38 73.47  69.06 71.43 70.23 

12 73.12 72.11 72.61 
 

69.95 69.27 69.61  72.79 74.81 73.79  69.85 72.14 70.98 

13 72.78 72.45 72.61 
 

69.24 71.29 70.25  72.20 74.98 73.56  68.88 74.03 71.36 

14 72.14 72.56 72.35 
 

68.36 69.43 68.89  71.93 75.20 73.53  68.25 72.30 70.22 

15 71.78 70.74 71.26 
 

67.77 69.47 68.61  70.91 72.38 71.64  65.97 72.15 68.92 

16 71.88 73.35 72.61 
 

69.67 70.82 70.24  71.45 75.93 73.62  69.15 73.66 71.33 

17 71.88 72.91 72.39 
 

67.96 70.12 69.02  71.28 75.25 73.21  67.73 73.14 70.33 

18 71.88 73.86 72.86 
 

68.29 70.87 69.56  71.65 76.47 73.98  67.84 73.50 70.56 

19 71.95 73.01 72.48 
 

69.62 71.02 70.31  71.4 75.17 73.24  68.10 72.71 70.33 

20 69.18 70.79 69.98 
 

67.04 68.32 67.67  68.84 73.41 71.05  66.83 70.74 68.73 

21 71.69 73.78 72.72 
 

69.15 70.98 70.05  71.26 76.57 73.82  69.01 74.00 71.42 

22 71.52 73.67 72.58 
 

68.34 72.43 70.33  71.45 76.36 73.82  68.28 75.53 71.72 

23 71.53 73.91 72.70 
 

65.86 70.56 68.13  71.03 76.42 73.63  65.60 72.42 68.84 

24 71.43 74.33 72.85 
 

68.93 71.93 70.40  71.19 76.77 73.87  68.60 74.83 71.58 

25 71.53 73.95 72.72 
 

67.93 72.18 69.99  71.20 76.54 73.77  67.46 74.90 70.99 

26 71.47 73.80 72.62 
 

68.44 72.17 70.26  70.81 76.07 73.35  66.77 73.71 70.07 

27 71.70 74.02 72.84 
 

69.06 72.32 70.65  71.33 76.46 73.81  67.54 73.90 70.58 

28 71.49 74.38 72.91 
 

68.86 71.97 70.38  71.27 76.91 73.98  68.68 74.86 71.64 

29 71.12 74.14 72.60 
 

67.97 70.30 69.12  70.72 76.62 73.55  67.74 73.39 70.45 

30 71.03 74.38 72.67 
 

68.71 72.06 70.35  70.64 76.91 73.64  68.32 74.92 71.47 

31 71.36 73.75 72.54 
 

68.68 72.17 70.38  70.93 76.17 73.46  66.95 73.57 70.10 

32 71.43 74.00 72.69 
 

68.66 72.19 70.38  71.12 76.52 73.72  67.18 73.93 70.39 

33 71.56 73.80 72.66 
 

68.47 72.05 70.21  71.26 76.28 73.68  68.04 74.8 71.26 

34 71.78 74.21 72.97 
 

68.80 72.47 70.59  71.41 76.73 73.97  68.57 75.33 71.79 

35 71.63 74.31 72.95 
 

68.51 72.55 70.47  71.35 76.8 73.97  68.42 75.51 71.79 

36 71.28 74.09 72.66 
 

68.53 72.32 70.37  71.06 76.81 73.82  67.04 74.02 70.36 

37 71.68 74.56 73.09 
 

60.83 68.64 64.50  71.43 77.09 74.15  59.77 70.53 64.71 

38 71.32 74.11 72.69 
 

65.88 71.63 68.63  70.95 76.79 73.75  65.33 74.18 69.47 

39 71.85 73.57 72.70 
 

68.48 72.59 70.48  71.23 75.85 73.47  66.99 74.15 70.39 

40 71.38 74.57 72.94 
 

68.05 72.31 70.12  70.98 77.09 73.91  67.61 75.18 71.19 
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 Table C1.12 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

42 71.22 74.14 72.65 
 

67.02 72.25 69.54  70.80 76.61 73.59  66.78 75.19 70.74 

43 68.72 72.80 70.7 
 

66.54 70.14 68.29  68.58 75.82 72.02  67.06 71.61 69.26 

44 71.09 74.72 72.86 
 

68.56 72.36 70.41  70.86 77.39 73.98  68.18 75.16 71.50 

45 71.54 74.01 72.75 
 

67.10 71.00 68.99  70.99 76.29 73.54  66.81 73.88 70.17 

46 71.53 74.65 73.06 
 

68.64 72.52 70.53  71.48 77.32 74.29  68.49 75.48 71.82 

47 70.83 74.41 72.58 
 

68.66 72.39 70.48  70.66 77.21 73.79  67.09 74.01 70.38 

48 71.15 74.03 72.56 
 

68.12 72.88 70.42  71.11 76.88 73.88  67.88 75.94 71.68 

49 71.30 74.47 72.85 
 

67.76 71.85 69.75  71.18 77.22 74.08  67.38 74.62 70.82 

50 70.47 75.27 72.79 
 

68.92 72.30 70.57  69.58 77.20 73.19  67.22 73.76 70.34 

51 67.99 77.28 72.34 
 

67.99 77.28 72.34  65.10 78.30 71.09  65.10 78.30 71.09 

 

 

Table C1.13: Effect of BUS and RUS on Development and Test data using Feature 

set F13 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 76.2 25.22 37.90 
 

62.03 35.19 44.45  76.14 25.24 37.91  61.86 35.58 44.71 

3 72.64 38.04 49.93 
 

60.56 47.47 52.98  72.59 38.55 50.36  60.05 48.03 53.11 

4 69.72 47.84 56.74 
 

55.86 45.25 49.8  69.03 48.61 57.05  55.06 45.75 49.78 

5 66.11 57.18 61.32 
 

59.10 58.39 58.72  65.79 58.71 62.05  58.95 59.92 59.4 

6 63.08 55.50 59.05 
 

58.4 58.17 57.91  62.3 56.48 59.25  57.93 59.43 58.27 

7 61.57 64.11 62.81 
 

53.44 59.70 56.37  61.16 66.13 63.55  53.12 61.03 56.78 

8 61.38 64.02 62.67 
 

57.07 64.17 60.41  60.55 65.11 62.75  56.62 65.71 60.83 

9 56.64 61.72 59.07 
 

57.12 66.55 61.47  56.3 63.71 59.78  56.78 68.33 62.02 

10 60.25 68.54 64.13 
 

38.88 52.14 44.24  59.76 70.39 64.64  38.62 53.50 44.57 

11 57.01 68.2 62.10 
 

45.73 57.75 50.98  56.54 70.03 62.57  45.32 58.86 51.15 

12 60.09 69.68 64.53 
 

50.58 63.41 56.2  59.65 71.54 65.06  50.06 64.78 56.41 

13 55.03 68.52 61.04 
 

46.26 59.6 51.92  54.43 70.11 61.28  45.91 61.07 52.25 

14 32.39 56.32 41.13 
 

55.33 66.17 60.25  32.34 58.55 41.67  54.82 67.89 60.64 

15 58.97 71.08 64.46 
 

56.48 67.64 61.55  58.41 72.71 64.78  56.02 69.33 61.96 

16 59.30 70.19 64.29 
 

56.94 68.65 62.25  58.84 71.93 64.73  56.59 70.69 62.86 

17 59.86 70.58 64.78 
 

56.34 68.90 61.98  59.38 72.47 65.28  55.91 70.73 62.45 

18 34.93 56.70 43.23 
 

54.89 67.97 60.72  34.73 58.18 43.50  54.24 69.50 60.92 

19 57.01 71.41 63.40 
 

49.82 64.35 56.02  56.45 73.13 63.72  49.42 65.77 56.31 

20 58.36 72.02 64.47 
 

48.86 65.66 55.77  57.73 73.91 64.83  48.35 67.18 56.00 
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Table C1.13 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

21 57.85 70.34 63.49 
 

54.37 68.62 60.65  56.94 71.58 63.43  53.72 70.22 60.85 

22 57.37 72.92 64.22 
 

52.15 67.96 58.98  57.00 75.16 64.83  51.56 69.58 59.20 

23 54.75 65.98 59.84 
 

56.27 62.47 58.01  53.89 67.42 59.90  55.90 64.10 58.44 

24 58.33 71.13 64.10 
 

50.88 65.69 57.33  57.80 73.33 64.65  50.14 66.90 57.31 

25 51.32 70.89 59.54 
 

42.78 63.55 49.86  50.25 72.16 59.24  42.40 65.21 50.14 

26 56.93 72.51 63.78 
 

51.83 68.40 58.86  56.15 74.30 63.96  51.35 70.27 59.23 

27 44.25 68.29 53.70 
 

41.37 58.50 48.39  44.24 69.95 54.20  41.09 59.92 48.68 

28 58.86 72.49 64.97 
 

55.33 62.02 57.33  58.33 74.42 65.40  54.8 63.48 57.60 

29 49.29 63.59 55.53 
 

48.56 67.32 56.16  48.74 65.01 55.71  47.97 68.77 56.27 

30 46.32 67.09 54.80 
 

44.13 60.99 50.93  45.72 68.51 54.84  43.54 62.25 50.98 

31 50.01 67.14 57.32 
 

52.54 69.15 59.68  49.73 69.07 57.83  52.04 70.94 60.00 

32 48.31 65.73 55.69 
 

49.43 67.05 56.41  47.95 67.03 55.91  48.91 68.73 56.65 

33 57.74 72.22 64.17 
 

52.01 67.85 58.84  56.94 73.89 64.32  51.52 69.56 59.15 

34 54.72 68.06 60.67 
 

43.43 60.05 49.45  53.87 69.69 60.77  42.88 61.25 49.53 

35 50.68 64.81 56.88 
 

48.34 65.72 55.42  50.14 66.72 57.25  47.82 67.36 55.65 

36 48.72 70.55 57.64 
 

54.08 68.11 60.24  48.07 72.15 57.7  53.47 69.70 60.47 

37 57.47 72.36 64.06 
 

53.52 69.09 60.29  56.88 74.08 64.35  52.86 70.65 60.44 

38 54.23 68.75 60.63 
 

51.46 67.45 58.37  53.49 70.28 60.75  50.74 68.86 58.42 

39 56.84 72.86 63.86 
 

55.44 70.46 62.05  56.15 74.57 64.06  54.84 72.21 62.34 

40 56.27 72.24 63.26 
 

50.02 67.97 57.51  55.45 73.66 63.27  49.5 69.55 57.73 

41 57.85 72.59 64.39 
 

51.79 68.86 59.06  57.32 74.51 64.79  51.22 70.62 59.33 

42 56.32 73.21 63.66 
 

45.5 62.40 52.24  55.56 74.82 63.77  45.07 63.97 52.52 

43 43.42 67.28 52.78 
 

45.49 65.50 53.10  43.05 68.63 52.91  45.14 67.22 53.44 

44 58.97 70.53 64.23 
 

51.53 67.88 58.56  58.35 72.42 64.63  50.81 69.37 58.63 

45 57.88 70.34 63.50 
 

52.8 68.48 59.56  57.23 71.97 63.76  52.15 70.04 59.72 

46 56.71 72.74 63.73 
 

51.86 69.77 59.45  56.15 74.61 64.08  51.26 71.40 59.64 

47 56.22 72.51 63.33 
 

53.97 67.81 60.11  55.65 74.45 63.69  53.29 69.54 60.34 

48 52.35 69.45 59.70 
 

53.16 68.68 59.89  51.38 70.89 59.58  52.53 70.37 60.11 

49 58.29 72.64 64.68 
 

54.51 69.03 60.92  57.65 74.63 65.05  53.90 70.86 61.23 

50 52.70 68.98 59.75 
 

54.95 70.66 61.81  51.74 70.22 59.58  53.98 72.04 61.71 

51 52.43 75.32 61.82 
 

52.43 75.32 61.82  52.13 77.36 62.29  52.13 77.36 62.29 
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Table C1.14: Effect of BUS and RUS on Development and Test data using Feature 

F14 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 82.25 51.78 63.55 
 

79.11 46.94 58.92  80.50 50.25 61.88  77.16 45.96 57.61 

3 81.87 57.86 67.80 
 

77.05 54.69 63.97  80.41 56.32 66.24  75.33 53.68 62.69 

4 80.44 60.85 69.29 
 

75.42 56.41 64.54  78.45 59.08 67.40  73.27 54.53 62.53 

5 77.18 62.17 68.87 
 

77.45 58.42 66.60  75.23 60.60 67.13  74.80 56.25 64.21 

6 79.12 64.44 71.03 
 

75.46 61.54 67.79  76.42 62.21 68.59  72.55 59.15 65.17 

7 80.22 65.56 72.15 
 

74.69 39.08 51.31  77.92 63.74 70.12  71.24 35.75 47.61 

8 79.19 67.41 72.83 
 

74.04 54.39 62.71  76.89 65.61 70.8  71.66 52.67 60.71 

9 77.30 66.97 71.77 
 

73.48 64.94 68.95  74.48 64.86 69.34  71.22 63.45 67.11 

10 78.61 68.78 73.37 
 

74.33 67.79 70.91  76.23 66.95 71.29  72.02 66.55 69.18 

11 78.51 69.22 73.57 
 

73.87 63.72 68.42  75.82 67.12 71.21  71.32 62.12 66.40 

12 78.52 68.62 73.24 
 

74.16 66.39 70.06  76.08 66.60 71.03  72.15 65.28 68.54 

13 77.93 69.69 73.58 
 

72.93 64.27 68.33  75.31 67.64 71.27  70.76 63.14 66.73 

14 77.47 70.92 74.05 
 

73.87 68.81 71.25  74.98 69.08 71.91  71.47 67.19 69.26 

15 76.61 71.43 73.93 
 

72.13 68.76 70.40  73.95 69.25 71.52  69.88 67.31 68.57 

16 76.69 69.69 73.02 
 

72.75 59.13 65.24  73.87 67.70 70.65  70.46 57.26 63.18 

17 76.57 72.22 74.33 
 

73.52 64.09 68.48  74.01 70.17 72.04  71.23 62.29 66.46 

18 76.2 71.62 73.84 
 

71.82 69.33 70.55  73.85 69.70 71.72  69.19 67.71 68.44 

19 71.20 67.97 69.55 
 

74.89 60.90 67.17  68.59 66.07 67.31  72.54 58.99 65.07 

20 77.5 69.43 73.24 
 

71.64 68.06 69.8  74.61 67.15 70.68  69.43 66.77 68.07 

21 75.7 72.6 74.12 
 

72.92 70.93 71.91  73.33 70.71 72.00  69.26 68.05 68.65 

22 75.29 67.04 70.93 
 

67.82 67.08 67.45  72.92 64.9 68.68  65.93 65.28 65.60 

23 75.63 72.82 74.2 
 

72.85 70.74 71.78  73.38 70.87 72.1  70.48 69.21 69.84 

24 75.24 74.13 74.68 
 

70.45 72.64 71.53  72.94 72.13 72.53  68.01 70.95 69.45 

25 76.02 71.52 73.70 
 

70.37 71.09 70.73  73.40 69.42 71.35  68.21 69.38 68.79 

26 73.97 75.79 74.87 
 

71.87 62.86 67.06  71.54 73.6 72.56  70.14 62.03 65.84 

27 75.54 69.81 72.56 
 

70.47 69.77 70.12  72.27 67.72 69.92  66.62 68.39 67.49 

28 76.16 72.86 74.47 
 

69.83 65.92 67.82  73.86 70.98 72.39  68.38 64.74 66.51 

29 75.80 72.95 74.35 
 

72.77 69.42 71.06  73.42 70.91 72.14  69.82 67.42 68.60 

30 75.37 73.95 74.65 
 

72.40 70.93 71.66  73.00 71.88 72.44  70.06 69.49 69.77 

31 74.93 73.37 74.14 
 

70.65 70.68 70.66  72.32 71.13 71.72  68.38 68.94 68.66 

32 73.18 72.44 72.81 
 

70.55 70.36 70.45  70.66 70.39 70.52  67.81 68.57 68.19 

33 74.15 74.76 74.45 
 

67.97 72.66 70.24  71.67 72.59 72.13  66.33 70.86 68.52 

34 75.39 71.98 73.65 
 

69.34 68.54 68.94  72.96 69.75 71.32  67.27 66.79 67.03 

35 72.17 72.11 72.14 
 

65.47 69.56 67.45  69.74 70.34 70.04  63.79 67.05 65.38 
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Table C1.14 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

36 74.74 73.27 74.00 
 

72.15 66.54 69.23  72.36 71.49 71.92  69.86 65.37 67.54 

37 73.31 74.02 73.66 
 

71.17 69.96 70.56  70.86 72.06 71.45  68.64 68.24 68.44 

38 73.69 74.93 74.30 
 

71.85 71.81 71.83  71.04 72.55 71.79  69.53 69.98 69.75 

39 75.06 74.06 74.56 
 

72.94 71.87 72.40  72.60 71.78 72.19  68.94 68.54 68.74 

40 75.84 72.95 74.37 
 

68.71 70.97 69.82  73.59 71.03 72.29  67.14 69.88 68.48 

41 73.43 74.50 73.96 
 

70.87 71.14 71.00  71.14 72.35 71.74  68.46 69.64 69.04 

42 74.26 75.27 74.76 
 

67.44 72.49 69.87  71.94 73.09 72.51  65.67 70.78 68.13 

43 72.30 73.11 72.7 
 

69.29 71.20 70.23  70.08 70.95 70.51  66.76 69.05 67.89 

44 73.37 71.57 72.46 
 

69.97 66.69 68.29  70.87 69.92 70.39  68.19 63.65 65.84 

45 70.92 74.43 72.63 
 

69.66 71.41 70.52  68.69 71.92 70.27  66.01 68.07 67.02 

46 73.31 75.16 74.22 
 

69.8 72.06 70.91  70.81 72.92 71.85  67.89 70.54 69.19 

47 76.47 72.14 74.24 
 

70.96 73.21 72.07  74.08 70.23 72.10  68.56 71.46 69.98 

48 74.15 74.81 74.48 
 

70.55 72.98 71.74  71.89 72.89 72.39  68.14 71.29 69.68 

49 74.79 74.73 74.76 
 

71.30 72.87 72.08  72.41 72.52 72.46  69.10 71.15 70.11 

50 75.03 70.27 72.57 
 

71.17 69.51 70.33  70.63 69.83 70.23  69.3 66.75 68.00 

51 65.45 80.66 72.26 
 

65.45 80.66 72.26  63.77 78.17 70.24  63.77 78.17 70.24 

 

 

Table C1.15: Effect of BUS and RUS on Development and Test data using Feature 

F15 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 76.71 22.15 34.37 
 

63.54 41.18 49.93  76.50 22.13 34.33  63.68 41.99 50.56 

3 74.42 35.17 47.77 
 

60.19 48.12 53.45  74.24 35.31 47.86  60.10 49.02 53.96 

4 70.52 36.84 48.40 
 

60.26 53.62 56.70  70.04 36.85 48.29  60.16 54.67 57.22 

5 67.81 55.99 61.34 
 

60.98 60.03 60.50  67.28 56.98 61.70  60.73 61.51 61.12 

6 66.60 60.41 63.35 
 

58.27 61.03 59.60  66.26 61.88 64.00  58.00 62.74 60.26 

7 66.09 62.27 64.12 
 

57.06 58.64 57.71  65.72 64.02 64.86  56.99 60.19 58.41 

8 62.69 65.00 63.82 
 

57.82 63.24 60.36  62.28 66.82 64.47  57.61 65.07 61.07 
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Table C1.15 (Continued) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

9 62.61 68.29 65.33 
 

58.78 65.81 62.09  62.09 70.43 66.00  58.67 67.95 62.97 

10 62.72 68.35 65.41 
 

58.66 66.79 62.46  62.31 70.45 66.13  58.60 68.85 63.31 

11 53.24 59.87 56.36 
 

57.66 66.04 61.55  53.07 60.89 56.71  57.30 67.64 62.03 

12 40.80 41.46 41.13 
 

54.50 64.99 59.20  40.79 42.00 41.39  54.43 66.87 59.95 

13 52.71 68.60 59.61 
 

57.55 67.55 62.14  52.20 70.23 59.89  57.32 69.61 62.87 

14 47.33 61.65 53.55 
 

56.53 67.64 61.56  46.73 62.68 53.54  56.27 69.56 62.18 

15 60.48 70.72 65.20 
 

57.69 68.75 62.72  60.24 72.79 65.92  57.28 70.67 63.27 

16 61.42 70.91 65.82 
 

57.21 68.86 62.49  61.03 72.92 66.45  56.87 70.70 63.03 

17 61.03 71.00 65.64 
 

51.64 61.95 56.32  60.59 73.08 66.25  51.24 63.45 56.68 

18 58.11 70.73 63.80 
 

55.68 67.97 61.19  57.80 72.68 64.39  55.22 69.62 61.56 

19 46.77 68.60 55.62 
 

55.91 68.87 61.67  46.14 69.66 55.51  55.54 70.64 62.13 

20 33.09 56.30 41.68 
 

51.71 64.88 57.53  32.92 56.93 41.72  51.40 66.52 57.97 

21 57.74 71.42 63.86 
 

56.32 68.99 61.99  57.31 73.17 64.28  55.98 70.93 62.55 

22 60.07 72.08 65.53 
 

55.35 68.34 61.15  59.70 74.19 66.16  54.92 70.15 61.60 

23 51.77 69.68 59.40 
 

57.05 70.11 62.90  50.90 70.80 59.22  56.6 71.93 63.34 

24 57.35 70.48 63.24 
 

57.36 69.75 62.95  57.01 72.30 63.75  57.07 71.78 63.58 

25 59.35 71.13 64.71 
 

56.81 69.63 62.56  58.83 72.84 65.09  56.61 71.59 63.21 

26 56.75 71.54 63.29 
 

58.04 70.83 63.8  56.45 73.4 63.82  57.57 72.61 64.22 

27 49.23 63.24 55.36 
 

54.47 68.57 60.65  48.91 64.91 55.79  53.99 70.26 61.00 

28 56.34 69.83 62.36 
 

54.74 68.59 60.88  55.74 71.19 62.52  54.41 70.51 61.42 

29 58.54 71.7 64.46 
 

56.84 70.64 62.97  58.27 73.61 65.05  56.28 72.43 63.33 

30 55.43 68.12 61.12 
 

56.08 69.29 61.97  54.98 69.73 61.48  55.68 71.22 62.48 

31 57.96 71.74 64.12 
 

48.12 66.29 55.32  57.64 73.43 64.58  47.81 67.99 55.71 

32 59.07 72.35 65.04 
 

55.56 69.67 61.78  58.63 74.08 65.46  55.14 71.43 62.2 

33 59.47 71.91 65.10 
 

54.98 69.27 61.29  59.32 74.22 65.94  54.48 70.97 61.63 

34 58.85 72.58 65.00 
 

47.02 64.39 54.13  58.74 74.62 65.73  46.89 66.09 54.67 

35 59.84 72.85 65.71 
 

53.15 68.6 59.84  59.29 74.64 66.09  52.67 70.19 60.14 

36 60.18 72.61 65.81 
 

47.71 65.46 55.08  59.88 74.56 66.42  47.25 67.08 55.34 

37 60.05 72.91 65.86 
 

35.55 47.96 40.23  59.64 74.97 66.43  35.31 49.34 40.55 

38 46.48 65.70 54.44 
 

53.73 68.65 60.24  46.24 67.16 54.77  53.37 70.46 60.70 

39 58.86 72.20 64.85 
 

48.92 66.03 55.88  58.57 74.28 65.50  48.59 67.70 56.26 

40 48.97 67.25 56.67 
 

48.90 65.99 55.98  48.44 68.66 56.8  48.66 67.53 56.39 

41 49.42 60.80 54.52 
 

55.20 69.76 61.62  49.12 62.12 54.86  54.66 71.45 61.93 

42 43.34 70.01 53.54 
 

42.46 58.39 47.97  42.87 71.44 53.58  42.14 59.57 48.23 

43 58.48 72.27 64.65 
 

51.09 65.38 57.28  58.09 74.03 65.1  50.92 67.13 57.85 
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Table C1.15 (Continued) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

44 58.40 73.00 64.89 
 

56.81 70.69 62.99  58.00 74.97 65.40  56.40 72.38 63.39 

45 57.98 72.95 64.61 
 

41.13 62.27 48.51  57.47 74.76 64.98  40.96 63.64 48.85 

46 52.36 69.88 59.86 
 

54.8 69.92 61.42  51.79 71.63 60.12  54.28 71.63 61.73 

47 58.72 72.77 64.99 
 

57.65 70.68 63.50  58.13 74.19 65.19  57.26 72.72 64.06 

48 52.64 67.54 59.17 
 

56.59 70.01 62.59  51.74 68.91 59.10  56.24 71.81 63.07 

49 52.46 65.99 58.45 
 

53.06 68.31 59.72  51.80 67.29 58.54  52.71 70.27 60.23 

50 58.87 73.33 65.31 
 

58.09 71.32 64.03  58.52 75.15 65.8  57.56 73.23 64.46 

51 49.74 72.72 59.07 
 

49.74 72.72 59.07  49.18 74.52 59.25  49.18 74.52 59.25 

 

 

Table C1.16: Effect of BUS and RUS on Development and Test data using Feature 

F16 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 61.21 48.5 54.12 
 

69.98 39.36 50.38  61.41 49.59 54.87  69.97 39.75 50.70 

3 68.03 59.51 63.49 
 

59.25 61.35 60.28  67.72 60.43 63.87  59.63 63.21 61.37 

4 58.87 60.18 59.52 
 

56.51 57.98 57.24  58.73 61.28 59.98  55.19 58.43 56.76 

5 57.63 65.55 61.34 
 

59.55 58.59 59.07  58.07 67.74 62.53  59.66 59.60 59.63 

6 64.31 71.92 67.90 
 

58.89 67.55 62.92  63.91 73.75 68.48  59.17 69.74 64.02 

7 60.01 71.54 65.27 
 

56.67 66.15 61.04  59.89 73.44 65.98  56.40 67.92 61.63 

8 58.62 71.30 64.34 
 

52.05 68.89 59.3  58.49 73.47 65.13  51.77 70.04 59.53 

9 62.77 74.32 68.06 
 

57.91 71.38 63.94  62.36 75.81 68.43  57.78 73.76 64.80 

10 59.37 72.95 65.46 
 

49.90 68.91 57.88  59.05 74.70 65.96  49.71 70.96 58.46 

11 58.27 73.87 65.15 
 

8.56 20.85 12.14  57.74 75.20 65.32  8.54 20.83 12.11 

12 61.46 75.12 67.61 
 

56.36 72.32 63.35  61.05 77.10 68.14  56.37 74.67 64.24 

13 61.47 75.54 67.78 
 

58.48 73.62 65.18  60.77 76.94 67.91  57.03 74.61 64.65 

14 53.59 69.66 60.58 
 

46.95 72.80 57.08  53.64 71.86 61.43  48.12 75.48 58.77 

15 57.94 73.59 64.83 
 

55.59 68.87 61.52  57.83 75.98 65.67  55.45 70.50 62.08 

16 61.31 76.55 68.09 
 

58.08 73.98 65.07  60.74 78.08 68.33  57.66 75.89 65.53 

17 58.88 75.57 66.19 
 

56.04 71.25 62.74  58.40 77.10 66.46  55.77 73.00 63.23 

18 47.55 71.19 57.02 
 

42.84 71.64 53.62  47.43 73.25 57.58  42.46 72.88 53.66 

19 61.16 76.01 67.78 
 

53.74 72.09 61.58  60.69 77.95 68.25  53.69 74.37 62.36 

20 54.95 74.76 63.34 
 

51.42 72.10 60.03  54.74 76.15 63.69  51.16 74.06 60.52 

21 60.23 74.02 66.42 
 

55.23 74.02 63.26  60.00 75.81 66.98  54.87 76.43 63.88 

22 58.74 76.86 66.59 
 

50.23 71.77 59.10  58.20 78.65 66.90  50.18 73.85 59.76 
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Table C1.16 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

23 60.15 75.90 67.11 
 

57.13 75.10 64.89  59.54 77.53 67.35  55.60 75.86 64.17 

24 55.10 72.47 62.6 
 

42.67 70.42 53.14  55.14 74.56 63.4  41.90 70.71 52.62 

25 50.37 70.83 58.87 
 

49.14 63.19 55.29  50.23 72.89 59.47  48.27 63.61 54.89 

26 58.64 76.41 66.36 
 

53.06 74.63 62.02  58.01 77.66 66.41  52.74 76.96 62.59 

27 47.61 72.62 57.51 
 

55.16 34.87 42.73  46.96 73.23 57.22  54.90 35.65 43.23 

28 59.97 77.64 67.67 
 

46.50 71.83 56.45  59.65 79.37 68.11  45.95 72.94 56.38 

29 57.06 75.69 65.07 
 

35.26 72.15 47.37  56.59 77.55 65.43  35.32 73.71 47.76 

30 58.59 77.65 66.79 
 

54.81 75.11 63.37  58.11 79.49 67.14  54.44 77.30 63.89 

31 59.22 77.73 67.22 
 

53.93 74.41 62.54  58.77 79.36 67.53  53.58 76.58 63.05 

32 54.03 74.64 62.68 
 

52.10 72.22 60.53  53.63 76.67 63.11  51.56 73.53 60.62 

33 58.79 77.59 66.89 
 

48.47 72.47 58.09  58.14 79.36 67.11  48.33 74.57 58.65 

34 55.78 75.40 64.12 
 

54.41 69.79 61.15  55.27 77.36 64.48  54.04 71.78 61.66 

35 59.55 76.52 66.98 
 

38.12 66.31 48.41  59.04 77.91 67.17  37.91 67.74 48.61 

36 49.44 73.60 59.15 
 

46.41 62.84 53.39  49.29 76.1 59.83  45.48 62.84 52.77 

37 55.32 74.57 63.52 
 

34.01 64.97 44.65  54.85 76.31 63.82  34.23 67.10 45.33 

38 52.39 74.21 61.42 
 

37.27 66.07 47.66  51.71 75.91 61.52  37.12 67.32 47.85 

39 59.00 77.73 67.08 
 

48.68 71.80 58.02  58.39 79.14 67.2  48.11 73.78 58.24 

40 56.57 75.71 64.76 
 

50.17 70.74 58.71  56.07 77.90 65.21  50.03 72.17 59.09 

41 59.20 76.96 66.92 
 

55.87 75.29 64.14  58.83 78.55 67.27  55.38 77.33 64.54 

42 60.22 76.80 67.51 
 

50.20 70.84 58.76  59.86 78.63 67.97  49.65 72.67 58.99 

43 58.85 76.84 66.65 
 

54.75 74.68 63.18  58.38 78.39 66.92  54.31 76.58 63.55 

44 60.06 76.57 67.32 
 

9.01 31.61 14.02  59.56 77.89 67.50  8.39 31.16 13.22 

45 56.64 75.74 64.81 
 

38.24 61.52 47.16  56.19 77.85 65.27  38.02 62.72 47.34 

46 58.61 75.98 66.17 
 

55.6 74.95 63.84  58.35 77.90 66.72  55.19 76.77 64.22 

47 55.47 74.02 63.42 
 

51.75 73.16 60.62  54.71 76.93 63.94  52.21 74.25 61.31 

48 59.32 77.42 67.17 
 

33.91 62.96 44.08  58.66 78.84 67.27  33.94 64.90 44.57 

49 53.00 74.65 61.99 
 

7.07 36.66 11.85  52.61 76.69 62.41  6.95 37.01 11.70 

50 58.56 76.85 66.47 
 

44.70 70.96 54.85  58.25 78.35 66.82  44.17 72.12 54.79 

51 56.66 79.57 66.19 
 

56.66 79.57 66.19  56.34 81.34 66.57  56.34 81.34 66.57 
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Table C1.17: Effect of BUS and RUS on Development and Test data using Feature 

F17 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 73.09 41.83 53.21 
 

58.24 45.24 50.92  61.18 48.08 53.84  71.16 40.76 51.83 

3 69.90 57.33 62.99 
 

60.65 53.69 56.96  69.74 58.33 63.53  60.68 55.25 57.84 

4 64.28 57.95 60.95 
 

60.62 54.76 57.54  64.02 58.84 61.32  60.57 56.45 58.44 

5 57.41 61.58 59.42 
 

51.83 45.03 48.19  57.27 63.13 60.06  51.68 45.53 48.41 

6 64.44 70.16 67.18 
 

56.86 63.86 60.16  64.55 72.41 68.25  57.24 66.28 61.43 

7 62.86 68.77 65.68 
 

51.09 55.82 53.35  62.54 70.28 66.18  50.66 56.60 53.47 

8 61.54 70.51 65.72 
 

57.51 68.54 62.54  61.17 72.22 66.24  57.60 71.02 63.61 

9 59.91 72.29 65.52 
 

57.69 67.89 62.38  59.16 73.89 65.71  57.54 70.33 63.3 

10 62.60 73.17 67.47 
 

59.07 72.07 64.93  62.56 75.50 68.42  59.34 74.79 66.18 

11 57.27 70.64 63.26 
 

55.16 68.10 60.95  57.06 72.80 63.98  54.9 69.84 61.48 

12 61.05 71.11 65.70 
 

48.64 67.87 56.67  60.65 72.62 66.10  48.08 69.35 56.79 

13 58.86 73.57 65.4 
 

40.79 48.70 44.40  58.51 75.53 65.94  40.62 49.67 44.69 

14 58.30 72.70 64.71 
 

53.57 73.30 61.90  58.16 75.27 65.62  54.57 75.00 63.17 

15 59.00 73.71 65.54 
 

53.31 71.96 61.25  58.20 75.16 65.6  53.21 74.28 62.00 

16 62.13 75.78 68.28 
 

59.02 73.26 65.37  61.64 77.65 68.72  58.91 76.01 66.38 

17 58.22 73.47 64.96 
 

53.54 73.61 61.99  58.00 76.09 65.82  54.69 75.63 63.48 

18 60.69 75.76 67.39 
 

56.56 73.92 64.09  60.52 77.96 68.14  56.3 76.44 64.84 

19 55.57 72.56 62.94 
 

52.93 69.90 60.24  55.30 74.54 63.49  52.60 72.32 60.9 

20 59.03 73.69 65.55 
 

56.56 71.33 63.09  58.85 75.60 66.18  56.50 73.88 64.03 

21 59.26 76.09 66.63 
 

57.12 70.65 63.17  58.6 78.02 66.93  56.44 72.82 63.59 

22 61.14 75.91 67.73 
 

57.52 74.29 64.84  60.76 77.95 68.29  57.36 76.88 65.70 

23 58.97 75.63 66.27 
 

55.70 72.93 63.16  58.55 77.52 66.71  55.67 75.42 64.06 

24 59.16 76.30 66.65 
 

56.50 73.73 63.98  59.06 78.37 67.36  56.21 76.11 64.66 

25 51.67 69.74 59.36 
 

47.37 70.29 56.6  51.39 71.70 59.87  46.91 72.28 56.89 

26 44.47 65.57 53.00 
 

29.29 47.80 36.32  44.15 67.44 53.36  28.56 47.93 35.79 

27 57.49 76.32 65.58 
 

54.90 73.68 62.92  56.99 78.06 65.88  54.76 76.18 63.72 

28 60.97 75.58 67.49 
 

55.91 74.55 63.90  60.72 77.86 68.23  55.36 76.99 64.41 

29 58.31 74.94 65.59 
 

55.22 73.27 62.98  58.15 77.15 66.32  56.09 75.29 64.29 

30 54.01 73.93 62.42 
 

51.24 71.14 59.57  53.80 76.55 63.19  51.97 74.10 61.09 

31 57.49 73.94 64.69 
 

56.24 69.56 62.19  57.62 76.75 65.82  56.08 71.64 62.91 

32 60.54 75.77 67.3 
 

47.98 68.31 56.37  60.21 77.65 67.83  47.69 70.19 56.79 

33 60.11 76.62 67.37 
 

56.34 73.51 63.79  60.07 79.00 68.25  56.22 75.92 64.60 

34 52.24 73.47 61.06 
 

33.99 61.66 43.82  51.89 75.26 61.43  34.13 63.20 44.32 

35 55.79 73.16 63.31 
 

35.99 68.15 47.10  55.93 75.75 64.35  35.27 68.89 46.65 
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Table C1.17 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

36 52.60 73.46 61.30 
 

52.53 65.69 58.38  52.15 75.79 61.79  52.28 66.83 58.67 

37 60.14 76.37 67.29 
 

53.29 73.06 61.63  59.70 78.08 67.66  52.92 75.51 62.23 

38 60.56 76.49 67.60 
 

54.06 73.29 62.22  60.29 78.55 68.22  53.93 76.02 63.10 

39 57.67 74.79 65.12 
 

48.6 71.04 57.72  57.54 77.23 65.95  48.06 72.12 57.68 

40 59.36 75.55 66.48 
 

54.69 72.63 62.4  58.89 77.53 66.94  54.27 75.04 62.99 

41 59.22 77.08 66.98 
 

45.81 72.47 56.14  59.01 79.12 67.60  45.39 74.47 56.4 

42 60.15 76.48 67.34 
 

55.62 73.19 63.21  59.81 77.98 67.70  55.78 76.21 64.41 

43 55.85 73.72 63.55 
 

45.26 67.27 54.11  55.82 76.19 64.43  44.59 68.41 53.99 

44 59.88 77.10 67.41 
 

54.03 72.39 61.88  59.36 78.77 67.70  53.95 74.64 62.63 

45 60.36 76.9 67.63 
 

48.37 67.87 56.48  59.71 78.74 67.92  48.71 69.90 57.41 

46 55.78 74.98 63.97 
 

37.64 67.66 48.37  55.19 76.94 64.27  37.38 69.24 48.55 

47 59.02 76.98 66.81 
 

55.61 74.24 63.59  58.30 78.56 66.93  55.06 76.20 63.93 

48 57.19 74.24 64.61 
 

53.60 74.83 62.46  57.02 76.91 65.49  53.19 76.75 62.83 

49 60.30 76.91 67.60 
 

36.78 67.23 47.55  60.05 79.03 68.24  36.74 69.13 47.98 

50 59.94 76.04 67.04 
 

31.87 66.10 43.01  59.54 77.84 67.47  31.58 66.97 42.92 

51 51.30 79.02 62.21 
 

51.30 79.02 62.21  50.33 80.53 61.95  50.33 80.53 61.95 

 

 

Table C1.18: Effect of BUS and RUS on Development and Test data using Feature 

F18 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 76.44 41.17 53.52 
 

66.37 41.86 51.34  45.88 66.98 54.46  41.75 69.56 52.18 

3 71.40 49.25 58.29 
 

64.24 50.05 56.26  41.80 73.28 53.23  37.16 72.10 49.04 

4 64.14 55.00 59.22 
 

65.17 49.23 56.09  39.56 75.18 51.84  35.16 74.59 47.79 

5 66.1 57.31 61.39 
 

56.97 60.58 58.72  38.89 77.36 51.76  36.78 75.24 49.41 

6 63.92 61.58 62.73 
 

46.45 45.86 46.15  36.87 77.95 50.06  26.80 68.32 38.50 

7 62.45 64.17 63.30 
 

53.43 56.04 54.70  37.70 77.49 50.72  30.94 74.04 43.64 

8 60.16 65.56 62.74 
 

56.06 65.77 60.53  34.06 78.19 47.45  32.62 74.67 45.40 

9 59.64 65.27 62.33 
 

55.38 64.84 59.74  34.35 78.66 47.82  31.22 76.98 44.42 

10 59.91 68.72 64.01 
 

53.96 63.49 58.34  36.20 79.60 49.77  31.46 74.83 44.3 

11 55.64 68.71 61.49 
 

50.42 62.26 55.72  34.73 77.85 48.03  30.45 77.92 43.79 

12 57.61 69.87 63.15 
 

54.93 67.38 60.52  34.55 79.16 48.10  31.87 77.41 45.15 

13 58.11 71.44 64.09 
 

55.21 70.15 61.79  35.22 79.92 48.89  32.40 76.64 45.55 
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Table C1.2 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 76.44 41.17 53.52 
 

66.37 41.86 51.34  45.88 66.98 54.46  41.75 69.56 52.18 

3 71.4 49.25 58.29 
 

64.24 50.05 56.26  41.80 73.28 53.23  37.16 72.10 49.04 

4 64.14 55.00 59.22 
 

65.17 49.23 56.09  39.56 75.18 51.84  35.16 74.59 47.79 

5 66.1 57.31 61.39 
 

56.97 60.58 58.72  38.89 77.36 51.76  36.78 75.24 49.41 

6 63.92 61.58 62.73 
 

46.45 45.86 46.15  36.87 77.95 50.06  26.80 68.32 38.5 

7 62.45 64.17 63.30 
 

53.43 56.04 54.7  37.70 77.49 50.72  30.94 74.04 43.64 

8 60.16 65.56 62.74 
 

56.06 65.77 60.53  34.06 78.19 47.45  32.62 74.67 45.4 

9 59.64 65.27 62.33 
 

55.38 64.84 59.74  34.35 78.66 47.82  31.22 76.98 44.42 

10 59.91 68.72 64.01 
 

53.96 63.49 58.34  36.20 79.60 49.77  31.46 74.83 44.3 

11 55.64 68.71 61.49 
 

50.42 62.26 55.72  34.73 77.85 48.03  30.45 77.92 43.79 

12 57.61 69.87 63.15 
 

54.93 67.38 60.52  34.55 79.16 48.10  31.87 77.41 45.15 

13 58.11 71.44 64.09 
 

55.21 70.15 61.79  35.22 79.92 48.89  32.40 76.64 45.55 

14 55.73 69.34 61.79 
 

52.66 67.37 59.11  32.8 78.98 46.35  30.19 77.93 43.52 

15 58.07 71.66 64.15 
 

54.26 69.11 60.79  35.93 79.83 49.56  31.81 77.78 45.15 

16 57.66 71.95 64.02 
 

53.85 68.44 60.27  35.21 80.01 48.90  33.23 77.18 46.46 

17 57.68 72.02 64.06 
 

30.64 50.14 38.04  35.33 80.22 49.06  18.91 70.81 29.85 

18 56.40 71.08 62.89 
 

53.43 67.30 59.57  34.04 78.82 47.55  31.29 76.48 44.42 

19 52.67 67.39 59.13 
 

38.02 41.54 39.7  27.64 75.13 40.41  21.44 63.20 32.02 

20 56.82 72.89 63.86 
 

53.86 70.96 61.24  33.99 79.79 47.67  31.67 78.18 45.08 

21 56.92 73.44 64.13 
 

45.78 66.20 54.13  34.72 80.44 48.50  26.61 77.59 39.63 

22 55.51 70.43 62.09 
 

50.48 69.20 58.38  33.39 78.36 46.83  29.13 76.82 42.24 

23 58.08 65.14 61.41 
 

51.38 69.43 59.06  34.34 78.01 47.69  31.69 78.37 45.13 

24 53.07 68.04 59.63 
 

50.66 64.04 56.57  31.19 77.63 44.50  28.08 76.40 41.07 

25 56.83 73.65 64.16 
 

39.11 58.95 47.02  36.44 80.3 50.13  23.78 75.70 36.19 

26 55.69 73.51 63.37 
 

52.83 71.12 60.63  35.03 79.76 48.68  30.14 78.21 43.51 

27 54.81 73.48 62.79 
 

49.07 70.47 57.85  34.25 79.95 47.96  30.63 77.08 43.84 

28 54.08 66.61 59.69 
 

35.96 62.46 45.64  32.44 78.94 45.98  23.31 76.95 35.78 

29 52.54 71.41 60.54 
 

50.48 66.08 57.24  31.33 78.5 44.79  29.54 77.00 42.70 

30 56.16 71.28 62.82 
 

52.89 69.72 60.15  32.78 79.51 46.42  28.93 77.79 42.18 

31 55.36 73.91 63.30 
 

37.73 52.48 43.9  35.92 80.73 49.72  21.77 72.04 33.44 

32 52.77 72.08 60.93 
 

49.18 67.83 57.02  29.95 77.00 43.13  28.04 76.95 41.10 

33 55.83 73.11 63.31 
 

51.50 69.21 59.06  34.61 79.59 48.24  27.94 77.82 41.12 

34 53.78 71.14 61.25 
 

28.79 50.30 36.62  32.86 79.88 46.56  18.89 68.28 29.59 

35 54.39 73.15 62.39 
 

51.54 71.62 59.94  31.79 79.76 45.46  29.40 78.29 42.75 

36 53.71 72.24 61.61 
 

50.52 67.28 57.71  30.46 79.20 44.00  28.02 77.48 41.16 
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 Table C1.18 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

37 45.05 69.39 54.63 
 

33.97 50.97 40.77  29.16 79.97 42.74  20.19 67.31 31.06 

38 54.63 70.76 61.66 
 

47.82 58.37 52.57  31.85 79.86 45.54  27.63 75.37 40.44 

39 52.82 71.66 60.81 
 

48.75 68.95 57.12  31.97 80.38 45.75  28.81 77.36 41.98 

40 55.19 73.79 63.15 
 

41.32 52.98 46.43  33.13 80.29 46.91  25.37 73.57 37.73 

41 55.37 73.03 62.99 
 

49.41 68.40 57.37  31.94 80.06 45.66  29.81 78.72 43.24 

42 55.12 73.89 63.14 
 

52.67 72.07 60.86  32.52 79.93 46.23  30.26 79.07 43.77 

43 54.73 72.19 62.26 
 

45.38 62.37 52.54  32.86 79.70 46.53  26.74 77.44 39.75 

44 49.30 68.20 57.23 
 

39.10 60.82 47.60  27.03 78.18 40.17  24.24 75.38 36.68 

45 55.04 74.48 63.3 
 

52.83 71.97 60.93  32.35 80.57 46.16  29.24 77.45 42.45 

46 53.99 73.07 62.1 
 

50.14 70.80 58.71  30.19 79.10 43.70  27.23 76.96 40.23 

47 54.16 73.44 62.34 
 

52.07 70.35 59.85  31.33 79.68 44.98  29.12 77.15 42.28 

48 54.02 71.03 61.37 
 

48.13 66.60 55.88  29.88 78.46 43.28  27.63 77.43 40.73 

49 55.79 73.90 63.58 
 

52.09 71.54 60.29  33.25 80.64 47.09  31.6 77.91 44.96 

50 53.77 74.16 62.34 
 

51.85 70.1 59.61  31.45 80.04 45.16  28.96 77.67 42.19 

51 50.19 76.19 60.52 
 

50.19 76.19 60.52  30.48 79.96 44.14  30.48 79.96 44.14 

 

 

Table C1.19 Effect of BUS and RUS on Development and Test data using Feature 

F19 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

2 75.45 26.24 38.94 
 

64.83 40.21 49.63  75.57 26.28 39.00  64.74 40.93 50.14 

3 73.00 32.71 45.18 
 

60.56 47.09 52.90  72.53 32.91 45.28  60.30 47.95 53.33 

4 68.16 49.86 57.59 
 

48.53 42.99 44.90  67.85 50.89 58.16  48.09 43.93 45.19 

5 63.80 55.34 59.27 
 

61.42 60.55 60.98  63.18 56.31 59.55  61.07 62.24 61.64 

6 64.57 61.58 63.04 
 

60.99 62.39 61.68  64.35 63.65 64.00  60.85 64.28 62.51 

7 58.63 58.16 58.39 
 

60.05 64.67 62.27  58.13 59.48 58.80  60.00 66.93 63.27 

8 26.58 23.79 25.11 
 

57.65 64.73 60.95  25.92 23.63 24.72  57.15 66.77 61.56 

9 62.45 68.30 65.24 
 

59.93 66.87 63.21  62.15 70.66 66.13  59.91 69.16 64.20 

10 61.23 66.34 63.68 
 

55.87 62.87 59.12  60.62 68.32 64.24  55.58 64.87 59.82 

11 61.63 69.95 65.53 
 

58.86 66.86 62.60  61.44 72.13 66.36  58.91 69.32 63.69 

12 61.19 69.49 65.08 
 

55.62 65.72 60.24  60.71 71.84 65.81  55.34 67.68 60.88 

13 60.65 70.73 65.30 
 

58.31 68.21 62.87  60.20 72.90 65.94  58.17 70.55 63.76 

14 59.32 70.62 64.48 
 

55.12 64.60 59.45  58.65 72.49 64.84  54.84 66.70 60.16 
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Table C1.19 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

15 61.25 69.81 65.25 
 

48.35 57.03 52.31  60.73 71.86 65.83  48.02 58.70 52.80 

16 56.87 59.4 58.11 
 

59.09 70.22 64.18  56.27 60.68 58.39  58.93 72.52 65.03 

17 42.32 62.99 50.63 
 

57.04 69.02 62.46  42.02 64.70 50.95  56.55 71.07 62.98 

18 60.75 72.30 66.02 
 

56.58 69.18 62.24  60.38 74.46 66.68  56.14 71.19 62.76 

19 61.41 71.37 66.02 
 

51.68 63.77 56.99  61.17 73.58 66.8  51.27 65.76 57.52 

20 55.9 70.25 62.26 
 

53.46 67.76 59.72  55.42 72.13 62.68  52.88 69.57 60.04 

21 60.47 71.77 65.64 
 

54.58 68.09 60.54  60.10 74.08 66.36  54.34 70.13 61.19 

22 59.82 72.59 65.59 
 

58.30 70.72 63.91  59.56 74.97 66.38  57.85 72.88 64.50 

23 34.09 51.85 41.13 
 

57.04 70.09 62.89  33.96 53.43 41.53  56.52 72.10 63.36 

24 60.9 71.52 65.78 
 

58.14 70.50 63.73  60.43 73.62 66.38  57.67 72.58 64.27 

25 55.65 68.89 61.57 
 

52.64 68.09 58.90  55.04 70.79 61.93  52.37 70.21 59.51 

26 29.84 38.22 33.51 
 

52.97 67.91 59.40  30.07 39.84 34.27  52.52 69.86 59.86 

27 60.5 73.03 66.18 
 

57.34 70.29 63.15  59.94 74.98 66.62  56.83 72.35 63.65 

28 60.72 72.79 66.21 
 

45.36 61.27 51.85  60.73 75.11 67.16  44.73 62.86 51.99 

29 57.29 69.93 62.98 
 

50.65 67.00 57.64  56.34 71.57 63.05  49.92 68.75 57.79 

30 59.42 72.87 65.46 
 

54.94 67.65 60.63  58.85 74.78 65.87  54.56 69.77 61.24 

31 58.85 72.77 65.07 
 

55.32 70.07 61.79  58.71 75.17 65.93  54.69 71.89 62.09 

32 60.58 72.93 66.18 
 

57.78 69.52 63.11  60.30 75.07 66.88  57.31 71.63 63.68 

33 59.47 72.37 65.29 
 

57.97 71.20 63.90  58.96 74.49 65.82  57.54 73.40 64.51 

34 59.67 73.04 65.68 
 

55.19 69.27 61.38  59.25 75.43 66.37  54.65 71.31 61.82 

35 60.61 72.6 66.07 
 

55.05 68.21 60.92  60.41 74.79 66.84  54.44 70.19 61.32 

36 60.74 72.66 66.17 
 

56.49 69.08 62.15  60.31 74.68 66.73  56.05 71.13 62.69 

37 60.51 72.39 65.92 
 

57.22 70.99 63.35  60.24 74.75 66.72  56.83 73.22 63.99 

38 59.74 73.02 65.72 
 

57.03 70.31 62.98  59.28 75.15 66.28  56.45 72.32 63.40 

39 59.88 72.88 65.74 
 

57.83 71.01 63.75  59.51 74.99 66.36  57.30 73.05 64.22 

40 59.78 71.51 65.12 
 

54.06 68.34 60.35  59.46 73.35 65.68  53.47 70.03 60.62 

41 55.23 71.91 62.48 
 

57.62 70.97 63.59  54.55 74.00 62.8  57.02 72.98 64.02 

42 60.78 72.66 66.19 
 

55.13 67.67 60.75  60.54 74.67 66.87  54.41 69.50 61.03 

43 49.11 69.73 57.63 
 

53.29 69.12 60.11  48.54 71.25 57.74  52.85 71.08 60.56 

44 58.51 71.04 64.17 
 

51.03 63.69 56.62  58.06 73.20 64.76  50.53 65.59 57.04 

45 58.89 73.28 65.3 
 

56.34 69.71 62.31  58.15 75.29 65.62  55.8 71.85 62.81 

46 58.81 72.93 65.11 
 

58.17 71.35 64.09  58.29 75.00 65.6  57.77 73.59 64.72 

47 57.02 69.94 62.82 
 

57.4 69.56 62.89  56.23 71.60 62.99  56.93 71.57 63.41 

48 60.02 72.84 65.81 
 

56.97 69.97 62.80  59.63 74.96 66.42  56.44 72.05 63.29 

49 60.43 71.63 65.56 
 

58.37 71.37 64.22  59.88 73.51 66.00  57.94 73.51 64.80 
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 Table C1.19 (Continued.) 
 Develop Test 

 BUS  RUS  BUS  RUS 

Rs Recall Precision F score  Recall Precision F score  Recall Precision F score  Recall Precision F score 

50 59.15 73.25 65.45 
 

56.29 69.72 62.29  58.72 75.51 66.06  55.84 72.07 62.92 

51 56.83 73.12 63.96 
 

56.83 73.12 63.96  55.75 76.08 64.35  55.75 76.08 64.35 

 

 

C.2 Results of Stop Word Filtering using different feature sets (F1-19) on 

Development and Test data 

 

                Table C2.1: Stop word Filtering Results 

 
Develop Test 

F Recall Precision F score Recall Precision F score 

1 72.95 63.56 67.94 73.60 62.35 67.51 

2 73.42 60.82 66.53 76.34 59.98 67.18 

3 73.31 65.98 69.45 71.38 67.85 69.57 

4 70.63 41.66 52.41 66.29 41.23 50.84 

5 67.33 48.54 56.41 69.60 42.03 52.41 

6 71.49 56.28 62.98 72.73 55.73 63.10 

7 61.86 62.24 62.05 69.08 56.91 62.41 

8 71.34 56.84 63.27 60.35 59.32 59.83 

9 68.73 60.87 64.56 72.64 56.10 63.31 

10 71.69 57.59 63.87 72.44 53.78 61.73 

11 74.69 61.26 67.31 74.57 56.61 64.36 

12 71.87 52.85 60.91 72.44 59.79 61.73 

13 66.38 39.40 49.45 67.49 38.75 49.33 

14 72.35 55.92 63.08 70.36 52.04 59.83 

15 58.01 11.56 19.28 58.87 11.30 18.96 

16 70.68 49.55 58.25 70.79 44.45 54.61 

17 71.56 40.51 51.73 71.36 37.11 48.83 

18 69.84 40.61 51.36 61.73 26.76 37.34 

19 72.06 49.30 58.55 73.94 49.05 58.97 
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Appendix D: List of Stop Word Used  

Table D.1: Stop words used 

a ask concerning example herein latterly no please she thereby useful wish 

able asking consequently except hereupon least nobody plus should therefore uses with 

about associated consider far hers less non possible since therein using within 

above at considering few herself lest none presumably six theres usually without 

according available contain fifth hi let noone probably so thereupon uucp wonder 

accordingly away containing first him like nor provides some these value would 

across awfully contains five himself liked normally que somebody they various would 

actually be corresponding followed his likely not quite somehow think very yes 

after became could following hither little nothing qv someone third via yet 

afterwards because course follows hopefully look novel rather something this viz you 

again become currently for how looking now rd sometime thorough vs your 

against becomes definitely former howbeit looks nowhere re sometimes thoroughly want yours 

all becoming described formerly however ltd obviously really somewhat those wants yourself 

allow been despite forth ie mainly of reasonably somewhere though was 
yourselv

es 

allows before did four if many off regarding soon three way zero 

almost beforehand different from ignored may often regardless sorry through we 
 

alone behind do further immediate maybe oh regards specified throughout welcome 
 

along being does furthermore in me ok relatively specify thru well 
 

already believe doing get inasmuch mean okay respectively specifying thus went 
 

also below done gets inc meanwhile old right still to were 
 

although beside down getting indeed merely on said sub together what 
 

always besides downwards given indicate might once same such too whatever 
 

am best during gives indicated more one saw sup took when 
 

among better each go indicates moreover ones say sure toward whence 
 

amongst between edu goes inner most only saying take towards whenever 
 

an beyond eg going insofar mostly onto says taken tried where 
 

and both eight gone instead much or second tell tries whereafter 

another brief either got into must other secondly tends truly whereas 
 

any but else gotten inward my others see the try whereby 
 

anybody by elsewhere greetings is myself otherwise seeing than trying wherein 
 

anyhow came enough had it name ought seem thank twice whereupon 

anyone can entirely happens its namely our seemed thanks two wherever 
 

anything cannot especially hardly itself nd ours seeming thanx un whether 
 

aside comes exactly hereby latter nine placed shall thereafter used willing 
 

 


