Analysis and Experimental Study of EMD and
GEMD Steganographic Methods

Om Essad Mohammed Lamiles

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in
Computer Engineering

Eastern Mediterranean University
May 2016
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Cem Tanova
Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master
of Science in Computer Engineering.

Prof. Dr. Isik Aybay
Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in
Computer Engineering.

Assoc. Prof. Dr. Alexander Chefranov Asst. Prof. Dr.Giircii Oz
Co-Supervisor Supervisor

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Asst. Prof. Dr. Adnan Acan

3. Asst. Prof. Dr. Yiltan Bitirim

4. Asst. Prof. Dr. Giircii Oz

5. Asst. Prof. Dr. Ahmet Unveren

ABSTRACT

The aim of this thesis is to analyze and experimentally study two steganographic
methods: Exploiting Modification Direction (EMD) and Generalized Exploiting
Modification Direction (GEMD). In the known experiments conducted on EMD and
GEMD, some quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Square
Error (MSE), and the embedding capacity Bit Per Pixel (BPP) are discussed, but
implementation important details such as the secret image used, data structures,
justification of methods, and the optimal cover images number calculation are not
provided. Therefore, in this thesis, the implementation of these methods is explained
in details such as the input-output data structures, the justification of the methods and

the minimum number of cover images computation are given.

The main idea in EMD is that a separate n-pixel group of a cover image is used for
embedding of each next digit of (2n+1) -ary k-digit number representation of the
next L-bit block from a binary input stream and only one pixel in the n-pixel group
could be modified by 1. In GEMD, L-bit blocks, L=n+1, from the input stream are
embedded in the next n-pixel group, and at least one pixel value in each group could

be changed by *1.

In the implementation, four grayscale 512x512 secret images, and two cover image
sizes, 512x512 and 1024x1024, are used. According to our analysis, for the both
cover image sizes results, PSNR of EMD is greater than that of GEMD by 0.06%.
For MSE, EMD has less MSE than that of GEMD by 0.5%. On the other hand,

GEMD is better than EMD in embedding capacity, BPP is greater by 0.33%. GEMD

il

is also better than EMD in memory and time consumption by 0.006% and 0.06%
respectively for the 512x512 cover image size, while for the second size, 1024x1024
by 0.004% and 0.13% respectively. In addition, where each method is compared with
different cover image sizes, for both methods, greater cover image size has less time
consumption by 0.33% for EMD and by 0.38% for GEMD. For memory
consumption, using grater size required more memory for both methods, by 0.02%.
For comparison with known experiments with 512x512 cover size, we got the

practically the same values for PSNR, MSE, and BPP.

Keywords: Steganography, EMD algorithm, GEMD algorithm, (2n+1)-ary number,
Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Embedding

Capacity, Bit Per Pixel (BPP), memory consumption, time consumption.

v

0z

Bu tezin amaci, Exploiting Modification Direction (EMD) ve Generalized Exploiting
Modification Direction (GEMD) steganographik yontemlerini analiz etmek ve
deneysel olarak incelemektir. Literatiirde, EMD ve GEMD yontemlerinin incelendigi
referans ¢alismada, Peak Signal to Noise Ratio (PSNR), Mean Square Error(MSE) ve
gomme kapasitesi Pit Per Pixel (BPP) gibi kalite Olgiitleri tartisilmistir, ancak,
kullanilan gizli goriintiiler, veri yapilari, yontemlerin 1spati ve kaplama resimlerinin
optimal sayisinin hesaplanmasi gibi bazi detaylar1 verilmemistir. Bu nedenle, bu
tezde, giris/¢ikis veri yapilari, belirtilen yontemlerin 1spati ve kaplama resimlerinin

optimal sayisinin hesaplanmasi gibi uygulama detaylar agiklanmistir.

EMD yonteminin ana fikri, her biri (2n+1)-ary k-digit say1 ile belirtilen ikili girig
akisinin her bir L-bit blogunun, n-piksel gruptan olusan kaplama goriintiisiine, her
n-piksel grupta sadece bir pikselinin =1 olacak sekilde gomiilmesidir. GEMD’de ise
ikili giris akisinin her bir L-blogu, L=n+1, kaplama goriintiisiindeki her bir n-piksel

gruba, her grupta en az bir piksel degerinin £1 olacak sekilde gomiilmesidir.

Algoritmalarin uygulamasinda gizli goriintii olarak 512x512 boyutlu, gri tonlu dort
farkli goriintii, kaplama goriintiisii boyutu olarak da 512x512 ve 1024x1024 boyutlari
kullanilmistir. Deney sonucglarinin analizlerine gore, her iki boyutlu kaplama
goriintiisii icin, EMD PSNR degeri GEMD PSNR degerinden %0.06 daha biiyiiktiir.
Buna ek olarak, EMD MSE degeri GEMD MSE degerinden %0.5 daha azdir. Ote
yandan, GEMD BPP degeri, EMD BPP degerine gore %0.33 daha iyidir. Buna ek

olarak GEMD’nin bellek ve zaman tiiketimi degerleri EMD’ye gore 512x512

kaplama goriintii boyutu i¢in sirasiyla %0.006 ve %0.06 daha iyi olup 1024x1024
icin sirastyla %0.004 ve %0.13 daha iyidir. Bunlara ek olarak, her metod iki farklh
kaplama goriintii boyutuna gore karsilastirildiginda, her iki metod i¢in de biiyiik
kaplama boyutunda zaman tiikketimi EMD’de 9%0.33 GEMD de ise 9%0.38 daha azdir.
Bellek tiiketiminde ise biiyiik boyutlu goriinti kullanimi her iki yontemde de
%0.02’lik bir artis gdstermistir. 1ki yontemin 512x512 kaplama boyutu icin PSNR,
MSE ve BPP ol¢ii degerleri referans ¢alismadaki deney sonuglar ile

karsilastirildiginda tamamen ayni sonuglarin elde edildigi goriilmiistiir.

Anahtar Kelimeler: Steganografi, EMD algoritmasi, GEMD algoritmasi, (2n+1)-
ary sayi, Tepe Sinyal Giriilti Oram1 (PSNR), Kare Ortalama Hatas1 (MSE),

Gomiiliim kapasitesi, Piksel Basina Bit (BPP), bellek tiiketimi, zaman tiiketimi

Vi

DEDICATION

I dedicate my dissertation work to my family, and a special thank to my loving
parents for their love and support throughout my life. I also dedicate this work and
give special thanks to my husband for his support, encouragement, and contribution

to the success of my life.

vii

ACKNOWLEDGMENT

Foremost, I would like to sincerely thank my supervisors Assoc. Prof. Dr. Alexander
Chefranov, and Asst. Prof. Dr.Giircii Oz for their guidance and support throughout
this study. Also I have to thank my department chairman Prof. Dr. Isik Aybay for
providing the facilities to students. I am also grateful to all of the department faculty

members for their help and support.

viii

TABLE OF CONTENTS

ABSTRACT ...ttt ettt et sit e st e st e ebeesaeeens il
OZ oottt ettt \%
DEDICATION ...ttt et ettt e bt e st eebeesaee e vii
ACKNOWLEDGMENT ...ttt ettt viil
LIST OF TABLES ...ttt ettt st X1
LIST OF FIGURES ...ttt ettt e xii
LIST OF ABBREVIATIONS. ... e X1v
L INTRODUCTION. . ..o e 1
2 RELATED WORK AND PROBLEM DEFINITION.........cccoiiiiiiiiiiien 4

2.1 Overview of Steganography...........cooviiiiiiiii e 4

2.2 Categories of Steganography........coovvviiiiiiiiins e D

2.2.1 Text Steganography.......c.ovviiiiiiii i e 5
2.2.2 Protocol steganography..........cccveeeiieeiiieeiiie et 5
2.2.3 Audio/Video/Image Steganography.........ccceeeevieeriiieeiieeeiieeecie e 5

2.3 Related Work. ... e D
2.3.1 EMD Method......ooniieiiii e, 10
232 GEMD Method ..ot et seenes 1]

2.4 Known Experiments on EMD and GEMD ..., 24

2.5 Problem Definitionooiiiiiiiiiiiiieeeee e 20

2.6 Summary of Chapter 2ooiiiiiis o e 27

3 EMD AND GEMD DATA STRUCTURES AND JUSTIFICATION OF THE
METHODS CORRECTNESS. ..., 28

3.1 Data Structure and Justification of EMD CoOrrectnessocoveeeeeeeeeeeeeeueeaaennn. 28

iX

3.1.1 Data Structure for EMD Embeddingccceeveuiiiriiienciieeieeiee e, 28

3.1.2 Data Structure for EMD EXtractionccoceeieeiiiiiieniieinieiicecenieeee 31
3.1.3 Justification of EMD Correctnessooevieiiiiiiiiiiiiiiiiiiiiiannne. 32
3.2 Data Structure and Justification of GEMD Correctness............c...ccoevuennen. 33
3.2.1 Data Structure for GEMD Embeddingcoooiiiiiiiiiinn. 33
3.2.2 Data Structure for GEMD EXtractionccocceeviieiiinieiiienicecesieeee 34
3.2.3 Justification of GEMD Correctnesscooeeieenieeieeniieeneenieeieens 35

3.3 Summary of Chapter 3ooii e 39
4 IMPLEMENTATION OF THE EMD AND GEMD......ccccceiiiiiieieeeeeee 40
4.1 EMD Implementationc.ooiuiiiiire ot e e e eee e eeee e 40
4.2 GEMD Implementation............ooviiniiiiiieeiie e ciie e sveeesree e e e 45
4.3 Summary of Chapter 4oooiniiii i e 50
5 SIMULATION AND RESULTS ...ttt 51

5.1 EMD SImulationoouunnei e e eeeeeeeeeeee e a5

5.2 GEMD Simulationoouiiuiiiiii e 59
5.3 EMD and GEMD Comparison Resultsccccoooiiiiiiiiiiiiii e, 66
5.4 Comparison Results to Known Experimentsocooiiiiiiiiinnnn, 67

5.5 Summary of Chapter 5cccvieiiieeeee e a0 08

6 CONCLUSION AND THE FUTURE WORKccccccooiiiiiiiiiiiniiiiiceee 69
REFERENCESottt 71
APPENDICES ..ot 74

Appendix A: EMD Algorithm............coooiiiiit e 15
Appendix B: GEMD Algorithm...... ... 88

Appendix C: Screenshots of EMD and GEMD Resultsc..cooouen. 101

LIST OF TABLES

Table 2.1: EMD-versus-GEMD known comparison results for PSNR and MSE[7] .26

Table 5.1: EMD parameters for the simulations for 512x512 cover images............ 52
Table 5.2: EMD parameters of the simulation for 1024x1024 cover images.......... 54
Table 5.3: EMD average results for 512x512 cover images...........c.ovvvevrvennnnnnn. 54
Table 5.4: EMD average results for 1024x1024cover images............ccceveveennnnn. 55
Table 5.5: Comparison results for EMD in two sizes of cover image.................. 59
Table 5.6: GEMD parameters for the simulations for 512x512 cover images........... 60
Table 5.7: GEMD parameters of the simulation for 1024x1024 cover images......... 61
Table 5.8: GEMD average results for 512x512 cover imagescvevvennnnn. 61
Table 5.9: GEMD average results for 1024x1024cover imagesc.eeenne 62
Table 5.10: Comparison results for GEMD in two sizes of cover image............... 66
Table 5.11: The EMD-versus-GEMD results for 512x512 cover images 67
Table 5.12: The EMD-versus-GEMD results for 1024x1024 cover images 67

Table 5.13: EMD and GEMD comparison results versus known experiments for

ST2X512 COVET TMAZES . uvventtente et et e et ettt e e e et et e e e e teeaaeenneenneeenns 68

xi

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:

Figure 5.5:

LIST OF FIGURES

Flow chart diagram of EMD embeddingccooiiinal. 12
Flow chart diagram for Step 2 in EMD embedding........................ 13
Flow chart diagram of EMD Extractionccooiiiiiiiinn. 15
Flow chart diagram of GEMD embedding.....................cocoeiiennn. 19
Flow chart diagram for Step6-Case 2 in GEMD embedding 20
Flow chart diagram for Step6-Case 3 in GEMD embedding 21
Flow chart diagram of GEMD Extraction....................cooviiiiinnnn. 23
Cover images used 1N [7] c.oovviiiiiiii i 25
Reshaping cover image as one-dimensional array........................... 29
EMD data structure for embedding procedureoll 31
EMD data structure for extraction procedure ooiiiin.. 31
GEMD data structure for embedding procedure 34
GEMD data structure for extraction procedureccevennnne. 35
Seven stego images in EMD implementation 44
EMD implementation results in case #=2............ccoveiviiiiiiennnannn.. 44
Extracted SECTet IMAZEvvenriiiii e 45
Six stego images in GEMD implementationccceennnnnn. 48
GEMD implementation results in case 7=2ccovvveireinninnn.. 49
Gray scale SeCTet IMAZES. .. .uteeteette ettt eite e e ieeieeaeeennenns 51
Gray scale cover images used in EMD and GEMD implementation .52

PSNR of EMD using 512x512 and 1024x1024 cover image size 56
MSE of EMD using 512x512 and 1024x1024 cover image size 56
BPP of EMD using 512x512 and 1024x1024 cover image size 57

xii

Figure 5.6: Time consumption of EMD using 512x512 and 1024x1024 cover image

Figure 5.7: Memory consumption of EMD using 512x512 and 1024x1024 cover
TIMAZE S1Z .+ vttt ettt et et e et et e et e e et e et e e e e aae e e e e e e e 58
Figure 5.8: PSNR of GEMD using 512x512 and 1024x1024 cover image size 63
Figure 5.9: MSE of GEMD using 512x512 and 1024x1024 cover image size........ 63
Figure 5.10: BPP of GEMD using 512x512 and 1024%x1024 cover image size64
Figure 5.11: Time consumption of GEMD using 512x512 and 1024x1024 cover
TINAEE S1ZC. . vttt ettt et ettt e et e et et e et e e e et e et e e e e e e e e 64
Figure 5.12: Memory consumption of GEMD using 512x512 and 1024x1024 cover

TIMAZE S1Z .+ vvtentte ettt ettt et e e et et e e e et e et ettt eeaeee e e e e e e 65

xiii

BPP

EMD

GEMD

LSB

MSE

PSNR

LIST OF ABBREVIATIONS

Bit Per Pixel

Exploiting Modification Direction

Generalized Exploiting Modification Direction

Least Significant Bit

Mean Square Error

Peak Signal to Noise Ratio

X1V

Chapter 1

INTRODUCTION

Steganography is a technique used to protect messages from unauthorized access, by
embedding data into other media forms such as text, image, video, sound, etc., where
the hidden data likely will not be detected [1]. Two main directions in steganography
are hiding secret data in spatial domain and in frequency domain [1]. The last
direction uses digital cosine transformations that is more time consuming compared
with the spatial domain methods but provides more security. In steganography,
image file is the most common media form used because the human visual system is
not sensitive to small variation in colors. Furthermore, they could be easily used as

cover media without any doubt as they are commonly used on the Internet [2].

We consider here spatial domain methods. There are many steganographic schemes
based on direct replacement like Least Significant Bit (LSB) [3] [4] or based on
indirect replacement such as Exploiting Modification Direction (EMD) [7] [13] [14],
and Generalized Exploiting Modification Direction (GEMD) [5] [6] [7] schemes; the
latter ones will be discussed in this thesis in details which similar to frequency
domain methods provide greater security by the use of data transformations but in the
spatial domain. The known experiments conducted on EMD and GEMD, and
resulting quality metrics like Peak Signal to Noise Ratio (PSNR), Mean Square Error
(MSE), and the embedding capacity Bit Per Pixel (BPP) are discussed in [7], but they

do not provide sufficient information for their implementation such as the secret

image used, data structure, justification of methods, and the number of cover images
for one secret image embedding. Therefore, in this thesis data structures and the
implementation of these methods are explained in details such as the input-output
data structures, the justifications of the methods are provided. A major characteristic
of the EMD method is that it uses a separate n-pixel group of a cover image to embed
the next digit of (2n+1)-ary k-digit number representing the next L-bit block from the
secret image input and only one pixel in the group can be changed by 1. In GEMD
scheme the next L-bit block, L=n+1, is hidden in the next n-pixel group, and more
than one pixel value in a group may be changed by +1, so the image quality for it

may be lower than that for EMD.

Experiments are conducted with four secret images for different n values, and for
two different sizes of cover image 512x%512 and 1024x%1024. The comparison
between both methods in case of using two different sizes are taken as the average
for each metric, because the comparison for each metric over #, as it is done in [7], is
not valid since n has different meaning for each method, in EMD means the number
of pixels required to embed one digit while in GEMD means the number of pixels
required to embed one block. According to our analysis, for size 512x512
comparison results, EMD stego image quality PSNR is better than that of GEMD by
0.06%, and also for MSE, EMD is better than that of GEMD by 0.5%. On the other
hand, GEMD is better than EMD in embedding capacity, BPP is greater by 0.33%,

and in memory and time consumption by 0.006% and 0.06% respectively.

For 1024x 1024 cover size, the results for metrics PSNR, MSE, and BPP are the

same of the size 512%512, but for time and memory consumption both methods take

less time and more memory consumption. GEMD is better than EMD in memory and

time consumption by 0.004% and 0.13% respectively.

In addition, the comparison results using two sizes are taken for each method
separately, since as we use grater cover size then we have less time consumption by
0.33% for EMD and 0.38% for GEMD. For memory consumption, using grater size
required more memory for the both methods, by 0.02%. For comparison with known
experiments with 512x512 cover size, we got the practically the same values for

PSNR, MSE, and BPP.

The rest of the thesis is organized as follows. Chapter 2 presents the related work, the
experiments on EMD and GEMD, and problem definition. Data structures for EMD
and GEMD implementation discussed with details and justification for the both
methods are given in Chapter 3. Chapter 4 introduces the implementation of EMD
and GEMD algorithms. Chapter 5 shows the experimental results and their
comparison versus the known experiments. Finally, Chapter 6 concludes the thesis

and discusses the future work.

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

2.1 Overview of Steganography

Steganography is a word of two syllables, its origin came from the Greek
language, the first syllable "stegano" means the "covered" or the "secret", while the
second one, "graphy", means the "drawing" or the "writing" ; this word is used
nowadays for a technique of information hiding. Such technique was used in Greece
since the 5 century BC, where the people used it for hiding information on their
slave's head [1]. First, a slave is chosen, then, his head is shaved, and a message is
written on his head. They waited till the slave's hair grew to make sure that the
message is hidden. Then the slave is sent to another place with the message on his
head, where his head is then shaved again to get the confidential message. At the
same time in Greece, steganography technique was used by Spartans against their
enemy Xerxes. The secret message was written on a wood wax tablet and covered to
form a new plane layer of wax and due to this wax looked like a blank.
Steganography technique was used in the World War II to hide the secret information
written on a paper using invisible ink: the paper looks like blank to any person in
natural light. Where the organic compounds are the simplest examples of invisible
ink which turn dark when held invisible ink a flame, such as lemon juice, milk, or
urine. Finally, information was retrieved by using liquids such as water, fruit juices
or vinegar. When the wet paper in the liquid was heated, the paper became dark and

the message written on it using invisible ink becomes visible and readable.

2.2 Categories of Steganography

There are many types of techniques used for steganography; they could be divided
mainly into three groups as follows [3]:

2.2.1 Text Steganography

The hiding information in a text is one of the preferred methods of steganography.
In this type of steganography, there are many techniques used, such as extra white
space method, by appending extra white space between words or at the end of lines
and paragraphs.

2.2.2 Protocol Steganography

The technique used for embedding data within a message which used in the network
transmission is called "the protocol steganography". Hiding of data in the header of a
TCP/IP where some fields or places are either optional or never used is an example.
2.2.3 Audio/Video/Image Steganography

A secret message is hidden in an audio/video/image file. The binary sequence of
audio/video/image file is a bit differing from the main file which is hard to be
detected by the normal human eyes. In Audio/Video/ Image Steganography the most
generally used is Least Significant Bit (LSB) method, where the Least Significant Bit
of each pixel of cover file is replaced with the binary data of secret message stream,
so the changes that are made in least significant bit are too small to be detected by

human eyes.
2.3 Related Work

We briefly survey spatial domain methods [1]. Steganographic algorithms are quite
so many; each one has its own security and complexity, since the main aim for all of
them is to embed large amount of secret data with less effects on the cover file, it

means more embedding capacity Bit Per Pixel (BPP) with good image quality. One

of the most common techniques is the LSB replacement method, where it is simple,
fast, and has good stego image quality [2]. In this method the binary secret image is
divided into blocks having L bits, and then embedding each L- block in L LSB's of
each pixel of the cover image, where 1< L <8. In general, this method can achieve a

good image quality when L <3, but for 4< L <8, the image quality severely decreased

8],

To improve LSB replacement, many steganographic methods were proposed. In
2001 Wang, & Lin proposed a method that uses an optimal LSB replacement and
genetic algorithm [12], where the genetic algorithm is presented to solve the problem
of hiding data in the L LSBs of the cover image when L is large in order to improve

the image quality and embedding capacity.

In 2002 Yu- Chee proposed a secure data hiding scheme for binary image [10], that
uses a binary cover image to embed as many as logy(mn+1)bits of secret message
into m xn block of binary cover image by changing at most two bits in the block , so

this method has good image quality and embedding capacity.

In 2003 Wu & Tsai proposed a new method called Pixel Value Differencing (PVD)

[13]. In this method, the cover image is divided into non-overlapping blocks of two
adjacent pixels. A difference value is calculated from the values of the two pixels in
each block. All possible difference values are classified into a number of ranges. The
difference value then is replaced by a new value to embed the value of a sub-stream
of the secret message. The number of bits which can be embedded in a pixel pair is
decided by the width of the range that the difference value belongs to [13]. This

method provided a better way to embed larger amount of secret data.

6

In 2005 Wu et al proposed a method based on LSB replacement and PVD methods
[14]. First, a difference value from two adjacent pixels by PVD method is obtained,
where small difference value can be located on a smooth area and the large one is
located on an edged area. In the smooth areas, the secret data is hidden into the cover
image by LSB method while using the PVD method in the edged areas. This method
provided double embedding capacity of PVD method with a good stego image

quality PSNR.

In 2006 Mielikainen proposed a modification to LSB method that uses a pair of
pixels from the cover image as a group [4], where the secret bits are carried in LSB's
of two pixels. Therefore this method has the same payload as LSB replacement
method, but with fewer changes to the cover image pixels. So the performance of this
method is better than LSB replacement, and the direction of modification to the
cover pixels is exploited for data hiding, but there exist two different modification-
directions corresponding to a same pair of secret bits to be embedded, meaning that

the exploitation is incomplete [10].

Also in 2006 Zhang and Wang proposed a new method called Exploiting
Modification Direction (EMD) [15]. The main idea of the EMD method is to use a
separate n-pixel group of a cover image to embed the next digit of (2n+1)-ary k-digit
number representing the next L-bit block from the secret image input and only one
pixel in the group can be changed by +1. Therefore, this method has very good image
quality and better embedding capacity, but embedding capacity decreases as

increasing 7.

To improve EMD method Lee et al. proposed Improved EMD (IEMD) method in
2007 [9]. This method uses two pixels from the cover image as group and 8-ary
extraction function. It has greater embedding capacity than EMD, but it uses only

two pixels in a group and cannot use more.

To enhance the hiding capacity of EMD and IEMD methods, a novel information
concealing method based on Exploiting Modification Direction was proposed in
2011 [16]. This method embeds 2x secret digits in the 5-ary notational systems into
each group of (2x + 1) cover pixels, where x is a positive integer. Thus, the proposed

method can provide better hiding capacity.

In 2013 Kuo and Wang provided GEMD method [5], where it uses n-pixels from
the cover image to embed n+1 bits , and at least one pixel value in each group could
be changed by +1. Also in this method there is no need for transformation, GEMD
maintained good image quality and good embedding capacity, and also it can adjust

the n-pixel size.

Frequency domain uses the transform coefficients to embed secret data. Moreover,
frequency domain techniques are very robust against attacks. In frequency domain
the cover image is transformed into the frequency domain coefficients before
embedding secret messages in it, where the main techniques used are: Discrete
Cosine Transform (DCT) [11], and Discrete Wavelet Transform (DWT), in Discrete

Cosine Transform [17].

DCT method is used extensively with video and image compression e.g. JPEG

compression, since for each color component the JPEG image format uses a discrete

8

cosine transform to transform successive 8 X 8 pixel blocks of the image into 64

DCT coefficients each [11].

In DWT method [17], the cover image is divided into four sub-images such as
approximation coefficients (CA), horizontal detail coefficients (CH), vertical detail
coefficients (CV) and diagonal detail coefficients (CD). Similarly, the secret image is
decomposed into four sub-images. These sub-images are divided into non-
overlapping blocks. The blocks of approximation coefficients of cover image are
subtracted from approximation coefficient of secret image. The differences of these
coefficients are called error blocks. The replacement of an error block is being done

with the best matched CH block [17].

Though frequency domain methods are more difficult and slower than spatial domain
methods, yet they provide more security [1]. In this work two spatial domain
methods EMD and GEMD will be discussed in details which similar to frequency
domain methods provide greater security by the use of data transformations but in the
spatial domain. In addition, in [7] Kuo and Wang provided a comparison between
EMD and GEMD methods over different values of n-pixel group using the metrics
Peak Signal to Noise Raito (PSNR), Mean Square Error (MSE), and embedding
capacity Bit Per Pixel (BPP). Since they considered the embedding capacity for
GEMD is better than EMD, but the comparison in this case is not valid because the
parameter n has different meaning for EMD and GEMD. For EMD # is the number
of pixel required for one digit among & digits in one block, but for GEMD it is the
total number of pixels required for one block, where in EMD total number of pixels
required for one block is n.k not just n as in GEMD. So we need to analyze and

experimentally study these methods as they exploited the modification of direction
9

with bit differences in embedding and extracting processing, also we compare the
performance of them using the averages of the metrics PSNR, MSE, and BPP in
addition to the memory and time consumption.
2.3.1 EMD Method
Proposed in [14], it uses the next n-pixel group of a cover image to embed one digit
of (2n+1)-ary k-digit number representing the next L-bit block of the secret message
binary stream, and only one pixel value may be changed by +1.
EMD Embedding Algorithm
Begin
Inputs: cover image, CI (M,N); M is the number of rows; N is the number of
columns; integer, n >0, pixel group size; integer, L >1, input binary stream block
size; binary secret message, S.
Output: stego image, SI(M,N).
Step 1. Get next binary secret message block having L bits, and convert it to
(2n+ 1)-ary k-digit number, where £ is defined from the next relations
2k < (@n+1)f
L<log, (2n+1)k

L < |k.log,(2n + 1)]

ke = [log2(§n+1)] ’ 1)

where |x] and [x]| are floor and ceil functions.
Step 2. For each digit s, i=1,, £k,
Begin

Get next pixel group from cover image, CI, X=(x,,x;,...,X,), and calculate

n

t=ef(x) =),,_ % .imod (2n+1) (2.2)

Calculate

10

d=(s;— t) mod (2n+1) (2.3)
Set
X'=X (2.3.1)
If d= 0, nothing is made.
If d < n, increase the 4" pixel in the pixel group by 1:
X'q=x"y+1 (2.3.2)
Otherwise, decrease ((2n+1)—a’)th pixel in the pixel group by 1:
X' onr1-)= X' 2n+1-) - 1 (2.3.3)
End of step2.
Step 3. Go to Step 1 until the secret message is embedded.
Step 4. End.
Figure 2.1 shows the flow chart diagram of EMD embedding, while Figure 2.2

shows the flow chart diagram for Step 2 in EMD embedding.

11

1

Inputs: n>0, L >1, cover
image, CI, secret message S

2

y

Read next binary secret message
block having L bits

3
A

Convert L block to (2n+ 1)-ary k-digit number,
Set i=1

4

A4

Read next pixel group from, CI,
X=(x1,x5...,%,)

5

n

t=ef(x) = Zi=1xi dmod (2n+1)
d=(s;— t) mod (2n+1)

6 v

EMD Embedding Procedure

Y 7
©s More

blocks?

Output: stego image, SI.

\4

End
Figure 2.1: Flow chart diagram of EMD embedding

12

EMD Embedding Procedure:

1

X'=X

[— ’
x'7=x';+1 L,

X' on+1-0)= X 2n+1-p - 1

i=i+1

Goto4in
Figure 2.1

No

\4

End

Figure 2.2: Flow chart diagram for EMD Embedding Procedure
(Block 6 in Figure 2.1)

13

EMD Extraction Algorithm

Begin

Inputs: stego image, SI(M,N); M is the number of rows; N is the number of columns;
integer, n>() pixel group size.

Outputs: binary secret message, S.

Step 0: Set S={ };/empty set.

Step 1. Obtain the next n-pixel block X’=(x";,x",,...,x",) from stego image, SI.

Step 2. Calculate
s=ef(x, xo, . . L xw)= o X0 mod (2n+1) (2.4)
Step 3. Transform s into L-bit binary block and append it to the secret data stream,

S. Go to Step 1.

Step 4. End.

Figure 2.3 shows the flow chart diagram of EMD extraction.

14

Input: n >0, stego image, SI.

y

=3

»
P

3

A 4

Read next n-pixel block
X=(x';,x",...,x",) from SI.

4

s=ef(x',x",. . ., x") Z;;lx'i .inmod (2n+1)

5 A

Transform s into L-bit binary block and append it
to the binary secret message S

)

Yes More

blocks?

7 lNo

Output: binary secret message S.

v
End

Figure 2.3: Flow chart diagram of EMD Extraction

15

EMD Embedding Example
Let we have the following binary secret message
S=11100 01101 10101 10101 00011 11100 and CI pixel values are:
ClI=162 163 163 161 162 158 163 161
162 159155 164 160 155 156 156
If n=2, then we have 2 pixel groups, eg., (x;, x2) = (162 163), and L=5 bits in each
block of secret message, then we get £k =3 from Eq. (2.1). For the first 5-bit block,
convert it into (2n+1)-ary k-digit number, so we have in base 5
(11100)2=(28)10 = (103)s.
Next we take 2 pixels to embed the first digit s=1 and we apply the extraction
function as in Eq. (2.2)
t=(162x1+163%2) mod 5=3
Then calculate the difference d as in Eq. (2.3)
d=(1-3) mod 5,
d=-2mod 5 =3.
Since d>n, then modify the pixel at position (2n+1)-d, it means at position 2, so
second pixel will decrease by one, and we get
group; (x',x"2)=(162 162).
We do the same steps for second digit s=0 and second group (x;, x2) = (163 161) as
follows
t=(163x1 +161x2)mod 5=0
d=(0-0)mod 5=0
Since d=0, then no pixel in a group is modified, then group, (x;,x") =(163 161).
For third digit s=3 and group; (x;, x;) = (162 158) we calculate

t=(162x1 +158x2) mod 5 = 3

16

d=(3-3) mod 5 = 0 then
groups (x',x"2)=(162 158).

In the extracting stage if we apply the Eq (2.4) for each group, then we can get our
secret digits as follows

s/=(162x1 +162x2) mod 5 =1

5= (163x1 +161x2) mod 5=0

§3= (162x1 +158%x2) mod 5 =3
So we get 3 digits in base 5 (103)s, which are converted to binary to get our original
bits (11100)s.
2.3.2 GEMD Method
This method proposed in [5], uses n-pixel group from the cover image to embed a
block of (n+1) bits.
GEMD Embedding Algorithm
Begin
Inputs: Cover image, CI(M,N); M is the number of rows; N is the number of
columns; integer, n>0, defining bit block and pixel group size; binary secret message,
S.
Output: stego image, ST (M,N).
Step 1. Get next n-pixel group X=(x;,x2,...,x,) from cover image CI
Step 2. Get next binary secret message, S, block having (n+1) bits with decimal
value s.
Step 3. Compute ef(x;,x2,...,x,) with the pixel groups:

t=ef(xs, X2 . . Lx)= Y. x.(20—1)mod 2n+ (2.5)

Step 4. Compute the difference d

d= (s — t) mod 2" (2.6)

17

Step 5. If d=2" then R=1;
else if (d< 2™) then R = 2; else R =3;
Step 6. Switch (R)
Casel:Letx’,=x,+1, x/I = x;+1 .x/,: X, 1=2,..,n-1
Case2:letd =(d,d,;dy...d; dp);
for i =n downto 1 do
Begin
if (dj=0and di.; = 1) thenx;=x; + 1;
elseif (d;=1 and d;; = 0) then x/,: xi - 1;
else x'; = x;
End.
Case3: Let d' =2"1—d .Let d' = (d,d;dps...d;idy);
fori=ndownto 1 do
Begin
if (dij=0andd.;=1)then x;=x;— 1
elseif (dj= 1 and d; = 0) thenx;= x;+ 1;
else x'; = x;
End.
Step 7. Go to Stepl until secret the message is embedded.
Step 8. End.
Figure 2.4 shows the flow chart diagram of GEMD embedding, while Figure 2.5 and
Figure 2.6 show the flow chart diagram for Step6-Case 2 and Step6-Case 3 in GEMD

embedding respectively.

18

1

A 4

Inputs: n >0, cover image, CI, secret
message S

2 A\ 4

Read next n-pixel group X=(x;,x3,...,X,)
from CI

3

y

Read next block having (n+1) bits with
decimal value s from binary secret message S

4

y

t=eftxs, X2 .. ax)= . x. (20— 1)mod 2m+1

d= (s — t) mod 2"

Y

10 (
Yes
More
blocks?
11 No

Output: Stego image S/

i

Figure 2.4: Flow chart diagram of GEMD embedding

19

Case 2:

4
x',- =X +1
6
x’,' =X;- 1 u
8 {y
9
Yes
i>17?
i=i-1
No

<
<«

Figure 2.5: Flow chart diagram for Step6-Case 2 in GEMD embedding
(Block 8 in Figure 2.4)

20

Case 3:

1

d =2"1_¢g
d=(,d,;d,;..dd),

4
x’,' =X - 1
6
x’,' =x;+ 1 .
8 {y
Yes 9
i=i-1
No

Figure 2.6: Flow chart diagram for Step6-Case 3 in GEMD embedding
(Block 9 in Figure 2.4)

21

GEMD Extraction Algorithm
Begin
Inputs: stego image, SI(M,N),; M is the number of rows; N is the number of columns;
integer, n>(0), defining binary block and pixel group size.
Outputs: binary secret message, S.
Step 0. Set S={};//empty set
Step 1. Get next n-pixel group, x=(x;,x2,...,X,), from stego image, SI.
Step 2. Calculate
s=ef(x'1.x. .. X = Yo x';. (20— 1)nod 2"+ (2.7)
Step 3. Append s as (n+1)-bit binary block to binary output secret data stream, S.
Step 4. If ST has not processed blocks, go to stepl.

Step 5. End

Figure 2.7 shows the flow chart diagram of GEMD extraction.

22

Input: n >0, stego image, SI.

»
»

3

A

Read next n-pixel block
X=(x";,x",...,x",) froms SI.

4

s=ef(x',x",. .., x') = Z?zlx'i (2" = 1)nmod 2n+?

> A

Append s as (n+1)-bit binary block to binary
output secret data stream, S.

l

Yes More

blocks?

7lNo

Output: binary secret message S.

\ 4

End

Figure 2.7: Flow chart diagram of GEMD Extraction

23

GEMD Embedding Example
In GEMD method we embed (n+1)-bit blocks in the n-pixel groups, so in the
condition of Example 2, for n=2, we embed 3 bits in 2 pixels, then
Block;= (111),=(7)10 =s1
group; (x;,x2)=(162 163).
From Step 3 in GEMD embedding algorithm
t=(162%1+163%3) mod 8 =3
From Step 4,
d=(7-3) mod8=4
As d=4=2", and from Step 6, Casel, the first and last pixels are increased by 1, then
group; (x',x"2)=(163 164).
If we apply the extraction function as in Eq. (2.7)
51=(163x1 +164x3) mod 8=7
So we get the number (7);9, which if converted to binary gives our original bits
(111),.
2.4 Known Experiments on EMD and GEMD
In [7] the performance of EMD and GEMD was evaluated using the following
quality metrics.
1. Mean Square Error (MSE) is defined as mean squares differences between

the original cover image and image after embedding [7]:

1 M N 5
MSE = T ;Z:(CI (r,c)—SI(r,c)) (2.8)

r=1
where M is the number of rows and N is the number of columns of the cover and
stego images.CI (7,c) is the original image pixel value and S/(7,c) is stego image

pixel value .

2. Signal Peak to Noise Ratio (PSNR) is calculated as follows
24

PSNR = 10log,, 22222

dB (2.9)

where 255 is the maximum value of pixels for grey scale images.

3. Embedding capacity Bit Per Pixel (BPP) is defined as the number of secret bits
embedded in each pixel of cover file. For EMD, log,(2n+1) bits that represent a
(2n+1)-ary digit embedded in n pixels, while in GEMD (n+1)- bit values are
embedded in n-pixel group [14]. BPP is calculated for EMD and GEMD as follows

[7]:

Bppemp = log, (2n+1) (2.10)

n

Where number of bits embedded = log, (2n+1)

n+1
Bppcemp= W (2.11)

The results taken for PSNR and MSE from [7] are shown in Table 2.1, and the

Figure 2.8 shows the four cover images that are used in [7].

[e) F-16 [d)Barbara
Figure 2.8: Cover images used in [7]

25

Table 2.1: EMD-versus-GEMD known comparison results for PSNR and MSE [7]

n=2 n=3 n=4 n=5
GEM
EMD | GEMD | EMD | GEMD | EMD | GEMD | EMD D
P(EI;;{ 52.11 50.17 | 53.57 | 50.79 | 54.66 | 51.00 55.53 | 51.09
0.50
MSE 0.40 0.62 0.28 0.54 0.22 0.51 0.18
1.20

(BPP) 1.16 1.50 0.93 1.33 0.79 1.25 0.69

From Table 2.1, the EMD scheme has very good image quality. Also for EMD
method, the largest embedding capacity is 1.16 BPP when n= 2 and its capacity is
less than 1 BPP when »>3. For GEMD it maintains good stego image quality, and the
embedding capacity is greater than 1 BPP when number of pixels in each group of
cover image increases [7]. But the comparison in Table 2.1 is not valid because the
parameter n has not the same meaning for both methods. In EMD # is the number of
pixel required for one digit, not for one block as in GEMD.

In the experiments conducted in this thesis, we tried to find the best values of EMD
and GEMD parameters that achieved the results mentioned in Table 2.1 with
minimum number of cover images, and the comparison between both methods will
be taken as the average over the metrics PSNR, MSE, BPP, time and memory

consumption.
2.5 Problem Definition

In this research, two steganographic algorithms, EMD and GEMD, are studied. They
are selected as representing a perspective direction in steganographic methods
combining features from the main two directions: embedding in the space domain (as
LSB-like methods embedding secret data directly in the cover image) and embedding

in the frequency domain [1]. EMD and GEMD embed in the space domain but

26

similar to frequency domain methods use data transformations. In the papers on
EMD and GEMD, justification for the methods is not provided; hence, we prove
their correctness. Also, information is not provided such as data structures and the
implementation details like the input-output data structures. They are experimentally
investigated for image size 512x512, and we extend experiments to 1024x1024 size

images.

Data structures for the both methods and the justification of their correctness will be
explained in Chapter 3. Implementation details will be explained in Chapter 4. The
simulation with the best values for EMD and GEMD parameters that required
minimal number of cover images will be discussed and our results will be compared
first between the both methods and then with the known experiments in Chapter 5.
In Chapter 6, we give conclusions and discuss the future work.

2.6 Summary of Chapter 2

Thus, in this chapter we have presented an overview of steganography and the
related work: we explained two algorithms, EMD, and GEMD with an example for
each of them. We considered the experiments conducted in [7], and finally we

defined the problem.

27

Chapter 3

EMD AND GEMD DATA STRUCTURES AND
JUSTIFICATION OF THE METHODS CORRECTNESS

In this chapter the details of data structures used in the implementation of EMD and
GEMD algorithms will be discussed, such as the input-output data structures.

Justification of EMD and GEMD correctness are given.
3.1 Data Structure and Justification of EMD Correctness

EMD method is described in Section 2.3.1. Now we consider necessary for its
implementation data structures and of EMD correctness.

3.1.1 Data Structure for EMD Embedding

Inputs structure:

1. Integers, n>0, pixel group size; L>1, bit block size.

2. Binary message, S, sized |S| bits, we consider as a sequence of blocks B; sized

|Bi|=L bits, i=[0,1,...H-1] where the number of blocks H is defined as follows:

H = ['i—'] 3.1)
The last block is padded by zeros when | By.; [£L, S =S+ zeros (L-|S| mod L), where
+ stands for concatenation, each B; is converted into k-digit number in the (2n+1)-ary
notational system. Input, S, may be represented as a sequence of digits:
Saig= [S0.S1, +eeeSiktfpveeeees Se-1)k+k-], i=10,1,...H-1], j=[0,1,...k-1], where s;;+; 1s j’h
(2n+1)-ary digit of i k digits (2n+1)-ary number, & is specified as in Eq.(2.1).
3. Grayscale cover image number j from the set of cover images CI is represented as

a matrix CI; [M,N] ,where M is the number of rows and N is the number of columns,

28

Cl,;(r,c) €[0,1......... 255] . 0<r< M-1, 0< c< N-1,0<j< N-1,where N is the number

of cover images that is necessary to embed secret message S defined by following

relation

HXk
c

N =|cI| = [(3.2)

C= [MXNJ (3.3)

n

where C is the number of n-pixel groups fitting one cover image

Output: Stego images S/, [M, N], with embedded message, 0<;< N-1.

A cover image is represented by one-dimensional array X; ={ xjo, Xjz,....., X mun-1)}
by scanning each row of image from left to right and from top to bottom (Row major

order C-style) as in Fig. 3.1:

Qutput: Coverimage Clin one dimension, X; (#= N+¢)= Cli(»,c)

Xjg e conconnes XjNL] XjN-e XjIN-] B T3 e i P I
r & [

Input: Coverimage Clin two dimensions

4h

P I I R |

Figure 3.1: Reshaping cover image as one dimensional array

L

The one dimensional cover image X is divided into non-overlapping groups of n
pixels. Each j-th digit s; 4+; of i k-digit (2n+1)-ary number from Sg;g, Where Sy;g is a
secret message represented as sequence of (2n+1)-ary digits of k-digit numbers,

i=[0,1,...H-1], j=[0,1,...k-1], is embedded in a group of n-pixels
29

x=[X(iktj vee oen)C(i.k+]),n+n_1], i=[0,1,...H-1], j=[0,1,...k-1] that is illustrated by

Figure 3.2.

s |
: H L-bit blocks !
Binary message S | - I
01110010010011111101 .. IZD': Bo|Br| o | B Bri !
I I
I I
I I
| l

sk |
Sequence of digits in a [- — N I
(2n+1)-ary .I 50 ‘ 5 | ------------ Stk | | SH1kk | !
I
I
I
I

[—— —_————

5
i !
\ Getn-pixel groups from cover |
E image X7, 0= J=N-1 !

Figure 3.2: EMD data structure for embedding procedure

For instance, let L=5 bits, n=2 pixels in each group, then 5- bit binary blocks are
converted to 5-ary numbers with &=3 digits, where & is defined by (2.1), so we need 3
groups to embed these 3 digits and each group has 2 pixels, it means that three out of

six pixels will be changed at most.

Example 1. If we have a binary secret message with size |S|=100 bits, and L=5 bits

in each block, then number of these blocks is

H=5" =220_70plocks
L 5
And S may be represented as sequence of blocks [By, Bj......... Bio].
If the number of pixels 7 is two for each group, then (2n+1)-ary is 5-ary. To embed S

we need H .k groups of n pixels, i.e. number of pixels is H.k.n=20.3.2=120 pixels.

30

3.1.2 Data Structures for EMD Extraction

Input structures:

Integer, n>0; defining pixel group size.

Grayscale stego images SI; [M,N] ,where M is the number of rows and N is the
number of columns, Slj (r,c) € [01,... 255], 0<r< M-1 ,0< c< N-1,0<j< N-1,
where N is the number of stego images that is defined by Eq. (3.2).

Output: Binary secret message, S.

The stego images are represented as one dimensional arrays as in Figure.3.1. One-
dimensional stego image JX; is divided into non-overlapping groups of n pixels. For

each n-pixel group of X; calculate (2.4). Data structure for extraction procedure is

illustrated in Figure 3.3.

i, | SENEHRSRE] T | Nppp-- e | cvocsasineln W TR R 4T Xil | | X’i“'_jl |

T e L B

- - - - - - - - - _l-_-___-_-_>_-_-_-__>_-_-_-_-_ a0 - - - - - - - - - - - _
i From eachn-pixel group |
I extract one digit s ;

‘ 5, ‘ SHD kR

Convert k-digits numbers
to H L-bit blocks

______________ B

Binary secret message S
01110010010011111101__.

Figure 3.3: EMD data structure for extraction procedure

31

3.1.3 Justification of EMD Correctness

Statement 1.

Let's assume that EMD algorithm from Section 2.3.1 is applied, and digit s; is
embedded in a group of n pixels x=(x,,...... ,X,) resulting in stego image group
x'=(x",...x",). Then by applying Step2 of EMD extraction algorithm, Egq. (2.4), value
of s; is returned.

Statement 1 Justification.

From (2,4)

ef(x') = Z(x’i)md 2n+1)
i=1

Consider three cases for d calculated by (2.3).

Case 1. d=0. In this case, from (2.3.1), no pixel was modified, and x'= x

ef(x)= Y. (x;.0)md 2n+1) (3.4)
From (2.2), ef(x') =t (3.5)
From (2.3), s= (t+d) mod (2n+1) (3.6)

For d=0, from (3.6), s;,=t , then from (3.5)
ef(x')=s; q.e.d.
Case 2. d<n . Then according to (2.3.1), (2.3.2)

x’i={xl+1’ L=d i=12,..n 3.7)

xi, i #d
From (2.4), (3.7),
ef(x')=) (x';.i))mod 2n+1)
2

= (zd—l X i +dxg+1)+ z xi.i)mod 2n+1)
i=1

i=d+1

32

n
=(z % .i +1.d) mod (2n + 1)
i=1

= (t + d)mod (2n + 1), then from (2.5)

ef(x') =s; qe.d.

Case 3. n< d<2n. Let

d=02n+1-4d), d €{1,..,n} (3.8)

d=02n+1-d)md 2n+1)

=—d nod 2n +1) (3.9)
From (2.3.3),

e .X'i - 1, i = d, .

Xl—{ Xi i d i=1,2,..n (3.10)

Then, from (2.4), (3.9), (3.10)

n

ef(x") = z'—1 (x';.i)mod 2n+1)

n
dr—1
=(z x.i+d (g —1)+ z x;.1) mod 2n+ 1)
i=1

i=d'+1
=0Qk; x.i —1.d)md 2n+1) (3.11)
=L, x.i +1.d)md 2n+1)
=(t+d)mod 2n+1) (3.12)
Then, from (2.3), (3.12),
ef(x") =s; qe.d.
3.1 Data Structure and Justification of GEMD Correctness
In GEMD, (n+1) bits are embedded in »n adjacent pixels and at least one-pixel value
in each group could be changed.
3.2.1 Data Structure for GEMD Embedding

Input structures:

33

1. Integer, n, n>0, defining pixel group and bit block size.

2. Binary message S sized || bits. It is divided into blocks B; sized |B; |=L, where
L=n+1 bits, i=0,1,.....H-1, and H is the number of blocks defined as in Eq.(3.1). The
last block is padded by zeros when | By.; [#L, S =S+ zeros (L-|S| mod L).

3. Grayscale cover images CI; [M,N], where M is the number of rows and N is the
number of columns, CI;(r,c) € [0.1,... 255] , 0<r<M-1, 0< ¢S N-1, 0<j<N-1. N
is the number of cover images that is defined by Eq. (3.2) , and is represented by
one-dimensional array as in Figure 3.1.

Output: Stego images S/, [M,N], with embedded message S , 0< j< N-1 . Data

structure for GEMD embedding is illustrated by Figure 3.4.

__ -
] H L-bit blocks |
. |
Binary message 5 I[B : |
o |Br| B B
01110010010011111101 . ':>: ‘ 1
]
i l \ I
I |
| !
I 1
| I
(n+1) bits block numbers | i
i‘ Y ‘ 5] ‘ ‘ SH-Lk+k-1 | |
I 1
| I
I |
‘ l
__ |
. — T 1
i o/ IO « 5y R [OOSR I " S TR o'y I it O L I
| |
| - @
| T T T TS e a i
i i Getn-pixel groups from cover ! I
i : image X7, 0= J= N-I : -I
i XJeee conmmmenn XD | XAV XJ_I XD N XJ NI X | | X | |
: 1=0 J=1 = I|
| |

3.2.2 Data Structure for GEMD Extraction
Input structures:
1. Integer, n, n>0, defining pixel group and bit block size.

34

2. Grayscale stego image SI; [M,N], where M is the number of rows and N is the

number of columns, S7,(r,c) € [0,1... 255], 0< r< M-1, 0< ¢< N-1, 0<j< N-1.

Output: Binary secret message, S. Figure 3.5 shows data structure for GEMD

extraction.

E Get n-pixel groups from stego |
H o '
i

|
i
'''''''''''''''''''''''''''''''] |
|
|
|
|

Xpoooeced Xy | e | B . o e

| Fromeach n-pixel group extract :
|
]

i (n+1) bits block number

| SH-1 ‘

Binary secret message 5
01110010010011111101....

Figure 3.5: GEMD data structure for extraction procedure

3.2.3 Justification of GEMD Correctness

Statement 2.

Let's apply GEMD embedding algorithm with parameter n from Section 2.3.2,
resulting in N modified stego images with embedded secret message S. Then,

application of GEMD extraction algorithm to these stego images results in original

secret message S.

35

Statement 2 Justification.

Let's consider next n pixel block from the stego image X'=(x';,...x’,) which was
obtained by embedding of (n+1)-bit block number s from the input secret binary
stream S, by Step3-Step6 transformation of the original stego image block
X=(x1,...Xp).

From (2.7)

n

ef(x) =), _ x'i.(2" = 1)nod 2m*! (3.13)
Consider in (2.6) d=2", then from Step 6, Casel, we have
Xp=x,+1, x;=x,+ 1,i=1,...n (3.14)

Then, from (3.13), (3.14)

n-—1

ef(x') = (G, + DR = 1) + z % (2= 1) + (tp + 12" — D)mod 27+

i=2
n
= (Z x.(2'-1)+1.(2'- 1)+ 1.(2" — 1))nod 2"
i=1
= (X, x-(2"=1)+2")mod 2™ (3.15)
From (2.5), (2.6), (3.15), we get
s= (t+td)y mod 2" =ef(x") , q.e.d.
Consider in (2.6), d<2™.
Let binary representation of d is as follows:
d=Y"_ di.2' and d,=0 (3.16)
If, for simplicity,
d=2 k<n (3.17)
Then, according to Step6, Case2,
X't+1=xp+;+1 (increase left neighbor) (3.18)

x't=x; -1 (decrease current position) (3.19)

36

Then from (2.7), (3.18), (3.19)

n

ef(x) = Z x';. (28 = 1)mod 2™+

i=1

k-1)
= (Z_ X (2‘ — 1) + (e — DK = 1) + (xppq + DK = 1)

+ Z x; (28 = 1)) nod (2™*1)

i=k+2
=X, % (20 =1) =2+ 14 281 — 1)npd 2"+
=(ef(x) + 2K)mod 2n*1 (3.20)
From (2.5), (2.6), (3.17), (3.20),

ef(x")=(ef(x) + d)nod 2" = (t + d)nod 2"t =5 .

Thus, GEMD works correctly in the case when binary representation of d has just
one 1. In the case of several consecutive ones in the binary representation of d, let,
di+1=0, di=dj.;=.....=d;=1, d;.;=0, j<k. (3.21)
Applying for each d; =1,i=j,....k, considered above embedding, i.e. x'm;=x;;+1,
x'=x; -1, i=j,...k, we see that as far as each x'; i=j+1,..., k, is modified twice, once
increased as a left neighbor, and once decreased as being in the current position,
hence ultimately, only x'%+; ,and x'; are modified:

x'+1=xi+1+1, x'7=x; -1, that just corresponds to Case 2 modifications of Step6 in the

GEMD Embedding algorithm. g.e.d.

37

For example, we have n=5 pixels in a group, and d is as follows in binary:

Xs X4 X3 X2 Xx; pixels

d5 d4 d3 d2 dl d()

0o 1 1 1 0 o Binary
values
Then we have 3 consecutive ones in positions 4,..,2,k=4, j=2 in (3.21). According to
(3.18), (3.19), the first change from 0 to 1 is at position k=4, so
x's=xs+1, x'y=x4-1 (3.22)
Then d;=1, and by (3.18), (3.19),
x'/=x,+1, x'3=x3-1 (3.23)
Then d,=1, and by (3.18), (3.19),
x'3=x3+1, x",=x,-1 (3.24)
Then we get from (3.22), (3.23), (3.24)
x's=x5+1
x'/=x4-1 and x';/=x,+1, so x';=x4 (3.25)
x'3=x3-1 and x';=x3+1 , so x'3=x;
x=x,-1
Hence for this case of k=4, j=2, we have ultimately for (3.25) x's=xs5+1, x,=x, — 1,
x'=x; , i=j+1,....k, that complies with Step6, Case2 of the GEMD Embedding
algorithm. g.e.d.
Consider in (2.6), d>2",
d =2"1—d< 2™ so, d =—d nod 2™ , and in binary
d=(d, dy,; dys...d1dy):,1e.

d= Y d'i.2t<om (3.26)

38

Let
d'=2F k<n (3.27)
Then similar to the Case2, but now considering according to Step6, Case3 of the

GEMD Embedding algorithm, we used decreasing, and x's+;=xx+; -1, x,=x;+1. Then

we have from (2.7), (3.27)

n

ef(x) = Z x';. (28 = 1)nod 27+t

=1

= Zk__l X; (Zi — 1) + (xp + 1)(2" — 1) + (Xpyq — 1)(2k+1 —1)

n
+ Z X; (Zi—1)>7rud 2+l

i=k+2
=Y % (20— 1) +2F =1 -2 + 1)mpd 2"+
~ (ef(x) — 2%)mod 2"+
= (ef(x) —d")nod 2"*? (3.28)
As we have d = —d' nod 2™*1, then from (2.7), (2.8), (3.28),
ef(x)=(ef(x) + d)nod 2" =5
In the case of several consecutive ones appearance in d' is considered just as in the
Case2. q.e.d.
3.2 Summary of Chapter 3
Thus, in this chapter we have considered details of data structures for input, output of

EMD and GEMD that is necessary for their implementation and proved correctness

of them. In the next Chapter 4 the implementation of the methods will be discussed.

39

In this chapter, we will show the implementation of EMD and GEMD schemes. In
testing the algorithms, a personal computer with the following characteristics was

used; CPU: Intel ®Core (MT) 13 3210M 2.10 GHz, with a memory of 2GB,

Chapter 4

IMPLEMENTATION OF THE EMD AND GEMD

Windows 7 operation system, and MATLAB 2013 was used for simulation.

4.1 EMD Implementation

In EMD implementation, four gray scale secret images with same size 512x512
pixels are used; also the cover images are in the size 512x512. First, we need to
specify the number of pixels n in each group of cover image, and then the number of
bits L in each block of secret message which will be represented by A-digit (2n+1)-

ary number, where k is calculated in the main program as follows (full code is in

Appendix A.1):

.addpath('cover_set/');addpath('secret_set/');
.img name = 'P';sec name='S"';

M=512; N=M;

. L=input ('Input L: the number of bits in a block ");
. n=input (' Input n: the number of pixels in a group ');

k=ceil (L/ (log2 (2*n+1)))

. Bpp=(log2(2*n+1))/n
. Sec = imread([sec name, '',num2str(l) '.jpg']l);

S =reshap im(sec,M,N);

. [Bin]= conv2binary(S);
.Ss_size=numel (Bin)

.5S=[Bin zeros(1l, (L-(mod (s _size,L))))]
. H=ceil(s_size /L);

.Cover im = ceil ((H*k)/C);

40

In line 3 we specify the size of cover image and secret image, rows M, and columns
N as 512x512. In line 6 we calculate the number of digits & as (2.1), and in line 7 we
calculate the embedding capacity BPP as in (2.10). In line 8 we read the first secret
image as we have four gray scale secret images and in line 9 we reshape it into one
dimensional array by reshap im function (A.2). In line 10, we convert each pixel of
the secret image into binary by calling conv2binary function (A.3). In line 12 last
block of binary secret message may padded by zeros, and in lines 13, 14, the
number of blocks H and the number of cover image are calculated as (3.1), (3.2)

respectively, then the result is as follows.

Input L: the number of bits in a block 16
Input n: the number of pixels in a group 2
k =7

H=131072

Cover im = 7

Necessary for CI number formulas were derived in ch3. In the main program (A.1)

the functions are called as follows

1. Covers = uint8(zeros (M,N,Cover im));

2. Stegos = uint8(zeros(M,N,Cover im));

3. [Dig] = BTO2NP1(SS,L,k,n,H);

4. h=1;

5. for i=1:Cover im

6. tic

7.CI = imread([img name, '',num2Zstr(i) '.tif']);
8. Covers(:,:,1)=CI;

9. cil =reshap im(CI,M,N);

10. x=1;

11. for r=1:C

12. group= cil((x-1)*n+l:x*n);

13. [em group]=embed(group,Dig(h),n);
14. cil((x-1)*n+l:x*n)=[em group];

15. h=h+1;
16. x=x+1;
17. end

18. ci2 =reshap im2(cil,M,N);

41

19. Stegos(:,:,1)=ci2;
20. tim(i)=toc

21. mem= memory

22. end

In line 3 we convert each L-bit block of secret message SS' into k-digit (2n+1)-ary
number by BTO2NP1 function (A.4). In lines 6 and 20 we calculate the time
consumption in seconds with a function that starts timer, tic, in line 6, and stop it by
toc in line 20 as one cover image is embedded completely, while in line 21 memory
consumption is calculated in MB. As we get n-pixel group from cover image in line
12, one digit is embedded each time in n-pixel group by embed function given in

Appendix A.5, according to description in Section 2.3.1 as follows

function [em group] = embed(group, Dig,n)
sum=0;

for i=1:n

sum =sum +double (group(i))*i ;

end
t=mod (sum, (2*n+1)) ;
d=mod ((Dig -t), (2*n+1));
if (d<=n && d>0)

group (d)=(group (d)) +1;

elseif (d>n)

group (((2*n+1))-d)=(group (((2*n+l1))-d))-1;
end
em _group= group;
end

From main program code, in line 18, we reshape stego image into two dimensional
array as in Appendix A.11, and then in line 19 it is saved in array of set stego images
that presented by the code in Appendix A.6. The results are available in Appendix

A8.1.

42

disp('stego image PSNR MSE Time Memory Capacity')

disp (' dB sec MB bpp ")
disp ('==========—==——————— e 1)
set (gcf, 'name', ' Secret Image 1in case n=2");

for i=1:Cover im
subplot(3,3,1) ; imshow((Stegos(:,:,1)));

[PSNR (i), MSE(i)]=My PSNR(Covers(:,:,1),Stegos(:,:,1));
title(['"PSNR = ',num2str (PSNR) 1)

sprintf ('%s%f%f%£%f%f"', images{i}, PSNR(i),MSE (i), tim (i), me
m, Bpp)
disp ('=========m=m—————— e)

sum_time=sum time+tim (i) ;
sum_psnr=sum_psnr+PSNR (1) ;
sum mse=sum mse+MSE (1) ;
end
psnr avg=sum psnr/Cover im
mse avg=sum mse/Cover im
tim avg=sum time/Cover im
sprintf ('Average ')

Image quality PSNR (2.9) and MSE (2.8) are calculated in the following function

given in Appendix A.7:
function [My psnr MSE] = My PSNR(I,J)
X = double (I);
Y = double (J);
MSE = sum((X(:)=-Y(:))."2) / prod(size (X)) ;
My psnr = 10*1logl0 (255 * 255/MSE) ;
End

As a sample output of our implementation, the results for first gray scale secret
image (Balloon) that embedded in 7 cover images when n=2, L= 16 bits are shown

Figures 4.1 and 4.2.

43

PSMNR = 52 1032 PSNR =52 1012 PSNR = 52 1065

"

Rl

PSNR = 52 1107 PSNR = 52.1133

ey

s
ol

Figure 4.1: Seven stego images in EMD implementation Appendix A.8.1 (1) Lena;
(2) Baboon.; (3) F16; (4) Barbara. (5) Monaliza; (6) Tiffany; (7) Girl.

Stego image PSHER MSE Time Memory Capacity
dB sec MB bpp

Lena 52.10%2 0.4006 7.e118 81 1.16
Baboon 52.1012 0.4003 7.8113 481 1.16
i s2.106s 0.4002 7.e110 81 1.16
Barbara 52.1107 0.3990 7.8120 481 1.16
Monaliza 52.1133 0.3%91 7.e112 481 1.16
riffany 52.1195 0.3999 7.8117 481 1.16
cirli 52.1082 0.4001 7.8118 481 1 1.16
awverage
5211 o0.a0 781 21 1.6

Figure 4.2: EMD implementation results in case n=2. Appendix A.8.1

For extraction stage in the following code, as we extract binary message from
EXTRACTION function, Appendix A.10, we convert each 8 bits to decimal to

represent a pixel, and then we reshape the steam of numbers into two dimensions,

44

Appendix A.11, to get our secret message as shown in Figure 4.3, and in the next

code, Appendix A.9.

for j=1:Cover im
Stegosl(1l,:,J)=reshap im(Stegos(:,:,J),M,N);
end
[secret message]= EXTRACTION(Stegosl,k,n,H,L);
v=1;
for i=1:M*N
bmess=secret message ((v-1) *8+1:v*8);
a=bin2dec (num2str (bmess)) ;
d msg=[d msg a];
v=v+1l;
end
secret im=reshap im2(d msg,M,N);
set (gcf, 'name',' Extracted Secret image');
imshow (uint8 (secret im));

Figure 4.3: Extracted Secret image

4.2 GEMD Implementation

In this method no need for transformation, so L= (n+1) bits are embedded in n pixel
group. Use already defined formulas. After specifying » and L in the main program,

Appendix B.1, we read the secret image and reshape it into one dimensional array,

45

Appendix B.2, then convert it to binary by conv2binary function, Appendix B.3.
Binary secret message stream is divided then into (n+1)-bit blocks and then to

decimal numbers by next function, Appendix B.4:

function [Num] = GET B(S,L,H)
Num=[];
for i=1:H
B= S((i-1)*L+1:i*L);
d=bin2dec (num2str (B)) ;
Num= [Num d];
end

end

Embedding function, Appendix B.5, is as follows.

function [em group] = GEMDembed(group,num,n)
1 sum=0;

2 for i=1l:n

3 sum = sum + double(group(i)) *((271i)-1);
4 end

5 t=mod(sum, (2" (n+1)));

6 d=mod (num -t, (2" (n+1)));

7 if (d==2"n) R=1;

8 elseif (d<(2”n)) R=2;

9 else R=3;

10 end

11 switch R

12 case 1

13 group (n)= group(n)+1;

14 group (1)= group(1l)+1;

15 case 2

16 d=dec2bin(d, (n+l1));

17 for i=0:n-1

18 if ((d(i+l)=="1")&&(d(i+2)=="0"))

19 group (n-1i)=group (n-1i)-1;

20 elseif ((d(i+l)=="0")&&(d(i+2)=="1"))
21 group (n-i)=group (n-i) +1;

22 end

23 end

24 case 3

25 d=(2" (n+1))-d;

46

26 b=dec2bin(d, (n+1)) ;

27 for j=0:n-1

28 1f ((b(jJ+1)=="1")&&(b(jJ+2)=="0"))
29 group (n-j)= group (n-7J) +1;

30 elseif ((b(j+1)=="0")&& (b (j3+2)=="1"))
31 group (n-j)= group (n-7j)-1;

32 end

33 end

34 end

35 em _group= group;

end

In lines 1-5, we calculate the extraction function (2.5) described in Section 2.3.2, and
(2.6) in line 6. Then lines 7- 10 are the Step 5 in GEMD embedding algorithm. Step
6, Case 1 is implemented in the lines 12-14, and in lines 15-23, we apply Step 6,
Case 2; lines 24-35 are the Step 6, Case3 in GEMD embedding algorithm. Here in
lines 16-17 and lines 26-27 we did not change the positions of d bits, since Matlab
starts from left to right, it means from most to least significant bit as we have in the
GEMD embedding algorithm. GEMD results are presented by the following code,
Appendix B.6, PSNR (2.9), MSE (2.8), GEMD embedding capacity BPP (2.11), time

and memory consumption, Appendix B.1, results are available in Appendix B.8.1.

disp ('===")
disp('stego image PSNR MSE Time Memory Capacity')
disp (' dB sec MB bpp ")
disp ('==)
set (gcf, 'name', ' Secret Image in case n=2");

for i=1:Cover im
subplot (2,3,1) ; dimshow((Stegos(:,:,1)));

[PSNR (i), MSE(i)]=My PSNR(Covers(:,:,1),Stegos(:,:,1));
title (['"PSNR = ',num2str (PSNR(i))]);
sprintf ('%$s%f%f%f%f%f',images{i}, PSNR(i),MSE (i),tim (i), me
m, Bpp)
disp ('===")

sum_time=sum time+tim (i) ;
sum_ psnr=sum psnr+PSNR (1) ;

47

sum mse=sum mse+MSE (1) ;

end
psnr used=(sum psnr- PSNR(Cover im))/(Cover im-1);
mse used =(sum mse - MSE (Cover im))/(Cover im-1);
tim used =(sum time- tim(Cover im))/(Cover im-1);

psnr set=sum psnr/Cover im;

mse set=sum mse/Cover im;

tim set=sum_ time/Cover im;
sprintf (' Average on fully used ')

d, mem, Bpp)

sprintf (' Average on fully set ")

disp (' ===")
sprintf ('%.2£%.2£%.2£5.2f%.2f",psnr set,mse set,tim set,m
em, Bpp)

PSNR = 501704 PSNR = 50.1676 PSNR = 50.166

PSNR = 50,1664

e

Figure 4.4: Six stego images in GEMD implementation. Appendix B.8.1

48

dB sec MB bpp
Lena 50.17 0.62 7.61 480 1.50
Baboon 50.17 0.62 7.61 480 1.50
F16 50.17 0.62 7.61 480 1.50
Barbara 50.17 0.62 7.61 480 1.50
wonaliza 50.17 0.62 7.61 480 1.50
Tiffany 54.93 0.21 2.81 480 1.50

Figure 4.5: GEMD implementation results in case n=2. Appendix B.8.1

As a sample output of our implementation in Figures 4.4 and 4.5, we see that last
image has greater PSNR and less MSE since fewer pixels are changed because it was
not embedded completely, where number of cover image is calculated according to
(3.2). Also from Figure 4.5 the average on fully used is taken for the first 5 images
that are fully embedded, while the average on fully set is taken for all stego images,
since the last image not fully embedded. In the extraction code in main program,
Appendix B.9, we call the extraction function, Appendix B.10, and then convert each
8 bits to decimal to represent a pixel, then reshape into two dimensions, Appendix

B.4, to get our secret message. Next is the extraction function code, Appendix B.10:

function [B msg]= EXTRACTION (Stegosl,H,n)
B msg=[];
for i=1:H
group= Stegosl ((i-1)*n+l:i*n);

sum=0;
for j=1:n
sum = sum + double(group(j)) *((2"3)-1);
end
t=mod (sum, (2" (n+1)));

49

bin=dec2bin(t,n+1);

B msg=[B msg bin];
end

B msg;

end

4.2 Summary of Chapter 4

Thus, in this chapter we have implemented and explained EMD and GEMD codes as
we take n=2 pixels as an example in both methods, and the results in this case were
shown. Furthermore the results for different values of » and full codes for all

functions in both methods are available in Appendix.

50

Chapter 5

SIMULATION AND RESULTS

In this chapter we discuss the results of EMD and GEMD simulations for different
number of pixels » in a group used in the cover images.

5.1 EMD Simulation

Gray scale secret images of size 512x512 used in the experiments are shown in
Figure 5.1. Also cover images used in the experiments are shown in the Figure 5.2.

To investigate the effect of using different sizes, the results are taken for two cover

image sizes 512x512 and 1024x1024.

Secret image1

Figure 5.1: Gray scale secret images (1) Balloon; (2) Tiffany; (3) Boat; (4) Pepper

51

Covers image

Covers image7 Covers image8

Covers image12

4

Figure 5.2: Gray scale cover images used in EMD and GEMD simulation

EMD optimal parameters used in the simulations are given in Table 5.1. Where £ is

calculated as (2.1), and number of cover images N as (3.2).

Table 5.1: EMD parameters of the simulation with 512x512 cover images

Number of pixels # for one digit
parameter > 3 4 5
L bits 16 16 32 64
k digits 7 6 11 19
cover images N 7 10 11 12

From Table 5.1, and for n=2, L= 16, and k = 7, where £ is calculated as in (2.1) then

number of cover images N necessary for one secret image is calculated as follows
First, we find the number of blocks H, according to (3.1) H = [%]

Where |§] is the size of binary secret image S, |S| = 512x512x8=2097152 bits

_ [2097152bi t

T6bits rz 131072blocks

From (3.2)

~ HXk 131072X7
N = =

c | c

52

MXNJ _ ls12><512

> J=13 1072 n-pixel groups

From 3.3), C = l

n

Then,

. 131072X7 .
ol = 7 cover images.

For n=3 pixels, L= 16 bits, and k = 6 digits, then

_|2097152bit

16 bits r= 131072 blocks

N 131072x6| _)
N = —512x512J = 10 cover images

3

For n=4 pixels, L= 32 bits, and k£ = 11 digits, then

_|2097152bit

32 bits r: 65536blocks

S 65536x11| _ .
N = —l512X512 = 11 cover images

4

For n=5 pixels, L= 64 bits, and k= 19 digits, then

_|2097152bit
N 64 bit s

r= 32768 blocks

N

32768x19| _]
= —l512x512 = 12 cover images

5

For 1024x1024 cover image, and with the same EMD parameters (L and k) in Table
5.1, we got different numbers of cover images required for one secret image using

(3.1), (3.2), and (3.3) in each case of n as shown in Table 5.2.

53

Table 5.2: EMD parameters of the simulation for 1024x1024 cover images

Number of pixels n for one digit
parameter > 3 1 5
L bits 16 16 32 64
k digits 7 6 11 19
cover images N 2 3 3 3

From Table 5.2 we note that as we increase cover image size then we need less
number of cover images. Table 5.3 shows the EMD average results using 512x512
cover image size for different values of n that obtained from the Appendix A.8. As in
some cases we have two averages, fully used and fully set, where the average fully
used indicates to the averages of PSNR, MSE, memory and time consumption for the
fully images used (without the last image that not fully embedded), while the average
fully set refers to the averages for the fully images set (with the last image that not

fully embedded).

Table 5.3: EMD average results for 512x512 cover images

i Number of pixels # for one digit
Metric | average
2 3 4 5
Fully
O 52.11 53.57 54.66 55.53
B
(dB) Fully 58.45 55.70
set
i‘i}g 0.40 0.28 0.22 0.18
MSE e
iy 025 0.17
set
. Fully 781 6.38 4.66 3.97
Time used
(sec) Fully 5.76 3.82
set
Memory (MB) 481 486 490 496
Capacity (BPP) 1.16 0.93 0.79 0.69

54

Table 5.4 shows the EMD average results for 1024x1024 cover images, the results

are obtained from Appendix A.8.

Table 5.4: EMD average results for 1024x1024 cover images

) Number of pixels # for one digit
Metric | average
2 3 4 5
Fully 52.11 53.57 54.66 55.53
PSNR used
B
(dB) Fully 52.73 55.58 55.08 55.68
set
i‘sﬂelg 0.40 0.28 0.22 0.18
MSE
Fully
0.37 021 0.20 0.18
set
. Fully 572 431 3.02 2.18
Time used
Full
(sec) iy 5.36 4.14 291 2.12
set
Memory (MB) 493 495 497 500
Capacity (BPP) 1.16 1.16 0.93 0.69

From Table 5.3 and Table 5.4 The comparison for metrics are taken for fully used
averages since the fully set average is not found in some cases in 512x512 cover
images Table 5.3. For both sizes we got the same results for PSNR and MSE since in
EMD embedding algorithm only one pixel in a group could be changed by *1, it
means not depends on the size, also for embedding capacity that calculated according
to (2.10)For both sizes the PSNR for fully used average is better than 52 dB as the

number of pixels in the cover image increases which is illustrated in Figure 5.3.

55

525

52
2z

Figure 5.3: PSNR of EMD using 512x512 and 1024%1024 cover image size

Also from Table 5.3 and Table 5.4, MSE decreases from 0.40 to 0.18 as » increases

from 2 to 5 pixels as shown in Figure 5.4.

04

0.3

MSE

0.25

0.2

2 25 3 35 4 45 5

Figure 5.4: MSE of EMD using 512x512 and 1024x1024 cover image size

Figure 5.5 sows the EMD embedding capacity for both sizes in Table 5.3 and Table

5.4 that decreases from 1.16 BPP to 0.69 BPP when # ranges from 2 to 5 pixels.

56

13 _"""""'.""""-'"'.:""'"""T""""'""""'""'T"'_""""'.

Embedding capacity (BFP)

2 25 3 35 4 445 b

Figure 5.5: BPP of EMD using 512x512 and 1024%x1024 cover image size

From Table 5.3 and Table 5.4 we note that for memory and time consumption we got
different values. For time consumption, EMD using 1024x1024 cover images takes
less time than using 512x512 cover images, since in using 512x512 cover images
takes more cover image in each case of n it means more time consumption for
processing data. From Table 5.3 Time consumption decreases with n for fully set
average; it decreases from 7.81 sec to 3.97 sec, while in Table 5.4 it decreases from

5.72 sec to 2.18 sec when n ranges from 2 to 5 pixels as shown in Figure 5.6.

57

sS=sEs 52652
—— 1024 = 1024

Time(sec)

5 | | i | |

n
Figure 5.6: Time consumption of EMD using 512x512 and 1024x1024
cover image size

For memory consumption, EMD using 1024x1024 cover images in Table 5.4 takes
more memory than using 512x512 cover images as in from Table 5.3 where memory
consumption increases with n for fully set average; it increases 481MB to 496 MB.
On the other hand using 1024x1024 cover images Table 5.4, memory consumption
increases from 493 MB to 500 MB when » ranges from 2 to 5 pixels as shown in

Figure 5.7.

500 - T T T ‘ I
: : : --%—= 512 x §12

498 —— 1024 x 1024

496
494
492
oy
@ : : : : :
o 490 ---oo-ee- bemomonoees R bomameee B jommeomoaes .
E : : e :
B beooooanis boroonenss P beeenooois doonoeioes .
. e ‘ .
486 [-------- - e mezeinnos P GAG et STEER T -
- E— 1 B — T S—
T ; :] :
T R ey o { e fromoooe .
S | | 1 |
480 | | | | |
2 2.5 3 3.5 4 4.5 5

Figure 5.7: Memory consumption of EMD using 512x512 and 1024x1024
cover image size

58

From Table 5.3 and Table5.4 we can summarize the results in Table 5.5 as
comparison results using 512x512 and 1024x1024 size of cover image for EMD

method.

Table 5.5: Comparison results for EMD in two sizes of cover image

EMD method
metric
512512 1024x1024
PSNR(dB) 53.97 53.97
MSE 0.27 0.27
Time (sec) 5.71 3.81
Memory (MB) 488 496
Capacity (BPP) 0.89 0.89

From Table 5.5 we find that as we use grater size of cover image then we have less
time consumption by 0.33% for EMD, since in case of using 512 x 512 cover
images, we need more cover images and then more time for data processing. For
memory consumption, using 1024 x 1024 cover images required more memory by
0.02%. On the other hand, for both sizes we get the same results for EMD metrics
PSNR, MSE, and embedding capacity BPP. The results for both cover image sizes
are obtained from appendix A.

5.2 GEMD Simulation

In GEMD, we take L=n+1 bits to embed in n pixels. GEMD parameters used in the

simulations are given in Table 5.6. Number of cover images is calculated as (3.2).

59

Table 5.6: GEMD parameters of the simulation for 512x512 cover images

parameter Number of pixels n for one block L
2 3 4 5
L bits 3 4 5 6
cover image N 6 7 7 7

From Table 5.3, and for n =2, L= 3, then

[2097152bi t

3hits r: 699051 blocks

N 699051 | _ .
N = —l512X512J = 6 cover images
2

For n=3 pixels, L= 4 bits, then

_|2097152bit

ADbits r: 524288blocks

~ 524288 .
N = [wl = 7 cover images

3
For n=4 pixels, L= 5 bits, then

_|2097152bit
N 5 bit s

& | 419431 |)
N = —lslzxslzj = 7 cover images

4

r= 419431blocks

For n=5 pixels, L= 6 bits, then

[2097152bi t

S hits r: 349526blocks

S 349526 | _ .
N = —lSIZXSHJ = 7 cover images
5

60

For 1024x1024 cover image, and with the same GEMD parameter L in Table 5.6,
we got different numbers of cover images required for one secret image using (3.1),

(3.2), and (3.3) in each case of n as shown in Table 5.7.

Table 5.7: GEMD parameters of the simulation for 1024x1024 cover images

parameter Number of pixels n for one block L
2 3 4 5
L bits 3 4 5 6
cover images N 2 2 2 2

From Table 5.6 and Table 5.7 we note that as we increase cover image size then we
need less number of cover images. Table 5.8 shows the GEMD average results for

both cover image sizes that are obtained from Appendix B.

Table 5.8: GEMD average results for 512x512 cover images

. Number of pixels # for one block L
Metric | average 5 3 1 s
Fully
bR | wsed 50.17 50.79 51.01 51.09
(dB) Fully 50.96 57.72 51.58 51.33
set
Full
u‘sleg 0.62 0.54 0.51 0.50
MSE | ——
b 0.55 0.46 0.47 0.48
set
. Fully 7.61 5.84 4.40 3.60
Time used
S Full
(Sec) uy 6.80 5.03 418 3.42
set
Memory (MB) 430 484 487 491
Capacity (BPP) 1.50 133 1.25 1.20

61

Table 5.9: GEMD average results for 1024x1024 cover images

i Number of pixels n for one digit
Metric | average
2 3 4 5
Fully 50.16 50.79 51.01 51.09
PSNR used
B
(dB) Fully 52.55 52.30 52.11 51.97
set
i‘;gg 0.62 0.54 0.51 0.50
MSE —
iy 0.42 0.41 0.41 0.42
set
. Fully 4.61 3.77 2.92 2.02
Time used
(sec) Fully 426 331 247 1.97
set
Memory (MB) 491 493 496 498
Capacity (BPP) 1.50 133 1.25 1.20

From Table 5.8 and Table 5.9, we have in GEMD results two averages, the first one
for the averages without the last image, while the second one for the averages with
the last image that not fully embedded as we calculated above for all cases of n. For
both sizes we got the same results for PSNR and MSE since in GEMD embedding
algorithm more than one pixel in a group could be changed by *1, it means not
depends on the size, also for embedding capacity that calculated according to (2.11).

Also for both tables, image quality PSNR for GEMD is nearly 51 dB as illustrated in

Figure 5.8.

62

Figure 5.8: PSNR of GEMD using 512x512 and 1024x1024 cover image size

On the other hand MSE decreases

511 T ! ! T ! R
51 ‘_ﬂ.ﬂ'""— ---------- 4
1 1 'a”
| D .
: I
50.8 ____________L__________}:i'4€f __ _
A
L BOT e ; e -
[an] rd
= o
% 505 """"""" r";;‘" """ Fe========== TE=T=sss===== TEE=sssE==== TE========= =
%
50_5 :.rl Lmcmcmcceaaa Locacacaaaaa Locacaccaaaa e —
4
A
T SRS -
X
V4
503 """ f(""" pe=========- Fe========== TE=T=sss===== TEE=sssE==== TE========= =
S
I
50_2 _r’. [—— Lmcmcmcceaaa Locacacaaaaa Locacaccaaaa e —
50.1 1 | | | |
25 3 e 4 45 5

0.50 as shown in Figure 5.9.

Figure 5.9: MSE of GEMD using 512x512 and 1024x1024 cover image size

For both sizes, embedding capacity BPP, it decreases from 1.50 BPP to 1.20 BPP as

with n; for both sizes it decreases from 0.62 to

0627 : ! ! . .
*] 1] 1 1
3 i
‘\ 1 1 1 1 1
2 :
e brsanosnes pocmmsnas s frssnssnas g
L 1
b
p : . . .
.
!
M
0_58 ____________ \I‘ ___________ Lemmmmmmm oo . e, demmmeme oo —
X
(Y 1 1 1 1
LY
P : ! ! !
' ‘\ 1 ' ' '
e e e S -
1
I \\ ' I I I
LY
1 %, 1 1 1 1
LR
b 1
1 N S S T |
1 1 "\“‘ 1 1 1
y '
: : ““-L : :
0.52 ____________ R R R R R IR R R ;___\‘;;;___T ___________ i R T —
. : ! e
0.5 | I I I i
Z 25 3 35 4 45

n increases from 2 to 5 pixels as shown in Figure 5.10.

63

1-5 \ T T T T T
N ! ! ' ' '
N . . : : :
p ' ' ' ' '
145 ----- \\ —————————— —
N ' ' ' '
o 1 '
e
b ' ' '
™ 1 il il '
. gy 5 A A —

_ 14 :L\‘ b t ¢ 4

o H

- R

e B L et EEEEREEE R e SRRRCEEEEELE FEPEEEPEE —

B p

E— b}

B Pl

& 13- R R B b e e L -

= . . g ; ;

o :"“-...

c . . . T :

= 1258F---------- Foemmmeeee P R LEEE e Fommm - —

o ' ' ' P

—

o : : i i P
L b S b b e bt Sh bbbt S =
0 —
1 i i i i i

2 25 3 35 4 45 &)
n

Figure 5.10: BPP of GEMD using 512x512 and 1024%x1024 cover image size

From Table 5.8 and Table 5.9 we note that for memory and time consumption we got
different values. For time consumption, GEMD using 1024x1024 cover images takes
less time than using 512x512 cover images, where time consumption decreases with
n for fully set average; from Table 5.8 it decreases from 7.61 sec to 3.60 sec, while in

Table 5.9 it decreases from 4.61 sec to 2.02 sec when #n ranges from 2 to 5 pixels as

shown in Figure 5.11.
8 i T T -I T | =
. ! ! ! | mmwm= 512 x 512
*‘-,“ : ! ! | —— 1024 = 1024
| —— N RS— —— (X—— CH—— C—— —
T : : : :
) : : :
] \‘.]] '
.] ; :
5— -------- "\,*“ ---------------------- -
| e s
2 ; Ra 5
% 5 """""" :’ """""" PSR S U R SRR JT’)‘\'.., """" 1 """""" RS R
E ! Yo,
= e -
4____________:L___ _____L___________L___________é___:-:q_-_"_": Pasgzoeee _|
E ‘-.""'-1
 [P—— bemeneeeeee R . 0 I -
2 | | | | |
-, 25 3 35 4 45 5
n

Figure 5.11: Time consumption of GEMD using 512x512 and 1024x1024 cover
image size

64

For memory consumption, GEMD using 1024x1024 cover images in Table 5.9 takes
more memory than using 512x512 cover images, since using greater size required to
reserve greater locations in memory for array image size. In from Table 5.8 memory
consumption increases with » for fully set average; it increases from 480MB to 491
MB. On the other hand using 1024x1024 cover images Table 5.9 memory
consumption increases from 491 MB to 498 MB when n ranges from 2 to 5 pixels as

shown in Figure 5.12.

e . : r : '
' ' ' { [—-w—- 512 x 512
| —— 1024 = 1024

496

N S o N —

492 O s e S .

Memary(MB)

 NEUIEUNUNON FRTDUDRIN SR ASRSRORRNS N i —— -

U TR SR Se. ool S S— §

Py ISR S BN ST SO S -
: el : : :

PP R s SRR SRR N S—

ABQ = I ; ; ; ;

2 : 3

Figure 5.12: Memory consumption of GEMD using 512x512 and 1024x1024 cover
image size

From Table 5.8 and Table 5.9 we can summarize the results in Table 5.10 as

comparison results using 512x512 and 1024x1024 size of cover image for GEMD

method.

65

Table 5.10: Comparison results for GEMD in two sizes of cover image

GEMD method
metric
512x512 1024x1024

PSNR(dB) 50.77 50.77

MSE 0.54 0.54
Time (sec) 5.36 3.33

Memory (MB) 485 494
Capacity
(BPP) 1.32 1.32

From Table 5.10 we find that as we use grater size of cover image then we have less
time consumption by 0.38% for GEMD. Since in case of using 512 x 512 cover
images, we need more cover images and then more time for data processing. For
memory consumption, using 1024 x 1024 cover images required more memory by
0.02%. On the other hand, for both sizes we get the same results for metrics PSNR,
MSE, and embedding capacity BPP. The GEMD results for both cover image sizes

are obtained from appendix B.

5.3 EMD and GEMD Comparison Results

The comparison results for both methods are obtained for MSE (2.8), PSNR (2.9),
embedding capacity Bit Per Pixel BPP (2.10), (2.11), memory and time consumption,
where the average is taken for each metric over n because n for each method has
different meaning. It means for EMD the number of pixels required to embed one
digit from the block, while in GEMD it is the number of pixels required to embed
one block. Table 5.11 shows EMD-versus-GEMD comparison results using 512x512
cover images, where the results are obtained from Table 5.3, Table 5.8.while Table
5.12 shows EMD-versus-GEMD comparison results using 1024x1024 cover images,

where the results are obtained from Table 5.4, Table 5.9

66

Table 5.11: The EMD-versus-GEMD results for 512x512 cover images

Metric
method | PSNR MSE Time Memory Capacity
(dB) (Sec) (MB) (BPP)
EMD 53.97 0.27 5.71 488 0.89
GEMD | 50.77 | 0.54 5.36 485 132

Table 5.12: The EMD-versus-GEMD results for 1024x1024 cover images

Metric
method | PSNR MSE Time Memory Capacity
(dB) (Sec) (MB) (BPP)
EMD 53.97 0.27 3.81 496 0.89
GEMD | 50.77 | 0.54 3.33 494 132

From Table 5.11 and Table 5.12, we find that EMD stego image quality PSNR is
better than 53 dB, since in embedding procedure only one pixel among n-pixel group
is modified, while in GEMD it is nearly 51 dB, because more than one pixel in each
n-pixel group could be modified. So in both sizes PSNR in EMD is better than
GEMD by 0.06. For MSE comparison result, in both sizes EMD has less error than
GEMD by 0.5%, since fewer pixels are changed. On the other hand, GEMD is better
in embedding capacity, BPP, by 0.33%. GEMD has less memory and time
consumption for both sizes. For 512x512 cover images in Table 5.11, GEMD is
better in memory and time consumption by 0.006% and 0.06% respectively. While
for using 1024x1024 cover images in Table 5.12, GEMD is better in memory and
time consumption by 0.004% and 0.13% respectively.

5.4 Comparison Results to Known Experiments

From the known experiments conducted in Section 2.4, Table 2.1 and our results
using 512x%512 cover images in Table 5.3 and Table 5.8, we get the same results for
the image quality PSNR, MSE and the embedding capacity BPP different cases of n

as shown in Table 5.13.

67

Table 5.13: EMD and GEMD comparison results versus known experiments for
512x512 cover images

n=2 pixels n=3 pixels n=4 pixels n=5 pixels
Result | Metric

EMD | GEMD | EMD | GEMD | EMD | GEMD | EMD | GEMD

PSNR | 52.11 | 50.17 | 53.57 | 50.79 | 54.66 | 51.00 |55.53 | 51.09

[7] MSE | 0.40 0.62 0.28 0.54 | 022 | 0.51 0.18 0.50

BPP 1.16 1.50 | 0.93 1.33 0.79 1.25 0.69 1.20

PSNR | 52.11 | 50.17 | 53.57| 50.79 |54.66 | 51.01 |55.53 | 51.09
Our

MSE | 0.40 0.62 0.28 054 | 022 | 0.1 0.18 0.50

BPP 1.16 1.50 0.93 1.33 0.79 1.25 0.69 1.20

5.5 Summary of Chapter 5
Thus, in this chapter we have discussed and compared EMD and GEMD results with
same size and also with different size of cover images which are obtained from
Appendixes, as we also compare these results with known experiments [7] presented

in Section 2.4.

68

Chapter 6

CONCLUSION AND THE FUTURE WORK

This thesis analyzes two steganographic methods; EMD and GEMD. The algorithms are
explained in details such as the input, output, data structure, the justification of their
correctness and the best values for their parameters which required a minimum number
of cover images to maintain good image quality PSNR and minimum MSE, time and
memory consumption, then the experiments results compared between both methods and

then with known experiments conducted on EMD and GEMD.

The results were obtained for four gray scale secret images, and for two different sizes
of cover images, where the number of cover image required for a secret image is defined
according to some parameters such as the number of bits in each block of secret image,
and the number of pixels n in each group of the cover image. The experiments were
conducted with four different values of n, as we tried to find the best value for the
number of bits in each block L of the secret image and the maximum digit £ in (2n+1)-
ary in each case of n to achieve the best case of EMD and GEMD which taking less
number of cover image. According to our analysis, and for both sizes cover image, EMD
stego image quality PSNR is better than GEMD, since fewer pixels values are modified.
On the other hand, GEMD has less memory and time consummation, since increasing of
cover size takes more memory and less time for both methods. For MSE comparison
result EMD has less error than GEMD, because in EMD at most only one pixel is

changed by %1 in a group, while in GEMD more than one pixel in a group could be

69

modified. But also GEMD has greater embedding capacity for both sizes. In addition to
greater cover size required less number of cover images and for both sizes GEMD

required less number of cover images

As a comparison between the results using different size of cover image, we find that as
we use greater size then we need less number of cover images, and less time
consumption. On the other hand we need more memory consumption. For other metrics,

PSNR, MSE, and embedding capacity BPP, we get the same results.

However, the both methods have the same aim for hiding data, but one of them, EMD, is
better in image quality, PSNR and MSE, while GEMD is better in memory and time

consumption and also better embedding capacity.

As a future work, I propose to study and implement these methods by using color

images in order to improve the performance of them.

70

REFERENCES

[1] Cheddad, A., Condell, J., Curran, K., & Kevitt, P. M. (2010, October). Digital
Image Steganography: Survey and Analysis of Current Methods. Signal

Processing, pp. 727-752. Vol 90. No.3.

[2] Devi, M., & Sharma, N. (2014, March). Improved Detection of Least Significant
Bit SteganographyAlgorithms in Color and Gray Scale Images. IEEE, Recent
Advances in Engineering and Computational Sciences (RAECS) , pp. 1-5. Vol 34.

No.7.

[3] Hegde, R., & S, J. (2015, July). Design and Implementation of Image
Steganography by Using LSB Replacement Algorithm and Pseudo Random
Encoding Technique. International Journal on Recent and Innovation Trends in

Computing and Communication, pp.4415 - 4420. Vol 3. No.7.

[4] Jarno, M. (2006, May). LSB Matching Revisited. /EEE, Signal Processing

Letters, pp. 285-287. Vol 13 No.5.

[5] Kuo, W.-C., & Wang, C.-C. (2013, October). Data Hiding Based on Generalised
Exploiting Modification Direction Method. The Imaging Science Journal,

pp.484-490. Vol 61. No.10.

[6] Kuo, W. C., Chen, Y. H., & Chuang, C.-T. (2014, April). High-Capacity

Steganographic Method Based on Division Arithmetic and Generalized

71

Exploiting Modification Direction. Journal of Information Hiding and

Multimedia Signal Processing, pp. 213-222. Vol 5. No.2.

[7] Kuo, W. C., Wang, C. C., & Hou, H. C. (2015, August). Signed Digit Data

Hiding Scheme. Information Processing Letters, pp. 15-26. Vol 5. No.2.

[8] Kieu, T. D. & Chang, C. C. (2011, April) A Steganographic Scheme by Fully
Exploiting Modification Directions, Expert Systems with Applications,

pp-10648-10657. Vol 38. No.8.

[9] Lee .C.F; Wang. Y & Chang. C (2007, August). A Steganographic Method with
High Embedding Capacity by Improving Exploiting Modification Direction.
Proceedings of the Third International Conference on Intelligent Information

Hiding and Multimedia Signal Processing(IIHMSP07), pp.497-500. Vol 5. No.2.

[10] Pan, H. K., Tseng, Y. C & Chen Y. Y. (2002, August). A Secure Data Hiding
Scheme for Binary Images. [EEE Trans. Commun., pp. 1227-1231.Vol.

50.No.8.

[11] Rita, C. & Deepika, B. (2014, September), An Improved DCT based
Steganography Technique, International Journal of Computer Applications, pp.

46-49. Vol 102. No.14.

[12] Wang, R. Z; Lin, C. F.; & Lin, J. C (2001, May). Image Hiding by Optimal
LSB Substitution and Genetic Algorithm. Pattern Recognition, pp.671-683 .Vol

34.No 3.

72

[13] Wu, D. C., & Tsai, W. H. (2003, April). A Steganographic Method for Images
by Pixel-Value Differencing. Pattern Recognition Letters, pp.1613-1626. Vol

24. No.9.

[14] Wu, H. C., Wu, N. L, Tsai, C. S., & Hwang, M. S. (2005, March). Image
Steganographic Scheme Based on Pixel-Value Differencing and LSB
Replacement Methods. /IEEE, image signal process, pp. 611-615.Vol 152. No.

12.

[15] Zhang, X., & Wang, S. (2006, November). Efficient Steganographic
Embedding by Exploiting Modification Direction. IEEE Communication Letters,

pp. 781-783. Vol 12. No.7.

[16] Zhi, H. W., Kieu,T.D.,& Chin, C.C. (2010, January), A Novel Information
Concealing Method Based on Exploiting Modification Direction, Journal of

Information Hiding and Multimedia Signal Processing, pp.130-138, Vol 1. No.1.

[17] Vijay, K. & Dinesh, K. (2010, June), Performance Evaluation of DWT Based
Steganography, IEEE 2nd International Advance Computing Conference, pp.

223-228. Vol 6. No.10.

73

APPENDICES

74

Appendix A: EMD Algorithm

A.1 The main program

% this program was written by Om Essad M.Lamiles in 2015-2016
for EMD algorithm [8] and its functions

clc;

clear all ;
images={"'Lena', 'Baboon', 'Fl6', 'Barbara', '"Monaliza',
'Tiffany','Girl', 'Cameraman’', 'Liza', 'Jug', 'House', '"Roza'}%cove
r images used in the program

sum_time=0;sum psnr=0;sum mse=0;

BDig=[];d msg=[];
addpath('cover_set/');addpath('secret_set/');

img name = 'P';sec name='S';

M=512; N=M;

E_dig=[];

L=input ('Input L: the number of bits in a block ');
n=input (' Input n: the number of pixels in a group ');

k=ceil (L/ (log2(2*n+1))) %calculate k as in (2.3)
C=floor ((M*N) /n); %calculate C as in (3.3)
Bpp=(log2 (2*n+1)) /n%calculate bppmp as in (2.12)

sec = imread([sec_name, '',num2str(l) '.jpg']);%read the first
secret image , '' used to read image sec name =Sl
corresponding to the number in (),as we have 4 secret images

S =reshap im(sec,M,N); Sreshape secret image as one
dimensional array

[Bin]= conv2binary(S); %convert each pixel of secret image to
binary

s_size=numel (Bin)

H=ceil (s _size /L) %calculate H as in (3.1)

SS=[Bin zeros(l, (L-(mod(s_size,L))))]; %last block padded by
zeros

Cover im = ceil((H*k)/C)%calculate N as in (3.2)

Covers = uint8(zeros (M,N,Cover im));

Stegos = uint8(zeros(M,N,Cover im));

[Dig] = BTO2NP1(SS,L,k,n,H); %get stream of k digits in
(2n+1l) -ary numbers

h=1;

for i=1l:Cover im
tic% starting of timer to calculate embedding time
CI = imread([img name, '',numZstr(i) '.tif']);
Covers(:,:,1)=CI;
cil =reshap im(CI,M,N);
x=1;
if (i==Cover im)
C=mod (numel (Dig) ,h)%if the last image will be not fully

embedded
end

75

for r=1:C
group= cil ((x-1)*n+l:x*n); %get n pixel group from cover image
[em group]=embed (group,Dig(h),n); %send to embedding function
cil ((x-1)*n+l:x*n)=[em group]; Sresave embedded group to cover
image to get stego image

h=h+1;

x=x+1;

end
ci2 =reshap im2(cil,M,N);
Stegos(:,:,1)=ci2;
tim(i)=toc%get the embedding time for each image
mem=memory %calculate memory for each image
end

A.2 Reshaping image as one dimensional array
function [S] = reshap im(Sec,m,n)
for i=1l:m

for j=1:n
im((i-1)*n+j)= Sec (i, J);
end
end
end

A.3 Converting secret image into binary stream

function [Bin] = conv2binary (S)

Bin=[];

for j=l:numel (S)
b = bitget (uint8(S(j)),8:-1:1); %get pixel as binary
[Bin]=[Bin b];

end

end

A.4 Converting binary message to (2n+1)_ary

function [Dig] = BTO2NP1(SS,L,k,n,H)
Dig=[];
for i=1:H
B= SS((i-1)*L+1:i*L)%get B block from binary message SS
sum=0;

suml=bin2dec (num2str (B))% convert to decimal
D=dec2base (suml, (2*n+1), k) % convert to k digits (2n+l)-ary
number

Dig=[Dig D];

end
end
A.5 Embedding function
function [em group] = embed(group, Dig ,n)

76

sum=0;
for i=1:n
sum =sum +double (group(i))*i;%calculate extraction
function (2.4)
end
t=mod (sum, (2*n+1)) ;
d=mod ((Dig)-t), (2*n+1)); S%calculate d as in(2.5)
if (d<=n && d>0)
group (d)=(group(d))+1l; Sfrom(2.5.2)
elseif (d>n)
group (((2*n+1))-d)=(group (((2*n+1))-d))-1; Sfrom(2.5.3)
end
em group= group;
end

A.6 Code showing results and stego images

disp ('===")
disp('stego image PSNR MSE Time Memory Capacity')
disp (' dB sec MB bpp ")
disp ('==")
set(gcf, 'name', ' Secret Image in case n=2"');

for i=l:Cover im
subplot(2,3,1) ; imshow((Stegos(:,:,1)));

[PSNR (i), MSE(i)]=My PSNR(Covers(:,:,1),Stegos(:,:,1));
title(["PSNR = ',num2strPSNR (i) 1);

sprintf ('$s%f%f%f%£f%f"', images{i}, PSNR(i),MSE (i), tim (i) ,mem, Bpp

sum_time=sum time+tim(i);

sum_psnr=sum psnr+PSNR (1) ;

sum mse=sum mse+MSE (1) ;

end%take the average for PSNR,MSE and Time
psnr_used=(sum _psnr- PSNR(Cover_im))/(Cover_im—l);
mse used =(sum mse - MSE (Cover im))/(Cover im-1);
tim wused =(sum time- tim(Cover_im))/(Cover_im—l);
psnr_set=sum psnr/Cover im;
mse set=sum mse/Cover im;

tim set=sum time/Cover im;

sprintf (' Average on fully used ')

mem, Bpp)
sprintf (' Average on fully set ")

sprintf ('%.2£%5.2£%.2£%.2£%.2f",psnr_set,mse set,tim set,mem,Bp

77

A.7 Calculation of PSNR and MSE
function [My psnr MSE] = My PSNR(I,J)
X double (I);
Y double (J) ;
MSE = sum((X(:)-Y(:))."2) / prod(size (X)) ;
My psnr = 10*1logl0O (255 * 255/MSE);

End

A.8 Screenshots of EMD Result in different values of n, L, k and cover image of

size 512%512 and 1024%1024.

A.8.1.a. Results in n=2, k=7, L=16, cover images =7,512%512 cover image of size

[~ > -
B Figure L: Secret Images in case

File Edit View Inset Tools Desktop Window Help o

NEdS | AAUDE £ 3|08 8D

PSNR = 521032 PSNR = 621012 PSNR = 52.1065

T —

PSMR = 521107 PSHR = 52.1133

PSNR = 52.1082

78

dB sec MB brp
Lena 52.10 0.40 7.1 481 1.16
Baboon 52.10 0.40 7.61 481 1.16
r6 52.11 0.40 7.81 481 1.16
Barbara 52.11 0.40 7.61 481 1.16
Monaliza 52.11 0.40 7.81 481 1.16
Tiffany s2.12 o0.40 7.81 481 1.16
cir1 52.11 0.40 7.81 481 1.16

A.8.1.b. Results in n=2, k=7, L=16, cover images =2, 1024%x1024 cover image size

u Figure 1: Secret Images in case n=2 = @g

File Edit View Inset Tools Desktop Window Help k]

NEde | AU DEL-G|0E | aD

PSMR = 52.1107 PSNR = 53.359

79

dB sec MB BEPF

=T T I |
Il
Il
1l

= el

52.11 0.40 5.72 493 l.1e

52.73 0.37 5.36 493 l.1e

A.8.2.a. Results in n=3, k=6, L=16, cover images =9, 512%512 cover image size

File Edit View Insert Tools Desktop Window Help

O8de FMAKONDEA- S 08 =@

PSHNR = 535788 PSNR=53.5616 PSNR=535737 PSNR=5357

PSNR =53.5757 PSNR =53.5658 PSNR =53.5861 PSNR =53.5757

PSNR = 53.5694 PSNR = 102.3162

AN

80

dB sec MB brp
Lena 53.58 0.28 6.38 486 0.93
Baboon 53.56 0.28 6.38 486 0.93
e 53.57 0.28 6.38 486 0.93
Barbara 53.57 0.28 6.38 486 0.93
Monaliza 53.58 0.28 6.38 486 0.93
Tiffany 53.57 0.28 6.8 486 0.93
cirl 53.55 0.28 .38 486 0.93
Cameraman 53.58 0.28 6.38 486 0.93
Liza 53.57 0.28 €.38 486 0.93
gag 102.32 o0.004 0.17 486 0.93

33.57 0.28 6.38 486 0.93

A.8.2.b. Results in n=3, k=6, L=16, cover images =3, 1024%1024 cover image size

Bl Figure 1: Secret Images in case n=3 |Eu

File Edit View Inset Tools Desktop Window Help o

NS | MARADUDEL- S| 0B =D

PSNR = 53.5701 PSNR = 53.5801 PSHR = 59.5982
= = - -

L

81

dB sec MB BEE
Lena 53.57 0.8 431 495 0.93
Baboon 53.58 0.26 £.31 495 0.93
F6 59.60 0.07 3.80 495 0.93

53.57 0.28 4.31 4585 0.83

A.8.3.a. Results in n=4, k=11,L.=32, cover images =11, 512%X512 cover image size

W T T o |
e'! i Images in case n- P =
File Edit View Inset Tools Desktop Window Help k]

NS L RaODEL-A/0B a0

PSNR = 546577 PSNR =546521 PSNR=54673 PSNR=546513

PSNR = 54 6681

82

dB sec MB bpp
Baboon 5¢.65 0.2 4.66 450 0.79
P16 54.67 0.22 4.66 490 0.79
Barbara 54.65 0.22 4.66 490 0.79
Monaliza 54.67 0.22 4.66 4% 0.79
Tiffany 54.67 0.22 4.66 490 0.79
cirl 54.68 0.22 4.66 4% 0.79
Cameraman 54.68 0.2 4.66 490 0.79
Jug 54.65 0.2 4.66 490 0.79
House S4.67 0.2 4.66 4% 0.79

A.8.3.b. Results in n=4, k=11, L=32, cover images =3, 1024%1024 cover image

size

r 5
Bl Figure 1: Secret Images in case n=4 E@ﬁ

File Edit View Insert Tools Desktop Window Help N

NS [AN UDEL- (G0 nD

PSR = 54.6621 PSMR = 54 6669

PSNR = 55.906
- |

&3

dB sec MB BEP
Lena s4.66 0.22 3.02 4%7 0.79
Baboon s4.67 0.22 3.02 497 0.79
Fl6 s5.91 0.16 2.69 497 0.79

A.8.4.a. Results in n=5, k=19,L.=64, cover images =12, 512%X512 cover image size

- Figure 1: Secret Images in case n=5

File Edit View Insert Tools Desktop Window Help]

Ddde | | RN EA- 2|08 aD

PSNR = 5655238 PSMNR =555233 PSNR =555277 PSHNR = 555405

e

&,

PSMR = 555371 PSMR = 55.5408

PSMR = 57.5717

84

ztego image FPSHNER MSE Time Memory Capacity
dB zec MB bpo

A.8.4.b. Results in n=5, k=19, L=64, cover images =3, 1024%x1024 cover image
size

n Figure 1: Secret Images in case n=5 o S

File Edit View Insert Tools Desktop Window Help k]

Odde | b | RAOTDEMN- S| 0E =D

PSNR = 55.5266 PSNR = 55.5378 PSNR = 556758
; ! . T —

85

dB sec MBE BEE
Lena 55.53 0.18 2.18 500 0.69
Baboon 55.54 0.18 2.18 500 0.69
F16 ss.es 0.17 2.01 500 0.69

A.9 Extraction phase

options.Interpreter = 'tex';
options.Default = 'Yes';
gstring = 'Do you want to extract data?';
choice=questdlg(gstring, '"EXTRACTION', 'Yes', 'No',options);
switch choice
case 'Yes'

for j=1l:Cover im

Stegosl(1l,:,Jj)=reshap im(Stegos(:,:,J),M,N);
end

[secret message]= EXTRACTION(Stegosl,k,n,H,L); %get binary
stream from the EXTRACTION function

v=1;

for i=1:M*N

bmess=secret message ((v-1)*8+1:v*8); %get 8 bits block from
extracted binary stream

a=bin2dec (num2str (bmess)); %convert to decimal

d msg=[d msg al;

v=v+1l;
end

secret im=reshap im2(d msg,M,N); Sreshape d msg as 2

dimensional array

set (gcf, 'name', ' Extracted Secret image');
imshow (uint8 (secret im)); S%show the Extracted Secret image
case 'No'
break;
end

A.10 Extraction function

function [B msg]= EXTRACTION(Stegos,k,n,H,L)
secret msg=[];
B msg=[];

86

R=(2*n+1) ;
for i=1:H

for j=1:k

x=(1-1) *k+7;

group=Stegos ((x-1) *n+l:x*n),; %Sget n pixel group from stego
image

[secret]=Extract (group,n); %get k digits
secret msg=[secret msg secret];

end

secret msg;

sum=0;

E=numel (secret msqg);
for t=0:E-1

secret msg(E-t);

sum= sum+ (secret msg(E-t)) *R"t;Sconvert to decimal

end

A=dec2bin(sum,L); %convert to binary
B msg=[B msg A];

secret msg=[];

end

end

A.10.1 Extract function

function [secret msgl]=Extract (group,n)
sum=0;

for i=1l:n

sum = sum + double(group(i))*i; Scalculate extaction

function as in (2.6)

end
secret msgl=mod (sum, (2*n+1));
end
A.11 Reshaping secret image as two dimensions

function [stego] = reshap im2 (Covers,M,N)
for i=1:M
for j=1:N
stego (i, j)=Covers((i-1) *N+7j);
end
end
end

87

Appendix B: GEMD Algorithm

B.1 The Main program

[}

% This program was written by Om Essad M.Lamiles in 2015-2016
for GEMD algorithm [5] and its functions

clc;

clear all ;

sum _psnr=0;sum mse=0; sum time=0;
images={'Lena', 'Baboon', 'F16', 'Barbara', 'Monaliza'
,'Tiffany','Girl'};%cover images used in the program
addpath('cover_set/');addpath('secret_set/');

img name = 'P';sec name='S';

M=512; N=M;

d_msg=[1;

n=input (' Input n: the number of pixels in a group ');
L=n+1;

C=floor ((M*N) /n); %calculate C as in (3.3)
Bpp=(n+1l) /n%calculate bppew as in (2.13)

sec = imread([sec _name, '',numZ2str(l) '.jpg'l);

S =reshap im(sec,M,N); Sreshape secret image as one
dimensional array

[Bin]= conv2binary(S); %convert each pixel of secret image to
binary

S _size=numel (Bin)

H=ceil (s size/L) %calculate H as in (3.1)

Cover im =ceil (H/C) %calculate N as in (3.2)
Ss_size=numel (Bin)

SS=[Bin zeros(l, (L-(mod(s_size,L))))]%last block padded by r
zZeros

Covers = uint8(zeros (M,N,Cover im));

Stegos = uint8(zeros(M,N,Cover im));

[Num]=GET B(SS,L,H);

h=1;

for i=1l:Cover im

CI = imread([img name, '',numZstr(i) '.tif']);

tic% starting of timer to calculate embedding time
Covers(:,:,1)=CI;

cil =reshap im(CI,M,N);
x=1;

if (i==Cover im) %if the last image will be not fully embedded

C=mod (numel (Num) ,h) $if the last image will be not fully
embedded
End

for r=1:C
group= cil ((x-1)*n+l:x*n); %get n pixel group from cover image

88

[em group]=GEMDembed (group,Num(h),n); %send to embedding
function

cil((x-1)*n+l:x*n)=[em group]; Sresave embedded group to cover
image to get stego image

h=h+1; x=x+1;

end

ci2 =reshap im2(cil,M,N);

Stegos(:,:,1)=ci2;

tim(i)=toc%get the embedding time for each image
mem=memoryscalculate memory for each image

end

B.2 Reshaping image as one dimensional array

function [S] = reshap im(Sec,m,n)
for i=1l:m
for j=1:n
im((i-1) *n+j)= Sec(i,]j):
end
end
end

B.3 Converting secret image into binary stream

function [Bin] = conv2binary (S)

Bin=[];

for j=l:numel (S)
b = bitget (uint8(S(j)),8:-1:1); %get pixel as binary
[Bin]=[Bin b];

end

end

B.4 Dividing binary message to (n+1) bit blocks

function [Num] = GET B(S,L,H)
Num=[];
for i=1:H
B= S((i-1)*L+1:1i*L);
d=bin2dec (num2str (B)) ;
Num=[Num d];
end
end

B.5 Embedding function

89

function [em group] = GEMDembed(group,Num,n)

sum=0;
for i=1:n
sum = sum + double(group(i)) *((2"1)-1); %calculate
extraction function(2.7)
end
t=mod (sum, (2" (n+1))) ;
d=mod (Num-t, (2" (n+1))),; Scalculate d as in(2.8)

if (d==2"n) R=1; %step5 in GEMD embedding algorithm

elseif (d<(2”n)) R=2; else R=3;

end

switch R%step6 in GEMD embedding algorithm

case 1
group (n)= group (n)+1l;group(l)= group(l)+1;

case 2 d=dec2bin(d, (n+l)); %convert d to binary(d, d,.: ...do),
sized n+l bits
for i=0:n-1

1if ((d(i+1l)=="1")&&(d(1+2)=="0"))
group (n-i)=group (n-1i) -1;
elseif ((d(i+1l)=="0")&&(d(i+2)=="1"))

group (n-i)=group (n-i) +1;
end
end
case 3 d=(2"(n+1l))-d; b=dec2bin(d, (n+l)); S%Sconvert d to
binary(d, dy-1 ...dg), sized n+l bits
for 3j=0:n-1

if((b(3+1)=="1")&& (b (3+2)=="0"))
group (n-J)= group(n-j)+1;
elseif ((b(j+1)=="0")&& (b (3+2)=="1"))
group (n-j)= group(n-j)-1;
end
end
end

em_group= group;
end
B.6 Code showing results and stego images

disp ('===")
disp('stego image PSNR MSE Time Memory Capacity')
disp (' dB sec MB bpp ")
disp ('==")
set(gcf, 'name', ' Secret Image in case n=2"');

for i=1:Cover im
subplot(2,3,1) ; imshow((Stegos(:,:,1)));
[PSNR (i), MSE(i)]=My PSNR(Covers(:,:,1),Stegos(:,:,1));

90

title(['"PSNR = ',num2str (PSNR(i))]);

sprintf ('%$s%f%f%f%f%f"', images{i}, PSNR(i),MSE (i), tim (i) ,mem, Bpp

sum_time=sum time+tim(i); %take the average for PSNR,MSE
sum_psnr=sum psnr+PSNR (1) ;
sum mse=sum mse+MSE (1) ;

end
psnr_used=(sum _psnr- PSNR(Cover_im))/(Cover_im—l);
mse used =(sum mse - MSE (Cover im))/(Cover im-1);
tim used =(sum time- tim(Cover_im))/(Cover_im—l);

psnr_set=sum psnr/Cover im;

mse set=sum mse/Cover im;

tim set=sum time/Cover im;
sprintf (' Average on fully used ')

mem, Bpp)
sprintf (' Average on fully set ")

sprintf ('%.2£%.2£%.2£%.2£%.2f",psnr_set,mse set,tim set,mem,

B.7 Calculation of PSNR and MSE

function [My psnr MSE] = My PSNR(I,J)
X = double (I);
Y = double (J);
MSE = sum((X(:)=-Y(:))."2) / prod(size (X)) ;
My psnr = 10*1ogl0O (255 * 255/MSE);
End

91

B.8 Screenshots of GEMD Results in different values of n, L and cover images

size 512%512 and 1024x%1024.

B.8.1.a. Results in n=2, L=3, cover images =6, 512X512cover image size

. _
u Figure 2: Secret Images in case n=2
File Edit View Insert Tools Desktop Window Help L

Odde k| AAOBDEN- 2|08 O

PSNR = 50.1704 PSNR = 50.1676 PSNR = 50.166
] R —

il

Stego image PSNR MSE Time Memory Capacity

Baboon 50.17 0.62 T7.61 450 1.50
Flé 50.17 0.62 7.6l 480 1.50

Barbara 50.17 0.62 7.6l 480 1.50

Monaliza 50.17 0.e2 7.6l 480 1.50

Tiffany 54.83 0.21 2.81 480 1.50

50.9¢ 0.35 &.80 480 1.50

92

B.8.1.b. Results in n=2, L=3, cover images =2, 1024%1024 cover image

size

File Edit View Insert Tools Desktop Window Help

VRO DE L2 0E am

PSNR = 50.1616 PSNR = 54.9473

Stego 1mage PSNR MSE Time Memory Capacity
dB sec MBE BEP

Lena 50.1¢6 0.62 4.61 491 1.50

Baboon 54.95 0.21 Fs9L 491 1..50

52.56 0.42 4.26 491 1.50

93

B.8.2.a Results in n=3, L=4, cover images =6, 512%X512cover image size

u Figure 1: Secret Images in case n=3
o —

File Edit View Inset Tools Desktop Window Help k]

stego image PSNER MSE Time Memory Capacity
dB sec MB bpp

Lema 50.79 0.54 5.84 484 1.33
Baboon 50.79 0.s4 5.84 484 1.33
F1e 5075 0.5 5.84 a8s 1.3
Barbara 50.77 0.54 5.84 484 1.3
Momaliza 50.78 0.5¢ 5.84 484 1.3
riffany 50.79 0.5¢ 5.84 484 1.3
cirt 99.31 0.008 0.20 484 1.33

94

B.8.2.b Results in n=3, L=4, cover images =2, 1024x1024cover image

size

-
B Figure L: Secret Images in case n-3
File Edit View Inset Tools Desktop Window Help N

Odde | | AKTCDEL- |2 |0H =D

PSNR = 50.7966 PSNR = 53.8009

dB sec MBE EFP
Lena 50.79 0.54 3.77 493 1.33
Baboon 53.80 0.27 2.84 493 1.33

95

B.8.3.a Results in n=4, L=5, cover images =7, 512%X512cover image size

File Edit Wiew Insert Tools Desktop Window Help
OQdde | AKODEAL-2|0H =D

PSHR = 51.0148 PSMR = 51.0015 PSHR = 51.0168

PSHRE = 51.0143

51.01 0.51 4.40 487 1.25

96

B.8.3.b Results in n=4, L=5, cover images =2, 1024%1024 cover image
size

oo scin et S i

File Edit View Insert Tools Desktop Window Help

RO DE LD 0E | a D

PSNR = 51.0045 PSMR = 53 2178

dB sec MB EFFP
Lena 51.00 0.51 2.92 496 1.25
Baboon 53.22 0.31 2.01 49¢ 1.25

51.00 0.51 2.92 496 1.25

97

B.8.4.a Results in n=5, L=6, cover images =7, 512%X512cover image size

n Figure 1: Secret Imagﬁ.iln'cas«é'nz

File Edit View Insert Tools Desktop Window Help &
Ddde | | RRARONVEA-3 0EH aDd
PSNR = 51.0861 PSMR = 51.0803 PSNR = 51.08

|

PSNR = 51.0834

PSNR = 51.0888

PSNR = 52 836

stego image PSNE MSE Time Memory Capacity
dB sec MB brp

rena 51.09 0.50 3.63 491 1.20
Baboon 51.08 0.50 3.63 491 1.20
F6 51.08 0.50 3.63 491 1.20
Barbara 51.09 0.50 3.63 491 1.20
Monaliza 51.09 0.50 3.3 491 1.20
riffany 51.08 0.50 3.3 491 1.20
ciri s2.84 0.34 2.19 491 1.20

98

B.8.4.b Results in n=5, L=6, cover images =2, 1024%1024cover image

size

B i S

File Edit View Insert Tools Desktop Window Help

DEde | M ARODEL- S |0E ad

PSNR = 51.0889 PSMR = 52 8463

dB sec ME BPF
Lena 51.09 (.50 2.02 495 1.20
Baboon 52.85 0.34 1.91 4495 1.20

99

B.9 GEMD Extraction phase

options.Interpreter = 'tex';
options.Default = 'Yes';
gstring = 'Do you want to extract data?’';

choice=questdlg (gstring, '"EXTRACTION', 'Yes', 'No',options);
switch choice
case 'Yes'
for I=1:Cover im
Stegosl(1l,:,I)=reshap im(Stegos(:,:,I),M,N);
End
[secret message]= EXTRACTION(Stegosl,H,n); %get binary stream
from the EXTRACTION function
i=1;
for r=1:M*N
bmess=secret message ((i-1)*8+1:1*8); %get 8 bits block from
extracted binary stream

a=bin2dec (num2str (bmess)); %convert to decimal
d msg=[d msg al;
i=i+1;

end

secret im=reshap im2(d msg,M,N); Sreshape d msg as 2
dimensional array
set(gcf, 'name',' Extracted Secret image in case n=2");
imshow (uint8 (secret im)); %show the Extracted Secret image
case 'No' break;
end

B.10 Extraction function

function [B msg]= EXTRACTION (Stegosl,H,n)
B msg=[];
for i=1:H
group= Stegosl((i-1)*n+l:i*n); %get n pixel group from stego
image
sum=0;
for j=1l:n
sum = sum + double(group(j)) *((2"3)-1);
end
t=mod (sum, (2" (n+1l))); %calculate extraction function as in
(2.9)

bin=dec2bin(t,n+1l); %convert to decimal
B msg=[B msg bin];
end
B msg;
End

100

B.11 Reshaping secret image as two dimensions

function [secret im] = reshap im2(d msg,M,N)
for i=1:M
for j=1:N
secret im (i,j)= d msg((i-1)*N+j);
end
end
end

Appendix C: Screenshots of EMD results using 512x512
and 1024x1024 cover image size

C.1 EMD results

n=[2 3 4 5];

PSNR EMD=[52.11 53.57 54.66 55.53];
pll=plot(n,PSNR EMD, '-bx','LineWidth',1.5);

title (' PSNR of EMD method for 512x512 and 1024x1024cover
images')

xlabel ('n'");

ylabel ("PSNR(dB) ") ;

grid on;
n Figure 1 l‘:'| (5T . S
File Edit View Insert Tools Desktop Window Help a3

Dode hAKODEL- 2 0EH a0

PSNR of EMD method for 512x512 and 1024=1024cover images
56 T I T I I

555

b5

54

PSNR(dB)

53 5

53

525

52
2

101

$MSE results

n=[2 3 4 5];

MSE EMD=[0.40 0.28 0.22 0.18]

pll=plot(n,MSE EMD, '-bx','LineWidth',1.5);

title (' MSE of EMD method for 512x512 and 1024x1024
cover images ')

xlabel('n'");

ylabel ("MSE") ;

grid on;
oo B
Breet TR oo
r Dl =
File Edit View Inset Tools Desktop Window Help k]

D8de | RANPDEL- |2/ 08| nDd

MSE of EMD method for 512512 and 1024x1024cover images
04 T T

$Embedding capacity BPP results

n=[(2 3 4 5];

bpp EMD=[1.16 0.93 0.79 0.69];

pll=plot(n,bpp EMD, '-bx','LineWidth',1.5);

title (' Embedding capacity of EMD method for 512x512 and
1024x1024cover images')

xlabel('n');

ylabel ('Embedding capacity (BPP) ");

grid on;

102

B Fiqure 1 E=REDEL X)

File Edit View Insert Tools Desktop Window Help
INdde | K AXKODIELL- 2| 0H a O

Embedding capacity of EMD method for 512x512 and 1024=1024cover images
1 ‘3 T T T T T

| ENEA N A T e T .

1

0.9

Embedding capacity (BPP)

0.8

oy

o

s Time consumption results

n=[2 3 4 5];

EMD 512=[7.81 6.38 4.606 3.97]

EMD 1024=[5.72 4.31 3.02 2.18]
pll=plot(n,EMD 512, '--rx','LineWidth',1.5);
hold on;

pl2=plot(n,EMD 1024, '-bx','LineWidth',1.5);
title('Time consumption of EMD method using 512x512 and
1024x1024 cover image size')

xlabel('n'");

ylabel ('Time (sec) ') ;

legend([pll, pl2], '512 x 512', '1024 x 1024");

grid on;
. - ’
File Edit View Insert Towels Desktop Window Help o

NEdse & ARAODEL- G 0B ad

Time consumption of EMD method using 512=512 and 1024=1024 cover image size
8 T T T T I

- ; 5 ; P --w—- 812 x 512

Time(sec)

[)

% Memory consumption results

n=[2 3 4 5];

EMD 512=[481 486 490 496] % values are obtained from memory
average in EMD and GEMD screenshots results in A.8 and B.8
EMD 1024=[493 495 497 500]

pll=plot(n,EMD 512, '--rx','LineWidth',1.5);

hold on;

pl2=plot(n,EMD 1024, '-bx','LineWidth',1.5);

title ('Memory consumption of EMD method using 512x512 and
1024x1024 cover image size')

xlabel ('n'");

ylabel ("Memory (MB) ") ;

legend([pll, pl2], '512 x 512', '1024 x 1024");

grid on;
- — i
Bl Fquel (o
I File Edit View Insert Tools ‘Dshap| Window Help LN
| - .)
NEEdS kAT DEL- || 0B ud
Memory consumption of EMD method using 512x512 and 1024=1024 cover image size
500 T T T T I
: : : P === 512 % 512
P e 1024 x 1024 [

498

| P S s S B

434 e e~ R A A

| G- NS ST SRS S —

430

Memary(MB)
%
Y
i

150 i i i i |
2

C.2 GEMD results

n=[2 3 4 5];

PSNR GEMD=[50.17 50.79 51.01 51.08];
pll=plot (n, PSNR GEMD, '--rx','LineWidth',1.5);

title (' PSNR of GEMD method for 512x512 and 1024x1024cover
images')

xlabel('n'");

ylabel ("PSNR(dB) ") ;

grid on;

104

[Fie Edt View Wset Toos Desop Window Hep |
DEdS A UDEL- G0 =D

PSNR of GEMD method for 512x512 and 1024=1024cover images

L B

51

50:9

508

507

506

PSNR(dB)

505

204

503

50.2

- i | i | i

n=[2 3 4 5];

MSE GEMD=[0.62 0.54 0.51 0.50]

pll=plot(n,MSE GEMD, '--rx', 'LineWidth',1.5);

title (' MSE of GEMD method for 512x512 and 1024x1024cover
images ')

xlabel('n'); ylabel ('"MSE'");

grid on;
I e =
'l File Edit View Insert Tools Desktop Window Help
NEde MRAXODEL- (08D
i
MSE of GEMD method for 512x512 and 1024=1024cover images
062 7 T T T T T
\ : : : : :
LY
hY
dy
\ ! ! ! ! :
- B E— — S s]
by 1]]] 1
N 1
b
)
Lt ! : ' :
\I 1 1 '
0.58 f----rmmnen g oo S E e e SR S SRR B SRR BRIR T .
i : : : :
5
\
[! : : :
D 5 e S S S O -
= : o ! : :
i
‘.
Y : : ;
' L I I '
5 1 N 1 1 1
| e LR R o T R R T T TR R =
! R : : :
By
: : S : :
T frosmme rosmene e~ i G o 7
08 | i | i Wi "
2 25 3 35 4 45 5
n

105

[)

% Embedding capacity BPP results

n=[2 3 4 5];

bpp GEMD=[1.50 1.33 1.25 1.20];
pll=plot(n,bpp GEMD, '--rx', 'LineWidth',1.5);
title (' Embedding capacity of GEMD method for 512x512 and
1024%x1024 cover images')

xlabel('n'); ylabel ('Embedding capacity (bpp) ');grid on;

File Edit View Insert Tools Desktop Window |Heip|
D8de [M RANDEN-2|0EH D

Embedding capacity of GEMD method for 512x512 and 1024=1024cover images
16 T T T T T

1.45

14

1.35

1.3

1.25

il
o
£
S
o
o
m
O
(o]
(5]
on
=
=]
=l
a
O
E
(i}

%$Time consumption results

n=[2 3 4 5];

GEMD 512=[7.61 5.84 4.40 3.60]

GEMD 1024=[4.61 3.77 2.92 2.02]
pll=plot(n,GEMD 512, '--rx', 'LineWidth',1.5);hold on;
pl2=plot(n,GEMD 1024, '-bx', 'LineWidth',1.5);
title('Time consumption of GEMD method using 512x512 and
1024x1024 cover image size')
xlabel('n');ylabel ('Time (sec) ") ;

legend([pll, pl2], '512 x 512', '"1024 x 1024"');grid on;

106

o

|| File

- Figure 1

Edit

View Insert Tools Desktop Window Help

D3 HdS | R ARDBDEL- |2 0E) =D

Time consumption of GEMD method using 512x512 and 1024=1024 cover image size
8

T T T T I
o : 3 E D| === E12 x 512
Mg : 3 ; P 1024 = 1024
R — e S e T .
My : ' . !
R : ! :
: Py § : :
- A - h“_“ ---------------------- .
A ! !
= ; Ty :
= :
R T S n -
E AR
= ! ""-._f‘_.
7| s o S N e S
H ‘ﬁh"'w
R e S -
2 i I i i i
% 25 3 a5 4 45 5
n

n=[2 3 4 5];

GEMD 512=[480

GEMD 1024=[491
pll=plot(n,GEMD 512, '--rx', 'LineWidth',1.5

hold on;

s Memory consumption results

484 487 491]
493 496 498]

pl2=plot(n,GEMD 1024, '-bx', 'LineWidth',1.5)
title ('Memory consumption of GEMD method using 512x512 and
1024x1024 cover image size')

xlabel ('n'");ylabel ('Memory (MB) ") ;
legend([pll,

[|

File

) ;

I3

pl2], '512 x 512", '1024 x 1024');grid on;

Edit View Insert Tools Desktop Window Help

k-l

NEAS | MARUDEL- S| 0E) D

fWemory(MB)

496

494

492

490

T R ol IUUPISENE MU— -
LT 7) TR P, W CIIERRREY SEREEETTRERY SUPSSRERRN SELERPRRES .
m -------- -: }E(:’:: ------ ;'----'-"""I' --------------------------- =
Ly .
T i i i i i
2 25 3 35 4 45

Memary consumption of GEMD methed using 512x512 and 1024x1024 cover image size
498

D[=== 512

x 512

4 —w— 1024 = 1024

--

107

