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ABSTRACT 

Price return is an interesting factor for many investors; however, it is expected that 

the price return credibility to be affected by the trading volume of any given market 

as a complex system. In this study, the Bohmian quantum mechanics is used due to 

the time correlation of return and volume of the stock markets under consideration to 

investigate the relationship between these variables. The obtained results show that 

the quantum potential functions in the same manner for trading volume as the price 

return, and confines the variations of the volume to a specific interval. The joint 

quantum potential as a function of return and volume, defined by the probability 

distribution function (pdf) of a given market, serves as a suitable instrument to check 

the credibility of the market at higher volumes. As a result of the behavior of the pdf 

and the corresponding quantum potential, the variations of the price return at higher 

volumes decrease as the trading volume increases, making the market more credible 

which is more pronounced in developed markets.  

Further, it is shown that, the distance between the quantum potential walls of price 

returns can be a proxy for the risk of the relative stock index. In other words, the 

investigation of different return frequencies shows that the market risk increases as 

the distance between the potential walls increases. The magnitude of the risk is 

different for different indices allowing the traders to decide on their portfolio 

selection and their investment horizon. Our results are consistent with the behavior 

of the developed and emerging markets.  

Keywords: Price return, Trading volume, Joint quantum potential, Risk 
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ÖZ 

Fiyat getirisi birçok yatırımcı için ilgi çekici bir faktördür; bununla birlikte, fiyat 

getirisinin güvenilirliğinin, belirli bir pazarın ticaret hacminin karmaşık bir sistem 

olarak etkilenmesinden kaynaklanması beklenmektedir. Bu çalışmada Bohmian 

kuantum mekaniği, söz konusu borsaların fiyat getirisi ve hacminin zaman 

korelasyonundan dolayı kullanılmıştır. Elde edilen sonuçlar, kuantum potansiyelinin, 

fiyat getiri olarak alım satım hacmi için aynı şekilde işlev gördüğünü ve hacmin 

varyasyonlarını belirli bir aralıkla sınırlandığını göstermektedir. Belirli bir pazarın 

olasılık dağılımı fonksiyonu (odf) ile tanımlanan geri dönüş ve hacim fonksiyonu 

olarak ortak kuantum potansiyeli, pazarın daha yüksek hacimlerde güvenilirliğini 

kontrol etmek için uygun bir araç olarak hizmet edebileceği gösterilmiştir.  

Olasılık dağılımı fonksiyonunun davranışı ve buna karşılık gelen kuantum 

potansiyelinin bir sonucu olarak, işlem hacminin artmasıyla, daha yüksek 

hacimlerdeki fiyat getirisinin değişmesi azalarak, gelişmiş piyasalarda daha belirgin 

olan piyasayı daha güvenilir kılmaktadır. Ayrıca, fiyat iadelerinin kuantum 

potansiyel duvarları arasındaki mesafenin, ilgili hisse senedi endeksi riski için bir 

gösterge olabileceği gösterilmiştir. Başka bir deyişle, farklı dönüş frekanslarının 

araştırılması, potansiyel riskler arasındaki mesafe arttıkça piyasa riskinin arttığını 

göstermektedir. Risklerin büyüklüğü, yatırımcıların portföy seçimine ve yatırım 

ufkuna karar vermelerine izin veren farklı endeksler için farklıdır. Sonuçlarımız 

gelişmiş ve gelişmekte olan piyasaların davranışları ile tutarlıdır. 

Anahtar Kelimeler: Fiyat getirisi, İşlem hacmi, Ortak kuantum potansiyeli, Risk 
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Chapter 1 

INTRODUCTION 

In this introductory chapter the background for the subject together with the 

importance and purpose of the study will be presented. Further, the basic research 

questions, objectives, terminology, definitions and limitations will be explained. 

Finally, the structure and organization of the chapters are outlined to give an 

overview to the reader.  

1.1 Background of the Study 

The field of finance dates back to 1960s. The fundamental theories of finance such as 

the efficient market hypothesis, the Capital Asset Pricing Model (CAPM), the option 

pricing method, and the modern portfolio theory were developed since then. One of 

the main objectives of this field is to study and forecast the evolution of stock 

markets. Stock markets, as one of the most complex interacting systems, cannot be 

investigated by a deterministic method accounting for each stock. The sources of 

complexities are due to the global economic conditions, systematic and non-

systematic risks, multiple agent interactions and numerous other factors. 

Consequently, a probabilistic and statistical model based on the stochastic calculus 

must be employed to describe such systems. For example, powerful approaches from 

statistical physics have been used for modelling the markets. In his pioneer work, 

Bachelier (1900), for instance, focused on pricing of options, using the random walk 

formalization of Brownian motion to obtain an appropriate differential equation for 

the probability distribution function of price changing. This innovative statistical 
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approach became the starting point for some alternative models. For example, 

Mandelbrot (1963) proposed a model which shows that the Levy or other stable 

distribution functions fit better with the real data distributions than the Gaussian 

ones. Also, Black and Scholes (1973) obtained a formula for the pricing of European 

call options and stocks on the basis of random walk probability distribution.  

Another important step dating back to eighties was the exponential increase of the 

high frequency electronic data availability due to the developing of new 

technologies. This, in turn, attracted more attention of several researchers that have 

conducted many studies in stock markets over years, where each of them focuses on 

a specific aspect of capital market behavior (Mantegna and Stanley, 2000). 

Beginning with several hypotheses the building blocks of the Econophysics as an 

interdisciplinary approach were initiated by applying the physical methods into the 

economics and complex financial markets. In this respect, both classical and 

quantum mechanical models were applied and during the past 20 years a lot of 

studies have been done and a collection of papers have been amassed in the literature 

that we will refer to some of them later. Using Econophysical models to solve the 

financial problems, does not imply that the investors must give up using classical 

analysis of financial economists in their activities and start to use Econophysics as an 

alternative approach. In fact, the methodology considered by financial economists is 

a top-down method (e.g., starting from a priori first principles) while 

Econophysicists rather are interested to work with empirical data or follow a bottom-

up approach. 

Due to the strong correlations and subsequent entanglement of the markets, quantum 

mechanics can be used as a suitable toolkit for studying the evolution of these 
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entangled systems. Khrennikov (1999), who is a pioneer in this area, applied 

Quantum Mechanics into modeling some financial systems. In a series of papers, 

Choustova (2002, 2004, and 2009) introduced a mathematical modeling based on 

Classical and Quantum Mechanics to investigate the dynamics of the financial 

systems. They argued that the real financial conditions are comprised of hard as well 

as soft components. The former component (e.g., industrial manufactures, natural 

resources, goods and services and etc.) may be governed by the classical 

Hamiltonian mechanics, while the latter (e.g., phycological behavior of traders, 

financial information and etc.) is described by Bohmian quantum mechanics. The 

important feature of Bohmian quantum mechanics is due to the notion of quantum 

potential which plays a significant role in applying this method to financial 

problems. It helps to describe the collective behavior of the complex financial system 

without exploring the detail interactions between its individual constituents. The 

models that are used in Econophysics are made on the basis of the efficient market 

hypothesis, where the traders are mostly rational and the information affects the 

prices randomly and follow the random walk process. However, the empirical 

investigations show that the situation is not compatible with the complete random 

walk statistics and deviates from Gaussian white nose into levy or any other fat-

tailed distribution.  

Using empirical data, Tahmasebi et al. (2015) employed the quantum potential 

method to describe the mechanism of the fluctuations of price returns. They found 

that the existence of vertical potential walls could be responsible for this issue 

through the time entanglement of the price return. In addition, their findings showed 

that the probability distribution function of the price return of the markets obeys a 

power law behavior indicating a scale invariance of the price return, which, in turn, 
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enables one to get information about the behavior of the emerging and mature 

markets. Very recently, Shen and Haven (2017) estimated the classical as well as the 

quantum potential function, using the empirical data for the commodity markets. 

They could confirm the existence of the potential walls and the scaling behavior of 

the return variations. Emphasizing different information contents of the classical and 

quantum potentials, which reflect the hard and soft market conditions respectively, 

they pointed out the correlation between these two potentials.  

In the present study, the collective behavior of some targeted emerging and 

developed markets is investigated and using the empirical data of the market indices 

it is shown that the quantum potential walls confine the variations of the price return 

into a definite interval where the distance between the walls can be a proxy for the 

risk of the respective stock index. Furthermore, by following the same logic adopted 

by Tahmasebi et al. (2015) and Shen and Haven (2017), which will be discussed 

later, the relation between trading volume and price return is explored by introducing 

the joint distribution function and corresponding joint quantum potential for these 

variables. The advantages of this study are a) proposing a quantitative indicator for 

risk measurement on the basis of distance between the quantum potential walls, b) 

introducing, for the first time, the joint quantum potential which allows the exploring 

the mutual interaction of price return and trading volume as well as their 

confinement mechanism for the stock markets.    

1.2 Purpose and Motivation of Study 

During the last few decades, the strong correlation between stock markets has 

increased, which inevitably motivated interested researchers to use the Bohmian 

quantum mechanics to investigate these markets. They have shown that there exists a 
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quantum potential which confines the price return variations into a definite interval. 

However, it is expected that the price return credibility to be affected by the trading 

volume for a given market. To study the relationship between the price return and the 

trading volume, we have extended the single variable quantum potential to the stock 

markets described by multi-variable quantum potential functions. This method is 

applied to some stock market indices and a bidirectional causality relation is obtained 

between their price return and trading volume.  

1.3 Research Questions 

This study aims to answer the following questions: 

1. How a quantitative risk indicator could be defined for the stock markets? 

2. Why short-term high price return and/or trading volume variations are not 

experienced?  

3. What is the joint pdf of these variables?  

4. Are these variables inherently independent? 

5. What is the impact of trading volume on the stock market credibility?  

1.4 Research Objectives  

The study seeks to model the dynamics of the stock markets as the complex and 

highly correlated systems. In this respect, the Bohmian quantum mechanics and 

inherent quantum potential function is employed to investigate the behavior of the 

price return and trading volume as two most significant variables. Further, the model 

is capable of proposing a quantitative indicator for different stock markets risks, as 

well.  

The methodology introduced in this research includes the multi-variable quantum 

potential function of stock indices using the empirical data to construct the joint 
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probability distribution function. As a special case, when one deals with trading 

volume and price return as two variables, one may study the mutual impacts of these 

variables for any given market.  

1.5 Limitations 

The study is using a novel mathematical framework based on quantum potential 

dynamics (Bohmian mechanics) to describe the dynamics of the stock market and its 

link with the trading volume. It builds the contribution on previous findings and a 

joint quantum potential is created to observe the joint pdf of price returns and trading 

volume. Although, the study attempted to present in a clear manner and construct the 

visualization of concrete quantum potential that could potentially explain the joint 

dynamics of the price returns and trading volume, there are some unavoidable 

shortcomings and limitations.  

First, due to data availability, the data used throughout the work is limited to 

relatively short period of time. Thus, the lack of data obviously reduces the reliability 

and accuracy of the results. Second, the study is confined to the quantum effects by 

employing the quantum potential of Bohmian quantum mechanics, however, a better 

look to the financial markets may be followed by considering the combination of 

classical and quantum potential effects. 

1.6 Key Terms and Definitions  

Price return: Percentage of logarithmic change of price for any given market during 

one day calculated by 𝑞(𝑡) = ln 𝑝(𝑡 + 𝑑𝑡) − ln 𝑝(𝑡), where 𝑞(𝑡), 𝑝(𝑡) and 𝑑𝑡 are 

the price return, price and time interval of the price change, respectively.  



 7 

Trading volume: Number of transactions or the number of traded shares for any 

given market during one day. Variations of the trade volume may cause the 

considerable of price changes. Increasing the trading volume for a stock market 

could be considered as an indicator of increasing of its liquidity. 

Credible market: The market in which the prices are more likely real as well as 

stable. This is an important property of any developed market.  

Risk: Amount of reduction of expected return to the actual one in an investment. 

Here, the difference between the upper bound and lower bound of quantum potential 

walls.  

Quantum potential: The term in Bohmian representation of quantum mechanics 

(which is obtained by inserting the polar form of the wave function in the 

Schrödinger equation) that guides the motion of quantum particles in a similar 

fashion as the classical particle moves on the deterministic trajectories under the 

Newtonian classical dynamins. In this study the quantum potential will governs the 

evolution of the price return or trading volume considered as the dynamical variables 

of the stock markets. 

Correlation: Quantitative statistical dependence referring to how close the random 

variables (i.e., today and prior day prices in the case of stock markets) are. In the 

case of strong correlation, we will deal with the entanglement concept as the 

signature of the quantum behavior of the stock markets.   
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Entanglement: The quantum state of each particle in an entangled system of two 

particles, even separated by a relatively large distance, must be considered as a 

whole and cannot be described independently. In other words, the existence of two 

particles expressed by a single wave function depends on each other.  

Probability distribution function (pdf): The probability function of each of the 

values of a random variable (in the case of a discrete variable) or the probability 

function of a variable being located in a specified interval (in the case of a 

continuous random variable). 

Joint probability distribution function: The simultaneous probability distribution 

of two random variables in a specific domain. In this study, the probability 

distribution of price return and trading volume as two important variables of the 

stock market are jointly pointed out. 

White noise (Gaussian) distribution: A white (Gaussian) noise is a statistical 

process with pdf equal to that of the normal distribution. Its mean value is zero and 

the variables are completely random and uncorrelated at different times. It denotes 

the behavior of efficient markets.  

1.7 Disposition 

In chapter 2 the literature regarding the theoretical and empirical studies on stock 

markets modeling will be reviewed. In chapter 3 the research data and methodology 

applied to this research work will be proposed. In chapter 4 results and discussions 

will be presented. Chapter 5 will be devoted to conclusions, remarks and possible 

future studies. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

In this study, the literature of theoretical framework together with empirical 

foundations regarding the stock markets is reviewed by considering finance and 

Econophysics articles and books. Most important theories are discussed with relative 

empirical studies. Furthermore, several studies regarding the relationship between 

price return and trading volume are also referred. 

2.2 Theoretical Background 

In recent years, the new approaches in the field of finance have focused on the 

complexities of financial markets. Given the weaknesses of traditional portfolio 

theories and the efficient market hypothesis, and the increasing decline in their 

acceptability, these new approaches have been discussed among researchers in this 

field. Reducing the acceptability of the aforementioned theories is due to the 

complexity of the real world and the impact of various economic factors, individual 

and social psychology and etc., on financial markets. Also, these traditional theories 

of portfolios and the efficient market hypothesis are not able to answer the questions 

of researchers about the possibilities of arbitrage pricing of financial assets, the 

impact of information on the stock prices, and so on. The results of number of 

researches (Rozeff and Kinney, 1976; Harris and Gurel, 1986; Hirshleifer and 

Shumway, 2003) conducted in developed markets show that traditional theories are 

not appropriate approaches for illustrating the complexities of financial markets in 
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the third millennium, and investigating financial phenomena needs more advanced 

approaches that embody behavioral science and psychology in this field. The results 

of these researches indicate that the interpretation of the capital market in the real 

world is different and complex with what Fama and his associates are proposing in 

the efficient market hypothesis. In other words, operating in real markets are much 

more complex than forming of such a simple theories and models. Despite all the 

efforts made to model the financial markets, reaching a unified theory to investigate 

the dynamics of the financial markets is still an open debate. In the following 

sections, some important theories and methods for governing the dynamical 

evolution of financial markets are discussed. 

2.2.1 Efficient Market Hypothesis 

Efficient Market Hypothesis (EMH) was initially formulated by Fama (1965, 1970) 

and was later formalized by Samuelson (1965), and it may be the most well-known 

hypothesis in finance theory under debate. The simplicity of this hypothesis (for 

example, rational investors, normal distribution of returns) led to new mathematical 

models attempting to clarify the mechanism of price formation, by the analysis of the 

extensive literatures that followed. Most of the models assume completely rational 

investors with an unbiased behavior capable of incorporating all new information 

entering the market, completely and immediately. As a result, available information 

on the market determines the price levels, and the new information entering the 

market leads to changes. Due to the random nature of the new information arrival, 

price changes will be random as well. Therefore, stochastic processes can model 

price changes. Bachelier (1990) proposed such an approach for the first time that was 

followed by many other authors. Shiryaev (1999) and Mantegna and Stanley (2000) 

present a detailed discussion on the history of asset price stochastic models. This 
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paradigm studied the utilization of deterministic models in assessing the financial 

series of price dynamics, as the financial price series dynamics (volume, price, 

number of transactions) is like a random process characterized by the unpredictable 

nature of future outcomes. Critics have constantly scrutinized EMH since its 

introduction, both empirically (Malkiel, 2003) and theoretically (LeRoy, 1976). 

However, according to Fama (1970), EMH critics can be summarized within the 

underlying price formation model critics. Thus, in case of no consensus on a model 

describing the mechanism of price formation, the theory cannot be tested 

competently. However, a limitative theoretical framework and irregular financial 

time series have led to heavy criticism toward the EMH validity. It was mainly 

argued that a martingale model is not capable of explaining different irregularities 

including high volatility, irregular returns or the financial bubbles development. 

Some experimental research (Cutler et al., 1989; Biondo et al., 2013) demonstrated 

that financial price series dynamics cannot always be explained by random 

procedures and also, the changes in prices are not invariably stochastic. 

Many theoretical and empirical debates are inferred from the financial time series 

statistical analysis that do not let the martingale model to be a proper solution to 

describe the mechanism of price formation. It is almost evident that the price returns 

distributions for asset cannot be Gaussian for high intervals (over a week); however, 

this might not be the case for lower intervals. Mandelbrot (1963) warned about fat 

tails persistence in return series and suggested that high price variations (>5%) can 

often be explained through a distribution with Gaussian nature. He demonstrated 

price variations are unexplainable through processes with normally having stable 

nature, except by Pareto-stable procedures or α-stable Levy procedures and argued 

that processes governing the returns distribution may have a local Gaussian nature. 
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Many other authors, including Fama (1965) demonstrated empirically that fat tails 

exist in financial return series distribution. Subsequently, many models emerged that 

described the financial returns dynamics principally on the basis of the assumption 

that power law is dominant on the distributed price returns. Jondeau et al. (2007) 

presented a comprehensive view of the references on non-Gaussian modeling of 

price returns. Mandelbrot (1967) proposed fractals and fractal Brownian motion for 

the first time to model the financial returns long-term dependency— is frequently 

lead to stable processes, thereby, called procedures with memory. He demonstrated 

that financial time series with an irregular nature are scale invariable, following a 

behavior with fractal nature. These variations are similar for different scales, and 

their statistical features are similar without considering the scale of the series. The 

alternative to the EMH, the Fractal Markets Hypothesis was proposed by Peters 

(1994) showing the importance of investment horizon and information importance in 

investor’s performance. He argued that liquidity is the major impetus of equilibrium 

in market, acting like a surrogate to efficiency. 

From an economic perspective, Grossman and Stiglitz (1980) argued that EMH is 

not sustainable, because efficiency signals no information costs that would finally 

cause indifference toward collecting financial information. Instead, they suggested 

that while comparing two contrasting markets (for example, futures vs. spot), 

efficiency should be considered in relative terms. LeRoy and Porter (1981) and 

Shiller (1981) showed high volatilities in returns unjustifiable through the dividends 

changes and inferred that models with rational behavior of investor cannot explain 

the volatility. Lo and Mackinlay (2001) suggested that through a competitive 

advantage (for example, financial innovation, superior technology, higher quality of 

information), the market can be beaten over limited time periods. If such incentives 
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are taken into consideration for financial innovation, more flexible predictive models 

are created. Various financial markets irregularities were studied by Malkiel (2003) 

Rubinstein (2001), and Ball (2009) (for instance asymmetry of information, market 

momentum, seasonality, mean reverting, effects of day of the week, volatility 

clustering) in an EMH compatible manner. They argue to describe rationality less 

restrictively, and even argue that several types of rationality exist that if one 

considers non-uniform distribution of information across market participants, it is an 

acceptable assumption. 

Lo and MacKinley (2001) considered EMH as the simplified version of infinit 

possible models. The answer may be shifting from EMH framework to models with 

more flexible and less confining nature supporting efficiency as well as predictability 

to some extent. Campbell et al. (1997) demonstrated that even within the perfectly 

rational agents in modern economic theory, certain degrees of predictability can be 

existed in dynamics of financial asset prices. Elements affected by the varied 

conditions of market and business atmosphere such as structure of market, costs of 

trading, and investors’ demands can lead to certain degrees of predictability. They 

emphasized that in order to offset the risk, investors are eager to adopt a degree of 

predictability is necessary. 

2.2.2 Behavioral Finance Theory 

The market participants’ biased behavior is mostly claimed to be the cause of 

financial markets inefficiency. In the literature, many sets of such deviations from 

hypothesized rationality have been studied; outside of the EMH framework, there 

exists a model for almost any financial irregularity putting that on the bias of a 

particular investor. This led to the development of Behavioral Finance Theory (BFT) 

introduced by Shiller (1990). In order to review the investors’ decision-making 
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procedure -using the scientific research standards to the investors’ behavioral and 

socio-cognitive biases-, and its effect on conditions of market, behavioral models 

combine human psychology elements with neoclassical economics elements. 

According to the BFT, risk aversion, strategy development, and allocation of 

resources are influenced by cognition and preferences. 

Barberis and Thaler (2002) argued that the two major reasons for market inefficiency 

are: 1) the limited power of arbitrage leading to conditions that the market price is 

not reflective of its basic features, although profit generating opportunities do not 

exist and 2) the biased investors’ behavior leading to seemingly unreasonable 

decisions. De Long et al. (1990) used a model of overlapping generations in which 

irrational noise investors (trading on the basis of short-term shocks in information) 

exist to explain the financial anomalies like mean reverting, volatility clustering, and 

sub-evaluation of closed mutual funds. The authors attribute the irregularities to poor 

financially educated investors. The difference of prices from their basic values can 

be resulted and maintained by their apparently irrational behavior. Because of the 

short-term horizon and risk limitations the arbitrageurs may adopt as their own 

resources, such phenomena may not be offset by them, because their resources are 

borrowed in most of the times and the owners are looking for limited risks and short-

term returns. The mistakes of the irrational investors cannot be offset by rational 

investors at all times. 

De Bondt and Thaler (1985) investigated the investor’s inclination to overreact to 

new information and demonstrated that financial assets with the highest return in the 

previous periods are usually of lower return in subsequent time span and vice versa. 

Barberis et al.  (1997) deducted that investors emphasize more on the latest price 
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values and give negligible importance to causation determining their dynamics. 

Haugen (1996) suggested that interim overreactions caused by market momentum 

result in mean reverting episodes in distant future, because the markets find the 

disequilibrium and correct the prices. Chan et al. (1997) demonstrated that investors 

absorb and process the newly-entering formation to the market gradually, so that the 

under/over evaluations periods become longer for prices. A partial explanation for 

the slow integration might be the persistent investors’ priorities and the retarded 

variations in prospects. As Daniel and colleagues (1998) emphasized, the nature of 

information is the other important factor. They deducted that investors show higher 

reactions toward private information but underreact to public data and information. 

Smith et al. (1988) made a simulation of the environment of a financial market in 

controllable conditions of laboratory and determined financial bubbles leading to the 

market crash in about two thirds of the cases. They emphasize that the deviation 

between the expected price and its prime value is continued even in cases with 

skillful investors, but the gap and investors’ experience are negatively correlated, 

showing a learning-by-doing procedure. Hubermann and Regev (2001) demonstrated 

that pessimism and optimism could be very contagious, causing a rapid increase of 

price variations over short time interval. Shanthikumar (2004) demonstrated that the 

small investments by the household are more prone to adopting a deviated treatment 

in comparison with the skilled investors of a strongly and soundly financial 

education. 

However, Haigh and List (2005) argued that the latter individuals show more 

noticeable distortions on certain behaviors. However, such models are constrained to 

be used to describe the phenomenon they are developed for- that are very specific 

market architecture cases and investors’ conduct- and they cannot present a more 
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comprehensive perception of the financial systems functioning. Whilst BFT presents 

models explaining particular irregularities in financial markets, a major restriction of 

such an approach is the fact that it does not present a comprehensive model capturing 

the entire financial ecosystem facets. 

2.2.3 Theory of Algorithmic Complexity in Stock Markets 

Algorithmic Complexity Theory (ACT) was presented by Kolmogorov (1965) and 

Chaitin (1966) postulating that the time series can be considered unpredictable, if the 

information volume is not compressible in a more compressed format. That is, the 

most competent algorithm reproducing the series is of the same length of the series, 

itself. Considering that one major implication of EMH is the fact that no one can 

predict the future price values on the basis of historic series, the efficiency can be 

interpreted from a complexity hypothesis viewpoint. Interlink of market efficacy and 

unpredictability of return is that a time series with aggregated non-excessive 

information on economy (similar to EMH theory) is of the same features as a series 

generated randomly. The significant volume of information embedded in financial 

prices leads to challenging identification of a subgroup belonging to an algorithm 

detectable in series that might be utilized for prediction of prospective implications.  

Therefore, the price volatility prediction challenge is due to the plentiful data and 

information and not due to the absence of information. The market is not fully 

efficient if new information causes non-random changes in prices, but this 

adjustment exactly grants us the chance to reach the price series entered by the new 

market information. Arbitrageurs exploit this incompetence as far as all new 

information is integrated by the market and it regains its efficiency. Patterns of 

trading are resulted by different size heterogeneous investor groups, accessibility of 

information and expertise. In contrast to EMH schema, in which market assimilates 
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information freely and instantly, the worthy information is more costly in reality, and 

different time durations are required by investors to fully disseminate the data. 

Therefore, the assimilation of information is a step-by-step data inflow illustrating 

only partial market information instead of being an instantaneous process. 

Ivkovic and Weisbenner (2005) argued that trading conduct can be considered as the 

implication of the investors’ financial education and expertise, that is not resulted by 

any behavioral or psychological bias. Coval and Moskowitz (2001) and Malloy 

(2005) demonstrated that locally trading investors reach higher returns compared to 

the investors trading across divers’ geographic locations. Also, Kacperczyk et al. 

(2005) demonstrated that mutual funds managing portfolios were focused in sections 

in which they are expert (an informational benefit) with greater returns compared to 

the ones with diversified portfolios in multiple sections. These experimental 

outcomes demonstrate the behavioral approach utilization on the basis of information 

theory. In classic economics theory of information on the basis of investors’ 

rationality (presented by Grossman and Stiglitz, 1980), the investors are assumed to 

correctly evaluate the information, and thereby, ready for paying a fixed amount to 

receive its access, but the main limitation of this hypothesis is the fact that the 

information process by the investors is not explained by the theory.  

The Shannon’s entropy theory (1948) describing the transmission procedure of 

information for systems of communication presented a more robust framework from 

this perspective. He developed a criterion to quantify the information received from a 

source by a system. A similar procedure is applicable for living organisms, such as 

financial markets investors. Chen (2005) presented the information interpretation as 

reduced entropy both mathematically (the case of Shannon entropy) and physically. 
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The physical costs of information seem to be closely related with the economic costs. 

This approach may define some of the major features of information analysis in the 

stock markets, e.g. in fact the cost of useful information is of higher. Additionally, 

the data amount assimilated by investors is constrained by the asymmetry level of 

information and volume of efficient information processing. A certain level of 

expertise formed over long time periods is necessary to understand the information, 

and the number of investors understanding the value of information has negatively 

correlated with it. An investor buying a company shares before its success, will 

receive higher returns than the one buying the shares of the company after the 

company is in high demands. Honge and Stein (2003) demonstrated that 

heterogeneity of the investors is obtained through level of financial wisdom and the 

cost paid by the investors to retrieve information. The authors emphasized that in the 

process of price formation, heterogeneity can play a decisive role. Although 

consumerized trading and financial service companies’ development led to 

significant decrease of cost of financial information, due to the more public access to 

information, its value also declined. 

According to empirical studies, in financial markets, price patterns are closely 

correlated with information processing patterns, emphasizing the link between 

behavioral finance and information theory. Chen (2003) demonstrated that most of 

psychological patterns show biological or physical constraints (for example, the 

needs for water and housing) or an evolutionary adaptation to informative analysis 

(for example, educating, and changes in strategy). This recent practice is within Lo’s 

(2004) proposed theoretical framework, i.e. that financial market might be 

considered from an evolutionary viewpoint in which certain investor species receive 
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more efficiency in processing of information and thus, while other species get 

extinct, they can survive in the financial ecosystem. 

2.2.4 Adaptive Markets Hypothesis 

While perfect rationality versus bounded rationality namely the essential premises of 

EMH and BFT, apparently makes them mutually incompatible, they sustain 

providing perceptions on the functioning of financial market at various time 

horizontals and scales. Scholars like Samuelson (1965), Malkiel (2003) and 

Khandani and Lo (2008) suggest that in the long run, all the uncertainties associated 

with the efficiency of market is eliminated. Because in the long run, the 

disequilibrium in prices is adjusted when irregularities tend to offset each other. In 

the long run, market consistently reaches to a phase composed of rational investors 

and efficiently processed information. Whilst in the long run, the description of 

financial markets is presented by EMH, BFT presents local short-term interpretations 

for functioning of markets. 

The Adaptive Markets Hypothesis (AMH) formalized by Lo (2004), presents a new 

solution for studying financial phenomenon through application of the foundations of 

evolution such as natural selection and competition for financial interaction. 

According to AMH, resource optimization conception in neoclassical theory is 

replaced by satisfaction concept which is a suboptimal resolution. The latest one is a 

flexible procedure resembling natural selection, which has been founded on 

consecutive trial and error stages until reaching the local equilibrium. The changes in 

conditions of market may finally cause changes in equilibrium circumstances. Lo 

(2014) made a comparison between markets and ecosystems consisting of different 

stakeholders with various structures and sizes where the returns resemble the 



 20 

nutrition resources. In this environment, food availability determines the market 

dynamics, which consequently specifies changes in the structure and number of 

current species. By analyzing the events leading to and resulted by the global 

financial crisis from 2008, Verheyden et al. (2013) identify the ecosystem elements 

that once making far from equilibrium, triggers a sequential impact that leads to 

appearance of certain types until reaching a new equilibrium. The efficiency degree 

changes are consistent with the financial market evolutionary interpretation over 

time. In the long run, information is processed efficiently by the markets until an 

exogenous disturbing agent disrupts the equilibrium. The investors should adapt to 

the new circumstances of the market until a renewed equilibrium is reached, and 

during the same process, when judged by past circumstances of the market, they may 

show an apparently irrational behavior. Once equilibrium is reached again, the 

investors become rational toward the renew circumstances of the market and the 

information is processed in an efficient manner. 

In AMH framework, both BFT and EMH are just very special states of boundless 

spectra of market prospects. Thus, financial markets may not be absolutely efficient 

of inefficient; instead due to the adjustment of the functional institutional, or 

structural features of market, their efficiency degree changes over time. The 

hypothesis is not completed yet and shows some inconsistencies in its concept. As 

Verheyden et al. (2013) pointed out, considering the fact that the investor species 

with certain biases in their behavior can survive the shock, natural selection and 

evolutionary theory cannot explicate the entire procedure of financial markets 

becoming efficient again after their being taken out of equilibrium. Although, AMH 

may not describe the entire financial systems functioning, it provides a more flexible 

context that allows application of more heterodox practices toward modeling the 
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dynamics of financial time series. As Segal and Segal (1998) emphasized, quantum 

effects can explain some of the anomalies in financial asset prices variations resulted 

by investors’ apparent unreasonable behavior. Haven (2003 and 2005) also use 

quantum theory to explain random procedures of financial market. 

2.2.5 Econophysics and Quantum Mechanical Method  

A complex system is constructed by many constituents interacting with each other. 

Financial markets could be looked as highly complicated systems. Broadly speaking, 

economics may be described as the science studying the procedure in which 

economic factors make efficient use of resources for production and distribution of 

services and goods. Mantegna and Stanley (2000) defined financial market as a 

complicated open system in which non-linear interactions of investors determine a 

behavior change (through integration of feedbacks). Like the mechanical systems, 

the financial markets’ functioning is governed by rules that remain unchanged over 

longer time periods. 

Scholars of other research fields attracted to the study of the statistical features of 

financial time series have focused on financial markets complexity, their dynamics 

uncertainty, and large volumes of financial information. While Econophysics is still 

deemed as an emerging interdisciplinary context combining mathematics, economy 

and physics, it uses elements of probability theory, chaos theory and statistical 

analysis to investigate the nature of economic phenomenon and markets functioning. 

Financial market is constantly evaluated, fed by the generalized electronic trading 

implementation, causes the collection of very massive financial information datasets. 

This phenomenon led to establishment and experimental verification of deterministic 

models in financial price dynamics. Many studies were carried out on the similarities 
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between economic and physical systems. As alternative approach to representative 

agent models including the studies on macroeconomic issues, Econophysicists 

proposed the methods on the basis of statistical concepts such as disordered systems 

and chaos theories in studying financial systems. It is approved that even in 

economic systems, techniques like extraction of mean property from the dynamical 

behavior of a system’s constituent parts are helpful. Mechanical physics models let 

the Econophysicists to investigate the total behavior of financial system without the 

need for detailed study of the behavior of their component parts in advance. Using 

concepts such as correlation effects, scaling theory, stochastic dynamics, self-

similarity and self-organizing systems, this can be done without the need for a 

definite understanding of the system functioning and structure at micro levels. 

In comparison with the physics principles and laws, stylized facts can be determined 

for economic and financial phenomena. Chakraborti er al. (2011) presented the 

volatility clustering and availability of fat tails which confirmed experimentally by 

several investigations. The other scholars including Pagan (1996), Guillaume et al. 

(1997) and Cont (2001) presented additional stylized facts (heavy tails and 

peakedness, slow decay of the autocorrelation and etc.). Gopikrishnan et al. (1999) 

examined the return distribution of Hang-Seng, S&P500, and NIKKEI indicators for 

various time intervals concluding that for time intervals less than four days, a power 

law with exponent equal to 3 governs the return distribution that shows the fat tails 

presence. The distributions follow a Gaussian convergence for frequencies over 4 

days. Pagan (1996), and Cont et al. (1997) concluded that even for lags of one 

minute, the autocorrelation function converges to zero rapidly, showing the lack of 

correlation between returns. The first author to emphasize the financial time series 
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heteroscedasticity was Mandelbrot (1963)- big changes lead to big price changes, 

while small changes lead to small price changes-, but Sornette (2003) made a 

comparison between this phenomenon and a phase transition launched by perpetual 

competition and mimetic behavior between investors. 

Thermodynamics and seismology ideas are utilized to interpret and define risk 

diversification, bubble formation, and asset price dynamics. Black and Scholes 

(1973) and Merton (1973) facilitated the conditions of pricing method which is a 

powerful technique in financial studies. In certain conditions, they demonstrated that 

the time evolution of the price of a financial option is defined using the heat 

diffusion equation. Sornette (2009) investigated the speculative bubble formation 

mechanics and the consequent market manias and deducted that these severe events 

are of a higher frequency than the one delivered by power law. Additionally, the 

causes leading to burst of financial bubble are endogenous to system and show 

systemic instability accumulation specified through mimetic behavior and, 

unrealistic and overoptimistic expectations of investors. Battiston et al. (2009) who 

used dynamic models to define individual risk development as coupled random 

procedures were partially in contradiction with the generic notion that diversification 

of portfolio leads to risk minimization. The authors inferred that when the risk 

sharing network complexity between people exceeds a certain threshold, the 

diversification affirmative effect is ignored. Instability of market is also increased by 

the increased complexity of financial instruments used. Due to adaptive nature of 

financial markets, the indices for well-timed detection of these events can be 

constructed. Sornette (2003) recorded the major market crashes episodes occurring in 

emerging and developed countries and concluded that these events can be predicted. 

Zumbach et al. (2000), Mailet and Michel (2003), and Negrea (2014) presented 
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indicators for estimating market crises. Weber et al. (2007) demonstrated that 

instantly after a major decline in market index, an Omori process (power-law decay 

of seismicity after an earthquake) is the best to describe the volatility. Additionally, 

Omori processes also describe the volatilities of the aftershocks, indicating the 

presence of a memory for the return volatility on various time horizons and its 

tendency to reproduce itself, which are the phenomena explicated in scaling theory. 

Investigation of financial phenomena using concept of quantum mechanics is a 

special research field within Econophysics. Financial markets are complicated 

systems in such framework, in which every investor interacts in the same way as the 

particles interacting in physical systems. As a result of uncertainties associated with 

financial market, instruments and advanced theories, statistical physics have been 

utilized for modeling the financial systems dynamics (For example, path-integral 

technique, perturbation theory, random matrix theory, differential manifolds). Meyer 

(1999), and Eisert et al. (1999) presented the application of overlaid financial 

functions and quantum cryptography to establish trading strategies, leading to 

formation of quantum game theory. 

In the Newtonian classical mechanics, a deterministic hypothesis is assumed in 

which the position of a particle at any given time t is determined exactly. The only 

use of such framework is for describing the financial asset price dynamics without 

volatility. Nevertheless, the position of a particle cannot be specified precisely in 

quantum mechanics. Alternatively, a probability space can be estimated for all 

possible positions of the particle at any given moment in time. This framework 

determines the financial markets framework more accurately, where uncertainty 

characterizes asset prices dynamics and only a probability can be assigned to a 
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certain event by the investors. Now, the comparison between the position of a 

particle and the price of financial asset (with non-null volatility) seems to be 

acceptable. Another major comparison can be the use of the same equations to define 

the financial and physical systems dynamics. Haven (2002) demonstrated that the 

equation of Black-Scholes-Merton for prices dynamics behaves as a special form of 

the Schrodinger’s quantum mechanics. Additionally, in a financial systems 

framework, the Heisenberg’s uncertainty rule holds as well, since price volatility 

(momentum), and price level (position) cannot be measured accurately, and 

simultaneously. 

Bohm and Hiley (1993), and Hiley and Pylkkanen (1997) investigated Bohmian 

mechanics and its results within the cognitive field of study. Segal and Segal (1998) 

suggested that quantum effects can explain the irregularities of changes in financial 

asset prices. Haven (2003 and 2005) applied the quantum principles explaining 

random procedures of financial market. Piotrowski (2003) and Piotrowski and 

Sladkowski (2004) have suggested alternative game theory models on basis of 

quantum mechanics to study financial system. Biological studies show that at a 

neuronal level, quantum mechanics may play a decisive role in the decision-making 

procedure. Khrennikov (2007) emphasized that social sciences can receive the 

formalism of quantum mechanics with possible profound results in the functioning of 

financial markets. Choustova (2007) applied Bohmian mechanics to develop a model 

describing the dynamics of a financial system, using the quantum potential concept 

which capturing the impact of investor’s behaviors and interactions. Dima et al. 

(2015) have presented a formulation to investigate the dynamical system volatility as 



 26 

well as a pricing procedure representative on the basis of heterogeneous groups of 

investors.  

Quantum physics basics are applicable if financial markets are deemed as 

complicated systems where investors interact each other similar to that of quantum 

particles interactions. The preference of a quantum-like model in contrast with a 

behavioral model in which investors’ cognitive and psychological profiles are 

required is the fact that all the micro level specifications of the system are 

represented at a macro level.  

2.3 Price Return and Trading Volume Relationship 

Investigating the relationship between trading volume and stock return has attracted 

the attention of many finance and economics researchers. The available evidence 

shows that some stock market studies have focused on stock price and its behavior 

over the time. However, due to the variability and non-stationary behavior of stock 

price, most researchers mainly focus on stock return, defined as the logarithm of the 

relative change of price (Campbell et al., 1993; Todorova and Soucek, 2014) rather 

than stock price or raw price return. When the trading volume of a stock market is 

concerned, different definitions are proposed by the relevant literature, including the 

number of shares traded (Ying, 1966; Hiemstra, 1994; Gervais et al., 2001), the 

number of transactions (Conrad, 1994; Ansary, 2012), and the turnover ratio (Lo and 

Wang, 2000). In the present work, the number of traded shares is used as a proxy for 

trading volume. 

In Karpoff's (1987) view, there are four reasons for the importance of discussing the 

relationship between volume and stock return as follows. First, the existing models in 
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the financial markets predict the volume-return relationships of the stocks according 

to the volume of the inputs into the market, the dissemination of information, the size 

of the market and the conditions of the transactions. Thus, exploring the relationship 

between trading volume and stock return may help distinguish and decide between 

different hypotheses proposed about the market structure. Second, for those studies 

that use a combination of volume and stock return data, it is important to know how 

these two are interrelated. Third, volume-return relation is critical to the debate over 

the empirical distribution of speculative pricing. Finally, the mechanism and 

modality of the relationship between trading volume and return have important 

implications for future market studies; where the price changes have a considerable 

impact on the volume of futures contracts.  

The correlation between trading volume and price return is widely studied and 

discussed by many authors. For example, Granger and Morgenstern (1963) 

conducting an empirical study and using the data from the New York Stock 

Exchange found that daily price changes has no relation with trading volume, both in 

absolute terms. Habib (2011) using OLS and GARCH models concluded that there 

exists no casual relation between volume and return for the Egyptian market. On the 

other hand, Campbell et al. (1993) and Wang (1994) have shown that the relation 

between volume and return is not a simple linear relationship; rather there exists a 

complex nonlinear relation between them. Podobnik et al. (2009) studied the 

behavior of volume changes and their relationship to price changes using the data 

recorded for the (S&P500) index and obtained a power law cross-correlation 

between them. Ausloos and Ivanova (2002) by generalizing the classical technical 

analysis and considering the trading volume introduced a mechanistic approach to 

predict the evolution of the stock markets. Ahmad and Sarr (2016), investigated the 



 28 

relationship between price return and trading volume using the monthly data of 

Muscat security market from 2009 to 2013. They concluded the existence of a 

significant interaction between trading volume and returns for this market. Using 

sequential arrival information hypothesis, Copeland (1976) illustrates the existence 

of at least a unidirectional causality between these variables, since the information 

dissemination does not evolve contemporaneously among market participants. 

Unidirectional relationship from volume to return has been acknowledged by 

Saatcioglu and Starks (1998) as well. The existence of bidirectional causality 

between return and volume is supported by Chen et al. (2001) and Chuang et al. 

(2009). 

Among the different approaches employed to study the behavior of the financial 

markets, two have been attractive for some other disciplines as well: approaches 

from Physics and Statistics. For instance, the starting point of investigating the price-

volume relations dates back to Osborne (1959) who modeled the stock price trend 

using a diffusion process and showed theoretically that the volume could affect the 

price variance. Mantegna and Stanley (2000) obtained new ideas about financial 

markets’ behavior by implementing statistical and physical methods. Chakraborti et 

al. [2011) and Chen (2015) applied the chaos theory to study the dynamics of a 

financial system. Moreover, Baaquie (2013) and Baaquie et al. (2014) investigated 

the basic concepts of economics based on the statistical mechanics, using classical 

potential and Hamiltonian dynamics. During the last decades, the correlation 

between the stock markets and their corresponding variables has increased to be 

inevitably entangled. This property and the collective behavior of the financial assets 

have persuaded researchers to use the quantum potential model taken from Bohmian 

quantum mechanics. Since the pioneering work of Khrennikov (1999), many 
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researchers have been engaged in this area. Haven (2004 and 2005), for instance, 

utilized the principles of quantum mechanics to describe the stochastic processes 

inherent in the financial markets. Similarly, Choustova (2008) used Bohmian 

quantum mechanics to construct a theoretical model for describing the evolution of 

the stock markets. Tahmasebi et al. (2015) showed that the entanglement between 

today’s and yesterday’s prices of stock markets implies the existence of quantum 

potential which confines the price return changes into a specific domain. Shen and 

Haven (2017) followed the same method by considering both classical and quantum 

potentials and concluded that, in addition to stock markets, there exist potential walls 

for commodity markets as well. The details of the Bohmian quantum mechanics, as 

the methodology of this research, will be presented in the following chapter. 
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Chapter 3 

DATA DESCRIPTION AND METHODOLOGY 

3.1 Introduction 

This chapter devotes to the date used in the study and describes a mathematical 

framework based on quantum potential dynamics, namely the Bohmian mechanics. 

The Kernel density function will be discussed together with the joint probability 

distribution. Then, the methodology will be introduced and explained in details. 

3.2 Data Description  

The data used in the present study were extracted from Thomson Router database for 

the Dow Jones Industrial Average (DJIA), the Standard and Poor's 500 (S&P 500), 

the Deutsche Boerse AG German Stock Index (DAX), Tokyo Stock Price Index 

(TOPIX) as the developed markets, and Shanghai Index (SSEC) as the emerging 

market indices, from January 2010 to December 2017, to investigate the collective 

behavior of their price returns and its possible link with the trading volume. 

3.3 Kernel Density Estimator 

Kernel density estimator is used as a data smoothing technique. Different functions 

and packages are introduced in this respect. Some free parameters such as, variance 

and mean value in Gaussian Kernel, are used to adjust the distribution optimally with 

the given data. These parameters have significant influence on the smoothing 

procedure. Here we use the standard Gaussian Kernel and adjust its variance as the 

single parameter named as bandwidth parameter in such a way that the 

corresponding pdf to be optimally smoothed and close to the true probability 
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distribution function. By this smoothing procedure we consider the impact of the 

neighboring discredited cells on the bin under consideration.  

3.4 Methodology 

Application of the Quantum mechanics to different fields such as: psychology 

(Zimmerman, 1979; Schwartz et al., 2005; Bruza et al., 2015), cognitive sciences 

(Busemeyer and Townsend, 1993; Bruza et al., 2009; Busemeyer et al., 2014), 

microbiology (Bridson and Gould, 2000; Arndt et al., 2009; Trevors and Masson, 

2011) and genetics (Jorgensen, 2011; Asano et al., 2013) are explored by different 

studies. Its application to finance and economics known as Econophysics is another 

harvest of this method. A sub-field of Econophysics is known as the Quantum 

Finance in which the financial subjects are investigated using the quantum-like 

models. A frequently used approach in this area to model the stock market dynamics 

is the Bohmian quantum theory. In this section, we describe how Bohmian quantum 

mechanics helps us to understand the dynamics of stock markets.  

David Bohm (1952), presented a theory that is known as Bohmian quantum 

mechanics. The dynamical equations governing the evolution of the system in 

Bohmian quantum mechanics is obtained by inserting the wave function      
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where, 𝑅(𝑞, 𝑡) and 𝑆(𝑞, 𝑡)	represent the amplitude and the phase of the wave 

function, respectively. ℎ, 𝑞	and 𝑚 are the Plank constant, position and mass of the 

particle, respectively. In equation 2, in addition to classical potential, 𝑉, there is 

another potential: 
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,                                                     (3) 

which is called the quantum potential. 

In applying the above method to a given stock market, 𝑞(𝑡) denotes the price return, 

𝑚 and ℎ indicate the market value and the uncertainty in price and price change, 

respectively, and 𝑆(𝑞, 𝑡) represents the phase of the market quantities. When a single 

market is concerned, 𝑚 and 𝑆(𝑞, 𝑡)/ℎ are assumed to be constant, however, when the 

interconnection of at least two different markets is concerned, the values of 𝑚 and 𝑆 

must be specified. 

Let 𝑞(𝑡) = ln 𝑝(𝑡 + 𝑑𝑡) − ln 𝑝(𝑡), where 𝑝(𝑡) and 𝑑𝑡 are the price and time interval 

of the price change, respectively. Let 𝑅(𝑞, 𝑡) denote the probability distribution 

function (pdf) for the price return, which could be extracted using the data described 

in section 3.2 for all indices. 

It seems that modeling a real stock market as a complex system, may not be 

performed by considering only a single variable of price return. In addition, the 
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existing evidence shows that different factors (such as volume) have their impacts on 

the behavior of the probability density function (Andersen, 1996; Llorente et al., 

2002; Ahmad and Sarr, 2016). Given this, one may like to generalize the method 

adopted by Tahmasebi et al. (2015) and Shen and Haven (2017) to a system of more 

than one variable. 

Two central equations of Bohmian quantum mechanics describing the dynamics of 

the n-dimensional systems may be generalized as follows:  

9A<

96
+ B

>
I 9

95J
(𝑅= 9C

95J
)

K

LMB
= 0                                   (4) 

 9C
96
+ B

=>
I (9C

95J
)=

K

LMB
+ (𝑉 − 7<

=>A
I 9<A

95J
<

K

LMB
) = 0    (5) 

which are obtained by inserting the time dependent wave function of 	𝑛-independent 

variables i.e., 𝜓(𝑞B, 𝑞=, . . . , 𝑞K, 𝑡) = 𝑅(𝑞B, 𝑞=, . . . , 𝑞K, 𝑡)exp(𝑖
C(5P,5<,...,5Q,6)

7
), in the 

Schrodinger equation: 

𝑖ℎ 9:(5P,5<,...,5Q,6)
96

= − 7<

=>
I 9<:(5P,5<,...,5Q,6)

95J
<

K

LMB
+ 𝑉(𝑞B, 𝑞=, . . . , 𝑞K)𝜓(𝑞B, 𝑞=, . . . , 𝑞K, 𝑡), 

(6) 

Where 𝑅(𝑞B, 𝑞=, . . . , 𝑞K, 𝑡) and 𝑆(𝑞B, 𝑞=, . . . , 𝑞K, 𝑡) are the amplitude and the phase of 

the wave function, and	ℎ, 𝑞L and 𝑚 are the Plank constant, the i-th component of the 

position, and the mass of the particle, respectively (Holland, 2000). So, the quantum 

potential will be like below: 
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𝑈(𝑞B, 𝑞=, . . . 𝑞K, 𝑡) =
ℏ<

=>A
I 9<A(5P,5<,...5Q,6)

95J
<

K

LMB
= ∑ 𝑈LK

L (𝑞B, 𝑞=, . . . 𝑞K, 𝑡),      (7) 

which is known as the quantum potential for an n-dimensional system. Note that, if 

	𝑅 in equation 7 is a separate function of 𝑛 independent variables, the corresponding 

quantum potential reduces to the sum of 𝑛 one-dimensional quantum potentials. In 

this special case, as is shown in figure 6, the domains of the variables are fixed and 

confined by the corresponding separable quantum potentials. However, as will be 

shown later, at least in our data this is not the case and the evidence does not always 

allow for the separation of the variable technique to solve the problem. This means 

that 𝑅, in general, is not a separable function of 𝑛 independent variables  

(𝑞B, 𝑞=, . . . , 𝑞K). Nevertheless, one may still express the total quantum potential as the 

summation of 𝑛 quantum potentials 𝑈L, 𝑖 = 1, 2,… , 𝑛  as a function of (𝑞B, 𝑞=, . . . , 𝑞K) 

family, governing 𝑞L coupled with the remaining dependent group of variables of the 

family. Even, one may consider various cases intermediating the above extreme 

limits, where the group of 𝑛 variables could be divided into independent subgroups 

of dependent variables. Corresponding to each independent variable in a given 

subgroup, one may define a quantum potential of partially coupled dependent 

variables.  
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Chapter 4 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter we present the results obtained by applying the method of Bohmian 

Quantum Mechanics, as described in previous chapter, to investigate the evolution of 

markets as dynamical complex systems. The time variation of price returns, the 

probability distribution functions, the single variable and multi-variable quantum 

potentials for various indices are shown and explained. Quantitative risk analysis for 

the same indices are also done upon the difference of upper and lower bound of the 

quantum potential domain. 

4.2 Results for Single-variable Case   

We first consider the case of markets with a pdf as a function of a single variable. 

Thus, according to the previous chapter we have 𝑛 = 1, and  for the price return we 

denote, 𝑞B → 𝑟 and the corresponding pdf represented by 𝑅(𝑟) is obtained through 

integrating on all variables and the time except	𝑟, and for the trading volume        

𝑞B → 𝑣, and corresponding pdf represented by 𝑅(𝑣) is obtained through integrating 

on all variables and the time except	𝑣.  

The results for the price, price return and single-variable probability distribution 

function 𝑅(𝑟) of the Dow Jones index are plotted in figures 1(a), 1(b) and 1(c), 

respectively. 
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Figure 1: a) The time plot of DJIA index; b) the plot of the price return for the DJIA 

index; c) the pdf of the DJIA index 

Note that there is a trend stationarity in price, as expected, and increases in the 

course of time, however, the corresponding pdf for the price return is almost 

stationary and behaves as a Gaussian-like function around zero return value. 

Following Tahmasebi et al. (2015) and Shen and Haven (2017), we calculated the 

single-variable quantum potential for each index by applying the corresponding pdf 

in equation 3. The results for the quantum potentials for all indices were calculated 

on daily, weekly, seasonal and yearly basis.  The quantum potential for Dow Jones 

index as a developed market is shown in figure 2. 
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Figure 2: The plot of a) daily, b) monthly, c) seasonal and d) yearly quantum 

potential versus the price returns; the dashed line corresponds to the white noise 
quantum potential.   

To check the model, the quantum potential of the Gaussian white noise, which is 

unbiased in prices at different times correlation, was compared with the quantum 

potential of Dow Jones index with the same variance.  In order to derive the quantum 

potential for the Gaussian white noise of the respective index, one may insert the 

corresponding function,	𝑅, represented by	𝑒𝑥𝑝(−(𝑞 − 𝑞\)=)/2𝜎=, into equation 3, 

and after some mathematical calculations obtain, 

𝑈(𝑞, 𝑡) = ^(5_5`)<

^ab
− =5

=a<
,      (8) 
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where 𝜎= represents the variance and 𝑞\ is the average variation of price returns for 

the market under examination. 

In figure 2, the quantum potential of the real data (solid line) is compared with the 

quantum potential of the Gaussian white noise (dashed curve). It can be seen from 

the above four panels that there exist quantum potential walls which confine the 

returns into a specified domain. The variations of the returns increase from 6 percent, 

on a daily basis, to 30 percent on an annual timescale, where the Bohmian quantum 

potential walls tend to be Gaussian like. This is expected to occur in real situations, 

where the stock market prices do not change considerably during a day in contrast to 

the yearly variations.  

In figure 3, the same plot as in figure 2 shows Shanghai index as emerging one. Note 

that in figure 3 for SSEC as an emerging market, the quantum potential function, in 

contrast to Dow Jones index, is not a well predictable function and the potential 

walls are rather fragile ones and its return domain has wider variations.  The different 

behavior of developed and emerging markets may due to some reasons such as 

transparency, information asymmetry, maturity period, governmental interventions 

and etc.   
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Figure 3: The same as figure 2 for SSEC index 

Investment, as a financial decision, has always entailed two components, ‘risk’ and 

‘return’, and their trade-off offers different investment portfolios. On the one hand, 

investors seek to maximize their profits from an investment and, on the other hand, 

they are faced with the uncertainty surrounding the financial markets, which, creates 

an uncertainty in the access to the investment returns. In other words, all investment 

decisions are based on the relationship between the risk and return. According to a 

clear consensus observed for the existence of positive relations between the risk and 

return, the quantum potential can be used as a useful indicator for comparing the 

risks of different indices against each other. As shown in figure 4, where the daily 

and yearly quantum potentials for different indices are plotted, a wider range of the 

potential walls means a higher return, and consequently, a higher risk.  
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Figure 4: a) The daily and b) yearly quantum potentials for the selected indices 

Shanghai index as an emerging market has a relatively wide range of returns. 

Therefore, the corresponding wide ranges of the quantum potential walls indicate a 

higher risk both in daily and yearly time scales. In contrast, the relatively short 

ranges of the quantum potential walls indicate a lower risk for the Dow Jones and 

S&P 500, as the developed markets indices. These results are consistent with those 

of Derrabi and Leseure (2005) who showed that the emerging markets have higher 

returns in comparison to the developed markets, while being riskier.  

Tables 1 and 2 show the results of the risk and the average return based on the 

quantum potential permissions, respectively. As shown in table 1, it is found that the 

amount of the risk is highest for Shanghai as compared to other indices.  
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According to table 2, the daily average returns of all indices, from 2010 to 2017, are 

negative as also shown in figure 4 above. This is due to the fact that the quantum 

potentials for all indices are left-oriented with respect to the mean value. The 

situation is reversed for the yearly time scale, where the average returns become 

positive for all indices and the corresponding quantum potential walls behave as 

right-oriented. This is due to the collective behavior of the stock markets that reveals 

the lower price return for the short run than for the long run. 

Table 1: Risk of the selected indices based on the quantum potential permissions 
(between walls) in the period of January 2010 to December 2017.  
 Daily Monthly Seasonally Yearly 

S & P 500 0.1421 0.3167 0.3924 0.4600 

DOW JONES 0.129 0.3183 0.3662 0.465 

SHANGHAI  0.1876 0.6114 1.0048 1.5855 

TOPIX 0.175 0.43744 0.6236 0.9766 

DAX 0.1461 0.4905 0.6596 0.6880 

 

Table 2: Quantum potential restrictions on the price return is not symmetric for 
positive and negative values. This table shows the average returns of the selected 
indices based on these restrictions. (January 2010- December 2017).  
 Daily Monthly Seasonally Yearly 

S & P 500 -0.00167 0.0156 0.0453 0.1664 

DOW JONES -0.00185 0.01618 0.04772 0.1578 

SHANGHAI -0.00268 -0.00072 0.001515 0.01059 

TOPIX -0.00164 0.00969 0.02527 0.07397 

DAX -0.00184 0.0108 0.03088 0.11903 
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In figure 5(a), 𝑅(𝑟) for all possible values of volumes during a time interval of Jan. 

2010 to Dec. 2017 is plotted for the DJIA and SSEC indices. It is seen that 𝑅(𝑟) of 

the DJIA index is more localized and peaked around the zero return values than that 

of the SSEC index. Could it indicate that the former is a more credible market 

compared to the later?  

 
Figure 5: a) The plot of the pdf for price returns from Jan. of 2010 to Dec. of 2017 
for the DJIA (red line) and SSEC (blue line) indices. b) The same plot for volume 

(divided by its maximum value). 

In figure 5(b), the same plot of 𝑅(𝑣) for all possible values of price returns during 

the time interval of Jan. 2010 to Dec. 2017, shows that the higher (lower) trading 

volumes in the DJIA index are more (less) probable than that of the SSEC index. 

This may be due to the willingness of the traders to trade more in the stable market 

conditions which, in turn, enhances the credibility. According to figure 5(b), there 

exists a threshold value of trading volume for each market below which the 
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respective market cannot perform and will not be valid. In other words, the market 

will crash below the threshold volume. We will come back to this when we consider 

the joint pdfs and the corresponding joint quantum potentials. 

Following the same procedure, where the quantum potential for price return is 

obtained, one may plot the corresponding quantum potential for trading volume. 

These are shown in figures 5(a) and (b).  

 
Figure 6: The plot of the quantum potentials for a) price return from Jan. of 2010 to 

Dec. of 2017 for the DJIA index and b) trading volume for the same period and 
index. 

In a similar vein, one may argue that like the return quantum potential shown in 

figure 6(a) which confines the daily return variations to a specific interval, there also 

exists a volume quantum potential which confines the daily variations of the trading 

volume to a specific interval (as shown in figure 6(b)). Note that the existence of the 
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threshold value for the volume might be due to the foot point location of the left side 

wall of the quantum potential.  

4.3 Results for Double-variable Case   

As outlined before, the functional behavior of real markets, known as the 

complicated dynamical systems, is expected to be affected by several variables. In 

other words, examining the evolution and outcomes of a market by a single variable 

model, may be a nonchalant approach to the problem and far from the reality. To 

answer the questions ‘why short-term high return and/or trading volume variations 

are not experienced’, ‘What is the joint pdf of these variables’ and ‘whether these 

variables are inherently independent’, one needs to have information about the 

functional behavior of the pdf in its general form. Going a step further, one may 

consider the simultaneous functions of price return and trading volume and search 

for a joint probability distribution function of these two variables. In this respect, 

according to previous chapter we have 𝑛 = 2, 𝑞B → 𝑟, 𝑞= → 𝑟 and the corresponding 

joint probability distribution function, 𝑅(𝑟, 𝑣) is obtained by integrating all variables 

and the time except 𝑟 and	𝑣, is constructed by choosing suitable bins in (𝑟, 𝑣) plane 

and plotted for the DJIA and SSEC indices in figures 7(a) and 7(b), respectively.  
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Figure 7: a) The joint pdf from Jan. of 2010 to Dec. of 2017 for the DJIA index. The 
trace of intersections of a plane perpendicular to the vertical axis for different values 

of the pdf is shown in (𝑟, 𝑣) plane to obtain isoprobability contours. 

 
Figure 7: b) The same plot as in figure 7(a) for the SSEC index 
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According to figures 7(a) and 7(b) it is understood that the absolute value of price 

return increases until its maximum value as the trading volume increases, and then 

starts to decrease while the volume increases to make the market credible. For each 

index, the turning point occur where the corresponding price return reaches the 

maximum value. The results are not the same for different volume intervals, i.e. the 

return increases by increasing volume before the turning point and decreases after 

that up to a certain value (see equation 10) and becomes more or less stable 

thereafter.  

Note that the probability decreases for the volumes and returns far from 0.1 and zero, 

respectively. However, the local maxima of probability distribution function occur 

more or less around the zero return for all possible volumes, indicating the 

credibility. Of note, the procedure of being credible, as seen in the figures 7(a) and 

(b), is not the same for the indices under consideration. The DJIA index is, relatively, 

more credible than the SSEC index, consistent with the developed and emerging 

nature of these indices, respectively.  

In addition, the probability for higher returns decreases for any fixed trading volume. 

This means that it is not possible to have any arbitrary return by increasing the 

volume. For example, in figure 7(a), it is not possible to have a return value of 0.02, 

with the probability of 0.08, or a return value of 0.01 with the probability of 0.17. 

This guides the investors to assess their chance for gaining a prerequisite return. Note 

that the probability for DJIA index as developed market decreases faster than SSEC 

index as emerging market consistent with our former result of risk analysis.  
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An interesting finding in figures 7(a) and 7(b) is that 𝑟 and 𝑣 do not behave as two 

independent variables. If they were, the traces shown in these figures would have 

rectangular shapes rather than irregular ones as it is. In other words, the two-

dimensional pdf surface would become the surface of a pyramid with rectangular 

cross section. The dependence of 𝑟 and 𝑣 means that the trading volume has its 

impact on price return and vice versa. Note that due to different credibility levels 

which occur at higher volumes, the mutual impacts of 𝑟 and 𝑣 are not the same for 

DJIA and SSEC indices. This result agrees with those of Chuang et al. (2009) and 

Lin (2013) that show trading volume has positive and negative impacts on price 

return using quintile regressions method.  

To make an instructive sense of the interdependence of 𝑟 and 𝑣 we suggest a 

parametric analytical function for the joint probability distribution, 𝑅(𝑟, 𝑣) and try to 

fit it to the data for appropriate values of parameters. Referring to figures 5(a) and (b) 

for the plot of 𝑅(𝑟) and 𝑅(𝑣) as the pdfs of DJIA and SSEC indices, respectively 

and looking at the schematical behaviors of 𝑅(𝑟) (as a Gaussian-like function) and 

𝑅(𝑣) (as a Maxwell-Boltzmann-like function) one simple expression may be: 

𝑅(𝑟, 𝑣) ∝ 𝑒
de<

fe<(g)𝑣=𝑒_
g<

h<,          (9) 

where 𝛼 is a constant to be determined by fitting the normalized form of 𝑅(𝑟, 𝑣)  

with data and 𝜎j=(𝑣) denotes the volume dependent variance for the price return 

Gaussian-like distribution function. For example, as it is seen by figures 7(a) and 

Error! Reference source not found., the symmetric form of pdf with respect to the 

zero-return axis is almost preserved going in direction of increasing volume. 
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However, the width (or variance) of the pdf increases at the beginning, then 

decreases and finally become constant for different volume intervals. Almost, the 

same behavior is seen for the isoprobability contours in figures 7(a) and (b) in the 

(𝑟, 𝑣) plane. Thus, as a simple model, we assume the following linear expressions 

for	𝜎j=(𝑣):    

𝜎j=(𝑣) = k
𝛽B𝑣 + 𝛾B,								0.05 < 𝑣 < 0.1,
𝛽=𝑣 + 𝛾=,								0.1 < 𝑣 < 0.3,
𝛽q𝜈 + 𝛾q,								0.3 < 𝑣 < 0.5

s,                               (10) 

and try to find the utilized parameters by fitting the corresponding pdf with the given 

data. As an example, we plotted equation 9 as shown in figure 8 and by using 

equation 10 and fitting the corresponding 𝑅(𝑟, 𝑣) with the data given for DJIA index, 

we obtained	𝛼 = 0.1, 𝛽B = 0.07, 𝛽= = −0.05, 𝛽q = 0.00, 𝛾B = 0.01, 𝛾= = 0.02 and 

𝛾q = 0.01. 

Note that the joint probability distribution function 𝑅(𝑟, 𝑣) defined by equation 9, is 

not a separable function of two variables 𝑟 and	𝑣. In other words, it is not the product 

of two independent functions of 𝑅(𝑟) and	𝑅(𝑣), but they are coupled together 

through 𝜎j=(𝑣). We will come back to this point when we argue about the joint 

quantum potential. 
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Figure 8: The plot of joint probability function, 𝑅(𝑟, 𝑣) given by equations 9 and 10 

with the parameters chosen to fit with the DJIA index data 

Note that the slices chosen in figure 8 which gives the isoprobability contours in 

(𝑟, 𝑣) plane, are almost the same as the pdf values of figure 7. Other suitable forms 

for 𝜎j=(𝑣)	and employing possibly more parameters one may get better fitting to the 

data.  

What is the reason for the pdf being more or less a localized function of 𝑟 and 𝑣 

confined to a specific region of (𝑟, 𝑣) plane in figures 7(a) and (b)? The answer is 

originated in one-dimensional quantum potentials 𝑈(𝑟) and 𝑈(𝑣) which confine the 

return and volume into specific domains of 𝑟 and 𝑣 variables, respectively (as seen in 

figures 6(a) and (b)). Similarly, a two-dimensional joint quantum potential 𝑈(𝑟, 𝑣)  

confines the joint pdf into a specific region in (𝑟, 𝑣) plane, which in turn, restricts 

return and volume values. 
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In figures 9(a) and (b), the joint quantum potential 𝑈(𝑟, 𝑣) is plotted in (𝑟, 𝑣) plane. 

It is seen that the variations of the return and volume are confined between the 

potential walls. There are limiting values controlled by the quantum potential, 

marked by yellow to blue colors, where the trading volume and price return, cannot 

exceed them. The trace of the quantum potential walls is similar to the isoprobability 

contour plots of the pdfs in figures 7(a) and 7(b). Thus, similar interpretations of the 

results can be made here, too. That is, as we argued in the previous section, here also 

the quantum potential rules threshold values for trading volume, where the market 

starts to be valid. In fact, one may argue that the joint quantum potential is 

responsible for the behavior of the joint pdf, such as the impact of trading volume on 

price return, credibility of the market, and local maxima of the joint pdf around the 

zero return.  
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Figure 9: a) The plot of the quantum potential in (𝑟, 𝑣) plane for DJIA index. b) The 

same plot for SSEC index. Different colors show the strength of the quantum 
potential as calibrated at the right. 
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It should be noted that in addition to different characteristics that we identified for 

the indices under consideration, the region defined by the foot points of the quantum 

potential walls for the DJIA index (developed market) are located more regularly and 

driven out to the boundaries than the SSEC index (emerging market). This might be 

due to the fact that the efficient stock markets as mature markets are more regulated 

and legislated. As it is seen in figures 5(b), 7(a), 7(b), 9(a) and 9(b), the threshold 

value for the DJIA index is relatively higher than that of the SSEC index. This 

property might be due to the nature of the markets that are performed in two different 

economies influenced by different kinds of governmental interventions. 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

5.1 Conclusions 

In this study, we have employed the Bohmian quantum mechanics for investigating 

five selected stock indices of the emerging and developed markets. Calculating their 

quantum potentials, we compared them with the corresponding quantum potentials of 

the Gaussian white noise having the same variances. We have found that in the short-

run, where the entanglement in prices is higher, the quantum potential walls are 

robust and narrower than those of the long-run pattern, where the entanglement is 

lower. 

Presumably, the trading strategy in an individual investor scale is a personal 

decision. However, it seems that in the collective scales there is a global pattern that 

governs the behavior of the stock markets. This global strategy pattern which is 

reflected as an average outcome in the real data, though not known in detail, is 

embedded in the quantum potential. In other words, the variance of the individual 

scale decisions is not much far from that of the other investors and follows a global 

pattern, which confines the events into a domain wall. 

It is instructive to note that the exact modeling for evolution of a market, being 

considered as an extremely complicated dynamical system, could not be solely 

determined by a restricted number of variables. Too much soft (behavioral and 
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psychological) and hard (economical) factors are present and have their own impact 

on the markets returns. This is the reason for generalizing the single-variable 

methodology as to a multi-variable system. However, all that should not disappoint 

the researchers from trying to model the issue by a simplistic as well as scientific 

point of view. In spite of the fact that such modeling, with presumably maximum 

number of simplifications, does not consider all relevant ingredients, but can still 

detect the essential identity of the real problem without worrying about its full 

complexity. Although, as we referred before, some authors have investigated the 

effect of the price return together with the trading volume, most of the researchers 

have assumed the price return as a single variable describing the evolution of the 

markets which have been amassed in the Econophysics literature.     

The joint probability distribution of return and volume introduced here shows that 

these two variables are not independent from each other but have their own mutual 

impacts. Due to the localized nature of the probability distribution function around 

the lower returns, further evidence can be provided by the isoprobability contours. 

That is, starting from a threshold value for trading volume, any increase in volume 

subsequently leads to an increase in the absolute value of price return but reversely to 

a decrease in return, thus making the market more credible. 

Another important finding reveals that behind the observed behavior of the joint 

probability distribution function and the corresponding isoprobability contours, there 

exists a joint quantum potential due to the correlation between a price and a volume 

and their prior-day price and volume, respectively. Therefore, one answer to the 

question of ‘why it is not possible to have higher absolute returns in higher volumes’ 

can be the constraints embedded in such a joint quantum potential function. In fact, 
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the credibility could be interpreted and understood better in terms of the joint 

quantum potential which governs the variations of price return and trading volume 

together. In other words, when one deals with price return or volume quantum 

potentials, separately, as shown in figures 6(a) and (b), one has robust return or 

volume intervals confined by the corresponding fixed potential walls. Conversely, 

the joint quantum potential, as shown in figure 9, yields flexible return and volume 

intervals redounding the credibility of the markets having lower return at higher 

volumes.      

As explained before, with the use of the quantum potential method in studying stock 

markets, one may distinguish between four distinct cases. The first case deals with 

representing the markets by means of the quantum potential as a function of single 

independent variable, ignoring the impact of all other possible variables.  In this case, 

the interval of variations of the variable is fixed and confined by the corresponding 

quantum potential. This method has been adopted and discussed for instance by 

Tahmasebi et al. (2015) and Shen and Haven (2017) arguing that the quantum 

potential is a function of price return as a single variable with a fixed variation 

interval. In the second case, that is considered here, the markets are represented by 

the quantum potential as a function of two joint variables leading to a bidirectional 

causality relation between return and volume. Thirdly, the quantum potential of the 

markets is taken as a function of more than two variables without any subgroup 

structures and is argued to govern the fluctuations of each variable through the 

impact of all remaining groups of variables. Finally, the quantum potential is again 

taken as a function of more than two variables; however, in contrast to the former 

case, here the variables could be categorized into different subgroup structures. In 
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this case, the quantum potential, when obtained, could shed light on deeper layers of 

the corresponding markets.    

Furthermore, in order to maximize the expected returns of the selected portfolio, one 

may need to diversify the risk through selecting different stocks from different 

markets. The relation between the risk and average return shows that the long-run 

investments in the developed stock markets could be safer and more profitable than 

short-run investments. 

5.2 Future Studies 

In this study we considered an individual market as an isolated dynamical system 

without considering the impacts of other existing markets. However, considering the 

globalization of stock markets, such a simplified model could not explain the 

resulting complicated situation. Thus, it is noteworthy for future studies to 

investigate the interconnections of different correlated stock markets by introducing 

an appropriate quantum potential based on the markets quantum interference.    
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