

Hybrid DE Algorithm for the Solution of Bound

Constrained Single-Objective Computationally

Expensive Numerical Optimization Problems

Mariam Abdulmoti Holoubi

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

January 2018

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy

Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Master

of Science in Computer Engineering.

Prof. Dr. Işık Aybay

Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

 Asst. Prof. Dr. Ahmet Ünveren

 Supervisor

Examining Committee

1. Asst. Prof. Dr. Adnan Acan

2. Asst. Prof. Dr. Mehtap Köse Ulukök

3. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

The Differential Evolution Algorithm is widely used for the purpose of optimization

in many fields. This dissertation proposes a Hybrid Differential Evolution Algorithm

and examines its feasibility based on the results of CEC'15 expensive benchmark

problem optimization. A local search mechanism was used to develop three versions

of Hybrid DE. All versions of the proposed method were used and compared

according to the final feedback of their optimization results. Another comparison

with five different methods proposed in the related literature was conducted. The

final ranking of all the methods implied that Hybrid DE was always among the top

best algorithms that were used for the same purpose.

Keywords: Differential Evolution, Evolutionary Algorithms, Local Search, Hybrid

Algorithms.

iv

ÖZ

Diferansiyel Evrim Algoritması (DE) bir çok alanda optimizasyon amacıyla yaygın

olarak kullanılmaktadır. Bu tezde Hibrid Diferansiyel Evrim Algoritması

önerilmektedir. Öneril enalgoritmanın başarımı CEC'15 pahalı en iyileme

problemlerinin çözümleri üzerinden incelenmiştir. Bir yerel arama mekanizması

kullanılarak üç farklı DE algorithması geliştirilmiştir. Önerilen yöntemin tüm

versiyonları kullanılmış ve optimizasyon sonuçlarının son geri bildirimine göre

karşılaştırılmıştır. İlgili literatürde önerilen beş farklı yöntemle karşılaştırma

yapılmıştır. Tüm yöntemlerin son sıralaması yapıldığında önerilen metodun diğer en

iyi algoritmalar ile karşılaştırılabileceği gözlenmiştir.

Anahtar Kelimeler: Diferansiyel Evrim, Evrim Algoritmaları, Yerel Arama, Hibrit

Algoritmalar.

v

DEDICATION

To those who turn a blind eye on our mistakes.

Instead of giving up, they aid us with a helping hand.

vi

ACKNOWLEDGMENT

I would initially like to express my sincere gratitude to my supervisor, Asst. Prof. Dr.

Ahmet Ünveren, for his invaluable guidance, encouragement and understanding. He

has taught me more than I could ever give him credit for here. He has shown me, by

his example, what a good scientist (and person) should be. I, also, would like to

thank the members of the jury, Asst. Prof. Dr. Adnan Acan and Asst. Prof. Dr.

Mehtap Köse Ulukök for their reviews and comments for the improvement of this

thesis. Special gratitude to Asst. Prof. Dr. Adnan Acan for his support and positive

energy that he provided me during all my time in the EMU. I should also express my

deepest gratitude to the computer engineering department graduate committee chair,

Assoc. Prof. Dr. Önsen Toygar, for all the time and effort she had given to carefully

guide and help me throughout my journey.

I am especially grateful to Asst. Prof. Dr. Nilgün Hancioğlu. Although the time we

spent together went by so fast, I appreciate and cherish every moment of it. For her

warm assurance and guidance and for the effort and time she had given me, I will

always be thankful.

Nobody has been more supportive to me than my parents, whose unconditional love

is with me in whatever I pursue. I am indebted to them for everything in my life.

They are my ultimate role models. And to God I am grateful for granting me with my

loving family. My deepest love and gratitude for my brothers, Ibrahim and Ismail,

and for my sisters, Batoul and Tasneem, who were there for me anytime I needed

support.

vii

How can I ever thank my dearest Esra'a, who always tells me that she believes in me.

She could not be here by my side, but her profound love and support followed me

overseas and comforted me the most.

My deepest gratitude to all the thoughtful wishes of my old friends, each message

and call was deeply appreciated. I would also like to thank all those friends that

accompanied and helped me in the pursuit of my Master's degree. Special thanks to

my best friend in Famagusta, Basma Anber, who helped and encouraged me most of

all to complete my thesis.

To my eldest sister, Batoul, whom together we went through thick and thin. I would

have given up if it was not for you by my side. I am forever grateful.

viii

TABLE OF CONTENTS

ABSTRACT………………………………………………………………………....iii

ÖZ……………………………………………………..………………………….….iv

DEDICATION………………………………………………………………………..v

ACKNOWLEDGMENT…………………………………………………………….vi

LIST OF TABLES……………………………..…………………………………….xi

LIST OF FIGURES…………………………...…………………………………….xii

LIST OF ABBREVIATIONS……………….……………………….…………….xiii

1 INTORDUCTION………………………….………………………………………1

1.1 Background to the Study..………………………..………………..…................1

1.1.1 Evolutionary Algorithms…..........………….......……................................4

1.1.2 Memetic Algorithms...…….….………………..………………………….6

1.1.3 Previous work….………...….…………………………………………….7

1.2 Aim of the Study…......……………...…………......………………..……….....8

1.3 Significance of the Study….....………………......….………...………………..9

1.4 Structure of the Thesis….………...…………….....…..…………………...........9

2 THE DIFFERENTIAL EVOLUTION ALGORITHM…………….......................11

2.1 Taxonomy…….....….………………………………...……...……..………….11

2.2 Procedure...………...………………………………………..…………………11

2.3 Chronological Evolution of Hybrid DE………………….……….…………...15

3 METHODOLOGY……………………………………………..…………………20

3.1 FMINCON LS…………………………………….…………………………...21

3.1.1 FMINCON Function Description..………..……………………………..21

3.2 Hybrid DE Version 1: LS around New Solution……...……….…….………...22

ix

3.3 Hybrid DE Version 2: LS around Best Individual in Current

Population…….…………………………………………………………………....24

3.4 Hybrid DE Version 3: LS around Best Individual in Current Population &

around the New Solution......………….………………………………..………….26

3.5 Summary……….…………………………...……….……………….………..28

4 EXPERMENTAL RESULTS………………….………………………………….29

4.1 CEC'15 Expensive Optimization Test Problems……………....………………29

4.1.1 Common Definitions…………...……..……………...…..……………...29

4.1.2 Experimental Settings…………………..…………..……………………30

4.2 Results…...……..……………………….……………………………………..32

4.2.1 Hybrid DE variants in Dimension 10…..…………...…………………...32

4.2.2 Hybrid DE variants in Dimension 30……..……..….....………………...34

4.3 Comparison with Literature…....………………………..………………….…36

4.3.1 Hybrid DE with LS around New Solution…...………………………….36

4.3.2 Hybrid DE with LS Around Best Individual in Current

Population….....................………………………………….………….………38

4.3.3 Hybrid DE with LS around Best Individual in Current Population &

around the New Solution..…………………….……………….………..…..…40

4.4 Friedman Ranking Test…………………………….………………………….42

5 CONCLUSION……………….…………………………………………………...45

5.1 Summary of the Study…………………….…….….………...……………..…45

5.2 Conclusions………….………………………….……....……………………..45

5.3 Implications of the Study…...……………………………......………..………46

5.4 Implications for Further Research...........……………....…….…….…….……46

REFERENCES….…………………………………………………………..…..…..47

x

APPENDIX………………………………………………………..…….…………..57

Appendix A: Introduction of the CEC'15 Expensive Optimization Test

Problems...……………….……………….…………………………………….….58

xi

LIST OF TABLES

Table 1: Summary of CEC'15 expensive optimization test problems………………31

Table 2: Best results of Hybrid DE versions in Dimension 10 (20

runs).………………………………………………………………………………...32

Table 3: Best results of Hybrid DE versions in Dimension 30 (20

runs).………………………………………………………………………………...33

Table 4: CPU Time for Best results of Hybrid DE versions in D30 (sec/20 runs)….35

Table 5: Comparison of Dimension 30 Error Rates of Hybrid DE V.1 Results with

Literature…...……………………………………………………………………..…37

Table 6: Comparison of Dimension 30 Error Rates of Hybrid DE V.2 Results with

Literature...…………………………………………………………………………..39

Table 7: Comparison of Dimension 30 Error Rates of Hybrid DE V.3 Results with

Literature...…………………………………………………………………………..41

Table 8: Friedman Ranking between Hybrid DE versions in D10………………….42

Table 9: Friedman Ranking between Hybrid DE versions in D30………………….43

Table 10: Friedman Ranking between Hybrid DE V.1 and Literature in D30…….43

Table 11: Friedman Ranking between Hybrid DE V.2 and Literature in D30……...44

Table 12: Friedman Ranking between Hybrid DE V.3 and Literature in D30……...44

xii

LIST OF FIGURES

Figure 1: General Outline of an Evolutionary Algorithm…..………………………...5

Figure 2: Selection and Recombination Phases of Standard Evolutionary Algorithm.6

Figure 3: Selection Procedure in DE using a Stochastic Binary Crossover

Rate..………………………………………………………………………………...12

Figure 4: Flowchart of the Basic Steps of DE……………………………………....13

Figure 5: Pseudo Code of DE……………………………………………………….14

Figure 6: Pseudo Code of First Variant of Hybrid DE (Fmincon LS Applied to New

Individual)…………………………………………………………………………..23

Figure 7: Pseudo Code of Second Variant of Hybrid DE (Fmincon LS Applied to

Best Individual in Current Population)……………………………………………..25

Figure 8: Pseudo Code of Third Variant of Hybrid DE (Fmincon LS Applied to Best

Individual in Current Population and Around the New Individual)……………..…27

xiii

LIST OF ABBREVIATIONS

CR Crossover Rate

DE Differential Evolution

EA Evolutionary Algorithm

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search Procedure

LS Local Search

MA Memetic Algorithms

NP Non Deterministic Polynomial Time Problem

1

Chapter 1

INTRODUCTION

1.1 Background to the Study

Since the term "Metaheuristics" was first incepted in the late half of the 80s, the

researchers' understanding and working with metaheuristics is continuously

progressing and shifting in different research areas. In a recently published research

"A History of Metaheuristics" (K. Sorensen et al., 2017) the author suggests that

people have been using heuristics and metaheuristics long before the term even

existed. Also, he stated that the mentioned term has lacked a satisfying definition

until recently, despite the fact that people have been using heuristics over the years

[1]. The following statement was approved by the author to be the best definition:

A Metaheuristics is a high-level problem-independent algorithmic framework

that provides a set of guidelines or strategies to develop heuristic optimization

algorithms." (Sorensen and Glover, 2013).

 The research about history of metaheuristics brings to light the five different periods

that shaped the evolution of the concept of "metaheuristics". The first phase was

named the Pre-Theoretical period (until C.1940), which the author insisted that,

during that phase, heuristics and even metaheuristics were used but were not

formally studied. The second stage, the Early period (C.1940-1980), emphasized the

beginning of formal studies on heuristics. "Artificial Intelligence" is the term that

was used to recognize the work that was done during this period, because it tends to

mimic human problem-solving behavior. Then another line of research of problem-

solving behavior started in the 1960s that highlighted the use of evolution as a

2

problem-solving method. It started with the insight that the principle of natural

evolution could be used to solve optimization problems in general. Box (1957) and

several others had independently developed algorithms inspired by evolution, mainly

aiming for function optimization and machine learning [43]. The first method that

was recognized was called Evolution Strategy [44]. Due to the lack of using the

concepts of population or crossover, it was not considered as an algorithm. One

solution, called the parent, was mutated and the best of the two solutions became the

next parent for the next round of mutation. Evolutionary programming was

introduced few years later in 1960. However, it did not use both population and

crossover method. In 1989, Goldberg published his book that was the spark of the

evolutionary revolution. Evolutionary methods became extremely popular and a

large number of variants were proposed [1]. Evolutionary strategies or Evolutionary

Algorithms (EA) have become an important tool for performing a variety of search

and optimization procedures. The recent method of any EA considers creating a

finite group of correspondence structures to stand for the idea of a population. Each

structure is exactly like the other and together they form a generation of individuals.

An individual is presented typically by a string, imitating the biological genotype.

Decoding the genotype will produce the phenotype data which is mathematically-

based structure to present a solution. The referred solutions contain parameters which

solve a correspondent fitness function to the problem we are trying to optimize. Each

individual in the population is evaluated and then assigned a fitness value according

to the fitness function of this particular problem. The corresponding fitness values

will be the preference factor to decide which individual is more suitable of reaching

optimality, or near-optimality status [2].

3

In the method-centric period (C.1980-C.2000) the field of metaheuristics truly took

off and many different methods were proposed. The concept of annealing:

controlling heating and cooling process used in metal and glass production (K.

Patrick et al., 1983) was the first published paper of general problem-solving

framework that was not based on natural evolution. The process of Simulated

Annealing depends on an external parameter called the temperature. Random

solution changes were used and accepted if they improved the solution. One of the

most powerful ideas was that solutions could be gradually improved by iteratively

making small changes, called moves [1]. This ignited the development of well-

known heuristic algorithms that are now called Local Search mechanisms. By

adapting the concept of small moves, the solution could be mutated by a single

change for reaching another, yet very close, solution. By repeating these kinds of

changes, the algorithms will be investigating all or some of the nearby solutions

around the specific small space surrounding the first one. Such space is called the

current solution's neighborhood.

Research of Metaheuristics had grown and several frameworks had been proposed

around the early 90s. The innovation proposed GRASP (Greedy Randomized

Adaptive Search Procedure). It followed a randomized greedy behavior by selecting

through each iteration, not necessarily the best element, but one of the best elements

randomly [45]. Similarly, Ant Colony Optimization [46] was proposed not only how

to mix deterministic and stochastic information, but also proposed a way for

solutions to exchange information [1]. The Differential Evolution Algorithm (DE)

was officially introduced in a publication by R. Storn and K. Price, (1995). The

article explained the steps of the algorithm thoroughly. Soon after that, R. Storn

(1996) proposed an application of using DE for designing an IIR-filter[3]. Another

4

research used the DE algorithm (P. Thomas and D. Vernon, 1997) for image

registration. The majority of research tended to apply DE in Image Processing

Applications until 1998, a hybrid method of DE was introduced to start the

recognition of the DE remarkable performance for solving some engineering

optimization problems [4].

The Framework-centric period (C.2000-now) featured the worldwide knowledge

growing that led to describing metaheuristics as frameworks, not only methods. A

wide variety of EAs have been introduced and studied by assessing their

performance and studies tended to develop them by introducing new, hybrid

metaheuristic algorithms based on the merging of two or more procedures for the aim

of optimizing results of problem-solving. Many systematic studies of the

performance and behavior of heuristics such as evolutionary algorithms (Oliveto et

al., 2007; Auger and Deorr, 2011; Neumann and Witt, 2010) discovered both easy

problems where heuristics perform well and also easy problems where they fail and

require more time [47,48,49]. Heuristics proved to be able to optimize several

classical combinatorial problems efficiently and they could deliver good near optimal

solutions for NP hard problems [1].

1.1.1 Evolutionary Algorithms

Evolutionary algorithm steps in general will start with initializing a population. After

initializing two or more individuals, their fitness will be evaluated according to the

objective function corresponding to the problem we are trying to optimize. After

initialization, the evolution-loop starts processing its operators; recombination,

mutation, evaluation and selection. The selected parents are used to perform a

hybridizing process in order to construct an offspring individual either using the

recombination or mutation procedure. Recombination creates new individuals from

5

the parent population. Recombination is sometimes used, but mutation is generally

the more preferred operator due to its factor of enhancing the variation in new

generations in the evolutionary strategy. The newly created individuals are then

evaluated, i.e., their fitness values are calculated. Based on the new fitness values,

the selection stage identifies a subset of individuals which form the new population

existing in the next iteration of the evolution loop. The loop is terminated based on a

termination criterion set by the user; reaching a maximum number of evaluations or

reaching a target fitness value for example [5,6].

Figure 1 shows the general outline of an evolutionary algorithm [5].

Termination

Criterion met?

Start

Evaluation of Solutions

Yes

Selection

Crossover

New Population

No

Figure 1: General outline of an evolutionary algorithm

Initialization

End Mutation

6

Figure 2 demonstrates how one generation is broken down into a selection phase and

a recombination phase. The strings are shown as being assigned into adjacent slots

during selection. They can be assigned slots randomly in order to shuffle the

intermediate generation [7].

1.1.2 Memetic Algorithms

Memetic Algorithms (MA) is a name of the set of metaheuristics specifically

containing population-based evolutionary approaches that work cooperatively with

agents concerned in periodic individual improvement of the solutions. The name of

Memetic Algorithms (MA) was initially derived from the term "meme" that was

defined by R. Daukins to emphasize the importance of small component

improvement in the context of the big evolutionary process. An MA is a search

Figure 2: Selection and Recombination phases of standard evolutionary algorithm

String 1

String 2

String 3

String 4

…..

String 1

String 2

String 2

String 4

…..

Offspring-A (2X4)

Offspring-A (1X2)

Offspring-B (1X2)

…..

Offspring-B (2X4)

Selection

(Duplication)

Recombination

(Crossover)

Current

Generation 1

Intermediate

Generation 1

Next

Generation 1+1

7

strategy in which a population of optimizing agents intrinsically cooperate and

compete. They are well known for their success in solving many hard optimization

problems. MAs exploit the search space by incorporating preexisting heuristics,

processing data reduction rules, approximation or using local search techniques [50].

1.1.3 Previous Work

Paperwork of the previously conducted experiments on the same group of problems

had little interest in the scope of hybridizing DE with LS mechanisms for superior

optimization results. Noor Awad [9] et al. introduced a new technique to adapt the

control parameters using a memory-based structure of the past successful settings

and employing the population resizing factor for differential evolution algorithm.

Another paper, Shu-Mei Gou [10] et al. (2015), proposed L-SHADE. A variant of

DE algorithm based on a linear population size reduction concept. The method was

tested for real parameter single objective optimization of CEC2015 problems. The

mechanism was incorporated with a binomial crossover operator and successful

parent selecting framework to avoid stagnation. Moreover, Neurodynamic

Differential Evolution is a recent approach that showed remarkable results for a

variant of dimensions regarding a group of problems. The proposed algorithm is a

linear population size reduction DE dependent on modification of success history

based parameter embedded with the concept of neurodynamic[11]. Another study on

CEC2015 problems tested problem optimization using Self-adaptive Dynamic Multi-

Swarm Particle Optimizer (sDMS-PSO). The factor of difference between sDMS-

PSO and the original PSO algorithm is demonstrated in the employment of self-

adaptive strategy of parameters, while in original PSO, a specific number of three

parameters will be given either according to experimental or empirical behavior. At

the end, a local search method of the quasi-Newton is included to enhance the ability

8

of exploitation [12]. The final study that was introduced was the Hybrid Cooperative

Co-evolution for CEC2015 Benchmarks (hCC). The experiment tested the

performance of hCC. The method’s concept is to separate the variables into groups

of separable and non-separable in its early stage. During the second stage, it

continues in adopting different algorithms within the cooperative co-evolution (CC)

framework [13].

Where previous research has often focused on variant ways to conduct single

objective problem optimization, they showed little interest in the idea of hybridizing

evolutionary algorithms.

1.2 Aim of the Study

In this study, hybridizing the Differential Evolution Algorithm with local search (LS)

mechanism, which will be explained in detail later, is the main experimental concept.

The results of hybrid DE assessed on solving CEC2015 Benchmark Problems will be

discussed [14] . This research targeted emphasizing the empowerment of using LS

with DE; the well-known global optimization metaheuristic. The aim of the

experiment is to reach optimality, or near-optimality solutions for single objective

problems.

A general single objective optimization problem is defined as minimizing, or

maximizing, f(x) subject to g(x) and hj(x) in (eq. no 1),

g(x) ≤ 0, i = { 1,…,m }

hj(x) = 0, j = { 1,…,p } x ϵ Ω.

x is a n-dimensional decision variable vector. x =(x1,….,xn) which belongs to the

search space ranged by the constrains of the problem. g(x) and h(j) represent the

(1)

9

constraints that must be fulfilled while optimizing f(x). Ω is the set of all possible

real values that satisfy the evaluation of f(x) [8].

The significance of using objective function is presented in providing the capability

of approaching the global minimum between all the possible values of x by

evaluating an objective function f(x) to find the fitness values of x. x* is called a

global minimum if and only if the condition in (eq. no(3)) is fulfilled.

∀𝑥 ∈ Ω: 𝑓(𝑥∗) ≤ 𝑓(𝑥)

Where Ω is the set of all possible real values that satisfy the evaluation of f(x).

1.3 Significance of the Study

The aim of optimization is to determine the best-suited solution to a problem under a

given set of constraints [38]. In the process of single objective problem optimization,

local search is considered to be an excellent tool for exploitation of a limited area of

the search space, but using only LS for optimization risks reaching stagnation when

stuck in the local optimum. On the other hand, the DE algorithm will provide the

feature of global exploration during its mutation stage. The combination of this local

and global heuristic methods will very probably result in excellent solutions to reach

our aim of optimizing single objective problems.

1.4 Structure of the Thesis

This thesis is organized so that first chapter is the introduction and background to the

study. The second chapter will discuss the Differential Evolution Algorithm method

in detail listing its development stages since the inception. Third chapter will present

our proposed method of Hybrid DE with Fmincon LS for optimizing Single

Objective Benchmark Problems of CEC2015. Next is the fourth chapter that will

(2)

10

investigate experimental part and discuss results of the experiment. The final chapter

is the conclusion of this study.

11

Chapter 2

THE DIFFERENTIAL EVOLUTION ALGORITHM

2.1 Taxonomy

Differential Evolution (DE) is arguably one of the most powerful stochastic real-

parameter optimization algorithms in current use [15]. DE uses a few control

parameters for reaching the true global minimum, regardless of the initial parameters

values. Being a stochastic method, it mainly uses random mechanisms to initiate

population and then proceed in the same operators originally from Genetic Algorithm

(GA); crossover, mutation and selection [2]. The algorithm operates through similar

computational steps as employed by a standard EA. However, unlike traditional EAs,

the DE-variants perturb the current-generation population members with the scaled

difference of randomly selected and distinct population members [15].

2.2 Procedure

In DE, a population of NP number of individuals is randomly initialized using (eq.

no 3) with the bounds on decision variables [17]

𝑥𝑖,𝑗(0) = 𝑥𝑗
𝐿 + 𝑟𝑎𝑛𝑑(0,1) . (𝑥𝑗

𝑈 − 𝑥𝑗
𝐿)

Where, i = 1,…..,N (N: population size), j = 1,…..,D (length of an individual)[] and

rand(0,1) is a random number from uniform distribution between 0 and 1. (xj
U – xj

L)

are the limitations of upper bound and lower bound on the jth decision variable [17].

The basic mechanism the used variant of DE works upon is subtraction,

demonstrated in equation (4), by randomly selecting mutually different vectors r1, r2

and r3, subtracting two of them and the differences are applied weight given to them

(3)

12

by a factor F called the differential weight. Finally, by adding the difference to the

third vector, the result will be obtaining the perturbation vector ui, (eq. no 4), as

follows [16]:

𝑢𝑖 = 𝑟3𝑖 + 𝐹(𝑟1𝑖 − 𝑟2𝑖), 𝑖 = 1,2, … , 𝐷

where D is the dimensionality of the individuals. Perturbation vector u is also called

a donor because it is produced only for donating its parts to the new offspring. This

perturbation technique follows the basic rule of DE/rand/1 variant of DE. The

second step is to find the trial vector y by applying binary crossover shown in fig. 3

on the target vector x and the donor vector u. This step relies mainly upon the

crossover rate factor (CR) which is the key to decision whether the new individual

takes its component from vector x or vector u [8].

Binary crossover mainly depends on the strategy of single-point crossover that is

used in many applications of binary coded EAs. In single-point crossover, a random

cross site is identified along the length of the solution string and the bits of one side

are swapped between the two parent strings. In single-variable optimization problem,

the action of the crossover is to used to create two new offspring strings from two

parent strings, while in multi-parent optimization problem, each variable is usually

coded in a certain number of bits and these bits are then combined to form the string

of the solution [51].

j = rand[1,D]

for i = 1 to D

 if(rand[0,1] < CR or i == j) yi = ui;

 else yi = xi;

end

Figure 3: Selection Procedure in DE using a

stochastic binary Crossover rate

(4)

13

The basic steps of DE are demonstrated in Figure 4 [18]:

One of the most important features of DE is contour matching, which means that the

generation population works in such way that promising regions of the objective

function surface are investigated automatically once they are detected. An important

ingredient besides selection is the promotion of basin to basin transfer; search points

may move from one basin of attraction (local minimum) to another. This suggests

that DE only accepts better solutions as the searching process advances [16].

Start

Get an individual

Initialization

Perturbation

Selection

Termination

Criterion met?

End

No

Yes

Figure 4: Flowchart of the basic Steps of DE[18]

14

Where:

- Populationsize: No. of individuals in one population.

- Problemsize: No. of decision variables in one vector.

- Weightingfactor: Differential weight F.

- Crossoverrate: CR factor.

- Population: Current generation of individuals.

- NewPopulation: The next generation of individuals.

- Sbest: The best solution found so far.

- Pi: An individual in the current population.

- Si: New individual vector found after applying DE process.

- InitializePopulation(): Returns randomly-generated population.

- EvaluatePopulation(): Returns fitness values of all the population individuals.

Input: Populationsize, Problemsize, Weightingfactor,

Crossoverrate

Output: Sbest

1 Population ← InitializePopulation(Populationsize,

 Problemsize);

2 EvaluatePopulation (Population);

3 Sbest ← GetBestSolution(Population);

4 while ¬ StopCondition() do

5 NewPopulation ← Ø;

6 foreach Pi ϵ Population do

7 Si ← NewSample (Pi, Population, Problemsize,

 Weightingfactor, Crossoverrate);

8 if Cost(Si) ≤ Cost (Pi) then

9 NewPopulation ← Si;

10 else

11 NewPopulation ← Pi;

12 end

13 end

14 Population ← NewPopulation;

15 EvaluatePopulation(Population);

16 Sbest ← GetBestSolution(Population);

17 end

18 return Sbest;

Figure 5: Pseudo Code of DE[18]

15

- GetBestSolution(): Returns the individual with minimum fitness value.

- StopCondition(): Stopping Criteria.

- NewSample(): Returns the trial vector yi.

- Cost(): Returns the fitness value of one vector.

2.3 Chronological Evolution of Hybrid DE

Since its inception in 1995, DE has drawn the attention of many researchers all over

the world resulting in a lot of variants of the basic algorithm with improved

performance [15]. The article that was published by R. Storn and K. Price officially

introduced DE algorithm with thorough explanations of the steps which DE is based

upon. That first publication of DE was proposed two years before R. Storn wrote two

different articles about using "Differential Evolution design of an IIR-filter" and the

"Usage of differential evolution for function optimization". P. Thomas and D.

Vernon (1997) together proposed a method for "Image registration by Differential

Evolution". Most of the studies that were interested in the usage of DE focused on

image processing until J. P. Chiou and F. Sh. Wang (1998) realized the fact that

some engineering optimization problems are being solved with the aid of all different

EAs including DE. They proposed a hybrid method of DE for the purpose of

engineering optimization problems. In 1999, the DE was described as a simple

problem optimization procedure for constraint based problems with the aim of

simplifying system design [19].

Studies during the first decade of 2000s about DE were more detailed with

experiments and even showed the problems that DE could face. J. Lampinen and I.

Zelinka wrote about stagnation of the DE algorithm in 2000. They stated that

stagnation is different from premature convergence because of the consistent

16

diversity remaining in the population even after reaching stagnation, but the

optimization process does not progress anymore. They concluded that the reason for

stagnation remained unknown so far. The first introduced DE variant was Pareto-

Frontier Differential Evolution (PDE) [20] in 2001. PDE was targeted for solving

multi-objective optimization problems. The same author published a paper the

following year, describing a self-adaptive Pareto Differential Evolution (SPDE) [21].

Self adaptive Differential Evolution (SADE) was proposed by A. K. Qin and P. N.

Suganthan in 2005. The algorithm used learning strategy. The F parameters and CR

parameters were not required to be pre-specified; rather they will be self adapted

during evolution using a suitable learning strategy. In 2008, For the enhancement of

effective EAs, a crossover-based adaptive LS was used with the standard DE

featuring the adjusting of the length of the search accordingly using a hill-climbing

heuristic [22]. Another hybrid DE method (HDE) was proposed for solving the

permutation flow-shop scheduling which is a combinatorial NP hard-single-objective

optimization problem [23]. First, they changed the continuous nature of DE

individuals to job permutation using largest-order-value, then applied a simple LS

designed corresponding to be suitable with the problem's scope, nature, range and

features. Finally, HDE was extended to Multi-objective HDE (MHDE) to solve

muti-objective version of the same problem. In 2009, J. Zhang and A. Sanderson

introduced the JADE; Adaptive DE with optional External Archive. The variant used

a new mutation strategy with optional memory-usage and adaptive updating for

control parameters. Moreover, a novel hybridization of two well-known EAs; DE

and PSO, was proposed also in the same year for the purpose of unconstrained

optimization. The algorithm was called DE-PSO which included basic mechanisms

from both EAs [24].

17

The concept of hybridization of DE became more popular in 2010 when two

noticeable studies were published. The first was hybrid DE with biogeography-based

optimization [25]. It was designed for global numerical optimization. It depended on

the biogeography-based migration operator for exchanging information between DE

individuals, which combined the exploration feature of DE with the exploitation of

BBO effectively. The second publication on hybridizing DE during the same year

proposed two hybrid DE algorithms for engineering design optimization [26]. After

that, in 2011, Young Wang et al. published an article about DE with composite trial

vector generation strategies and control parameters. Results of the study have

shown that employing generation strategies and control parameters have significant

influence on the performance. The proposed method was tested on all the CEC2005

contest test instances [27].

The previously mentioned study in 2010 that proposed two hybrid algorithms [26]

led to another experiment in 2012 for hybridizing DE with another EA. An article

about Co-evolutionary DE with Harmony search (DEHS) for reliability-redundancy

optimization was published [28]. The method of the algorithm was to divide the

problem into a continuous part and an integer part. Eventually, two populations

evolve simultaneously and co-operatively. Hybrid Robust Differential Evolution

(HEDE) was proposed in the same year [29], adding positive properties of the

Taguchi's method to the DE for minimizing the production cost associated with

multi-pass tuning problems.

Success History based DE (SHADE) variant of DE, was proposed in 2013 by Ryoji

Tanabe; an enhancement of JADE [30] which uses a history-based parameter

adaptation scheme, instead of generating new control parameters. SHADE method

18

uses a historical memory (MCR, MF) which stores a set of combination of these

parameters that have performed well before. Then, it generates new (CR) and (F)

parameters close to ones of the pairs stored in the memory. Another variant of DE

was proposed in the same year, SapsDE [31]. Population resizing mechanism was

used in this method to enhance performance of DE by dynamically choosing one of

two mutation strategies and tuning control parameters in a self-adaptive manner. The

method was tested on 17 benchmark functions.

Fireworks algorithm (FA) is relatively a new swarm-based metaheuristic for global

optimization. An improved version of FA was developed in 2015 [32] using the

combination with DE operators; mutation, crossover and selection. At each iteration,

the newly generated solutions are updated under the control of randomly selected

vectors out of the best-so-far solutions. Another hybrid method in 2015 was proposed

to merge the Genetic algorithm (GA) with DE, termed (hGADE) [33], to solve one

of the most important power system optimization problems known as the unit

commitment (UC) scheduling. The binary UC variables were evolved using GA

while the continuous dispatch variables were evolved using DE. That is due to the

GA capability of handling binary variables efficiently and the DE remarkable

performance in real parameter optimization.

An article published in 2016 proposed Memory-based DE (MBDE)[34]. The method

had two swarm operators introduced which were based on the personal best (pBest)

and global best (Gbest) mechanisms of PSO. The method was tested on 12 basic, 25

CEC2005 and 30 CEC2014 unconstrained benchmark functions. Another variant was

proposed in the same year, based on modified JADE (MJADE) and modified CoDE

(MCode), named (HMJCDE) [35]. Both of the hybrid algorithms were operated

19

alternatively according to the improvement rate of the fitness value. The proposed

method performance was assessed on 30 benchmark problems taken from CEC2014.

Generalized Differential Evolution (GDE) is the most recent hybrid DE, proposed in

2017, for solving numerical and evolutionary optimization [36]. GDE is a general

purpose optimizer for global non-linear optimization. The basic DE was extended to

handle multiple constraints and objectives just by modifying the selection rule.

Another newly published article introduced the idea of continuous adaptive

population reduction (CAPR)for DE. The improvements upon this method are in

terms of efficiency and convergence over the original DE and constant population

reduction DE. It continuously adjusts the reduction of population size accordingly

during exploitation stage [37].

The concept of hybridization has been the centre of attention of research in the

optimization area during the last twenty years. Various hybrid DE algorithms have

been introduced and conducted mainly for problem optimization. Overall, further

optimization research on improving performance of DE and all other EAs that are

known has a promising future.

20

Chapter 3

METHODOLOGY

This study employs a hybridization technique of metaheuristic evolutionary

algorithm with a local search mechanism to examine the results of single-objective

problem optimization. Hybridizing EAs have been used by different researchers

during the past twenty years. EAs have proven their ability to explore large search

spaces, but they are comparatively inefficient in fine tuning the solution. This

drawback is usually avoided by means of local optimization algorithms that are

applied to the individuals of the population. The algorithms that use local

optimization procedures are usually called hybrid algorithms [39].

In the process of merging the Differential Evolution algorithm together with a Local

Search technique, Fmincon LS which is a non-linear programming method was used

as an optimization tool applied to the individuals of the DE population. Using a non-

linear programming function gives a significant aid to our aim to minimize single-

objective problem. The experiment was conducted by the implementation of three

different variants of hybrid DE with Fmincon LS. The first variant applied the local

optimization on the area around the new individual that was found after going

through DE mutation then selection steps. In the experiment of the second variant of

hybrid DE, we applied LS to the best solution found in the current population before

starting the DE main loop. The final experiment was intended to fuse the past two

21

variants of hybridization by executing LS to the best individual in the current DE

population first, and then applying the LS again after finding the new solution of DE.

3.1 Fmincon LS

The Fmincon method finds a constrained minimum of a scalar function of several

variables starting at an initial estimate. This is generally referred to as constrained

nonlinear optimization or nonlinear programming. The minimum of constrained

nonlinear multivariable function (eq. no 5)

 min
𝑥
𝑓(𝑥)

subject to

 𝑐(𝑥) ≤ 0

 𝑐𝑒𝑞(𝑥) = 0

 𝐴 ∙ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

Where

- x, b, beq, lb and ub are vectors.

- A and Aeq are metrics.

- c(x) and ceq(x) are functions that return vectors.

- f(x) is a function that returns a scalar.

f(x), c(x), and ceq(x) can be nonlinear functions [40].

3.1.1 Fmincon Function Description

𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 (𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏)

(5)

(6)

22

Starts at x0 and finds a minimum x to the function described in fun() subject to the

linear inequalities

 𝐴 ∙ 𝑥 ≤ 𝑏

x0 can be a scalar, vector or matrix. It also minimizes fun() subject to the linear

equalities

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞

as well as 𝐴 ∙ 𝑥 ≤ 𝑏

Also defines a set of lower and upper bounds on the design variables, x , so that the

solution is always in the range

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

Sets Aeq = [] and beq = [] if no equalities exist.

[𝑥, 𝑓𝑣𝑎𝑙] = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(…)

Returns the value fval of the objective function fun() at the solution x [40].

3.2 Hybrid DE Version 1: LS around New Solution

Starting with the randomly created Differential Evolution population and reaching

the selection stage of the DE method means that the algorithm has created the donor

vector ui and the decision of selecting each decision variable for the new individual

depends mainly on the random shuffle of Crossover-rate (CR) value. Si will be the

newly created vector by the selection step in DE. While Pi is the original individual

from current DE iteration population, the algorithm will decide whether Si or Pi is

going to be accepted in the new population after finishing selection step by

comparing both of their cost values, and choosing the better (lower) one. We can say

that applying the Fmincon LS method around the area of the New Solution selected

by the DE makes a good move due to the fact that if either Pi or Si was selected to be

the new individual in the next population, each of these two is supposed to have a

(7)

23

low cost value overall. This experimental point was taken to confirm that starting the

local search method with a good solution could lead to better solutions around the

area of it to fulfill the aim of reaching optimal, or near-optimal solutions.

Where:

- Populationsize: No. of individuals in one population.

- Problemsize: No. of decision variables in one vector.

- Weightingfactor: Differential weight F.

- Crossoverrate: CR factor.

- Population: Current generation of individuals.

Figure 6: Pseudo Code of first variant of Hybrid DE

(Fmincon LS applied to New individual)

Input: Populationsize, Problemsize, Weightingfactor,

Crossoverrate

Output: Sbest

1 Population ← InitializePopulation(Populationsize,

 Problemsize);

2 EvaluatePopulation (Population);

3 Sbest ← GetBestSolution(Population);

4 while ¬ StopCondition() do

5 NewPopulation ← Ø;

6 foreach Pi ϵ Population do

7 Si ← NewSample (Pi, Population, Problemsize,

 Weightingfactor, Crossoverrate);

8 if Cost(Si) ≤ Cost (Pi) then

9 Fmincon (Si);

10 NewPopulation ← Si;

11 else

12 NewPopulation ← Pi;

13 end

14 Fmincon(NewPopulationi);

15 end

16 Population ← NewPopulationi;

17 EvaluatePopulation(Population);

18 Sbest ← GetBestSolution(Population);

19 end

20 return Sbest;

24

- NewPopulationi: The next generation of individuals.

- Sbest: The best solution found so far.

- Pi: An individual in the current population.

- Si: New individual vector found after applying DE process.

- InitializePopulation(): Returns randomly-generated population.

- EvaluatePopulation(): Returns fitness values of all the population individuals.

- GetBestSolution(): Returns the individual with minimum fitness value.

- StopCondition(): Stopping Criteria.

- NewSample(): Returns the trial vector yi.

- Cost(): Returns the fitness value of one vector.

- Fmincon (): Returns the local optimum found after applying local search.

3.3 Hybrid DE Version 2: LS around Best individual in Current

population

Initializing a population in the first iteration of the DE algorithm is carried out

through a stochastic behavior, which may lead to very large differences in the cost

values among individuals. The algorithm will start by evaluating the initialized

individuals in order to find the one with the best cost value; Sbest, which may not

necessarily have a very good fitness value, but overall it is the best-so-far in the

current population. Performing the Fmincon LS mechanism around the area of Sbest

can be considered in our experiment as a Hill-climbing [18] strategy. The LS is

granted a starting point with an individual that may not be a good solution overall,

but may lead to better solutions after reaching the local optimum. After LS is

finished, the local optimum vector found in the area around Sbest will be assigned to

it, then it will proceed to perform the DE method.

25

Where:

- Populationsize: No. of individuals in one population.

- Problemsize: No. of decision variables in one vector.

- Weightingfactor: Differential weight F.

- Crossoverrate: CR factor.

- Population: Current generation of individuals.

- NewPopulationi: The next generation of individuals.

- Sbest: The best solution found so far.

- Pi: An individual in the current population.

- Si: New individual vector found after applying DE process.

- InitializePopulation(): Returns randomly-generated population.

Input: Populationsize, Problemsize, Weightingfactor,

Crossoverrate

Output: Sbest

1 Population ← InitializePopulation(Populationsize,

 Problemsize);

2 EvaluatePopulation (Population);

3 Sbest ← GetBestSolution(Population);

5 while ¬ StopCondition() do

6 Fmincon (Sbest);

7 NewPopulation ← Ø;

8 foreach Pi ϵ Population do

9 Si ← NewSample (Pi, Population, Problemsize,

 Weightingfactor, Crossoverrate);

10 if Cost(Si) ≤ Cost (Pi) then

11 NewPopulation ← Si;

12 else

13 NewPopulation ← Pi;

14 end

15 end

16 Population ← NewPopulation;

17 EvaluatePopulation(Population);

18 Sbest ← GetBestSolution(Population);

19 end

20 return Sbest;

Figure 7: Pseudo Code of second variant of Hybrid DE

(Fmincon LS applied to Best individual in Current Population)

26

- EvaluatePopulation(): Returns fitness values of all the population individuals.

- GetBestSolution(): Returns the individual with minimum fitness value.

- StopCondition(): Stopping Criteria.

- NewSample(): Returns the trial vector yi.

- Cost(): Returns the fitness value of one vector.

- Fmincon (): Returns the local optimum found after applying local search.

3.4 Hybrid DE Version 3: LS around Best individual in Current

population & around the New solution

The previous two hybrid DE methods proposed active usage of Hill-climbing

strategy and employed the point of starting the LS with a good solution in order to

reach better near-optimal fitness valued individuals. The third proposed method

creation depended on fusing the two past strategies together. The algorithm will start

by initializing the population and selecting the best individual Sbest, then Fmincon LS

is performed around Sbest aiming to reach the local optimum. After first LS procedure

is finished, the DE method proceeds until reaching the selection stage. LS will be

performed with the starting solution Pi or Si upon the decision of which one will be

in the new population after comparing their fitness values. The concept of merging

the two previous strategies and performing LS before and after the DE method is

executed ensures performing the search in both exploration and exploiting behavior

and may have better performance and result in serving the aim of enhancing DE

performance overall.

27

Where

- Populationsize: No. of individuals in one population.

- Problemsize: No. of decision variables in one vector.

- Weightingfactor: Differential weight F.

- Crossoverrate: CR factor.

- Population: Current generation of individuals.

- NewPopulationi: The next generation of individuals.

- Sbest: The best solution found so far.

- Pi: An individual in the current population.

Input: Populationsize, Problemsize, Weightingfactor,

Crossoverrate

Output: Sbest

1 Population ← InitializePopulation(Populationsize,

 Problemsize);

2 EvaluatePopulation (Population);

3 Sbest ← GetBestSolution(Population);

4 while ¬ StopCondition() do

5 Fmincon (Sbest);

6 NewPopulation ← Ø;

7 foreach Pi ϵ Population do

8 Si ← NewSample (Pi, Population, Problemsize,

9 Weightingfactor, Crossoverrate);

10 if Cost(Si) ≤ Cost (Pi) then

11 NewPopulation ← Si;

12 else

13 NewPopulation ← Pi;

14 end

15 Fmincon (NewPopulationi);

16 end

17 Population ← NewPopulation;

18 EvaluatePopulation(Population);

19 Sbest ← GetBestSolution(Population);

20 end

21 return Sbest;

Figure 8: Pseudo Code of third variant of Hybrid DE

(Fmincon LS applied to Best Individual in Current Population and around

the New individual)

28

- Si: New individual vector found after applying DE process.

- InitializePopulation(): Returns randomly-generated population.

- EvaluatePopulation(): Returns fitness values of all the population individuals.

- GetBestSolution(): Returns the individual with minimum fitness value.

- StopCondition(): Stopping Criteria.

- NewSample(): Returns the trial vector yi.

- Cost(): Returns the fitness value of one vector.

- Fmincon (): Returns the local optimum found after applying local search.

3.5 Summary

Three different variants of Hybrid DE were proposed. Each variant featured

combining the DE algorithm with the Fmincon LS tool. the first version of Hybrid

DE was conducted based on the concept of starting the LS with a good fitness valued

solution with the aim of reaching better solutions around its neighborhood. The

second version of the proposed Hybrid DE was based on a Hill-climbing idea by

applying the LS in the area of the best fitness valued solution in the randomly

initialized current population. Finally, the last proposed version of Hybrid DE

featured the fusion of both first and second versions by applying LS around the best

solution in current population area, then also applying the LS after DE execution was

finished and the new individual of the population was found.

29

Chapter 4

EXPERIMENTAL RESULTS

For the purpose of demonstrating the differences between results, the first step of the

experiment was to execute optimization of 15 black-box benchmark functions [14]

using the original Differential Evolution Algorithm. Then, we experimented with all

of the three proposed variants of Hybrid DE on the benchmark functions with 10 and

30 dimensions. The empirical results, supported with comprehensive secondary data

obtained from the single-objective problem optimization experiment revealed that

optimization process using an EA was influenced by the support of local

optimization method. The difference between results obtained from implementing

the original DE algorithm and results of the three variants of Hybrid DE in both 10

and 30 dimensions was huge.

4.1 CEC'15 Expensive Optimization Test Problems

By downloading the Matlab Codes for CEC'15 test suite [41], all the problems were

installed and treated as black-box optimization problems and without any prior

knowledge. Neither the analytical equations nor the problem characteristics extracted

from analytical equations were allowed to be seen or studied [14].

4.1.1 Common Definitions

All test functions are minimization problems defined as follows in (eq. no 8):

min 𝑓(𝑥) , 𝑥 = [𝑥1, 𝑥2, … . , 𝑥𝐷]
𝑇 (8)

30

Where D is the dimension of the problem. all search ranges are pre-defined for all

test functions as [-100, 100]D. The termination criterion is based on reaching the

maximum number of function evaluations according to each dimension [14].

4.1.2 Experimental Settings

• Number of independent runs: 20

• Maximum number of exact function evaluations:

o 10-dimension: 500

o 30- dimension: 1500

• Initialization: using a problem-independent initialization method.

• Termination: Terminate when reaching the maximum number of exact

function evaluations or the error value (Fi* - Fi(x*)) is smaller than 10-3 [14].

Practically, modern stochastic optimization methods such, as EAs, are considered

computationally expensive because they require many thousands of objective

function calls to the simulation codes in order to locate a near-optimal solution. EAs

are also time consuming since their search cycle time is directly proportional to the

number of calls of the expensive fitness function [52].

31

Table 1: Summary of CEC'15 expensive optimization test problems [14]

Categories No Functions Related Basic Functions Fi*

Unimodal

Functions

1 Rotated Bent Cigar Function Bent Cigar Function 100

2 Rotated Discus Function Discus Function 200

Simple

Multimoda

l Functions

3
Shifted and Rotated

Weierstrass Function

Weierstrass Function
300

4
Shifted and Rotated

Schwefel's Function

Schwefel's Function
400

5
Shifted and Rotated Katsuura

Function

Katsuura Function
500

6
Shifted and Rotated

HappyCat Function

HappyCat Function
600

7
Shifted and Rotated HGBat

Function

HGBat Function
700

8

Shifted and Rotated

Expanded Griewank's puls

Rosenbrock's Function

Griewank's Function

Rosenbrock's Function 800

9

Shifted and Rotated

Expanded Scaffer's F6

Function

Expanded Scaffer's F6

Function 900

Hybrid

Functions

10

Hybrid Function 1 (N=3) Schwefel's Function

Rastrigin's Function

High Conditioned

Elliptic Function

1000

11

Hybrid Function 2 (N=4) Griewank's Function

Weierstrass Function

Rosenbrock's Function

Scaffer's F6 Function

1100

12

Hybrid Function 3 (N=5) Katsuura Function

HappyCat Function

Griewank's Function

Rosenbrock's Function

Schwefel's Function

Ackley's Function

1200

Compositi

on

Functions

13

Composite Function 1 (N=5) Rosenbrock's Function

High Conditioned

Elliptic Function

Bent Cigar Function

Discus Function

1300

14

Composite Function 2 (N=3) Schwefel's Function

Rastrigin's Function

High Conditioned

Elliptic Function

1400

15

Composite Function 3 (N=5) HGBat Function

Rastrigin's Function

Schwefel's Function

Weierstrass Function
High Conditioned Elliptic Function

1500

32

4.2 Results

The three proposed variants of Hybrid DE were tested distinctly for optimizing

CEC2015 single objective problems in Dimension 10 featuring only 500 function

evaluations and in Dimension 30 featuring a larger number of function evaluations

up to 1500 times. The results of both dimensions intended to demonstrate a large

improvement from the primary original DE solutions with high adjacency to the

optimal Fi* results.

4.2.1 Hybrid DE variants in Dimension 10

Table 2 data are obtained from dimension 10 implementation of original DE,

followed by the results of versions 1, 2 and 3 of Hybrid DE. The best results out of

Fi* DE Hybrid DE V.1 Hybrid DE V. 2 Hybrid DE V. 3

1 100 3E+09 100.051678 100.1647 100.0613

2 200 31156.62115 200.0142 200.0143 200.0112

3 300 309.9202 308.5307 308.2675 307.9077

4 400 1684.209 1022.401 846.0667 833.142

5 500 501.4494256 500.1929 500.2548 500.1859

6 600 602.7712 600.0904 600.2087 600.096

7 700 724.67707 700.3239 700.2243 700.2266

8 800 1861.4487 801.5499 807.4774 802.66

9 900 903.98633 903.3542 903.1379 902.3923

10 1000 143000.37 1323.485 1005.393 1229.117

11 1100 1111.3384 1105.355 1105.896 1105.974

12 1200 1260.531 1261.581 1243.613 1266.532

13 1300 1691.2347 1612.527 1612.527 1612.527

14 1400 1614.3457 1595.872 1595.915 1602.9

15 1500 1941.8559 1591.424 1655.731 1526.254

Table 2: Best results of Hybrid DE versions in Dimension 10 (20 runs)

Fi*: Optimal solution of the ith problem

33

20 distinct runs for 15 single objective problems' optimization are demonstrated.

The results of the analyses of Table 2 revealed significant differences between the

original DE solutions and the Hybrid DE solutions which clearly tend to get close to

the optimal values in some of the problems, but do not in the others. Overall, both of

version 1 and version 2 of Hybrid DE results tend to show an apparent improvement

in the quality of solutions, while fusing both of their concepts in version 3 of the

algorithm demonstrates best experiment solutions in most of the 15 problems.

Fi* DE Hybrid DE V.1 Hybrid DE V. 2 Hybrid DE V. 3

1 100 8.9E+08 100.1575171 100.0616349 100.1114339

2 200 21757.5 200.015307 200.0131796 200.0099

3 300 308.1646 308.7714 307.6581 307.4994

4 400 1459.511 653.1932 932.2627 764.1311

5 500 501.617 500.0504 500.2256 500.0967

6 600 601.8938 600.3841 600.2546 600.1087

7 700 708.4069 700.1476 700.192 700.1407

8 800 822.8918 804.109 813.425952 807.28347

9 900 903.8918 902.5808 903.1077 903.0219

10 1000 68398.03 1021.345084 1166.67 1147.98849

11 1100 1109.029 1106.377 1108.743 1106.031

12 1200 1299.266 1238.05 1229.16 1224.18

13 1300 1630.788 1612.527 1612.527 1612.527

14 1400 1609.633 1588.785 1599.846 1597.523

15 1500 1771.877 1573.638 1695.892 1584.807

Table 3: Best results of Hybrid DE versions in Dimension 30 (20 runs)

Fi*: Optimal solution of the ith problem

34

Both of the Unimodal functions results in all three Hybrid DE variants in Dimension

10 reached near-optimal solutions with relatively small differences from optimality.

Multimodal functions were mixed between problems which had very small

differences from optimal solutions; problems no. 5, 6, 7 and 8 while the rest of the

problems' results in the same category showed big figured numbers. Finally, Hybrid

functions which included problems 10, 11 and 12, and Composite functions that

included problems 13, 14 and 15, was able to improve the primary result of original

DE algorithms, but not reaching any near optimal solutions in any of these problems.

4.2.2 Hybrid DE variants in Dimension 30

Table 3 demonstrates the dimension 30 implementation of original DE results, and

the solutions of version 1, 2 and 3 of Hybrid DE. The best results out of 20 runs

which were executed separately for 15 single objective problems' optimization are

demonstrated. Fi* are the optimal solutions for problems.

The results of the analyses in Table 3 revealed significant differences between the

original DE solutions and the Hybrid DE solutions. Reaching near-optimal solutions

overall seem to be dependent on starting with a good solution in a way. Hybrid DE

version 1 here owns the highest number of best experiment solutions with version 2

of Hybrid DE only resulting the best in problem No. 1. This may indicate that most

of the time, when starting the local exploitation with a good solution, the procedure

could lead to better optimization results.

Both of the Unimodal functions results in all three Hybrid DE variants in Dimension

30 reached near-optimal solutions with relatively small differences from optimality.

Multimodal functions were mixed between problems which had very small

differences from optimal solutions; problems no. 5, 6, 7 and 9 while the rest of the

35

problems' results in the same category showed big figured numbers. Finally, Hybrid

functions which included problems 10, 11 and 12, and Composite functions that

included problems 13, 14 and 15, was able to improve the primary result of original

DE algorithms, but not reaching any near optimal solutions in any of these problems.

CPU time, demonstrated in Table 4, was calculated distinctively from Hybrid DE

versions implementation in Dimension 30 for each problem per single run. Then, the

total time for 20 runs for each Hybrid DE version optimization of a single problem

was calculated. Version 2 of the proposed method appeared to be the most time-

consuming compared with the two other versions, yet did not reach good solutions.

DE Hybrid DE V.1 Hybrid DE V. 2 Hybrid DE V. 3

1 16.25 232.5 9122.5 4575

2 14.688 107.812 7068.75 3160

3 18.438 283.75 11489.376 6575.626

4 13.126 137.5 9054.688 4479.376

5 14.062 313.75 30628 19136.562

6 13.438 154.688 10578.75 4131.876

7 26.25 159.688 8951.876 29144

8 13.438 234.688 15270.312 5054.688

9 11.876 175.626 5880.626 10126.562

10 13.988 163.126 6792.812 3552.5

11 18.75 164.376 22848 6493.75

12 26.25 329.376 6464.688 6888.75

13 3.576 173.126 7666.25 6291.562

14 14.688 110 3362.188 4926.25

15 17.5 151.25 14462.188 6115.938

Table 4: CPU Time for Best results of Hybrid DE versions in D30 (sec/20 runs)

36

4.3 Comparison with Literature

The findings of our experiment with Hybrid DE are consistent to some extent with

the past studies on CEC 2105 problem optimization. A number of the previously

proposed methods for the solutions of the same group of problems show clear

relation to the results of Hybrid DE. DEsPA [9] is a technique proposed by Noor

Awad et al. which featured using a memory-based structure to adapt control

parameters. L-SHADE [10] is another method proposed by Shu-Mei Gou et al. it

depended on the population resizing concept. Neurodynamic Differential Evolution

[11] proposed a linear population size reduction DE dependent on modification of

success history parameter within the concept of neurodynamic. Moreover, Self-

adaptive Dynamic Multi-Swarm Particle [12] which differs primarily from original

PSO in the employment of of self-adaptive strategy of parameters. Finally, the

Hybrid Cooperative Co-evolution (hCC), which consists the concept of separating

the variables into groups and continue in adopting different algorithms within the

cooperative co-evolution (CC) framework [13].

Tables 5, 6 and 7 demonstrated below compare the error rates of the versions 1, 2

and 3 of Hybrid DE with the error rates from literature in dimension 30.

4.3.1 Hybrid DE with LS around New solution

The data demonstrated in Table 5 are obtained from literature representing error rates

of the previously proposed methods results for CEC2015 expensive problems

optimization. The comparison conducted between Hybrid DE version 1 error rates of

application to the same group of problems.

Fi* Hybrid DE V. 1 DEsPA SPS-L-SHADE-EI LSHADE-ND sDMS-PSO hCC

1 100 1.58E-01 0.00E+00 0.00E+00 0.00E+00 0.000513 1.56E-13

2 200 1.53E-02 0.00E+00 0.00E+00 0.00E+00 0.000807 2.84E-14

3 300 8.77E+00 2.00E+01 2.00E+01 2.000E+01 19.9998 2.01E+01

4 400 2.53E+02 3.98E+00 1.05E-02 4.9750E+00 24.87397 5.22E+00

5 500 5.04E-02 9.48E+02 6.58E+02 7.5217E+02 1587.52 2.59E+02

6 600 3.84E-01 2.72E+01 2.68E+01 4.4798E+01 564.0676 4.50E+01

7 700 1.48E-01 1.07E+00 6.23E-01 3.6485E+00 5.829585 2.25E+00

8 800 4.11E+00 3.40E+00 2.07E+00 2.3365E+00 538.468 1.15E+01

9 900 2.58E+00 1.16E+02 1.02E+02 1.022E+02 102.5592 1.06E+02

10 1000 2.13E+01 3.50E+01 1.48E+02 3.3222E+02 2613.849 4.15E+02

11 1100 6.38E+00 2.01E+02 3.00E+02 4.000E+02 306.3833 3.18E+02

12 1200 3.81E+01 1.08E+02 1.02E+02 1.0295E+02 103.4556 1.04E+02

13 1300 3.13E+02 6.93E+01 2.56E-02 2.5584E-02 89.6766 2.51E-02

14 1400 1.89E+02 2.73E+04 3.11E+04 3.1070E+04 17469.59 3.11E+04

15 1500 7.36E+01 2.73E+02 1.00E+02 1.000E+02 100 1.00E+02

Table 5: Comparison of dimension 30 error rates of Hybrid DE V. 1 results with literature

38

By examining the comparison between error rates demonstrated in Table 5, it can be

concluded that the highest number of best problem optimization results belong to the

first version of Hybrid DE method. The table showed superior performance of

Hybrid DE from optimizing results of 10 out of 15 problems, which is the highest

between all the methods from literature. In problems number 1 and 2, the error rates

of Hybrid DE version 1 appeared to be very close to optimality. The rest of the

problems' results varied between generally small differences and extreme differences

from the optimal values.

4.3.2 Hybrid DE with LS around Best individual in Current Population

 The data demonstrated in Table 6 are obtained from literature representing error

rates of the previously proposed methods results for CEC2015 expensive problems

optimization. The comparison conducted between Hybrid DE version 2 error rates of

application to the same group of problems.

Fi* Hybrid DE V. 2 DEsPA SPS-L-SHADE-EIG LSHADE-ND sDMS-PSO hCC

1 100 6.16E-02 0.00E+00 0.00E+00 0.00E+00 0.000513 1.56E-13

2 200 1.32E-02 0.00E+00 0.00E+00 0.00E+00 0.000807 2.84E-14

3 300 7.66E+00 2.00E+01 2.00E+01 2.000E+01 19.9998 2.01E+01

4 400 5.32E+02 3.98E+00 1.05E-02 4.9750E+00 24.87397 5.22E+00

5 500 2.26E-01 9.48E+02 6.58E+02 7.5217E+02 1587.52 2.59E+02

6 600 2.55E-01 2.72E+01 2.68E+01 4.4798E+01 564.0676 4.50E+01

7 700 1.92E-01 1.07E+00 6.23E-01 3.6485E+00 5.829585 2.25E+00

8 800 1.34E+01 3.40E+00 2.07E+00 2.3365E+00 538.468 1.15E+01

9 900 3.11E+00 1.16E+02 1.02E+02 1.022E+02 102.5592 1.06E+02

10 1000 1.67E+02 3.50E+01 1.48E+02 3.3222E+02 2613.849 4.15E+02

11 1100 8.74E+00 2.01E+02 3.00E+02 4.000E+02 306.3833 3.18E+02

12 1200 2.92E+01 1.08E+02 1.02E+02 1.0295E+02 103.4556 1.04E+02

13 1300 3.13E+02 6.93E+01 2.56E-02 2.5584E-02 89.6766 2.51E-02

14 1400 2.00E+02 2.73E+04 3.11E+04 3.1070E+04 17469.59 3.11E+04

15 1500 1.96E+02 2.73E+02 1.00E+02 1.000E+02 100 1.00E+02

Table 6: Comparison of dimension 30 Hybrid DE V. 2 results with literature

40

According to Table 6, the second proposed version of Hybrid DE had the largest

number of best optimization results in 8 out of 15 CEC expensive problems. The

error rates of both problems number 1 and 2 tend to be very close to the optimal

value. Problems number 4, 8, 10, 13 and 15 results show a considerably big

difference from the optimal values of problem solutions.

4.3.3 Hybrid DE with LS around Best individual in Current Population &

around the New solution

The data demonstrated in Table 7 are obtained from literature representing error rates

of the previously proposed methods results for CEC2015 expensive problems

optimization. The comparison conducted between Hybrid DE version 3 error rates of

application to the same group of problems.

Fi* Hybrid DE V. 3 DEsPA SPS-L-SHADE-EIG LSHADE-ND sDMS-PSO hCC

1 100 1.11E-01 0.00E+00 0.00E+00 0.00E+00 0.000513 1.56E-13

2 200 9.90E-03 0.00E+00 0.00E+00 0.00E+00 0.000807 2.84E-14

3 300 7.50E+00 2.00E+01 2.00E+01 2.000E+01 19.9998 2.01E+01

4 400 3.64E+02 3.98E+00 1.05E-02 4.9750E+00 24.87397 5.22E+00

5 500 9.67E-02 9.48E+02 6.58E+02 7.5217E+02 1587.52 2.59E+02

6 600 1.09E-01 2.72E+01 2.68E+01 4.4798E+01 564.0676 4.50E+01

7 700 1.41E-01 1.07E+00 6.23E-01 3.6485E+00 5.829585 2.25E+00

8 800 7.28E+00 3.40E+00 2.07E+00 2.3365E+00 538.468 1.15E+01

9 900 3.02E+00 1.16E+02 1.02E+02 1.022E+02 102.5592 1.06E+02

10 1000 1.48E+02 3.50E+01 1.48E+02 3.3222E+02 2613.849 4.15E+02

11 1100 6.03E+00 2.01E+02 3.00E+02 4.000E+02 306.3833 3.18E+02

12 1200 2.42E+01 1.08E+02 1.02E+02 1.0295E+02 103.4556 1.04E+02

13 1300 3.13E+02 6.93E+01 2.56E-02 2.5584E-02 89.6766 2.51E-02

14 1400 1.98E+02 2.73E+04 3.11E+04 3.1070E+04 17469.59 3.11E+04

15 1500 8.48E+01 2.73E+02 1.00E+02 1.000E+02 100 1.00E+02

Table 7: Comparison of dimension 30 Hybrid DE V. 3 results with literature

42

Looking at Table 7, the comparison between the third proposed version of Hybrid

DE show that it could reach the best results in optimizing 9 out of 15 problems of the

CEC expensive problems, which is the largest between all the other methods in the

literature. The results of problem 1 and 2 are very close to the optimal values of the

problems. The rest of the problems error rates are between considerably small and

large differences from optimal values.

4.4 Friedman Ranking Test

The Friedman Test is a non-parametric statistical test developed by Milton

Friedman. It is used to check the statistical similarities in treatments across multiple

test attempts. The procedure involves ranking each row together, then considering

the values of ranks by columns [42]. The P-value indicator represents the difference

between the ranked functions statistically. The smaller the p-value is, the bigger the

statistical differences between the ranked methods are [54].

The ranking procedure was used in order to assess the quality of the proposed Hybrid

DE. A comparison among the three proposed variants of Hybrid DE in dimension 10

and dimension 30 opposed to the original DE results, and between each Hybrid DE

proposed variant in dimension 30 with literature studies was conducted using

Friedman test.

Table 8: Friedman Ranking between Hybrid DE versions in D10

Rank Function

1
Hybrid DE with LS around Best individual in Current Population

& around the New solution (V.3)

2 Hybrid DE with LS around New solution (V.1)

3
Hybrid DE with LS around Best individual in Current Population

(V.2)

4 DE

p-value = 3.1041e-05

https://en.m.wikipedia.org/wiki/Non-parametric_statistics
https://en.m.wikipedia.org/wiki/Statistical_test
https://en.m.wikipedia.org/wiki/Milton_Friedman
https://en.m.wikipedia.org/wiki/Milton_Friedman
https://en.m.wikipedia.org/wiki/Ranking

43

according to the Ranking between the three proposed Hybrid DE variants including

the original DE results in dimension 10 demonstrated in Table 8, version 3 of the

Hybrid DE method; applying LS around the best individual in current population and

around the new solution, was ahead of the other two proposed hybrid methods. The

P-value is very close to zero which indicates obvious difference between their

performance statistically.

Table 9: Friedman Ranking between Hybrid DE versions in D30

Rank Function

1 Hybrid DE with LS around New solution (V.1)

1
Hybrid DE with LS around Best individual in Current Population

& around the New solution (V.3)

2
Hybrid DE with LS around Best individual in Current Population

(V.2)

3 DE

p-value = 1.19198e-06

In dimension 30, version 1 and 3 of Hybrid DE had the same level of performance

according to Friedman Test ranking in Table 9. Both of version 1 and 3 had the best

rank before the second version of proposed Hybrid DE followed by the original DE.

Table 10: Friedman Ranking between Hybrid DE V.1 and Literature in D30

Rank Function

1 Hybrid DE V.1

2 SPS-L-SHADE-EIG

3 DEsPA

4 LSHADE-ND

5 hCC

6 sDMS-PSO

p-value = 0.0057213

44

Table 10 ranking results showed that between all literature results in dimension 30,

compared with the version 1 of Hybrid DE. The proposed Hybrid DE method

showed the best performance overall.

Version 2 and version 3 of Hybrid DE had the second best rank in performance

compared with literature results in dimension 30 in Table 11 and Table 12. The best

overall results of optimizing the majority of CEC'15 problems was SPS-L-SHADE-

EIG method compared to both of the last two versions of Hybrid DE.

Table 11: Friedman Ranking between Hybrid DE V.2 and Literature in D30

Rank Function

1 SPS-L-SHADE-EIG

2 Hybrid DE V. 2

3 LSHADE-ND

4 DEsPA

5 hCC

6 sDMS-PSO

p-value = 0.022563

Table 12: Friedman Ranking between Hybrid DE V.3 and Literature in D30

Rank Function

1 SPS-L-SHADE-EIG

2 Hybrid DE V. 3

3 DEsPA

4 LSHADE-ND

5 hCC

6 sDMS-PSO

p-value = 0.0070841

45

Chapter 5

CONCLUSION

5.1 Summary of the Study

The experiment proposed Hybrid Differential Evolution method for the purpose of

optimizing the CEC2015 of 15 Benchmark of single objective problems [14] . The

merging consisted of the DE global optimization that served as an exploration factor

with the employment of a local search technique as an exploitation factor. The base

of the idea focused on fusing both diversification-based and intensification-based

algorithms that may lead to better optimized problems' solutions. Three different

versions of Hybrid DE were proposed and the experiment was conducted for all in

both dimension 10 and dimension 30. Finally, we compared the findings of our

proposed Hybrid DE algorithm with the previous research with the aim of

optimizing CEC2015 problems.

5.2 Conclusions

The patterns of results from the experiment appear to fit criteria supporting the

hypothesis of using the local search methods for the aim of single objective problem

optimization. The results of the Hybrid DE tended to show little differences with the

optimal solutions in some of the findings. Comparison with the previously proposed

techniques suggests that the proposed method owns the upper hand in the number of

best solutions. The primary conclusion of this experiment is that using local search

techniques with the aim of optimization has a powerful impact resulting in better

solutions.

46

5.3 Implications of the Study

The main contribution of this study is the support of the concept that using local

search methods for the aim of optimization could result in better problem solutions.

Our findings contribute practical implications and insights into hybridizing global

optimization methods with local search techniques. The study established the

strategy of fusing DE algorithm with Fmincon local search tool that was found to

contribute effectively to our aim of the study.

5.4 Implications for Further Research

Further research can be based on the concept of hybridizing DE with another local

search method that may be more efficient in the competing procedure. Another

suggestion could be using the different variants of the DE in the experiment which

may have a stronger impact on the findings in the future.

47

REFERENCES

[1] Sorensen, K.; Sevaux, M.; Glover, F. (2017). A History of Metaheuristics.

January, 2017 from the World Wide Web:

https://www.researchgate.net/publication/315811561_A_History_of_Metahe

uristics

[2] Karaboga, D.; Okdem, S. (2004). A Simple and Global Optimization Algorithm

For Engineering Problems: Differential Evolution Algorithm. Turk J Elec

Engin, Volume.12, No.1.

[3] Storn, R. (1996). Differential Evolution Design of an IIR-Filter. Proceedings of

IEEE International Conference on Evolutionary Computation.

DOI: 10.1109/ICEC.1996.542373

[4] Chiou, J.P.; Wang, F.Sh. (1998). A hybrid method of differential evolution

with application to optimal control problems of a bioprocess system. IEEE

World Congress on Computational Intelligence, Proceedings of IEEE

International Conference on Evolutionary Computation.

DOI: 10.1109/ICEC.1998.700101

[5] Back, TH.; Foussette, C.; Krause, P. (2013). Contemporary Evolution

Strategies. Springer.

[6] Thomas Back, (1996). Evolutionary Algorithms in Theory and Practice (pp. 1).

Oxford University Press, ISBN 0-19-509971-0 (hard cover).

https://doi.org/10.1109/ICEC.1996.542373
https://doi.org/10.1109/ICEC.1998.700101

48

[7] Darrell Whitley, (2001). An overview of evolutionary algorithms: practical

issues and common pitfalls. Elsevier Science, PII: S 0950-5849(01)001-884.

DOI: 10.1016/S0950-5849(01)00188-4

[8] Coello, C.; Lamont, G.; Veldhuizen, D. (2007). Evolutionary Algorithms For

Solving Multi-Objective Problems (pp. 4). Springer Scienc, ISBN 978-0-387-

33254-3

[9] Awad, N.; Ali, M.; Reynods, R. (2015). A Differential Evolution Algorithm

with Success-based Parameter Adaptation for CEC2015 Learning-based

Optimization. IEEE Congress on Evolutionary Computation (CEC), PII: 978-

1-4799-7492-4. DOI: 10.1109/CEC.2015.7257012

[10] Gou, Sh.; Yang, Ch.; Tsai, J.; Hsu, P. (2015). A Self-Optimization Approach of

L-SHADE Incorporated with Eigenvector-Based Crossover and Successful-

Parent-Selecting Framework on CEC 2015 Benchmark Set. IEEE Congress

on Evolutionary Computation (CEC), PII: 978-1-4799-7492-4. DOI:

 10.1109/CEC.2015.7256999

[11] Sallam, K.; Sarker, R.; Essam, D.; Elsayed, S. (2015). Neurodynamic

Differential Evolution Algorithm and Solving CEC2015 Competition

Problems. IEEE Congress on Evolutionary Computation (CEC), PII: 978-1-

4799-7492-4. DOI: 10.1109/CEC.2015.7257003

https://doi.org/10.1016/S0950-5849(01)00188-4
https://doi.org/10.1109/CEC.2015.7257012
https://doi.org/10.1109/CEC.2015.7256999
https://doi.org/10.1109/CEC.2015.7257003

49

[12] Liang, J.; Gou, L.; Liu, R.; Qu, B. (2015). A Self-adaptive Dynamic Particle

Swarm Optimizer. IEEE Congress on Evolutionary Computation (CEC), PII:

978-1-4799-7492-4. DOI: 10.1109/CEC.2015.7257290

[13] Mohammed El-Abd. (2015). Hybrid Cooperative Co-evolution For The

CEC15 Benchmarks. IEEE Congress on Evolutionary Computation (CEC),

PII: 978-1-4799-7492-4. DOI: 10.1109/CEC.2015.7257006

[14] Chen, Q.; Liu. B.; Zhang, Q.; Liang, J. J.; Suganthan, P. N.; Qu, B. Y. (2015).

Problem Definitions and Evaluations Criteria for CEC 2015 Special Session

on Bound Constrained Single-Objective Computationally Expensive

Numerical Optimization.

[15] Das, S.; Suganthan, P. N. (2010). Differential Evolution: A Survey of the State-

of-the-Art. IEEE transactions on Evolutionary Computation, vol 15, issue 1.

DOI: 10.1109/TEVC.2010.2059031

[16] Storn R. (2008). Differential Evolution Research – Trends and Open

Questions. In: Chakraborty U.K. (eds) Advances in Differential Evolution.

Studies in Computational Intelligence, vol 143. Springer, Berlin,

Heidelberg. ISBN: 978-3-540-68830-3. DOI: 10.1007/978-3-540-68830-

3_1

[17] Rangaiah, G. P.; Sharma, Sh. (eds) Differential Evolution In Chemical

Engineering: Developments And Applications. (2017). Advances in Process

https://doi.org/10.1109/CEC.2015.7257290
https://doi.org/10.1109/CEC.2015.7257006
https://doi.org/10.1109/TEVC.2010.2059031

50

System Engineering, vol 6. World Scientific Publishing. ISBN

97898/3207516

[18] Brownlee J. (2011). Clever Algorithms: Nature-Inspired Programming Recipes.

ISBN:978-1-4467-8506-5. Link:

http://blog.shuo1.com/zms/books/program/Clever%20Algorithms.pdf

[19] Storn, R. (1999). System Design by Constraint Adaptation and Differential

Evolution. IEEE transactions on Evolutionary Computation, vol 3, No 1.

DOI: 10.1109/4235.752918

[20] Abbass, H. A.; Sarker, R.; Newton, Ch. (2001). PDE: A Pareto-frontier

Differential Evolution Approach for Multi-objective Optimization Problems.

IEEE Proceedings of the 2001 Congress on Evolutionary Computation. DOI:

10.1109/CEC.2001.934295

[21] Abbass, H. A. (2002). The Self-Adaptive Pareto Differential Evolution

Algorithm. IEEE Proceedings of the 2002 Congress on Evolutionary

Computation. DOI: 10.1109/CEC.2002.1007033

[22] Noman, N.; Iba, H. (2008). Accelerating Differential Evolution Using an

Adaptive Local Search. IEEE Transactions on Evolutionary Computation, vol

12, issue 1. DOI: 10.1109/TEVC.2007.895272

http://blog.shuo1.com/zms/books/program/Clever%20Algorithms.pdf
https://doi.org/10.1109/4235.752918
https://doi.org/10.1109/CEC.2001.934295
https://doi.org/10.1109/CEC.2002.1007033
https://doi.org/10.1109/TEVC.2007.895272

51

[23] Qian, B.; Wang, L.; Hu, R. et al. (2008). A hybrid Differential Evolution

method for Permutation Flow-shop Scheduling. Int J Adv Manuf Technol

(2008) 38: 757. Springer. DOI: 10.1007/s00170-007-1115-8

[24] Zhang, Ch.; Ning, J.; Lu, Sh. et al. (2009). A Novel hybrid Differential

Evolution and Particle Swarm Optimization Algorithm for Unconstrained

Optimization. Operations Research Letters, vol 37, issue 2. Elsevier. DOI:

10.1016/j.orl.2008.12.008

[25] Gong, W.; Cai, Z.; Ling, Ch. X. (2010). DE/BBO: a hybrid Differential

Evolution with Biogeography-based Optimization for Global Numerical

Optimization. Soft Computing (2010) 15: 645. Springer. DOI:

10.1007/s00500-010-0591-1

[26] Liao, T. W. (2010). Two hybrid Differential Evolution Algorithms for

Engineering Design Optimization. Applied Soft Computing, vol 10, issue 4

(pp. 1188-1199). Elsevier. DOI: 10.1016/j.asoc.2010.05.007

[27] Wang, Y.; Cai Z.; Zhang, Q. (2011). Differential Evolution With Composite

Trial Vector Generation Strategies and Control Parameters. IEEE, DOI:

10.1109/TEVC.2010.2087271

[28] Wang, L.; Li, L. P. (2012). A coevolutionary Differential Evolution with

Harmony Search for Reliability-Redundancy Optimization. Expert Systems

Optimization, vol 39, issue 5 (pp. 5271-5278). Elsevier. DOI:

10.1016/j.eswa.2011.11.012

https://doi.org/10.1016/j.orl.2008.12.008
https://doi.org/10.1016/j.asoc.2010.05.007
https://doi.org/10.1109/TEVC.2010.2087271
https://doi.org/10.1016/j.eswa.2011.11.012

52

[29] Yildiz, A. R. (2012). Hybrid Taguchi-Differential Evolution Algorithm for

Optimization of Multi-pass Turning Operations. Applied Soft Computing, vol

13, issue 3 (pp. 1433-1439). Elsevier. DOI: 10.1016/j.asoc.2012.01.012

[30] Zhang, J.; Sanderson, A. C. (2009). JADE: Adaptive Differential Evolution

with Optional External Archive. IEEE transactions on Evolutionary

Computation, vol 13, issue 5. DOI: 10.1109/TEVC.2009.2014613

[31] Wang, X.; Zhao, Sh. (2013). Differential Evolution Algorithm with Self-

Adaptive Population Resizing Mechanism. Mathematical Problems in

Engineering, vol 2013. DOI: http://dx.doi.org/10.1155/2013/419372

[32] Zheng, Y. J.; Xu, X. L.; Ling, H. F. et al. (2015). A hybrid Fireworks

Optimization Method with Differential Evolution Operators.

Neurocomputing, vol 148 (pp. 75-82). DOI: 10.1016/j.neucom.2012.08.075

[33] Trivedi, A.; Srinivasan, D.; Biswas, S.; Riendl, T. (2015). Hybridizing Genetic

Algorithm with Differential Evolution for solving the Unit Commitment

Scheduling problem. Swarm and Evolutionary Computation, vol 23 (pp. 50-

64). Elsevier. DOI: 10.1016/j.swevo.2015.04.001

[34] Parouha, R. P.; Das, K. N. (2016). A Memory based Differential Evolution

Algorithm for Unconstrained Optimization. Applied Soft Computing, vol 38

(pp. 501-517). Elsevier. DOI: 10.1016/j.asoc.2015.10.022

https://doi.org/10.1016/j.asoc.2012.01.012
https://doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1155/2013/419372
https://doi.org/10.1016/j.neucom.2012.08.075
https://doi.org/10.1016/j.swevo.2015.04.001
https://doi.org/10.1016/j.asoc.2015.10.022

53

[35] Li, G.; Lin, Q.; Cui, L. et al. (2016). A novel hybrid Differential Evolution

Algorithm with Modified CoDE and JADE. Applied Soft Computing, vol 47

(pp. 577-599). Elsevier. DOI: 10.1016/j.asoc.2016.06.011

[36] Kukkonen S., Coello Coello C.A. (2017). Generalized Differential Evolution

for Numerical and Evolutionary Optimization. In: Schütze O., Trujillo L.,

Legrand P., Maldonado Y. (eds) NEO 2015. Studies in Computational

Intelligence, vol 663. Springer, Cham. DOI: 10.1007/978-3-319-44003-

3_11

[37] Wong, L.; Liu, W.; Ho, Ch. M.; Ding, X. (2017). Continuous Adaptive

Population Reduction (CARP) for Differential Evolution Optimization. SLAS

TECHNOLOGY: Translating Life Sciences Innovation, vol 22, issue 3 (pp.

289 – 305). DOI: 10.1177/2472630317690318

[38] Luke, S. (2009). Essentials in Metaheurisitics. Available at

http://cs.gmu.edu/∼sean/book/metaheuristics/

[39] Martinez-Estudillo, A. C.; Hervas-Martinez, C.; Martinez-Estudillo, F. J.;

Garcia-Pedrajas, N. (2005). Hybridization of Evolutionary Algorithms and

Local Search by means of a Clustering method. IEEE transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol 36, issue 3.

DOI:10.1109/TSMCB.2005.860138

https://doi.org/10.1016/j.asoc.2016.06.011
https://doi.org/10.1177%2F2472630317690318
https://doi.org/10.1109/TSMCB.2005.860138

54

[40] Fmincon , Optimization Toolbox PDF. Available at

http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s03/Project/Project1_s

olutions/fmincon.pdf

[41] Codes for CEC'15 test suite. Available at

http://www.nut.edu.sg/home/EPNSugan/index_files/CEC2015

[42] Friedman Ranking Test website: http://vassarstats.net/textbook/ch15a.html

[43] Box, G. E. P. (1957). Journal of the Royal Statistical Society. Series C

(Applied Statistics) Vol. 6, No. 2, pp. 81-10. DOI: 10.2307/2985505

[44] Rechenberg, I. (1989). Evolution Strategy: Nature’s Way of Optimization.

In: Bergmann H.W. (eds) Optimization: Methods and Applications,

Possibilities and Limitations. Lecture Notes in Engineering, vol 47.

Springer, Berlin, Heidelberg

[45] Feo, T. A.; Resende, M. G. C. (1995). J Glob Optim 6: 109. DOI:

https://doi.org/10.1007/BF01096763

[46] Colorni, A.; Dorigo, M.; Maniezzo, V. (1992). Distributed optimization by ant

colonies, In Toward a Practice of Autonomous Systems, The MIT Press, pp.

134-142.

[47] Oliveto, P.S., He, J. & Yao, X. (2007). Int J Automat Comput 4: 281. DOI:

https://doi.org/10.1007/s11633-007-0281-3

http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s03/Project/Project1_solutions/fmincon.pdf
http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_s03/Project/Project1_solutions/fmincon.pdf
http://www.nut.edu.sg/home/EPNSugan/index_files/CEC2015
http://www.nut.edu.sg/home/EPNSugan/index_files/CEC2015
http://vassarstats.net/textbook/ch15a.html
https://doi.org/10.1007/BF01096763
https://doi.org/10.1007/s11633-007-0281-3

55

[48] Auger, A; Doerr, B. (2011). Theory of Randomized Search Heuristics

Foundations and recent Developments. World Scientific Publishing Co.

ISBN-13 978-981-4282-66-6. ISBN-10 981 4282-66-9

[49] Friedrich, T.; He J.; Hebbinghaus, N.; Neumann, F.; Witt, C. (2010).

Approximating Covering Problems by Randomized Search Heuristics Using

Multi-Objective Models. Massachusetts Institute of Technology.

Evolutionary Computation, vol 18, issue 4, pp 617-633.

[50] Moscato, P.; Cotta, C. (2002). Memetic Algorithms. Handbook of Applied

Optimization. DOI:

http://www.lcc.uma.es/~ccottap/papers/memetic_HAAM.pdf

[51] Deb, K.; Agrawal, R. B. (1994). Simulated Binary Crossover For

Continuous Search Space. Complex Systems. Convenor, Technical

Reports. Department of Mechanical Engineering, Indian Institute of

Technology.

[52] Zhou, Z.; Ong, Y.S.; Lim, M.H. et al. Soft Comput (2007) 11: 957. DOI:

https://doi.org/10.1007/s00500-006-0145-8

[53] Droste S., Jansen T., Wegener I. (1998). On the optimization of Unimodal

Functions with the (1+1) Evolutionary Algorithm. In: Eiben A.E., Bäck T.,

Schoenauer M., Schwefel HP. (eds) Parallel Problem Solving from Nature

— PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498.

Springer, Berlin, Heidelberg

https://doi.org/10.1007/s00500-006-0145-8

56

[54] Sherinov, Z.; Ünveren, A. (2017). Multi-objective Imperialistic Competitive

Algorithm with Multiple Non-Dominated Sets for the Solution of Global

Optimization Problems. Soft Comput. DOI: https://doi.org/10.1007

57

APPENDIX

58

Appendix A: Introduction of the CEC'15 expensive optimization test

problems [14]

This section defines the set of basic fi functions which were used to construct the set

of CEC 2015 expensive optimization problems. Then, it is followed by the detailed

definitions of 15 expensive functions F(x) which are categorized into four groups:

Unimodal Functions, Simple Multimodal Functions, Hybrid Functions and

Composite Functions.

fi (x): ith basic function used to construct the expensive function.

F(x) : expensive function.

 n : number of basic functions. The bigger n is, the more complex F(x).

D : dimension.

1. Definitions of basic functions

1. Bent Cigar Function

 f1(x) = 𝒙 𝟐
𝟏
+ 𝟏𝟎𝟔∑ 𝒙 𝟐

𝒊
𝑫
𝒊=𝟐

(1)

59

2. Discus Function

 f2(x) = 𝟏𝟎𝟔 𝒙 𝟐
𝟏
+ ∑ 𝒙 𝟐

𝒊
𝑫
𝒊=𝟐

3. Weierstrass Function

f3(x) = ∑ (∑ [𝒂𝒌 𝐜𝐨𝐬 (𝟐𝝅𝒃𝒌(𝒙𝒊 + 𝟎. 𝟓))]) − 𝑫∑ [𝒂𝒌 𝐜𝐨𝐬(𝟐𝝅𝒃𝒌 ∙ 𝟎. 𝟓)]𝒌 𝒎𝒂𝒙
𝒌=𝑫

𝒌 𝒎𝒂𝒙
𝒌=𝟎

𝑫
𝒊=𝟏

where a=0.5, b=3, and kmax=20.

4. Modified Schwefel's Function

f4 (x) = 𝟒𝟏𝟖. 𝟗𝟖𝟐𝟗 × 𝑫 − ∑ 𝒈(𝒛𝒊)
𝑫
𝒊=𝟏 , zi = xi + 4.209687462275036e + 002

g(zi) =

{

 𝒛𝒊 𝐬𝐢𝐧(|𝒛𝒊|

𝟏\𝟐)

(𝟓𝟎𝟎 −𝒎𝒐𝒅(𝒛𝒊, 𝟓𝟎𝟎)) 𝐬𝐢𝐧(√|𝟓𝟎𝟎 −𝒎𝒐𝒅(𝒛𝒊, 𝟓𝟎𝟎)|) −
(𝒛𝒊−𝟓𝟎𝟎)

𝟐

𝟏𝟎𝟎𝟎𝟎𝑫

(𝒎𝒐𝒅(|𝒛𝒊|, 𝟓𝟎𝟎) − 𝟓𝟎𝟎)𝐬𝐢𝐧 (√|𝒎𝒐𝒅(|𝒛𝒊|, 𝟓𝟎𝟎) − 𝟓𝟎𝟎|) −
(𝒛𝒊+𝟓𝟎𝟎)

𝟐

𝟏𝟎𝟎𝟎𝟎𝑫

5. Katsuura Function

f5(x) =
𝟏𝟎

𝑫𝟐
∏ (𝟏 + 𝒊∑

|𝟐𝒋𝒙𝒊−𝒓𝒐𝒖𝒏𝒅(𝟐
𝒋𝒙𝒊)|

𝟐𝒋
)𝟑𝟐

𝒋=𝟏

𝟏𝟎

𝑫𝟏.𝟐

−
𝟏𝟎

𝑫𝟐
𝑫
𝒊=𝟏

if |𝑧𝑖| ≤ 500

if 𝑧𝑖 > 500

if 𝑧𝑖 < −500

(4)

(5)

(2)

(3)

60

6. HappyCat Function

f6(x) = |∑ 𝒙𝑫
𝒊=𝟏

𝟐
𝒊
−𝑫|

𝟏/𝟒
+ (𝟎. 𝟓∑ 𝒙 𝟐

𝒊
+ ∑ 𝒙𝒊)

𝑫
𝒊=𝟏

𝑫
𝒊=𝟏 / D + 0.5

7. HGBat Function

f7(x) = |(∑ 𝒙 𝟐
𝒊
)𝑫

𝒊=𝟏

𝟐
− (∑ 𝒙𝒊)

𝑫
𝒊=𝟏

𝟐
|
𝟏/𝟐

+ (𝟎. 𝟓∑ 𝒙 𝟐
𝒊
+ ∑ 𝒙𝒊)

𝑫
𝒊=𝟏

𝑫
𝒊=𝟏 / D + 0.5

8. Expanded Griewank's plus Rosenbrock's Function

f8(x) = f11(f10(x1,x2)) + f11(f10(x2,x3)) +…+ f11(f10(xD-1,xD)) + f11(f10(xD,x1))

9. Expanded Scaffer's F6 Function

g(x,y) = 0.5 +
(𝒔𝒊𝒏𝟐(√𝒙𝟐+𝒚𝟐)−𝟎.𝟓)

(𝟏+𝟎.𝟎𝟎𝟏(𝒙𝟐+𝒚𝟐))𝟐

f9(x) = g(x1,x2) + g(x2,x3) + … + g(xD-1,xD) + g(xD,xi))

10. Rosenbrock's Function

f10(x) = ∑ (𝟏𝟎𝟎(𝒙 𝟐
𝒊
− 𝒙𝒊+𝟏)

𝟐
+ (𝒙𝒊 − 𝟏)

𝟐)𝑫−𝟏
𝒊=𝟏

11. Griewank's Function

f11(x) = ∑
𝒙𝟐𝒊
𝟒𝟎𝟎𝟎

𝑫
𝒊=𝟏 −∏ 𝐜𝐨𝐬 (

𝒙𝒊

√𝒊

𝑫
𝒊=𝟏 + 𝟏

(6)

(7)

(8)

(9)

(10)

(11)

61

12. Rastrigin's Function

f12(x) = ∑ (𝒙 𝟐
𝒊
− 𝟏𝟎𝐜𝐨𝐬 (𝟐𝝅𝒙𝒊

𝑫
𝒊=𝟏) + 𝟏𝟎)

13. High Conditioned Elliptic Function

f13(x) = ∑ (𝟏𝟎𝟔)
𝒊−𝟏

𝑫−𝟏𝑫
𝒊=𝟏 𝒙 𝟐

𝒊

14. Ackley's Function

f14(x) = −𝟐𝟎𝐞𝐱𝐩(−𝟎. 𝟐√
𝟏

𝑫
∑ 𝒙 𝟐

𝒊
)𝑫

𝒊=𝟏 − 𝐞𝐱𝐩(
𝟏

𝑫
∑ 𝐜𝐨𝐬 (𝟐𝝅𝒙𝒊
𝑫
𝒊=𝟏)) + 𝟐𝟎 + 𝒆

2. Definitions of the CEC'15 Expensive Test Suite

2.1 Unimodal Functions

all search ranges are pre-defined for all test functions as [-100, 100]D and Fi* is the

set of optimal values. Where D is the dimension of the problem.

1) Rotated Bent Cigar Function

D = 10, D = 30, F1* = 100

F1(x) = f1(M(x-◦1)) + F1*

(12)

(13)

(14)

(15)

62

Properties:

• Unimodal

• Non-separable

• Smooth but narrow ridge

2) Rotated Discus Function

D = 10, D = 30, F2* = 200

F2(x) = f2(M(x-◦2)) + F2* (16)

63

Properties:

• Unimodal

• Non-seperable

• With one sensitive direction

2.2 Simple Multimodal Functions

3) Shifted and Rotated Weirestrass Function

D = 10, D = 30, F3* = 300

F3(x) = f3(M(
𝟎.𝟓(𝒙−°𝟑)

𝟏𝟎𝟎
)) + F3* (17)

64

Properties:

• Multi-modal

• Non-separable

• Continuous but differentiable only on a set of points

4) Shifted and Rotated Schwefel's Function

D = 10, D = 30, F4* = 400

F4(x) = f4(M(
𝟏𝟎𝟎𝟎(𝒙−°𝟒)

𝟏𝟎𝟎
)) + F4* (18)

65

Properties:

• Multi-modal

• Non-separable

66

• Local optima's number is huge and second better local optimum is far from

the global optimum

5) Shifted and Rotated Katsuura Function

D = 10, D = 30, F5* = 500

F5(x) = f5(M(
𝟓(𝒙−°𝟓)

𝟏𝟎𝟎
)) + F5*

(19)

67

Properties:

• Multi-modal

• Non-separable

• Continuous everywhere yet differentiable nowhere

6) Shifted and Rotated HappyCat Function

D = 10, D = 30, F6* = 600

F6(x) = f6(M(
𝟓(𝒙−°𝟔)

𝟏𝟎𝟎
)) + F6* (20)

68

Properties:

• Multi-modal

69

• Non-separable

7) Shifted and Rotated HGBat Function

D = 10, D = 30, F7* = 700

F7(x) = f7(M(
𝟓(𝒙−°𝟕)

𝟏𝟎𝟎
)) + F7*

(21)

70

Properties:

• Multi-modal

• Non-separable

8) Shifted and Rotated Expanded Griewank's plus Rosenbrock's Function

D = 10, D = 30, F8* = 800

F8(x) = f8(M(
𝟓(𝒙−°𝟖)

𝟏𝟎𝟎
) + 1) + F8* (22)

71

Properties:

• Multi-modal

72

• Non-separable

9) Shifted and Rotated Expanded Scaffer's F6 Function

D = 10, D = 30, F9* = 900

F9(x) = f9(M(x - ◦9) + 1) + F9*

Properties:

• Multi-modal

• Non-separable

(23)

73

2.3 Hybrid Functions

In real-world optimization problems, different subsets of the variables may have

different properties. In this set of hybrid functions, the variables are randomly

divided into some subsets and then different basic functions are used for different

subsets.

F(x) = g1(M1z1) + g2(M1z1) + … + gN(MNzN) + F*(x)

F(x): hybrid function

gi(x): ith basic function used to construct the hybrid function

N: number of basic functions

 z = [z1, z2 , … , zN]

 z1 = [yS1 , yS2 , … , ySm], z2 = [ySm+1 , ySm+2 , … , ySm+n2],…,

zN = [yS∑ 𝒏𝒊 + 𝟏
𝑵−𝟏
𝒊=𝟏 , yS∑ 𝒏𝒊 + 𝟐

𝑵−𝟏
𝒊=𝟏 ,…, y𝒔𝑫]

 where, y = x - ◦i and S = randperm(1: D)

pi: used to control the percentage of gi(x)

ni: dimension for each basic function ∑ 𝒏𝒊 = 𝑫𝓝
𝒊=𝟏

n1 = ⌈𝒑𝟏𝑫⌉, n2 = ⌈𝒑𝟐𝑫⌉,…, nN-1 = ⌈𝒑𝑵−𝟏𝑫⌉, nN = D – ∑ 𝒏𝒊
𝑵−𝟏
𝒊=𝟏

(24)

(25)

(26)

74

10) Hybrid Function 1 (N=3)

D = 10, D = 30, F10* = 1000

p = [0.3,03.0.4]

g1: Modified Schwefel's Function f4

g2: Rastrigin's Function f12

g3: High Conditioned Elliptic Function f13

11) Hybrid Function 2 (N=4)

D = 10, D = 30, F11* = 1100

p = [0.2, 0.2, 0.3, 0.3]

g1: Griewank's Function f11

g2: Weierstrass Function f3

g3: Rosenbrock's Function f10

g4: Scaffer's F6 Function f9

12) Hybrid Function 3 (N=5)

D = 10, D = 30, F12* = 1200

p = [0.1, 0.2, 0.2, 0.2, 0.3]

g1: Katsuura Function f5

g2: HappyCat Function f6

g3: Expanded Griewank's plus Rosenbrock's Function f8

g4: Modified Schwefel's Function f4

g5: Ackley's Function f14

2.4 Composite Functions

F(x) = ∑ {𝝎𝒊 ∗ [𝝀𝒊𝒈𝒊(𝒙) + 𝒃𝒊𝒂𝒔𝒊]} + 𝒇 ∗
𝑵
𝒊=𝟏 (27)

75

F(x): composition function

gi(x): ith basic function used to construct the composition function

N: number of basic functions

◦i: new shifted optimum position for each gi(x), define the global and local

optima's position.

biasi: defines which optimum is global optimum

𝝈i: used to control each gi(x)'s coverage range, a small 𝝈i give a narrow range for

that gi(x)

𝝀i: used to control each gi(x)'s height

𝒘i: weight value for each gi(x), calculated as below

𝒘𝒊 =
𝟏

√∑ (𝒙−𝝄𝒊𝒋)𝟐
𝑫
𝒋=𝟏

𝐞𝐱𝐩 (−
∑ (𝒙𝒋−𝝄𝒊𝒋)

𝟐𝑫
𝒋=𝟏

𝟐𝑫𝝈𝟐𝒊
)

Then normalize the weight 𝝕𝒊 = {
𝟏 𝒋 = 𝒊
𝟎 𝒋 ≠ 𝒊

 𝒇𝒐𝒓 𝒋 = 𝟏, 𝟐,… . . , 𝑵 , 𝒇(𝒙) = 𝒃𝒊𝒂𝒔𝒊 +

𝒇 ∗

The optimum which has the smallest bias value is the global optimum. The

composition function merges the properties of the sub-functions better and maintains

continuity around the global/local optima.

13) Composition Function 1 (N=5)

D = 10, D = 30, F13* = 1300

N=5, 𝝈 = [10, 20, 30, 40, 50]

𝝀 = [1, le-6, le-26, le-6, le-6]

bias = [0,100,200, 300, 400]

g1: Rotated Rosenbrock's Function f10

g2: High Conditioned Elliptic Function f13

g3: Rotated Bent Cigar Function f1

g4: Rotated Discus Function f2

g5: High Conditioned Elliptic Function f13

(28)

76

Properties:

• Multi-modal

77

• Non-separable

• Asymmetrical

• Different properties around different local optima

14) Composition Function 2 (N=3)

D = 10, D = 30, F14* = 1400

N = 3

𝝈 = [10, 30, 50]

𝝀 = [0.25, 1, le-7]

bias = [0, 100, 200]

g1: Rotated Schwefel's Function f4

g2: Rotated Rastrigin's Function f12

g3: Rotated High Conditioned Elliptic Function f13

78

Properties:

• Multi-modal

• Non-separable

• Asymmetrical

• Different properties around different local optima

15) Composition Function 3 (N=5)

D = 10, D = 30, F15* = 1500

N = 5

𝝈 = [10, 10, 10, 20, 20]

𝝀 = [10, 10, 2.5, 25, le-6]

bias = [0, 100, 200, 300, 400]

g1: Rotated HGBat Function f7

79

g2: Rotated Rastring's Function f12

g3: Rotated Schwefel's Function f4

g4: Rotated Weierstrass Function f3

g5: Rotated High Conditoined Elliptic Function f13

80

Properties:

• Multi-modal

• Non-separable

• Asymmetrical

• Different properties around different local optima

