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ABSTRACT

This thesis is aimed to study the existence of mild solutions of a class of fractional dif-
ferential equations with different boundary conditions. By using fixed point theorem:s,

the existence results about mild solutions are expected to obtain.

A strong motivation for studing fractional differential equations comes from the fact,

that is essential in various fields of science, engineering and economics.

Keywords: Differential equations, integral boundary conditions, irregular boundary

conditions, p-laplacian operator.
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0z

Bu tez farkli sinirli kogullar altinda verilen kesirli diferansiyel denklemlerin ¢6ziim-
leri tizerinde ¢alismayr amaclamaktadir. Coziimlerin analitik sonuclari, sabit nokta

teoremleri ve uygulamalar1 kullanilarak bulunmustur.

Kesirli diferansiyel denklem calismalarindaki etkin motivasyon, bu konunun bilim,

miihendislik ve ekonomide gerekliliginden ileri gelmektedir.

Anahtar Kelimeler: Diferansiyel denklemler, integral sinir kosullari, diizensiz sinir

kosullari, p-laplasyan operatorii.

v



To My Beloved Family



ACKNOWLEDGMENT

I would like to express my deepest appreciation and thanks to my supervisor Professor
Dr. Nazim I. Mahmudov. Special thanks to you for encouraging my research, you
were near me in exact time that i really need, i will never forget it, and you allowed me

to grow as a research scientist.

Also 1 would like to thank to our department vice chair Prof. Dr. Sonu¢ Zorlu Ogurlu
for her kind help during my Phd period and, thanks to all members of the Mathematics

Department who made here a wonderful place to study in.

Many thanks to my friends who did not leave me alone in difficult times, helped me to

carry on and never look for an excuse...

Special thanks to my beloved family. They always supported and encouraged me with
their best wishes. Your prayer was what sustained me thus far. Words can not express

how grateful i am.

vi



TABLE OF CONTENTS

LIST OF ABBREVIATIONS

1 INTRODUCTION|

2 PRELIMINARIES AND DEFINITIONS|

3 DEs WITH BOUNDARY CONDITIONS

4 FDE WITH BOUNDARY CONDITIONS

[5.2 Fractional Differential Equation With p-Laplacian Operatori....................... 57
[5.3 Existence And Uniqueness Results With p—Laplaciani............................... 67
[5.4 Existence Results For FDE With p—Laplacian Operator.............ccccuuueee.... 73

6 CONCLUSION AND DISCUSSION|

Vil



FDE

ODE

PDE

BVP

LIST OF ABBREVIATIONS

Fractional Differential Equation

Ordinary Differential Equation (only ordinary derivative)

Partial Differential Equation (with partial derivative)

Boundary Value Problem

viil



Chapter 1

INTRODUCTION

Mathematics is one of the oldest science in history. In ancient times, it is defined as
the science of numbers and figures. Now, by the improvements, its size can not be
explained with few sentences. For some philosophers, mathematics is the production
of human mind to dominate and explain nature by using special symbols and figures.
When we examine mathematics’ history and related works, two main groups are seen.
The first group is "Ancient Greek Mathematicians"; Thales (624-547 BC), Pythagor
(569-500 BC, known as Phythagoras), Zero (495-435 BC), Archimedes (287-212 BC),
Apollonius (260 BC?-200?)... The second group is "Western World Mathematicians";
Johann Miiller (1436-1476), Cardano (1501-1596), Descartes (1596-1650), Fermat
(1601-1665), Pascal (1623-1662), Isaac Newton (1642-1727), Lebniz (1647-1716),
Euler (1707-1783), Lagrange (1776-1813), Gauss (1777-1855), Cauchy (1789-1857),
Riemann (1826-1866)... Their works indicated the information of basic systems and
theorems. The mentioned first group, Ancient Greek Mathematicians, lived between
8" century BC and 2" century AD, also Western World Mathematicians lived be-
tween 16/ and 20" century. Moreover between 7/ and 16 century, islamic world
improved Greek mathematicians’ works. Not only the new systems and new concepts,
but also the new theorems and the proofs are found. The basis of modern mathematics
is formed by these developments. The first written book on algebra by Harezmi, de-

scribed the basic knowledge of trigonometry by el-Battani, tangent and cotangent by
1



Ebu’l Vefa; improved Bionomial formulas by Omer Hayyam are some examples from

islamic world mathematicians and their studies.

The first studies on DEs were started on the second half of the 17" century by the
British mathematician Newton (1642-1727) and the German mathematician Leibnitz
(1641-1716). In 18" century, these works are improved by Bernoulli brothers, Euler,
Lagrange, Monge and, in 19 century, Chrystal, Cauchy, Jacobl, Darboux, Picard are
studied on the related works. With the help of these mathematicians, the current high-

leveled version of the DEs is formed.

This research is basically purposed to study existence of solution of ox—order three
point BVP with integral conditions. To do this, in the first section of Chapter 2, the
frequently used preliminaries and definitions are given. Moreover, in second section

of Chapter 2, the collected works about DEs are included.

The properties and usage fields and also the related works of the fractional three point

BVP with integral conditions are given in Chapter 3.

In Chapter 4, the existence and uniqueness of the solution for given a—ordered non-
linear FDE is shown. In Chapter 4; the existence, uniqueness and existence results are

shown by Green functions and the related fixed point theorems, respectively.

In Chapter 5, the related works of the FDEs with p-laplacian operator and irregular,
integral conditions are given. By Green function and the related fixed point theorems,

the existence and uniqueness of the solution for given FDEs with p-laplacian operator
2



and irregular, integral boundary conditions is given in.

At last, in Chapter 6, conclusions and some examples are given and illustration of the

results are shown.



Chapter 2

PRELIMINARIES AND DEFINITIONS

The proof of the existence of the solution of certain types of DEs under some con-
ditions is named as existence theory which is found by French mathematician A.L.
Cauchy between 1820 and 1830. In addition, the existence theory is studied and de-
veloped by other mathematicians. The following are some kind of DE types which are
developed by famous mathematicians: The British mathematician Newton started his
researches on 1665, and on 1671, he defined three types of DEs which are first, second,
and third degree differential equations. The German mathematician, Leibnitz, studied
DEs between 1684 and 1686, and on 1690, he developed new solution methods with
Bernoulli brothers. Another German mathematician, Euler, studied on degrating the
equation degrees. He found the algebraic solution of Abel’s theory which is important

for eliptic functions.

Let us recall some basic definitions see [49], [64], [66]].

Definition 2.0.1 The Riemann Liouville fractional integral of order « for a function

f:10,00) = R which is provided the integral exists, and defined as

1§ f) = ﬁ/(z —5)% 7 f(s)ds, a>0.
0

Definition 2.0.2 For a function f : [0,00) — R the Caputo derivative fractional order

o is defined where (@] denotes the integral part of the real number o. and given as;

4



D f(t) = ﬁ/(t—s)"_a_lf(")(s)ds; n—l<a<n,n=[o]+1.
0

Lemma 2.0.3 Let a > 0. The differential equation D, f(t) = 0 has solutions

f(t) =ko+hkit kot + o+ hy 12"
Also 18D f(t) = f(t) +ko+ kit +hot* + oo+ 12"

Herekic Randi=1,2,3,...n—1, n=|a]+1.

Definition 2.0.4 Let (X.d) be a metric space. A mapping T : X — X is contraction
mapping if there exists a nonnegative constant k which is 0 < k < 1, for each x,y € X.
such that

d(T (x),T(y)) < kd (x,y).
Theorem 2.0.5 (Nonlinear alternative) Let X be a Banach space, let B be a closed,
convex subset of X, let W be an open subset of B and 0 € W. Suppose that F : W — B
is a continuous and compact map. Then either (a) F has a fixed point in W, or (b)

there exist an x € OW (the boundary of W) and A € (0, 1) with x = AF (x).

Theorem 2.0.6 (The Banach Contraction Principle) If T : X — X is contraction map-
ping on complete metric space (X.d), then there exists one solution x € X such that
T (x) = x fixed point of T. The Banach fixed point theorem is also called the contraction

mapping theorem.

Theorem 2.0.7 (Arzela-Ascoli Theorem) Let R be a region in C, and let F be a uni-
formly bounded, equi-continuous family complex-valued functions on R . Then every
sequence {f,} in F has convergent subsequence, the convergence being uniform on

compact subsets. 5



Theorem 2.0.8 (Schaefer fixed point theorem) Let X be a locally convex topological
vector space, and let K C X be a non-empty, compact and convex set. Then given any

continuous mapping f : K — K there exists x € K such that f (x) = x.

Theorem 2.0.9 (Krasnoselskii’s fixed point theorem) Let M be a closed convex non-
empty subset of a Banach space (X, ||.||) . Suppose that A and B map M into X such

that, if the given conditions hold then there exists y € M with y = Ay + By.
(i) ifx,y€ M, then Ax+By M,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Theorem 2.0.10 (Leray-Schauder fixed point theorem) If D is a non-empty, convex,
bounded and closed subset of Banach space B and T : D — D a compact and continu-

ous map, then T has a fixed point in D.

Remark 2.0.11 The Caputo fractional derivative of order n —1 < a < n for t?, is

given as

I(y+1)
:9g+17: C(y—a+1)
0, ve{0,1,....n—1}.

7% yeNandy>n or y¢N andy>n—1,

(2.0.1)
2.1 Introduction

Today, algebraic geometry, algebraic techniques and DEs are used for modeling robots
and computer games. Also the DEs and numerical analysis techniques are available
for modeling aircraft, satelitte production, measuring the change of dynamical sys-
tems. For this reason, DEs are attracted the attention of many researchers. There are
many works about the DEs with boundary conditions. Some of them are given in the

following.



The multiplicity and the existence of non-negative solutions for non-linear FDEs with
boundary conditions are discussed in [24]]. Here, 0 <7 < 1, and forreal o, 1 < o < 2.
They used standard Riemann-Liouville differentiation for function f. Some existence

and multiplicity results are found on cone by fixed point theorems

DG u(t)+ £ (t,u(1)) =0,

In [83]], the multiplicity and the existence of non-negative solutions for non-linear
FDEs with boundary conditions are studied. Here, 0 < ¢ < 1, and forreal o, 1 < ax < 2.
The Caputo’s fractional derivative “Dff, is used with continuous f. Some existence and
multiplicity results are found on cone by fixed point theorems.
DG u(t) = f(t,u()),
u(0)+u' (0) =0,

u(l)+u (1) =0.

In [50], o order Riemann-Liouville differential operator and continuous functions f
and a are used. It is given as follows. Here, 0 < < 1, and for real o, 1 < @ < 2. The
sufficient conditions for the existence of at least one and at least three non-negative

solutions to the non-linear fractional boundary value problem are given.

DG u+a(r) f (u) =0,



The existence and uniqueness of boundary value problem for FDEs is discussed in
[2], where t € [0,T], 2 < o < 3, with continuous f, with real constants y(),y(’):é ,yff and
Caputo fractional derivative “Dg, is used. Three results are found by Banach fixed

point, Schaefer’s fixed point and Leray-Schauder fixed point theorem.

‘Dy,y(t)=f(t,y),

y(()) =)o,
¥ (0) =g,
Y(T)=y;.

The existence of solutions of the equation is studied by S. Zhang in [84] which is given
as follows, and here 6 € (1,2), o, # 0 and ¢ € [0, 1]. Here °D, is Caputo fractional

derivative and g is continuous function. The Schauder fixed point theorem is used.

‘DY u(x) = g (x,u(x)),

In [36], the existence of solutions of the FDE with boundary conditions is studied
where 6 € (1,2), a,B #0andt € [0,1]. The Bohnenblust—Karlin fixed point theorem

is studied.

Bashir Ahmad, [9], is obtained irregular boundary value problem by using Banach
fixed point theorem. The problem is in the following, where “D? is Caputo derivative,

f continuous function, 7 € [0,1], 1 < ¢ <2,0 =0,1 and b is not zero.



‘Dix(t) = f(t,x(1)),
X (0)+ (=1)°X (n) +bx' (m) =0,

x(0)+ (=) x(7) =0.

A coupled system of non-linear fractional differential equations with three point bound-
ary conditions are discussed in [8] by Shauder fixed point theorem. In this study, Rie-
mann Liouville fractional derivative and continuous functions f and g are used. For
te€(0,1), 1 <a,B <2, p,q,y are non-negative, 0 <N <1, —g =1, —p =1,

me <1, mP <1

By using some fixed point theorems, the existence and multiplicity results of positive
solutions of the following non-linear DEs are obtained in [54], which is given, where

Dg‘ fl is denoted the standard Riemann Liouville fractional order derivative.

D u(t)+ f(t,u(t))=0,0<r<landl<a<2,

DB u(1)=aDb u(&).

In [68]], a boundary value problem for a coupled differential system of fractional order
is studied. Riemann—Liouville differential operator is taken. The existence results of
the solution is found by Schauder’s fixed point theorem. It is given as follows, where
0<t<l1,1<apB <2,with non-negative u,v,oc —v =1, f —u = 1 and f,g are

continuous functions. It is given as:
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Chapter 3

DEs WITH BOUNDARY CONDITIONS

3.1 Introduction

The FDEs are used in different fields of science. The dynamical systems, modern
physics, chemistery, biology and genetics are some of them. Especially for dynam-
ical systems and modern physics, fractional differentials are used to construct self-
replication machines and re-construction of lost pieces of digital data from space sta-
tions to world and are used to produce small volumed and/or large surfaced antenna. In
chemical engineering and biology, while calculating bounded and/or unbounded equa-
tions with boundary conditions, the common techniques are used to explain blood flow

models, arrangement of blood vessels, cellular systems.

In [55]], the existence and uniqueness results of solutions for FDEs with integral bound-

ary conditions are discussed which is given as follows:

Dg+x(t)+f(t7x(t)7xl(t)) =Y,

11



Heret € (0,1), Dg, is the Caputo fractional derivative 1 < o € R and the new results

on the existence and uniqueness are discussed by Banach fixed point principle.

The non-linear FDE of an arbitrary order with four-point non-local integral boundary
conditions is discussed by the Banach fixed point theorem in [12]. Here 0 <t < 1,
m—1<qg<m,0<&,n < 1. The Caputo fractional differentiation is used with order

g where a, B € R, is given in the following:

‘Dix(1) = f(t,x(1)),

X(0)=0,....x" 2 (0) =0,

¢
x(1)= B [x(s)ds
0

In [62], the impulsive FDEs with two point and integral boundary conditions are stud-
ied. Here A and B are given n x n matrices where det (A + B) # 0. The fixed point

theorems are used. It is shown in the following:

Dy x(t) = f(t,x(t), €]

By the standard fixed point theorems and Leray-Schauder degree theory, some new
existence results are found for BVP of non-linear FDEs of order g € (1,2] with three

point integral boundary condition in [13] is given as, follows, where D}  is the Caputo

12



derivative of order ¢, 0 <t < 1,0 <n < 1and 1 < g <2 with continuous function f.
Dy x(t)=f(t,x(1)),

x(0) =0,

n
x(1)= a/x(s)ds,
0

The multiple non-negative solutions for the FDE with integral boundary conditions
are studied in [46]. They obtained some new results on the existence of at least three
non-negative solutions by the Leggett-Williams fixed point theorem. It is given in the

following form, where k = 2,3, ..., [o] .

The existence of positive solutions for a class of non-linear BVP of FDEs with integral
boundary conditions is discussed in [29]. That is given as follows. Here “D{, is Caputo

fractional derivation, 2 < o < 3, 0 < A < 2 and continuous function f.

‘D u(t)+f(t,u(t)) =0, 0<r<1

The existence, non-existence and multiplicity of positive solutions for a class of higher
order non-linear fractional differential equations with integral boundary conditions are

discussed in [39] by Krasnoselskii’s fixed-point theorem in cones.

The existence of positive solutions for the following nonlinear FDEs with integral
boundary conditions is obtained in [86] by Green functions and the fixed point the-
orems, which is given as follows, where D8‘+ is the Riemann-Liouville derivative,

13



3<o<4,0<n <1 Itis given as follows:

DS, u(t)+h(t) f(t,u(t) =0, 0<r<1,

u(0)=0,
u (0) =0,
"(0)=0,
n
u(l):l/u(s)ds
0

In [76], the authors are studied about the eigenvalue problem of the following nonlinear
fractional DEs with integral boundary conditions which is shown, where 0 <1 < 1,
n<o<n+1,n>20<& <2andD§ ', 1s the Caputo derivative. They studied by

the Green’s function and Guo-Krasnoselskii’s fixed point theorem, which is;

D, u(t)+Af(t,u(r))=0, 0<t<I,

14



Chapter 4

FDE WITH BOUNDARY CONDITIONS

In this chapter, the existence (and uniqueness) of solution for nonlinear FDEs of order
o € (2,3] is obtained when the nonlinearity of f depends on the fractional derivatives

of the unknown function:

&()=Ff (t,u(t),ggiu(t)mgiu(tD L 0<1<T;2<a<3. 4.0.1)

The three point and integral boTundary conditions:

aou(0) +bou(T) = ﬂo/go(s,u(s))ds,
0

T

alﬁgiu(n)—f—bl@g}ru(T) = ll/gl(s,u(s))ds, 0<pBi <1, 0<n<T,
0
T

ay % u(n) + b2 u(T) = 1 / a(s,u(s))ds, 1<pr<2,

\ 0

(4.0.2)
where © 8‘+ denotes the Caputo fractional derivative of order ¢, and f, g; are continuous

functions and a;,b;,A; € R fori =0,1,2.

Lemma 4.0.1 For each f,g0,81,82 € C([0,T];R), the unique solution of the frac-

tional boundary value problem:

15



DFu(t)=f(t); 0<t<T,2<a<3, (4.0.3)
( T
aou(0) +bou(T) = lo/go(s)ds,

0
T

G u(n) + b u(T) =M [gi(s)ds, 0<n<T, 0<Bi <1,

azggiu(n) +b2©§iu( ) =N gz(s)ds. 1< Bz <2.

St — N

(4.0.4)
(=9 ¥ [ (T —s5) B!
0/ o) ds+i§6a),- (t)bio/wf(s)ds
) n g 2 z
ﬂ §)ds — - | gi(s)ds
L) 0/ (O] i;)wz@)%o/gz( )ds.

Proof. For 2 < o < 3, the general solution of the equation D, u(t) = f(¢) is found by
lemma 3, that can be given as follows:
t

u(t) = o) 0/ (t— )% L f(s)ds — ko — kit — kot (4.0.5)

Here ko, k1,ky € R are arbitrary constants. By the formula of 330‘ t¥, the B; and S,

order derivatives are given as:

1-B 2-B
ol =1 1 0) by ~ ey
2—B
O (1) = 1P (1) - 2@@-

The given algebraic system of equations for kg, &,k are found.

16



- (a() + b()) ko—boTk; — b0T2k2

T

= 2o [ o(s)ds— bolf £ (T),
an;)lﬁl +b T ayn* P 4+, 72P
I N ) B YE R T
T
— 0 [ 1(s)ds —arf P () - bitg AT,
B a20n232+b2T2ﬁ2

G-p)
T
/ (s)ds —axly; P gy — bzlgfﬁzf(T).
0

The following boundary conditions are used

aou(0) + bou(T 3»0/80

algﬁl (n)+b1©ﬁ1 u(T )—11/g1(s)ds, 0<n<T, 0<Bi<I,

(=]

T
az@giu(n) +b2©giu(T) = lZ/gz(s)ds, 1< B <2.
0

Also for convenience, we set

ao+bo #0, an' Pr4b TP 0, am* P b P £,

I'(3-p1) I'(3—p>)
Br._ B .
and He 2 (alﬂzfﬁl —|—b1T27ﬁ1) Rl 2 (aznzfﬁZ —J,—szZ*ﬁz) ’
b T@-B)
ain'=Pr 4 b, TP’
1 b
e Bi 0
= , W (t):=vVv T—1],
@ ap + bo 1) = (ao+b0 )
o b0T2 B2 boT ﬁl'uﬁz Bi ‘uﬁz B2,2
R T AT T A

Moreover, we assume 3y = 0. Now, by using the first condition: agu(0) + bou(T) =

17



T

2o [ g0(s)ds, we get
0

Lo ca-1
ao [—ko| +bo /%f(s)ds —ko—kiT — szz
0

f(s)ds — b()k() — b()k] T — bok2T2

(T —s5)*"! 2
k() (—a() - b()) + b()/l_‘(—af(s)ds — bole — bosz

T
= lo/go(s)a’s
0
Then ko (—ao — bo) — boki T — bok, T?
T T(T gt
= )Loo/go(s>ds—boo/wf(5')ds,

— (ap +bo) ko — boTky — b0T2k2
T T

_ et
= %/go(s)ds—bo/%f(s)d&
0 0

— (ao+Dbo) ko — boTk) — boTzkz

T
= /'Lo/go(s)ds —bolg' f(T).
0

By using the second boundary condition, we have

18



/ N 2-Bi
(n—s)“ -1 n! Bi .
alo/ F(Oﬂ—ﬁﬁ f(S)dS alle(2—ﬁ) 2k2 1F(3—ﬁ1)
T
(T—S)a_Bl_l B Tl—ﬁl TZ_BI
+b10/ T(a—B) f(s)ds klblF(Z—[B) ZkszF(S—
T
:ll/g1(s)ds
0
n1*B1 Tlfﬁl
Itis kl [—al F(Z_ﬁl) _bl 1"(2_[31)
—2an* P 26,72 H
TR ITGE-B) _1“(3—/31)]
n a T s
S L
+a1o/wf(s)ds+blo/ Mo B f(s)d
T
211/g1(s)ds.
0
i alnlfﬁl_FbITlfﬁl B aan—ﬁl_i_zbsz,ﬁl
Then —Ki1 T2 B) 2 TG B)
n a T e
(= o)* 2 TP
+010/Wf(s)ds+blo/ NCETN f(s)d
T
:ll/g1(s)ds.

0

Thus

19



['(2-p)

Lgp, | P 20T
I'(3—p1)

k [alnl_ﬁ‘ +b1T1_ﬁ‘]
— K1

It also can be written as,

k [amlﬁ‘erlTlB']
— K]

[(2-p)

— 2%, ain* P +2p, 7P
rG-p)

T
— M / g1(8)ds —ar 18P f(n) — b1 P(T).
0

T
At last, by using azi)giu(n) +b2©giu( T)= lz/gz(s,u(s))ds, for 1< B <2, we
0

get,
n
(1 —5) P! e
a L/ T(o—B) f(s)ds— 2k2 TG /32)]
T
(T —5)% P21 T2-B>
+ by |:O/—F(aﬁ2) f<s)dS2k2—F(3[32)]
T
= lz/gz(s)ds
0
Then,

20



n
(1) pp
aZO/ Fa—f5) f(s)ds 2k2a21_,(3_ﬁ2)
T
(T —s5)* P! 72-F
# Tramgy SO gy
T
= kz/gz(s)ds
0
2-pB, T2-B2
That is —2k2a2r(3 N 2k2bzr<3 ~B)
(N —s)* B—1 z _S)a—B2—1
+ay 0/ Fa gy st / Fa gy
T
= lz/gz(s)ds
0
2—-B, 2—B n OC Bo—
It is —2ky [aZn 3+[;322T ] 2/ (o — o)

2-B2 4 p,T2-B2
Now, 2k [61277 + by ]

I'(3-p2)

71 aﬁz
:?Lz()/gz(s)ds—azo/ Fa B f(s)ds

T(T —s)o"ﬁf1
—bzo/wf(s)ds.

That can be written as,

21



2-B> 4 p,72-B2
— 2k an + b ]

['(3-p)

T
= 2 [ga(s)ds — ol P pm) ~ balg TP (T,
0

ky = LG —po) /gz
Thus —2(aan* P24 by F)
i 15 f)
-2 (gzrlz*ﬁz + bZTZ*ﬁz)
T
I'G—p) /
=— A d
2 (a2n2—[32 —|—b2T2—ﬁ2) 2 ) 82(s)ds
FG3—p) a—p
I
2 (aan?~B 4 b, 77P2) azly. = f (1)
I'(3—p) a—p
bl T).
+ (azT[z P —|—b2T2 ﬁZ) f( )
Since ,u/32 = LG3—po) , we found k, as:

2 (aznz_ﬁ2 -+ szz_ﬁ2>
T

ky = —uﬁz?tz/gz(s)deruﬁzazI&ﬁzf(n) + Pl p(T).
0

With the help of the algebraic equation of k3, kg and k; are given as follows:

B an' P 4+ p,71-B o an? P 4,77k
I'(2—p1) F3—p)

T

2

(s)ds —ayl, _ﬁlf(n) —bllgfﬁlf(T).

0\

We have the following:
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B alnl_ﬁl _|_b1T1_ﬁl kl
[(2-p)

B alnzfﬁl_i_bl’[‘z*ﬁl
L(3—-p1)

T

kr + 2 /gl(s)ds

0

—al P () b P (T,

_yB z
=k —vPia, / (s)ds + VP 18P f ()
Thus, B 0
VP ISP (T,
Bi ’
_v —
That is ky = P —Hﬁzlz/gz(s)deru&azlgi P f(n)
0
+Hﬁzbzlg+_ﬁ2f(T)]
T
VP [gi(e)ds+ VPl )
0
VPP (T,
Therefore = —I«lﬁzlz/gz )ds — —Nﬁzazlafﬁzf(rl)

vBi
B2y, 72— B2
L boly. " f(T)

VP [ ards+ VPt p)

VPP (T,

ki can also be written as:
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ki = VP g P () 4 VR P ()
7 B
\% _
VP [ i(s)ds — g uPbalg P f(T)
‘LL 1
0
B VB ‘
B ﬁZ B2 /
uﬁl'u az f( ) “ﬁu 2«2 ()ds'
0

It is ko (—ao —bo) —boT [Vﬁlbllgfﬁlf(T) +vPa P ()

T
vBi
‘Vﬁl’“/ 1(8)ds =57 uPbo I P (T)

. 2| I'(3—pf) /
boT 2 (axn?> B+ by 7% P2) 82(s)ds

I'(3—p>) W% P
2 (axn? P 1 by 72 r) 20

I'G—p)
2 (6121’]27132 + szzfﬁ

+

f(n)

) 20+ﬁ2f( )

T T

—5 a—1
=20 [o(s)ds b [ % F(s)ds.

(04
0 0 )

Then
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ko (—a() — b()) — boTVﬁlbﬂgfﬁlf(T)
T
—boTVﬁlallg+_ﬁ1f(n) —|—b()TVB1)Ll /gl(s)ds
0
boT Lo B2yt () 4 by T Yo oyt
+OE” 240+ f( )+0E.u a20+ f(n)
T
Bi
—bQTV—,LLﬁZ)Lz/gz(S)dS
ubi
0
boT?T'(3—f2)
2o [ ga(s)d
2(@n? P+ 5,12 R) ) g2(s)ds

. b0T2 F(3 B ﬁz)
2 (aan?=P 4 by 12 P2)
I'(3—pB)
—boT?
O 2 (an? P 4 by T2 R)
T

Lor gt
= ).o/go(s)ds—bo/%f(s)ds.
0 0

a21(;x+_ﬁ2f<n )

bl P (T)

In epitome, the following algebraic expressions are used;

T
ko = bopP 1P (1) + P ISP £ () — Do / g2(s)ds,
0
ki = blvﬁllgi_ﬁlf(T) +a1Vﬁllg+_ﬁlf(T])

T
B2
— 4 vh /gl(s)ds—bz\/B‘ %Igimf(T)
0

B2 B> T
B P ) mﬂ% [ eas)as.
0

IJ“ 1

_ azvﬁl

We get
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T

by Ao
ko = —20 1% £(T) — / d
07 ao+bo 0+ /(T) ao + by so(s)ds

B bOblvﬁlTI(X—ﬁl bOalvﬁlT OC ﬁlf( )

_ T
Cl()+b() o+ f( ) Cl()+b
bollvﬁl /g1 bobzvﬁ‘Tlll}l 1 ()
ao + bo ao+b0 ubr for
boar VAT uP> o 5, boM VA T Iiﬁz/
Ve -7 —_ d
oL ) = 2T [ alsyas
bobyuP> T2 2P boar P22 9B
————— I f(T) — ———1I5- " f(n)
ao + by ao+ bo
T
b()lz[lBZTz/
- = ds.
* ap + bo g2(s)ds

Inserting ko, k; and k; into the expression, we get the desired representation for the

solution of the BVP, which is given in the following:
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u(t) = ﬁ/(r—s)a_lf(s)ds

0

T
bo Ao

=% (T — / d

ap + by 0+ /(1) ap +bo ols)ds

bob VAT o p, boalvﬁ T [
2T g T)— 217~

ey CRVACH R et (VU )

b())qvﬁlT/ bObZVﬁIT.uﬁ2 19— ﬁ2f< T)

ao+ by g1(s ap +b0 /Jﬁl fo:

Big B Bi B>
boapyvP'T u—]gfﬁz ( ) boAyVPIT Hu / (s)ds
ap+bo ub ao+by uh

_bobopPT? o p,
agp+ by O+

B2
—bo/'bu ! / gz(S)dS]
0

l’)oaz‘LLBZT OC B2

7(r) -2

f(m)

ao + by

T
—t {blvﬁllgiﬁl F(T) +avP I P rm) — avh / g1(s)ds
0

B2 B2
—bzvﬁlﬁ—la () - azvﬁlﬁ—lo‘ P(m)

B>
+2vP ‘u—Bl /gz(s)ds]
H 0

- lbzu&lg‘ﬂm) IR )l [ gas)ds| 2

That is
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ult) = g [ =9 F)ds = O f(T)
0

T
B
+ 2o /go(s)ds-l-bobl—VT Iy ﬁlf( T)

aop+ by / ao+ by
b()alvﬁlT o—Bi b()lﬂ/ﬁlT/
1

+ a0+b0 + f( a0+b gl

- bObZVﬁlTﬁla*ﬁZf(T) boazvﬁlT‘uﬁz o ﬁzf( )
ag+by pbi0" ao+by pbr fo-
b()xzvﬁlT‘uﬁz/ S ObZ.uﬁzT Ot ﬁzf( )
ag+bo b 2( ao+bo

boauP2T? o p, bodo P2 T2 /
i S U d
+ ap+by 0" sy aop+bo sa(s)ds

T —tblvﬁllg‘fﬁ‘f(T) —talvﬁllgfﬁlf(n)

T

B>
+iavP /g1 (s)ds +tbyvP! %Igfﬁzf(T)
0

T
B2
-l-taz\/ﬁl %Igfﬁzf( t?szﬁl /
0

— PbyuPr P p(T) — ParuP P ()

+2 0 uP /gz(s)ds

Therefore,
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by
a—l—b+

u<t>=(—o/ $)% 1 F(s)ds — % £(7)

boT
Bi 0 aﬁl
vPLp
+ 1(a0+b0 ) f(T)

vﬁl ‘uﬁz

2B
+ | — b
<a0+b0 Ho2 = a0+bo ‘Ltﬁ 2

B>
+vhr %tbz -~ uﬁ2r2b2> 15 P (1)

T
(1 )+Vﬁ101( b0

agp+ by

aﬁl
-y L

T B>
+ (LTZuﬁZaz_ b() vﬁl‘LL

ao+ bo ao+ by ‘uﬁl =

B
+vh %laz - uﬁ2t2a2> 5P )

T
bo
d
+a0+boloo/go(s) s

T
boT
_ b 0 _ /
vPIA <a0+bo t> J g1(s)ds

_ B2
+< bo g2 Brgy 1 DOT K

ao + bo ap+by  ph
T
B>
—vﬁlu—taz +uﬁ2t2a2> /gz(s)ds
uhi /

We found
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Here By =0, uPr :=

FB-B) I'(3—pa)

and VA1 .=

2 (a1n2—ﬁl +b1T2—ﬁ1) ’ ’uBz =

30
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I'2—p)
ain'=B 4+ b, T1-B’

Remark 4.0.2 The Green function of the BVP, is defined by

(t—s)%!

G(t:s) = I'(a)
Go(t;s), 0<r<s<T.

+Go(t;s), 0<s<r<T,

L 2 . .(T_S)ocfﬁrl
Here Go(t;s) = ig(’)wl (1) bl—F(Oc ~B)
2 —s o—Bi—1
+ L or)a o (),
1, s€(ab),
X(ab) (S) -
0, s¢(a,b)

Remark 4.0.3 For oo =3, i =1, f =2 and n =0, the BVP (4.0.1)- can be

written as follows:

u” (1) = f (t,u(t), ' (t),u" (), 0<t<T,

aou(0) + bou(T) = Ao / 20(s, 1(s))ds,

0
T

aju' (0) + b/ (T) = ll/gl(s,u(s))ds,
0

T
axu”" (0) + b (T) = lz/gg(s,u(s))ds.
0

In this case, the Green function can be written as follows:

t_ 2
(r(JX 1 Go(ts), 0<s<1<T,

Go(t;s), 0<r<s<T.

G(t;s) =

Here
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by (T —s)?

Gol(t;s) =
O( S) aop+ by F(OC)
b b b T —
N (_ 0 L b t) s
ap~+bgay+ by ar+b; ) T(a—1)
( bo b1 b . b by 2
ap+boai+byar+by a0+b02(a2+b2)

2b 2 2 2) 1
— t+ t .
a) + by 2(a2+b2) 2(a2—|—b2) F((X—Z)

Moreover, the following case is investigated in [22)]:

ag=1,bp=0,a; =0,b; = l,ap = 1,by = 0.

In this case,

(r—s5)*  t(T—5)
Gy D@ Ty UEtEEh
li((zc:sl))’ 0<t<s<T

4.1 Existence And Uniqueness Results For o € (2,3] Order FBVP

In this section, while proving the existence and uniqueness result for the fractional

BVP, the Banach fixed-point theorem is used. The following space is used

Cs ([0,T];R) := {v e C((0,7];R): DPy, ©Py e ([0, 1] ;R)}.

That is equipped with the norm

Ivllg = vl + | D8y

o+t

’c'

Here ||-|| is the sup norm in C ([0,7];R).

The following notations, formulae and estimations will be used throughout the thesis.
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Bi1-B

vt

hL o (1) = TR’ D o) (1) =0,

b 2(0) vBi P21 =B ubes2=B B ubs2=P>
0+

S WP By TG-p) o= "IE gy

Werhave o0] = T = po. o1 (1)) < V2| lonl o]+ )T 2= .
Pl T | s P
92001 < Tt T Teo ol (BT T T+ |uf
35 B ‘Vﬁl‘Tliﬁ] ~
pPo =0, ©0+w1(t)’§ TP = P1,
o+a>z(t))§ PEIREEY +2 NEEY = P2,
‘uﬁz 7282

S5 ﬁz < —A
pO pl 07 ‘©0+a)2(t)‘ —2 F(3—ﬁ2) . p2'

2 Toa—Bi—7 nocfﬁ,-fr 1—1 -t
TLp ("’l' Ta—p) " r<a—ﬁ,~>> (atpe)

7o Bi-1 1-1 1=z
ana b= 2 (R

2 To—pBi—7 na—ﬁi—f -1 1-7
+i;pi”lf”1/f ('bi’mﬂai‘ F(a—ﬁt)) (a—ﬁi—r) '

To Pt 1-7 \'°
aa o= ()

_ TPt ne b -t \'"7
+p2HlfH1/r |b2|[‘(a_ﬁ2)+|a2’r(a—ﬁ2) (a—ﬁZ_T) '

Theorem 4.1.1 Assume that

33
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(Hy) The function f: [0,T] x R x R x R — R is jointly continuous.

(Hy) There exists a function Iy € L+ ([0,T];R") with T € (0,min(1, — B;)) for each
(tyuy,up,u3), (t,vi,v2,v3) € [0,T] x R x R X R, such that
| (81, u2,u3) = f (,v1,v2,v3)[ < Lp (1) (Jur = vi| + [uz = va| + |us —v3]).
(H3) The function g; : [0,T] x R — R is jointly continuous and there exists lg; €
L' ([0,T]),RT) for each (t,u),(t,v) € [0,T] x R, such that
|gi (t,u) — i (t,v)| <l () [u—v]|, i=0,1,2.

If there exists

2
1+Zﬁi|%‘\ ‘
i=1

oo\l + P2 [ Aa |1, ||, < 1.

2
(Bo+A1+22) [[1f]], o+ Y pi il | g,
i=0

Then the boundary value problem has a unique solution on [0,T]. 4.1.1)

Proof. We used the operator § to transform the BVP into a fixed point problem.The

operator § : Cg ([0,T];R) — Cg ([0,T];R) which is defined by
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t
1 _
= Fra ] €~ () Fruts) D)
0
bo [ (T—5)*!
— S
o / Moy () 20t uls), D (s) s
T
T —5)% Pl
v (o) U ptsats) o uts) D uts)as
0
+ bo _ 0 72 ﬁz boT Y Wil ‘uﬁz
ap+ bo a0+b0 ‘uﬁl
2\ (T =) B B,
Gt — b | [ () DL uls), D u(s)ds
a  [(n—s5)°! B B
ot |y () 20 uls), D u(s)ds
0
n
boT (n —s)% B
Bi 0 _ / Bi B
+VvPla t s,u(s),Dn u(s), D u s
(o )0 g 0u6) Dl ats). )
B2
0 2,p  _  boT g p™
+<a0—f—b I"u a0+b0v ‘uﬁlaz
BZ n — 5 a_ﬁ2_l
v, u&r2a2> / “}(a)_ gy 5.(5) 20 uls), D u(s))ds
T
g [so(s)ds VP (2T —1) [ai(s)as
ap+ by 50 ! aop+ bo / 81
_ B2
0 2.8 boT i
T LR
+<ao+bo H 2+a0—|—bv ‘LLﬁla2
T

B2
B “—ﬁtaz +/.Lﬁ2t2a2) /gz(s)ds
uP! 5

We have
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. 1 t o ﬁl ﬁZ
_WO/ 1 su(),©0+u()@ u(s))ds
T
by [(T—s)%"! Bi By
- [ e s) DG (). O u(s)ds

I'a-—pB)

boTZ‘LLﬁzbz B boTVﬁl,uﬁzbZ
ap +bo (ag+bo) ubr

z _g)o—pi—1
—I—vﬁ‘bl( boT —t) /%f(s,u(s),@giu(s),ggiu(s))ds
0

By Bosh [(T —5)% B
L YR —uﬁ2t2b2> /(Lf(svu(s) Dgluls), Dpu(s)ds

(ot — )

a (-9 B b
/ fs,uls), Dgru(s), Dyiu(s))ds

—bo . B
T 2
+<a0+b0 # ao+b b

B2
—_yh %mz+l~lﬂztzaz) /82(57”(S>)ds‘
0

That is
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Thus, the expression (Fu)
t
(04

G =12
0

(1) can be written as,
1

Bi B2
Ty /() Dotu(s), Dotu(s))ds

(T —s)2 Pl
(o — i)

(n—s)* Pl
(o — i)

2
+ E)wi (1) bi Fls,u(s), DPru(s), D2 u(s))ds

fs,u(s) ,@giu(s),Qgiu(s))ds

a;

gi(s,u(s))ds.

+
gl
e
o\'ﬂ ON\: O\H
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We take B, " and B, fractional derivative, we have

o (3u) (1)

(t—s)*PBi- 1
/ I(a—pi) (S),Qgiu(S),Qgiu(s))ds

B B2
r2—p f(s,u(s), Dol u(s), Dt u(s))ds

T L Y I W LU G ] X
+ (“ﬁlr(2_ﬁ1) 2F(3 —ﬁ1)> bZO/ (o —B) f(s,u(s), Dgru(s), Dyiu(s))ds

I (U D L B 2
r2- ﬁl) / Ia—pr) f(s’u(s)7®0+”(S),©0+u(s))ds

Bi oyl =B B s2—Bi . ya—Pr-t
v o M 5) 5 5
+ <uﬁ1F 2—-B1) T(G-B) )azo/ T(a—p) f(s,u(s), Dyu(s), Dyiu(s))ds

Bi1—Bi z
(rvzt ﬁ1> /gl( u(s))ds

Bi B2y 1P Ba2—PB T
vELurE=t ur2t
(umr 2—B) —2 r(3— ﬁl)) /82 (s,u(s))ds.

vﬁltl—ﬁl
2 —ﬁl)’
P ay (1) =008 0 (1) =

Thus @gi o (t) = —

vﬁluﬁ2tl—ﬁl 5 ‘uBQIZ—ﬁl
uPr2-p) TG-p1)

‘uﬁ2t2_B2

@giwz (t) = —zm.

Then we get
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Itis

y ) Bi—
O/’F; gy 5.(9) 20l uls). D u(x))ds
@ﬁl t)b / (T —s)*" A Db Db d
IS =y @ 2 o s) DB uls), D ()
Bi / (T —s)*" Pom Bi B2
+of o (1) / Fa gy (s) Dftu(s) D u(s) s

f(s, u(s), D% u(s), D u(s))ds

F(s,u(s), D u(s), D% u(s))ds

f () (1)
’ 5)eBi-
O/’Fa o (5u(5) DB (). Do)
2 Lo _ gya-pi-1
+ L0 on() b [ Ui o) Ot O s
i=1 0 l
[(n—5)* P!
+Z©o+wl i [ gy o (s) DFtu(s), D uls))es
0

The Bi" derivative is in the following:
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(4.1.5)

(4.1.6)



! _ (X ﬁz l
/ =5) ,u(s) ,@giu(s),ggiu(s))ds
0

Bop2-Bi T oya—Ba-l
- / T 2 fls,us). 08 u(s) F: u(s))ds

INEE (o — )
uﬁzﬂ B TI 1 —s)% Br—1 5 N
I'G-p) 6120/ (o —B) f(s,u(s), Dyruls), Dotu(s))ds

B242—B1
[.L t /
A, su

—oubP2s2-B2
Since @gia)z( )= 2([,;) tﬁ ] is given, @ﬁz (Su) (t) can be written as follows:
— P2
O3 (Fu) (1)
[(e—5)% P! B 2
= /Wf<S,M(S) ,@O+M(S),©O+M(S))ds (4.1.7)
0
[(T —5)% B!
B> — B B>
FD0 0 (02 | g s (s). Dt u(s) D)
+0% (1) as (n—s)* P Fs,u(s), DPru(s), P2 u(s))ds (4.1.8)
0+ F(Ot—ﬁz) > » ~ 0+ » =~ 0+

~ 0Py (1) 42 [ ga(s,u(s))ds.

o= o — s °

Since the functions f, go, g1 and g are jointly continuous and, the expressions (Fu) (¢),
@gi (Su) () and @B % (8u) () are well defined. The Banach fixed point theorem is used
to show existence and uniqueness of the solution of BVP (4.0.3))-(4.0.4) Thus we need

to show that § is contraction. Indeed,
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|(Su) (1) = (3v) (0)]

t<t_s>ail B B2 B B>
< 0/ W\ﬂs,u(s),@o u(s), D u(s)) = £(s,v(s), Dfiv(s), Df (s

), Dptu(s), Dptu(s))

+ ey (1)
(s, <>©"lv<>@ﬁ2v<>>\ds

05/31
+lon (1) by / s,u(s) DhLu(s), Dl u(s))

—f(s,v(s), DfL(s), @giV(S))’ds

)P B B>
+lex (1) b / o | Foats) futs) Dfacs)
£ <>©ﬁ1v<>®“2v<>> ds

S 06 Bi—
+lon (1) a / L sou(s) Dhtu(s), Dl u(s))
~f(s.v(s) DG v(s) DG v(s)) | ds

SaﬁZ
+lon |\a2|/”—

5 Flsu(s), DL u(s), ©P u(s))

~f(s,v(s) DfLv(s), DR v(s))| ds

+lan (1) ||%|/|gosu )= g5, ()] ds

+lo1 (1) 1 / 1(s,u(5)) — 1 (5,9 5)) | ds

+lo2 ()] 2a] [ lg2(s,(5) = ga(s.v (5)] ds.
0

Thus, it can be written as follows:
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/ F ‘fsu @ﬁlu()Dgiu())
0
—F(s,v(5), DPLu(s), D22 u(s ))‘ds
T oc— —1
+ Z |0~)1 |b |/ OC ﬁl f(S,I/t(S) ,@giu(s),@giu(s))
—f(s,v(s), PP v(s), @gm ))‘ds

77

+Z|w, lai / A (). DB uts) Dt

—f(s,v(s), Dhv(s), Dp v(s)| ds

+le: |M/|glsu — (s, (5))|ds

TA-T /11— I-7
swwmfj(fg) =l
To—bBi—7 o—Pi—7 1 — 1-7
L e e e I

+ZMMM%NWWﬁ
=0

2
- [aolulyo Epmll et @110
i=0

On the other hand, we have

yBi1=B
T2—B1)’
DR o (1) = 0,95y (1) =

P oy (1) = -
VBB g1-B 5 ubes2=B
T2 —pB1) TE—=pi)

‘uﬁzl‘z*ﬁz

o0 enl) = 2y

We have
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[9F, G () -9, 3v) (1) @111)
[ (t—5)a B!
SZ’na—m>

—f(5v(), DELv(s), Dfv(s)| ds
T

(5,1 (5), D u(s), D2 u(s))

(T —s5)% Pt
o (s Mm‘/ Tl By |/5() Dfu(s), Dfu(s)

~ £, <>@mv@>®&v<»\
T

0‘ Bo—
+ oo (1) \|b2/

s,u(s), Do u(s), Dp2u(s))

(s, <>@@y@>@&w>ﬂ
71 0‘[31
n s)

B B>
TTla—py | 5:(8),Dgruls), Doruls))

(01 ‘\al

(s, <>®&v@>@&v<»\

nn saﬁZ

B B>
“Tla—B) su(s), Doru(s),Dgiu(s))

—£(s, ()@mv(>@&v<»ds

‘@lﬁ oy (2 ‘Ml|/|gl s,u(s)) —gi(s,v(s))|ds
o o (1 \Mﬂ/mzsu —g2(s,v(s))|ds.

It is given as
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That is

]@ﬁl () (1) = Of!, (5) ()]

(t—s)* b Bi B2
go/w\fsu ), DbLu(s), D u(s))
—f(s,v(s), @ﬁlv( ), @ﬁzv ‘ds

oc Bi— 1
)i / s.u(s) DBt u(s). DB u(s)

-I—Z‘@ w; (t NCEYA

—f(s,v(s), ’Dﬁl wv(s), @ﬁzv (s) ‘ds

_s oc Bi— 1
)lad / (s) 2f u(s), D u(s))

+Z‘® w; (¢ NCEY

—f(s,v(5), DB v(s), D5 1(s)) ‘ds

+Z‘@ w; (¢

w/rgz 5,10(s)) — gi(s,v (s))| ds.

D8 (3u) ()~ DL (3) (1)
T Bi—t 1—1 1—-7
< () el

To—Bi—7 a—Bi—t 1— l—1
+Zmbwmﬁ(wq7—75+wﬂﬁa_&ﬂ(;_&if)

14l |2, [ ] lle = vl -

o8 5w (1) -2 (3) ()]
< (Aulligll o B 2l e+ B2 el [ ) e =g

2
< (Al S v ||zgl-ul) .
i=1

Similarly for Bﬁh derivative:
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\@B2 w) (1)~ Df (§v) (1)

(=) po—1 B B
/ OC B2 f ) @ I/t( )=©0+u(s))

— (s, (5), DPLu(s), DR u(s ))‘ds
Ny

o / Fo =gy /() DFtuts) D u(s)

~f(5,v(5), DgLv(s), D2 v(s))

iy
ol

ds

n SaBZ

B B2
T(o— [32 (s),©0+u(s),©0+u(s))

—f(s,v(s), ’Dﬁlv( ), Qgi\/( N|ds

i

r gy Vol [ et u() ol v(s))las
0

+2

Then, | D81 §w) () —Df: §v) (1)

y t—s)% B2 1 !
S/((Zc—ﬁz’f s,u(s) , DgLu(s), D2 u(s)) (4.1.12)

~ fs,v(5), DhEv(s), D (s >>\

[(T—5)* P B B
ol @ (1)) I / o py () DGu(s), D ()

~f(5v(5), DY v(s), Dfv(s))| ds

Tln saﬁZ

Bi B2
O |rtsauts) D uts) Dt

— (s, (s), DPv(s), @Bz v(s))|ds

+ [0 o ()] I / 82(5.4(5)) — ga(5,v ()l s
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‘Qgi (Fu) (1) — D (3v) (t)‘
T P 1—1 1-7
<o () et
p: reh =Pt 1—71 -7 N
P2 (’bZ\er\az’lﬁ(a_Bz)) (a—ﬁz—r) 1]y + B2 12l s | | Nl —vilg

= Ballirl .+ Palal 1l | e =il

_|_

Here, in estimations (4.1.10), Holder’s inequality is used,
t

/lf (5)(t —s5)* "™ ' ds

0

< ( / (lf<s>)ids) ( / ((m)”l)“ds) _

1-7
:HlfHLW( L ) 47T if 0< T <min(l,a—m).

oO—m-—7T

From (.1.10), it follows that

1(Fu) = (Fv)llp
< | (Bo-+ A +29) gl ol gl + 01 P e |, + 21220 s,

1|l |[lg, || + P2 |22 [|lg, || + P2 |2 [|1g, || ] e = vl -

Therefore, [(Su) — @)l B
2
< | Ao+ A1+2) [[17l] o+ Lpil il [
i=0
2 ~ ~
+ZPiMi‘ ‘ lg,'”l + P2 | A2 ngzul H”_VHﬁ-
i=1

Thus § is a contraction mapping. Then § has a fixed point which is the solution of the

problem (4.0.1))-(4.0.2) by the Banach fixed point theorem by
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2
(80+A1+80) 1]y o+ Y il [ g Lol |y + P2 |22 [|Eeo |, < 1.
i=0

2
1+Zﬁiml" ‘
i=1

Remark 4.1.2 In the assumptions (H) if Iy is a positive constant then the condition

4.1.1) can be replaced by

1,T* TP ne-Fi
I 4 bl ———— g —
r(a+1)+f):p (' Ta—p+1) a1

lfTa_ﬁl _ TP noFi

Tl ) pi| |bi i
+r<a—ﬁ1+1>+f,-§” (' Ta—pn “ITa-p

lfTOC_ﬁ2 . To=P2 na—ﬁz
+ = U2 | ol m— sl e
la— Bt 1) fpz(' e g T g1

2 2
+Zpi|)“i|Hli 1+Zﬁi|li|”li 1+f/52|12|”lgz||1<1'

i=0 i=1

4.2 Existence Results For Fractional Three Point BVP
We start with the existence of solutions for BVP (4.0.1))-(4.0.2),
Theorem 4.2.1 Assume that

(Hy) The functions f: [0,T| x RxRxR =R, g;:[0,T] xR >R (i=0,1,2 ) are

Jjointly continuous.

(Hs) There exists non-decreasing functions @ : [0,00) — [0,00), y; : [0,00) — [0, 00)
and functions 1; € L= ([0,T],R"), I, € L' ([0, T],R*) with T € (0,min(1, o —
B2)) such thati=0,1,2 forallt € [0,T] and u,v,w € R;
(2w, v,w)[ < Ly (1) @ (Jul + [V + [wl)

i (1, 1)| < Ly, (£) Wi (Jul)

(Hg) There exists a constant K > 0 such that
K

> 1
K [[1¢]l, /7 (Do + A1 +42) +Z (pi+ P+ ) [Adl i (K) |
47"

lgt”l



Then BVP -([.0.2) has at least one solution on [0,T].

Proof. Let B, := {u € Cy (10,T]:R) : Jull <r}.

Step 1: The operator § :Cg ([0,7];R) — Cp ([0,T];R) is defined by (4.1.2) maps B,
into bounded set.For all u € B,, we get
|(Su) ()]

(r)

00 [ o
SF(oc)O/(t_s) U1y(s)|ds

T
00 an bl g [ (=) (5| as
0

1

+o (e Ollorl mg 55 | T =9 P is(s)] as

£ ()02 ()] 2] s [(T—9)% B iy(s)] ds.

(o —p2)

St — N T~

That can be |(Fu) (1))

o0 [0 a
gr(a)o/(t—s) ]‘lf(s)‘ds

T
+ @ (r) po |bo| ﬁ/(T—s)o‘—1 |1(s)|ds
0
(T —s5)*P—1 |L¢(s)|ds

0 (P10l g5

+¢(r)p2|b2] m (T — )% P71 |14(s)| ds.

St — N O T—

Then,
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(o) /
2 1 ’ o—pBi—1
+<p(r)§)Pi|b’|F(a—ﬁi)o/(T e
n
5)% Bi—1 s
Zm i o ﬁ)o/(n L (s)|d

T
+Zp,!l\wz ) | ha () s
0

By using Holder’s inequality, we get

|(Su) (1))

TO-7 /1_ 7\ 7
Hf”l/rl" )(a ’L')
Ta* _ 1— 1—7
||lf||1/TZPt’b’ Tl ;3)( BT—T)
afﬁ—r 1— 1—7
o0l Lol g5 ()

2
_|_Zpi|li’ Wz(”) ngiHI'
i—0

|(Su) (1)

il (T (27

T“B i
+ )_pilbi
ZP| | o— i)
+ZP;|611

+ Zpi |7Ll| llfz(r) ngi”]
i=0

That is

ﬂ
\/

ocﬁT

(aﬁ
Slc

ﬂ
\/
v

a— B

2
= |ty je B0+ X i Al wi () || |-
i—0
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Also for all u € B, B derivative can be written as:

D8 3w (1)

Ta—ﬁl_f 1— T
<o)l NG (a—ﬁlr— T)

2 To—pi—7 1—7 -
+o(r) ||lf||1/fi;f’f bl =) (a —Bi— f)

2 a—pi—t — T
" n 1—7
+o(r) ||lf||1/r;pi’ai| (o —fB) (OC—Bi_T)

2
+;§i|),,-|ll/i(r)ngiH1'

That is ’Dg}i‘ (Su) (t)‘
<o(r) Hlle/T (1—?;(;51[3:) <a_1[;1T— ‘L') h
2 a—pit a
_|_i§ﬁ,~ |bi] éafﬁi) (ai;— T)
o—pi—7T o
—l—i_i]ﬁi‘ai'l—’:’(a ilﬁi) (aigir—f) )

2
+ Y Pil il wi (r) ||k,
i=1

1

2
=o(r) Hlle/rAl —f—ZﬁiMi’ Vi (r) ngiHl .
=1

Similarly Béh derivative is given as follows:

OF (3u) (1)

Tocfﬁz*l' 1—1 1-7
<o(r) ”lf“l/r C(a—B) <oc— 2—T)

ST (1o T
A )

_ BTy -7 T
+<P(r)HlfH1/rp2 T(a—pB) (oc— 2—T>

+ P21 22| w2 () || g, ||, -
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That s o8 5w ()

T(X—ﬁz—T 1—7 -
<o) [|el], . <r(a_ﬁ2) (a—ﬁz —f)

5 T“—ﬁz—ﬂbz\< 1—-7 )14
P2 INa-—pBr) o—Pr—1

@Bt ( 1—71 )H
+ P2
MNa—PB) \o—p—1

+§2Mz|l//2(r)ngzH1

=0 ) lirll 22 P2 122l w2 (1) s -

Thus, we have [(Su)llg
<@ |llr]lyjc (Bo+A1+42)
+(Po +Bo + o) [ 20| Yo () || feo
+(p1+P1+P1) [l vi () ||, |,

+(p2+p2+P2) [A2| w2 (7) ngzHl :

Then, ||(3”)||B

2

<@ |liplly o (Bo+Ar+A0)+ Y (i +pi+pi) il wi (r) |
i=0

2 2
=) |lisl, . (m—) + 1 (ot Dt ) A i ()]
i=0 i=

Lol

), -

T (1—7\'" "
Ag =
Here, 0 (a—’c)

2 | To—Bi—7 | na—ﬁi—r 1—1 1-7
*EJ’"("’"rw—m*'“"r«x—ﬁi)) (5=)
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Na—pB) \a—PB—1
2 . | To—Bi—7 | na—ﬁi—f 1—1 I-7
+i;p‘”lf”1/f ('b”mﬂal‘l“(a—ﬁi)) (a—ﬁi—r) '

To—Bi—7 1—1 1-7
O i e I LI

To P -7 \'""
Mo 2= L (),

N 7o Pr no Pt -t \'°
+p2HlfH1/r |b2|[‘(a_ﬁ2)+|a2’l—‘(a—ﬁ2) (a—ﬁZ_T) ‘

Step 2: The given {Fu: u € B, }, {@g'+ (Su):ue Br}, {@gi (Su):uc€ Br} families
are equicontinuous. With the help of the continuity of ; (¢) and assumption (Hs), we

get
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— g)x—Bo—1
007 (@)~ an ()bl [t ()
0

(o —Po)
ochlfl
o (r) | () — o (4 ||b1|/—ﬁ)lf(s)ds
5)%" Br—
0 (1) ln (1) - n||b2|/T (5)ds
+ ¢ (r) |o () — @ (1) ||a1|/MZ (s)ds
By
n—s)%" B—1
0 (1) 02 (1) ~ 2 (1 Haz!/ (5)ds
+ e (12) — @0 (1) 20| wo (r) ||g, ||,
+l@r () — o1 () 1y (r) [|Zg, ||
@2 (12) — @3 (11)] | A2] W2 (7) ||l |,

—0 as rn—t.

Then it can be written as,
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|(Su) (12) = (Su) (11)]

< @0 [ = ) ds
1

1

+m(,0(7‘)/0t1 ((l‘z—s)a_l _ (l‘l —s)a—l)lf(s)ds

T
_Sa ﬁl

w; (1)) — ; (t b/ s)ds
Z\ 2 1) 1bi] (o —B) f()

_sa Bl

Z|w, B)— o (1) ||a,\/ e lf(s)ds

+Z|w’ h)—a;(t)| || v (r ‘181”1

—0 as h—1.

Therefore, the family{Fu : u € B,} is equi-continuous. In similar way, the families

{@ﬁl (Su):ue Br} and {@Bz (Fu):uc Br} are equicontinuous.

By the Arzela—Ascoli theorem, in C([0,T];R), the family sets {Fu:u € B,}, and
{@gﬁr (Su):uc B,} and {@gi (Su):uc Br} are relatively compact. Thus, § (B;)

is a relatively compact subset of Cg ([0,T];R). Then, § operator is compact.

Step 3: § has a fixed point in W = {u €Cp([0,T];R) : [|ullg < K} Lets get u =

A (Fu) for 0 < A < 1. Then
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lullg

= 12 Glls < o (Ilullg ) 1], < B0+ A1 +22)

+ (po + Po + Po) | Ao] wo <| u||ﬁ) e
+(p1+p1+p1) M| <| u||[3> [
+(p2+p2+p2) |/12|‘V2< u||/3> ngzHl'

Therefore, [|ul| B
= 12 GWlls < o (Ilullg ) 1], 2 B0+ A1 +22)

2
+ Y (pr+ i+ 5i) Pl wi (Nl ) [
i=0

In other words,
[Ju| g

<HuHB> 1] - (B0 + A1 + 40) +Z pz+p,+pz>ll|%(llu!lﬁ) [
i=0

<1.

As we know, there exists K > 0 such that K > [|u|g and also we have
K

2 2 _
0l (£8) + X (0320 i )|

> 1.

Then for each u € oW, we get u # A (§u). The operator §:W — Cg ([0,T]:R) is
known to be continuous and compact, from Theorem 4.2.2, in other words, § has fixed

pointin W. m
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Chapter 5

DE WITH p-LAPLACIAN OPERATOR

5.1 Introduction

The p-laplacian operator is used in mechanics, dynamical systems and related fields
of mathematical modeling. For some recent development on these topic, see [6], [15]],

[26], [30], [33], [371], [48], [56], [[72], [59]], [60], [63], [85] and references therein.

However, there are just few studies about FDEs with irregular boundary conditions and

p-laplacian operator. More detailly, one can see [38], [90]].

In [59], the following non-linear fractional impulsive differential equation is studied
which is given as follows, where 0 < o, B <1, 1 < x+ 8 <2, ¢, is p-Laplacian
operator, f € C([0,1] X R,R) ,up,u; ER, k=1,2,...m,by R, I, eC(R,R),J €[0,1],
0=ty <f] <...<ty<twy1 =1, =I\{t1,....tm}, Au(ty) = u(t;) —u(t;). The
given u (t,j ) and u (tk_ ) are right and left limits, respectively. The authors Liu, Lu,
Szanto are applied some standard fixed point theorems to find new results of existence

and uniqueness of the problem.

Liu and Zhi, in [90], studied the existence of positive solutions for non-local BVP of

fractional DEs with p-Laplacian operator which is given in the following:
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(¢ (DE.ut))) = f(t,u(t), D u(r)), t € (0,1)

u(0)=u (0) =0, u;(0) = ig(s)u(s)ds,

(@ (D u(0))) = A1 (9, (DG, u(&1)) .

¢p (DFu(1)) = 12 (¢p (DF,u(&2))) -
They used fixed point theorem in a cone to find the multiple solution of the BVP.

5.2 Fractional Differential Equation With p-Laplacian Operator

In this section, we focus on the existence of solutions of FDE with p-Laplacian opera-

tor, irregular and integral boundary conditions,

D, ¢, (DG u(t)) = f(t,u(t), DY, u(t)). (5.2.1)

1
W (0) + (=1)° i (1) +bu(1) = /g(s,u(s))ds, (5.22)
With 0
1
u(0)+ (=1 u(t) = [ h(s,u(s))ds.
0
Dy, u(0) =0,
Dg,u(1) = —ADg u(n).
Here D8‘+,Dg . are the Caputo fractional derivatives with 1 <a <2, 1 <f <2,

2 < a+ B <4 and A is non-negative parameter. The functions f, g, & are continuous.
By Green’s functions and the fixed point theorems, the existence and uniqueness results

of the solutions are stated and proved.

Lemma 5.2.1 Let f,g,h € C(0,1), and 1 < o0 < 2. The following fractional boundary

value problem:
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DY, ¢, (D§.u(t)) = £(2), (5.2.3)
for £ (0)+ (—1)0u (1) + bu(1) = [ g(s)ds,
0 (5.2.4)

u(0) + (=1 (1) = ({lh(s)ds

DE, u(0) =0, (5.2.5)
Then
DS, u(1) = ~ADE, u().
t 1
(Tu)(1) = / G(t,5)0, ( / H(t,7) f(*c)d’c) ds+ & + &
We get 0 0
C(_1\9 1 _1)\0
e — (( 1)/19 1 b)+(( /Z) )]
R (e )

(-1 +1+b)
Proof. By applying " integral to both sides of (5.2.3)), we get

D, ¢, (DS u(r)) = 1(1),

0p (DG u(t)) =18, (1) — by —bat.

Written as,
Lo Bl
0p (DG, u(t)) = / (IFE%) F(s)ds— b1 —bat, bi,by €R.
0
That is D&M(t) = ¢q <Ig+f(l) —b; — b2t>

(i —s)p! )
=0 —f(s)ds —by—byt |.
! (0/ T'(B)

We used the boundary conditions D, u(0) = 0, and D, u(1) = —ADg, u(n). Then we
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get
(])q (—bl) =0=—=b;=0.

I'(B)

n
_ (n—s)P~
=—A¢, (0/ Wf(s)dszn) :

1 o p
Then D§ u(1) = ¢, (/ (1=5) f(s)dsbz)
0

That means,

Since ¢, is one-to-one,
1o f (1) =by= =277 (1, f (M) —bam)
= APUE () + 27 ban.

n

F(1— 5B YR
/(1 ) 1f(s)ds—bz:—/lp1/(’7“[;) 1f(s)ds+7t”’1b2n.
0 0

I'(B)

Therefore



_ L AL g
br= gty oS D+ ey o/ ()
1
B 1 (1—s)B-1
= (1—{-11)17’1)0/ r(ﬁ) (S)ds
Al [ (n—s)B
+<1+;u~n>0/ ) O

Since ¢, (D§, u(r)) = P f(t) — by — bst, we have

1
We get D§ u(t) = ¢, (/H(t,s)f(s)ds) .
0

(1—7)%!

t 1
Also u(t) = 0/ " ( O/ H(t,s)f(s)ds) dt—ci — oot (5.2.6)

Its derivative can be written as follows:
1
/ / (l’ — T)chZ
W (1) = / 2 'S / H(t,5)f(s)ds | dt—c». (5.2.7)
F'a—1)
0 0

To find ¢; and c», the boundary conditions are used. By u (0) + (—1)% /(1) + bu(1) =

1
[ g(s)ds, we get
0
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I 1
-+ (= el/fl‘ (Pq(/HTsf()ds)dT czl
0 0

1 1
(1-7)*!
+0b L I (a) o (!H(T,s)f(s)ds) dt—c 02]

Itis 1 o |
1 [ ( / H(f,s)f(s)ds> &
0 0
; _ ~\a—1 1
+b/ (IF(TO)C) é, (/H(T,s)f(s)ds) dt
0 0
1
—bcy —/g(s)ds
0
1) 1
Then 2 — ) (Pq (/H(T,s)f(s)ds) dt
1

O\_ o\H

a—1
F(TO)C) ¢q(/H’L's ()ds)dr

1

b 1

- c1— (s)ds. (5.2.8)
(1+(—1)9+b) 1 (1+(—1)9+b) O/g

By u(0)+ (—1)°"1u(1) = flh(s)ds, we have
0
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! _ ~\a—1
— +(—1)9+1 [/ (1 F(To)c) Oy (/H(r,s)f(s)ds> dt —cy C2]
0

1
:/h(s)ds
0
Iti
tis <1+(_1)e+1> 1 (1- ot 1
)= —cj T —|—/ (o) oy /H(T,s)f(s)ds dt (5.2.9)
(=1) 0 b
I
—ﬁ / h(s)ds. (5.2.10)
0
If we combine ([5.2.8)) and (5.2.9)),
14+ (—1)0+! Lo e 1
= —Cl< — 61 )+/(1F(To)c) g /H(”L',s)f(s)ds dt
(=1) b 0
1
1
( 1)9“/ h(s)ds]
0
—1)° /1 (1-1)% 2¢ /H os)f
19+b>0 Lla—1) ™
! ya]
/ 1ch q)q(/Hrsf( )ds)dr
0
1
b 1
— c1 — s)ds| .
(14 (1% +p) 1 (14 (-1°+p) O/g() ]
That is
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Lo e 1
— <<1+(—[91)9+b> 1 O/(lr(fo)‘) ¥y (/H(r s)f (s )a’s) dt

Then (1 +(_1)9+1) ,

S <1+(—1)9+b)>
_ b—1—(-1)°—b 1(1_1-)05—1
_< T+ (=1)"+b )0/ I'(a) %(

(_1)9 11 7)%2
+<1+(—1)"+b)0 [(a- %(/H” )

Cl —

1
/H(Tas)f(s)dS) dt

0

_ —1——(—1)9 1(1—7:)0‘_1
_<1+(—1)9+b>0/ T'(a) 9 (/H(W)f(s)ds) dt

(-1)° Fa—ne2 [
" (1+(=1)%+») O/ NCER (O/H(TaS)f(S)ds) dt

Then, we get
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1+ (=D +b(-1)°
Cc1 = 5

_1_(_1)9 1 (1—g)a-! 1
[<1+(1)9+b>0/ Tla) % (O/H(T,S)f(s)ds) dt

(-1)° r—ne2 [
" (1+(=1°+p) 0/ Tla—1) (0/ H(@S)f(S)ds) dt

Lo e 1
c] = 0/(11“(0:1 3 ¥y (/H(r,s)f(s)ds) dt

_ \o—1 1
(1 F(To)c) 0y (/H(T,s)f(s)ds) dr
0

|
/N S =
(SN
_|_
~—~
|
o
S—
D
N————
o _

_ a2 1
(11“(02 7y % (/H(T,s)f(s)ds) dt

0

_ ol 1
(1 r(To)c) Oy (/H(’L’,s)f(s)ds) dt

0

1 1
_ b 1 [(1—7*? e
(1+(—1)9+b) [bo/ Fa—1) 9 (/H(T7 )f( )d)dr

0




That is

(—1)° F—ne2 [
02:<1+<—1>9+b)0/FaT_1 ‘Pq(O/Hfs <>ds>d»c
! |
+(1+<—1>9+b)0/ r(a) ‘Pq(O/ H(t,5)f(s)ds | dt

1
! (

!
/H(T,S)f(s)ds dt
0

It can be written as
((—1)9_1> 1(1—1‘)0‘ ) 1
. <1+(—1)9+b>0/ I(a—1) % O/H T,5)f(s)ds | dt
! ~ 1
+ [ U ( / H(r,s>f<s>ds) ar
0 0
1

(1) |
+O/h(s)ds+ <1+(—1)9+b> O/g(s)ds.

1

(t—1)%! o
We know u(t) = g" (a) [ (({H(r,s)f(s)ds> dt — c] — cpt, by inserting ¢; and

¢y into u(t), we get
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:/t(tl_“(rgg_l% (/H(@S)f(s)dS) dt
0
1 (E07 1) foge
+ 5<1+(1)9+b))0/ ~ ¢q(/H7:s )
+ <1+(bfl)gt) /l%q)q (/H(T,S)f(s)ds) dr
o
+ _<( 1)6+1 l) /lh

Herer € [0,1]. m
Lemma 5.2.2 The Green functions G(t,s) and H(t,s) are continuous on [0, 1] x [0, 1]
and H (t,s) satisies the following properties:

1. H(t,s) <0; fort,s€|0,1],

2. H(t,s) > H(s,s); fort,s €[0,1],
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3. The Green’s function H (t,s) satisfies

/ (14471
OS!'H<t’S)‘dS§ (+ar- ) LB+ 1)

Proof. The proofs of properties (1)-(2) are given in [72]. Thus we will prove property

3 for any #,s € [0, 1]. The Green’s function H(t,s) is not positive, then,

1
0< [ |H(t,s)|ds
/
_ (1 —s)! / (1-s5)P" 1
_0/ rg) St 1+/1P ) O/ r'(B)
e n
1+7LP n) 0/ (B
1
§/|H(s,s)\ds
0
1 1—s)[3 1 sAP~1 71 S)B l
1+m mn) J ' (B) 1+7u’ n) O/ I'(B)
(1+ar71) 1(1—s)ﬁ*1
£<1W_1,7)0/ r(g) JHu)ds
(1+ar71)

“(1+Ar~In)T(B+1)

5.3 Existence And Uniqueness Results With p—Laplacian

]
The Banach fixed point theorem is used to state and prove the existence and uniqueness

results of fractional BVP (5.2.1)-(5.2.2). We study on Cy space:

Cy([0,1],R) ={ueC([0,1],R), D§, ucC(0,1,R)},

is given in the form Jully = llle+[|DF -

Here ||.||, is the sup norm in C([0,1],R). We use
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A 2 (1—|-F(2—’}/))
2 = )
Q+pNT2-yI(a-y) T2-yI(e—y+1)
2
Ah] mv
1
T r2-y)
1
Agl _m7
A, 2

*T TRy Q2+b)

f:10,1] X R X R — R is jointly continuous.

By using the following conditions, we state and prove our first result.(A1) The function

(A2) There exists a function Iy € L+ ([0,1],R™) such that

|f(t ur,uz) — f(t,v1,v2)| < Lp(t) (lug —vi| +uz —v2l).

For all (t,uy,u3),(t,vi,v2) € [0,1] X R X R.

(A3) The functions g and h are jointly continuous and there exists lg,lj € L'([0,1],R")

|g(1,u) — g(t,v)| < Le(1) [u—v]

|h(t,u) — h(t,v)| <I(t) [u—v|.

For each (t,u),(t,v) € [0,1] X R.

Also we defined an operator T, which is 7Ty : C [0, 1] — C|[0, 1], it is given as follows:

1
Tox (1) = ¢, / H(t,5) £(s,x(s), DY, x(s))ds
0

(Pp_l:q)q,]%—l—é:lareused.
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Moreover, the following properties of p-laplacian operator ¢, (1) = |u|” -2 u,p>1and



If1<p<2,uv>0,|ul,|lv|>r>0,then

|0p(u) = 3 ()] < (p—1)r" 2 |u—v].

If p>2,|ul, |v| <R, then

|0p(u) = $p(v)| < (p— DRV u—v].

The two Green functions G(t,s) and H(z,s) are defined.

\

;

(I—T)ail <1+(_1)6+1 _b> (1 _,L.)Otfl
-1 (1_T)a—2
Gls) = +b(—1)9 I'(a—1)
(1407 =b) (1= gt
* b I'(a)
N (1-7)%?
b(—1)% T(a—1)
Also
(((t—5)P" t(1—s)P!
r'(p _(1+/'Ll’1ngl“(ﬁ)
(=)' =Pt aarim—gf!
H(t,s) = F(fgl_s)é1_+lpln)l—‘(ﬁ) (1+AP~In)C(B)
(1A Tm)E ()
RSO _;)Lp—l(n_s)ﬁfl
(I+Ar=Im)T(B) (1+AP~'n)L(B)

Jq40>T

Lemma 5.3.1 [63], Assume (A1)-(A3) hold and q > 2. There exists a constant Iz, > 0

such that

| Fou(t) = Tov(1)| < Lz lu—v].

For all u,v € B,, we have

1
L= (= DL 2 il [ |HGs.)lds < L
0

(L+ar71)

69

I+ A )T (B+1)



Theorem 5.3.2 Assume (A1)-(A3) holds. If

{19 (A1 +A2) + (Ag, +Ag)) L], + (Any +Any) lal } < 1. (5.3.1)

Then BVP - has a unique solution on [0,1].

Proof. Lets define the operator .7 : C,([0,1],R) — Cy ([0, 1],R) to transform problem

(5.2.1)-(5.2.2)) into the fixed point,
(Tu)(t)

1+(=1)%=b) L _ oot
A ) PO et oo
0

1
bt [ u(s)as+ 0/ g(s.u(s))ds. (53.2)

We take the y-th fractional derivative, and we get

DY (Tu)(t)

[ (=)
= 0/ F(a =y U (u(), DY u(s))ds

<(_1)6_ 1> =7 ! (1_T>afy—2
B <1+(—1)9+b) F(z_y)O/I“(a_,},_1)%(f(s7u(s),D2)/+M(S))ds

AT (1T
F(Z—?’)O/ C(a—7) (£ (s,u(s), D u(s))ds
=r ]
_F(Z—y)o/h(sau(S))ds
((—1)6—1> R
B (14 (-1)°+0) F(2—Y)O/g(s’”(s)>ds' (5.33)



We have 7 € [0,1]. Since f, g, h are continuous, the expression (5.3.2)) and (/5.3.3])
are well defined. The fixed point of the operator .7 is the solution of the BVP. The
Banach fixed point theorem is used to show existence and uniqueness of the solution,

then we showed .7 is contraction and get
(T u)(t) = (Tv) ()|

t 1
(t—1)2! 1 /(1—1’)0‘_2
< | —1 — d — [ =] — d

1 1
@-+pl) [ (1-7)%"! :
. 0/ Fa— o vl dr+ O/zh<s><ru<s>—v<s>|>ds

[(Fu) () = (Tv)(0)]

We have i ) 241
<5 (rarn *or@ * mrae) (534
+%th”1+|z_|”lgul}||Lt—v||7, (5.3.5)
:{zg( 24[p] , 1 )
"\ |pIT(a+1) " [bT(a)
il g el v 536
] b e Y
:{Zy( 1 (2+\b|+a)>
"\ (a+1) b
++£th\|1+iHl | }Hu—vH (5.3.7)
|| [p| 4N Y
< LA+ Ml A, + || || Ay } e =, - (5.3.8)

Similarly, for y” derivative,
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1
2
* (2+[b)T(2-7) o/lg(S) (lu(s) —v(s)|)ds.

Then we have

DY, (Tu)(t) DY, (T0)(1)]

S{l%( ! + 2 + )
Fla—y+1) Q+pHT2-yT(a-y) T2-yI(a—y+1)

_|_

L+ 2 1] }nu—vu
rz—p M+ Fa—p ey el v

B 2 (1+T(2—7))
N {l‘% <(2+IbI)F(2—Y>F(a—Y) +F(2—Y)F(a—7+1))

_|_

P 1] }||u—v||
rz—p M+ re e el v

< {I%A2+Ahz thHI +A82 ||lgH1} ”u_va-

By (5.3.8)-(5.3.9), we found

|Tu—Tvll,

A2) + (A, +Agy) [Tl + (A, +Any) 1l } lu =,

iR
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(5.3.9)



Thus .7 is a contraction mapping and by the Banach fixed point theorem, .7 has a

fixed point which is the solution of the BVP. m

5.4 Existence Results For FDE With p—Laplacian Operator

Theorem 5.4.1 Assume,

(A4) There exist increasing functions @ : [0,00) x [0,00) — [0,00) and y; : [0,00) —
[0,00), i = 1,2 and the functions l; € Lt ([0,1],R™) and 1y, 1, € L'([0,1],RT) such that
(6, u,v)] < Ly () @(Ju] + V),

lg(t,u)| < Ln(t) i (lul),

(1, )] < L () wa(ul)-

Forallt € 0,1] and u,v € R. (AS5) There exists a constant N > 0 such that

N
2 2 2
otz (£)+ (£ o ) el ol + £ 8 ) vall el
1= 1= 1=
(5.4.1)
Thus the boundary value problem (5.2.1)-(5.2.2)) has at least one solution on [0,1].

> 1.

Proof. Let B, = {u € Cy([0,1],R) : [[ul], < r} . Step 1: Let the operator .7 : Cy([0, 1],R) —

Cy([0,1],R) is given in ((5.3.2)) and (|5.3.3)) which defines B, into the bounded set. For

each u € B,, we have
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@(r) a—
< ml%o/(t—r) ldt

1
1 o(r) a—
+mml%0/(l—f) 2dT

1
(2+15]) @(r) .
B F(a)l%o/(l—r) ldt

1
2
+mwm!mmw

1
1
+ ml/lz(r) O/ ’lg(s)‘ds.

In a similar manner

‘D(’);(ﬂu)(t)‘

<

By the Holder Inequality, we get
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(T u) (1)

(2+21b]) o(r)
< INCE: 1)<P(r)l%+ Wl%

2 1
+m‘lfl(”) Ially +m‘lf2(r) ngH1

B (2+21b)) 1
= P+ ) @) O

2 1
+Wllf1(r) 1l +mllfz(r) 1%l

< Q(r)lg A1+ Ag, w1 (1) ||lgH1 +Ap w2 () ||l -

Also we have

D (T u)(1)|
&19—1— 20(r) I
“Lla—y+1) " 2+ p)T2-y)(a-y) 7
o(r) ;
Cla—y+1r2—y) %
1 2
+ T 7) vi () [l + CEAT ISR AGHAR
- 2 C2-y)+1)
=TT —yTa—y ' Te—pra—yrn| ?"%
1 2
+ =7 v (r) |[2n]l, + G pIT2=7 v (r) ngHl

< Q(r) g A+ A Wi () | Inlly + Ag, w2 (r) |||, -

Thus the following expression is found.

I(Tu)ll, < @(r)lz (A1 + M) + (Ag, +Agy) v (7) || L]

+ (Apy +Apy) w2 (r) | Tl

2
(r)lz (ZAz +wi(r) 12l (Z{Ahz)

ol lAg)

MN

1



Step 2: The families {(7u):u € B,} and {D}, (7u):u € B,} are equicontinuous.

For t; < t,, we have

(T u)(t2) = (Fu) (1))

<P (-0 s (o0 ar s [0 o) e

I'a) / /
b-nle(is [ a4
+ I(c0) 0/(1 —7)% 4z

1

2|t2 _tll (P(r) / oa—2
4oz PV 1—
| | ( 1) l% ( T) drt

0
2|t — 11| 1
214
20 [ (o) s
0
1

+20n—nlwa(r) [ lis)lds
0

—0

ast) — 1.

Similarly, we have
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(r2) - (1)

2
l% )= y—1 _ o—y—1 / _ a—y—1
_Foc ” / +(tr—1) Ydt+ [ (2 —17) dt
0 3
l Y _
+(P( i ‘/ ) rlar
I'(a
iz |t _tl /1 Y4127
NERCE ?'—1 )J
2‘51 [ y’
+ - r/l s)|ds
2’l21_y—t11_y’ ;
tET va(0) [ 1n(s)lds 0
0
asit, — 1.

By Arzela-Ascoli theorem, the families {(Zu) : u € B, } and {D2)/+(9u) :u €B,} are
equicontinuous and relatively compact in C([0, 1], R). Therefore .7 (B,) is a relatively

compact subset of Cy([0, 1],R) and the operator .7 is compact.

Step 3: Let u = & (Tu) and for 0 < & < 1. For all ¢ € [0,1], we define then operator
K= {u € Cy([0,1],R), [Jull, < JV} and then, we have

[ull

< 0l (A1 +82) + i () 10 (B, + )

+wa(llull,) |1, (Ag, + Ag,

2
< o(llull,)lz (;Az) + wa([[ull) 12l (;Ahi)
2
vl (£ )
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That means
[Jull,

2 2 2
o(ull,)ls (2A> vl (iglAh,) vl el (EIA )

<1.

For a positive ./” and [|ul|,, <./, the operator .7~ which s defined in A into C,([0,1],R),

is continuous and compact. Therefore .7 has a fixed pointin 7. m
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Chapter 6

CONCLUSION AND DISCUSSION

Firstly, to illustrate the results, the following examples are given.

6.1 Examples

Example 1. Consider the following BVP of FDE:s:

(

ol ut)
5/2 L[ Ju(@)] ‘ 0* ) 1 (32
D u(t) =+ +tan™' (D u(r)) |, 0<t<I,
0+ W1+ u ()] 1+‘©(1)42u(t)‘ (0+ >
' u(s)
u(0)+ :/ ,
O +u()= [ 75
12 /1 1/2 11/ efu(s) 1
Dy u(1g) +Dor u(l) = 2Jo (1+2es+§ as,
32 1 32, Lt u(s) 3
\ Dy u(15) +Dpr u(l) = 3 A <1+es+4 ds.
- (6.1.1)
ere,
1
(X:5/2,ﬁ1:1/2,ﬁ2:3/2,T:1,T:E, a0:b0:a1:b1:a2:b2:1,
1 1 1
77:1_07 )'0:17 2'1257 A'2:§7 lg():lglzlg2:17

The functions are defined as:

1 u % 1 1
Pt i= 7 (Tt ) 0=y,
u eu 1
t = t =
go(tu) (141)* gritu) =10 +5
3
g (t,u) := 1—|—et+4_1'

Since 1.77 <T'(3) < 1.78, 0.88 <T'(3) < 0.89, 1.32<T'(3) < 1.33and 3.32 < I'(3) <
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3.33, with simple calculations, we show that

Ag=234, A;=0.19, Ay =0.15,
po=0.5, p;=1.01, p=1.2,
Po=0, p1=0.76, p,=0.9,

po=p1=0, p» =051

Furthermore, we get the following

2
(Bo+A1442) [[1¢ ] o+ Lpil Al
i=0

2
lgi“l + Zﬁi|)“i| Hl i
i=1

1 + 02| ngzH1

1

Thus, all the assumptions of Theorem [.1.1] are satisfied. Hence, the problem (6.1.1))

has a unique solution on [0, 1].

Example 2. Consider the following BVP of FDE:s:

|u(t)|3 )sin@éﬁzu (t)‘

5/2 1
D u(t) = + +—, te€]0,1],
" 9(Ju () +3) 9<\sm@04 u@)|+1) 12
_ [ uls)
_/3(1+S)2ds,
, (6.1.2)
12 (1 1/2
D u(f) + 2/31+es 5
R ey
where f is given by
3 .
1
f(t,u,V,W) = ’u’ + ‘-Slnv’ +_

10(Jul? +3)  9([sinv[+1) 12
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uf? Isinv)| 1 11
9(|uf +3)  9(sinv[+1) 12 = 36’

and  |f(t,u,v,w)| < u,v,w € R.

Thus we get the following by simple calculations,

11 . 1 11
[f(tuyw)l < 2o =)@ (ul + [+ ), with 1r(r) = 2,0 (t) = -

Thus we get the following values,
1
0525/2, ﬁ]ZI/Z, B2:3/2, TZI, ’C:E, ao:b0:a1:b1:a2:b2:1,

1 1

1 1
T’:E7 )‘0:17 11257 Az:§7 lgozlgl:lg2:§

We get the following by shortenings,

Ag =234, A;=0.19, A, =0.15,
po=0.5, p1=1.01, p=1.2,
po=0, p;=0.76, p,=0.9,
po=p1 =0, po=05l1.

Also, we have the functions
!

u eu u
)= e ()= e (tu) = wi(u)=u, i=0,1,2.
g()( 7”) 3(14—1‘)27 gl( 7”) 3(1+€l)2, g2( 7”) 3(14—6027 ‘l’(”) u, 1

By the given condition,

3 .
@ (K) [|irl[ ) o (Ao +A1+22) + Y (pi+pit Pi) | wi (K) || L]
i=0
We found K>938.

Similarly, all the conditions of Theorem @ are satisfied. So, there exists at least one

solution of problem (6.1.2)) on [0, 1].
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6.2 Discussion

In this thesis, the existence solutions of FDEs of unknown functions were discussed.
At first, a € (2,3] ordered FDEs with three point fractional boundary and integral

conditions were obtained.

By fixed point theorems and , in second part of the thesis, the existence of solutions
of FDEs with p-laplacian operator, irregular and integral boundary conditions were
discussed. While stating and proving, the fixed point theorems and the Green functions

were used.
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