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ABSTRACT 

The Integral Inequalities can be used for the study of qualitative and quantitative 

properties of integrals and they perform an important role in the theory of differential 

equations. The study of the fractional q-integral inequalities is also of great 

importance. 

The purpose of this thesis is to study q-calculus analogs of some classical integral 

inequalities. In particular, some of the greatest significant integral inequalities of 

analysis are extended to Quantum calculus. We will work on the q-generalization of 

the Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-

Schwarz, Grüss, and Grüss-Chebysev integral inequalities. The analysis is based on 

the notions of q-derivative and q-integral on finite intervals presented recently by the 

author in [9]. 

Keywords: Quantum Integral Inequalities; Hölder’s inequality, Hermite-Hadamard’s 

inequality, Ostrowski's Inequality, Grüss-Chebysev integral inequality. 
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ÖZ 

İntegral eşitsizlikleri, integrallerin nitel ve nicel özelliklerinin incelenmesi için 

kullanılabilir ve diferansiyel denklemler teorisinde temel bir rol oynar. Kesirli q-

integral eşitsizliklerinin incelenmesi de büyük önem taşımaktadır. 

Bu çalışmanın amacı bazı klasik integral eşitsizliklerinin q-Kalkülüs analoglarını 

bulmaktır. Özellikle analizin en önemli integral eşitsizliklerinin bazılarının kuantum 

Kalkülüs’e genelleştirmelerini incelenecektir.  Bunlar, Hölder, Hermite-Hadamard, 

Trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss ve Grüss-Čebyšev 

integral eşitsizlikleri olacaktır. Yapılan çalışmalar ve analizler, son zamanlarda J. 

Tariboon ve S. Ntouyas v.s. araştırmacıların çalıştığı sınırlı aralıklarda q-türev ve q-

integral kavramlarına dayanmaktadır. 

Anahtar Kelimeler: Quantum İntegral eşitsizlikleri, Hölder eşitsizliği, Hermite-

Hadamard eşitsizliği, Ostrovski eşitsizliği, Grüss-Chebysev eşitsizliği, Konvekslik 
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 Chapter 1 

INTRODUCTION 

1.1 Historical Background  

Calculus is theory where there is a differential ℎ →  ℎ′ and integral ℎ →

 𝑅, ℎ operation in such a way that(𝑅 ℎ)′ =  ℎ. This does not necessarily mean that the 

notion of derivative or integral are the classical notions. 

A q-calculus is a version of calculus without limits. Derivatives are differences and 

anti-derivatives are sums. With a suitable generalization of integration of differential 

forms on curves and surfaces, the great notions of multi-variable calculus simplify 

same Stoke theorem. In fact, this expansion make a lot of proofs easier. There are many 

similarity in theory since ‘curves’ are on the same basis than one forms.        

Moreover, q-Calculus were found by Euler in the 18th century. Also In 1910, Jackson 

[2] presented the correct from the definite q-integral.  He was the first to grasp q-

calculus in a methodical approach. In the 2nd half of the 20th century, there was a 

substantial rise of movement in the part of the q-calculus due to requests of the q-

calculus in fields of Mathematics and Physics. 

 

In recent years, many attentions have been given to the study of the q-calculus, which 

has important and significant applications in quantum physics and in many branches 

of sciences.  
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Integral inequalities have been an important part in the theory of differential equations. 

The study of fractional q-integral inequalities is also have a great significance. Integral 

Inequalities have been worked broadly via number of scholars also in the classical 

analysis or in Quantum sense. See [2]-[7]  

1.1.1 Development of Integral Inequality in Quantum Calculus 

For a long time, studying, investigating and developing calculus had based on using 

limits. Later it had appeared in a calculus without limits called 𝑞 −calculus. The 

quantum calculus started with F.H. Jackson in the beginning of last century as 

emerging area of mathematics, although it had been discovered already and vigorously 

studied by Euler. 

Quantum calculus worked in from the beginning of this century represented as a link 

between mathematics and physics. Most of the scientific community, which benefit 

from quantum calculus, is physicists. 

 

The area witnessed a great expansion, because of using foundations of hypergeometric 

series to the different subjects of combinatorics, quantum theory, number theory, 

statistical mechanics that are continuously discovered. 

 

Integral inequalıtıes play an important role in the theory of differentıal equations and 

the study of q-integral inequalities is also of great importance. Integral inequalities 

have been studied by many authors in classical analysis as well as quantum analysis.  

 

However, we have used an important theorem which is called Lagrangian Mean Value 

Theorem (LMVT) is one of the fundamental theorem. 
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The goal of the thesis is to study q-calculus analogs of several classical integral 

inequalities. We study the q-generalizations of the Hölder, Hermite-Hadamard, 

Trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss, and Grüss-Chebysev 

integral inequalities. 

 

The thesis is arranged in the following order: In Chapter 2, we give some definitions 

and helpful consequences that will help us to demonstrate our important results. In 

Chapter 3, we build up our important consequences. 
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Chapter 2 

BASIC OF QUANTUM CALCULUS 

2.1 Prefaces and Supplementary Results 

For the reader, in this section we will provide an outline of the mathematical notions 

and definitions that will be used throughout the thesis. 

 

Let us start with q-analogue of differentiation. Consider 

lim
𝑠→𝑠0

ℎ(𝑠)−ℎ(𝑠0)

𝑠−𝑠0
=

𝑑ℎ

𝑑𝑠
 , 

which gives derivative of a function ℎ(𝑠) at 𝑠 = 𝑠0. 

 

If 𝑠 = 𝑞𝑠0 where 0 < 𝑞 < 1 is a stable number and without limits, then we go into the 

world of Quantum calculus. The q-derivative of 𝑠𝑚  is [𝑚]𝑠𝑚−1, and 

[𝑚] =
𝑞𝑚 − 1

𝑞 − 1
. 

As q-analogue of 𝑚 in the sense that 𝑚 is a limit of [𝑚] as 𝑞 tends to 1. 

Now, we are going to give the definition of q-derivative of a function ℎ. 

Definition 2.1.1 The q-derivative has defined as following: 

 𝐷𝑞ℎ(𝑠) =
ℎ(𝑞𝑠)−ℎ(𝑠)

(𝑞−1)𝑠
.                                                    (1) 

If 𝑞 tends to 1, then we get ordinary derivative. 

We are moving towards q-antiderivative of a function. 
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Definition 2.1.2 The function 𝐻(𝑠) is a q-antiderivative of ℎ(𝑠) if 𝐷𝑞𝐻(𝑠) = ℎ(𝑠).  

denoted via 

∫ ℎ(𝑠)𝑑𝑞𝑠.                                                                (2) 

Next definition is Jackson integral , 

Definition 2.1.3 

Jackson Integral of ℎ(𝑠)  is defined as  

∫ ℎ(𝑠)𝑑𝑞𝑠 = (1 − 𝑞) ∑ 𝑞𝑚ℎ(𝑞𝑚𝑠) ∞
𝑚=0                                      (3) 

From the above definition it is obvious that 

∫ ℎ(𝑠)𝐷𝑞𝑘(𝑠)𝑑𝑞𝑠 

= (1 − 𝑞)𝑠 ∑ 𝑞𝑚ℎ(𝑞𝑚𝑠)𝐷𝑞𝑘(𝑞𝑚𝑠)

∞

𝑚=0

 

                    = (1 − 𝑞)𝑠 ∑ 𝑞𝑚ℎ(𝑞𝑚𝑠)
𝑘(𝑞𝑚𝑠) − 𝑘(𝑞𝑚+1𝑠)

(1 − 𝑞)𝑞𝑚𝑠
.

∞

𝑚=1

 

 

Definite q-integral is defined as follows: 

Definition 2.1.4 [1] Assume that 0 < 𝑐 < 𝑑.  The definite q-integral is defined as  

∫ ℎ(𝑠)𝑑𝑞𝑠 = (1 − 𝑞)𝑑 ∑ 𝑞𝑚ℎ(𝑞𝑚𝑑)∞
𝑚=0

𝑑

0
  ,                                   (4) 

provided the sum converges absolutely. 

Overall, formula for definite integral is given as  
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∫ ℎ(𝑠)𝑘𝑑𝑠𝑠 = ∑ ℎ(𝑞𝑚

∞

𝑚=0

𝑑

0

𝑑)(𝑘(𝑞𝑚𝑑) − 𝑘(𝑞𝑚+1𝑑)). 

Note that above definition of definite q-integral in a generic interval [𝑐, 𝑑] gives 

∫ ℎ(𝑠)𝑑𝑞𝑠 = ∫ ℎ(𝑠)𝑑𝑞𝑠 − ∫ ℎ(𝑠)𝑑𝑞𝑠.
𝑐

0

𝑑

0

𝑑

𝑐

 

Definition 2.1.5 Assume that  𝐼 ∶= [𝑐, 𝑑]  R  be an interval and 0 < 𝑞 < 1,  

ℎ ∶ 𝐼 → R   is a continuous function. Then the q-derivative of a function ℎ: 𝐼 → R  at 

the point 𝑠 ∈ 𝐼 on [𝑐, 𝑑] is expressed as follows, 

 

and assume that  𝑠 ∈ 𝐼. Then  

𝐷𝑞𝑐 ℎ(𝑠) =  
ℎ(𝑠) − ℎ(𝑞𝑠 + (1 − 𝑞)𝑐)

(1 − 𝑞)(𝑠 − 𝑐)
, 𝑠 ≠ 𝑐, 

𝐷𝑞𝑐 ℎ(𝑐) = lim
𝑠→𝑐

𝐷𝑞𝑐 ℎ(𝑠),                                                         (2.1)  

and named as q-derivative on 𝐼 of function ℎ at 𝑠. 

We say that f is q-differentiable on 𝐼 provided that   𝐷𝑞𝑐 ℎ(𝑠) exists for all 𝑠 ∈ 𝐼. Recall 

that if 𝑐 = 0 in (2.1), then 𝐷𝑞𝑐 ℎ =  𝐷𝑞ℎ, where 𝐷𝑞 is known q-derivative of the 

function ℎ(𝑠) well-defined as  

𝐷𝑞ℎ(𝑠) =
ℎ(𝑠)−ℎ(𝑞𝑠)

(1−𝑞)𝑠
.                                                    (2.2)  

Moreover, we must define the advanced q-derivative of function ℎ on 𝐼. 
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Definition 2.1.6  

Suppose  ℎ ∶ 𝐼 → R  is a continuous function having the 2nd order q-derivative on 

interval I, which is indicated as 𝐷𝑞
2

𝑐 ℎ, provided 𝐷𝑞𝑐 ℎ  is q-differential on 𝐼 with  

𝐷𝑞
2

𝑐 ℎ = 𝐷𝑞𝑐 ( 𝐷𝑞𝑐 ℎ) ∶ 𝐼 → R . Likewise, it we can now state higher order q-

derivative on 𝐼, 𝐷𝑞
𝑚

𝑐 ∶  𝐼𝑘 → R . 

Convexity theory has played an important and fundamental role in the development of 

various areas of applied and pure sciences. This theory provides a unified, natural and 

general framework to study a wide ranges of classes of non-related problems.  

Due to its importance, the concepts of convex sets and convex functions have been 

extended in different ways. An important generalization of convex functions is known 

as pre-invex functions, introduced in early 1980’s  which inspired many researchers to 

deal with some complicated problems.  

We now recall the definition of a convex function. 

Definition 2.1.7 

The function ℎ on [𝑐, 𝑑] is called 

ℎ((1 − 𝑧)𝑐 + 𝑧𝑑) ≤ (1 − 𝑧)ℎ(𝑐) + 𝑧ℎ(𝑑), 

the function ℎ  on [𝑐, 𝑑] satisfying is called a convex function  

for all 𝑧 ∈ [0,1]. 

 

Let us now solve some examples. 

Example 2.1.1 Suppose that  𝑠 ∈ [𝑐, 𝑑] on 0 < 𝑞 < 1. Then, for 𝑠 ≠ 𝑐, we have 
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𝐷𝑞𝑐 𝑠2 =
𝑠2 − (𝑞𝑠 + (1 − 𝑞)𝑐)2

(1 − 𝑞)(𝑠 − 𝑐)
 

              = 
(1+𝑞)𝑠2−2𝑞𝑐𝑠−(1−𝑞)𝑐2

𝑠−𝑐
 

       = (1 + 𝑞)𝑠 + (1 − 𝑞)𝑐. 

For 𝑠 = 𝑐, we have lim
𝑠→𝑐

( 𝐷𝑞𝑐 𝑠2) = 2𝑐. 

 

Lemma 2.1.1 [9] Let α ∈ R , then we have 

𝐷𝑞𝑐 (𝑠 − 𝑐)𝛼 = (
1−𝑞𝛼

1−𝑞
)(𝑠 − 𝑐)𝛼−1. 

Let us now define q-integral on interval I. 

 

Definition 2.1.8 Assume that ℎ ∶ 𝐼 → R  is a continuous function, the q-Integral on 𝐼 

is expressed by 

∫ ℎ(𝑧)
𝑠

𝑐
𝑑𝑞𝑐 𝑧 = (1 − 𝑞)(𝑠 − 𝑐) ∑ 𝑞𝑚ℎ(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)∞

𝑚=0   ,                          (2.4) 

for 𝑠 ∈ 𝐼.  

Besides, if 𝑎 ∈ (𝑐, 𝑠) then the define q-integral on 𝐼 is defined via 

∫ ℎ(𝑧)
𝑠

𝑎

=  ∫ ℎ(𝑧)
𝑠

𝑐

𝑑𝑞𝑐 𝑡 − ∫ ℎ(𝑧)
𝑎

𝑐

𝑑𝑞𝑐 𝑧 

(1 − 𝑞)(𝑠 − 𝑐) ∑ 𝑞𝑚ℎ(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)

∞

𝑚=0

 

                             − (1 − 𝑞)(𝑎 − 𝑐) ∑ 𝑞𝑚ℎ∞
𝑚=0 (𝑞𝑚𝑎 + (1 − 𝑞𝑚)𝑐). 

Note that if  𝑐 = 0, (2.4) turns out to classical  q-Integral of   ℎ(𝑠)  which is defined as  
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∫ ℎ(𝑧)
𝑠

0
𝑑𝑞0 𝑧 = (1 − 𝑞)𝑠 ∑ 𝑞𝑚ℎ(𝑞𝑚𝑠)∞

𝑚=0 , 

 for 𝑠 ∈ [0, ∞). See [8]. 

 

Example 2.1.2 Assume that  ℎ(𝑠) = 𝑠  for  𝑠 ∈ 𝐼, then  

∫ ℎ(𝑧) 𝑑𝑞𝑐 𝑧 = ∫ 𝑧
𝑠

𝑐

𝑑𝑞𝑐 𝑧       
𝑠

𝑐

 

= (1 − 𝑞)(𝑠 − 𝑐) ∑ 𝑞𝑚(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)

∞

𝑚=0

 

              =
(𝑠−𝑐)(𝑠+𝑞𝑐)

1+𝑞
. 

Example 2.1.3 Assume that 𝑎 ∈ 𝐼, then  

∫ (𝑧 − 𝑎) 𝑑𝑞𝑐 𝑧 = ∫ (𝑧 − 𝑎) 𝑑𝑞𝑐 𝑧 − ∫ (𝑧 − 𝑎) 𝑑𝑞𝑐 𝑧
𝑎

𝑐

𝑑

𝑐

𝑑

𝑎

 

 

        = [
(𝑧 − 𝑐)(𝑧 + 𝑞𝑐)

1 + 𝑞
− 𝑎𝑧]

𝑐

𝑑

− [
(𝑧 − 𝑐)(𝑧 + 𝑞𝑐)

1 + 𝑞
− 𝑎𝑧]

𝑐

𝑎

 

                  = [
(𝑑 − 𝑐)(𝑑 + 𝑞𝑐)

1 + 𝑞
− 𝑎𝑑 + 𝑎𝑐] − [

(𝑎 − 𝑐)(𝑎 + 𝑞𝑐)

1 + 𝑞
− 𝑎2 + 𝑎𝑐] 

               =
𝑑2 + 𝑞𝑑𝑐 − 𝑐𝑑 − 𝑞𝑐2 − (1 + 𝑞)𝑎𝑑 + (1 + 𝑞)𝑎𝑐 

1 + 𝑞
               

−
𝑎2 − 𝑞𝑎𝑐 + 𝑐𝑎 + 𝑞𝑐2 + (1 + 𝑞)𝑎2 − (1 + 𝑞)𝑎𝑐

1 + 𝑞
 

                           =
𝑑2−(1+𝑞)𝑑𝑎+𝑞𝑎2

1+𝑞
−

𝑐(1−𝑞)(𝑑−𝑎)

1+𝑞
.                                                    (2.5) 

Notice that if  𝑞 tends to 1, then (2.5) reduced to be the classical integration which is  
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∫ (𝑧 − 𝑎)𝑑𝑧 =
(𝑑 − 𝑎)2

2

𝑑

𝑎

. 

 

Theorem 2.1.1 [9] 

 Assume that  ℎ: 𝐼 → R  is a continuous function. Then the following hold: 

1.  𝐷𝑞𝑐 ∫ ℎ(𝑧) 𝑑𝑞𝑐 𝑧 = ℎ(𝑠);
𝑠

𝑐
 

2. ∫ 𝐷𝑞𝑐 ℎ(𝑧) 𝑑𝑞𝑐 𝑧 = ℎ(𝑠) − ℎ(𝑎)
𝑠

𝑎
 for  𝑎 ∈ (𝑐, 𝑠). 

 

Theorem 2.1.2 [9] 

 Assume that  ℎ, 𝑘 ∶ 𝐼 → R  are continuous functions and c, 𝛼 ∈ R . For 𝑠 ∈ 𝐼, 

1.  ∫ [ℎ(𝑧) + 𝑘(𝑧)] 𝑑𝑞𝑐 𝑧 = ∫ ℎ(𝑧) 𝑑𝑞𝑐 𝑧
𝑠

𝑐
+ ∫ 𝑘(𝑧) 𝑑𝑞𝑐 𝑧;

𝑠

𝑐

𝑠

𝑐
 

2. ∫ (𝑐ℎ)(𝑧) 𝑑𝑞𝑐 𝑧 = 𝑐 ∫ ℎ(𝑧) 𝑑𝑞𝑐 𝑧;
𝑠

𝑐

𝑠

𝑐
 

3. ∫ ℎ(𝑧) 𝐷𝑞𝑐 𝑘(𝑧) 𝑑𝑞𝑐 𝑧 = (ℎ𝑘)|𝑎
𝑠 − ∫ 𝑘(𝑞𝑧 + (1 − 𝑞)𝑐) 𝐷𝑞𝑐 ℎ(𝑧) 𝑑𝑞𝑐 𝑧

𝑠

𝑎

𝑠

𝑎
  for 𝑎 ∈

(𝑐, 𝑠). 

 

For the other properties of q-derivative and q-integral on finite intervals, see [9]. 

Lemma 2.1.2  

For 𝑐 ∈ R  \{-1}, then we have 

∫ (𝑧 − 𝑐)𝛼 𝑑𝑞𝑐 𝑧 = (
1−𝑞

1−𝑞𝛼+1
) (𝑠 − 𝑐)𝛼+1𝑠

𝑐
.                       (2.6) 

Proof: Assume  ℎ(𝑠) = (𝑠 − 𝑐)𝛼+1, 𝑠 ∈ 𝐼 and 𝛼 ∈ R \{-1}, then, by Definition 2.1.5, 

we get 

𝐷𝑞𝑐 ℎ(𝑠) =
(𝑠 − 𝑐)𝛼+1 − (𝑞𝑠 + (1 − 𝑞)𝑐 − 𝑐)𝛼+1

(1 − 𝑞)(𝑠 − 𝑐)
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=
(𝑠 − 𝑐)𝛼+1 − 𝑞𝛼+1(𝑠 − 𝑐)𝛼+1

(1 − 𝑞)(𝑠 − 𝑐)
 

= (
1−𝑞𝛼+1

1−𝑞
) (𝑠 − 𝑐)𝛼.                                                       (2.7) 

Using q-integral on 𝐼 on (2.7), the result will be (2.6) as desired.    ∎ 

 

Example 2.1.4 Assume that  𝑠 ∈ [𝑐, 𝑑] and 0 < 𝑞 < 1. Applying q-integral by parts 

and using Lemmas 2.1.1 and 2.1.2, we obtain the following. 

∫ 𝑧(𝑧 − 𝑐) 𝑑𝑞𝑐 𝑧
𝑠

𝑐

=
1

1 + 𝑞
∫ 𝑧

𝑠

𝑐

𝐷𝑞𝑐 (𝑧 − 𝑐)2 𝑑𝑞𝑐 𝑧 

                    =
1

1 + 𝑞
[𝑧(𝑧 − 𝑐)2|𝑐

𝑠 − ∫ (𝑞𝑧 + (1 − 𝑞)𝑐 − 𝑐)2
𝑠

𝑐

𝑑𝑞𝑐 𝑧] 

=
1

1 + 𝑞
[𝑠(𝑠 − 𝑐)2 − 𝑞2 ∫ (𝑧 − 𝑐)2

𝑠

𝑐

𝑑𝑞𝑐 𝑧] 

=
1

1 + 𝑞
[𝑠(𝑠 − 𝑐)2 −

𝑞2(𝑠 − 𝑐)3

1 + 𝑞 + 𝑞2
]                  

=
(𝑠 − 𝑎)2

1 + 𝑞
[
𝑠(1 + 𝑞) + 𝑞2𝑐

1 + 𝑞 + 𝑞2
].                          

Lagrangian Mean Value Theorem (LMVT) 

Assume that 𝑓: [𝑐, 𝑑] → ℝ is a continuous function and differentiable on the open 

interval(𝑐, 𝑑). Then there exists some 𝑎 ∈ (𝑐, 𝑑) such that  

𝑓′(𝑎) =
𝑓(𝑑)−𝑓(𝑐)

𝑑−𝑐
. 
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Chapter3 

QUANTUM INTEGRAL INEQUALITIES DEFINED ON FINITE 

INTERVALS 

We give generalization of some integral inequalities in quantum sense which are 

further studied in quantum calculus.  

3.1 The q-Hölder Integral Inequality  

Let us consider the q-Hölder inequality on interval 𝐼 = [𝑐, 𝑑]. 

Theorem 3.1.1 

 Assume that 𝑠 ∈ 𝐼, 0 < 𝑞 < 1, 𝑝, r > 1 such that 
1

𝑝
+

1

r
= 1. Then we get  

∫ |ℎ(𝑧)||𝑘(𝑧)|
𝑠

𝑐
𝑑𝑞𝑐 𝑧 ≤ (∫ |ℎ(𝑧)|𝑝 𝑑𝑞𝑧𝑐

𝑠

𝑐
)

1

𝑝(∫ |𝑘(𝑧)|r 𝑑𝑞𝑐 𝑧
𝑠

𝑐
)

1

r .                   (3.1)      

Proof: Here we use Definition 2.1.8 besides the discrete Hölder inequality to prove 

the q-Hölder Integral inequality on 𝐼 = [𝑐, 𝑑]. 

∫ |ℎ(𝑧)||𝑘(𝑧)|
𝑠

𝑐

𝑑𝑞𝑐 𝑧 

= (1 − 𝑞)(𝑠 − 𝑐) ∑ 𝑞𝑚

∞

𝑚=0

ℎ|(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)||𝑘(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)| 

        = (1 − 𝑞)(𝑠 − 𝑐) ∑ (|ℎ(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)|(𝑞𝑚)
1
𝑝

∞

𝑚=0

)

× (|𝑘(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)|(𝑞𝑚)
1
r) 
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         ≤ ((1 − 𝑞)(𝑠 − 𝑐) ∑ |ℎ(𝑞𝑚𝑠 + (1 − 𝑞𝑚)𝑐)|𝑝𝑞𝑚

∞

𝑚=0

)

1
p

 

       × ((1 − 𝑞)(𝑠 − 𝑐) ∑ |𝑘(𝑞𝑚𝑠

∞

𝑚=0

+ (1 − 𝑞𝑚)𝑐)|r𝑞𝑚)

1
r

    

= (∫ |ℎ(𝑧)|𝑝
𝑠

𝑐

𝑑𝑞𝑐 𝑧)
1
p(∫ |𝑘(𝑧)|r

𝑠

𝑐

𝑑𝑞𝑐 𝑡𝑧)
1
𝑟  . 

Hence the theorem about q-Hölder inequality is obtained. ∎ 

Remark 3.1.1 If 𝑐 = 0, then the inequality (3.1) reduce to the classical q-Hölder 

integral in [[2], p.604]. 

3.2  The q-Hermite-Hadamard Integral Inequality 

Now, we will give the important integral inequality defined on [𝑐, 𝑑], the q-Hermite-

Hadamard integral inequality. 

Theorem 3.1.2 

Let the function ℎ: 𝐼 → R  be a convex continuous function on 𝐼 and 0 < 𝑞 < 1. 

Then  

ℎ (
𝑐+𝑑

2
) ≤

1

𝑑−𝑐
∫ ℎ(𝑧)

𝑑

𝑐
𝑑𝑞𝑐 𝑧 ≤

𝑞ℎ(𝑐)+ℎ(𝑑)

1+𝑞
                                     (3.2) 

holds. 

Proof: Using Definition 2.1.8, and using the convex condition in quantum sense with 

respect to 𝑧 on [𝑐, 𝑑], we obtain    
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ℎ((1 − 𝑧)𝑐 + 𝑧𝑑) ≤ (1 − 𝑧)ℎ(𝑐) + 𝑧ℎ(𝑑)   ,                              (3.3)  

for all 𝑧 ∈ [0, 1]. 

∫ ℎ
1

0

((1 − 𝑧)𝑐 + 𝑧𝑑) 𝑑𝑞0 𝑧 ≤ ℎ(𝑐) ∫ (1 − 𝑧)
1

0

𝑑𝑞0 𝑧 + ℎ(𝑑) ∫ 𝑧
1

0

𝑑𝑞0 𝑧.          (3.4) 

It is clear from Example 2.1.2, that 

∫ 𝑧
1

0
𝑑𝑞0 𝑧 =

1

1+𝑞
  and  ∫ (1 − 𝑧)

1

0
𝑑𝑞0 𝑧 =

𝑞

1+𝑞
. 

Definition of q-Integration on 𝐼 leads 

∫ ℎ(
1

0

(1 − 𝑧)𝑐 + 𝑧𝑑) 𝑑𝑞0 𝑧 = (1 − 𝑞) ∑ 𝑞𝑚ℎ((1 − 𝑞𝑚)𝑐 + 𝑞𝑚𝑑)

∞

𝑚=0

 

                                         =
(1 − 𝑞)(𝑑 − 𝑐)

(𝑑 − 𝑐)
∑ 𝑞𝑚ℎ((1 − 𝑞𝑚)𝑐 + 𝑞𝑚𝑑)

∞

𝑚=0

 

=
1

𝑑 − 𝑐
∫ ℎ(𝑧)

𝑑

𝑐

𝑑𝑞𝑐 𝑧, 

which gives the second part of (3.2) by using (3.4). 

To prove the first part of (3.2), we use the convexity property of ℎ as follows: 

1

2
[ℎ((1 − 𝑧)𝑐 + 𝑧𝑑) + ℎ(𝑧𝑐 + (1 − 𝑧)𝑑)] 

≥ ℎ (
(1 − 𝑧)𝑐 + 𝑧𝑑 + 𝑧𝑐 + (1 − 𝑧)𝑑

2
) 

                                          = ℎ (
𝑐 + 𝑑

2
). 
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Next, we take q-integral of the inequality above with respect to 𝑧 on [0,1] and change 

the variables to obtain 

ℎ (
𝑐 + 𝑑

2
) ≤

1

2
[∫ ℎ((1 − 𝑧)𝑐 + 𝑧𝑑)

1

0

𝑑𝑞0 𝑧 + ∫ ℎ(𝑧𝑐 + (1 − 𝑧)𝑑)
1

0

𝑑𝑞0 𝑧] 

                     = 
1

𝑑−𝑐
∫ ℎ(𝑧)

𝑑

𝑐
𝑑𝑞𝑐 𝑧 . 

We get the result. 

Remark 3.1.2 If 𝑞 tends to 1 then inequality (3.2) becomes the Hermite-Hadmard 

integral inequality 

ℎ (
𝑐 + 𝑑

2
) ≤

1

𝑑 − 𝑐
∫ ℎ(𝑧)𝑑𝑧 ≤

ℎ(𝑐) + ℎ(𝑑)

2
.

𝑑

𝑐

 

See [4, 10]. 

3.3  The q-Trapezoid Integral Inequality 

The following inequality is the q-Trapezoid inequality on the interval 𝐼 = [𝑐, 𝑑].  

Here for the typical supremum, we use the notation || ∙ || on [𝑐, 𝑑]. 

Theorem 3.1.3 

 Assume that  ℎ: 𝐼 → R  is a q-differentiable function with 𝐷𝑞𝑐 ℎ continuous on [𝑐, 𝑑] 

and 0 < 𝑞 < 1. Then, 

|∫ ℎ(𝑞𝑧 + (1 − 𝑞)𝑐)
𝑑

𝑐
𝑑𝑞𝑐 𝑧 − (𝑑 − 𝑐) (

ℎ(𝑑)+ℎ(𝑐)

2
)| ≤

(𝑑−𝑐)2

2(1+𝑞)
‖ 𝐷𝑞𝑐 ℎ‖.                  (3.5)       

Proof : Applying q-integral by parts on interval 𝐼 leads to the following, 
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∫ (𝑧 −
𝑐 + 𝑑

2
)

𝑑

𝑐

𝐷𝑞𝑐 ℎ(𝑧) 𝑑𝑞𝑐 𝑧 

= (𝑑 − 𝑐) (
ℎ(𝑑) + ℎ(𝑐)

2
) − ∫ ℎ(𝑞𝑧 + (1 − 𝑞)𝑐)

𝑑

𝑐

𝑑𝑞𝑐 𝑧 .                   (3.6) 

Then by using the modulus's properties for (3.6), we get 

|∫ ℎ(𝑞𝑧 + (1 − 𝑞)𝑐)
𝑑

𝑐

𝑑𝑞𝑐 𝑧 − (𝑑 − 𝑐) (
ℎ(𝑑) + ℎ(𝑐)

2
)| 

≤ ∫ |𝑧 −
𝑐 + 𝑑

2
| | 𝐷𝑞𝑐 ℎ(𝑧)| 𝑑𝑞𝑐 𝑧

𝑑

𝑐

 

≤ ‖ 𝐷𝑞𝑐 𝑧‖ ∫ |𝑧 −
𝑐+𝑑

2
| 𝑑𝑞𝑐 𝑧

𝑑

𝑐
.                                        (3.7) 

Applying Example 2.1.2 and Example 2.1.3, give us 

∫ |𝑧 −
𝑐 + 𝑑

2
|

𝑑

𝑐

𝑑𝑞𝑐 𝑧 = ∫ (
𝑐 + 𝑑

2
− 𝑧) 𝑑𝑞𝑐 𝑧 + ∫ (𝑧 −

𝑐 + 𝑑

2
) 𝑑𝑞𝑐 𝑧

𝑑

𝑐+𝑑
2

𝑐+𝑑
2

𝑐

 

                          = (
𝑐 + 𝑑

2
) (

𝑑 − 𝑐

2
) − (

𝑑 − 𝑐

2
) (

(1 + 2𝑞)𝑐 + 𝑑

1 + 𝑞
)

+
𝑑2 − 𝑑(1 + 𝑞) (

(𝑐 + 𝑑)
2 ) + 𝑞((𝑐 + 𝑑)/2)2

1 + 𝑞
− 𝑐 (

1 − 𝑞

2
) (

𝑑 − 𝑐

1 + 𝑞
) 

=
(𝑑−𝑐)2

2(1+𝑞)
.                                                     (3.8) 

Joining (3.7) with (3.8), we get (3.5) as desired. ∎ 
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Remark 3.1.3 If 𝑞 tends to 1 then inequality (3.5) reduces to the well-known 

Trapezoid inequality given as  

|∫ ℎ(𝑧)𝑑𝑧
𝑑

𝑐

− (𝑑 − 𝑐) (
ℎ(𝑑) + ℎ(𝑐)

2
)| ≤

(𝑑 − 𝑐)2

4
‖ℎ′‖. 

See references therein [4, 10]. 

In the next thoerem, we consider the q-Trapezoid inequality with second order q-

derivative on [𝑐, 𝑑]. 

Theorem 3.1.4  

Assume that ℎ ∶  𝐼 → R  is a twice q-differentiable function where  𝐷𝑞
2

𝑐 ℎ continuous 

on [𝑐, 𝑑] and 0 < 𝑞 < 1. We have  

|∫ ℎ(𝑞2𝑧 + (1 − 𝑞2)𝑐) 𝑑𝑞𝑐 𝑧 −
(𝑑 − 𝑐)

1 + 𝑞
(𝑞ℎ(𝑞𝑑 + (1 − 𝑞)𝑐 + ℎ(𝑐))

𝑑

𝑐

| 

≤
𝑞2(𝑑−𝑐)3

(1+𝑞)2(1+𝑞+𝑞2)
‖ 𝐷𝑞

2
𝑐 ℎ‖.                                         (3.9) 

Proof 

Appling q-Integration by parts on the interval 𝐼 twice and having in mind Example 

2.1.1, we get 

∫ (𝑧 − 𝑐)(𝑑 − 𝑧) 𝐷𝑞
2

𝑐 ℎ(𝑧)
𝑑

𝑐

𝑑𝑞𝑐 𝑧 

= − ∫ (𝑞𝑐 + 𝑑 − (1 + 𝑞)𝑧)
𝑑

𝑐

𝐷𝑞𝑐 ℎ(𝑞𝑧 + (1 − 𝑞)𝑐) 𝑑𝑞𝑐 𝑧  

                         = [−(𝑞𝑐 + 𝑑 − (1 + 𝑞)𝑧)ℎ(𝑞𝑧 + (1 − 𝑞)𝑐)]𝑐
𝑑 
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+ ∫ ℎ(𝑞2𝑧 + (1 − 𝑞2)𝑐) 𝐷𝑞(𝑞𝑐 + 𝑑 − (1 + 𝑞)𝑧)𝑐  𝑑𝑞𝑧𝑐

𝑑

𝑐

 

                    = 𝑞(𝑑 − 𝑐)ℎ(𝑞𝑑 + (1 − 𝑞)𝑐 + (𝑑 − 𝑐)ℎ(𝑎) 

−(1 + 𝑞) ∫ ℎ(𝑞2𝑧(1 − 𝑞2)𝑐)
𝑑

𝑐

𝑑𝑞𝑧 𝑐  . 

Hence,  

|∫ ℎ(𝑞2 + (1 − 𝑞2)𝑐) 𝑑𝑞𝑧 −
(𝑑 − 𝑐)

1 + 𝑞
(𝑞ℎ(𝑞𝑑 + (1 − 𝑞)𝑐) + ℎ(𝑐))𝑐

𝑑

𝑐

|  

≤
1

1 + 𝑞
∫ (𝑧 − 𝑐)(𝑑 − 𝑧)| 𝐷𝑞

2ℎ(𝑧)𝑐 |
𝑑

𝑐

𝑑𝑞𝑧𝑐  

≤
‖ 𝐷𝑞

2ℎ𝑐 ‖

1+𝑞
∫ (𝑧 − 𝑐)(𝑑 − 𝑧)

𝑑

𝑐
𝑑𝑞𝑧𝑐  .                                      (3.10)  

Using Lemma 2.1.2 and Example 2.1.4, 

∫ (𝑧 − 𝑐)(𝑑 − 𝑧) 𝑑𝑎𝑧𝑐 = 𝑑 ∫ (𝑧 − 𝑐)
𝑑

𝑐

𝑑𝑞𝑧𝑐 − ∫ 𝑧(𝑧 − 𝑐)
𝑑

𝑐

𝑑𝑞𝑧𝑐  
𝑑

𝑐

 

                                               = 𝑑 [
(𝑧 − 𝑐)(𝑧 + 𝑞𝑐)

1 + 𝑞
]

𝑐

𝑑

−
1

1 + 𝑞
∫ 𝑧

𝑑

𝑐

𝐷𝑞(𝑧 − 𝑐)2 𝑑𝑞𝑐𝑐 𝑧 

                                              = 𝑑 [
(𝑑 − 𝑐)(𝑑 + 𝑞𝑐)

1 + 𝑞
− 𝑐𝑑 + 𝑐2] 

−
1

1 + 𝑞
[𝑧(𝑧 − 𝑐)2|𝑐

𝑑 − ∫ (𝑞𝑧 + (1 − 𝑞)𝑐 − 𝑐)2 𝑑𝑞𝑧𝑐

𝑑

𝑐

 

                          = 𝑑 [
(𝑑 − 𝑐)(𝑑 + 𝑞𝑐) − (1 + 𝑞)𝑐𝑑 + (1 + 𝑞)𝑐2

1 + 𝑞
] 
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−
1

1 + 𝑞
[𝑑(𝑑 − 𝑐)2 − 𝑞2 ∫ (𝑧 − 𝑐)2 𝑑𝑞𝑧𝑐

𝑑

𝑐

] 

                           = 𝑑 [
𝑑2 + 𝑞𝑐𝑑 − 𝑐𝑑 − 𝑞𝑐2 − (1 + 𝑞)𝑐𝑑 + (1 + 𝑞)𝑐2

1 + 𝑞
] 

−
1

1 + 𝑞
[𝑑(𝑑 − 𝑐)2 −

𝑞2(𝑑 − 𝑐)3

1 + 𝑞 + 𝑞2
] 

= 𝑑 [
𝑑2 + (𝑞 − 1 − 1 − 𝑞)𝑐𝑑 + (−𝑞 + 1 + 𝑞)𝑐2

1 + 𝑞
] −

(𝑑 − 𝑐)2

1 + 𝑞
[
𝑑(1 + 𝑞) + 𝑞2𝑐

1 + 𝑞 + 𝑞2
] 

      =
𝑑(𝑑 − 𝑐)2

1 + 𝑞
−

(𝑑 − 𝑐)2

1 + 𝑞
[
𝑑(1 + 𝑞) + 𝑞2𝑐

1 + 𝑞 + 𝑞2
] 

            =
(𝑑 − 𝑐)2[𝑑(1 + 𝑞 + 𝑞2) − 𝑑(1 + 𝑞) + 𝑞2𝑐]

(1 + 𝑞)(1 + 𝑞 + 𝑞2)
 

       =
(𝑑 − 𝑐)2(𝑑 + 𝑑𝑞 + 𝑑𝑞2 − 𝑑 − 𝑑𝑞 − 𝑞2𝑐)

(1 + 𝑞)(1 + 𝑞 + 𝑞2)
 

 =
𝑞2(𝑑−𝑐)3

(1+𝑞)(1+𝑞+𝑞2)
.                                                             (3.11)  

Joining (3.10) with (3.11), we realize that the inequality (3.9) is true. ∎ 

Remark 3.1.4 

If  𝑞 tends to 1, then Inequality (3.9) reduced to the Trapezoid inequality expressed 

in terms of second derivative that is, 

|∫ ℎ(𝑧)𝑑𝑧
𝑑

𝑐

−
(𝑑 − 𝑐)

2
(ℎ(𝑑) + ℎ(𝑐))| ≤

(𝑑 − 𝑐)3

12
‖ℎ"‖. 

See [4, 10]. 
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3.4 The q-Ostrowski Integral Inequality 

We consider q-Ostrowski integral inequality on the interval 𝐼, as following, 

 𝑫𝒒𝒉𝒄 and  differentiable function-qa  is Rℎ ∶ 𝐼 → Assume that 51..3Theorem 

continuous on [𝑐, 𝑑], then 

|ℎ(𝑠) −
1

𝑑 − 𝑐
∫ ℎ(𝑧)

𝑑

𝑐

𝑑𝑞𝑧𝑐 | 

≤ ‖ 𝐷𝑞ℎ𝑐 ‖(𝑑 − 𝑐) [
2𝑞

1+𝑞
(

𝑠−
(3𝑞−1)𝑐+(1+𝑞)𝑑

4𝑞

𝑑−𝑐
)

2

+
(−𝑞2+6𝑞−1)

8𝑞(1+𝑞)
].                (3.12)  

Proof: Using the Lagrangian Mean Value Theorem, for 𝒔, 𝒛 ∈ 𝑰, it follows that  

|ℎ(𝑠) −
1

𝑑 − 𝑐
∫ ℎ(𝑧)

𝑑

𝑐

𝑑𝑞𝑧𝑐 | = |
1

𝑑 − 𝑐
∫ (ℎ(𝑠) − ℎ(𝑧))

𝑑

𝑐

𝑑𝑞𝑧𝑐 | 

       ≤
1

𝑑 − 𝑐
∫ |ℎ(𝑠) − ℎ(𝑧)|

𝑑

𝑐

𝑑𝑞𝑧𝑐  

 ≤
‖ 𝐷𝑞ℎ𝑐 ‖

𝑑 − 𝑐
∫ |𝑠 − 𝑧|

𝑑

𝑐

𝑑𝑞𝑧𝑐  

=
‖ 𝐷𝑞ℎ𝑐 ‖

𝑑−𝑐
[∫ (𝑠 − 𝑧) 𝑑𝑞𝑧𝑐 + ∫ (𝑧 − 𝑠)

𝑑

𝑠
𝑑𝑞𝑧𝑐

𝑠

𝑐
].              (3.13) 

Recalling Example 2.1.2 and Example 2.1.3 for 𝑠, 𝑧 ∈ 𝐼, we get 

∫ (𝑠 − 𝑧) 𝑑𝑞𝑧𝑐 + ∫ (𝑧 − 𝑠)
𝑑

𝑠

𝑑𝑞𝑧𝑐

𝑠

𝑐

 

= [
𝑞𝑠2 − 2𝑞𝑐𝑠 + 𝑞𝑐2

1 + 𝑞
] + [

𝑑2 − (1 + 𝑞)𝑑𝑠 + 𝑞𝑠2

1 + 𝑞
−

𝑐(1 − 𝑞)(𝑑 − 𝑠)

1 + 𝑞
] 

=
2𝑞

1 + 𝑞
[𝑠2 − (

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

2𝑞
) 𝑠] +

𝑞𝑐2 + 𝑑2 − (1 − 𝑞)𝑐𝑑

1 + 𝑞
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=
2𝑞

1 + 𝑞
(𝑠 −

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

4𝑞
)

2

+
𝑞𝑐2 + 𝑑2 − (1 − 𝑞)𝑐𝑑

1 + 𝑞

−
(3𝑞 − 1)2𝑐2 + 2𝑐𝑑(3𝑞 − 1)(1 + 𝑞) + (1 + 𝑞)2𝑑2

8𝑞(1 + 𝑞)
 

=
2𝑞

1 + 𝑞
(𝑠 −

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

4𝑞
)

2

 

+
8𝑞2𝑐2 + 8𝑞𝑑2 − 8𝑞(1 − 𝑞)𝑐𝑑 − (3𝑞 − 1)2𝑐2 − 2𝑐𝑑(3𝑞 − 1)(1 + 𝑞) − (1 + 𝑞)2𝑑2

8𝑞(1 + 𝑞)
 

=
2𝑞

1 + 𝑞
(𝑠 −

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

4𝑞
)

2

 

+
(8𝑞2 − (3𝑞 − 1)2)𝑐2 − (4𝑞(1 − 𝑞) + (3𝑞 − 1))(1 + 𝑞)2𝑐𝑑 + (8𝑞 − (1 − 𝑞)2)𝑑2

8𝑞(1 + 𝑞)
 

=
2𝑞

1 + 𝑞
(𝑠 −

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

4𝑞
)

2

 

+
(8𝑞2 − 9𝑞2 + 6𝑞 − 1)𝑐2 − (4𝑞 − 4𝑞2 + 3𝑞 + 3𝑞2 − 1 − 𝑞)2𝑐𝑑 + (8𝑞 − 1 − 2𝑞 − 𝑞2)𝑑2

8𝑞(1 + 𝑞)
 

=
2𝑞

1 + 𝑞
(𝑠 −

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

4𝑞
)

2

 

+
(−𝑞2 + 6𝑞 − 1)𝑐2 − (−𝑞2 + 6𝑞 − 1)2𝑐𝑑 + (−𝑞2 + 6𝑞 − 1)𝑑2

8𝑞(1 + 𝑞)
 

=
2𝑞

1 + 𝑞
(𝑠 −

(3𝑞 − 1)𝑐 + (1 + 𝑞)𝑑

4𝑞
)

2

+
(−𝑞2 + 6𝑞 − 1)

(1 + 𝑞)8𝑞
(𝑑 − 𝑐)2.              (3.14) 

We reach to the inequality (3.12). ∎ 
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Remark 3.1.5 If  𝑞 leads to 1, then inequality (3.12) reduced to the classical Ostrowski 

integral inequality such that 

|ℎ(𝑠) −
1

𝑑 − 𝑐
∫ ℎ(𝑧)

𝑑

𝑐

𝑑𝑧| ≤ [
1

4
+ (

𝑠 −
𝑐 + 𝑑

2
𝑑 − 𝑐

)

2

] (𝑑 − 𝑐)‖ℎ′′‖. 

See [4, 10]. 

3.5 The q-Korkine Identity 

   We are going to prove q-Korkine identity on interval 𝐼. 

Lemma 3.1.1 

Assume that ℎ, 𝑘 ∶ 𝐼 → R  are two continuous functions on 𝐼 and 0 < 𝑞 < 1, then 

1

2
∫ ∫ (ℎ(𝑠) − ℎ(𝑤))

𝒅

𝒄

𝒅

𝒄

(𝑘(𝑠) − 𝑘(𝑤)) 𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐  

= (𝑑 − 𝑐) ∫ ℎ(𝑠)𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 − (∫ ℎ(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 ) (∫ 𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 ).     (3.15)  

Proof  

Using Definition 2.1.8, we get 

                                ∫ ∫ (ℎ(𝑠)
𝑑

𝑐

− ℎ(𝑤)
𝑑

𝑐

) (𝑘(𝑠) − 𝑘(𝑤)) 𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐  

= ∫ ∫ [ℎ(𝑠)𝑘(𝑠) − ℎ(𝑠)𝑘(𝑤) − ℎ(𝑤)𝑘(𝑠) + ℎ(𝑤)𝑘(𝑤)]
𝑑

𝑐

𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑𝑞𝑤𝑐  

= (1 − 𝑞)(𝑑 − 𝑐) ∑ 𝑞𝑚ℎ(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐)

∞

𝑚=0

𝑘(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐)(𝑑 − 𝑐) 
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−(1 − 𝑞)2(𝑑 − 𝑐)2 ( ∑ 𝑞𝑚ℎ(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐)

∞

𝑚=0

) ( ∑ 𝑞𝑚𝑘(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐)

∞

𝑚=0

) 

−(1 − 𝑞)2(𝑑 − 𝑐)2 ( ∑ 𝑞𝑚𝑘(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐)

∞

𝑚=0

) ( ∑ 𝑞𝑚ℎ(𝑞𝑚𝑑

∞

𝑚=0

+ (1 − 𝑞𝑚)𝑐)) 

+(1 − 𝑞)(𝑑 − 𝑐) ∑ 𝑞𝑚ℎ(𝑞𝑚𝑑

∞

𝑚=0

+ (1 − 𝑞𝑚)𝑐)𝑘(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐)(𝑑 − 𝑐) 

= 2(𝑑 − 𝑐) ∫ ℎ(𝑠)𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 − 2 (∫ ℎ(𝑠) 𝑑𝑞𝑠𝑐

𝑑

𝑐

) (∫ 𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 ) , 

from which one can obtain the inequality (3.15).  ∎ 

3.6 The q-Cauchy-Bunyakovsky-Schwarz Integral Inequality 

Now, let us prove the q-Cauchy-Bunyakovsky-Schwartz integral inequality for 

double integrals on  [𝑐, 𝑑]. 

Lemma 3.1.2:  Assume that ℎ, 𝑘 ∶ 𝐼 → R   are two continuous functions on 𝐼 and  

0 < 𝑞 < 1. Then  

|∫ ∫ ℎ(𝑠, 𝑤)𝑘(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐

𝑑

𝑐

| 

≤ [∫ ∫ ℎ2(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑𝑞𝑤𝑐 ]

1
2

[∫ ∫ 𝑘2(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑𝑞𝑤𝑐 ]

1
2

.                (3.16)  

Proof: Using Definition 2.1.8 and doubling q-integral on 𝐼 as 

∫ ∫ ℎ(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐

𝑑

𝑐

 

      = ∫ ((1 − 𝑞)(𝑑 − 𝑐) ∑ 𝑞𝑚ℎ(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐, 𝑤)

∞

𝑚=0

)
𝑑

𝑐

𝑑𝑞𝑤𝑐  
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= (1 − 𝑞)2(𝑑 − 𝑐)2 ∑ ∑ 𝑞𝑚+𝑖ℎ(𝑞𝑚𝑑

∞

𝑖=0

+ (1 − 𝑞𝑚)𝑐, 𝑞𝑖𝑏

∞

𝑚=0

+ (1 − 𝑞𝑖)𝑐), 

using the discrete Cauchy-Schwarz inequality, we get  

(∫ ∫ ℎ(𝑠, 𝑤)𝑔(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑𝑞𝑤𝑐 )

2

 

= ((1 − 𝑞)2(𝑑 − 𝑐)2 ∑ ∑ 𝑞𝑚+𝑖ℎ(𝑞𝑚𝑑

∞

𝑖=0

+ (1 − 𝑞𝑚)𝑐, 𝑞𝑖𝑑 + (1 −

∞

𝑚=0

𝑞𝑖)𝑐)

× 𝑘(𝑞𝑚𝑑(1 − 𝑞𝑚)𝑐, 𝑞𝑖𝑑 + (1 − 𝑞𝑖)𝑐))

2

 

≤ ((1 − 𝑞)2(𝑑 − 𝑐)2 ∑ ∑ 𝑞𝑚+𝑖ℎ2(𝑞𝑚𝑑

∞

𝑖=0

+ (1 − 𝑞𝑚)𝑐, 𝑞𝑖𝑑

∞

𝑚=0

+ (1 − 𝑞𝑖)𝑐) ) 

 × ((1 − 𝑞)2(𝑑 − 𝑐)2 ∑ ∑ 𝑞𝑚+𝑖𝑘2(𝑞𝑚𝑑 + (1 − 𝑞𝑚)𝑐, 𝑞𝑖𝑑 + (1 − 𝑞𝑖)𝑐)

∞

𝑖=0

∞

𝑚=0

) 

      = (∫ ∫ ℎ2(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐

𝑑

𝑐

)

1
2

(∫ ∫ 𝑘2(𝑠, 𝑤)
𝑑

𝑐

𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐

𝑑

𝑐

)

1
2

. 

Here we get (3.16) 

Remark 3.1.6 If  𝑞 tends to 1, then Lemmas 3.1.1 and 3.1.2 are reduced to the usual 

Korkine identity and Cauchy-Bunyakovsky-Schwarz Integral Inequality for dual 

integrals, respectively. See [4] and [10]. 

Now we express q-Chebysev function  𝑇(ℎ, 𝑘) on interval 𝐼 by 
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𝑇(ℎ, 𝑘) =
1

𝑑 − 𝑐
∫ ℎ(𝑠)𝑘(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐  

− (
1

𝑑 − 𝑐
∫ ℎ(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐 ) (
1

𝑑 − 𝑐
∫ 𝑘(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐 ).                                (3.17) 

3.7 The q-Grüss Integral Inequality 

Using Lemmas 3.1.1 and 3.1.2 joined (3.17), we get q-Grüss integral inequality on 

interval [𝑐, 𝑑].  The theorem is almost same with the classical Grüss integral inequality 

as in [4.10]. Thus, we omit it. 

|
1

𝑑 − 𝑐
∫ ℎ(𝑠)𝑘(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐 − (
1

𝑑 − 𝑐
∫ ℎ(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐 ) (
1

𝑑 − 𝑐
∫ 𝑘(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐 )| 

≤
1

4
(𝑀𝑓 − 𝑚𝑓)(𝑀𝑔 − 𝑚𝑔), 

Where   𝑚𝑓 ≤ 𝑓(𝑠) ≤ 𝑀𝑓 and 𝑚𝑔 ≤ 𝑔(𝑠) ≤ 𝑀𝑔 

Theorem 3.1.6  

such that [𝑐, 𝑑]on  tionsunccontinuous f are two Rℎ, 𝑘 ∶ 𝐼 → ssume that A 

. R  𝑠 ∈ [𝑐, 𝑑], ∅, 𝜑, 𝛾, 𝑟for all   ∅ ≤ ℎ(𝑠) ≤ 𝜑, 𝛾 ≤ 𝑘(𝑠) ≤ 𝑟  

Then, the following inequality holds: 

|
1

𝑑 − 𝑐
∫ ℎ(𝑠)𝑔(𝑠)

𝑑

𝑐

𝑑𝑞𝑠 − (
1

𝑑 − 𝑐
∫ ℎ(𝑠) 𝑑𝑞𝑠𝑐

𝑑

𝑐

) (
1

𝑑 − 𝑐
∫ 𝑘(𝑠) 𝑑𝑞𝑠𝑐

𝑑

𝑐

)𝑐 | 

≤
1

4
(𝜑 − ∅)( r -  𝛾)                                                       (3.19)  
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3.8 The q-Grüss-Chebysev Integral Inequality 

It is now the time to prove our next and last inequality the q-Grüss-Chebysev integral 

inequality on interval [𝑐, 𝑑]. 

Theorem 3.1.7 Assume that  ℎ, 𝑘 ∶ 𝐼 → R  be 𝐿1, 𝐿2-Lipschitzian continuous functions 

on [𝑐, 𝑑] such that 

|ℎ(𝑠) − 𝑘(𝑤)| ≤ 𝐿1|𝑠 − 𝑤|, |𝑘(𝑠) − 𝑘(𝑤)| ≤ 𝐿2|𝑠 − 𝑤|,         (3.20)  

for all 𝑠, 𝑤 ∈ [𝑐, 𝑑].  Then we get the inequality 

|
1

𝑑 − 𝑐
∫ ℎ(𝑠)𝑘(𝑠) 𝑑𝑞𝑠𝑐 − (∫ ℎ(𝑠)

𝑑

𝑐

𝑑𝑞𝑠𝑐 ) (∫ 𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 )
𝑑

𝑐

| 

≤
𝑞𝐿1𝐿2

(1+𝑞+𝑞2)(1+𝑞)2
(𝑑 − 𝑐)2.                                                (3.21)  

Proof: Remember that q-Korkine identity on the interval 𝐼 was 

(𝑑 − 𝑐) ∫ ℎ(𝑠)𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 − (∫ ℎ(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 ) (∫ 𝑘(𝑠)
𝑑

𝑐

𝑑𝑞𝑠𝑐 ) 

=
1

2
∫ ∫ (ℎ(𝑠) − ℎ(𝑤))(𝑘(𝑠) − 𝑘(𝑤)) 𝑑𝑞𝑠𝑐

𝑑

𝑐
𝑑𝑞𝑤𝑐

𝑑

𝑐
.                  (3.22) 

Using (3.20), for all 𝑠, 𝑤 ∈ [𝑐, 𝑑], we have 

|(ℎ(𝑠) − ℎ(𝑤)(𝑘(𝑠) − 𝑘(𝑤)))| ≤ 𝐿1𝐿2(𝑠 − 𝑤)2                    (3.23)  

The double q-integral on (3.23) on 𝑰 × 𝑰  gives 

∫ ∫ |(ℎ(𝑠) − ℎ(𝑤))(𝑘(𝑠) − 𝑘(𝑤))|
𝑑

𝑐

𝑑

𝑐

𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐  
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≤ 𝐿1𝐿2 ∫ ∫ (𝑠 − 𝑤)2
𝑑

𝑐

𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑𝑞𝑤𝑐  

= 𝐿1𝐿2 ∫ ∫ (𝑠2 − 2𝑠𝑤 + 𝑤2) 𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑𝑞𝑤𝑐

𝑑

𝑐

 

        = 𝐿1𝐿2 [2(𝑑 − 𝑐) ∫ 𝑠2 𝑑𝑞𝑠𝑐
𝑑

𝑐
− 2 (∫ 𝑠

𝑑

𝑐
𝑑𝑞𝑠𝑐 )

2

]  .               (3.24) 

Indeed, 

                               ∫ 𝑠2 𝑑𝑞𝑠𝑐

𝑑

𝑐

= ∫ (𝑠 − 𝑐 + 𝑐)2
𝑑

𝑐

𝑑𝑞𝑠𝑐  

                        = ∫ (𝑠 − 𝑐)2 𝑑𝑞𝑠𝑐 + 2𝑐 ∫ (𝑠 − 𝑐) 𝑑𝑞𝑠𝑐

𝑑

𝑐

+ 𝑐2 ∫ 𝑑𝑞𝑠𝑐

𝑑

𝑐

𝑑

𝑐

 

                         =
(𝑑 − 𝑐)3

1 + 𝑞 + 𝑞2
+ 2𝑐

(𝑑 − 𝑐)2

1 + 𝑞
+ 𝑐2(𝑑 − 𝑐) 

=
(𝑑−𝑐)((1+𝑞)𝑑2+2𝑞2𝑐𝑑+𝑞(1+𝑞2)𝑐2)

(1+𝑞)(1+𝑞+𝑞2)
.                  (3.25) 

Recall that if 𝑞 tends to 1, then (3.25) turns out to be the integral 

∫ 𝑠2𝑑𝑠
𝑑

𝑐

=
𝑑3 − 𝑐3

3
 . 

Then, it is obvious that,  

(𝑑 − 𝑐) ∫ 𝑠2 𝑑𝑞𝑠𝑐 − (∫ 𝑠
𝑑

𝑐
𝑑𝑞𝑠𝑐 )

2

=
𝑞(𝑑−𝑐)4

(1+𝑞+𝑞2)(1+𝑞)2

𝑑

𝑐
 .                      (3.26) 

Therefore, from (3.24) and (3.26), we get 
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∫ ∫ |(ℎ(𝑠) − ℎ(𝑤))(𝑘(𝑠) − 𝑘(𝑤))| 𝑑𝑞𝑠𝑐 𝑑𝑞𝑤𝑐

𝑑

𝑐

𝑑

𝑐

≤
2𝑞(𝑑 − 𝑐)4

(1 + 𝑞 + 𝑞2)(1 + 𝑞)2
𝐿1𝐿2 . 

By use of  (3.22), we reach to (3.21).  ∎ 

Remark 3.1.8 Assume that  𝑞 tends to 1, then inequality (3.21) reduced to classical 

Grüss-Chebysev integral inequality given as : 

|
1

𝑑 − 𝑐
∫ ℎ(𝑠)𝑘(𝑠) 𝑑𝑠

𝑑

𝑐

− (
1

𝑑 − 𝑐
∫ ℎ(𝑠)𝑑𝑠

𝑑

𝑐

) (
1

𝑑 − 𝑐
∫ 𝑘(𝑠)𝑑𝑠

𝑑

𝑐

)| 

≤
𝐿1𝐿2

12
(𝑑 − 𝑐)2. 

For more details, See [4,10]. 
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Chapter 4 

CONCLUSION 

We discussed in this thesis some integral inequalities from perspective of quantum 

calculus. We studied q-analogues of some integral inequalities such as Hölder, 

Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-Schwarz, Grüss, 

and Grüss-Chebysev. In our thesis we had focused on proving some theorems related 

to q-integral inequalities. Also some examples are given to illustrate the results. 
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