
 
 

Stability of Spherically Symmetric Timelike 

Thin-shells in General Relativity 

 

 

 

Sarbaz Nabi Hamad Amen 

 

 

 

Submitted to the 

Institute of Graduate Studies and Research 

in partial fulfillment of the requirement for the degree of 

 

 

 

Master of Science 

in 

Physics 

 

 

 

 

 

Eastern Mediterranean University 

January 2017 

Gazimağusa, North Cyprus 



 
 

Approval of the Institute of Graduate Studies and Research 

 

                Prof. Dr. Mustafa Tümer 

          Director 

 

I certify that this thesis satisfies the requirements as a thesis for the degree of Master 

of Science in Physics. 

 

                        Assoc. Prof. Dr. İzzet Sakallı  

                                    Chair, Department of Physics 

 

We certify that we have read this thesis and that in our opinion it is fully adequate in 

scope and quality as a thesis for the degree of Master of Science in Physics. 

 

                                                                   Assoc. Prof. Dr. S. Habib Mazharimousavi 

                                                                                            Supervisor 

 

                                                                                         Examining Committee 

1. Prof. Dr. Mustafa Halilsoy 

2. Prof. Dr. Omar Mustafa 

3. Assoc. Prof. Dr. S. Habib Mazharimousavi  

4. Assoc. Prof. Dr. İzzet Sakallı 

5. Asst. Prof. Dr. Mustafa Riza



iii 
 

ABSTRACT 

In this thesis we study spherically symmetric timelike thin-shells in 3+1-dimensional 

bulk spacetime. We first introduce the cut and paste formalism which is used to make 

thin-shells in general relativity and then we investigate the stability of such thin-

shells. Basically, in 3+1-dimensional bulk spacetime a timelike thin-shell is a 2+1- 

dimensional hyperplane whose normal 4-vector is a spacelike vector at any point on 

the hyperplane. A thin-shell connects two different parts of the bulk, therefore it has 

to satisfy some conditions which are called the Israel-junction conditions. In 

accordance with these conditions, the first fundamental form of the thin-shell must be 

continuous while its second fundamental form is not and it requires energy-

momentum tensor on the thin-shell. 

Keywords: General relativity; Thin-shell; Timelike hypersurface; Stability; Linear 

perturbation; 
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ÖZ 

Bu tezde 3+1 boyutlu geniş uzay zamanda küresel simetrik zaman-tipli ince 

kabukları incelemekteyiz. Önce ince kabukların genel görelikteki kesip-yapıştırma 

özelliklerini gösterip bu ince kabukların kararlılıklarını inceliyoruz. Temel olarak, 

3+1 geniş uzay zamanda bir zaman-tipli ince kabuk, 2+1 boyutlu bir hiperdüzlemdir 

ve bunun 4-vektörü hiperdüzlemde her hangi bir noktadaki uzay-tipli vektördür. Ince 

bir kabuk, uzay-zaman iki farklı bölümünü birbirine bağlar ve bundan dolayı İsrael-

sınır koşulları olarak bilinen bazı koşulları sağlaması gerekir. Bu koşullara göre, ince 

kabuğun ilk temel formu devamlı olmalıyken ikinci temel formu değildir ve ince 

kabuk üzerinde enerji-momentum tensörüne ihtiyaç duyar. 

Anahtar Kelimeler: Genel görelilik, İnce kabuk, Zaman-tipli hiperdüzlem, 

Kararlılık, Doğrusal düzensizlik. 
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Chapter 1 

INRODUCTION 

Time-like thin-shell in spherically symmetric static spacetime is one of the most 

interesting cosmological object which can be constructed in general relativity. Such 

model of cosmological objects have been used to analyze some astrophysical 

phenomenon such as gravitational collapse and supernovae. The seminal work of 

Israel in 1966 [11, 12] provided a concrete formalism for constructing the time-like 

shells, in general, by gluing two different manifolds at the location of the thin-shell. 

As it was shown in [11], although the metric tensor of the shell which is induced by 

the bulk spacetime presented in both sides of the shell must be continuous the 

extrinsic curvature across the shell is not continuous and therefore matter has to be 

presented on the shell. This formalism has been employed to study shells in general 

relativity by many authors, for instance, a good review paper has been worked out by 

Kijowski et al in Ref. [13]. In 1990 an exact solution for a static shell which 

surrounds a black hole was found by Frauendiener et al [7] and its stability was also 

studied in Refs. [2] and [21]. In the formalism introduced by Israel there are some 

conditions which are called Israel junction conditions. These conditions provide a 

systematic method of finding the energy momentum tensor presented on the shell. In 

[19] a computer program was prepared to apply the Junction conditions on the thin 

shells in general relativity using computer algebra. Models of stars and circumstellar 

shells in general relativity was studied in [22]. In [10, 16] the stability of spherically 

symmetric thin-shells was studied while the gravitational collapse of thin shells was 
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considered in [3] and [4]. Thin-shells in Gauss-Bonnet theory of gravity has been 

studied in [9] while the rotating thin-shells has been introduced in Ref. [8]. Stability 

of charged thin shells was studied by Eiroa and Simeone in [6] while its collapse in 

isotropic coordinates was investigated in [1]. In [17] charge screening by thin-shells 

in a 2+1–dimensional regular black hole has been studied while the thermodynamics, 

entropy, and stability of thin shells in 2+1 flat spacetimes have been given in [14] 

and [15]. Recently in [20] the stability of thin-shell interfaces inside compact stars 

has been studied by Pereira et al; which is very interesting as they consider a 

compact star with the core and the crust with different energy momentum tensor and 

consequently with different metric tensor. Screening of the Reissner-Nordström 

charge black hole by a thin-shell of dust matter has also been introduced recently in 

[18]. Finally one of the last work published in this context is about thin shells joining 

local cosmic string geometries [5].  

Our aim in this thesis is to establish a self-contained, clear and complete formalism 

on the construction of timelike thin-shells in spherically symmetric bulk. The details 

of the calculation which are not usually mentioned or given in the papers are 

discussed here and the results are given all in closed analytical and generic form 

which can be used for any further study in future. In addition we study the stability 

analysis of such a thin shell and again in a closed and generic form the results are 

presented. Finally we apply our formalism for two specific examples including a 

thin-  shell connecting two different spacetimes consisting of cloud of strings and a 

vacuum connected to a Schwarzschild spacetime. 
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Chapter 2 

SPHERICALLY SYMMETRIC TIMELIKE THIN- 

SHELLS: THE FORMALISM 

In 3+1–dimensional spherically symmetric bulk spacetime a 2+1–dimensional thin- 

shell divides the spacetime into two parts which we shall call them inside the shell 

and outside the shell. The line elements of the spacetime in different sides must be 

different otherwise the thin-shell becomes a trivial invisible object. For our future 

convenient we label the spacetime inside the shell as 1 and outside the shell as 2. 

Hence the line element of each side may be written as 

                        𝑑𝑠𝑎
2 = −𝑓𝑎 𝑟𝑎 𝑑𝑡𝑎

2 +
𝑑𝑟𝑎

2

𝑓𝑎  𝑟𝑎  
+ 𝑟𝑎

2 𝑑θ𝑎
2 + 𝑠𝑖𝑛2θ𝑎  𝑑φ𝑎

2 ,                  (2.1) 

 in which 𝑎 =  1,2 for inside and outside respectively. Let’s add that in general the 

coordinates i.e., 𝑡𝑎 , 𝑟𝑎 , θ𝑎  and φ𝑎   need not be the same. In general a thin-shell is a 

constraint relation on the coordinates of the bulk spacetime but in our study the thin-

shell is defined by 

                                                   𝐹 ∶= 𝑟𝑎 − 𝑅 𝜏 = 0,                                          (2.2) 

in which 𝜏 is the proper time measured by an observer on the shell such that on both 

sides we define  

                                       −𝑓𝑎 𝑟𝑎 𝑑𝑡𝑎
2 +

𝑑𝑟𝑎
2

𝑓𝑎  𝑟𝑎  
= −𝑑𝜏2,                                           (2.3) 

or equivalently  
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                                −𝑓𝑎 𝑅  
𝑑𝑡𝑎

𝑑𝜏
 

2

+
1

𝑓𝑎  𝑅 
 

𝑑𝑅

𝑑𝜏
 

2

= −1.                                        (2.4) 

Considering (2.3) we find the induced metric on the shell for each side given by 

                                 𝑑𝑠𝑎(𝑡𝑠)
2 = −𝑑𝜏2 + 𝑅2 𝜏  𝑑θ𝑎

2 + 𝑠𝑖𝑛2θ𝑎  𝑑φ𝑎
2 .                     (2.5) 

As one of the Israel junction condition, 𝑑𝑠𝑎(𝑡𝑠)
2

 from one side to other side of the thin-

shell must be continuous. Hence, the coordinates on the shell i.e., 𝜏 , θ𝑎  and φ
𝑎
have 

to be identical on both sides which we shall remove the sub a. This results in a 

unique induced metric on the shell which is applicable in both sides which is given 

by 

                                   𝑑𝑠(𝑡𝑠)
2 = −𝑑𝜏2 + 𝑅2 𝜏   𝑑θ2 + 𝑠𝑖𝑛2θ 𝑑φ2 .                      (2.6)     

Before we move on let us note that although the proper time in different sides of the 

shell is the same, the coordinate time 𝑡𝑎 are different and they are found from (2.4) 

i.e., 

                                                            𝑡 𝑎
2 =

𝑓𝑎  𝑅 +𝑅2 

𝑓𝑎
2 𝑅 

,                                               (2.7) 

in which a dot stands for the derivative with respect to the proper time 𝜏. Let’s also 

add that 𝑡1 is measured by an observer inside the shell while 𝑡2 is measured by an 

observer outside the shell and being different is due to the different line element they 

use and is very acceptable. 

For future use we set our coordinate systems of the bulk i.e., 

𝑑𝑠𝑎
2 = 𝑔𝜇𝜈

 𝑎 
𝑑𝑥 𝑎 𝜇𝑑𝑥 𝑎 𝜈   and the shell i.e., 𝑑𝑠(𝑡𝑠)

2 =  𝑕𝑖𝑗 𝑑𝜉𝑖𝑑𝜉𝑗
 as follow: for the 
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bulk spacetime 𝑥 𝑎 𝜇 =  𝑡𝑎 , 𝑟𝑎 , θ𝑎 , 𝜑𝑎   and 𝜉𝑖 =  𝜏, 𝜃, 𝜑 for the thin shell. The second 

fundamental form or extrinsic curvature tensor of the shell in each side can be found 

as 

                                  𝐾𝑖𝑗
 𝑎 

= −𝑛γ
 𝑎 

  
𝜕2𝑥  𝑎 

𝜕𝜉 𝑖  𝜕𝜉 𝑗
+ Γ𝛼𝛽

 𝑎 
 
𝜕𝑥  𝑎 𝛼

𝜕𝜉 𝑖
 
𝜕𝑥  𝑎 𝛽

𝜕𝜉 𝑗
 ,                       (2.8) 

in which 𝑛𝛾
 𝑎 

 is the four normal spacelike vector on each side of the thin-shell poi-     

nting outward and given by 

                                                    𝑛𝛾
 𝑎 

=  
1

 Δ 𝑎 

𝜕𝐹

𝜕𝑥  𝑎 𝛾
  ,                                            (2.9) 

where  

                                                    ∆ 𝑎 = 𝑔 𝑎 𝜇𝜈 𝜕𝐹

𝜕𝑥  𝑎 𝜇

𝜕𝐹

𝜕𝑥  𝑎 𝜈  .                                 (2.10) 

We note that as 𝑛𝛾
 𝑎 

is spacelike it satisfies  

                                                            𝑛𝛾
 𝑎 

𝑛 𝑎 𝛾 = 1,                                           (2.11) 

and the thin-shell defined by F in (2.2) where 𝑛𝛾
 𝑎 

 is its four normal, is a timelike 

hypersurface. In order to calculate the second fundamental forms of the thin-shell on 

each side we have to first obtain the four normal 𝑛𝛾
 𝑎 

. This can be done by using the 

definition of the thin-shell in (2.2). Hence, we find 

                                                𝑛𝑡
 𝑎 

=
1

 ∆ 𝑎 

𝜕 𝑟𝑎−𝑅 𝜏  

𝜕𝑡𝑎
,                                           (2.12) 

                                                𝑛𝑟
 𝑎 

=
1

 ∆ 𝑎 

𝜕 𝑟𝑎−𝑅 𝜏  

𝜕𝑟𝑎
,                                           (2.13) 
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                                                𝑛θ
 𝑎 

=
1

 ∆ 𝑎 

𝜕 𝑟𝑎−𝑅 𝜏  

𝜕θ𝑎
,                                           (2.14)  

and  

                                                  𝑛φ
 𝑎 

=
1

 ∆ 𝑎 

𝜕 𝑟𝑎−𝑅 𝜏  

𝜕φ𝑎
.                                         (2.15) 

We first recall that in the bulk the coordinates are independent i.e., 
𝜕𝑥  𝑎 𝛼

𝜕𝑥  𝑎 𝛽 = 𝛿𝛽
𝛼 . 

Therefore. the Eq.s (2.12)-(2.15) yield 

                                                         𝑛𝑡
 𝑎 

= −
1

 ∆ 𝑎 

𝜕𝑅 𝜏 

𝜕𝑡𝑎
 ,                                     (2.16) 

              𝑛𝑟
 𝑎 

=
1

 ∆ 𝑎 
 ,                                                (2.17)      

                                                             𝑛θ
 𝑎 

= 0                                                    (2.18) 

and  

                                                           𝑛φ
 𝑎 

= 0.                                                     (2.19) 

Also using the chain rule one finds  

                                                         
𝜕

𝜕𝑡𝑎
=

1
𝜕𝑡𝑎
𝜕𝜏

𝜕

𝜕𝜏
  ,                                                (2.20) 

where  

                                                   
𝜕𝑡𝑎

𝜕𝜏
=  𝑡 𝑎 =

   𝑓𝑎  𝑅 +𝑅 2

𝑓𝑎  𝑅 
.                                       (2.21) 

Finally   
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                                              𝑛𝛾
 𝑎 

=  
1

 Δ 𝑎 
 −

𝑅  𝜏 

𝑡 𝑎
, 1,0,0 ,                                   (2.22)    

where  

                                             ∆ 𝑎 = −
1

𝑓𝑎  𝑅 
 −

𝑅  𝜏 

𝑡 𝑎
 

2

+ 𝑓𝑎 𝑅 .                             (2.23) 

One can simplify the latter equation as  

                                                           ∆ 𝑎 =
𝑓𝑎

2 𝑅 

𝑓𝑎  𝑅 +𝑅 2
 ,                                           (2.24) 

which is clearly equal to the inverse of 𝑡 𝑎
2 i.e., 

                                                               ∆𝑎=
1

𝑡 𝑎
2  .                                                   (2.25) 

Considering the closed from of ∆ 𝑎  in the four normal (2.22) we find  

                                                   𝑛𝛾
 𝑎 

=  −𝑅  𝜏  , 𝑡 𝑎 , 0 ,0  .                                  (2.26) 

Next, we apply 𝑛𝛾
 𝑎 

  in the definition of the extrinsic curvature given by (2.8) to find 

the nonzero components of the second fundamental form tensor. Before that we need 

to find the components of the Christoffel symbol which is defined as 

                                        Γ𝛼𝛽
 𝑎 𝛾

=
1

2
𝑔 𝑎 𝛾𝜆  𝑔𝜆𝛽 ,𝛼

 𝑎 
+ 𝑔𝛼𝜆 ,𝛽

 𝑎 
− 𝑔𝛼𝛽 ,𝜆

 𝑎 
 .                    (2.27) 

The closed form of the nonzero components of the Christoffel symbol are found to 

be 

                                                    Γ𝑡𝑡
 𝑎 𝑟

=  
1

2
𝑓𝑎 𝑟𝑎 𝑓𝑎

′ 𝑟𝑎 ,                                     (2.28) 
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                                                   Γ𝑡𝑟
 𝑎 𝑡 = Γ𝑟𝑡

 𝑎 𝑡 =
𝑓𝑎

′  𝑟𝑎  

2𝑓𝑎  𝑟𝑎  
 ,                                      (2.29) 

                                                         Γ𝑟𝑟
 𝑎 𝑟 = −

𝑓𝑎
′  𝑟𝑎  

2𝑓𝑎  𝑟𝑎   
,                                          (2.30) 

                                              Γ𝑟θ
 𝑎 θ = Γθ𝑟

 𝑎 θ = Γ𝑟φ
 𝑎 φ

= Γφ𝑟
 𝑎 φ

=
1

𝑟𝑎
 ,                     (2.31) 

                                                        Γθθ
 𝑎 𝑟 = −𝑟𝑎𝑓𝑎   𝑟𝑎  ,                                        (2.32) 

                                                 Γφφ
 𝑎 𝑟 = −𝑟𝑎𝑓𝑎  𝑟𝑎  𝑠𝑖𝑛2θ𝑎 ,                                  (2.33)         

 

                                                                     Γφφ
 𝑎 θ

= −𝑠𝑖𝑛θ𝑎𝑐𝑜𝑠θ𝑎 ,                                      (2.34) 

and   

                                                  Γθφ
 𝑎 φ

= Γφθ
 𝑎 φ

=
𝑐𝑜𝑠θ𝑎

𝑠𝑖𝑛θ𝑎
,                                        (2.35) 

in which a prime stands for the derivative with respect to 𝑟𝑎 . Hence, we get 

𝐾𝜏𝜏
 𝑎 

= −𝑛𝑡
 𝑎 

 
𝜕2𝑡𝑎

𝜕𝜏2 + 2Γ𝑡𝑟
 𝑎 𝑡 𝜕𝑡𝑎

𝜕𝜏

𝜕𝑟𝑎

𝜕𝜏
 − 𝑛𝑟

 𝑎 
 

𝜕2𝑟𝑎

𝜕𝜏2 +Γ𝑡𝑡
 𝑎 𝑟 𝜕𝑡𝑎

𝜕𝜏

𝜕𝑡𝑎

𝜕𝜏
+ Γ𝑟𝑟

 𝑎 𝑟 𝜕𝑟𝑎

𝜕𝜏

𝜕𝑟𝑎

𝜕𝜏
 ,  

(2.36) 

                                                     𝐾θθ
 𝑎 

= −𝑛𝑟
 𝑎 

 Γθθ
 𝑎 𝑟 ,                                      (2.37) 

and 

                                                    𝐾φφ
 𝑎 

= −𝑛𝑟
 𝑎 

 Γφφ
 𝑎 𝑟 .                                       (2.38) 
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To obtain the explicit form of the nonzero components of the extrinsic curvature 

tensor we need to find 𝑡 𝑎 =
𝜕2𝑡𝑎

𝜕𝜏2  This can be done by using (2.7) which yields 

                                      2𝑡 𝑎𝑡 𝑎 =
𝑓𝑎

′  𝑅 𝑅 +2𝑅 𝑅 

𝑓𝑎
2 𝑅 

−
2 𝑓𝑎  𝑅 +𝑅 2 𝑓𝑎

′  𝑅 𝑅 

𝑓𝑎
3 𝑅 

,                           (2.39)        

therefore 

                              𝑡 𝑎 =
𝑅 

2 𝑓𝑎  𝑅 +𝑅 2

2𝑅 𝑓𝑎  𝑅 −𝑓𝑎  𝑅 𝑓𝑎
′  𝑅 −2𝑅 2𝑓𝑎

′  𝑅 

𝑓𝑎
2 𝑅 

.                             (2.40) 

The nonzero components of the extrinsic curvature are found to be  

                                             𝐾ττ
 𝑎 

= −
2𝑅  𝜏 +𝑓𝑎

′  𝑅 

2 𝑓𝑎  𝑅 +𝑅 2
 ,                                               (2.41) 

                                           𝐾θθ
 𝑎 

= 𝑅 𝜏  𝑓𝑎 𝑅 + 𝑅 2  ,                                       (2.42) 

and   

                                         𝐾φφ
 𝑎 

= 𝑅 𝜏  𝑓𝑎 𝑅 + 𝑅 2𝑠𝑖𝑛2θ.                                 (2.43) 

It is observed that unlike the first fundamental form, the second fundamental form is 

not continuous in general. However, if 𝑓𝑎 𝑅  and 𝑓𝑎
 𝑅  are the same in both sides of 

the shell then 𝐾𝑖𝑗  is continuous as well as 𝑕𝑖𝑗  . Although 𝐾𝑖𝑗  is not continuous but 

still it satisfies the other Israel junction condition which implies 

                                              𝐾𝑖
𝑗
 − 𝛿𝑖

𝑗  𝐾 = −8𝜋𝐺𝑆𝑖
𝑗
,                                       (2.44) 

in which  𝐾𝑖
𝑗
 = 𝐾𝑖

 2 𝑗
− 𝐾𝑖

 1 𝑗
 ,  𝐾 = 𝑡𝑟𝑎 𝐾𝑖

𝑗
 =  𝐾𝑖

𝑖 ,  

and  
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                                                  𝑆𝑖
𝑗

= 𝑑𝑖𝑎𝑔 −𝜎, 𝑝, 𝑝 ,                                          (2.45) 

is the energy- momentum of the thin-shell. Herein, 𝜎 is the energy density and p is 

the lateral pressure. We note that, as we have considered the bulk to be spherically 

symmetric, the pressures in θ and φ directions are identical and the energy 

momentum  tensor is of a perfect fluid type. By applying (2.44) we need to find the 

mixed tensor 𝐾𝑖
 𝑎 𝑗

  which is defined as 

                                                  𝐾𝑖
 𝑎 𝑗

= 𝑕 𝑎 𝑗𝑘 𝐾𝑖𝑘
 𝑎 

,                                             (2.46) 

in which  

                                     𝑕 𝑎 𝑗𝑘 =   

−1 0 0

0
1

𝑅2 𝜏 
0

0 0
1

𝑅2 𝜏 𝑠𝑖𝑛 2θ

 .                                (2.47) 

The explicit calculation reveals  

                             𝐾𝑖
 𝑎 𝑗

=

 

  
 

2𝑅  𝜏 +𝑓𝑎
′  𝑅 

2 𝑓𝑎  𝑅 +𝑅 2
0 0

0
 𝑓𝑎  𝑅 +𝑅 2

𝑅 𝜏 
0

0 0
 𝑓𝑎  𝑅 +𝑅 2

𝑅 𝜏  

  
 

,                       (2.48) 

and consequently the total curvature is found to be  

                     𝐾𝑎 = 𝑡𝑟𝑎𝐾𝑖
 𝑎 𝑗

= 𝐾𝑖
 𝑎 𝑖 =

2𝑅  𝜏 +𝑓𝑎
′  𝑅 

2 𝑓𝑎  𝑅 +𝑅 2
+

2 𝑓𝑎  𝑅 +𝑅 2

𝑅 𝜏 
.                       (2.49) 

The effective extrinsic curvature tensor defined by  𝐾𝑖
𝑗
 =  𝐾𝑖

 2 𝑗
− 𝐾𝑖

 1 𝑗
, can be 

written as  
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    𝐾𝑖
𝑗
 =

 

  
 

2𝑅  𝜏 +𝑓2
′  𝑅 

2 𝑓2 𝑅 +𝑅 2
−

2𝑅  𝜏 +𝑓1
′  𝑅 

2 𝑓1 𝑅 +𝑅 2
0 0

0
 𝑓2 𝑅 +𝑅 2

𝑅 𝜏 
−

 𝑓1 𝑅 +𝑅 2

𝑅 𝜏 
0

0 0
 𝑓2 𝑅 +𝑅 2

𝑅 𝜏 
−

 𝑓1 𝑅 +𝑅 2

𝑅 𝜏  

  
 

,       

(2.50) 

and the effective total curvature becomes 

                   𝐾 =
2𝑅  𝜏 +𝑓2

′  𝑅 

2 𝑓2 𝑅 +𝑅 2
−

2𝑅  𝜏 +𝑓1
′  𝑅 

2 𝑓1 𝑅 +𝑅 2
+

2 𝑓2 𝑅 +𝑅 2

𝑅 𝜏 
−

2 𝑓1 𝑅 +𝑅 2

𝑅 𝜏 
.                 (2.51) 

Finally we find the explicit form of the energy momentum tensor presented on the 

shell given by 

                                                     𝑆𝑖
𝑗

=  
−𝜎 0 0
0 𝑝 0
0 0 𝑝

 ,                                         (2.52) 

in  which  

                                           𝜎 = −
1

4𝜋𝐺
 

 𝑓2 𝑅 +𝑅 2−  𝑓1 𝑅 +𝑅 2

𝑅 𝜏 
 ,                            (2.53) 

and  

                       𝑝 =
1

8𝜋𝐺
 

2𝑅  𝜏 +𝑓2
′  𝑅 

2 𝑓2 𝑅 +𝑅 2
−

2𝑅  𝜏 +𝑓1
′  𝑅 

2 𝑓1 𝑅 +𝑅 2
+

 𝑓2 𝑅 +𝑅 2−  𝑓1 𝑅 +𝑅 2

𝑅 𝜏 
 .         (2.54) 

To conclude this chapter we would like to add that using the thin-shell formalism and 

the Israel junction conditions we established a dynamic spherical symmetric timelike 

thin-shell whose energy momentum tensor has to be of the form we found in latter 

equations i.e., (2.53) and (2.54). In addition, we comment that in the case of static 
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thin-shell one has to set  𝑅 𝜏 = 𝑅0 which is a constant. Consequently the form of 

the energy momentum tensor takes its static form given by 

                                                𝑆𝑖
𝑗

=   

−𝜎0 0 0
0 𝑝0 0
0 0 𝑝0

 ,                                        (2.55) 

in which  

                                            𝜎0 = −
1

4𝜋𝐺
 

 𝑓2 𝑅0 − 𝑓1 𝑅0 

𝑅0
 ,                                    (2.56) 

and  

                                  𝑝0 =
1

8𝜋𝐺
 

 𝑓2
′  𝑅0 

2 𝑓2 𝑅0  
−

 𝑓1
′  𝑅0 

2 𝑓1 𝑅0  
+

 𝑓2 𝑅0  − 𝑓1 𝑅0  

𝑅0  
 .          (2.57) 

In the coming Chapter we shall use the results found in this Chapter to investigate the 

stability of such a dynamic thin-shell wormhole. This, furthermore, needs a relation 

between the energy density on the shell and the lateral pressure which in general is 

called an equation of state and is expressed as 𝑝 =  σ   in which  is in general a 

function of σ. 
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Chapter 3 

STABILITY ANALYSIS OF THE SPHERICALLY 

SYMMETRIC THIN-SHELL 

As we have already constructed the timelike dynamic thin-shells in spherically 

symmetric bulk spacetime in the previous Chapter, a natural question a rises; are 

these thin-shells stable against an external perturbation?. To answer this question one 

must find a way to analyze the motion of the thin-shell after such kind of 

perturbation. In addition we must have a clear definition for a stable motion and 

accordingly we may state the stability or instability of such thin-shells. These will be 

our aim to be investigated in this Chapter. 

3.1 General Formalism 

Let’s assume that our constructed thin-shell is at equilibrium at  𝑅 = 𝑅0 which 

means 𝑅 = 𝑅 = 0 and therefore the energy density and the pressures are given by 

Eqs. (2.56) and (2.57). Any radial perturbation causes the radius of the shell to be 

changed in a dynamical sense. In other words 𝑅 after the radial perturbation is a 

function of proper time 𝜏 and consequently the energy density and the lateral 

pressure are found to be as of Eqs. (2.53) and (2.54). Before we go further let’s add 

that 𝜎 and 𝑝 given in these equations are related via a differential equation. To find 

that we start from 

                                         𝜎 = −
1

4𝜋𝐺
 

 𝑓2 𝑅 +𝑅 2−  𝑓1 𝑅 +𝑅 2

𝑅 𝜏 
 ,                                  (3.1) 

𝜎 whose derivative with respect to 𝜏 is given by 
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𝜎 = −
1

4𝜋𝐺
 −𝑅 

  𝑓2 𝑅 +𝑅 2−  𝑓1 𝑅 +𝑅 2 

𝑅 𝜏 2 +
𝑅 

𝑅(𝜏)
 

𝑓2
′  𝑅 +2𝑅 

2 𝑓2 𝑅 +𝑅 2
−

𝑓1
′  𝑅 +2𝑅 

2 𝑓1 𝑅 +𝑅 2
  .            (3.2) 

In terms of 𝜎 we may write it as 

                        −
𝑅(𝜏)

𝑅 
𝜎 = 𝜎 +

1

4𝜋𝐺
 

𝑓2
′  𝑅 +2𝑅 

2 𝑓2 𝑅 +𝑅 2
−

𝑓1
′  𝑅 +2𝑅 

2 𝑓1 𝑅 +𝑅 2
 .                                (3.3) 

Next we look at  

                       𝑝 =
1

8𝜋𝐺
 

2𝑅  𝜏 +𝑓2
′  𝑅 

2 𝑓2 𝑅 +𝑅 2
−

2𝑅  𝜏 +𝑓1
′  𝑅 

2 𝑓1 𝑅 +𝑅 2
+

 𝑓2 𝑅 +𝑅 2−  𝑓1 𝑅 +𝑅 2

𝑅 𝜏 
 ,             (3.4) 

which surprisingly can be written as  

                               −2𝑝 = 𝜎 −
1

4𝜋𝐺
 

2𝑅  𝜏 +𝑓2
′  𝑅 

2 𝑓2 𝑅 +𝑅 2
−

2𝑅  𝜏 +𝑓1
′  𝑅 

2 𝑓1 𝑅 +𝑅 2
 .                             (3.5) 

Finally adding (3.3) and (3.5) we get  

                                                  −
𝑅(𝜏)

𝑅 
𝜎 − 2𝑝 = 2𝜎,                                              (3.6) 

which, more conveniently , can be written as  

                                                   
𝜎 

𝑅 
+

2

𝑅
 𝑝 + 𝜎 = 0,                                               (3.7)  

or after applying the chain rule it becomes  

                                                  
𝑑𝜎  

𝑑𝑅
+

2

𝑅
 𝑝 + 𝜎 = 0.                                              (3.8)  

This equation is the dynamical relation which connects 𝑝 and 𝜎 after the 

perturbation. Furthermore, any kind of fluid presented on the shell has to satisfy an 
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equation of state (EoS) which is nothing but a relation between 𝑝 and 𝜎. This relation 

is traditionally expressed as 

                                                         𝑝 = 𝑝 𝜎 ,                                                        (3.9) 

but in our study we use a more general EoS given by  

                                                         𝑝 =   𝑅, 𝜎 .                                                (3.10) 

A substitution into (3.8) yields 

                                            
𝑑𝜎 (𝑅) 

𝑑𝑅
+

2

𝑅
  𝑅, 𝜎(𝑅) + 𝜎 𝑅  = 0,                       (3.11) 

which is a principal equation that connects 𝜎 to 𝑅 after the perturbation. In addition 

to this, from the explicit form of 𝜎 in Eq. (3.1) we also find 

                                                       𝑅 2 + 𝑉 𝑅, 𝜎 𝑅  = 0,                                    (3.12) 

in which  

                     𝑉 𝑅, 𝜎 𝑅  =
𝑓1 𝑅 +𝑓2 𝑅 

2
−

 𝑓1 𝑅 −𝑓2 𝑅  
2

 8𝜋𝐺𝑅𝜎  𝑅  
2 −  2𝜋𝐺𝑅𝜎 𝑅  

2
.            (3.13) 

This is a one dimensional equation of motion for the radius of the thin-shell after the 

perturbation. This equation together with Eq. (3.11) give a clear picture of the motion 

of the thin-shell after the perturbation. To be more precise, the solution of Eq. (3.11) 

is used in (3.12) and the general motion of the radius of the thin-shell, in principle is 

found by solving Eq. (3.12). The nature of the motion after the perturbation depends 

on the form of the function  𝑅, 𝜎  given by EoS and the metric functions 𝑓1 𝑅 and 

𝑓2 𝑅 . 
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3.1.1 A Linearized Equation of Motion 

The general one-dimensional equation of motion (3.12) is highly non-linear. In 

general we do not expect an exact closed form solution for the radius of the thin-shell 

after the perturbation. A linearized version of this equation helps us to know the 

general behavior of the motion of the thin-shell after the perturbation without going 

through the complete solution. As we have stated the thin-shell is in equilibrium at 𝑅 

=  𝑅0 we expand 𝑉 𝑅, 𝜎 𝑅   in Eq. (3.13) about 𝑅 =  𝑅0 and we keep it to the first 

order. This is called a linearized radial perturbation. Let’s expand 𝑉 𝑅, 𝜎 𝑅   about 

𝑅 =  𝑅0 , which is given by 

  𝑉 𝑅, 𝜎 𝑅  = 𝑉 𝑅0, 𝜎 𝑅0  +  𝑑𝑉

𝑑𝑅
 
𝑅=𝑅0

 𝑅 − 𝑅0 +
1

2
 𝑑

2𝑉

𝑑𝑅2 
𝑅=𝑅0

 𝑅 − 𝑅0 2) +

𝑂  𝑅 − 𝑅0 3 .                                                                               (3.14) 

Since, 𝑅 =  𝑅0 is the equilibrium point, it is very clear that 𝑉 𝑅0, 𝜎 𝑅0   and 

 𝑑𝑉

𝑑𝑅
 
𝑅=𝑅0

   both are zero, the first because  𝑅 
0
2 = 0 and second because 𝑅 =  𝑅0 is the 

equilibrium in the sense that the force is zero there. Introducing  𝑥 = 𝑅 − 𝑅0 up to 

the first non-zero term we get 

                                                           𝑥 2 + 𝜔2𝑥2 ≃ 0,                                          (3.15) 

in which 

                                                         𝜔2 =
1

2
 𝑑

2𝑉

𝑑𝑅2 
𝑅=𝑅0

.                                           (3.16) 

A derivative with respect to 𝜏 implies  

                                                          𝑥 + 𝜔2𝑥 ≃ 0,                                               (3.17) 
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which clearly with  𝜔2 > 0 represents an oscillation about 𝑥 =  0. This, however, 

means the radius of the thin-shell moves on an oscillation about the equilibrium 

radius 𝑅 = 𝑅0. This is what we means by a stable state. In other words if 

                                                               
1

2
 𝑑

2𝑉

𝑑𝑅2
 
𝑅=𝑅0

> 0,                                       (3.18) 

the thin-shell oscillates and remains stable. Unlike 𝜔2 > 0, if 𝜔2 < 0 then the 

motion of  the radius of the thin-shell  grows exponentially which indicates that it 

does not come back to its equilibrium point; an indication of unstable thin-shell. 

To proceed with the formalism we need to calculate  
𝑑2𝑉

𝑑𝑅2 
𝑅=𝑅0

 and as 𝑉 = 𝑉 𝑅, 𝜎  we 

shall need 𝜎 ′  and 𝜎 ′′ . From Eq.(3.11) we have already found  

                                             𝜎 ′ = −
2

𝑅
  𝑅, 𝜎 + 𝜎 ,                                          (3.19) 

which upon applying a differentiation with respect to 𝑅 yields 

                          𝜎 ′′ =
2

𝑅2
  𝑅, 𝜎 + 𝜎 −

2

𝑅
 

𝜕 𝑅,𝜎 

𝜕𝑅
+

𝜕 𝑅,𝜎 

𝜕𝜎
𝜎 ′ + 𝜎 ′ ,           (3.20) 

where a prime stands for the derivative with respect to 𝑅. Using the explicit form of 

𝜎 ′  in the latter equation it implies 

 𝜎 ′′ =
2

𝑅2
  𝑅, 𝜎 + 𝜎 −

2

𝑅
  

𝜕 𝑅,𝜎 

𝜕𝑅
+   

𝜕 𝑅,𝜎 

𝜕𝜎
+ 1  −

2

𝑅
  𝑅, 𝜎 + 𝜎   ,   (3.21)  

or in a simplified form  

                                          𝜎 ′′ =
2

𝑅2
  + 𝜎  2

𝜕

𝜕𝜎
+ 3 −

2

𝑅

𝜕 

𝜕𝑅
.                          (3.22) 
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Now, we are ready to find 𝑉 ′′  𝑅  at 𝑅 = 𝑅0 by applying 𝜎 ′  and 𝜎 ′′  whenever we 

need them. The first derivative of the potential with respect to 𝑅 is given by  

 𝑉 ′ =
𝑑𝑉

𝑑𝑅
=

𝑓1
′ +𝑓2

′

2
−

2 𝑓1
′ −𝑓2

′   𝑓1−𝑓2 

 8𝜋𝐺𝑅𝜎  2
−

16𝜋𝐺(2+𝜎) 𝑓1−𝑓2 2

 8𝜋𝐺𝑅𝜎  3
+ 8𝜋2𝐺2 2 + 𝜎 𝑅𝜎,  (3.23) 

in which we have used 𝑅𝜎 ′ = −2  + 𝜎  . The second derivative of the potential is 

found to be  

𝑉 ′′  = 
 𝑑𝑉 ′

𝑑𝑅
 = 

𝑓1
′′ +𝑓2

′′

2
−

2 𝑓1
′′ −𝑓2

′′   𝑓1−𝑓2 +2 𝑓1
′ −𝑓2

′  
2

 8𝜋𝐺𝑅𝜎  2 +
2 8𝜋𝐺 𝜎+𝑅𝜎 ′   

 8𝜋𝐺𝑅𝜎  3 −

        
16𝜋𝐺 2 

𝜕 

𝜕𝑅
+

𝜕

𝜕𝜎
𝜎 ′  +𝜎 ′   𝑓1−𝑓2 2+16𝜋𝐺 2+𝜎 2 𝑓1−𝑓2  𝑓1

′ −𝑓2
′  

 8𝜋𝐺𝑅𝜎  3
+

       
16𝜋𝐺 2+𝜎  𝑓1−𝑓2 23 8𝜋𝐺 𝜎+𝑅𝜎 ′   

 8𝜋𝐺𝑅𝜎  4 + 8𝜋2𝐺2   2  
𝜕 

𝜕𝑅
+

𝜕

𝜕𝜎
𝜎 ′ + 𝜎 ′ 𝑅𝜎 +

      8𝜋2𝐺2 2 + 𝜎  𝜎 + 𝑅𝜎 ′ .                                                                             (3.24) 

Substituting 𝜎 ′  finally one finds  

𝑉 ′′  = 
𝑑𝑉 ′

𝑑𝑅
 = 

𝑓1
′′ +𝑓2

′′

2
−

2 𝑓1
′′ −𝑓2

′′   𝑓1−𝑓2 +2 𝑓1
′ −𝑓2

′  
2

 8𝜋𝐺 2 𝑅𝜎 2 −
2 2+𝜎 

 8𝜋𝐺 2 𝑅𝜎 3 −

       
   

𝜕 

𝜕𝑅
 − 

1

𝑅
 2

𝜕

𝜕𝜎
+1  +𝜎   𝑓1−𝑓2 2+  2+𝜎  𝑓1−𝑓2  𝑓1

′ −𝑓2
′  

 4𝜋𝐺 2 𝑅𝜎 3
−

6 2+𝜎 2 𝑓1−𝑓2 2

 8𝜋𝐺 2 𝑅𝜎 4
+

      16𝜋2𝐺2  
𝜕 

𝜕𝑅
−

1

𝑅
 2

𝜕

𝜕𝜎
+ 1   + 𝜎  𝑅𝜎 − 8𝜋2𝐺2 2 + 𝜎 2 .                    (3.25)     

At the equilibrium point both 𝑉 and 𝑉 ′  vanish and we are left with nonzero 𝑉 ′′ given 

by                                                                                 

𝑉0
′′  = −

16𝜋𝐺𝐹0𝐻0

𝐹0−𝐻0


,𝑅
+

2 𝐻0 2𝐹0
2−𝑓10

′ 𝑅0 −𝐹0 2𝐻0
2−𝑓20

′ 𝑅0  

 𝐹−𝐻 𝑅0
2 

,𝜎
+

       
 4𝐹0

4−2𝑅0 𝑓10
′ +𝑅0𝑓10

′′  𝐹0
2+𝑅0

2𝑓10
′ 2 𝐻0

3− 4𝐻0
4−2𝑅0 𝑓20

′ +𝑅0𝑓20
′′  𝐻0

2+𝑅0
2𝑓20

′ 2 𝐹0
3

2 𝐹0−𝐻0 𝐹0
2𝐻0

2𝑅0
2 ,                       (3.26) 
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in which 𝐹0 =  𝑓10   , 𝐻0 =  𝑓20  , 
,𝑅

=   𝜕
𝜕𝑅

 
𝑅=𝑅0

 and  
,𝜎

=   𝜕
𝜕𝜎

 
𝑅=𝑅0

. Then our 

next step will be to check the sign of 𝑉 ′′  𝑅0  for a specific Eos and the bulk metrics. 
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Chapter 4 

APPLICATIONS 

What we have found in the previous two chapters are completely generic which can 

be applied to any spherically symmetric bulks and any EoS. To show some 

applications of the formalism, in this chapter, we study two specific examples 

including a thin-shell of cloud of strings and a Schwarzschild thin-shell. 

4.1 Thin-shell Connecting Two Spacetimes of Cloud of Strings 

In our first application of the formalism let’s consider 𝑓1 =  1 and  𝑓2 =  2 in 

which 1 and 2 are two positive not equal constants with 1 > 2. The energy 

momentum tensor at the equilibrium  is given by 

                                         𝑆𝑖
𝑗

=  1− 2

4𝜋𝐺𝑅0
𝑑𝑖𝑎𝑔  1 , −

1

2
 , −

1

2
 ,                                 (4.1) 

 which means  

                                                    𝜎0 =  1− 2

4𝜋𝐺𝑅0
,                                                      (4.2) 

and  

                                                     𝑝0 = −
1

2
𝜎0.                                                        (4.3)  

This energy momentum tensor satisfies the weak energy condition which states that 

𝜎0 ≥ 0 , and 𝜎0 + 𝑝0 ≥ 0   and therefore is physical. To proceed with the stability 

analysis we must choose an EoS. For the first example we set 



21 
 

                                                                
𝑑

𝑑𝑅
= ω1,                                                   (4.4) 

and 

                                                                
𝑑

𝑑𝜎
= ω2,                                                  (4.5) 

in which both ω1  and ω2 are constants. The general form of 𝑉 ′′  𝑅0  given in Eq. 

(3.25) yields 

                                    𝑉 ′′  𝑅0 = −
2 12 8𝜋𝐺ω1 𝑅0

2− 2ω2+1   1− 2  

𝑅0
2  1− 2 

,                (4.6) 

In order to have 𝑉 ′′  𝑅0 > 0 one must impose 

                                     8𝜋𝐺ω1 𝑅0
2 −  2ω2 + 1   1 −  2 < 0 ,                     (4.7) 

which in turn implies 

                                            ω1 <
  1− 2 

8𝜋𝐺𝑅0
2  2ω2 + 1 .                                        (4.8) 

The case where ω1 = 0 implies a linear perfect fluid which is stable for ω2 > −
1

2
 

and unstable for ω2 < −
1

2
 . For the case where ω1 ≠ 0 the situation becomes more 

complicated. In Fig. 1 we plot     

                                               ω1 =
  1− 2 

8𝜋𝐺𝑅0
2  2ω2 + 1 ,                                     (4.9)  

for  
  1− 2 

8𝜋𝐺𝑅0
2 = 0.1,0.2,0.3 and 0,4 . As it is imposed from the condition (4.9) the 

values of ω1  and  ω2 under the lines for each specific choice of 
  1− 2 

8𝜋𝐺𝑅0
2   implies 
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the region of stability while the opposite side (above the lines) stands for the values 

of ω1  and ω1  result in an unstable thin-shell.         

 

Figure 4.1: A plot of ω1  with respect to ω2  for various values of  
  1− 2 

8𝜋𝐺𝑅0
2 =

0.1,0.2,0.3 and 0.4 . The arrows show the region of stability while the opposite side 

is the unstable zone for each case. 

 

 

 

 

 



23 
 

4.2 Thin-shell Connecting Vacuum to Schwarzschild 

In our second explicit application we consider the inner spacetime to be flat with 

𝑓1 = 1 and the outer spacetime to be the Schwarzschild with 𝑓2 𝑟2 = 1 −
2𝑚

𝑟2
 . The 

closed forms of 𝜎0 and 𝑝0  are found to be 

                                                              𝜎0 =
1− 1−

2𝑚

𝑅0

4𝜋𝐺𝑅0
 ,                                         (4.10) 

and 

                                                          𝑝0 = −
𝑚−𝑅0−𝑅0 1−

2𝑚

𝑅0

8𝜋𝐺𝑅0
2   1−

2𝑚

𝑅0

.                                (4.11) 

These clearly satisfy the weak energy conditions i.e., 𝜎0 ≥ 0  and 𝜎0 +  𝑝0 ≥ 0 

provided 𝑅0 > 2𝑚 . Furthermore, one finds 

                                                     𝑉0
′′ =

16𝜋𝐺

−1


,𝑅
+

2 2,𝜎 +1 

𝑅0
2 .                           (4.12) 

in which  =  1 −
2𝑚

𝑅0
> 0, 

,𝑅
=   𝜕

𝜕𝑅
 
𝑅=𝑅0

 and 
,𝜎

=   𝜕
𝜕𝜎

 
𝑅=𝑅0

. In this case also we 

set  
 𝜕

𝜕𝑅
= ω1 and 

 𝜕

𝜕𝜎
=  ω2 which implies  

                                                 𝑉0
′′ =

16𝜋𝐺

−1
ω1 +

2 2ω2+1 

𝑅0
2 .                           (4.13) 

For the case ω1 = 0, which corresponds to a linear perfect fluid one finds 𝑉0
′′ ≥

0 equivalent to 2ω2 + 1 ≥ 0  or equivalently ω2 ≥ −
1

2
 . For the case ω1 ≠ 0  we 

have to work out the regions in the plane of  ω1  and ω2 such that 𝑉0
′′ ≥ 0. To find 

the region where 𝑉0
′′ ≥ 0, we find ω2 in terms of ω1 such that 𝑉0

′′ = 0. This yields  

                                                ω2 = −
1

2
+ 𝜒ω1 ,                                                  (4.14)                                                                                                                                                                                                                                                                                                                                      
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in which  

                                                          𝜒 =
4𝜋𝐺𝑅0

2

1− 1−
2𝑚

𝑅0

 .                                              (4.15) 

Depending on the value of 𝑚 and 𝑅0 > 2𝑚, one finds 

                                                         4𝜋𝐺𝑅0
2 < 𝜒 < .                                          (4.16)  

In Fig. 2 we plot ω2 versus ω1 for various values for 𝜒 =  0.1 , 0.2 , 0.3 and 0.4 . 

Also the stability regions for each case is shown by an indicator. 

Before we finish this section we would like to find the explicit form of the energy 

density  𝜎 after the perturbation. In both examples we have worked out in this 

chapter we assumed 
 𝜕

𝜕𝑅
= ω1 and 

 𝜕

𝜕𝜎
=  ω2  in which ω1 and ω2 are two constants. 

Integration with respect to 𝑅 and 𝜎 results in 

                                                        = ω1𝑅 + ω2𝜎 + 𝐶0 ,                                  (4.17)   

in which 𝐶0 is an integration constant. As  𝑝 =  should give the equilibrium 

pressure at  𝑅 = 𝑅0 we can find the value of 𝐶0 as   

                                                    𝐶0 = 𝑝0 − ω1𝑅0 − ω2𝜎0                                   (4.18) 
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Figure 4.2: A plot of ω2versus ω1 for various values of  𝜒 = 0.1,0.2,0.3 and  0.4.The 

arrows show the region of stability while the opposite side is the unstable zone for 

each case. 

And therefore the dynamic pressure becomes 

                                       𝑝 = ω1 𝑅 − 𝑅0 + ω2 𝜎 − 𝜎0 + 𝑝0.                           (4.19) 

This EoS together with Eq. (3.8) gives the differential equation 

                           
𝑑σ

𝑑𝑅
+

2

𝑅
 ω1 𝑅 − 𝑅0 + ω2 𝜎 − 𝜎0 + 𝑝0 + 𝜎 = 0,                 (4.20) 

which must be satisfied by 𝜎. The solution of this equation is given by 

                                   𝜎 𝑅 =
ω2𝜎0−𝑝0+ω1𝑅0

1+ω2
−

2ω1𝑅

3+2ω2
+

𝐶1

𝑅2 ω2+1  ,                       (4.21) 
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in which 𝐶1 is an integration constant. Imposing  𝜎 𝑅0 = 𝜎0  yields 

                                       𝐶1 =  𝑅0
2 ω2+1 

 
𝜎0+𝑝0

1+ω2
−

ω1𝑅0

3+5ω2+2ω2
2 .                            (4.22) 

Finally the closed form of the energy density is found to be 

             𝜎 𝑅 =
ω2𝜎0−𝑝0+ω1𝑅0

1+ω2
−

2ω1𝑅

3+2ω2
+   

𝑅0

𝑅
 

2 ω2+1 

 
𝜎0+𝑝0

1+ω2
−

ω1𝑅0

3+5ω2+2ω2
2 .     (4.23) 

We note that at 𝑅 = 𝑅0 , 𝜎 𝑅   reduces to  𝜎0 and it is a function of 𝑅 as well as ω1 

and ω2. The case ω1 = 0 admits 

                         𝜎 𝑅 =
ω2𝜎0−𝑝0  

1+ω2
 +   

𝑅0

𝑅
 

2 ω2+1 

 
𝜎0+𝑝0

1+ω2
  ,                                   (4.24) 

while when ω2  = 0 we find 

                 𝜎 𝑅 = −𝑝0 + ω1𝑅0 −
2ω1𝑅

3 
+   

𝑅0

𝑅
 

2 

 𝜎0 + 𝑝0 −
ω1𝑅0

3  
 .                  (4.25) 

In the case both ω1  and ω2  are set to zero the energy density becomes 

                                     𝜎 𝑅 = −𝑝0  +  
𝑅0

𝑅
 

2 
 𝜎0 + 𝑝0 ,                                    (4.26) 

while 

                                                              𝑝 = 𝑝0 ,                                                    (4.27) 

even after the perturbation. According to Fig. 2, this is one of the cases which the 

thin-shell is stable with 

                                                             𝑉0
′′ =

2

𝑅0
2  ,                                                  (4.28) 

which is clearly positive. 
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Chapter 5 

CONCLUSION 

In electromagnetism it is well-known that when crossing from one region to another 

the normal component of the electric field suffers a discontinuity if there is a source 

of charge as surface layer in between. In contrast to the discontinuity of the electric 

field vector the electric potential is a continuous function at the interface. In 

Einstein’s general relativity we have similar situation: the metric tensor (the first 

fundamental form) is continuous whereas the extrinsic tensor is discontinuous if the 

two region are different . The discontinuity conditions were studied first by Israel. 

We have studied the formalism known as the ”Israel junction formalism” to construct 

timelike thin-shells in spherically symmetric spacetimes. Our 2+1-dimensional 

dynamical thin-shell is supported by an energy-momentum tensor which is linked to 

the discontinuity of the second fundamental form of the thin-shell hyperplane in 3+1- 

dimensional bulk. We analyzed very deeply the stability of the thin-shell against a 

radial perturbation and by a linearized approximation we found a general condition 

to be satisfied in order for having a stable spherically symmetric thin-shell. We 

applied our results to two explicit examples with certain EoS on the shell numerically 

as well as analytically to provide the stability regions. 

Finally, we would like to state that the problem of thin-shells is not restricted only by 

spherical symmetry. Similar analysis can be carried out for cylindrical and planar 
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symmetric geometries, for instance. These all are among our further projects to be 

considered seriously.  
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