Cyclic Production of Flexible Manufacturing Cells

Mazyar Ghadiri Nejad

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Industrial Engineering

Eastern Mediterranean University
February 2018
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy
Acting Director

| certify that this thesis satisfies the requirements as a thesis for the degree of Doctor
of Philosophy in Industrial Engineering.

Assoc. Prof. Dr. Gokhan Izbirak
Chair, Department of Industrial Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Doctor of Philosophy in Industrial
Engineering.

Prof. Dr. Béla Vizvéri
Supervisor

Examining Committee

1. Prof. Dr. Serpil Erol

2. Prof. Dr. Murat Taner Testik

3. Prof. Dr. Béla Vizvari

4. Assoc. Prof. Dr. Gokhan Izbirak

5. Assoc. Prof. Dr. Adham Makkie

http://ie.emu.edu.tr/staff/cv/OK_cv.pdf
http://ie.emu.edu.tr/staff/cv/OK_cv.pdf
http://ie.emu.edu.tr/staff/cv/OK_cv.pdf

ABSTRACT

This thesis deals with two different flexible manufacturing cells. Both cells contain m
identical computer numerical control (CNC) machines that are able to perform all the
processes to produce a final product. The CNC machines are set up in a line layout.
In the both cases, one input station and one output station exists at the beginning and
at the end of the line, respectively. The items to be processed are kept in the input
station, and the finished items are kept in the output station. In the second case, in
addition to the input station, there is an individual input buffers attached to each
machine. Using these buffers, each machine can be consecutively loaded twice in a
cycle. In the both cells, a robot serves the machines and transports parts from the
input station to a machine, loads the machine, and unloads the machine, after

finishing its process, and puts the processed part in the output station.

In these cells, m different parts will be processed in every cycle. Each part is
processed completely by one machine. If the system is at a specific state at the
beginning of a cycle, it reaches the same state at the end of the cycle, and then
repeats the same actions in the same order in the subsequent cycles. To show all of
the possible cycles in such cells, a sequential part production matrix is presented
considering a general case. The duration of a cycle is called cycle time. The objective
function of both cell types is to find the order of robot operations that minimizes the

cycle time which maximizes the long-run average throughput rate of each cell.

For the first case, a new mathematical model is presented to optimize the system. A

reduced version of the new model is also provided. The reduced version is still an

exact model of the minimization of the cycle time, however it does not determine the
waiting times of the robot directly. These two models are more effective than the
previous existed exact models in the literature. The solution of the reduced model
requires significantly less CPU time comparing to the other models. A metaheuristic
algorithm based on simulated annealing algorithm is proposed. In order to compute
the minimum cycle time in each iteration of the algorithm, a linear programming
model is needed to be solved which is the first case in the literature to the best of our
knowledge. A new proof is provided for the lower bound of cycle time. This new

proof facilitates the optimality analysis of several sequences of the robot movements.

For the second case, a mathematical model is presented to optimize the cyclic
production. A two-machine cell is discussed in details. In addition to some lower
bounds of the cycle time for different orders of robot movements, the optimal cycles

and upper bounds for the cases with different activities are also investigated.

Keywords: Flexible manufacturing, CNC machines, Robotic cell, Cyclic scheduling,

Metaheuristics.

Oz

Bu tez iki farkli esnek imalat hiicresi ile ilgilidir. Her iki hiicre de, nihai bir iiriin
tretmek icin tiim islemleri gergeklestirebilen, ayni sayida Bilgisayarli Sayisal
Dentim (CNC) makinesini igerir. CNC makineleri bir ¢izgi diizeninde ayarlanir. Her
iki durumda da siranin basinda ve sonunda bir giris istasyonu ve bir ¢ikis istasyonu
bulunur. Islenecek parcalar giris istasyonunda tutulur ve bitmis parcalar c¢ikis
istasyonunda tutulur. Ikinci durumda, giris istasyonuna ek olarak, her bir makineye
bagh tek bir giris tamponlar1 bulunur. Bu tamponlar1 kullanarak, her makine ardisik
olarak bir dongtide iki kez yuklenebilir. Her iki hiicrede de, robot makinelere hizmet
eder ve pargalar girig istasyonundan makineye nakleder, makineyi yiikler ve iglemi

tamamladiktan sonra makineyi bosaltir ve islenmis kismi ¢ikis istasyonuna koyar.

Bu hicrelerde, her dongtde m sayida farkli parga islenecektir. Her parga bir makina
tarafindan tamamen islenir. Sistem bir c¢evrimin baslangicinda belirli bir
konumdaysa, ¢evrimin sonunda da ayni duruma gecer ve ayni aktiviteleri sonraki
cevrimlerde de ayn1 sirada tekrarlar. Bu tiir hiicrelerdeki olas1 dongulerin timuni de
gostermek icin, genel durum g6z Onine aknarak ardigik parga tiretim matrisi
sunulmaktadir. Bir dongiiniin siiresi dongii siiresi olarak adlandirilir. Her iki hiicre
tipinin ama¢ fonksiyonu, her bir hiicrenin uzun dénem ortalama c¢ikti oranini

maksimize eden dongu siresini en aza indirecek robot islemlerinin sirasini bulmaktir.

[k durumda, sistemi optimize etmek igin yeni bir matematiksel model sunulmustur.
Yeni modelin indirgenmis bir versiyonu da gosterilmistir. Indirgenmis versiyon,

dongii siliresinin en aza indirgenmesinin hala kesin bir modeli olmasina ragmen

robotun bekleme siirelerini dogrudan belirlememektedir. Bu iki model literatiirde
daha 6nce var olan kesin modellere gore daha etkilidir. indirgenmis modelin ¢ozimdi,
diger modellere kiyasla ¢ok daha az CPU zamami gerektirir. Benzetimli tavlama
algoritmasina dayanan sezgi Otesi bir algoritma Onerilmistir. Algoritmanin her
yinelenmesinde minimum dongii siiresini hesaplamak i¢in dogrusal bir programlama
modelinin ¢ozllmesi gerekmektedir. Dongl suresinin alt sinir1 i¢in yeni bir ispat
goOsterilmistir. Bu yeni ispat, robot hareketlerinin birkag sirasinin optimallik analizini

kolaylastirimaktadir.

Ikinci durumda, dongiisel iiretimi optimize etmek igin bir matematiksel model
sunulmustur. ki makine hiicresi ayrmtili olarak ele alinmistir. Robot hareketlerinin
farkli siralar1 icin dongl zamanimnin bazi alt sinirlarina ilaveten, farkli aktivitelere

sahip durumlar i¢in optimal ¢evrimler ve st sinirlar da arastirilmastir.

Anahtar Kelimeler: Esnek Uretim, CNC makineleri, Robotik hicre, Cevrimsel

cizelgeleme, Metaheuristik, Sezgi Otesi.

Vi

DEDICATION

To My Devoted Wife
and

My Famﬂy

vii

ACKNOWLEDGMENT

| would like to thank Prof. Dr. Béla Vizvari for his passion for the science, and his
continuous support of this study. Without his invaluable supervision, all my efforts

could have been short-sighted.

| am grateful to Assoc. Prof. Dr. Gokhan Izbirak, Chairman of the Industrial

Engineering Department that helped me with various issues during my study.

| sincerely acknowledge Asst. Prof. Dr. Huseyin Gilden for his advices, useful
comments and his fresh innovative ideas and for all the mathematical and non-

mathematical helps during my studying.

| obliged to appreciate Asst. Prof. Dr. Reza Vatankhah Bareniji, for his constructive
guidance and comments in publishing my articles. | believe that without his helps

this project was impossible to do.

Finally, 1 would like to thank Prof. Gergely Kovacs, all of my professors, colleagues,

and friends who helped and supported me to finish this thesis.

viii

TABLE OF CONTENTS

ABSTRACT ettt b et e b e ii
O Z ettt ettt en et v
DEDICATION ...ttt st e sae e b e nnee s Vil
ACKNOWLEDGMENT ..o Vil
LIST OF TABLESot XIi
LIST OF FIGURES ...t X1V
LIST OF ABBREVIATIONSo XV
1 INTRODUCGTION ...ttt 1
LA PIEFACE ... 1
1.2 FIMC different laYOULSccviiieiieie e 2
1.3 CNC machines with individual BUFFErs ..., 4
1.4 The Structure of the THESIScooiiiiiee e 4

2 LITERATURE REVIEW ...t 7
2. L PIEfACE ... 7
2.2 CNC machines having tool magazingccccovveveeveiieve e 9
2.3 HEUrIStIC METNOMS.c.civiiiieiiieeic e 10

3 THE FMC WITHOUT INDIVIDUAL BUFFER FOR EACH MACHINE........... 12
B L PIETACE ... 12
3.2 Sequential Part Production MatriXcccccvueiiieiieiieesie e 14
3.3 The CaSE OF M = 2 . 16
3.4 Definitions, parameters and SELS.........cccivieiieiiieiie e 21
3.5 Mathematical MOElS ... 23
3.5.1 Complete mathematical modelcccoovviiiiiiiiiii e, 23

3.5.2 The reduced mathematical Model...........ooooovmmieee e, 25

3.5.3 Maximization of the minimum return timecc.coeviineneineneee, 25
3.6 NUMETICAI FESUILS ... 26
3.6.1 The minimization of the cycle time ..., 26
3.6.2 Computational result of the return time ..., 30
3.7 An improved lower bound for the optimal cycle time in the general case....... 31
3.8 A lower bound explained by an assignment problemcccceevvevveieiiennnn, 33
3.9 Optimal cycles of different structures in the general case...........c.ccceevevveeiennenn 38
3.9.1 BASIC LOO0IS. ...ttt 39
3.9.2The LilLi2 ... LimUilUi2 ... Uim CYClecccoeiveiiieceee e, 40
3.9.3 The LilmUm-1Lm-1... U2L2U1Um CYCIE ..o, 46

4 THE FMC WITH INDIVIDUAL BUFFER FOR EACH MACHINE................... 48
AL PIEfACE ... 48
4.2 Sequential part production MAtFiXcceceivieiieiiiieie e 48
4.3 Definitions, parameters and SEtS..........cccvevviiieiieriesieeie e 50
4.4 Mathematical MOdel ... 53
4.5 NUMENICAl FESUITS ... 56
4.6 A lower bound explained by an assignment problemcccccooeiveieiienn, 59
4.7 Optimal cycles of different structures in a general Case...........ccccceveevvereiienen, 65
471 RELUM TIME .ot 65
4.7.20ptMAl CYCIES ... 69
4.7.3 Comparison between three similar Cycles ..., 71

4 DEVELOPED METAHEURISTIC ALGORITHMcooiiiiiiiie e, 74
5L PIETACE ...t 74

5.2 REPIESENTALIONvevieiieie ettt e e sraesneenaeareenres 74

5.3 INItIAI SOIULION. ... 75
5.4 Computing cycle time for a given solutioncccceceveve i 75
5.5 Generating the NeXt SOIULION..........cooveiiiie i 78
5.6 COOING .ottt et re e nre s 79
IS 1(0] o] o1 a0 ol 41 (< £ T OSSPSR 80
5.8 EXPErimental FESUILScccveiireieiieceee et 81
CONCLUSIONS AND FUTURE RESEARCHccooiiiieeeeee e 86
REFERENGESo 88

Xi

LIST OF TABLES

Table 1. SPPM for producing two parts in a two-machine cellc.ccccovveeviinnnn. 16
Table 2. Different sequences of the activities for producing two parts in a two-
MACKINE CEILL oo e enes 16
Table 3. Time distance Matrix for m-machine FMC.ccocoiiiiiininiiniiee 22

Table 4. CPU times of solving the proposed models and the Gultekin et al. model . 27

Table 5. Distance matrix in terms of coefficient of 0.cccccevvveiiiiiiiiiiie 35
Table 6. The last table of the assignment problem. ..., 37
Table 7. Solution of the assignment problem in terms of ¢ coefficients.................... 38
Table 8. Matrix of & coefficients for only unloaded robot movements. 40
Table 9. Loaded and unloaded robot movement time distances.c.coovvvrvenne. 41
Table 10. The results of the mathematical models for two-machine cells................. 57
Table 11. The results of the mathematical models for three-machine cells............... 58

Table 12. Time distance matrix for an m-machine FMC when each machine has an

INPUE DUTTEE ... 60
Table 13. Time distance matrix in terms of the o coefficientcccocvvvveiviennnn. 61
Table 14. Distance matrix in terms of the ¢ coefficient and dual solutions............... 62
Table 15. The last table for the assignment problem ... 64
Table 16. Loaded and unloaded robot movement times for machine k.................... 66

Table 17. Loaded and unloaded robot movement times for Lk+1...LmLmU1U1...UkUk 67

Table 18. Matrix of the ¢ coefficient for unloaded robot movements............ccc...... 70
Table 19. Robot movement times for the LiUiL1UiLoUs...LmUm cycle 71
Table 20. Cycle times related to the UiLiUiLiUzlz...UnlmCycle ... 72

Table 21. Cycle times of UiL1U1L1UzL2... UnLm cycle considering waiting times.... 73

xii

Table 22. Computational results for tuning SA parameters

Table 23. Results of the SAA ...,

Xiii

LIST OF FIGURES

Figure 1. In-line m-machine robotic Cell.ccoooriiiiiii e 3
Figure 2. A one-buffer robot centered cell with three machines.cccooeeieinn 3
Figure 3. A circular robotic cell with different input and output buffers..................... 4
Figure 4. A robotic cell having machines with individual bufferc.cccccoovni.n. 4
Figure 5. Robot movement sequence related to LiLoUiUz cycle......c.ooviviiiiiennneen, 15
Figure 6. CPU times of the models for 3-machine test instances............cccoccevvenenne. 28
Figure 7. CPU times of the models for 4-machine test instances............cccocevvenenne. 28
Figure 8. CPU times of the models for 5-machine test instances............cccoccevvenenne. 29
Figure 9. The robot optimal moves sequence for L1LsL4U2U3zU1UsLoLy cycle. 30
Figure 10. Different positions of parts in a cycle that affects the cycle time............. 32

Figure 11. Robot movement sequence related to the LiLoL1L2U1U2U1Uz cycle ... 49
Figure 12. CPU times of the mathematical models for two-machine cells 57
Figure 13. CPU times of the mathematical models for three-machine cells 58

Figure 14. Presentation of LiLsLsU2UsU1UsloL cycle for a four-machine cell 74

Figure 15. Array of Lila...LmU1Uz2...UnL1 CYCle .o, 75
Figure 16. Return time to machine 2 in LiLsLsU2UsU1L2UsLs cycle ..., 77
Figure 17. SNift OPEratorcoveii i e 78
Figure 18. SWaP OPEIALOFcovveieiireiteesie ettt e ste ettt te e e reesre e e ens 79
FIgure 19. REVEISE OPEIALONcccueeiiieiie it et et e stee st sre et e e baeete e eebeesnne s 79
Figure 20. S/N ratio plot for SA Parameterscccoevveeiie e 83
Figure 21. Solution time of the SAA for 4-machine test instancesccccccvevveenn 84
Figure 22. Solution time of the SAA for 5-machine test instancescccccceeeveenn 84
Figure 23. Solution time of the SAA for 6-machine test instancescccccevevunenn 85

Xiv

LIST OF ABBREVIATIONS

CNC Computer Numerical Control
FMC Flexible Manufacturing Cell

FMS Flexible Manufacturing System
OBF Obijective Function

PPM Proposed Mathematical Model
SA Simulated Annealing

SAA Simulated Annealing Algorithm
SPPM Sequential Part Production Matrix
TRM Time Reduction Method

XV

Chapter 1

INTRODUCTION

1.1 Preface

Flexible manufacturing cells (FMCs) are used to produce standardized items at a
high production speed and are used in reconfigurable manufacturing systems [1].
These cells are workplaces that contain a number of CNC machines. These CNC
machines are usually linked together to produce some part types and are controlled
by an automated control system [2]. The materials are handled by a robot between
the machines. In parallel-machine cells, each machine is capable of performing all
processes of producing a part [3, 4]. In general, the processing time of a part is
different for different machines. Also, processing of different parts results in
different processing times. In the latter case, it is supposed that each machine
produces only one type of product. In group technology, each machine always

processes the same type of parts, in which machines are assigned to part families.

It is assumed that distances between the input buffer and the first machine, between
two successive machines and between the last machine and the output buffer are
same. When an item is processed by any of the machines it becomes a finished item
and goes to the output buffer. The robot moves through the line and performs the
loading/unloading activities and transports the items. A system with m machines is

illustrated in Figure 1.

It is assumed that the considered system repeats a cycle in its long run. If the system
is at a specific state at the beginning of a cycle, it reaches the same state at the end of
the cycle, and then repeats the same actions in the same order in the subsequent
cycles. The duration of a cycle is called cycle time. It is assumed that each machine
processes one part in each cycle. Decreasing the cycle time in such a system means
increasing the production rate. The cycle time depends on the order of the actions. In
such a system, determining the order of the actions to minimize the cycle time or to

maximize the production rate is called an optimization problem.

Gultekin et al. [5] presented a mathematical model for the problem and expressed
that the problem is NP-hard. In this thesis, we present a simulated annealing based
metaheuristic (SA) algorithm, to solve the larger problems. When some
metaheuristics are desired to be developed for solving the problem it is noticed that
even the order of the activities are known it is not trivial to compute the minimum
cycle time. For a given solution, i.e. order of the activities, in order to compute the
minimum cycle time a linear programming model is needed to be solved. To the best
of our knowledge, there is no such a study in the literature that to compute the
objective function of a given solution a linear programming model is needed to be
solved. The reason for such a need is explained in the following sections. Finally, we
analyze the performances of the proposed metaheuristics using several numerical

instances.
1.2 FMC different layouts

Regardless of having either a flow shop or parallel manufacturing system, there are

two well-known layouts for the FMCs. The linear robotic cells are such that the input

buffer (for the unprocessed parts), the machines of the cell and the output buffer (for

the final product) are in a line [6] , for instance, from left to right (see Figure 1).

Figure 1. In-line m-machine robotic cell.

The circular robotic cells are such that the input buffer, machines and output buffer
are arranged either clockwise or counter clockwise of a circle. It should be
mentioned that there are two types of circular FMC. In the first type, there is only
one buffer in the cell including the input and output buffers in the same place as you

can see in Figure 2 [7, 8].

My
M T
] ©
M1 Mm

Figure 2. A one-buffer robot centered cell with three machines.

The second type is such that the input and output buffers are in different places [4,
9]. Obviously, all of the distance matrix, calculations and formulas will be the same
as in-line FMC (see Figure 3) if the robot cannot move directly from input buffer to

machine m by passing the output buffer or vice versa.

3

Figure 3. A circular robotic cell with different input and output buffers.

1.3 CNC machines with individual buffers

Although there are a considerable number of studies dealing with a robotic cell in the
literature, there are very few studies that use a flexible cell with the machines that
have individual buffers. From the practical point of view, using these buffers offers
an attractive prospect to increase the production efficiency. At the same time, the
increase in the combinatorial possibilities associated with the buffers severely
complicates their theoretical analysis because each machine can be consecutively
loaded twice using such buffers. In this study, we focus on the in-line layout (see

Figure 4).

AMI A we [N we e N e

—

Figure 4. A robotic cell having machines with individual buffer.

1.4 The Structure of the Thesis
This thesis is organized into six chapters as follows: The first chapter lays out the
structure and content of the entire thesis. The second chapter contains the related

literature about the studies of previous researchers and related works in this field.

Some available literature in the areas of using tool magazines in general and
specifically in the robotic manufacturing cells with CNC machines are reviewed, and

an appropriated area for using heuristic methods to solve such problems is prepared.

In the third chapter, a line layout FMC without individual buffers on each machine is
considered. To determine the best optimal solution, sequential part production matrix
is presented and the case of an FMC with two CNC machines is thoroughly
discussed. The problem is defined and the mathematical formulations for minimizing
cycle time and maximizing the minimum return time are presented. Additionally, the
numerical results of the proposed models and an improved lower bound for the
general case and a lower bound explained by an assignment problem are provided.
Furthermore, optimal cycles that are computed by using the return time of a machine

for some different structures are presented.

In the fourth chapter, a line layout FMC including individual buffers for each
machine is considered. In this chapter, the problem is defined and a mathematical
formulation to minimize the cycle time is presented. Additionally, the numerical
results of the proposed model, an improved lower bound for the general case and a
lower bound explained by an assignment problem are provided. Furthermore,
optimal cycles that are computed by using the return time of a machine for some

different structures are presented.

Fifth chapter contains three metaheuristic algorithms based on local search algorithm
for solving large size problems defined in chapter three. In the metaheuristics, in
order to compute the minimum cycle time of a given solution a linear programming

model is needed to be solved which is the first case in the literature to the best of our
5

knowledge. Several numerical examples are solved by the proposed algorithms and

their performance and solutions are compared.

Finally, chapter six contains discussion and conclusion of the study and is provided

some ideas about further researches.

Chapter 2

LITERATURE REVIEW

2.1 Preface

One of the first studies related to the sequencing of parts in a robotic cell was
conducted by Sethi et al. [9]. The objective of this study was to maximize the long-
run average throughput of the system. Assuming that one part is produced by each
machine in a cycle, they developed the cycle-time formulas for robot-centered cells
with two and three machines. Crama and Van de Klundert [6] presented a dynamic
programming approach for finding a shortest cyclic schedule for the robot
movements that can be infinitely repeated. Furthermore, they proved that the
minimum long-run average cycle time can be achieved by a one-unit cycle for a
three-machine cell [10]. Both of their studies were related to identical parts and
inline robotic cells. Hall et al. [11] studied a variety of classical scheduling objectives
and provided either a polynomial- or a pseudo polynomial-time algorithm. Brauner
and Finke [12] discussed the dominant states of a cell with identical parts and
developed an algebraic approach for an m-machine cell; they also proved that the
one-unit cycle is suitable for the two- and three-machine cells and showed that it is
not optimal for four and more machines. Abdekhodaee et al. [3] performed two
operations per cycle on each machine with non-preemptable jobs for a flexible
manufacturing cell with parallel machines, and they also considered equal processing

times and equal setup times.

Akturk et al. [13] studied the scheduling of a two-machine cell with identical parts,
which comprise a number of operations to be completed in these two machines. They
found the optimal robot movement cycle and the assignment of operations to these
two machines as the objective function with minimizing the cycle time. Gultekin et
al. [14] considered an inline robotic cell with two or three CNC machines and
presented lower and upper bounds for one- and two-unit robot movement cycles,
respectively. They proved that their proposed cycle dominates all two-unit robot
movement cycles and also presented the regions where the proposed cycle dominates
all one-unit cycles. Gultekin et al. [15] proposed a new cycle for a two-machine cell
and proved that it dominates all classical robot movement cycles considered in the
literature. They proved that changing the layout from an inline robotic cell to a robot-
centered cell reduces the cycle time for the m-machine cell and found the optimal
number of machines that minimize the cycle time of the proposed cycle. In another
study, Gultekin et al. [16] worked on a flexible manufacturing cell with two or three
machines to minimize the manufacturing cost and the cycle time jointly. They
considered a one-unit cycle and determined the efficient set of processing time
vectors so that no other processing time vector provides both a smaller cycle time
and a lower cost. They also compared these cycles with each other for determining
the sufficient conditions in which each of the cycles dominates the rest. Gultekin et
al. [5] also modeled the problem of determining the best pure cycle for an m-machine
cell with multiple parts as a special traveling salesman problem for parallel
machines. They proposed a mathematical model and a two-stage heuristic algorithm
for solving such problems. Ghadiri Nejad et al. [17] suggest an MTZ based TSP
model for scheduling problem of the flexible robotic cell with m machines and a

robot. They provide a reduced version for their model by excluding waiting time

variables and reported that, the reduced model is much efficient in comparison with
the models reported in the literature. In another study, Ghadiri Nejad et al. developed
a mathematical model for the scheduling problem of m machines and a robot FRC
using “Network Flow” approach [18]. Akturk et al. [19] considered a machine-job
assignment problem with controllable processing times and modeled it as a nonlinear
mixed 0-1 profit maximization problem. They also reformulated the problem using a
polynomial for a number of conic constraints. Yildiz et al. [20] differentiated two
pure cycles and showed that these two cycles together dominate the rest of the pure
cycles for a wide range of processing times. They established the worst case and
showed that the objective function is the minimization of the cycle time. Uruk et al.
[21] considered a two-machine flow shop scheduling problem with identical jobs and
determined the assignment of flexible operations to the machines and processing

time for each operation to minimize the cycle time.
2.2 CNC machines having tool magazine

There are some studies that considered a flexible manufacturing cell including CNC
machines with tools for the CNC machines and also gripper for the robots to

empower them to be more flexible. Some of the important studies are as follows.

Dawande et al. [4] focused on a survey related to previous studies on robotic cell
scheduling problems. They also tried out to find a lower bound for a one-unit cycle
time of an FMC with multiple robots containing single and dual grippers.
Drobouchevitch et al. [8] tried out to find the optimal sequence of robot movements
for maximizing the long-run average throughput rate of the cell. They worked on a
special FMC containing one buffer as an input/output buffer in a robot-centered

layout. They also considered a dual-gripper cell and a single-gripper cell with

machine output buffers of one-unit capacity. As an important developing step in
FMS discussions, Zeballos [22] presented a constraints programming methodology
to deal with the scheduling of FMS consisting of search strategy and handled several
features found in the industrial environment such as limitations on number of tool
system, tool lifetime and tool magazine capacity of machines. Foumani and Jenab
[23] studied one-unit cycles for an inline robotic cell and found the robot movement
sequence that minimizes the cycle time. They also presented the regions of
optimality when each part reenters the first machine twice and determined optimality
conditions for different cycles when each part reenters both machines twice. After
sensitivity analysis of both cases, they found the best and the worst cycle
mathematically. Furthermore, these two researchers worked on m-unit pure cycles to
find the robot movement sequence for minimizing the cycle time when the robot had
the swapping ability [24]. They presented an improved pure cycle that always
dominates pure cycles and introduced a lower bound. Jolai et al [25] studied a
robotic cell scheduling problem with identical part types, when machines are flexible
and able to swap. They determined all 1-unit cycle times and proposed a novel cycle

for robot movements that dominates all robot move cycles in the literature.
2.3 Heuristic methods

De Giovani and Pezzella [26] proposed an improved genetic algorithm to solve the
distributed and flexible job-shop scheduling problem and considered a flexible
manufacturing unit including four separate FMC interconnected by a material
handling system. Batur et al. [27] suggested the robot movement sequence as well as
the processing times of the parts on each machine which jointly minimized the cycle
time for a two-machine manufacturing cell which repeatedly produces a set of

multiple part-types. They also constructed an efficient 2-stage heuristic algorithm

10

and compared it to the most common heuristic approach in scheduling for longest
processing time. Kim et al. [28] examined the cyclic scheduling problem for a dual-
armed cluster tool that performs periodic cleaning processes. They identified
sufficient conditions for which the conventional backward and swap sequences
provide the minimum cycle time. They also proposed two heuristic scheduling
strategies and compared them with the conventional scheduling methods and the

lower bound of each schedule.

11

Chapter 3

THE FMC WITHOUT INDIVIDUAL BUFFER FOR

EACH MACHINE

3.1 Preface

In this chapter, we consider m parallel and identical CNC machines placed on a line.
Different parts with different processes can be performed by each machine and
consequently the process time of each machine can be different. There are an input
station in which the items to be processed are kept and an output station in which the
finished items are kept. When an item is processed by any of the machines, it
becomes a finished item and it must be taken to the output station. There is a robot

that performs the loading/unloading activities and transports the items.

Some basic definitions, assumptions, parameters and sets are used in this thesis are as
follows:

Definition 1. A loaded robot movement is when the robot takes a part from input
buffer and moves to load a machine or takes a finished part from a machine, moves

to output buffer to unload it.

Definition 2. An unloaded robot movement is moving the robot without a part.

The parameters and sets are used in this study are as follows; It is supposed that all
data of the problems are integers.

12

&: The time of the loading and unloading of machines and buffers. This time for all

the machines, input and output buffers is the same and constant.

0. The robot travel times which are the same between input buffer and the first
machine, between every two consecutive machines and between the last machine and

output buffer.

Mi: Machine i where i is the machine number,i=1, 2, ..., m.

S: Set of all the possible different order for which m parts can be produced using m

machines in each cycle.

pi: The processing time of a part on machine i is pi.

Li: The loading of machine i, that include the robot movement from its position to the

input buffer, taking a part, moving to machine i and loading machine i.

Ui: The unloading of the machine i by the robot. Ui includes taking a part from

machine i, moving to the output buffer and putting the part in the output buffer.

L: The set of all the loading activities, L = {L1, L2, ..., Lm}.

U: The set of all the unloading activities, i.e. U = {U1, Uy, ..., Un}.

A: The set of all the activities which belong to the sets of L and U. Hence, A = {L,

L2, ceey Lm, Ul, U2, veey Um }

13

T: Cycle time, i.e. the time of loading, processing and unloading of all the parts of a

cycle and returning to the initial state including waiting time of the robot.

wi: Waiting time of the robot on machine i to unload the part that may occur if the
robot has to wait on the machine until it finishes the process. Obviously the robot
does not wait in the input or output buffer at all. If the time required after loading a
machine until the robot returns to that machine to unload it is less than the processing

time on the machine, then, waiting time is positive, otherwise it is zero.

Definition 3: When L; is completed, the robot stays at machine i. Similarly, when Ui

is completed, the robot stays at the output buffer.

Definition 4: When a machine processes a part, it is full and the machine cannot be

loaded by a new part unless the robot unloads the machine first.

Definition 5: As there are m machines in the general case, in each cycle m parts are

produced, since each part is completely produced by only one machine.

Definition 6: Every loading or unloading task is considered as an activity.
3.2 Sequential Part Production Matrix

To determine the best optimal solution, we must consider all of the different pure
cycles of the system and find their cycle times. To find all of the possible pure cycles

of a system we present sequential part production matrix (SPPM) as follows:

SPPM is a matrix that contains two columns. The first column is related to the
loading activity and the second column is related to the unloading activity. Every

14

row is related to one product and clearly, there are m rows as m products for an m-
machine FMC. The sequence of the cycle can be distinguished by the numbers in the
matrix. For example if m = 2 and we want to write the matrix related to L;L,U;1U>
cycle (which is illustrated in Figure 5) there will be a 2 by 2 matrix as there are two

products in each cycle. Also because the first activity is loading machine 1, the

matrix will be [i :]. In the next steps, machine 2 is loaded. Therefore, the matrix will

change to [; _| because as earlier mentioned the second row is related to the second
part. To complete the cycle, machine 1 and machine 2 will be unloaded respectively.

Thus the matrix will be completed as [72].

In general, let A1, A, ..., Aom be the sequence of activities in the cycle. Notice that Ay =
L1 and the set formed from the elements of the sequence, i.e. { A1,A, ..., Aom } is the
set A. The elements of the SPPM matrix are denoted by sk, where i = 1,2, ..., m and k
= 1,2. The value of the elements si1 is | if A = L and similarly, the value of s> is | if

A = Ui.

Figure 5. Robot movement sequence related to L1L>U1U> cycle.

To write all of the pure cycles for an m-machine FMC, Gultekin et al. [15] proved

that from (2m)! possible pure cycles, (2m —1)! different pure cycles exist in such a

15

cell. To neglect repetitive permutation, like LiL,U:U> and UiUzLiLo that are the
different representations of the same cycle, they assumed that all cycles will be
started with activity Li. In this way there are six different pure cycles in a 2-machine
FMC. Let S = {1, 2, 3, 4, 5 and 6} be the set of all the possible strategies for

processing two parts with two machines, the SPPM will be the following:

Table 1. SPPM for producing two parts in a two-machine cell

Strategy name 1 2 3 4 5 6

Activities Sequence L;L,U;U, L;L,U,U, L,U:LoUs L,U.U5L, L.UoLoU, L,U,U1L,

13
SPPM [13 [14 [12 [12 [14 [42
24 23 34 43 32

3.3Thecaseof m=2

In this section, a robotic FMC with two machines is considered.

3.3.1 Cycle times

To determine the best optimal solution, minimal cycle time, we should consider all of
the different pure cycles of the system and find their cycle times. There are six
different pure cycles for an FMC with two machines which are shown in Table 2. For
example cycle L,L,U, U, shows that the robot starts from machine 1, goes to the input
buffer, takes a part and loads machine 2. Then the robot goes to machine 1 and
unloads it and puts the part in the output buffer. After that it goes to machine 2 and
unloads it and puts the part in the output buffer and finally it goes to the input buffer,

takes a part and loads machine 1.

Table 2. Sequences of the activities for producing two parts in a two-machine cell.
Case number 1 2 3 4 5 6

Activities Sequence L,L,U,U, L,L,U,U; L,U;L,U, LU, U,L, L,U,L,U; L,U,U L,

16

Theorem 1: The cycle times of all the robot movement cases for a 2-machine cell

with non-identical parts are as follows:

T, = 86 + 6& + max{46 + 2¢,p,, P2}

T, = 68 + 4 + max{66 + 4¢ + p,, p,}

T3=125+8€+p1+p2

T, = 66 + 4 + max{66 + 4¢ + p1,p,}

Ts = 66 + 4¢ + max{85 + 4¢,py,p;}

Te = 106 + 66 + max{46 + 2¢,p1,p2}

Proof: The cycle times calculations for all of the cases are quite similar. Therefore,

we limit ourselves to illustrate the method through providing the proof for only one

case say T;. In order to provide a better understanding for the calculations, the

duration of each step is expressed at the end of it. Hence, the cycle time can be

calculated by getting the summation of these durations. The steps for cycle time

calculation for case 1 (T;), starting from machine 1, when it is loaded (L,) is as

follows:

1-

The robot, moves from machine 1, to the input buffer, picks up a part, moves to
machine 2, and loads it. (§ + € + 28 + ¢)

The robot, moves to machine 1, waits on machine 1 if it is necessary until its
process is finished, picks the part up, moves to the output buffer and unloads it.
b+wi+e+26+¢)

The robot returns to machine 2, waits on machine 2, if it is necessary until the
process is finished, picks up the part, moves to the output buffer and unloads it.
b+wy+e+5+¢)

The robot returns to the input buffer. (36)

17

5- The robot picks up a part from the input buffer, moves to machine 1 and loads it.

(e+6+¢)

The cycle time using this case is:
T,=0+e+26+e)+ (6 +w+e+25+e)+(F+wy+e+5+¢6)+(36)+
(e+d6+¢€)=126 +8s+w; +wy; where w; = max{0,p; — (46 + 2¢)} and

wy, = max{0,p, — (46 + 2e + w;)}.

As it can be seen, the cycle time is dependent on w; and w,, therefore it is necessary
to discuss the different cases of them. For T;, the unknown waiting times are w; and

w, and their values may vary depending on the values of p;, p, and 46 + 2¢.

If p; <48 + 2e and p, < 48 + 2e then w; = w, = 0, therefore, T; = 126 + 8¢.

If p; > 46 + 2e and p, < p; then w; = p; — (486 + 2¢) and w, = 0, therefore, T; =
86 + 6¢ + p;.

If p, > 46 + 2e = p, then w; = 0 and w, = p, — (46 + 2¢), therefore, T, = 85 +
6¢ + p,.

If p, > p; = 46 + 2¢ then w; = p; — (486 + 2¢) and w, = p, — p4, therefore, T; =

86 + 6¢ + p,.

The calculations of T; can be summarized as 86 + 6¢ + max{4d6 + 2¢,p,,p,}. By

using this method, all pure cycles’ times can be proved as mentioned. i

3.3.2 The optimal cycle time as a function of the processing time
To find a lower bound for the cycle time, all of the cycle times which are conditional

should be separated. For example T; can be separated to T;; = 126 + 8¢, if p; <

18

46 + 2¢ and p, < 46 + 2¢, Ty, = 86 + 66 + pq, if p; > 46 + 2¢ and p; > p, and
T3 =86 + 66+ p,, if p, >45+2¢ and p, > p,. By using these separated
formulas, there will be 14 different cases as follows that should be compared
together:

Ti1 =128 + 8¢, ifp; <46+ 2eand p, < 46 + 2¢

T, =88 + 66+ pq,ifp; > 46 +2cand p; = p,

T3 =86+ 6+ p,, ifp, >46 +2eandp, > p;

Ty =126 + 8+ p,, ifp; <66 +4e+p,

Tyy =66 + 4e +pq,ifp, > 68 +4e+p,

T3 =126 + 8¢ +py + p,

Ty =126 +8e+pq,ifp, <66+ 4+ py

Tyy = 66 +4e+p,, ifp, > 66 +4e+p,y

Ts1 = 146 + 8¢, ifp; <86 +4cand p, < 85 + 4¢

Ts, = 66 + 4 + p,, ifp; > 85 +4eand p, = p,

Ts3 = 66 + 4e + py, ifp, > 85 +4eand p, = p;

Te1 = 146 + 8¢, if p; <85 +4eandp, < 85 + 4¢

Te; = 106 + 66 + pq, ifp; > 46 + 2e and p; > p,

Tez = 106 + 66 + p,, if p, > 46 + 2e and p, > p;

To find the lower bound in terms of the processing times, we consider the intervals

that p, and p, belong to. According to the formulae, the intervals are as follows:

1) py,p2 €[0,46 + 2¢&] thatincludes T4, Toq, T3, Taq, Ts1 @and Tg;.
2) p1 € (46 + 26,856 + 4¢] and p; = p, that includes Ti,,T2q, Tz, T3, Ta1, Ts1

and Tg,.

19

3) py, € (46 + 26,856 + 4¢] and p, > p; that includes Tis,Tyq, T3, Ty1, Taz, T
and Ty3.
4) p; € (86 + 4¢,0) and p; = p, that includes T;,, Toq, Taz, Tz, Ta1, Tsy and T,
5) p, € (88 + 4¢,0) and p, > p; that includes T;3, Tyq, T3, Ty1, Taz, Tsz and Tes.
In the first interval, when both p; and p, are less than or equal to 46 + 2¢, Ty; IS
the least cycle time. Because T,; and T,, have a p, and a p; more than T,;,
respectively, T5 has p; + p, more than T;; and also Ts; and T4, have 26 more than
T;1. By using such comparisons for intervals of states 2 to 5, the following lemma is

true.

Lemma 1: If T,,;,, denotes the minimal cycle time, then

(T;; = 128 + 8¢ if p1 <46 +2eandp, < 46 + 2¢
Ty, =88+ 6e+p,ifp; =p,and 46 + 26 <p; <66 + 2¢
Ts1 =146 +8¢ ifp; = pyand 66 + 26 <p; <86 + 2¢
Topin = T1z3 =80 + 6 +p, ifpy <pyand 46 + 2e < p, < 66 + 2¢
Ts, = 146 + 8¢ ifpy <pyand 66 + 2¢ <p; <85 + 2¢
Ts, = 68 + 4 + p, if p1 = pyand 86 + 4e < py
\T53 = 66 + 4¢ + p, if p, > piand 88 + 4e < p,

3.3.3 An upper bound for cycle time

Considering the cycle time formula for different sequences of the robot movements
and comparing them with each other, all five intervals which are mentioned in
section 3.3.2 must be considered. In the first interval in which p; and p, are less than
46 + 2¢&, T; is greater than T;,, T,; and T,. On the other hand, comparisons
between T3, Ts; = Tg1 Show that if p; + p, < 26 then Ts; = Ty is the upper bound
for the cycle time, otherwise T5; will be the upper bound. Comparing all the different

cycle times in the second and third intervals, it is easy to see that T; is always the

20

greatest cycle time among the others. The upper bound of the cycle time for a 2-
machine cell with non-identical parts has been summarized as follows:

7 _{146+8s ifp; +pp, <26
max = | 126 + 8e+ p; + p, otherwise

3.4 Definitions, parameters and sets

The rest of the parameters and sets are used to present the proposed mathematical
models are as follows:

djk: The time to complete activity k just after completing activity j.

To calculate djk, the position of the robot after performing each activity must be taken
into consideration. After a loading activity, the position of the robot is at the machine
which was loaded, while after an unloading activity, this position is at the output
buffer. Therefore, if activity k is an unloading activity (Ux), the time required for the
robot to pick a part up and unload it into the output buffer includes wg because
perhaps when the robot reaches machine k to pick the k" part up, the process of that
part has not finished yet. Specially, if j = Lij and k = U; in the previous step, the robot
loads part i on machine i and immediately it must unload the same part, therefore the
robot’s waiting time on machine i will be equal to the processing time pi. For

example, if we want to calculate the time related to d,,, , after loading machine 1,
the robot is at machine 1. Therefore, it must go from machine 1 to machine m by
using (m — 1)4 time units to unload it. In this case if the machine m has finished the
process of the part, there will be no waiting time, otherwise, the robot must wait on
machine m that is equal to wm time units. Then the robot must get a part (¢), move to
the output buffer (J) and unload the part m. Thus, the total time for d,_,_ is equal to
mé + 2 + w,,. On the other hand, if activity k is related to a loading activity,

regardless of what activity j is (loading or unloading), there will be no waiting time
21

and the time distance will be calculated easily. In Table 3, the time distance matrix
for performing every two consecutive activities in an m-machine flexible

manufacturing cell by the robot can be seen.

Table 3. Time distance Matrix for m-machine FMC.

j\k L1 L2 Lm-1 Lm Ul u2 Um-1 Um
5+2 3+2 3+2
L1 - 36+2¢ ... md+2e (m+1)5+2¢ mé+2e+p; m+W2 & . n_:wm_ls n:_Wm &
B (m+1)3 (m-1)3 (m-1)8 (m-1)8
L2 30+2¢ ... (mt+1)d+2e (m+2)d6+2e etwy F26+ps . et Wins et wn
))) (2m-2)3 (2m-4)3 26+2¢
Lm-1 mo+2e (m+1)6+2e ... (2m-1)6+2¢ etw 2etw, e 20t2etpma W,
)) (2m-1)3 (2m-3)3 35+2¢
Lm (m+1)6+2e (m+2)8+2¢ ... (2m-1)3+2e ety e, Wi 5+2¢et+pm
) (2m-2)3 46+2¢ 26+2¢
Ul (m+2)6+2¢ (m+3)0+2¢ ... (2m)é6+2e (2m+1)5+2e etw, Wi W,
(2m)d) 45+2¢ 28+2¢
u2 (m+2)6+2e (m+3)6+2e ... (2m)d+2e (2m+1)d+2¢ etwy - Wy W,
) (2m)d (2m-2)s) 28+2¢
Um-1 (m+2)8+2¢ (m+3)6+2¢ ... (2m)é+2e (2m+1)5+2¢ etw etw, W,
(2m)d (2m-2)s 48+2¢
Um (mt2)6+2e (m+3)6+2e ... (2m)6+2e (2m+1)5+2e etwy erw, W

Also in this study the following decision variables are used:

tLi: The completion time of loading the part on machine i.

tui: The completion time of unloading machine i and putting the part into the output

buffer.

Xjk: A binary decision variable that will be 1 if activity j is followed by activity k

where j, k € A and 0, otherwise.

22

zx: A binary variable that is 1, when Lk precedes Uk and O, otherwise. If at the
beginning of the cycle machine k processes a part then Ux precedes Lk, otherwise,

not.
3.5 Mathematical models

In this section, three different mathematical models are reported. The first model is
called the complete model, which is an alternative to the model of Gultekin et al. [5].
The second model is the reduced model. In this model, all the waiting time variables
and constraints that are related to the calculation of the waiting times are eliminated.
The last mathematical model maximizes the minimum robot return time to each
machine. This value is very important because the cycle time and processing times
are connected to each other and the feasibility of the cycle time can be verified by
this model.

3.5.1 Complete mathematical model

The complete mathematical model that explicitly contains the waiting time variables

is described as follows:

Minimize T (@)
by =ty +dy X, — (1 - ijLk) M, Vjk=1,.,mj#kk=#1)
ty, 2 ty, + dy X, — (1= X0,)M, Vik=1,..mk=*1 3)
ty, =ty + dpy, —1—2z)M, Vk=1,..,m (@)
ty, = (t, —T) +dyy, — Mz, Vhk=1,..,m (5)
ty, Sty +Mz,—1, Vk=1,..,m (6)

ty, =t + d X, + we — (1 —xp)M, V0Ie{L,U}, jk=1,..mj*k (7)
ty, <t + d X, +we + (1 —xp)M, V9Ie{L,U}, jk=1,..mj*k (8)

1

23

T > tl + dllelL1’ Vi €{Lk, Uk},k = 1, ...,m,k * Ll (10)
YgeaXxig =1, VIEA|l#q (12)
YieaXig =1 VqeA|l+q (12)

X € {0,13,V1,q € 4;2 € {0,1},w;, 2 O,Vk; t; =0, Vj € 4; yyy, = 0,k (13)

The objective function minimizes the cycle time which is shown by formula (1).
Constraint (2) considers all cases that the robot consecutively loads on two different
machines, where M is a large number which is at least as large as the cycle time.
Constraint (3) is related to the cases in which an unloading activity is followed by a
loading activity. Constraints (4)—(6) are related to the loading activities that are
followed by an unloading activity. If the loading and unloading activities are related
to the same machine, the mathematical constraint will be shown by formulae (4) and
(5). Formula (5) describes the case in which the loading of the machine was
performed in the previous cycle. Constraint (4) claims that if z, = 1, then ty, >ty .
The contrary must be claimed as well, i.e., if z = 0, then t;, = ty,, which is shown
by constraint (6). Formulae (7) and (8) determine the waiting times if an activity is
followed by an unloading activity on a different machine. In these cases, the robot
may have waiting times (wk), where dyy, is the element of Table 3 without wy. To
prevent considering similar cycles such as L,L,U;U, and U,L,L,U;, it is assumed

that the cycle starts when machine 1 is loaded (L1), which is shown by constraint (9).

To calculate the cycle time, the time when the robot moves after the last activity of
the cycle to the input station and carries a part and loads machine 1, should be
considered. Constraint (10) applies these calculations. Constraints (11) and (12) are

the classical assignment constraints that are related to the sequence of the activities in

24

a cycle. It is clear that when the robot performs an activity, in the next step only one
of the other activities from the set A can be performed. Finally, Constraint (13)
defines the decision variables.

3.5.2 The reduced mathematical model

To decrease the CPU time, the constraints and variables that are related to the
waiting times can be excluded from the complete model. Therefore, instead of
formulae (7) and (8), formula (14) can be added to the model. The new mathematical
model that is called the reduced model is derived from formulae (1) to (6) and (9) to
(14) collectively.

ty, =t + dxw, — (1= x)M, V9Ie{l,Ul}jk=1,.,mj#k. (14)
3.5.3 Maximization of the minimum return time

The return time for machine k in a cycle is the time between loading the machine
(Lg) to the moment when the robot returns to the same machine to unload it. The
waiting time on machine k is zero if the return time is longer than the processing

time.

The return time is ty, —t;,, — (m+1—k)d — 2¢ if Uy is after Ly, ie., z, = 1. If
Uy, is before L, then the part that is loaded in this cycle will be unloaded in the next
cycle, i.e., the unloaded activity will be completed at ¢, + T. Thus, in this case the
return time is ty, + T —t,, — (m+1— k)& — 2¢ in this case. Hence, the general
formula for the return time is ¢y, — ¢, —(m+1—k)§ —2e + T(1 —z). For a
given cycle and the cycle time, the minimum return time is the maximum processing
time such that the cycle can produce the cycle time. Thus, if the cycle time is fixed
then the maximization of the minimum return time results in a cycle such that the
cycle time still has a fixed value, but for any larger processing time the cycle time is

25

also larger. This problem can be formulated as follows. The constraints from (2) to
(13) are unchanged. The objective function is the maximization of the new variable,
say h, such that:

ty, —ty, —(Mm+1—-k)6—2e+T(1—2,)=hVk (15)
Max h (16)
The problem must contain a fixed cycle time, i.e.,

T = requested value a7
To maximize the minimum return time, formulae (2)—-(13) with formulae (15)—(17)

must be considered where formula (16) is the objective function of that model.
3.6 Numerical results

3.6.1 The minimization of the cycle time

To compare the proposed models with the model of Gultekin et al. [5], an FMC for
producing identical products with fixed process time, and fixed & and 9, is
considered. All results for solving the models were implemented for two to six
machines using the CPLEX 12.6 software, and executed on an Intel(R) Pentium(R)
Dual CPUE2180 @ 2.00 GHz CPU and 2.00 GB of RAM. Table 4 shows the
objective functions and the CPU times for the models for the first scenario,

considering € and o 1 and 2, respectively.

26

Table 4. CPU times of solving the proposed models and the Gultekin et al. model.

3-machine cell 4-machine cell 5-machine cell
Opt. CPU time (seconds) Opt. CPU time (seconds) Opt. CPU time (seconds)
P | cycle Gultekin Proposed | Reduced | €Ycle Gultekin Proposed | Reduced | cYcle Gultekin Proposed | Reduced
time | etal model model | time | etal model | model | time | etal model | model
model model model
0 60 0.29 0.15 0.12 96 171 1.20 0.82 140 133.32 52.04 36.85
25 60 0.29 0.18 0.15 96 243 1.35 0.84 140 | 181.04 45.58 34.24
50 70 0.20 0.14 0.14 96 2.85 0.92 0.75 140 101.71 29.58 18.20
75 95 0.23 0.18 0.14 99 1.76 0.84 0.73 140 105.16 18.97 11.70
100 | 120 0.23 0.23 0.15 124 2.18 0.78 0.31 140 64.61 10.18 5.39
125 | 145 0.25 0.18 0.17 149 2.01 0.93 0.75 153 26.26 8.08 4.82
150 | 170 0.21 0.17 0.14 174 2.53 0.92 0.45 178 59.62 5.36 3.62
175 | 195 0.21 0.14 0.12 199 1.90 0.96 0.75 203 48.48 8.23 4.17
200 | 220 0.18 0.17 0.15 224 1.64 0.48 0.43 228 39.36 5.87 471
225 | 245 0.18 0.15 0.15 249 1.90 0.45 0.40 253 33.14 5.02 4.60
250 | 270 0.20 0.15 0.14 274 1.70 0.98 0.36 278 22.64 8.32 5.51

According to the results in Table 4, the proposed model has less CPU time than the

model of Gultekin et al., and the reduced model has always the shortest CPU time

among all these three models. The reduced model is the only model that can solve a

six-machine cell in about 5 hours, which is about 2 hours faster than the performance

of the complete model; and the model of Gultekin et al. could not be solved as the

computer stopped the execution with an error message. Moreover, it is worth to state

that the difference of the CPU times for these three models increases when the

number of machines increases (see Figure 6, 7 and 8).

27

CPU time (Seconds)

CPU time (Seconds)

0.3

Refrenced model
-8 - Proposed model

—v— Reduced model

028

0.26

0.24

N

o
N

e
-
(o]

016 [

0.14

50 100 150 200 250
Processing time (Seconds)
Figure 6. CPU times of the models for 3-machine test instances.

3
Refrenced model
-8 - Proposed model
25¢ "v—Reduced model

N

15T

0 . . .
0 50 100 150 200 250

Processing time (Seconds)
Figure 7. CPU times of the models for 4-machine test instances.

28

200

Refrenced model
180 | = @ = Proposed model |]
=7 Reduced model

160

— 140

CPU time (Seconds

Processing time (Seconds)
Figure 8. CPU times of the models for 5-machine test instances.

As depicted in the figures in general, the computation times of the models decreases
or in some cases remains steady when the processing time of the machines increases.
Additionally, the proposed universal and reduced mathematical models solve the
problem in shorter times in compare to the model presented in the literature, where it
is obvious that the performance of the reduced model is the best. It seems that, as
process time in the machines increases solution times of the models converging (see
Figure 8). In this testing scenario, the solution time of the models have completely

similar trends.

Figure 9 shows the sequence of optimal robot movements for a four-machine cell
obtained by the proposed mathematical model when p = 22, 6 = 2, and € = 1 time

unit. The numbers on arrows show the sequence of the robot movements.

29

4-L4
2-Ls
10-U:
14-L, ‘— 6-U>
16-L 8-Us 7]
R v I_ v [12-Us L 4 4
@ M1 M, Ms M, Output
YV A yy A 7y .
T N L L S R o 11 St
T 15 1 R
1 i | 11
e R Y i
Loooo._. i iili_._._.2
13

Figure 9. The robot optimal moves sequence for LiLsLsU>U3U1UsloLs cycle.

3.6.2 Computational result of the return time

In this case, we considered a four-machine FMC with small processing times and 96
time units of the cycle time which is the minimum cycle time according to Theorem
3. This model was solved to find how large the processing times can be, and we
found that the minimum return time is 66 in the cycle L;L,U;L;U,L,U;U,. This
means that if the processing time for each machine is less than or equal to 66, there
will be no increase in the minimum cycle time and it is equal to 96. The minimum
return time for the general case is discussed in Section 3.9.3. After this example, we
tried to maximize the minimum return time for a 4-machine FMC when there is no
limit for the cycle time; however, all the waiting times are zero. The solution shows
that the return time for all of the machines is the same and equal to 84 when the cycle

time is 106 for the cycle L, U,L,U3L3;U,L,U;.

The generalization of the optimal solution based on maximizing the minimum return
time for a two- to six-machine cell shows that the optimal solution for an m-machine

robotic cell will be LU, LU Lp—1 .- U3L, Uy

30

3.7 An improved lower bound for the optimal cycle time in the

general case

Gultekin et al. [5] proved two lower bounds using a single formula. The first lower
bound is the time that a part stays in the system. The second lower bound is the
minimum total moving time of the robot in a cycle which is independent of the
processing times. They presented short and straightforward proofs for both the lower
bounds. The new proof of the first lower bound is as follows:

Let’s consider each part stays at the input station at first. The robot carries each part
to a machine (M;), the machine processes the part, and the robot carries it to the
output station. This process consists of the following time elements. The robot is
loaded at the input station (e time units) as it moves to M;(j&), the robot is unloaded
at M;(e), the processing time is p;, the robot is loaded at M;(e) as it travels to the
output station ((m + 1 —j)6), the part is unloaded at (&), and finally to start the
cycle again the robot must return to the input station ((m + 1)6). The total time
calculated is 4e+2(m+1)6 +p;. Hence, the value of 4ec+2(m+1)§+

_max p; is considered a lower bound of the cycle time. If the processing times are
j=1tom

very long then they are the dominating factors for determining the cycle time.

However, the value of 4e + 2(m + 1)§ + _max p; can be equal to the cycle time
j=1tom

only if there is only a single machine or there is a long processing time that can
complete other processes. In what follows, all of the cases of the two processes are
discussed. Assume that both the processes are performed on machines k and I. There
are three significant different relative positions for the two processes:

1. Process of part k is completely finished and then the process of part | is started (see

Figure 10(a)). To unload part k, 4 + (m + 1)§ + p, time units are required. Then,

31

the robot must move back to the input station to carry part I, this activity takes
(m + 1) time units. Similarly, to finish the process of part I, 4e + (m + 1)6 + p; is
required. At the end, the robot must move back to the input station once more

(m + 1)4, thus the total time will be 8¢ + 4(m + 1)6 + py + p;.

(a)
Ly U, L U,
LI i —
Ly L U Uk
(©) | |
Ly L Uy U

Figure 10. Different positions of parts in a cycle that affects the cycle time.

2. Another possibility is that parts k and | are loaded consecutively and then part | is
unloaded first (see Figure 10(b)). To load part k, 2¢ + k& time units are required for
the robot to carry the part from the input station and to load machine k. To load part
I, the robot must return to the input station (k&) and carry the part to load machine |
(2e + 16). The robot must wait for completing the process of part | (p;). It must
unload machine | ((m + 1 — [)§ + 2¢), return to machine k ((m + 1 — k)§), unload
machine k ((m + 1 — k)5 + 2¢), and finally return to the input station. The total

time is at least 4(m + 1)6 + 8¢ + p; if there is no activity between these activities.

3. The last relative position is when parts k and | are loaded consecutively and then
part k is unloaded first (see Figure 10(c)). In this position, the activity time of either
L; or U, can be completed by the process time. First assume that U, is completed.

Hence, the time elements are as follows: loading of machine k (2¢ + k&), returning

32

to the input station in (k&), loading of machine I (2e + 16), processing of part | (p;),
unloading of part | ((m + 1 —1)& + 2¢), and returning to the input station ((m +
1)8). Therefore, the total time is (2k + 2(m + 1)) + 6¢ + p;). If L, is completed
by the process of part k then the time elements are as follows: loading of part k (2& +
k&), processing of part k (py), unloading of part k ((m + 1 — k)& + 2¢), returning to
machine | ((m + 1 — [)§), unloading of part | ((m + 1 — 1)§ + 2¢), and returning to
the input station ((m + 1)6). Therefore, the total time is (4(m + 1) — 21)8 + 6¢ +

px- Both the cases provide the lower bound equal to 2(m + 2)§ + 6¢ + . rﬂn Pk
=ltom

that can be concluded in the following theorem.

Theorem 2: Assume that m > 2.

(i) If there are two parts, say k and |, in a cycle such that their loading and unloading
activities take place in disjoint time intervals, then the cycle time is at least 4(m +

1)6 + 8¢ + pi + 1.

(ii) If there are two parts, say k and I, such that the time interval of the loading and
unloading activities of part k completely covers the time interval of the loading and

unloading activities of part I, then the cycle time is at least 4(m + 1)6 + 8¢ + p;.

(iii) In any other case, the cycle time is at least 2(m + 2)§ + 6¢ + . nllitn Pk-
= om

O
3.8 A lower bound explained by an assignment problem
The logic of the other lower bound of Gultekin et al. [5] is that the cycle time cannot
be shorter than the minimum total moving time of the robot such that it serves all of

33

the machines and returns to its initial position. Here, a new proof of the lower bound
is provided. This proof explores the structure of the problem and carries an

optimality analysis for several possible cycles.
Theorem 3: The cycle time is at least 2(m? + m)§ + 4me.

Proof: The robot performs each activity exactly once in each cycle. Thus, the
description of a cycle includes one element from every row and column of Table 3.
Hence, a lower bound on the cycle time can be obtained if a minimization
assignment problem is solved based on the matrix shown in Table 3. Every cell of
Table 3 includes 2¢ as the loading and unloading activities. Therefore, if we decrease

each cell by 2¢, the optimal solution of the robot movement cycle remains the same.

wi

If p; and w; are expressed in the form of %6 and ?6, then only coefficients of ¢

remain, ¢ can be deleted from each cell, and Table 3 can be revised as Table 5. Note

that j can only be less or greater than k in this table.

34

Table 5. Distance matrix in terms of coefficient of .

. Dual

j\k L. L e Le U Uk Un Coefficient
Ly - 1tk .. 1+m m+E: M+ m+=2 4-m
L Lo ko jm pEmele ik meke Lt mele 3-m+j
L« k#l ... - . k+m k+m-1+% m-k+1+%" . m-k+1+‘%" 3-m+k
L myl o omek o - 2meler L 2(mekHle L LR 3
U, m+2 ... m+k+l ... 2m+l - 2(m-k+1) 2 4
Ui m+2 ... m+k+l ... 2m+l 2m 2(m-k+1) 2 4
Un m+2 ... m+k+l ... 2m+l 2m 2(m-k+1) - 4

Dual 5 m+k-3 om3 2m-4 2(m-k-1) 2

Coefficient

If all waiting times are considered to be zero, the optimal value of the assignment
problem can be reduced further. It is possible to obtain a lower bound of the optimal
value by solving the assignment problem defined by the coefficient matrix. The dual
variables are shown in Table 5 (see the row and column of “dual coefficient”). Note

that these variables are considered feasible in the dual of the assignment problem.

To be considered feasible in the dual problem, each coefficient of the matrix must be
greater than or equal to the sum of the dual variables of its row and column. If the
dual variables are feasible and there is a feasible solution of the assignment problem
such that if a variable of the assignment problem is 1 then the related constraint of
the dual problem is satisfied by the equation and both the primal and dual solutions
are optimal. The sum of the dual variables associated with L;Ly, L;Uy, Ly Uy, ULy,

35

and U;jUy are j+km+j—2k +1m—-k+1m+k+1, and 2m-2k + 2,
respectively. The constraints for L;Ly,U;Ly, L, Uy, and U;U,, are satisfied. To check

the feasibility of L; Uy, the following formula must be applied:

LiUgm+j—2k +1 < |[j—kl+m—k+1+=£

There are two differentcases j > kand j < k. If j > k, thenm +j -2k +1 < |j —
kl+m—k+1+=f=j—k+m—k+1+=f=m+j—2k+1+-Fsince

w2 0. If j <k thenm+j—2k+1<|j—kl+m—k+1+=FE=k—j+m~
k+1+=E=m—j+1+=E By eliminating m+1 from both sides of the

inequality and taking all the parameters to one side of the inequality, it will be

simplified as 0 sik — j) + %, and because k > j, this inequality is always true.

If the elements of Table 5 are reduced by the row and column of dual variables, then

Table 5 becomes Table 6.

36

Table 6. The last table of the assignment problem.

jk L L ... L ... Lm U U .. Uk Um
p m
LL -|0].. 0 .. O § 2472 L 2kDHE L 2m-L)et
w. w. m
Ly O O ...|O0|... 0O ?1 72 LR 2(mok L)
Wy W Pk w,
e e — 2(m-k)+-—2=2
L 0 0 0 5 3 5 (M-ky+5
Wy w; Wi Wi
! - = . —= 2+4m
Lml O 0 0 0 (S (5 6 5
Wy w; Wi Pm
Ln 0 0 .. 0 .. 0|2 = . 5 3
U 0 0 .. 0 .. 0 - o |.. 0 0
Ue O 0 ... O .. 0 0O 0 .. 0 0
U 0 O .. 0 .. 0 0 0 .. - 0
Uma O O ... O .. 0O 0O 0 .. 0 0
Un | O]O .. 0 .. 0 0O 0 .. 0 -

In Table 6, the rectangles show an optimal solution assuming w; = 0. In Table 7, the
rectangles show the solution of the assignment problem in terms of ¢ coefficients.
Table 6 also shows that there are alternative optimal solutions without containing any
cell with wy, values. Thus, the optimal solutions can be determined from the cells of

rectangles assuming that w; = 0.

37

Table 7. Solution of the assignment problem in terms of ¢ coefficients.

jk L, L, Ly L U, U, Uk Un
D1 w2 Wik Win
Ly 3 1+k 1+m m+== m+—= m+-—= m+==
Lee ko k#l 2k-1 ktm-1 m+k-2+%0 ktm-4+72 m-ke+2+7E m-k+2+=2
Le k+l k+2 k+m m+k-2-% k+m-3+% m-k+1+%" m-k+1+%
Lm: m m+l m+k-1 am-1 | 2m-2+%t 2m-4+nt 2(m-k)+2 2+
Ln m+l m+2 m+k 2m 2m-1+71 | 2m-3+72 2(m-k)+1+5E 14+0m
U m+2 m+3 m+k+1 2m+1 2(m-1) 2(m-k+1) 2
Ui m+2 m+3 m+k+1 2m+1 2m 2(m-1) 2(m-k+1) 2
Uc m+2 m+3 m+k+1 2m+1 2m 2(m-1) 2
Un1 m+2 m+3 m+k+1 2m+1 2m 2(m-1) 2(m-k+1) 2
Un | m+2 | m+3 m+k+1 2m+1 2m 2(m-1) 2(m-k+1)

The cycle times considering the rectangles of Table 7 are calculated as follows:

T=4me+((m+2)+ 3,2k —1)+ (2m—1)+ I, 2(m — k + 1))§.

Because Yj-,(2k—1)=m?—1 and Yi-,2(m—k+ 1) =m? —m, the cycle

time can be calculated as follows:

T=4me+(m+2+m?—1+4+2m—1+m?>—-m)§ = 4me + (2m? + 2m)é. o

3.9 Optimal cycles of different structures in the general case

The optimal solution of the assignment problem provides a lower bound for the

minimum cycle time. If the processing times are such that all waiting times are zero,

then the lower bound is equal to the cycle time and the cycle is optimal. Since the

38

assignment problem has many optimal solutions, we determine the conditions for

optimal solutions in this section.

Theorem 4: A cycle is an optimal solution of the assignment problem if and only if
there are no machine indices k and | such that L, is immediately followed by U,

when k < L.

Proof: Table 6 contains positive values for these activities in the right upper triangle

of the matrix. O

There are many cycles that satisfy the condition of the theorem. For example, the

cycle LiLy...Ly,U,U,...Uythat can be generalized as L; L, ...L; U; Uy, ...U;

i, Uy, Uy .
These cycles are discussed in Sections 3.9.2 and 3.9.3.

3.9.1 Basic tools

To find the optimal solution(s) of the problem, we first solve the problem when the
processing times are small enough so that they can be excluded from the calculations
(p; = 0). Then, the solution is fixed and under this condition the minimum of p;,

considering that all the waiting times (w;) are still zero, is maximized.

All loaded robot movements consist of the same elements: carry a part from the input
station and load machine k (which needs k& + 2¢ time units) or unload the same
machine and put that part at the output station (that needs (m + 1 — k)& + 2¢ time
units). Therefore, the total time is equal to (m + 1) + 4¢ time units for every part
in one pure cycle. Hence, to minimize the cycle time for one pure cycle, only the
unloaded robot movement can be considered and must be minimized. Thus, it is

sufficient to determine the optimal (minimum) solution of the assignment problem
39

defined by the matrix consisting of the time distances between two machines as a

unit (6). Table 8 shows the coefficients of & for only unloaded robot movements.

Table 8. Matrix of & coefficients for only unloaded robot movements.

ik L1 Li Lk Lm Ul Uk um
L1 - 1 1 1 0 k-1 m-1
T T O S S R
Lk koo kel -k K10 .. mk
Lm m m m - m-1 ... mk

ur m+2 ... m+l ... m+l ... m+l - ... m-k+1 ... 1
U m+1 ... m+l ... m+tl ... m+tl m m—.k+1 1
Uk m+1 ... rr.1+1 n”.|+1 n%+l m - 1
Um m+l ... m+l ... m+l ... rr'1+1 m m—.k+1 -

Table 7 shows an optimal solution for the assignment problem considering &
coefficients that are the same as provided in Table 8. The optimality of this solution
is discussed in the next section. The primary tool of the analysis is the return time
that is discussed in Section 3.4.

39.2The L; L, ...L; U U;, ...U; cycle

m2-1

Lemma 2: The minimum return time is not less than 2(m — 1) + (T) 6 for any

of the solutions of type L; L;, ...L; U; U, ...U;, .

Proof: To prove that the statement is correct, at first the return time to machines i,
and i, is calculated. Then, the return time to machine i, is calculated and its
minimum value is computed. Similarly, the return time to machine i,, is calculated

and after comparing all of them the minimum value is computed.

40

Return time to machine i;: The return time to machine i, for this cycle is the time
of movement from L; to U; which includes L;, ...L; U; . Such a robot movement
sequence is called the return cycle and the return time is the time required from
loading a machine until the robot reaches the same machine to unload it. It is clear
that all the waiting times of the minimum return time are equal to zero. To calculate
the return time to machine i;, the loaded and unloaded robot movement times must

be considered. Table 9 shows the loaded and unloaded robot movement time

distances.
Table 9. Loaded and unloaded robot movement time distances.
ACthlty Li2 Li3 Lim Ui1 Uiz Uim—l Uim
Unloaded movement i1 @2 ... im1 |im-ig] m+l-i2 ... mM+l-ipg mMt+l-ip
Loaded movement i iz ... im m+l-iz m+l-ip ... m+l-ima

In the first row of Table 9, the order of the robot movements’ cycle of

Ly L, ..L; U, Uy, ...U; has been shown. The second and third rows of Table 9
show the unloading and loading times of the robot movement in detail (in terms of
coefficients of &), respectively. For example, to load machine i, just after loading
machine i;, the robot requires i;§ time units to reach the input station to carry a new
part (unloaded robot movement) and then it requires i,é time units to move from the
input station to machine i,. To calculate the summation of the loaded and unloaded
robot movements for this case, all of the robot movements from every machine to the
input station except machine i,,, must be considered as follows:

In the second row of Table 9, there is no robot movement from the last loaded
machine (i,,) to the input station. Instead, there is a robot movement to the first

machine for which the return cycle is started with (i,). This robot movement requires

41

|i,;, —i1|0 time units. Moreover, in the third row of Table 9, there is no robot
movement from the input station to the machine for which the return cycle is started
with (iy). It is clear that to calculate such robot movements we must consider 2(m —
1) time units for taking m — 1 new parts from the input station and loading them on
the machines (considering that at the beginning of the cycle machine i; has been

loaded). Therefore, the return time will be calculated as follows:
Return time = 2(m — 1) + ((Z;’l:_ll ij) + iy — i + (Z}’;Z ij)) 6 =
2m—De+ (XMyj—im + lim —ial + X7y j —i1)6 = 2(m — De +

(mm+1) + |iy, —iy| — iy — ip)d.

Here, 2(m — 1)e + m(m + 1)§ is a constant value. The minimum of (|i,, —i;| —

—2i if iy > iy

iy —ip)0 is equal to {—Zim ifi, < i and its minimum value is —2(m — 1)§ if

im=mand iy =m-—1 or i,, =m—1 and i; = m. Therefore, in this case the

minimum return time is 2(m — 1)&e + (m? + m — 2)34.

Return time to machine iz: To calculate the return time to machine L;,, the values
of the L;,column in Table 9 must be subtracted from the calculations of return time
to machine i;. Also, the times of the robot movements from machine i, to the output
station and from the output station to machine i, must be added to its calculations.
Therefore, the return time to machine i, is calculated as follows:

Return time to i, = Returntimetoi; — (i; +i,)6 + Q(m+1) —i; —iy)6 =
2m—De+ (mm+ D)+ iy, — il — iy — i) — ({1 +)0+ Q2m+ 1) — iy —

;)8 =2(m—1e + (mim+1) + 2(m + 1) + lip, — iy| — 3iy — 2iy — iy)6.

42

Similar to machine i,, the coefficient of § can be calculated as follows:

m+2)(m+1)+ {—Zil — 20y — 20 if iy, < iy If i,, > i, then in this case the

minimum value of the coefficient of § for this case is (m+2)(m+1)—
4(m—1)—-2(m—2) when i,, =m, iy =m—1, and i, = m — 2. However, if
iy, < i, the minimum value of the coefficient of § is (m+2)(m+1) —2m —
2(m—-1)—-2(m—-2)wheni; =m—1,i, =m,and i,, =m—2 or when i; =m

eitheri,=m—-1andi,, =m—-2ori,=m—-—2andi,, =m—1.

The comparison of these two values shows that the minimum return time to machine
i is2m—1De+((m+2)(m+1)—6(m—1))8§ =2(m—1e+ (m?—-3m+

8)4.

Return time to machine i: Starting from the return time of i; some new elements
must be added and some other elements must be excluded as follows:

Return time to i;, = Return time to i; — (i; + 2i, + 2i5 + -+ + 2ip_1 + ix)0 +
Qlk—1D(m+1) —i; — 2iy — iz — - — 2ip_q — i))8 =2(m — De +

(m(m+ 1) + iy, —is| — iy — i) + (2% — DM+ 1) — 2i; —4 X530 —

2iy)8.

To minimize the return time to machine i, not considering the constant part of it,
2(m—De+ (m(m+ 1) +2(k— D(m+1))5the negative parts,(—2i; —
43523 i — 2i — iy —)8, should be maximized in absolute value and the positive

parts, (li,, —i;])8, should be minimized at the same time as the following

maximization objective function:

43

L —1. . . I — iq if i, >
Maximize 4 X525 ij + 3iy + 2iy + iy — {.m Aoom o
i — iy ifi, <i

(18)

Considering i, and i,,, objective function (18) can be divided into two parts as

follows:

Maximize 4 X521 i + 20y if iy > iy (19)
and

Maximize 4 X527 i; + 20y + 2y + 20 if iy, < 5. (20)

To maximize objective function (19), the highest value of 4 5‘;11 I; is obtained when
; is related to the last k — 1 machines that are from machine m — k + 2 to machine
m, regardless of the order of machines that the robot visits. Also, the highest value of
20y, after excluding the last k —1 machines in the line, is obtained when i, is
machine m — k + 1. Therefore, the maximum value of objective function (19) will

be 4 X iz +2(m—k +1) = 2(=k? + 2m + 2)k —m — 1).

To find the maximum value of objective function (20), similar to the calculations
related to objective function (19), 4 f;zl i; can be in any sequence of the last k — 2
machines in the line layout, and i,, i), and i,, can be in any order of the last three
machines before machine m — k + 3 for which i,, < i;. The maximum value of

objective function (20) is

43 ks3] + 2R = 2(=k? + (2m + 2)k —m — 3).

Hence, the objective function (19) is greater than the objective function (20) and the

return time to machinei, is at least 2(m — e+ ((m+ D(m+ 2k —2) —

44

2-k*+ 2m+2k-m—-1))§ =2(m—De+(m—k)?> + (k—1)*+m—

1)6 = 2(m — e + (m? — 2mk — 2k + m + 2k?)3.

To find the minimum return time to machine iy, 2(m — 1)e + (m? + m)& depends

only on m but the remaining part, which is (2k? — 2mk — 2k)5, must be

2_ —
minimized. Therefore, the derivation W =4k —2m —2 =0, where k =

mT“. By putting mT“ instead of k in 2(m — 1)e + (m? — 2mk — 2k + m + 2k?)$,

2_
the minimum return time to machine i, will be equal to 2(m — 1) + (mz 1) 0.

Return time to machine i,,: Considering Table 9, the return time to machine i,,is

calculated as follows:
Return time to i,, = 2(m — 1)e + (Iim -+ m-1D(m+1) - (Z}”zz ij))6 +
(n—Dm+1) = (Zr514)) 6 =2(m = De + (lim —] + (n = 2)(m+1) +

iy + i),

Its minimum value is 2(m—1e+ ((m—2)(m+1)+2)§ =2(m— De+

(m? —m)é. Itis obtained when either i; = 1 ori,, = 1.

The comparison among the minimum values of i,, i,, iy, and i,, which are equal to

2im—De+ (mM?>+m—-2)5, 2(m—1De+(mM?-3m+8)5, 2(m-1e+

2_
(mz 1) 8, and 2(m — 1) + (m? — m)$&, respectively, shows that the return time to

. +1 . .
machine k = mT when m is an odd number and k = % ork = % + 1 when m is an

even number. Therefore, we can obtain the minimum possible return time in the

45

2_
cycle of the type L; L;, ...L; U; Uy, ...U; that is equal to 2(m — 1)e + (mz 1) é.

m~ i
This value is obtained when the last k — 1 machines have the indices from m — k +
2 to m (regardless of the order of how the robot services them) and also for the
machines i,_xs1 = m—k + 2. m
3.9.3 The LiLmUm1bLm-1...U2L2U1Un cycle
Lemma 3: The minimum return time is not greater than (4m — 6)s + (2m? — 4)§

for any of the solutions of the type L;L,,Uy—1Lm-1 ... UsL,U U,,. This value is

obtained for the return time to machines 1 and m.

Proof: Considering Table 6, the cycle time of L;L,,Uy—1Lm—1 ... UL, U Uy, 1S ONE
of the minimum cycle times when all the waiting times are zero. According to
Theorem 3, it is equal to 4me + 2(m? + m)4§. To calculate the return times of all the
machines, we can subtract the complementary of the return time for each machine
from the cycle time presented in Theorem 2. The complementary of a return time, let
say for machine i, is the robot movements’ time from when the robot is beside
machine i to unload it to the end of loading the same machine. For example, to
calculate the complementary of the return time to machine k when U, is followed by
Ly, only unloading machine k (when the robot is beside it) and loading the same
machine must be considered. This duration of time is the summation of the time for
unloading machine k (which is equal to 2e + (m + 1 — k)3§), the robot movement
from the output station to the input station ((m + 1)6), and loading machine k(2¢ +
k&),. Therefore, the total time is 4e + 2(m + 1)4§. Since the complementary of
return times for all the machines except machines 1 and m of the given cycle is equal
to 4¢ + 2(m + 1)4, therefore the return times for these machines are calculated as

follows:

46

(4me +2(m? + m)8) — (4e + 2(m + 1)8) = (4m — 4)e + (2m? — 2)6.

In the same way, it can be shown that the return times to machines 1 and m are equal
to (4m —6)s + (2m? —4)5. Thus, the minimum return time for the cycle

LiLpUpm—q1Lyp—q ... UL, U; Uy, 1S Obtained for machines 1 and m. m

47

Chapter 4

THE FMC WITH INDIVIDUAL BUFFER FOR EACH

MACHINE

4.1 Preface

In this chapter, we consider m parallel and identical CNC machines placed on a line.
Different parts with different processes can be performed by each machine and
consequently the process time of each machine can be different. Each machine
contains individual input buffer. There are an input station in which the items to be
processed are kept and an output station in which the finished items are kept. When
an item is processed by any of the machines, it becomes a finished item and it must
be taken to the output station. There is a robot that performs the loading/unloading
activities and transports the items.

4.2 Sequential part production matrix

To determine the optimal cycle time in an FMC, all of the potential cycles of the
system should be considered. To represent the cycles, the sequential part production
(SPP) matrix for an m-machine FMC when machines 1 to m produce nq, ny, ... , iy

parts, respectively, is presented in the following.

The SPP matrix contains two rows. The first row represents the loading operations
and the second row represents the unloading operations. Every column indicates one
production; therefore, there are n; + n, + --- + n,, columns. The columns related to

the production of machines are separated with the vertical lines in the matrix and the
48

sequence of the operations is distinguished by numbers. For example, suppose there

are two machines in a cell and each machine produces two parts, there will be a 2*4
SPP matrix like [ZZ |~ Z]. Figure 11 presents the cycle L,L,L,L,U;U,U,U,. This
cycle is shown by using the SPP matrix. The first activity is loading machine 1, so in
the first step the matrix will be [f: | ::] in the first step. In the next step, machine 2

is loaded. Therefore, the matrix will become [f: | 2 :]. Then, to load the buffers of

machines 1 and 2, respectively, the matrix will become [* 2|2 *]. To complete the
cycle, machines 1 and 2 will be unloaded, respectively. Thus, the matrix will be

represented as | |

os)

3L —

i
[PO 2
1
i

Figure 11. Robot movement sequence related to the LiLoL1L2U1U2U1U> cycle.

To determine the number of different cycles in an m-machine FMC without any
individual buffer before machines, since each machine must be loaded and unloaded
one time, there are two activities related to each machine and totally there are 2m
unique activities in a cycle. To prevent the repetitive permutation, such as Li1LoU1U>
and UiU>L1L, that are different representations of the same cycle, without loss of
generality it can be assumed that all of the cycles start with activity Li. Hence, there

are (2m-1)! different cycles in such a cell. Based on this idea, to determine all of the

49

cycles for an m-machine FMC with an input buffer before each machine (when each
buffer has only the capacity of storing one part), and assuming that 2m parts are
produced in a cycle in which each machine produces exactly two parts, there are four
activities related to each machine including two loading and two unloading activities.
In this case, the SPP matrix is represented as [~ ~|ZZ|...|ZZ]. In this matrix, there

are m-1 vertical lines that separate all of the activities related to each of the

(4m-1)!
(2!)2m—1

machines. Generally, an m-machine cell consists different cycles in which

the first loading of machine 1 is the first activity and the other L, can be in any place

from the second to the last.
4.3 Definitions, parameters and sets

The loading of machine i includes taking an item from the input station, robot
movement from the input station to machine i, and putting the item to the input
buffer of the machine. It is assumed that when a machine is idle and there is an item
in its input buffer, the machine takes this item from its input buffer and starts
processing it automatically. It means there is no need to use the robot for this
operation. The unloading of machine i includes taking the finished item from the
machine by the robot, the robot movement from the machine i to the output station,
and putting the item to the output station. Note that the robot stays at machine i at the
end of the loading of machine i, and stays at the output station after the unloading of

any machine.

It is assumed that the system repeats the same cycle in the long run. If the system is
at a specific state at the beginning of a cycle, it reaches the same state at the end of
the cycle and repeats the same activities in the following cycle. The duration of a

cycle is called the cycle time. It is assumed that each machine processes only two

50

items in each cycle. Let Lik be the loading and Uik be the unloading of the kth item of
machine i in each cycle. Let L; be the set of loading activities of machine i, i.e., Li =
{Lix k=1,2}, and U; be the set of unloading activities of machine i, i.e., Ui = {Ui|
k=1,2}. Let A be the set of all loading and unloading activities, i.e., A={Lik, Uik|

i=1,2,..., m; k=1,2}.

Let € be the time for taking an item from the input station or from a machine, or the
time for putting an item to the input buffer of a machine or to the output station. Let
d be the travel time of the robot for a one-unit distance. The distances between the
input station and the first machine, between any two consecutive machines, and
between the last machine and the output station are assumed to be one unit of
distance. So, the time that the robot needs to perform activity b after finishing

activity a (dab) is

26 +(i+j)S ifacl,andbel,
2¢+(ji—j|+m+1-j)s ifael,andbeU,

7] 2s+2(m+1-j)s ifaeU andbeU,
2¢ +(M+1+ j)o ifaceU;andbel,

On the other hand, the robot may need to wait before starting the unloading of an
item if its process has not finished. The time between the completion times of

activities a, and b related to machine i cannot be less than the following values

(MT'a):
2¢+(M+1-1)o+p, ifa=L,andb=U,
. |2e+(Mm+1-i)o+p;, ifa=L,andb=U,,
MT,, =)
P, if a,be U,
d,, otherwise

51

In order to start such a cyclic production, the system needs a setup. All of the loading
and unloading activity orders of machine i at the beginning of the first cycle are as
follows:

- The machine is idle and its input buffer is empty:

1. Li1, Li2, Uig, Uiz

2. Li1, Uiy, Lig, Uiz

- The machine has a processed part and its input buffer is empty:

3. Li2,Uin, Uiz, Lia

4. Liz, Uiy, Li1, Uiz

5. Ui, Liz, Uiz, Lin

6. Ui, Liz, Li1, Uiz

- The machine has a processed part and its input buffer is full:

7. Ui, Uiz, Lig, Li2

8. Ui, Li1, Uip, Li2

The order of the loading and unloading activities of each machine can be one of the
eight above-mentioned orders in the cyclic production. According to the orders of the
activities, each machine should be setup before starting the cyclic production and

then the system may repeat the same operations continuously.

Since the system will repeat the same cycle continuously, each activity may be
considered as the first activity. We consider Li1 as the first activity in this study.
Therefore, the time between two L1 is called the cycle time. A reduction in the cycle
time means an increase in the production rate of such a system. The problem is to

determine the order of all loading and unloading activities for minimizing the cycle

52

time. We have developed the following mixed integer programming formulation to
resolve this problem where the decision variables are as follows:

T: cycle time
ta: completion time of activity @ € A

1 if robot performsactivity b after activity a
Xao = 0 0.W

B {1 if k™ orderis applied for theactvities of machinei;k=1,2,...,8
ik =
0 0.W.

4.4 Mathematical model

The mathematical formulation for the provided problem is the following:

Minimize T (21)
> x, =1, VaeA, (22)
beAa
> X, =1, VbeA, (23)
acAb
t, >t +d, -M(@Q-x,), Vbe A-L,,acA-b, (24)
T>t, +d, X, vacA-L,, (25)
Zglzij =1,i=1...m, (26)
=1
t—tu SM(z,+2,+25+2+2,+25), 1=1..,m, (27)
t—th, SM(zs+25+2,), 1 m, (28)
t—ti, SM(z,+2,+25+2), 1=1..,m, (29)
ti, —t, <M(z,+2z,), 1=1..,.m, (30)
ti, —t, <M(z,+2,+2,), 1=1..,m, (31)

53

t, —ti SM(zi, +25+24+2,+25), 1=1...,m,
t, —thi, SM(z; +24), 1=1..,m,

tLi2 Lll—M(Z|1+Z|2+Z|7+Z|8) I mr

thi, —t SM(zy+2,+2,+25+2), 1=1...m,
thi, — b, SM(Zy+Z,+2i5+2,, + 25 +2;), 1 = ,

ton 2t +MTy —M(L-2,), i=1..,mk=12,

ty, 2ty +MT, - M(1-2z,), i=1..mk=256,

ty, 2t +MT, 0, -~ M(1-2,), i=1..,mk=2456,

ty, 2t +e+MT,,, - M(L-7,), i=1..,mk=13,
tin 2ty +MT), . ~M(1-2,), i=1..,mk=357,
t, 2ty +MT, -M-z,), i=1..mk=17,
tn 2t +MTS L —M(@L-2,), i=1..,mk=48,

ty, 2t +MT,, - M(L-2z,), i=1..mk=468,
tn 2t +MT, -M(@1-z,), i=1..,mk=6,

ti, 2ty, +MTy,, —~M(@A-2z,), i=1..,mk=8,

tUll—tL|2+|\/ITLI2Ul M(l Zlk) ’ ’mk 134

Lo 2Ty + MTL:l,UZ -M(1-z,), i=1..,mk=13478,

tin —ton ST —MT 12y, i=1...,mk =3456,78,
t —tu <T- MTleuz ik 7 i=1..,mk=8,
ti, —tun ST —(e+MT,)z, i=1...mk=7,

54

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

t,>0, VacA, (52)

T>0 (53)
X, {0}, VaeAbeA-a, (54)
z, {0, i=1..m;j=1..6, (55)

The objective function of this model is to minimize the cycle time. Constraint (22)
guarantees that the robot passes from each activity to another activity. Constraint
(23) guarantees that the robot passes to each activity from another activity.
Constraints (22) and (23) together guarantee that each activity is performed by the
robot. Constraint (24) computes the completion times of the activities considering the
robot moving time to perform successive activities. Constraint (24) also eliminates
the sub-cycles. Constraint (25) computes the cycle time considering the completion
time of the last activity and the robot moving time until just before performing the
first activity of the cycle. Constraint (26) guarantees that for each machine one of the
eight possible orders is applied. Constraints (27)—(36) compare the completion times
of the activities of each machine and force the related z variables to be 1. Since in all
of the eight orders, Uiz is before Uiz; considering constraint (26), there is no need to
use the similar constraints for Ui>—Uiz. Constraints (37)—(51) compute the completion
times of the activities considering the process times of the machines and the time that

the robot needs to perform these tasks.

Two of the main concerns of the researchers are the execution time reduction of the
exact methods and to solve the larger problems. In the present study, for decreasing
the CPU time to solve the small-size problems, a linear relaxation approach is
employed. Using this approach, some of the fractional solutions are eliminated from

the solution space. The linear relaxation is expressed as follows:

55

T <Ub, (56)
where Ub is an upper bound for the cycle time. To find Ub, a system when only
machine 1 has been loaded and the robot is besides it is considered. Generally, the
activity orders for this cycle are LiLoLo...LmLmU1U;...UnL1. To find Ub by using a
mathematical model, constraints (57)—-(61) must be added to the proposed

mathematical model (PMM) as follows:

t, <ty 1=1..m, (57)
t, <ty 1=1.,m-1j=i+l, (58)
o <tuir (59)
tyy <tyip, 1=1...m, (60)
ty, <typ, 1=L.om-1 j=i+1 (61)

The cycle time, which is obtained in less than 3 s, is considered as Ub and must be
added to the original mathematical model for the second run. This method is called
the time reduction method (TRM) in this study.

4.5 Numerical results

To compare the performance of TRM and PMM, several small-size problems with
identical parts and processing times are considered. Both the exact models are coded
in CPLEX 12.6 software and executed on an Intel(R) Pentium(R) Dual CPUE 2180
at 2.00 GHz CPU with a RAM of 2.0 GB. Table 10 shows the objective functions,
lower bounds, and the CPU times for solving the two-machine problems using both

the proposed exact models.

56

Table 10. The results of the mathematical models for two-machine cells.
CPU time (in seconds)

Processing times Objective function Lower Bound

PMM TRM
30 76 112 0.83 0.77
35 86 127 1.14 0.51
40 96 142 0.98 0.79
45 106 157 0.92 0.64
50 116 172 1.00 0.85
55 126 187 1.25 0.92
60 136 202 0.90 0.71
65 146 217 1.07 0.76
70 156 232 0.79 0.78
75 166 247 0.98 0.81
80 176 262 1.03 1.01
85 186 277 1.06 1.20
90 196 292 0.81 0.89
95 206 307 111 0.78
100 216 322 1.00 0.71

From Table 10, it can be observed that when the processing times of both the
machines are the same and equal to 30 time units, the cycle time will be 76 units.
This objective function is obtained by PMM in 0.83 s using the lower bound of 112
time units. TRM obtains the optimal solution in 0.77 s. To compare the performance

of both the methods, their CPU times are plotted in Figure 12.

14
1.2 o

08 & R *

ceirooe MMP

TRM
0.4

0.2

O T T T T T T T T T T T T T T
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 12. CPU times of the mathematical models for two-machine cells.

Comparing the CPU times of TRM and PMM for the two-machine cell problems

demonstrates that the performance of the TRM is significantly better than the PMM.

57

Table 11, similar to Table 10, presents the process of solving the three-machine cell

problems by using both the proposed models.

Table 11. The results of the mathematical models for three-machine cells.
CPU time (in seconds)

Processing times Objective function Lower Bound

PMM TRM
30 120 180 395.90 124.30
35 120 195 160.90 63.16
40 120 210 33.39 49.49
45 120 225 41.68 20.13
50 120 240 9.26 20.80
55 130 256 109.90 8.53
60 140 276 4217 7.89
65 150 296 37.74 12.20
70 160 316 17.50 13.60
75 170 336 17.69 11.64
80 180 356 25.87 14.44
85 190 376 70.51 14.87
90 200 396 4494 11.54
95 210 416 46.50 31.79
100 220 436 33.09 16.30

Table 11 shows that when the processing times are less than 50, the objective
functions are the same and equal to 120; and by increasing each five units to the
processing times, the objective functions are increased by 10 units. To obtain a better
comparison between the models for the three-machine cell problems, the CPU times

of solving the problems are plotted in Figure 13.

500
400
300
MMP
200 TRM
100 +—
0 T T T T T T T T T T T T T T 1
30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Figure 13. CPU times of the mathematical models for three-machine cells.

The graph of PMM demonstrates that for small processing times, the CPU times are

very large but by increasing the processing times the CPU times decrease
58

significantly and fluctuate around 40.7 s. The graph of TRM shows a more logical
trend in which the CPU times for small processing times are large but by increasing
the processing times the CPU times decrease gradually and fluctuate around 14.5 s.
Considering Figure 13, it can be seen that for the three-machine cell problems TRM
is more efficient than PMM in most of the cases.

4.6 A lower bound explained by an assignment problem

In a cycle, the minimal total time of the robot movements provides a lower bound for
the cycle time. The cycle time is longer than the total movement time if and only if
there is at least one positive waiting time for the robot. The presence of the positive

waiting time depends on the length of the processing time.

Theorem 5. The minimum cycle time to produce 2m parts when each machine

produces two parts is (4m? + 4m)§ + 8me.

Proof: When the total movement time of the robot is determined, all waiting times
can be considered zero. Table 12 shows the time distance matrix for every two

activities in an m-machine cell.

59

Table 12. Time distance matrix for an FMC when each machine has an input buffer.

j\k L1 L2 Lm-1 Lm Ul u2 Um-1 Um
md+2g moé+2e moé+2e
L1 26+2¢ 36+2¢ mo+2e (m+1)3+2e mdé+2etp
W, +Win.1 +Wn
(m+1)8 (m-1)3 (m-1)8 (m-1)3
L2 36+2¢ 45+2¢ (m+1)6+2e (m+2)d+2¢
+2e+wy +2e+p +2etWma +H2etwp
(2m-2)3 (2m-4)3 26+2¢
Lm-1 mdé+2¢e (m+1)3+2¢ (2m-2)6+2¢ (2m-1)6+2¢ 28+2¢e+p
+2e+wy +2e+w, +Wpn
(2m-1)3 (2m-3)3 38+2¢
Lm (m+1)d+2e (m+2)0+2¢ (2m-1)é+2¢ (2m)d+2¢ 3+2¢e+p
+2et+wy +2e+w; +Wp.1
(2m)d (2m-2)3 456+2¢ 26+2¢
ul (m+2)6+2e (m+3)0+2¢ (2m)é+2e (2m+1)d+2e
+2etwy +2e+w, +Wn.1 +Wn
(2m)d (2m-2)3 456+2¢ 26+2¢
u2 (m+2)6+2e (m+3)0+2¢ (2m)é+2e (2m+1)d+2e
+2etw; +2e+w, +Wn.1 +Wn
(2m)3 (2m-2)8 45+2¢ 28+2¢
Um-1 (mt2)6+2e (m+3)d+2e (2m)d+2e (2m+1)d+2¢
+28+W1 +28+W2 +Wm-1 +Wn
(2m)3 (2m-2)8 45+2¢ 28+2¢
Um (m+2)8+2¢ (m+3)0+2¢ (2m)d+2e (2m+1)d+2¢
+28+W1 +28+W2 +Wm-1 +Wn

Since each cell in Table 12 includes 2¢ for the loading/unloading activities, if we

decrease each cell by 2¢, the optimal robot movement sequence remains the same.

Then, every cell in the table will be a multiple of ¢ (see Table 13). Therefore, it

should be noted that for those cells that include processing times, p; will be changed

to %" to be a multiple of 6. Moreover, since each machine produces two parts in a

cycle, there are two loading and two unloading activities for each machine. Thus,

there are four rows and columns for each machine in which the first row or column is

related to the first part which is processed by machine k.

60

Table 13. Time distance matrix in terms of the ¢ coefficient.

ij L1 Lk Lk Lm Ul Uk Uk Um
P1

L1 - 1+k 1+k 1+m m+§ m m m
Lj j+l - jtk jtm jtm-1 [i-k[+m-k+1 [i-k[+m-k+1 m-j+1
Lj j+l j+k - j+m j+m-1 [i-k[+m-k+1 [i-k[+m-k+1 m-j+1
Lk kel - 2%k W kem o kfml .. m—k+1+4 %" m-k+1 oo mekel
Lk kel 2% - o kem kml m-ke+1 m—k+1+ %" . mkel
Lm m+1 m+k m+k - 2m-1 2(m-k)+1 2(m-k)+1 1+ I%m
U1 m+2 m+k+1l m+k+1 2m+1 - 2(m-k+1) 2(m-k+1) 2
Uj m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2(m-k+1) 2
Uj m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2(m-k+1) 2
Uk m+2 m+k+1l m+k+1 2m+1 2m - 2(m-k+1) 2
Uk m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) - 2
um m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2(m-k+1)

Each feasible solution has an element in every row and column. To find the optimal
solution, an assignment problem is solved as shown in Table 13. The dual variables
of this problem are shown in Table 14 (see the row and the column of “Dual
coefficient”). It must be shown that these dual variables are feasible in the dual of the

assignment problem.

61

Table 14. Distance matrix in terms of the ¢ coefficient and dual solutions.

ij L1 Lk Lk Lm U1l Uk Uk Um Dual
L1 - 1+k 1+k 1+m m+% m m m 2
Lj j+l jtk jtk jtm jtm-1 [i-k|[+m-k+1 [i-K|[+m-k+1 m-j+1 jtl
Lj j+l j+k j+k j+m j+m-1 [i-k[+m-k+1 [i-k|+m-k+1 m-j+1 j+l
Lk | kel - % .. kem o kemel m—le+1+58 m-k+1 mk+l | kel
Lk k+1 2k - k+m k+m-1 m-k+1 m-—k+1+ %k m-k+1 k+1
Lm m+1 m+k m+k - 2m-1 2(m-k)+1 2(m-k)+1 1+ I%m m+1
U1 m+2 m+k+1l m+k+1 2m+1 2(m-k+1) 2(m-k+1) 2 m+2
Uj m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2(m-k+1) 2 m+2
Uj m+2 m+k+l m+k+1 2m+1 2m 2(m-k+1) 2(m-k+1) 2 m+2
Uk m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2 m+2
Uk m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2 m+2
um m+2 m+k+1l m+k+1 2m+1 2m 2(m-k+1) 2(m-k+1) m+2
0 k-1 k-1 m-1 m-2 m-2k m-2k -m

To examine the feasibility in the dual problem, each coefficient in the matrix of the

assignment problem must be greater than or equal to the sum of the dual variables of

its row and column. When a variable of the assignment problem is 1, if its dual

variables are feasible in the dual problem and there is a feasible solution for the

assignment problem, the related constraint of the dual problem is satisfied by the

following equations and both of the primal and dual solutions are optimal. The sums

of the dual variables are as follows:
LiLk: (j+1) + (k1) = j+k
LiLx: (k+1) + (k-1) = 2k

LjUk: (j+1) + (m—2k) = m+j—2k+1

62

LeUk: (k+1) + (m—2K) = m—k+1
UjLx: (m+2) + (k-1) = m+k+1
UrLk: (m+2) + (k—1) = m+k+1
UjUk: (m+2) + (m—2k) = 2m-2k+2

UrUk: (m+2) + (m-2K) = 2m-2k+2

Therefore, to examine all of these feasibilities, the following equations must be
evaluated with their conjunctions of their rows and columns of Table 14:

Lilk: j+k <j+k

LiLk: 2k <2k

LjUk: m+j—2k +1 < |jKk[+m—k+1

There are two different cases as j > k and j < k. If j > k, then m+j—2k+1 <
[jK[+m—k+1 = jk+m—k+1 = m+j-2k+1. If j <k, then m+j—2k+1 < |jk|+m—k+1
= k9+m-k+1 = m—+1. By eliminating m+1 from both sides of the inequality and
taking all the parameters to one side, it will be simplified as 0 < 2(k — j); and as k is
greater than j, this inequality is always true. Therefore,

LU m—k+1 <m—k+landalsom—k+1<m-k+1+ %". Considering every
value of p in the second case, both the inequalities are correct:

UjLike m+k+1 < m+k+1

UkLk: m+k+1 <m+k+1

UjUk: 2m—2k+2 = 2(m—k+1)

UkUk: 2m—2k+2 = 2(m-k+1)

63

If the elements of Table 14 are reduced by the row and column of dual variables,

then it becomes Table 15.

Table 15. The last table for the assignment problem.

j L L .. Lk Lk .. Lm Ul .. Uk UK .. Um
1 - | ol| .. o o .. o0 % k1) 2(k-1) ... 2(m-1)
L o0 0 .. 0 0 .. 0 0 .. 2ki) 2ki) .. 2mi
L 0 0 .. 0 0 .. 0 0 .. 2k 2ki) ... 2m)
Pk
tk 0o o .. - |o|. o o . X 0 .. 2mK
Lk o 0 .. 0 - .. 0 0o .. o0 %" L 2mK)
D
tm o o .. 0o 0o .. -lol.. o0 o .. B
uu o o0 .. 0 0 .. 0o - .. o o .. 0
yy o o .. 0 0 .. 0 0 .. 0 o .. 0
yy o o .. 0 0 .. 0 0 .. 0 o .. 0

Uk 0 0 0 0 0 0 - IIl 0

Uk 0 0 0 0 0 0 0 - 0

o
o
o
o
o
o

Ummo

In Table 15, the rectangles indicate an optimal solution of the assignment problem.
Therefore, considering the related o coefficients of the rectangles in Table 14, the
total time of producing 2m parts in a cycle using an FMC can be calculated as

follows:

T = 8me + (2% k + (2m — 1) + (2m) + 2 XL 2(m — k + 1) + (m + 2)) 8.

64

Since Yim k =2m?+m—1and Y7 ,2(m—k+1) =m?—m, the cycle time
can be calculated as follows:

T =8me+ (2m*+m—1)+ (2m—1) + (2m) + 2m? —2m) + (m + 2))6 =
8me + (4m? + 4m)$6. O
4.7 Optimal cycles of different structures in a general case

The optimal solution of the assignment problem, which is the minimal total time, the
robot moves in a cycle, provides a lower bound for the minimal cycle time. Table 15
shows that there are numerous different optimal solutions for the assignment
problem. If the processing times are such that all waiting times are zero, then the
lower bound is equal to the minimal cycle time. Otherwise, the minimal cycle time
becomes significantly greater than the lower bound. To find the optimal solutions of
the problem, first we solve the problem when the processing times are small enough,
i.e., which can be neglected from the calculations (P = 0). Then, we find the solution,
and under that condition we maximize p such that all of the waiting times (w;i) are
still zero.

4.7.1 Return time

The return time to a machine is the time between loading the machine and the
moment that the robot returns to the same machine to unload it. The total working
time of the robot during a return time is a lower bound of the return time. It is
possible that some of the waiting times during the return time can be positive. The
total working times of the robot contain both transportations and the
loading/unloading operations. Therefore, the return time can be reduced by
calculating the working times of the robot. The waiting time on machine k is zero if
the return time is longer than its processing time. In this study, we have considered
two return times for each machine because each machine is loaded twice. For

65

example, assume that a cycle has an order like LiL;...LmLmU1U1...UnUm. Then, the
first return time to machine k is the time from machine k, just after loading machine k
for the first time, and passing the route of Lk...LmLmU1U1...Uk-1 until the robot reaches
besides machine k to unload it for the first time. To calculate this return time, all the
robot movements are divided into loaded movements, when the robot is carrying a
part, and unloaded movements, when the robot is moving when it is empty. The
coefficients of all the robot movements for return to machine k are provided in Table

16.

Table 16. Loaded and unloaded robot movement times for machine k.

Activity Lk Lkt Lik+ez ... Lm1 Lm Lm Ui U ... Ukt Uk
Unloaded Kk Kk kel .. ml1 ml m ml m .. mk#2 mk+l
movement

Loaded k k+l kt1 ... ml1 m m m m .. mk+2
movement

The times related to the unloaded robot movements are the summation of the second

row of Table 16, and it is calculated as follows:
20+ m =D+ 28 k) T (m—k+ D =m? +m—-k*+k) +
m-—1D)+Cmk—k*—4m+3k—2)+(m—k+1) =m? —m— 2k? + 2km +

3k —2.

The times related to the loaded robot movements are the summation of the third row

of Table 16, and it is calculated as follows:
k + Z(Z}L‘kﬂi) + Z(er‘;m_k+2j) =k+ (m?+m—-k?®—-k)+ (2km —k® - 2m +

3k—2) =m? —m — 2k? + 2mk + 3k — 2.

66

Therefore, the first return time of the robot for Lk...LmLmU1Us1...Uk is equal to
2(m? — 2k?* + 2km —m + 3k — 2)6 + 2(2m — 1)e. The properties of the ¢
coefficient are as follows:

1

It is a quadratic function in terms of k.

2- Its maximum point is equal to @ and the maximum value of this function is

(3m? +m—)8 +2(2m — e,

3- Itis symmetric to the vertical line of k = 2":’3.

4

The minimal value of this function in the [1, m] interval is 2m? + 2m — 2.

To calculate the second return time to machine k, the loaded and the unloaded robot
movements of activity Lx must be neglected from Table 16, and the loaded robot
movement of the first Uk and the unladed robot movement of the second Ux must be

added (see Table 17).

Table 17. Loaded and unloaded robot movement times for Lk+1...LmLmU1U1...UkUk.

Activity Lets Lk ... Lmi Lma Lm Lm Ul Ul .. Uk-1 Uk Uk
Unloaded m- m- m-
+ - - - -
movement k k+1 . m2 ml ml m ml m ka2 kel kil
Loaded m- m-
+ + - -
movement kel kel m-1 - m-l m m m m k+2 k+1

As it is obvious from Table 17, by adding 2(m —k + 1)6 to the total robot
movement time of the first return time to machine k and subtracting 2k§ from it, the

total robot movement time of the second return time to machine k is as follows:

67

2(m? = 2k?*+2km—m+3k—-2)6§ +202m —1)e+ 2(m —k + 1)5 — 2ké) =

2(m? = 2k? + 2km + k — 1)6 + 2(2m — 1)e.

The properties of the ¢ coefficient for the second return time to machine k are as

follows:

1

It is a quadratic function of k.

+1 . . .
and its maximum value is the same as the

. . . 2m
Its maximum point is equal to = —

first return time to machine k.

It is symmetric to the vertical line of k = 2":’1.

The minimal value of this function in the [1,m] interval is the same as the

minimum value of the first return time to machine k.

A comparison between the first and the second return time to machine k shows that

the first return time to machine k is shorter if k < mTH On the other hand, these

calculations show that the following lemma is true.

Lemma 4. In the LiL1...LmLmU1U1...UnUn cycle, the minimal return time is at least

2(m?+m—1)6§ + 2(2m — 1)e.

Proof. The first return time to machine 1 and the second return time to machine m

are the same and equal to 2(m? +m —1)6 + 2(2m — 1)e. If there are positive

waiting times, then the minimal return time can be larger but not shorter. i

68

Assume that px is the processing time of machine k to process the parts. The first and

the second return time define the lemma as follows:

Lemma 5. If for each machine k in which k < mT“ pr < 2(m? — 2k? + 2km —
m+ 3k —2)§ + 2(2m — 1)g, then all waiting times are zero. Also, if for each
machine k in which k > mTH pr < 2(m? — 2k? + 2km + k — 1)8 + 2(2m — 1)s,

then all waiting times are zero.

Corollary. In an FMC with identical parallel machines, if p < 2(m? +m —1)6 +

2(2m — 1)g, then all waiting times are zero.

Proof. The statement is a direct consequence of the last two lemmas. m

4.7.2 Optimal cycles

All loaded robot movements contain the same elements: taking a part from the input
buffer and loading machine k which needs ko+2¢ time units, unloading it, and putting
it into the output buffer which needs (m+1-k)d+2¢; and the total time is the same
and equal to (m+1)J+4e time units for each part. Therefore, to minimize the working
times of the robot, only the unloaded robot movements should be minimized. For this
reason, it is sufficient to determine the optimal solution of the assignment problem
defined by the matrix consisting of the distances between two machines as a unit (9).
Table 18 provides the distances in terms of the ¢ coefficient for only unloaded robot

movements.

69

Table 18. Matrix of the ¢ coefficient for unloaded robot movements.

k L1 Li Li Lm Ul Uk Uk Um
L1 - 1 1 1 0 k-1 k-1 m-1
L1 1 1 1 1 0 k-1 k-1 m-1
Li i - i i i-1 |k-i] |k-i] m-i
Li i i - i i-1 |k-i| |k-i] m-i
Lk k k k k k-1 0 0 m-k
Lk k k k k k-1 0 0 m-k
Lm m m m - m-1 m-k m-k 0
m- m-
Ul m+1 m+1 m+1 m+1 - kil ka1 1
. m- m-
Ui m+1 m+1 m+1 m+1 m k1 K+l 1
. m- m-
Ui m+1 m+1 m+1 m+1 m k1 K+l 1
Uk m+l m+l m+l m+l m - m- 1
ka1
m- m-
Um m+1 m+1 m+1 m+1 m k1 K1

If we assume that p; = 0, then we can obtain the optimal solution by minimizing the
assignment problem. There are a number of optimal solutions for p; = 0. Some of
the solutions are as follows:

1. According to Table 18, the total time for the unloaded robot movement cycle like

L1l s...LmkmU1U...UnUm in terms of the o coefficient is equal to (Z(Z;"zlk) -1+

201 (m—k+ 1) —m+ (m+1))8 = 2m? + 2m)6.

2. The cycle that contains any order of loading activities like LiL;... Lm at first and

continues by any order of unloading activities that will be started with U;.

70

3. Any order of the robot movement cycle which includes loading and unloading
activities of each machine consecutively as LiUiLjU;... LmUnm.

4.7.3 Comparison between three similar cycles

Let’s consider the L1U1L1U1LoUs...LmUm cycle in which all the machines are empty
at the beginning of the cycle (the first case). The other cycle is UiL1U1L1UoLo... Unlm
with two different situations. In the first situation, each machine has been loaded two
times in the previous cycle without any unloading between them until the end of the
cycle (the second case). In the second situation, the cycle is started when there is

only one processed part in each machine (the third case).

In the first case, all of the data related to loaded/unloaded robot movements and the
waiting times of the robot are presented in Table 19. It should be noted that the

loading/unloading times of the robot are considered in the calculations.

Table 19. Robot movement times for the L1U:1L1U1LoUs... LU cycle.

Activity Ui L1 U L U ... Lk Uk .. Lm Um La
Unloaded movement - m+1 - m+l - ... m+l - ... m+l - m+1
Robot waiting time ~ p1 - P1 - P2 ... - Pk - Pm
Loaded movement m 1 m 2 m-1 ... k m-k+1 ... m 1 1

The summations of the unloaded and loaded robot movement times in terms of the ¢
coefficient are equal to 2m(m + 1) and 2m(m + 1), respectively, from Table 19.
By adding 8me for the loading and unloading of the machines, the total cycle time is
equal to (4m? + 4m)é + 2(X ™, p;) + 8me, which is similar to the result of
Theorem 5, considering p; > 0. Generally, this cycle is considered as

LxUkLkUk... LmUmbL1U1... Lk-1 Uk Lk-1Uk-1.

71

In the second case, at the beginning of the cycle each machine has one processed part
that is ready to unload and one unprocessed part in its input buffer. In this case, we
assume that the processing time is less than the return time for each machine. Table

20 shows the data of this cycle.

Table 20. Cycle times related to the U:L1U:L1UsLo... UnLm cycle.

Activity L1 Uz L1 U2 L. U2 Lo .. . Un Lm Um Lm WU
Unloaded m+l - m+1 1 m+1 - m+tl ... 1 m+l - m+l m-l
movement

Loaded m 1 ml 2 ml 2 .. 1 m 1 m m
movement

Table 20 shows that the unloaded and loaded robot movements take 2(m? + 2m —
1)6 and 2(m? + m)§ time units, respectively, where the robot needs 8me time units
to load and unload all of the machines. To reach to the initial state, from where the
cycle was started, when the robot is ready to unload machine 1, the processing time
of machine 1 should be considered. Thus, all of the calculated times are considered
as the return time to machine 1 that is equal to 2(2m? + 3m — 1)§ + 8me.
Considering this return time, the cycle time of this case will become

max{2p;, 2(2m? + 3m — 1)§ + 8me}.

In the third case, in addition to the loaded and unloaded robot movements, the
waiting time of the robot for the second unloading of the machines must be

considered. Table 21 shows the data for calculating the cycle time in this case.

72

Table 21. Cycle times of U:L1U:L1UsL,... UnLm cycle considering waiting times.

Activity Ly U Ly ... Uy L Uk L ... Up Lm U,
Unloaded movement m+1 - m+l ... 1 m+1 - m+l ... - m+l m-1
Robot waiting time - Wi - - - Wi - v Wp
Loaded movement 1 m 1 ... m-k+1 k m-k+1 k 1 m m

Considering Table 21 and following the similar procedure to calculate the cycle time
show that the total cycle time in this case is equal to 2(2m? +3m —1)6 +

m
i=1 W; + 8me.

A comparison between the cycle time for the first and the second case shows that if

m.pi = (m—1)8, Vi, then the cycle time of the second case is always shorter;
otherwise, the cycle time of the first case is shorter. The cycle time of the third case
is greater than the cycle time of the second case unless all waiting times are equal to

zero or the processing times are large enough. Also, a comparison between the first
m .
and the third cycle time shows that if Y%, p; = (m —1)6 + % then the cycle

time of the third case is less than the cycle time of the first one.

73

Chapter 5

DEVELOPED METAHEURISTIC ALGORITHM

5.1 Preface

Since the robotic flexible cell problems belong to NP-hard class of problems,
optimizer software like CPLEX can only find the optimal solutions of small-size
problems [29, 30]. Therefore, in order to solve large-size problems, metaheuristic
algorithms are used. A simulated annealing algorithm is proposed for the problems

with no individual buffers for each machine.
5.2 Representation

In our study, a solution is presented by an array having 2m elements in which the
numbers 1 to m correspond to the loading of the first machine to the m™ machine and
the numbers m+1 to 2m correspond to the unloading of the first machine to the m®
machine, respectively. To prevent permutations, the first element of each array is
always 1. For example, a four-machine flexible cell having a cycle

L,L;L,U,UUU,L,L, is presented in Figure 14.

CJe e e e)2

Figure 14. Presentation of L1LsL4U2U3U1UsLoL1 cycle for a four-machine cell.

In this array, 1 is the first element and depicts L,. L; and L, are shown by 3 and 4

respectively. Since in this example m = 4, all unloading activities are shown by 5 to

74

8, U, and U; are shown by 6 and 7, respectively. The same procedure is applied to

demonstrate the rest of this array.
5.3 Initial solution

An initial solution can be obtained by generating a random solution or a reasonable
solution; for the latter, there are two different methods. The first method is the cycle
of Lilo...LmU1U>...UnL1 (its array is shown in Figure 15 and discussed in Section

5.2).

DOOOEE0E

Loading activities Unloading activities
Figure 15. Array of Lilz...LmU1U>... UnL1 cycle.

The second method is based on an iterative construction. For this, after loading the
first machine, the activity that has the lowest robot moving time from the previously
assigned activity among the remaining activities is selected until the cycle is

complete.

After some preliminary experiments and testing different initial solutions in practice,
to avoid considering a unique initial solution as the starting point of the algorithms,
we randomly generated the initial solution. Generating random solutions help start

from different initial solutions in each run that avoids entrapment in a local optimum.
5.4 Computing cycle time for a given solution

In finding of the objective value of each array, all of the parameters, except waiting
times, are known. Let's consider a cycle L,LsL,U,U3U;L,U,L;, assuming that

loading/unloading times are 1, the robot move time between a pair of two
75

consecutive machines is 2 and all processing times are the same and equal to 80 time
units. To calculate the cycle time in this case, the duration time between a set of two
activities is calculated by using dap formula in Section 3.4. For example, the duration
time formula for L,L5 is 2e 4+ 448, which is equal to 10 time units. By applying the
same procedure, duration times of L;L,, L,U,, U,U5, UsU,, U;L,, L,U, and U, L, are

calculated as 16, 12, 10, 18, 16, 8 and 14, respectively.

To compute waiting times, return time to each machine must be compared with its
corresponding processing time. If the processing time is greater than the return time,
the waiting time is positive, otherwise, it is equal to zero. There are two cases that
should be considered; if loading of a machine occurs before unloading of the same
machine in a cycle, like machine 1 in this example, the summation of the duration
between a set of two activities from loading a machine to return to the same machine
to unload it, in addition to the potential waiting times, should be considered. For
example, the return time to machine 1 is the summation of the times from L; to Uy,
which are LiL; + L3L, + LU, + U,U3 + U3U; = 66, plus potential robot waiting
time on machine 2 and machine 3. Since as mentioned in Section 3.4, before each
unloading activity, a positive robot waiting time may exist. Consequently, the robot

waiting time on machine 1 is equal to max{0, p; — (66 + w, + w3)}.

On the other hand, if loading a machine is done after unloading the same machine in
a cycle, like machine 2 in our example, the return time to the machine is the sum of
duration from loading that machine to the end of the cycle, i.e., the loading of
machine 1, and from loading machine 1 to return to the same machine to unload it in
the next cycle. Obviously, potential waiting times should also be considered if there

is any. For example, to calculate the return time to machine 2, at first, two cycles can
76

be considered consecutively (see Figure 16). Then, the duration from the first loading
of machine 2 to its unloading plus w, is the return time to machine 2, which is equal

to 60 + w,. Therefore, w, = max{0,p, — (60 + w,)}.

T T

L I\
r L \

LyL3L,UyU3U LUy Ly L3 L U, U3U LU Ly
\—'—I
Return time to machine 2

Figure 16. Return time to machine 2 in L1L3LsU>2UsU1L2UsL: cycle.

Applying the same procedure leads us to reach to the waiting times for machines 3
and 4 equal to w3 = max{0,p; — (38 + w,)} and w, = max{0,p, — (64 + w, +
w, +ws3)} respectively. Thus, T=16+12+10+18+16+8+ 14+ w; +

Wy +ws +w, =94 +wy +w, +ws +wy.

Since the aim is to minimize cycle time, the minimal amount of the total waiting
times must be computed. On the other hand, increasing in any waiting time will
affect other waiting times that are related to. Therefore, a linear programming model
should be solved to minimize the cycle time. The linear programming model of our
example is as follows:

MinimizeT =94 +w; + wy + w3 +w,

Subject to:

w; = pg — (66 +w;, + w3)

Wy = py — (60 + wy)

w3 = p3 — (38 +wy)

Wy = py — (64 +wy +wy +w;3)

w;>0,i=1,23,4
77

where all the processing times are known and must be substituted before solving the

model.
5.5 Generating the next solution

To generate a new solution and to select a solution for the next generation, three
different methods, based on local search algorithm, are considered. The algorithm
generates neighborhood solutions and tries to find the local optimums, iteratively.
Since this method accepts only a better solution as the current solution, it always
modifies the last improved solution [31]. In this study, three different operators that
are shift, swap, and reverse are employed. Figure 17 shows the shift operator for the
robot move sequence in a four-machine cell, which removes one of the activities
from the sequence and moves it at another place in the sequence, randomly (see

Figure 17).

ormomsms (L)) B

A

evaman ()o@

Figure 17. Shift operator.

The swap operator finds two activities randomly and switches them together (see

Figure 18).

78

0 O O Y 0 O
New Offspring [L,][Us][L,] Ly m[U_z] u || L

Figure 18. Swap operator.

The reverse operator selects two activities, which are not next to each other, and

reverse all the activities among them as it can be seen in Figure 19.

ommonsen (o))
wromn () DDEEE

Figure 19. Reverse operator.

In each iteration of the developed SAA, three new solutions are generated from the
current solution by using each of the shift, swap and reverse operators. The objective
function of each is computed, and the best of these three new solutions is selected as
the generated candidate neighboring solution. This solution is adopted as the next
current solution if it is better than the current solution or it is accepted by using the
acceptance probability function.

5.6 Cooling

The geometric cooling, which is the most common cooling method, is applied.
According to this method, the developed SAA starts its search at an initial
temperature. Then, after each iteration, a certain percent of T is counted as the value

of T for the next iteration, i.e., T=0*T where 0<o<I1.

79

5.7 Stopping criteria

Generally, if an approximate solution found by a metaheuristic algorithm is accurate
enough, the iterative method should be stopped. In this thesis, for small-size
problems that we know the optimal cycle time, when an optimal solution is found by
the method the solving procedure is finished. For the large-size problems which the
optimal cycle times are unknown for them, a limit on the solution time is used as the
stopping criterion. The starting time is kept and the total time from the starting time
to the current time is computed after each iteration. When it exceeds the limit, the
search is stopped. The pseudocode of the developed simulated annealing algorithm is
given below:

Step 0: Set values of the parameters T, Time Limit, @, m, p, € and & . Record the time:
Tstart.
Step1: Generate the Initial Solution.
Current Solution = Initial Solution. Best Solution = Current Solution.
Step2: Compute the cycle time of the Current Solution: F[Current Solution].
F[Best Solution]=F[Current Solution]
Step 3: a) Generate a neighboring solution of the current solution by using the swap
mechanism.
b) Generate a neighboring solution of the current solution by using the shift
mechanism.
c) Generate a neighboring solution of the current solution by using the
reverse mechanism.
d) Compute the cycle time of these neighboring solutions and select the best
of them as the candidate solution.
Step4: If
F[Candidate Solution]<F[Current Solution] or
Rand(0,1) < Exp(-(F[Candidate Solution]-F[Current Solution])/T)
then
Current Solution = Candidate Solution and
F[Current Solution]=F[Candidate Solution]
Step5: If
F[Current Solution]<F[Best Solution]
then
Best Solution = Current Solution and
F[Best Solution]=F[Current Solution]
Step 6: Record the current time: Thow.
If the duration from Tstart to Tnow is more than Time Limit, then STOP and
present the Best Solution, otherwise T = o*T and go to Step 3.

80

5.8 Experimental results

To evaluate the proposed metaheuristic algorithm, several problems are considered
and executed on an Intel(R) Pentium(R) Dual CPU E2180 @ 2.00 GHz CPU with 2.0
GB of RAM. The algorithm are coded in MATLAB R2013a software. The objective
functions (OBF) and the CPU times, are the average results of executions carried out

10 times for each problem.

The performance of the proposed SAA depends on the values of its parameters which
are the initial value of T, Time Limit as the stopping criterion and a. To determine
these values, some experiments are needed [32]. Since Taguchi orthogonal array
design is a type of general fractional factorial experiment design, it is very effective
in parameter setting. Based on noise minimization, this method selects the best level
of the parameters. Using the following equation, the deviation of the response is
examined, wherein Y designates the value of reply, and n characterizes the number

of orthogonal ranges.

S/N = (—10) * log 10(sum(Y?)/n)

In this thesis for each of initial value of T, Time Limit, and a, a range are
determined. These ranges are [90-110] for the initial value of T, [1, 5] for Time Limit
and [0.993-0.997] for a. For each of these parameters three different values are used:
(1) the lower bound, (2) the average and (3) the upper bound of the corresponding
range. Thus, nine orthogonal arrays has been considered of these values and tested.
In these tests, the developed SA algorithm is used for solving 5 different instances
which are (4, 75), (6, 150), (8, 250), (10, 500) and (12, 750) where the first entry

shows the number of the machines and the second one shows the processing time

81

(i.e., (m, p)). For each of the nine combinations of the parameter values, each of

these five test instances is solved by the proposed SAA ten times. The average of the

cycle times of the best solutions found by these ten runs recorded and presented in

Table 22.
Table 22. Computational results for tuning SA parameters.
SA parameters Response
o (A) (B (©)
Combination | Gl Time o (475) (6150) (8.250) (10,500) (12,750) Sum

T value limit
1 20 1 0993 1072 197.6 3256 549.6 8120 1992.0
2 20 3 0995 107.4 2048 3280 5508 828.4 2019.4
3 20 5 0997 1086 1976 3272 550.8 806.0 1990.2
4 100 1 0995 1056 200.8 3248 555.6 839.6 2026.4
5 100 3 0997 1072 2008 3220 557.2 817.2 2004.4
6 100 5 0993 1080 2056 3280 550.8 815.2 2007.6
7 110 1 0997 107.6 202.8 3260 556.0 813.6 2006.0
8 110 3 0993 1072 2036 3304 5532 817.2 20116
9 110 5 0995 107.4 202.8 3296 554.4 828.4 20226

Then the S/N ratios are computed using the results in the last column of Table 22.

Figure 20, shows the results of S/N ratios. According to these ratios, when the initial

value of T is set to its lower bound (which is 90), Time Limit is set to its upper

bound (which is 5 minutes), and a is set to its upper bound (which is 0.997) the best

results are obtained. Thus, these values are used in the following tests.

82

Main Effects Plot for SN ratios
Data Means

A B C

19.12

19.10

19.06

Mean of SN ratios

19.04

19.02
1 2 3 1 2 3 1 2 3

Signal-to-noise: Smaller is better

Figure 20. S/N ratio plot for SA parameters.

First, the performance of the proposed SAA is tested on the above test instances
whose optimal solutions are found by the mathematical models. Table 23 contains
the cycle times and solution times of all the examined test problems for 4- to 6-

machine cells found by the proposed SAA.

Table 23. Results of the SAA.

4-machine cell 5-machine cell 6-machine cell
Process

time Optimal SAA SAA Optimal SAA SAA Optimal SAA SAA
cycle cycle solution cycle cycle solution cycle cycle solution

time time time time time time time time time

0 96 96 0.033 140 140 0.128 192 192 0.134
25 96 96 0.441 140 140 0.405 192 192 0.321
50 96 96 2.043 140 140 1.260 192 192 0.953
75 99 108.6 2.859 140 140 2.319 192 192 2.215
100 124 124 2.257 140 1432 4.785 192 192 2.269
125 149 149 1.976 153 160.1 2.741 192 192 4,574
150 174 174 2.049 178 178 2.759 192 1976 6.203
175 199 199 1.462 203 203 4.087 207 222.7 4.684
200 224 224 2.646 228 228 4.559 232 233 5.778
225 249 249 1.974 253 253 3.344 257 257 5.839
250 274 274 2.536 278 278 4.401 282 282 6.328

According to the results in Table 23, and figures 21 to 23, the proposed SAA found
almost all optimal solutions. Only 6 of the 33 instances could not be solved
optimally. In these instances, the gap between the optimal cycle times and the best

cycle times found by the proposed SAA is less than 10% of the optimal cycle times.
83

Thus, it may be concluded that the proposed SAA has a very good performance and

it may be used to find good solutions to larger instances.

280 T T T T
—@— The optimal solutions
260 | —@ = The proposed SA solutions

Solution time (Seconds)

80 L

0 50 100 150 200 250
Processing time (Second)

Figure 21. Solution time of the SAA for 4-machine test instances.

280 T T
—@— The optimal solutions
—ll — The proposed SA solutions

260

240

220 F

200

Solution time (Seconds)

180

160

- 100 150

Processing time (Seconds)

Figure 22. Solution time of the SAA for 5-machine test instances.

1
200 250

84

290 T T

—@— The optimal solutions
280 ——The proposed SA solutions

270

260

250

240

230

Solution time (Seconds)

220 1
210

200

-

3=
ofi—a———— !
0 50 100 1580 200 250
Processing time (Seconds)

Figure 23. Solution time of the SAA for 6-machine test instances.

85

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, firstly the general case of a line layout flexible manufacturing system
that includes m parallel machines for producing non-identical parts was considered.
The mathematical model associated with it was explained in details and the reduced
model was also presented. Furthermore, a new mathematical model was proposed for
maximizing the minimum robot return time to each machine in a cycle and the
optimal solution for the general case was calculated. A lower bound that has been
proposed in the literature was improved and for another lower bound a new proof
was provided. The proof was derived considering the optimality condition of an
assignment problem. The new proof provided a deeper insight into the structure of
the problem. Thus, it made possible to obtain several optimal solutions, and the

processing times were used to describe their optimality conditions.

In the second part of this study, a novel problem related to robotic flexible
manufacturing cells was discussed in which each machine has individual input buffer
with one capacity and the machines are identical and parallel. In these cells, a robot
transports the items from the input station that keeps unproduced items to the input
buffer of machines and from machines to the output station in which the finished
items are kept and loads/unloads the machines. The objective function was to

determine the robot movements for minimizing the cycle time. In addition, a lower

86

bound was provided based on the optimality condition of an assignment problem,

and with some new definitions three similar cycles were compared in general.

In the last part of the thesis, a metaheuristic algorithms based on simulated annealing
(SA) algorithm was proposed. This algorithm was proposed to solve the flexible
robotic cell problems that were discussed in the first part of this study. To evaluate
the algorithm, a number of problems have been generated and solved. The results

demonstrated that the proposed SA algorithm is very efficient.

As a topic for further research, all of the calculations, theorems, and lemmas can be
reformulated for a circular layout considering only one station as the input/output
station. In addition, the concept of using more than one robot to handle the material
in the cell can be a good area of future study. The development of the mathematical
model for the problems with different capacities of the individual input buffer can be
an interesting objective for the further research. The case that the machines have both
individual input and output buffers may also be considered for future research. In
addition, developing other metaheuristics for the given problem can be interesting in
the further research. Furthermore, considering these problems under uncertainty of

each parameter can be a future subject.

87

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Mehrabi, M.G., Ulsoy, A.G., and Koren Y., Reconfigurable manufacturing
systems: Key to future manufacturing. Journal of Intelligent Manufacturing.

11(4): p. 403-419.

Ghadiri Nejad, M. and Mosallaeipour, S., A New Approach to Optimize a
Flexible Manufacturing Cell, in 1st International Conference on New
Directions in Business, Management, Finance and Economics. 2013:

Famagusta, Northern Cyprus. p. 38.

Abdekhodaee, A.H., Wirth, A. and Gan, H.S., Equal processing and equal
setup time cases of scheduling parallel machines with a single server.

Computers & Operations Research, 2004. 31(11): p. 1867-1889.

Dawande, M., Geismar, H.N., Sethi, S.P. and Sriskandarajah, Ch.,
Sequencing and Scheduling in Robotic Cells: Recent Developments. Journal

of Scheduling, 2005. 8(5): p. 387-426.

Gultekin, H., Ekin Karasan, O. and Akturk, M.S., Pure cycles in flexible

robotic cells. Computers & Operations Research, 2009. 36(2): p. 329-343.

Crama, Y., Combinatorial optimization models for production scheduling in
automated manufacturing systems. European Journal of Operational

Research, 1997. 99(1): p. 136-153.

88

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Agnetis, A., Pacciarelli, D. and Rossi, F., Lot scheuling in a two-machine cell
with swapping devices. IIE Transactions (Institute of Industrial Engineers),

1996. 28(11): p. 911-917.

Drobouchevitch, 1.G., Sethi, S.P. and Sriskandarajah, C., Scheduling dual
gripper robotic cell: One-unit cycles. European Journal of Operational

Research, 2006. 171(2): p. 598-631.

Sethi, S.P., Sriskandarajah, Ch., Sorger, G., Blazewicz, J. and Kubiak, W.,
Sequencing of parts and robot moves in a robotic cell. International Journal

of Flexible Manufacturing Systems, 1992. 4(3-4): p. 331-358.

Crama, Y. and Van de Klundert, J., Cyclic scheduling in 3-machine robotic

flow shops. Journal of Scheduling, 1999. 2(1): p. 35-54.

Hall, N.G., Potts, C.N. and Sriskandarajah, C., Parallel machine scheduling
with a common server. Discrete Applied Mathematics, 2000. 102(3): p. 223-

243.

Brauner, N. and Finke, G., Cycles and permutations in robotic cells.

Mathematical and Computer Modelling, 2001. 34(5-6): p. 565-591.

Akturk, M.S., Gultekin, H. and Karasan, O.E., Robotic cell scheduling with
operational flexibility. Discrete Applied Mathematics, 2005. 145(3): p. 334-

348.

89

[14]

[15]

[16]

[17]

[18]

[19]

Gultekin, H., Akturk, M.S. and Karasan, O.E., Scheduling in a three-machine
robotic flexible manufacturing cell. Computers & Operations Research, 2007.

34(8): p. 2463-2477.

Gultekin, H., Akturk, M.S., and Karasan, O.E., Scheduling in robotic cells:
process flexibility and cell layout. International Journal of Production

Research, 2008. 46(8): p. 2105-2121.

Gultekin, H., Akturk, M.S., and Karasan, O.E., Bicriteria robotic cell

scheduling. Journal of Scheduling, 2008. 11(6): p. 457-473.

Ghadiri Nejad, M., Kovacs, G., Vizvari, B. and Vatankhah Barenji, R., An
optimization model for cyclic scheduling problem in flexible robotic cells.
The International Journal of Advanced Manufacturing Technology, 2017: p.

1-11.

Ghadiri Nejad, M., Guden, H., Vizvaril, B., and Vatankhah Barenji, R., A
Mathematical Model and Simulated Annealing Algorithm for Solving the
Cyclic Scheduling Problem of a Flexible Robotic Cell. Advances in

Mechanical Engineering, 2018. 10: p. 1-12.

Aktirk, M.S, Atamturk, A. and Girel, S.N., A strong conic quadratic
reformulation for machine-job assignment with controllable processing

times. Operations Research Letters, 2009. 37(3): p. 187-191.

90

[20]

[21]

[22]

[23]

[24]

[25]

Yildiz, S., Karasan, O.E. and Akturk, M.S., An analysis of cyclic scheduling
problems in robot centered cells. Computers & Operations Research, 2012.

39(6): p. 1290-1299.

Uruk, Z., Gultekin, H., and Akturk, M.S., Two-machine flowshop scheduling
with flexible operations and controllable processing times. Computers &

Operations Research, 2013. 40(2): p. 639-653.

Zeballos, L.J., A constraint programming approach to tool allocation and
production scheduling in flexible manufacturing systems. Robotics and

Computer-Integrated Manufacturing, 2010. 26(6): p. 725-743.

Foumani, M. and Jenab, K., Cycle time analysis in reentrant robotic cells
with swap ability. International Journal of Production Research, 2012. 50(22):

p. 6372-6387.

Foumani, M. and Jenab, K., Analysis of flexible robotic cells with improved
pure cycle. International Journal of Computer Integrated Manufacturing,

2012. 26(3): p. 201-215.

Jolai, F., Foumani, M., Tavakoli-Moghadam, R. and Fattahi, P., Cyclic
scheduling of a robotic flexible cell with load lock and swap. J. Intell.

Manuf., 2012. 23(5): p. 1885-1891.

91

[26]

[27]

[28]

[29]

[30]

[31]

De Giovanni, L. and Pezzella, F., An Improved Genetic Algorithm for the
Distributed and Flexible Job-shop Scheduling problem. European Journal of

Operational Research, 2010. 200(2): p. 395-408.

Batur, G.D., Karasan, O.E., and Akturk, M.S., Multiple part-type scheduling
in flexible robotic cells. International Journal of Production Economics, 2012.

135(2): p. 726-740.

Kim, H., Kim, H., Lee., J. and Lee, T., Scheduling dual-armed cluster tools
with cleaning processes. International Journal of Production Research, 2013.

51(12): p. 3671-3687.

Ghadiri Nejad, M., Shavarani, S. M., Vizvari, B. and Vatankhah Barenji, R.,
Trade-off between process scheduling and production cost in cyclic flexible
robotic cell. The International Journal of Advanced Manufacturing

Technology, 2018.

Mosallaeipour, S., Ghadiri Nejad, M., Shavarani, S. M., and Nazerian, R.,
Mobile robot scheduling for cycle time optimization in flow-shop cells, a case

study. Production Engineering, 2017: p. 1-12.

Sabar, N.R. and Kendall, G., An iterated local search with multiple
perturbation operators and time varying perturbation strength for the aircraft

landing problem. Omega, 2015. 56: p. 88-98.

92

[32] Shavarani, S.M., Ghadiri Nejad, M., Rismanchian, F. and Izbirak, G.,
Application of hierarchical facility location problem for optimization of a
drone delivery system: a case study of Amazon prime air in the city of San
Francisco. The International Journal of Advanced Manufacturing

Technology, 2017: p. 1-13.

93

