

Cyclic Production of Flexible Manufacturing Cells

Mazyar Ghadiri Nejad

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Industrial Engineering

Eastern Mediterranean University

February 2018

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Assoc. Prof. Dr. Ali Hakan Ulusoy

 Acting Director

I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor

of Philosophy in Industrial Engineering.

 Assoc. Prof. Dr. Gökhan İzbirak

Chair, Department of Industrial Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Doctor of Philosophy in Industrial

Engineering.

Prof. Dr. Béla Vizvári

 Supervisor

 Examining Committee

1. Prof. Dr. Serpil Erol

2. Prof. Dr. Murat Taner Testik

3. Prof. Dr. Béla Vizvári

4. Assoc. Prof. Dr. Gökhan İzbirak

5. Assoc. Prof. Dr. Adham Makkie

http://ie.emu.edu.tr/staff/cv/OK_cv.pdf
http://ie.emu.edu.tr/staff/cv/OK_cv.pdf
http://ie.emu.edu.tr/staff/cv/OK_cv.pdf

iii

ABSTRACT

This thesis deals with two different flexible manufacturing cells. Both cells contain m

identical computer numerical control (CNC) machines that are able to perform all the

processes to produce a final product. The CNC machines are set up in a line layout.

In the both cases, one input station and one output station exists at the beginning and

at the end of the line, respectively. The items to be processed are kept in the input

station, and the finished items are kept in the output station. In the second case, in

addition to the input station, there is an individual input buffers attached to each

machine. Using these buffers, each machine can be consecutively loaded twice in a

cycle. In the both cells, a robot serves the machines and transports parts from the

input station to a machine, loads the machine, and unloads the machine, after

finishing its process, and puts the processed part in the output station.

In these cells, m different parts will be processed in every cycle. Each part is

processed completely by one machine. If the system is at a specific state at the

beginning of a cycle, it reaches the same state at the end of the cycle, and then

repeats the same actions in the same order in the subsequent cycles. To show all of

the possible cycles in such cells, a sequential part production matrix is presented

considering a general case. The duration of a cycle is called cycle time. The objective

function of both cell types is to find the order of robot operations that minimizes the

cycle time which maximizes the long-run average throughput rate of each cell.

For the first case, a new mathematical model is presented to optimize the system. A

reduced version of the new model is also provided. The reduced version is still an

iv

exact model of the minimization of the cycle time, however it does not determine the

waiting times of the robot directly. These two models are more effective than the

previous existed exact models in the literature. The solution of the reduced model

requires significantly less CPU time comparing to the other models. A metaheuristic

algorithm based on simulated annealing algorithm is proposed. In order to compute

the minimum cycle time in each iteration of the algorithm, a linear programming

model is needed to be solved which is the first case in the literature to the best of our

knowledge. A new proof is provided for the lower bound of cycle time. This new

proof facilitates the optimality analysis of several sequences of the robot movements.

For the second case, a mathematical model is presented to optimize the cyclic

production. A two-machine cell is discussed in details. In addition to some lower

bounds of the cycle time for different orders of robot movements, the optimal cycles

and upper bounds for the cases with different activities are also investigated.

Keywords: Flexible manufacturing, CNC machines, Robotic cell, Cyclic scheduling,

Metaheuristics.

v

ÖZ

Bu tez iki farklı esnek imalat hücresi ile ilgilidir. Her iki hücre de, nihai bir ürün

üretmek için tüm işlemleri gerçekleştirebilen, aynı sayıda Bilgisayarlı Sayısal

Dentim (CNC) makinesini içerir. CNC makineleri bir çizgi düzeninde ayarlanır. Her

iki durumda da sıranın başında ve sonunda bir giriş istasyonu ve bir çıkış istasyonu

bulunur. İşlenecek parçalar giriş istasyonunda tutulur ve bitmiş parçalar çıkış

istasyonunda tutulur. İkinci durumda, giriş istasyonuna ek olarak, her bir makineye

bağlı tek bir giriş tamponları bulunur. Bu tamponları kullanarak, her makine ardışık

olarak bir döngüde iki kez yüklenebilir. Her iki hücrede de, robot makinelere hizmet

eder ve parçaları giriş istasyonundan makineye nakleder, makineyi yükler ve işlemi

tamamladıktan sonra makineyi boşaltır ve işlenmiş kısmı çıkış istasyonuna koyar.

Bu hücrelerde, her döngüde m sayıda farklı parça işlenecektir. Her parça bir makina

tarafından tamamen işlenir. Sistem bir çevrimin başlangıcında belirli bir

konumdaysa, çevrimin sonunda da aynı duruma geçer ve aynı aktiviteleri sonraki

çevrimlerde de aynı sırada tekrarlar. Bu tür hücrelerdeki olası döngülerin tümünü de

göstermek için, genel durum göz önüne aknarak ardışık parça üretim matrisi

sunulmaktadır. Bir döngünün süresi döngü süresi olarak adlandırılır. Her iki hücre

tipinin amaç fonksiyonu, her bir hücrenin uzun dönem ortalama çıktı oranını

maksimize eden döngü süresini en aza indirecek robot işlemlerinin sırasını bulmaktır.

İlk durumda, sistemi optimize etmek için yeni bir matematiksel model sunulmuştur.

Yeni modelin indirgenmiş bir versiyonu da gösterilmiştir. İndirgenmiş versiyon,

döngü süresinin en aza indirgenmesinin hala kesin bir modeli olmasına rağmen

vi

robotun bekleme sürelerini doğrudan belirlememektedir. Bu iki model literatürde

daha önce var olan kesin modellere göre daha etkilidir. İndirgenmiş modelin çözümü,

diğer modellere kıyasla çok daha az CPU zamanı gerektirir. Benzetimli tavlama

algoritmasına dayanan sezgi ötesi bir algoritma önerilmiştir. Algoritmanın her

yinelenmesinde minimum döngü süresini hesaplamak için doğrusal bir programlama

modelinin çözülmesi gerekmektedir. Döngü süresinin alt sınırı için yeni bir ispat

gösterilmiştir. Bu yeni ispat, robot hareketlerinin birkaç sırasının optimallik analizini

kolaylaştırımaktadır.

İkinci durumda, döngüsel üretimi optimize etmek için bir matematiksel model

sunulmuştur. İki makine hücresi ayrıntılı olarak ele alınmıştır. Robot hareketlerinin

farklı sıraları için döngü zamanının bazı alt sınırlarına ilaveten, farklı aktivitelere

sahip durumlar için optimal çevrimler ve üst sınırlar da araştırılmıştır.

Anahtar Kelimeler: Esnek üretim, CNC makineleri, Robotik hücre, Çevrimsel

çizelgeleme, Metaheuristik, Sezgi ötesi.

vii

DEDICATION

To My Devoted Wife

and

My Family

viii

ACKNOWLEDGMENT

I would like to thank Prof. Dr. Béla Vizvári for his passion for the science, and his

continuous support of this study. Without his invaluable supervision, all my efforts

could have been short-sighted.

I am grateful to Assoc. Prof. Dr. Gökhan İzbirak, Chairman of the Industrial

Engineering Department that helped me with various issues during my study.

I sincerely acknowledge Asst. Prof. Dr. Huseyin Güden for his advices, useful

comments and his fresh innovative ideas and for all the mathematical and non-

mathematical helps during my studying.

I obliged to appreciate Asst. Prof. Dr. Reza Vatankhah Barenji, for his constructive

guidance and comments in publishing my articles. I believe that without his helps

this project was impossible to do.

Finally, I would like to thank Prof. Gergely Kovács, all of my professors, colleagues,

and friends who helped and supported me to finish this thesis.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. v

DEDICATION ... vii

ACKNOWLEDGMENT ... viii

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS .. xv

1 INTRODUCTION .. 1

1.1 Preface .. 1

1.2 FMC different layouts .. 2

1.3 CNC machines with individual buffers .. 4

1.4 The Structure of the Thesis .. 4

2 LITERATURE REVIEW ... 7

2.1 Preface .. 7

2.2 CNC machines having tool magazine .. 9

2.3 Heuristic methods ... 10

3 THE FMC WITHOUT INDIVIDUAL BUFFER FOR EACH MACHINE........... 12

3.1 Preface .. 12

3.2 Sequential Part Production Matrix ... 14

3.3 The case of m = 2 ... 16

3.4 Definitions, parameters and sets ... 21

3.5 Mathematical models ... 23

3.5.1 Complete mathematical model .. 23

x

3.5.2 The reduced mathematical model .. 25

3.5.3 Maximization of the minimum return time ... 25

3.6 Numerical results .. 26

3.6.1 The minimization of the cycle time ... 26

3.6.2 Computational result of the return time ... 30

3.7 An improved lower bound for the optimal cycle time in the general case 31

3.8 A lower bound explained by an assignment problem 33

3.9 Optimal cycles of different structures in the general case 38

3.9.1 Basic tools .. 39

3.9.2 The 𝐿𝑖1𝐿𝑖2…𝐿𝑖𝑚𝑈𝑖1𝑈𝑖2…𝑈𝑖𝑚 cycle .. 40

3.9.3 The L1LmUm-1Lm-1…U2L2U1Um cycle ... 46

4 THE FMC WITH INDIVIDUAL BUFFER FOR EACH MACHINE 48

4.1 Preface .. 48

4.2 Sequential part production matrix .. 48

4.3 Definitions, parameters and sets ... 50

4.4 Mathematical model ... 53

4.5 Numerical results .. 56

4.6 A lower bound explained by an assignment problem 59

4.7 Optimal cycles of different structures in a general case 65

4.7.1 Return time .. 65

4.7.2 Optimal cycles ... 69

4.7.3 Comparison between three similar cycles ... 71

4 DEVELOPED METAHEURISTIC ALGORITHM ... 74

5.1 Preface .. 74

xi

5.2 Representation .. 74

5.3 Initial solution ... 75

5.4 Computing cycle time for a given solution .. 75

5.5 Generating the next solution ... 78

5.6 Cooling ... 79

5.7 Stopping criteria ... 80

5.8 Experimental results ... 81

CONCLUSIONS AND FUTURE RESEARCH ... 86

REFERENCES .. 88

xii

LIST OF TABLES

Table 1. SPPM for producing two parts in a two-machine cell 16

Table 2. Different sequences of the activities for producing two parts in a two-

machine cell. .. 16

Table 3. Time distance Matrix for m-machine FMC. .. 22

Table 4. CPU times of solving the proposed models and the Gultekin et al. model . 27

Table 5. Distance matrix in terms of coefficient of δ. ... 35

Table 6. The last table of the assignment problem. ... 37

Table 7. Solution of the assignment problem in terms of δ coefficients.................... 38

Table 8. Matrix of 𝛿 coefficients for only unloaded robot movements. 40

Table 9. Loaded and unloaded robot movement time distances. 41

Table 10. The results of the mathematical models for two-machine cells 57

Table 11. The results of the mathematical models for three-machine cells 58

Table 12. Time distance matrix for an m-machine FMC when each machine has an

input buffer ... 60

Table 13. Time distance matrix in terms of the δ coefficient 61

Table 14. Distance matrix in terms of the δ coefficient and dual solutions 62

Table 15. The last table for the assignment problem ... 64

Table 16. Loaded and unloaded robot movement times for machine k 66

Table 17. Loaded and unloaded robot movement times for Lk+1...LmLmU1U1...UkUk 67

Table 18. Matrix of the δ coefficient for unloaded robot movements 70

Table 19. Robot movement times for the L1U1L1U1L2U2…LmUm cycle 71

Table 20. Cycle times related to the U1L1U1L1U2L2…UmLm cycle 72

Table 21. Cycle times of U1L1U1L1U2L2…UmLm cycle considering waiting times.... 73

xiii

Table 22. Computational results for tuning SA parameters 82

Table 23. Results of the SAA .. 83

xiv

LIST OF FIGURES

Figure 1. In-line m-machine robotic cell. .. 3

Figure 2. A one-buffer robot centered cell with three machines. 3

Figure 3. A circular robotic cell with different input and output buffers..................... 4

Figure 4. A robotic cell having machines with individual buffer 4

Figure 5. Robot movement sequence related to L1L2U1U2 cycle 15

Figure 6. CPU times of the models for 3-machine test instances 28

Figure 7. CPU times of the models for 4-machine test instances 28

Figure 8. CPU times of the models for 5-machine test instances 29

Figure 9. The robot optimal moves sequence for L1L3L4U2U3U1U4L2L1 cycle. 30

Figure 10. Different positions of parts in a cycle that affects the cycle time............. 32

Figure 11. Robot movement sequence related to the L1L2L1L2U1U2U1U2 cycle 49

Figure 12. CPU times of the mathematical models for two-machine cells 57

Figure 13. CPU times of the mathematical models for three-machine cells 58

Figure 14. Presentation of L1L3L4U2U3U1U4L2L1 cycle for a four-machine cell 74

Figure 15. Array of L1L2…LmU1U2…UmL1 cycle ... 75

Figure 16. Return time to machine 2 in L1L3L4U2U3U1L2U4L1 cycle 77

Figure 17. Shift operator .. 78

Figure 18. Swap operator ... 79

Figure 19. Reverse operator ... 79

Figure 20. S/N ratio plot for SA parameters .. 83

Figure 21. Solution time of the SAA for 4-machine test instances 84

Figure 22. Solution time of the SAA for 5-machine test instances 84

Figure 23. Solution time of the SAA for 6-machine test instances 85

xv

 LIST OF ABBREVIATIONS

CNC Computer Numerical Control

FMC Flexible Manufacturing Cell

FMS Flexible Manufacturing System

OBF Objective Function

PPM Proposed Mathematical Model

SA Simulated Annealing

SAA Simulated Annealing Algorithm

SPPM Sequential Part Production Matrix

TRM Time Reduction Method

1

Chapter 1

1 INTRODUCTION

1.1 Preface

Flexible manufacturing cells (FMCs) are used to produce standardized items at a

high production speed and are used in reconfigurable manufacturing systems [1].

These cells are workplaces that contain a number of CNC machines. These CNC

machines are usually linked together to produce some part types and are controlled

by an automated control system [2]. The materials are handled by a robot between

the machines. In parallel-machine cells, each machine is capable of performing all

processes of producing a part [3, 4]. In general, the processing time of a part is

different for different machines. Also, processing of different parts results in

different processing times. In the latter case, it is supposed that each machine

produces only one type of product. In group technology, each machine always

processes the same type of parts, in which machines are assigned to part families.

It is assumed that distances between the input buffer and the first machine, between

two successive machines and between the last machine and the output buffer are

same. When an item is processed by any of the machines it becomes a finished item

and goes to the output buffer. The robot moves through the line and performs the

loading/unloading activities and transports the items. A system with m machines is

illustrated in Figure 1.

2

It is assumed that the considered system repeats a cycle in its long run. If the system

is at a specific state at the beginning of a cycle, it reaches the same state at the end of

the cycle, and then repeats the same actions in the same order in the subsequent

cycles. The duration of a cycle is called cycle time. It is assumed that each machine

processes one part in each cycle. Decreasing the cycle time in such a system means

increasing the production rate. The cycle time depends on the order of the actions. In

such a system, determining the order of the actions to minimize the cycle time or to

maximize the production rate is called an optimization problem.

Gultekin et al. [5] presented a mathematical model for the problem and expressed

that the problem is NP-hard. In this thesis, we present a simulated annealing based

metaheuristic (SA) algorithm, to solve the larger problems. When some

metaheuristics are desired to be developed for solving the problem it is noticed that

even the order of the activities are known it is not trivial to compute the minimum

cycle time. For a given solution, i.e. order of the activities, in order to compute the

minimum cycle time a linear programming model is needed to be solved. To the best

of our knowledge, there is no such a study in the literature that to compute the

objective function of a given solution a linear programming model is needed to be

solved. The reason for such a need is explained in the following sections. Finally, we

analyze the performances of the proposed metaheuristics using several numerical

instances.

1.2 FMC different layouts

Regardless of having either a flow shop or parallel manufacturing system, there are

two well-known layouts for the FMCs. The linear robotic cells are such that the input

3

buffer (for the unprocessed parts), the machines of the cell and the output buffer (for

the final product) are in a line [6] , for instance, from left to right (see Figure 1).

Figure 1. In-line m-machine robotic cell.

The circular robotic cells are such that the input buffer, machines and output buffer

are arranged either clockwise or counter clockwise of a circle. It should be

mentioned that there are two types of circular FMC. In the first type, there is only

one buffer in the cell including the input and output buffers in the same place as you

can see in Figure 2 [7, 8].

Figure 2. A one-buffer robot centered cell with three machines.

The second type is such that the input and output buffers are in different places [4,

9]. Obviously, all of the distance matrix, calculations and formulas will be the same

as in-line FMC (see Figure 3) if the robot cannot move directly from input buffer to

machine m by passing the output buffer or vice versa.

M2

Mm

M4

In / Out

M3

M1

.

.

.

Output

M1 . . .

Mm Input

M2

4

Figure 3. A circular robotic cell with different input and output buffers.

1.3 CNC machines with individual buffers

Although there are a considerable number of studies dealing with a robotic cell in the

literature, there are very few studies that use a flexible cell with the machines that

have individual buffers. From the practical point of view, using these buffers offers

an attractive prospect to increase the production efficiency. At the same time, the

increase in the combinatorial possibilities associated with the buffers severely

complicates their theoretical analysis because each machine can be consecutively

loaded twice using such buffers. In this study, we focus on the in-line layout (see

Figure 4).

Figure 4. A robotic cell having machines with individual buffer.

1.4 The Structure of the Thesis

This thesis is organized into six chapters as follows: The first chapter lays out the

structure and content of the entire thesis. The second chapter contains the related

literature about the studies of previous researchers and related works in this field.

Input

M1

Output

M2

M3 .

Mm

.

 .

Output

M1 . . .

Mk Input

Mm . . .

M2

5

Some available literature in the areas of using tool magazines in general and

specifically in the robotic manufacturing cells with CNC machines are reviewed, and

an appropriated area for using heuristic methods to solve such problems is prepared.

In the third chapter, a line layout FMC without individual buffers on each machine is

considered. To determine the best optimal solution, sequential part production matrix

is presented and the case of an FMC with two CNC machines is thoroughly

discussed. The problem is defined and the mathematical formulations for minimizing

cycle time and maximizing the minimum return time are presented. Additionally, the

numerical results of the proposed models and an improved lower bound for the

general case and a lower bound explained by an assignment problem are provided.

Furthermore, optimal cycles that are computed by using the return time of a machine

for some different structures are presented.

In the fourth chapter, a line layout FMC including individual buffers for each

machine is considered. In this chapter, the problem is defined and a mathematical

formulation to minimize the cycle time is presented. Additionally, the numerical

results of the proposed model, an improved lower bound for the general case and a

lower bound explained by an assignment problem are provided. Furthermore,

optimal cycles that are computed by using the return time of a machine for some

different structures are presented.

Fifth chapter contains three metaheuristic algorithms based on local search algorithm

for solving large size problems defined in chapter three. In the metaheuristics, in

order to compute the minimum cycle time of a given solution a linear programming

model is needed to be solved which is the first case in the literature to the best of our

6

knowledge. Several numerical examples are solved by the proposed algorithms and

their performance and solutions are compared.

Finally, chapter six contains discussion and conclusion of the study and is provided

some ideas about further researches.

7

Chapter 2

2 LITERATURE REVIEW

2.1 Preface

One of the first studies related to the sequencing of parts in a robotic cell was

conducted by Sethi et al. [9]. The objective of this study was to maximize the long-

run average throughput of the system. Assuming that one part is produced by each

machine in a cycle, they developed the cycle-time formulas for robot-centered cells

with two and three machines. Crama and Van de Klundert [6] presented a dynamic

programming approach for finding a shortest cyclic schedule for the robot

movements that can be infinitely repeated. Furthermore, they proved that the

minimum long-run average cycle time can be achieved by a one-unit cycle for a

three-machine cell [10]. Both of their studies were related to identical parts and

inline robotic cells. Hall et al. [11] studied a variety of classical scheduling objectives

and provided either a polynomial- or a pseudo polynomial-time algorithm. Brauner

and Finke [12] discussed the dominant states of a cell with identical parts and

developed an algebraic approach for an m-machine cell; they also proved that the

one-unit cycle is suitable for the two- and three-machine cells and showed that it is

not optimal for four and more machines. Abdekhodaee et al. [3] performed two

operations per cycle on each machine with non-preemptable jobs for a flexible

manufacturing cell with parallel machines, and they also considered equal processing

times and equal setup times.

8

Akturk et al. [13] studied the scheduling of a two-machine cell with identical parts,

which comprise a number of operations to be completed in these two machines. They

found the optimal robot movement cycle and the assignment of operations to these

two machines as the objective function with minimizing the cycle time. Gultekin et

al. [14] considered an inline robotic cell with two or three CNC machines and

presented lower and upper bounds for one- and two-unit robot movement cycles,

respectively. They proved that their proposed cycle dominates all two-unit robot

movement cycles and also presented the regions where the proposed cycle dominates

all one-unit cycles. Gultekin et al. [15] proposed a new cycle for a two-machine cell

and proved that it dominates all classical robot movement cycles considered in the

literature. They proved that changing the layout from an inline robotic cell to a robot-

centered cell reduces the cycle time for the m-machine cell and found the optimal

number of machines that minimize the cycle time of the proposed cycle. In another

study, Gultekin et al. [16] worked on a flexible manufacturing cell with two or three

machines to minimize the manufacturing cost and the cycle time jointly. They

considered a one-unit cycle and determined the efficient set of processing time

vectors so that no other processing time vector provides both a smaller cycle time

and a lower cost. They also compared these cycles with each other for determining

the sufficient conditions in which each of the cycles dominates the rest. Gultekin et

al. [5] also modeled the problem of determining the best pure cycle for an m-machine

cell with multiple parts as a special traveling salesman problem for parallel

machines. They proposed a mathematical model and a two-stage heuristic algorithm

for solving such problems. Ghadiri Nejad et al. [17] suggest an MTZ based TSP

model for scheduling problem of the flexible robotic cell with m machines and a

robot. They provide a reduced version for their model by excluding waiting time

9

variables and reported that, the reduced model is much efficient in comparison with

the models reported in the literature. In another study, Ghadiri Nejad et al. developed

a mathematical model for the scheduling problem of m machines and a robot FRC

using “Network Flow” approach [18]. Akturk et al. [19] considered a machine-job

assignment problem with controllable processing times and modeled it as a nonlinear

mixed 0-1 profit maximization problem. They also reformulated the problem using a

polynomial for a number of conic constraints. Yildiz et al. [20] differentiated two

pure cycles and showed that these two cycles together dominate the rest of the pure

cycles for a wide range of processing times. They established the worst case and

showed that the objective function is the minimization of the cycle time. Uruk et al.

[21] considered a two-machine flow shop scheduling problem with identical jobs and

determined the assignment of flexible operations to the machines and processing

time for each operation to minimize the cycle time.

2.2 CNC machines having tool magazine

There are some studies that considered a flexible manufacturing cell including CNC

machines with tools for the CNC machines and also gripper for the robots to

empower them to be more flexible. Some of the important studies are as follows.

Dawande et al. [4] focused on a survey related to previous studies on robotic cell

scheduling problems. They also tried out to find a lower bound for a one-unit cycle

time of an FMC with multiple robots containing single and dual grippers.

Drobouchevitch et al. [8] tried out to find the optimal sequence of robot movements

for maximizing the long-run average throughput rate of the cell. They worked on a

special FMC containing one buffer as an input/output buffer in a robot-centered

layout. They also considered a dual-gripper cell and a single-gripper cell with

10

machine output buffers of one-unit capacity. As an important developing step in

FMS discussions, Zeballos [22] presented a constraints programming methodology

to deal with the scheduling of FMS consisting of search strategy and handled several

features found in the industrial environment such as limitations on number of tool

system, tool lifetime and tool magazine capacity of machines. Foumani and Jenab

[23] studied one-unit cycles for an inline robotic cell and found the robot movement

sequence that minimizes the cycle time. They also presented the regions of

optimality when each part reenters the first machine twice and determined optimality

conditions for different cycles when each part reenters both machines twice. After

sensitivity analysis of both cases, they found the best and the worst cycle

mathematically. Furthermore, these two researchers worked on m-unit pure cycles to

find the robot movement sequence for minimizing the cycle time when the robot had

the swapping ability [24]. They presented an improved pure cycle that always

dominates pure cycles and introduced a lower bound. Jolai et al [25] studied a

robotic cell scheduling problem with identical part types, when machines are flexible

and able to swap. They determined all 1-unit cycle times and proposed a novel cycle

for robot movements that dominates all robot move cycles in the literature.

2.3 Heuristic methods

De Giovani and Pezzella [26] proposed an improved genetic algorithm to solve the

distributed and flexible job-shop scheduling problem and considered a flexible

manufacturing unit including four separate FMC interconnected by a material

handling system. Batur et al. [27] suggested the robot movement sequence as well as

the processing times of the parts on each machine which jointly minimized the cycle

time for a two-machine manufacturing cell which repeatedly produces a set of

multiple part-types. They also constructed an efficient 2-stage heuristic algorithm

11

and compared it to the most common heuristic approach in scheduling for longest

processing time. Kim et al. [28] examined the cyclic scheduling problem for a dual-

armed cluster tool that performs periodic cleaning processes. They identified

sufficient conditions for which the conventional backward and swap sequences

provide the minimum cycle time. They also proposed two heuristic scheduling

strategies and compared them with the conventional scheduling methods and the

lower bound of each schedule.

12

Chapter 3

3 THE FMC WITHOUT INDIVIDUAL BUFFER FOR

 EACH MACHINE

3.1 Preface

In this chapter, we consider m parallel and identical CNC machines placed on a line.

Different parts with different processes can be performed by each machine and

consequently the process time of each machine can be different. There are an input

station in which the items to be processed are kept and an output station in which the

finished items are kept. When an item is processed by any of the machines, it

becomes a finished item and it must be taken to the output station. There is a robot

that performs the loading/unloading activities and transports the items.

Some basic definitions, assumptions, parameters and sets are used in this thesis are as

follows:

Definition 1. A loaded robot movement is when the robot takes a part from input

buffer and moves to load a machine or takes a finished part from a machine, moves

to output buffer to unload it.

Definition 2. An unloaded robot movement is moving the robot without a part.

The parameters and sets are used in this study are as follows; It is supposed that all

data of the problems are integers.

13

ε: The time of the loading and unloading of machines and buffers. This time for all

the machines, input and output buffers is the same and constant.

δ: The robot travel times which are the same between input buffer and the first

machine, between every two consecutive machines and between the last machine and

output buffer.

Mi: Machine i where i is the machine number, i = 1, 2, ..., m.

S: Set of all the possible different order for which m parts can be produced using m

machines in each cycle.

pi: The processing time of a part on machine i is pi.

Li: The loading of machine i, that include the robot movement from its position to the

input buffer, taking a part, moving to machine i and loading machine i.

Ui: The unloading of the machine i by the robot. Ui includes taking a part from

machine i, moving to the output buffer and putting the part in the output buffer.

L: The set of all the loading activities, L = {L1, L2, …, Lm}.

U: The set of all the unloading activities, i.e. U = {U1, U2, …, Um}.

A: The set of all the activities which belong to the sets of L and U. Hence, A = {L1,

L2, …, Lm, U1, U2, …, Um }.

14

T: Cycle time, i.e. the time of loading, processing and unloading of all the parts of a

cycle and returning to the initial state including waiting time of the robot.

wi: Waiting time of the robot on machine i to unload the part that may occur if the

robot has to wait on the machine until it finishes the process. Obviously the robot

does not wait in the input or output buffer at all. If the time required after loading a

machine until the robot returns to that machine to unload it is less than the processing

time on the machine, then, waiting time is positive, otherwise it is zero.

Definition 3: When Li is completed, the robot stays at machine i. Similarly, when Ui

is completed, the robot stays at the output buffer.

Definition 4: When a machine processes a part, it is full and the machine cannot be

loaded by a new part unless the robot unloads the machine first.

Definition 5: As there are m machines in the general case, in each cycle m parts are

produced, since each part is completely produced by only one machine.

Definition 6: Every loading or unloading task is considered as an activity.

3.2 Sequential Part Production Matrix

To determine the best optimal solution, we must consider all of the different pure

cycles of the system and find their cycle times. To find all of the possible pure cycles

of a system we present sequential part production matrix (SPPM) as follows:

SPPM is a matrix that contains two columns. The first column is related to the

loading activity and the second column is related to the unloading activity. Every

15

row is related to one product and clearly, there are m rows as m products for an m-

machine FMC. The sequence of the cycle can be distinguished by the numbers in the

matrix. For example if m = 2 and we want to write the matrix related to L1L2U1U2

cycle (which is illustrated in Figure 5) there will be a 2 by 2 matrix as there are two

products in each cycle. Also because the first activity is loading machine 1, the

matrix will be [1
−
−
−
]. In the next steps, machine 2 is loaded. Therefore, the matrix will

change to [1
2
−
−
] because as earlier mentioned the second row is related to the second

part. To complete the cycle, machine 1 and machine 2 will be unloaded respectively.

Thus the matrix will be completed as [1
2
3
4
].

In general, let A1,A2,…, A2m be the sequence of activities in the cycle. Notice that A1 =

L1 and the set formed from the elements of the sequence, i.e. { A1,A2,…, A2m } is the

set A. The elements of the SPPM matrix are denoted by sik, where i = 1,2, …, m and k

= 1,2. The value of the elements si1 is l if Al = Li and similarly, the value of si2 is l if

Al = Ui.

Figure 5. Robot movement sequence related to L1L2U1U2 cycle.

To write all of the pure cycles for an m-machine FMC, Gultekin et al. [15] proved

that from (2m)! possible pure cycles, (2m−1)! different pure cycles exist in such a

Input

 M1

M2

L2

L1 U1

Output

U2

16

cell. To neglect repetitive permutation, like L1L2U1U2 and U1U2L1L2 that are the

different representations of the same cycle, they assumed that all cycles will be

started with activity L1. In this way there are six different pure cycles in a 2-machine

FMC. Let S = {1, 2, 3, 4, 5 and 6} be the set of all the possible strategies for

processing two parts with two machines, the SPPM will be the following:

Table 1. SPPM for producing two parts in a two-machine cell

Strategy name 1 2 3 4 5 6

Activities Sequence L1L2U1U2 L1L2U2U1 L1U1L2U2 L1U1U2L2 L1U2L2U1 L1U2U1L2

SPPM [
1

2

3

4
] [

1

2

4

3
] [

1

3

2

4
] [

1

4

2

3
] [

1

3

4

2
] [

1

4

3

2
]

3.3 The case of m = 2

In this section, a robotic FMC with two machines is considered.

3.3.1 Cycle times

To determine the best optimal solution, minimal cycle time, we should consider all of

the different pure cycles of the system and find their cycle times. There are six

different pure cycles for an FMC with two machines which are shown in Table 2. For

example cycle 𝐿1𝐿2𝑈1𝑈2 shows that the robot starts from machine 1, goes to the input

buffer, takes a part and loads machine 2. Then the robot goes to machine 1 and

unloads it and puts the part in the output buffer. After that it goes to machine 2 and

unloads it and puts the part in the output buffer and finally it goes to the input buffer,

takes a part and loads machine 1.

Table 2. Sequences of the activities for producing two parts in a two-machine cell.

Case number 1 2 3 4 5 6

Activities Sequence 𝐿1𝐿2𝑈1𝑈2 𝐿1𝐿2𝑈2𝑈1 𝐿1𝑈1𝐿2𝑈2 𝐿1𝑈1𝑈2𝐿2 𝐿1𝑈2𝐿2𝑈1 𝐿1𝑈2𝑈1𝐿2

17

Theorem 1: The cycle times of all the robot movement cases for a 2-machine cell

with non-identical parts are as follows:

𝑇1 = 8𝛿 + 6𝜀 + 𝑚𝑎𝑥{4𝛿 + 2𝜀, 𝑝1, 𝑝2}

𝑇2 = 6𝛿 + 4𝜀 + 𝑚𝑎𝑥{6𝛿 + 4𝜀 + 𝑝2, 𝑝1}

𝑇3 = 12𝛿 + 8𝜀 + 𝑝1 + 𝑝2

𝑇4 = 6𝛿 + 4𝜀 + 𝑚𝑎𝑥{6𝛿 + 4𝜀 + 𝑝1, 𝑝2}

𝑇5 = 6𝛿 + 4𝜀 + 𝑚𝑎𝑥{8𝛿 + 4𝜀, 𝑝1, 𝑝2}

𝑇6 = 10𝛿 + 6𝜀 + 𝑚𝑎𝑥{4𝛿 + 2𝜀, 𝑝1, 𝑝2}

Proof: The cycle times calculations for all of the cases are quite similar. Therefore,

we limit ourselves to illustrate the method through providing the proof for only one

case say 𝑇1. In order to provide a better understanding for the calculations, the

duration of each step is expressed at the end of it. Hence, the cycle time can be

calculated by getting the summation of these durations. The steps for cycle time

calculation for case 1 (𝑇1), starting from machine 1, when it is loaded (𝐿1) is as

follows:

1- The robot, moves from machine 1, to the input buffer, picks up a part, moves to

machine 2, and loads it. (𝛿 + 𝜀 + 2𝛿 + 𝜀)

2- The robot, moves to machine 1, waits on machine 1 if it is necessary until its

process is finished, picks the part up, moves to the output buffer and unloads it.

(𝛿 + 𝑤1 + 𝜀 + 2𝛿 + 𝜀)

3- The robot returns to machine 2, waits on machine 2, if it is necessary until the

process is finished, picks up the part, moves to the output buffer and unloads it.

(𝛿 + 𝑤2 + 𝜀 + 𝛿 + 𝜀)

4- The robot returns to the input buffer. (3𝛿)

18

5- The robot picks up a part from the input buffer, moves to machine 1 and loads it.

(𝜀 + 𝛿 + 𝜀)

The cycle time using this case is:

𝑇1 = (𝛿 + 𝜀 + 2𝛿 + 𝜀) + (𝛿 + 𝑤1 + 𝜀 + 2𝛿 + 𝜀) + (𝛿 + 𝑤2 + 𝜀 + 𝛿 + 𝜀) + (3𝛿) +

(𝜀 + 𝛿 + 𝜀) = 12𝛿 + 8𝜀 + 𝑤1 + 𝑤2; where 𝑤1 = 𝑚𝑎𝑥{0, 𝑝1 − (4𝛿 + 2𝜀)} and

𝑤2 = 𝑚𝑎𝑥{0, 𝑝2 − (4𝛿 + 2𝜀 + 𝑤1)}.

As it can be seen, the cycle time is dependent on 𝑤1 and 𝑤2, therefore it is necessary

to discuss the different cases of them. For 𝑇1, the unknown waiting times are 𝑤1 and

𝑤2 and their values may vary depending on the values of 𝑝1, 𝑝2 and 4𝛿 + 2𝜀.

If 𝑝1 ≤ 4δ + 2ε and 𝑝2 ≤ 4δ + 2ε then 𝑤1 = 𝑤2 = 0, therefore, 𝑇1 = 12𝛿 + 8𝜀.

If 𝑝1 > 4δ + 2ε and 𝑝2 ≤ 𝑝1 then 𝑤1 = 𝑝1 − (4δ + 2ε) and 𝑤2 = 0, therefore, 𝑇1 =

8𝛿 + 6𝜀 + 𝑝1.

If 𝑝2 > 4δ + 2ε ≥ 𝑝1 then 𝑤1 = 0 and 𝑤2 = 𝑝2 − (4δ + 2ε), therefore, 𝑇1 = 8𝛿 +

6𝜀 + 𝑝2.

If 𝑝2 > 𝑝1 ≥ 4δ + 2ε then 𝑤1 = 𝑝1 − (4δ + 2ε) and 𝑤2 = 𝑝2 − 𝑝1, therefore, 𝑇1 =

8𝛿 + 6𝜀 + 𝑝2.

The calculations of 𝑇1 can be summarized as 8δ + 6ε + 𝑚𝑎𝑥{4𝛿 + 2𝜀, 𝑝1, 𝑝2}. By

using this method, all pure cycles’ times can be proved as mentioned. □

3.3.2 The optimal cycle time as a function of the processing time

To find a lower bound for the cycle time, all of the cycle times which are conditional

should be separated. For example 𝑇1 can be separated to 𝑇11 = 12𝛿 + 8𝜀, if 𝑝1 ≤

19

4𝛿 + 2𝜀 and 𝑝2 ≤ 4𝛿 + 2𝜀, 𝑇12 = 8𝛿 + 6𝜀 + 𝑝1, if 𝑝1 > 4𝛿 + 2𝜀 and 𝑝1 > 𝑝2 and

𝑇13 = 8𝛿 + 6𝜀 + 𝑝2, if 𝑝2 > 4𝛿 + 2𝜀 and 𝑝2 > 𝑝1. By using these separated

formulas, there will be 14 different cases as follows that should be compared

together:

𝑇11 = 12𝛿 + 8𝜀, if 𝑝1 ≤ 4𝛿 + 2𝜀 and 𝑝2 ≤ 4𝛿 + 2𝜀

𝑇12 = 8𝛿 + 6𝜀 + 𝑝1, if 𝑝1 > 4𝛿 + 2𝜀 and 𝑝1 ≥ 𝑝2

𝑇13 = 8𝛿 + 6𝜀 + 𝑝2, if 𝑝2 > 4𝛿 + 2𝜀 and 𝑝2 > 𝑝1

𝑇21 = 12𝛿 + 8𝜀 + 𝑝2, if 𝑝1 ≤ 6𝛿 + 4𝜀 + 𝑝2

𝑇22 = 6𝛿 + 4𝜀 + 𝑝1, if 𝑝1 > 6𝛿 + 4𝜀 + 𝑝2

𝑇3 = 12𝛿 + 8𝜀 + 𝑝1 + 𝑝2

𝑇41 = 12𝛿 + 8𝜀 + 𝑝1, if 𝑝2 ≤ 6𝛿 + 4𝜀 + 𝑝1

𝑇42 = 6𝛿 + 4𝜀 + 𝑝2, if 𝑝2 > 6𝛿 + 4𝜀 + 𝑝1

𝑇51 = 14𝛿 + 8𝜀, if 𝑝1 ≤ 8𝛿 + 4𝜀 and 𝑝2 ≤ 8𝛿 + 4𝜀

𝑇52 = 6𝛿 + 4𝜀 + 𝑝1, if 𝑝1 > 8𝛿 + 4𝜀 and 𝑝1 ≥ 𝑝2

𝑇53 = 6𝛿 + 4𝜀 + 𝑝2, if 𝑝2 > 8𝛿 + 4𝜀 and 𝑝2 ≥ 𝑝1

𝑇61 = 14𝛿 + 8𝜀, if 𝑝1 ≤ 8𝛿 + 4𝜀 and 𝑝2 ≤ 8𝛿 + 4𝜀

𝑇62 = 10𝛿 + 6𝜀 + 𝑝1, if 𝑝1 > 4𝛿 + 2𝜀 and 𝑝1 > 𝑝2

𝑇63 = 10𝛿 + 6𝜀 + 𝑝2, if 𝑝2 > 4𝛿 + 2𝜀 and 𝑝2 > 𝑝1

To find the lower bound in terms of the processing times, we consider the intervals

that 𝑝1 and 𝑝2 belong to. According to the formulae, the intervals are as follows:

1) 𝑝1, 𝑝2 ∈ [0, 4𝛿 + 2𝜀] that includes 𝑇11, 𝑇21, 𝑇3, 𝑇41, 𝑇51 and 𝑇61.

2) 𝑝1 ∈ (4𝛿 + 2𝜀, 8𝛿 + 4𝜀] and 𝑝1 ≥ 𝑝2 that includes 𝑇12, 𝑇21, 𝑇22, 𝑇3, 𝑇41, 𝑇51

and 𝑇62.

20

3) 𝑝2 ∈ (4𝛿 + 2𝜀, 8𝛿 + 4𝜀] and 𝑝2 > 𝑝1 that includes 𝑇13, 𝑇21, 𝑇3, 𝑇41, 𝑇42, 𝑇51

and 𝑇63.

4) 𝑝1 ∈ (8𝛿 + 4𝜀,∞) and 𝑝1 ≥ 𝑝2 that includes 𝑇12, 𝑇21, 𝑇22, 𝑇3, 𝑇41, 𝑇52 and 𝑇62.

5) 𝑝2 ∈ (8𝛿 + 4𝜀,∞) and 𝑝2 > 𝑝1 that includes 𝑇13, 𝑇21, 𝑇3, 𝑇41, 𝑇42, 𝑇53 and 𝑇63.

In the first interval, when both 𝑝1 and 𝑝2 are less than or equal to 4𝛿 + 2𝜀, 𝑇11 is

the least cycle time. Because 𝑇21 and 𝑇41 have a 𝑝2 and a 𝑝1 more than 𝑇11,

respectively, 𝑇3 has 𝑝1 + 𝑝2 more than 𝑇11 and also 𝑇51 and 𝑇61 have 2𝛿 more than

𝑇11. By using such comparisons for intervals of states 2 to 5, the following lemma is

true.

Lemma 1: If 𝑇𝑚𝑖𝑛 denotes the minimal cycle time, then

𝑇𝑚𝑖𝑛 =

{

𝑇11 = 12δ + 8ε if 𝑝1 ≤ 4𝛿 + 2𝜀 and 𝑝2 ≤ 4𝛿 + 2𝜀
𝑇12 = 8δ + 6ε + 𝑝1 if 𝑝1 ≥ 𝑝2 and 4𝛿 + 2𝜀 < 𝑝1 ≤ 6𝛿 + 2𝜀
𝑇51 = 14δ + 8ε if 𝑝1 ≥ 𝑝2 and 6𝛿 + 2𝜀 < 𝑝1 ≤ 8𝛿 + 2𝜀
𝑇13 = 8δ + 6ε + 𝑝2 if 𝑝1 < 𝑝2 and 4𝛿 + 2𝜀 < 𝑝2 ≤ 6𝛿 + 2𝜀
𝑇51 = 14δ + 8ε if 𝑝1 < 𝑝2 and 6𝛿 + 2𝜀 < 𝑝1 ≤ 8𝛿 + 2𝜀
𝑇52 = 6δ + 4ε + 𝑝1 if 𝑝1 ≥ 𝑝2 and 8𝛿 + 4𝜀 < 𝑝1
𝑇53 = 6δ + 4ε + 𝑝2 if 𝑝2 > 𝑝1and 8𝛿 + 4𝜀 < 𝑝2

 □

3.3.3 An upper bound for cycle time

Considering the cycle time formula for different sequences of the robot movements

and comparing them with each other, all five intervals which are mentioned in

section 3.3.2 must be considered. In the first interval in which 𝑝1 and 𝑝2 are less than

4𝛿 + 2𝜀, 𝑇3 is greater than 𝑇11, 𝑇21 and 𝑇4. On the other hand, comparisons

between 𝑇3, 𝑇51 = 𝑇61 show that if 𝑝1 + 𝑝2 ≤ 2𝛿 then 𝑇51 = 𝑇61 is the upper bound

for the cycle time, otherwise 𝑇3 will be the upper bound. Comparing all the different

cycle times in the second and third intervals, it is easy to see that 𝑇3 is always the

21

greatest cycle time among the others. The upper bound of the cycle time for a 2-

machine cell with non-identical parts has been summarized as follows:

𝑇𝑚𝑎𝑥 = {
 14δ + 8ε if p1 + p2 ≤ 2δ
 12δ + 8ε + p1 + p2 otherwise

3.4 Definitions, parameters and sets

The rest of the parameters and sets are used to present the proposed mathematical

models are as follows:

djk: The time to complete activity k just after completing activity j.

To calculate djk, the position of the robot after performing each activity must be taken

into consideration. After a loading activity, the position of the robot is at the machine

which was loaded, while after an unloading activity, this position is at the output

buffer. Therefore, if activity k is an unloading activity (Uk), the time required for the

robot to pick a part up and unload it into the output buffer includes wk because

perhaps when the robot reaches machine k to pick the kth part up, the process of that

part has not finished yet. Specially, if j = Li and k = Ui in the previous step, the robot

loads part i on machine i and immediately it must unload the same part, therefore the

robot’s waiting time on machine i will be equal to the processing time pi. For

example, if we want to calculate the time related to 𝑑𝐿1𝑈𝑚 , after loading machine 1,

the robot is at machine 1. Therefore, it must go from machine 1 to machine m by

using (𝑚 − 1)𝛿 time units to unload it. In this case if the machine m has finished the

process of the part, there will be no waiting time, otherwise, the robot must wait on

machine m that is equal to wm time units. Then the robot must get a part (ε), move to

the output buffer (δ) and unload the part m. Thus, the total time for 𝑑𝐿1𝑈𝑚 is equal to

𝑚𝛿 + 2𝜀 + 𝑤𝑚. On the other hand, if activity k is related to a loading activity,

regardless of what activity j is (loading or unloading), there will be no waiting time

22

and the time distance will be calculated easily. In Table 3, the time distance matrix

for performing every two consecutive activities in an m-machine flexible

manufacturing cell by the robot can be seen.

Table 3. Time distance Matrix for m-machine FMC.

j \ k L1 L2 … Lm-1 Lm U1 U2 … Um-1 Um

L1 - 3δ+2ε … mδ+2ε (m+1)δ+2ε mδ+2ε+p1
mδ+2ε

+w2
…

mδ+2ε

+wm-1

mδ+2ε

+wm

L2 3δ+2ε - … (m+1)δ+2ε (m+2)δ+2ε
(m+1)δ

+2ε+w1

(m-1)δ

+2ε+p2
…

(m-1)δ

+2ε+wm-1

(m-1)δ

+2ε+wm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lm-1 mδ+2ε (m+1)δ+2ε … - (2m-1)δ+2ε
(2m-2)δ

+2ε+w1

(2m-4)δ

+2ε+w2
… 2δ+2ε+pm-1

2δ+2ε

+wm

Lm (m+1)δ+2ε (m+2)δ+2ε … (2m-1)δ+2ε -
(2m-1)δ

+2ε+w1

(2m-3)δ

+2ε+w2
…

3δ+2ε

+wm-1
δ+2ε+pm

U1 (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε -
(2m-2)δ

+2ε+w2
…

4δ+2ε

+wm-1

2δ+2ε

+wm

U2 (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1
- …

4δ+2ε

+wm-1

2δ+2ε

+wm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Um-1 (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1

(2m-2)δ

+2ε+w2
… -

2δ+2ε

+wm

Um (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1

(2m-2)δ

+2ε+w2
…

4δ+2ε

+wm-1
-

Also in this study the following decision variables are used:

tLi: The completion time of loading the part on machine i.

tUi: The completion time of unloading machine i and putting the part into the output

buffer.

xjk: A binary decision variable that will be 1 if activity j is followed by activity k

where 𝑗, 𝑘 𝜖 𝐴 and 0, otherwise.

23

zk: A binary variable that is 1, when Lk precedes Uk and 0, otherwise. If at the

beginning of the cycle machine k processes a part then Uk precedes Lk, otherwise,

not.

3.5 Mathematical models

In this section, three different mathematical models are reported. The first model is

called the complete model, which is an alternative to the model of Gultekin et al. [5].

The second model is the reduced model. In this model, all the waiting time variables

and constraints that are related to the calculation of the waiting times are eliminated.

The last mathematical model maximizes the minimum robot return time to each

machine. This value is very important because the cycle time and processing times

are connected to each other and the feasibility of the cycle time can be verified by

this model.

3.5.1 Complete mathematical model

The complete mathematical model that explicitly contains the waiting time variables

is described as follows:

Minimize T (1)

𝑡𝐿𝑘 ≥ 𝑡𝐿𝑗 + 𝑑𝐿𝑗𝐿𝑘𝑥𝐿𝑗𝐿𝑘 − (1 − 𝑥𝐿𝑗𝐿𝑘)𝑀, ∀ 𝑗, 𝑘 = 1,… ,𝑚, 𝑗 ≠ 𝑘, 𝑘 ≠ 1 (2)

𝑡𝐿𝑘 ≥ 𝑡𝑈𝑗 + 𝑑𝑈𝑗𝐿𝑘𝑥𝑈𝑗𝐿𝑘 − (1 − 𝑥𝑈𝑗𝐿𝑘)𝑀, ∀ 𝑗, 𝑘 = 1,… ,𝑚, 𝑘 ≠ 1 (3)

𝑡𝑈𝑘 ≥ 𝑡𝐿𝑘 + 𝑑𝐿𝑘𝑈𝑘 − (1 − 𝑧𝑘)𝑀, ∀ 𝑘 = 1,… ,𝑚 (4)

𝑡𝑈𝑘 ≥ (𝑡𝐿𝑘 − 𝑇) + 𝑑𝐿𝑘𝑈𝑘 −𝑀𝑧𝑘, ∀ 𝑘 = 1, … ,𝑚 (5)

𝑡𝑈𝑘 ≤ 𝑡𝐿𝑘 +𝑀𝑧𝑘 − 1, ∀ 𝑘 = 1,… ,𝑚 (6)

𝑡𝑈𝑘 ≥ 𝑡𝑙 + 𝑑𝑙𝑈𝑘𝑥𝑙𝑈𝑘 + 𝑤𝑘 − (1 − 𝑥𝑙𝑈𝑘)𝑀, ∀ 𝑙 𝜖 {𝐿𝑗 , 𝑈𝑗}, 𝑗, 𝑘 = 1,… ,𝑚, 𝑗 ≠ 𝑘 (7)

𝑡𝑈𝑘 ≤ 𝑡𝑙 + 𝑑𝑙𝑈𝑘𝑥𝑙𝑈𝑘 + 𝑤𝑘 + (1 − 𝑥𝑙𝑈𝑘)𝑀, ∀ 𝑙 𝜖 {𝐿𝑗 , 𝑈𝑗}, 𝑗, 𝑘 = 1,… ,𝑚, 𝑗 ≠ 𝑘 (8)

𝑡𝐿1 = 0 (9)

24

𝑇 ≥ 𝑡𝑙 + 𝑑𝑙𝐿1𝑥𝑙𝐿1 , ∀ 𝑙 𝜖{𝐿𝑘, 𝑈𝑘}, 𝑘 = 1, … ,𝑚, 𝑘 ≠ 𝐿1 (10)

∑ 𝑥𝑙𝑞𝑞𝜖𝐴 = 1, ∀ 𝑙𝜖 𝐴 | 𝑙 ≠ 𝑞 (11)

∑ 𝑥𝑙𝑞𝑙𝜖𝐴 = 1, ∀ 𝑞𝜖 𝐴 | 𝑙 ≠ 𝑞 (12)

𝑥𝑙𝑞 ∈ {0,1}, ∀𝑙, 𝑞 ∈ 𝐴; 𝑧𝑘 ∈ {0,1}, 𝑤𝑘 ≥ 0, ∀𝑘; 𝑡𝑗 ≥ 0, ∀ 𝑗 ∈ 𝐴; 𝑦𝑙𝑈𝑘 ≥ 0, ∀𝑙, 𝑘 (13)

The objective function minimizes the cycle time which is shown by formula (1).

Constraint (2) considers all cases that the robot consecutively loads on two different

machines, where M is a large number which is at least as large as the cycle time.

Constraint (3) is related to the cases in which an unloading activity is followed by a

loading activity. Constraints (4)–(6) are related to the loading activities that are

followed by an unloading activity. If the loading and unloading activities are related

to the same machine, the mathematical constraint will be shown by formulae (4) and

(5). Formula (5) describes the case in which the loading of the machine was

performed in the previous cycle. Constraint (4) claims that if zk = 1, then tUk ≥ tLk.

The contrary must be claimed as well, i.e., if zk = 0, then tLk ≥ tUk, which is shown

by constraint (6). Formulae (7) and (8) determine the waiting times if an activity is

followed by an unloading activity on a different machine. In these cases, the robot

may have waiting times (wk), where dlUk is the element of Table 3 without wk. To

prevent considering similar cycles such as L1L2U1U2 and U2L1L2U1, it is assumed

that the cycle starts when machine 1 is loaded (L1), which is shown by constraint (9).

To calculate the cycle time, the time when the robot moves after the last activity of

the cycle to the input station and carries a part and loads machine 1, should be

considered. Constraint (10) applies these calculations. Constraints (11) and (12) are

the classical assignment constraints that are related to the sequence of the activities in

25

a cycle. It is clear that when the robot performs an activity, in the next step only one

of the other activities from the set A can be performed. Finally, Constraint (13)

defines the decision variables.

3.5.2 The reduced mathematical model

To decrease the CPU time, the constraints and variables that are related to the

waiting times can be excluded from the complete model. Therefore, instead of

formulae (7) and (8), formula (14) can be added to the model. The new mathematical

model that is called the reduced model is derived from formulae (1) to (6) and (9) to

(14) collectively.

𝑡𝑈𝑘 ≥ 𝑡𝑙 + 𝑑𝑙𝑈𝑘𝑥𝑙𝑈𝑘 − (1 − 𝑥𝑙𝑈𝑘)𝑀, ∀ 𝑙 𝜖 {𝐿𝑗 , 𝑈𝑗}, 𝑗, 𝑘 = 1,… ,𝑚, 𝑗 ≠ 𝑘. (14)

3.5.3 Maximization of the minimum return time

The return time for machine k in a cycle is the time between loading the machine

(𝐿𝑘) to the moment when the robot returns to the same machine to unload it. The

waiting time on machine k is zero if the return time is longer than the processing

time.

The return time is 𝑡𝑈𝑘 − 𝑡𝐿𝑘 − (𝑚 + 1 − 𝑘)𝛿 − 2𝜀 if 𝑈𝑘 is after 𝐿𝑘, i.e., 𝑧𝑘 = 1. If

𝑈𝑘 is before 𝐿𝑘, then the part that is loaded in this cycle will be unloaded in the next

cycle, i.e., the unloaded activity will be completed at 𝑡𝑈𝑘 + 𝑇. Thus, in this case the

return time is 𝑡𝑈𝑘 + 𝑇 − 𝑡𝐿𝑘 − (𝑚 + 1 − 𝑘)𝛿 − 2𝜀 in this case. Hence, the general

formula for the return time is 𝑡𝑈𝑘 − 𝑡𝐿𝑘 − (𝑚 + 1 − 𝑘)𝛿 − 2𝜀 + 𝑇(1 − 𝑧𝑘). For a

given cycle and the cycle time, the minimum return time is the maximum processing

time such that the cycle can produce the cycle time. Thus, if the cycle time is fixed

then the maximization of the minimum return time results in a cycle such that the

cycle time still has a fixed value, but for any larger processing time the cycle time is

26

also larger. This problem can be formulated as follows. The constraints from (2) to

(13) are unchanged. The objective function is the maximization of the new variable,

say h, such that:

𝑡𝑈𝑘 − 𝑡𝐿𝑘 − (𝑚 + 1 − 𝑘)𝛿 − 2𝜀 + 𝑇(1 − 𝑧𝑘) ≥ ℎ, ∀𝑘 (15)

Maxℎ (16)

The problem must contain a fixed cycle time, i.e.,

T = requested value (17)

To maximize the minimum return time, formulae (2)–(13) with formulae (15)–(17)

must be considered where formula (16) is the objective function of that model.

3.6 Numerical results

3.6.1 The minimization of the cycle time

To compare the proposed models with the model of Gultekin et al. [5], an FMC for

producing identical products with fixed process time, and fixed ε and δ, is

considered. All results for solving the models were implemented for two to six

machines using the CPLEX 12.6 software, and executed on an Intel(R) Pentium(R)

Dual CPUE2180 @ 2.00 GHz CPU and 2.00 GB of RAM. Table 4 shows the

objective functions and the CPU times for the models for the first scenario,

considering ε and δ 1 and 2, respectively.

27

Table 4. CPU times of solving the proposed models and the Gultekin et al. model.
 3-machine cell 4-machine cell 5-machine cell

P

Opt.

cycle

time

CPU time (seconds)
Opt.

cycle

time

CPU time (seconds)
Opt.

cycle

time

CPU time (seconds)

Gultekin

et al.

model

Proposed

model

Reduced

model

Gultekin

et al.

model

Proposed

model

Reduced

model

Gultekin

et al.

model

Proposed

model

Reduced

model

0 60 0.29 0.15 0.12 96 1.71 1.20 0.82 140 133.32 52.04 36.85

25 60 0.29 0.18 0.15 96 2.43 1.35 0.84 140 181.04 45.58 34.24

50 70 0.20 0.14 0.14 96 2.85 0.92 0.75 140 101.71 29.58 18.20

75 95 0.23 0.18 0.14 99 1.76 0.84 0.73 140 105.16 18.97 11.70

100 120 0.23 0.23 0.15 124 2.18 0.78 0.31 140 64.61 10.18 5.39

125 145 0.25 0.18 0.17 149 2.01 0.93 0.75 153 26.26 8.08 4.82

150 170 0.21 0.17 0.14 174 2.53 0.92 0.45 178 59.62 5.36 3.62

175 195 0.21 0.14 0.12 199 1.90 0.96 0.75 203 48.48 8.23 4.17

200 220 0.18 0.17 0.15 224 1.64 0.48 0.43 228 39.36 5.87 4.71

225 245 0.18 0.15 0.15 249 1.90 0.45 0.40 253 33.14 5.02 4.60

250 270 0.20 0.15 0.14 274 1.70 0.98 0.36 278 22.64 8.32 5.51

According to the results in Table 4, the proposed model has less CPU time than the

model of Gultekin et al., and the reduced model has always the shortest CPU time

among all these three models. The reduced model is the only model that can solve a

six-machine cell in about 5 hours, which is about 2 hours faster than the performance

of the complete model; and the model of Gultekin et al. could not be solved as the

computer stopped the execution with an error message. Moreover, it is worth to state

that the difference of the CPU times for these three models increases when the

number of machines increases (see Figure 6, 7 and 8).

28

Figure 6. CPU times of the models for 3-machine test instances.

Figure 7. CPU times of the models for 4-machine test instances.

29

Figure 8. CPU times of the models for 5-machine test instances.

As depicted in the figures in general, the computation times of the models decreases

or in some cases remains steady when the processing time of the machines increases.

Additionally, the proposed universal and reduced mathematical models solve the

problem in shorter times in compare to the model presented in the literature, where it

is obvious that the performance of the reduced model is the best. It seems that, as

process time in the machines increases solution times of the models converging (see

Figure 8). In this testing scenario, the solution time of the models have completely

similar trends.

Figure 9 shows the sequence of optimal robot movements for a four-machine cell

obtained by the proposed mathematical model when p = 22, δ = 2, and ε = 1 time

unit. The numbers on arrows show the sequence of the robot movements.

30

Figure 9. The robot optimal moves sequence for L1L3L4U2U3U1U4L2L1 cycle.

3.6.2 Computational result of the return time

In this case, we considered a four-machine FMC with small processing times and 96

time units of the cycle time which is the minimum cycle time according to Theorem

3. This model was solved to find how large the processing times can be, and we

found that the minimum return time is 66 in the cycle L1L4U3L3U2L2U1U4. This

means that if the processing time for each machine is less than or equal to 66, there

will be no increase in the minimum cycle time and it is equal to 96. The minimum

return time for the general case is discussed in Section 3.9.3. After this example, we

tried to maximize the minimum return time for a 4-machine FMC when there is no

limit for the cycle time; however, all the waiting times are zero. The solution shows

that the return time for all of the machines is the same and equal to 84 when the cycle

time is 106 for the cycle L1U4L4U3L3U2L2U1.

The generalization of the optimal solution based on maximizing the minimum return

time for a two- to six-machine cell shows that the optimal solution for an m-machine

robotic cell will be L1UmLmUm−1Lm−1…U2L2U1.

Input

 M2

M3

14-L2

Output

2-L3

4-L4

16-L1

1

15

11

3

8-U3

 6-U2

12-U4

9

13

5

7

 M1

M4

10-U1

31

3.7 An improved lower bound for the optimal cycle time in the

general case

Gultekin et al. [5] proved two lower bounds using a single formula. The first lower

bound is the time that a part stays in the system. The second lower bound is the

minimum total moving time of the robot in a cycle which is independent of the

processing times. They presented short and straightforward proofs for both the lower

bounds. The new proof of the first lower bound is as follows:

Let’s consider each part stays at the input station at first. The robot carries each part

to a machine (𝑀𝑗), the machine processes the part, and the robot carries it to the

output station. This process consists of the following time elements. The robot is

loaded at the input station (𝜀 time units) as it moves to 𝑀𝑗(𝑗𝛿), the robot is unloaded

at 𝑀𝑗(𝜀), the processing time is 𝑝𝑗, the robot is loaded at 𝑀𝑗(𝜀) as it travels to the

output station ((𝑚 + 1 − 𝑗)𝛿), the part is unloaded at (𝜀), and finally to start the

cycle again the robot must return to the input station ((𝑚 + 1)𝛿). The total time

calculated is 4𝜀 + 2(𝑚 + 1)𝛿 + 𝑝𝑗. Hence, the value of 4𝜀 + 2(𝑚 + 1)𝛿 +

max
𝑗=1 to 𝑚

𝑝𝑗 is considered a lower bound of the cycle time. If the processing times are

very long then they are the dominating factors for determining the cycle time.

However, the value of 4𝜀 + 2(𝑚 + 1)𝛿 + max
𝑗=1 to 𝑚

𝑝𝑗 can be equal to the cycle time

only if there is only a single machine or there is a long processing time that can

complete other processes. In what follows, all of the cases of the two processes are

discussed. Assume that both the processes are performed on machines k and l. There

are three significant different relative positions for the two processes:

1. Process of part k is completely finished and then the process of part l is started (see

Figure 10(a)). To unload part k, 4𝜀 + (𝑚 + 1)𝛿 + 𝑝𝑘 time units are required. Then,

32

the robot must move back to the input station to carry part l, this activity takes

(𝑚 + 1)𝛿 time units. Similarly, to finish the process of part l, 4𝜀 + (𝑚 + 1)𝛿 + 𝑝𝑙 is

required. At the end, the robot must move back to the input station once more

(𝑚 + 1)𝛿, thus the total time will be 8𝜀 + 4(𝑚 + 1)𝛿 + 𝑝𝑘 + 𝑝𝑙.

Figure 10. Different positions of parts in a cycle that affects the cycle time.

2. Another possibility is that parts k and l are loaded consecutively and then part l is

unloaded first (see Figure 10(b)). To load part k, 2𝜀 + 𝑘𝛿 time units are required for

the robot to carry the part from the input station and to load machine k. To load part

l, the robot must return to the input station (𝑘𝛿) and carry the part to load machine l

(2𝜀 + 𝑙𝛿). The robot must wait for completing the process of part l (𝑝𝑙). It must

unload machine l ((𝑚 + 1 − 𝑙)𝛿 + 2𝜀), return to machine k ((𝑚 + 1 − 𝑘)𝛿), unload

machine k ((𝑚 + 1 − 𝑘)𝛿 + 2𝜀), and finally return to the input station. The total

time is at least 4(𝑚 + 1)𝛿 + 8𝜀 + 𝑝𝑙 if there is no activity between these activities.

3. The last relative position is when parts k and l are loaded consecutively and then

part k is unloaded first (see Figure 10(c)). In this position, the activity time of either

𝐿𝑙 or 𝑈𝑘 can be completed by the process time. First assume that 𝑈𝑘 is completed.

Hence, the time elements are as follows: loading of machine k (2𝜀 + 𝑘𝛿), returning

𝐿𝑘 𝑈𝑘 𝐿𝑙 𝑈𝑙

(a)

𝐿𝑙 𝑈𝑙 𝐿𝑘 𝑈𝑘

(b)

𝐿𝑙 𝑈𝑙 𝐿𝑘 𝑈𝑘

(c)

33

to the input station in (𝑘𝛿), loading of machine l (2𝜀 + 𝑙𝛿), processing of part l (𝑝𝑙),

unloading of part l ((𝑚 + 1 − 𝑙)𝛿 + 2𝜀), and returning to the input station ((𝑚 +

1)𝛿). Therefore, the total time is (2𝑘 + 2(𝑚 + 1))𝛿 + 6𝜀 + 𝑝𝑙). If 𝐿𝑙 is completed

by the process of part k then the time elements are as follows: loading of part k (2𝜀 +

𝑘𝛿), processing of part k (𝑝𝑘), unloading of part k ((𝑚 + 1 − 𝑘)𝛿 + 2𝜀), returning to

machine l ((𝑚 + 1 − 𝑙)𝛿), unloading of part l ((𝑚 + 1 − 𝑙)𝛿 + 2𝜀), and returning to

the input station ((𝑚 + 1)𝛿). Therefore, the total time is (4(𝑚 + 1) − 2𝑙)𝛿 + 6𝜀 +

𝑝𝑘. Both the cases provide the lower bound equal to 2(𝑚 + 2)𝛿 + 6𝜀 + min
𝑘=1 to 𝑚

𝑝𝑘

that can be concluded in the following theorem.

Theorem 2: Assume that 𝑚 ≥ 2.

(i) If there are two parts, say k and l, in a cycle such that their loading and unloading

activities take place in disjoint time intervals, then the cycle time is at least 4(𝑚 +

1)𝛿 + 8𝜀 + 𝑝𝑘 + 𝑝𝑙.

(ii) If there are two parts, say k and l, such that the time interval of the loading and

unloading activities of part k completely covers the time interval of the loading and

unloading activities of part l, then the cycle time is at least 4(𝑚 + 1)𝛿 + 8𝜀 + 𝑝𝑙.

(iii) In any other case, the cycle time is at least 2(𝑚 + 2)𝛿 + 6𝜀 + min
𝑘=1 to 𝑚

𝑝𝑘.

 □

3.8 A lower bound explained by an assignment problem

The logic of the other lower bound of Gultekin et al. [5] is that the cycle time cannot

be shorter than the minimum total moving time of the robot such that it serves all of

34

the machines and returns to its initial position. Here, a new proof of the lower bound

is provided. This proof explores the structure of the problem and carries an

optimality analysis for several possible cycles.

Theorem 3: The cycle time is at least 2(𝑚2 + 𝑚)𝛿 + 4𝑚𝜀.

Proof: The robot performs each activity exactly once in each cycle. Thus, the

description of a cycle includes one element from every row and column of Table 3.

Hence, a lower bound on the cycle time can be obtained if a minimization

assignment problem is solved based on the matrix shown in Table 3. Every cell of

Table 3 includes 2ε as the loading and unloading activities. Therefore, if we decrease

each cell by 2ε, the optimal solution of the robot movement cycle remains the same.

If 𝑝𝑖 and 𝑤𝑖 are expressed in the form of
𝑝𝑖

𝛿
𝛿 and

𝑤𝑖

𝛿
𝛿, then only coefficients of δ

remain, δ can be deleted from each cell, and Table 3 can be revised as Table 5. Note

that j can only be less or greater than k in this table.

35

Table 5. Distance matrix in terms of coefficient of δ.

j \ k L1 … Lk … Lm U1 … Uk … Um
Dual

Coefficient

L1 - … 1+k … 1+m m+
𝑝1

𝛿
 … m+

𝑤𝑘

𝛿
 … m+

𝑤𝑚

𝛿
 4-m

…

…

… …

… …

…

… …

… …

…

Lj j+1 … j+k … j+m j+m-1+
𝑤1

𝛿
 … |j-k|+m-k+1+

𝑤𝑘

𝛿
 … m-j+1+

𝑤𝑚

𝛿
 3-m+j

…

…

… …

… …

…

… …

… …

…

Lk k+1 … - … k+m k+m-1+
𝑤1

𝛿
 … m-k+1+

𝑝𝑘

𝛿
 … m-k+1+

𝑤𝑚

𝛿
 3-m+k

…

…

… …

… …

…

… …

… …

…

Lm m+1 … m+k … - 2m-1+
𝑤1

𝛿
 … 2(m-k)+1+

𝑤𝑘

𝛿
 … 1+

𝑝𝑚

𝛿
 3

U1 m+2 … m+k+1 … 2m+1 - … 2(m-k+1) … 2 4

…

…

… …

… …

…

… …

… …

…

Uj m+2 … m+k+1 … 2m+1 2m … 2(m-k+1) … 2 4

…

…

… …

… …

…

… …

… …

…

Um m+2 … m+k+1 … 2m+1 2m … 2(m-k+1) … - 4

Dual

Coefficient
m-2 … m+k-3 … 2m-3 2m-4 … 2(m-k-1) … -2

If all waiting times are considered to be zero, the optimal value of the assignment

problem can be reduced further. It is possible to obtain a lower bound of the optimal

value by solving the assignment problem defined by the coefficient matrix. The dual

variables are shown in Table 5 (see the row and column of “dual coefficient”). Note

that these variables are considered feasible in the dual of the assignment problem.

To be considered feasible in the dual problem, each coefficient of the matrix must be

greater than or equal to the sum of the dual variables of its row and column. If the

dual variables are feasible and there is a feasible solution of the assignment problem

such that if a variable of the assignment problem is 1 then the related constraint of

the dual problem is satisfied by the equation and both the primal and dual solutions

are optimal. The sum of the dual variables associated with 𝐿𝑗𝐿𝑘 , 𝐿𝑗𝑈𝑘, 𝐿𝑘𝑈𝑘, 𝑈𝑗𝐿𝑘,

36

and 𝑈𝑗𝑈𝑘 are 𝑗 + 𝑘,𝑚 + 𝑗 − 2𝑘 + 1,𝑚 − 𝑘 + 1,𝑚 + 𝑘 + 1, and 2𝑚–2𝑘 + 2,

respectively. The constraints for 𝐿𝑗𝐿𝑘,𝑈𝑗𝐿𝑘, 𝐿𝑘𝑈𝑘, and 𝑈𝑗𝑈𝑘 are satisfied. To check

the feasibility of 𝐿𝑗𝑈𝑘, the following formula must be applied:

𝐿𝑗𝑈𝑘: 𝑚 + 𝑗 − 2𝑘 + 1 ≤ |𝑗 − 𝑘| + 𝑚 − 𝑘 + 1 +
𝑤𝑘

𝛿
.

There are two different cases 𝑗 > 𝑘 and 𝑗 < 𝑘. If 𝑗 > 𝑘, then 𝑚 + 𝑗 − 2𝑘 + 1 ≤ |𝑗 −

𝑘| + 𝑚 − 𝑘 + 1 +
𝑤𝑘

𝛿
= 𝑗 − 𝑘 +𝑚 − 𝑘 + 1 +

𝑤𝑘

𝛿
= 𝑚 + 𝑗 − 2𝑘 + 1 +

𝑤𝑘

𝛿
since

𝑤𝑘 ≥ 0. If 𝑗 < 𝑘, then 𝑚 + 𝑗 − 2𝑘 + 1 ≤ |𝑗 − 𝑘| + 𝑚 − 𝑘 + 1 +
𝑤𝑘

𝛿
= 𝑘 − 𝑗 + 𝑚 −

𝑘 + 1 +
𝑤𝑘

𝛿
= 𝑚 − 𝑗 + 1 +

𝑤𝑘

𝛿
. By eliminating 𝑚 + 1 from both sides of the

inequality and taking all the parameters to one side of the inequality, it will be

simplified as 0 𝑠𝑖𝑘 − 𝑗) +
𝑤𝑘

𝛿
, and because 𝑘 > 𝑗, this inequality is always true.

If the elements of Table 5 are reduced by the row and column of dual variables, then

Table 5 becomes Table 6.

37

Table 6. The last table of the assignment problem.

jk L1 L2 … Lk … Lm U1 U2 … Uk … Um

L1 - 0 … 0 … 0
𝑝1
𝛿

 2+
𝑤2

𝛿
 … 2(k-1)+

𝑤𝑘

𝛿
 … 2(m-1)+

𝑤𝑚

𝛿

…

…

…

… …

… …

…

…

… …

… …

Lk-1 0 0 … 0 … 0
𝑤1
𝛿

𝑤2
𝛿

 … 2+
𝑤𝑘

𝛿
 … 2(m-k+1)+

𝑤𝑚

𝛿

Lk 0 0 … - … 0
𝑤1
𝛿

𝑤2
𝛿

 …
𝑝𝑘
𝛿

 … 2(m-k)+
𝑤𝑚

𝛿

…

…

…

… …

… …

…

…

… …

… …

Lm-1 0 0 … 0 … 0
𝑤1
𝛿

𝑤2
𝛿

 …
𝑤𝑘
𝛿

 … 2+
𝑤𝑚

𝛿

Lm 0 0 … 0 … 0
𝑤1
𝛿

𝑤2
𝛿

 …
𝑤𝑘
𝛿

 …
𝑝𝑚
𝛿

U1 0 0 … 0 … 0 - 0 … 0 … 0

…

…

…

… …

… …

…

…

… …

… …

Uk-1 0 0 … 0 … 0 0 0 … 0 … 0

Uk 0 0 … 0 … 0 0 0 … - … 0

…

…

…

… …

… …

…

…

… …

… …

Um-1 0 0 … 0 … 0 0 0 … 0 … 0

Um 0 0 … 0 … 0 0 0 … 0 … -

In Table 6, the rectangles show an optimal solution assuming 𝑤1 = 0. In Table 7, the

rectangles show the solution of the assignment problem in terms of δ coefficients.

Table 6 also shows that there are alternative optimal solutions without containing any

cell with 𝑤𝑘 values. Thus, the optimal solutions can be determined from the cells of

rectangles assuming that 𝑤1 = 0.

38

Table 7. Solution of the assignment problem in terms of δ coefficients.

jk L1 L2 … Lk … Lm U1 U2 … Uk … Um

L1 - 3 … 1+k … 1+m m+
𝑝1

𝛿
 m+

𝑤2

𝛿
 … m+

𝑤𝑘

𝛿
 … m+

𝑤𝑚

𝛿

…

…

…

… …

… …

…

…

… …

… …

Lk-1 k k+1 … 2k-1 … k+m-1 m+k-2+
𝑤1

𝛿
 k+m-4+

𝑤2

𝛿
 … m-k+2+

𝑤𝑘

𝛿
 … m-k+2+

𝑤𝑚

𝛿

Lk k+1 k+2 … - … k+m m+k-2-
𝑤1

𝛿
 k+m-3+

𝑤2

𝛿
 … m-k+1+

𝑝𝑘

𝛿
 … m-k+1+

𝑤𝑚

𝛿

…

…

…

… …

… …

…

…

… …

… …

Lm-1 m m+1 … m+k-1 … 2m-1 2m-2+
𝑤1

𝛿
 2m-4+

𝑤2

𝛿
 … 2(m-k)+

𝑤𝑘

𝛿
 … 2+

𝑤𝑚

𝛿

Lm m+1 m+2 … m+k … 2m 2m-1+
𝑤1

𝛿
 2m-3+

𝑤2

𝛿
 … 2(m-k)+1+

𝑤𝑘

𝛿
 … 1+

𝑝𝑚

𝛿

U1 m+2 m+3 … m+k+1 … 2m+1 - 2(m-1) … 2(m-k+1) … 2

…

…

…

… …

… …

…

…

… …

… …

Uk-1 m+2 m+3 … m+k+1 … 2m+1 2m 2(m-1) … 2(m-k+1) … 2

Uk m+2 m+3 … m+k+1 … 2m+1 2m 2(m-1) … - … 2

…

…

…

… …

… …

…

…

… …

… …

Um-1 m+2 m+3 … m+k+1 … 2m+1 2m 2(m-1) … 2(m-k+1) … 2

Um m+2 m+3 … m+k+1 … 2m+1 2m 2(m-1) … 2(m-k+1) … -

The cycle times considering the rectangles of Table 7 are calculated as follows:

𝑇 = 4𝑚𝜀 + ((𝑚 + 2) + ∑ (2𝑘 − 1)𝑚
𝑘=2 + (2𝑚 − 1) + ∑ 2(𝑚 − 𝑘 + 1)𝑚

𝑘=2)𝛿.

Because ∑ (2𝑘 − 1)𝑚
𝑘=2 = 𝑚2 − 1 and ∑ 2(𝑚 − 𝑘 + 1)𝑚

𝑘=2 = 𝑚2 −𝑚, the cycle

time can be calculated as follows:

𝑇 = 4𝑚𝜀 + (𝑚 + 2 +𝑚2 − 1 + 2𝑚 − 1 +𝑚2 −𝑚)𝛿 = 4𝑚𝜀 + (2𝑚2 + 2𝑚)𝛿. □

3.9 Optimal cycles of different structures in the general case

The optimal solution of the assignment problem provides a lower bound for the

minimum cycle time. If the processing times are such that all waiting times are zero,

then the lower bound is equal to the cycle time and the cycle is optimal. Since the

39

assignment problem has many optimal solutions, we determine the conditions for

optimal solutions in this section.

Theorem 4: A cycle is an optimal solution of the assignment problem if and only if

there are no machine indices k and l such that 𝐿𝑘 is immediately followed by 𝑈𝑙

when 𝑘 ≤ 𝑙.

Proof: Table 6 contains positive values for these activities in the right upper triangle

of the matrix. □

There are many cycles that satisfy the condition of the theorem. For example, the

cycle 𝐿1𝐿2. . . 𝐿𝑚𝑈1𝑈2. . . 𝑈𝑚that can be generalized as 𝐿𝑖1𝐿𝑖2 …𝐿𝑖𝑚𝑈𝑖1𝑈𝑖2 …𝑈𝑖𝑚.

These cycles are discussed in Sections 3.9.2 and 3.9.3.

3.9.1 Basic tools

To find the optimal solution(s) of the problem, we first solve the problem when the

processing times are small enough so that they can be excluded from the calculations

(𝑝𝑖 = 0). Then, the solution is fixed and under this condition the minimum of 𝑝𝑖,

considering that all the waiting times (𝑤𝑖) are still zero, is maximized.

All loaded robot movements consist of the same elements: carry a part from the input

station and load machine 𝑘 (which needs 𝑘𝛿 + 2𝜀 time units) or unload the same

machine and put that part at the output station (that needs (𝑚 + 1 − 𝑘)𝛿 + 2𝜀 time

units). Therefore, the total time is equal to (𝑚 + 1)𝛿 + 4𝜀 time units for every part

in one pure cycle. Hence, to minimize the cycle time for one pure cycle, only the

unloaded robot movement can be considered and must be minimized. Thus, it is

sufficient to determine the optimal (minimum) solution of the assignment problem

40

defined by the matrix consisting of the time distances between two machines as a

unit (𝛿). Table 8 shows the coefficients of 𝛿 for only unloaded robot movements.

Table 8. Matrix of 𝛿 coefficients for only unloaded robot movements.

Table 7 shows an optimal solution for the assignment problem considering 𝛿

coefficients that are the same as provided in Table 8. The optimality of this solution

is discussed in the next section. The primary tool of the analysis is the return time

that is discussed in Section 3.4.

3.9.2 The 𝑳𝒊𝟏𝑳𝒊𝟐 …𝑳𝒊𝒎𝑼𝒊𝟏𝑼𝒊𝟐 …𝑼𝒊𝒎 cycle

Lemma 2: The minimum return time is not less than 2(𝑚 − 1)𝜀 + (
𝑚2−1

2
) 𝛿 for any

of the solutions of type 𝐿𝑖1𝐿𝑖2 …𝐿𝑖𝑚𝑈𝑖1𝑈𝑖2 …𝑈𝑖𝑚 .

Proof: To prove that the statement is correct, at first the return time to machines 𝑖1

and 𝑖2 is calculated. Then, the return time to machine 𝑖𝑘 is calculated and its

minimum value is computed. Similarly, the return time to machine 𝑖𝑚 is calculated

and after comparing all of them the minimum value is computed.

ik L1 … Li … Lk … Lm U1 … Uk … Um

L1 - … 1 … 1 … 1 0 … k-1 … m-1

… … … … … … … … … … … … …

Li i … - … i … i i-1 … |k-i| … m-i

… … … … … … … … … … … … …

Lk k … k … - … k k-1 … 0 … m-k

… … … … … … … … … … … … …

Lm m … m … m … - m-1 … m-k … 0

U1 m+1 … m+1 … m+1 … m+1 - … m-k+1 … 1

… … … … … … … … … … … … …

Ui m+1 … m+1 … m+1 … m+1 m … m-k+1 … 1

… … … … … … … … … … … … …

Uk m+1 … m+1 … m+1 … m+1 m … - … 1

… … … … … … … … … … … … …

Um m+1 … m+1 … m+1 … m+1 m … m-k+1 … -

41

Return time to machine 𝒊𝟏: The return time to machine 𝑖1for this cycle is the time

of movement from 𝐿𝑖1 to 𝑈𝑖1which includes 𝐿𝑖2 …𝐿𝑖𝑚𝑈𝑖1. Such a robot movement

sequence is called the return cycle and the return time is the time required from

loading a machine until the robot reaches the same machine to unload it. It is clear

that all the waiting times of the minimum return time are equal to zero. To calculate

the return time to machine 𝑖1, the loaded and unloaded robot movement times must

be considered. Table 9 shows the loaded and unloaded robot movement time

distances.

Table 9. Loaded and unloaded robot movement time distances.
Activity 𝐿𝑖2 𝐿𝑖3 … 𝐿𝑖𝑚 𝑈𝑖1 𝑈𝑖2 … 𝑈𝑖𝑚−1 𝑈𝑖𝑚

Unloaded movement i1 i2 … im-1 |im- i1| m+1- i2 … m+1-im-1 m+1-im

Loaded movement i2 i3 … im m+1- i1 m+1- i2 … m+1-im-1

In the first row of Table 9, the order of the robot movements’ cycle of

𝐿𝑖1𝐿𝑖2 …𝐿𝑖𝑚𝑈𝑖1𝑈𝑖2…𝑈𝑖𝑚 has been shown. The second and third rows of Table 9

show the unloading and loading times of the robot movement in detail (in terms of

coefficients of 𝛿), respectively. For example, to load machine 𝑖2 just after loading

machine 𝑖1, the robot requires 𝑖1𝛿 time units to reach the input station to carry a new

part (unloaded robot movement) and then it requires 𝑖2𝛿 time units to move from the

input station to machine 𝑖2. To calculate the summation of the loaded and unloaded

robot movements for this case, all of the robot movements from every machine to the

input station except machine 𝑖𝑚 must be considered as follows:

In the second row of Table 9, there is no robot movement from the last loaded

machine (𝑖𝑚) to the input station. Instead, there is a robot movement to the first

machine for which the return cycle is started with (𝑖1). This robot movement requires

42

|𝑖𝑚 − 𝑖1|𝛿 time units. Moreover, in the third row of Table 9, there is no robot

movement from the input station to the machine for which the return cycle is started

with (𝑖1). It is clear that to calculate such robot movements we must consider 2(𝑚 −

1)𝜀 time units for taking 𝑚 − 1 new parts from the input station and loading them on

the machines (considering that at the beginning of the cycle machine 𝑖1 has been

loaded). Therefore, the return time will be calculated as follows:

Return time = 2(𝑚 − 1)𝜀 + ((∑ 𝑖𝑗
𝑚−1
𝑗=1) + |𝑖𝑚 − 𝑖1| + (∑ 𝑖𝑗

𝑚
𝑗=2)) 𝛿 =

2(𝑚 − 1)𝜀 + (∑ 𝑗𝑚
𝑗=1 − 𝑖𝑚 + |𝑖𝑚 − 𝑖1| + ∑ 𝑗 − 𝑖1

𝑚
𝑗=1)𝛿 = 2(𝑚 − 1)𝜀 +

(𝑚(𝑚 + 1) + |𝑖𝑚 − 𝑖1| − 𝑖1 − 𝑖𝑚)𝛿.

Here, 2(𝑚 − 1)𝜀 + 𝑚(𝑚 + 1)𝛿 is a constant value. The minimum of (|𝑖𝑚 − 𝑖1| −

𝑖1 − 𝑖𝑚)𝛿 is equal to {
−2𝑖1 if 𝑖𝑚 > 𝑖1
−2𝑖𝑚 if 𝑖𝑚 < 𝑖1

 and its minimum value is −2(𝑚 − 1)𝛿 if

𝑖𝑚 = 𝑚 and 𝑖1 = 𝑚 − 1 or 𝑖𝑚 = 𝑚 − 1 and 𝑖1 = 𝑚. Therefore, in this case the

minimum return time is 2(𝑚 − 1)𝜀 + (𝑚2 +𝑚 − 2)𝛿.

Return time to machine i2: To calculate the return time to machine 𝐿𝑖2, the values

of the 𝐿𝑖2column in Table 9 must be subtracted from the calculations of return time

to machine 𝑖1. Also, the times of the robot movements from machine 𝑖1 to the output

station and from the output station to machine 𝑖2 must be added to its calculations.

Therefore, the return time to machine 𝑖2 is calculated as follows:

Return time to 𝑖2 = Return time to 𝑖1 − (𝑖1 + 𝑖2)𝛿 + (2(𝑚 + 1) − 𝑖1 − 𝑖2)𝛿 =

2(𝑚 − 1)𝜀 + (𝑚(𝑚 + 1) + |𝑖𝑚 − 𝑖1| − 𝑖1 − 𝑖𝑚)𝛿 − (𝑖1 + 𝑖2)𝛿 + (2(𝑚 + 1) − 𝑖1 −

𝑖2)𝛿 = 2(𝑚 − 1)𝜀 + (𝑚(𝑚 + 1) + 2(𝑚 + 1) + |𝑖𝑚 − 𝑖1| − 3𝑖1 − 2𝑖2 − 𝑖𝑚)𝛿.

43

Similar to machine 𝑖1, the coefficient of 𝛿 can be calculated as follows:

(𝑚 + 2)(𝑚 + 1) + {
−4𝑖1 − 2𝑖2 if 𝑖𝑚 > 𝑖1
−2𝑖1 − 2𝑖2 − 2𝑖𝑚 if 𝑖𝑚 < 𝑖1

. If 𝑖𝑚 > 𝑖1, then in this case the

minimum value of the coefficient of 𝛿 for this case is (𝑚 + 2)(𝑚 + 1) −

4(𝑚 − 1) − 2(𝑚 − 2) when 𝑖𝑚 = 𝑚, 𝑖1 = 𝑚 − 1, and 𝑖2 = 𝑚 − 2. However, if

𝑖𝑚 < 𝑖1, the minimum value of the coefficient of 𝛿 is (𝑚 + 2)(𝑚 + 1) − 2𝑚 −

2(𝑚 − 1) − 2(𝑚 − 2) when 𝑖1 = 𝑚 − 1, 𝑖2 = 𝑚, and 𝑖𝑚 = 𝑚 − 2 or when 𝑖1 = 𝑚

either 𝑖2 = 𝑚 − 1 and 𝑖𝑚 = 𝑚 − 2 or 𝑖2 = 𝑚 − 2 and 𝑖𝑚 = 𝑚 − 1.

The comparison of these two values shows that the minimum return time to machine

𝑖2 is2(𝑚 − 1)𝜀 + ((𝑚 + 2)(𝑚 + 1) − 6(𝑚 − 1))𝛿 = 2(𝑚 − 1)𝜀 + (𝑚2 − 3𝑚 +

8)𝛿.

Return time to machine 𝒊𝒌: Starting from the return time of 𝑖1 some new elements

must be added and some other elements must be excluded as follows:

Return time to 𝑖𝑘 = Return time to 𝑖1 − (𝑖1 + 2𝑖2 + 2𝑖3 +⋯+ 2𝑖𝑘−1 + 𝑖𝑘)𝛿 +

(2(𝑘 − 1)(𝑚 + 1) − 𝑖1 − 2𝑖2 − 2𝑖3 −⋯− 2𝑖𝑘−1 − 𝑖𝑘)δ = 2(𝑚 − 1)𝜀 +

(𝑚(𝑚 + 1) + |𝑖𝑚 − 𝑖1| − 𝑖1 − 𝑖𝑚)𝛿 + (2(𝑘 − 1)(𝑚 + 1) − 2𝑖1 − 4∑ 𝑖𝑗
𝑘−1
𝑗=2 −

2𝑖𝑘)𝛿.

To minimize the return time to machine 𝑖𝑘, not considering the constant part of it,

2(𝑚 − 1)𝜀 + (𝑚(𝑚 + 1) + 2(𝑘 − 1)(𝑚 + 1))𝛿,the negative parts,(−2𝑖1 −

4∑ 𝑖𝑗
𝑘−1
𝑗=2 − 2𝑖𝑘 − 𝑖1 − 𝑖𝑚)𝛿, should be maximized in absolute value and the positive

parts, (|𝑖𝑚 − 𝑖1|)𝛿, should be minimized at the same time as the following

maximization objective function:

44

Maximize 4∑ 𝑖𝑗
𝑘−1
𝑗=2 + 3𝑖1 + 2𝑖𝑘 + 𝑖𝑚 − {

𝑖𝑚 − 𝑖1 if 𝑖𝑚 > 𝑖1
𝑖1 − 𝑖𝑚 if 𝑖𝑚 < 𝑖1

. (18)

Considering 𝑖1 and 𝑖𝑚, objective function (18) can be divided into two parts as

follows:

Maximize 4∑ 𝑖𝑗
𝑘−1
𝑗=1 + 2𝑖𝑘 if 𝑖𝑚 > 𝑖1 (19)

and

Maximize 4∑ 𝑖𝑗
𝑘−1
𝑗=2 + 2𝑖1 + 2𝑖𝑘 + 2𝑖𝑚 if 𝑖𝑚 < 𝑖1. (20)

To maximize objective function (19), the highest value of 4∑ 𝑖𝑗
𝑘−1
𝑗=1 is obtained when

𝑖𝑗 is related to the last 𝑘 − 1 machines that are from machine 𝑚 − 𝑘 + 2 to machine

𝑚, regardless of the order of machines that the robot visits. Also, the highest value of

2𝑖𝑘, after excluding the last 𝑘 − 1 machines in the line, is obtained when 𝑖𝑘 is

machine 𝑚− 𝑘 + 1. Therefore, the maximum value of objective function (19) will

be 4∑ 𝑗𝑚
𝑗=𝑚−𝑘+2 + 2(𝑚 − 𝑘 + 1) = 2(−𝑘2 + (2𝑚 + 2)𝑘 − 𝑚 − 1).

To find the maximum value of objective function (20), similar to the calculations

related to objective function (19), 4∑ 𝑖𝑗
𝑘−1
𝑗=2 can be in any sequence of the last 𝑘 − 2

machines in the line layout, and 𝑖1, 𝑖𝑘, and 𝑖𝑚 can be in any order of the last three

machines before machine 𝑚− 𝑘 + 3 for which 𝑖𝑚 < 𝑖1. The maximum value of

objective function (20) is

4∑ 𝑗𝑚
𝑗=𝑚−𝑘+3 + 2∑ 𝑗𝑚−𝑘+2

𝑗=𝑚−𝑘 = 2(−𝑘2 + (2𝑚 + 2)𝑘 −𝑚 − 3).

Hence, the objective function (19) is greater than the objective function (20) and the

return time to machine𝑖𝑘 is at least 2(𝑚 − 1)𝜀 + ((𝑚 + 1)(𝑚 + 2𝑘 − 2) −

45

2(−𝑘2 + (2𝑚 + 2)𝑘 − 𝑚 − 1))𝛿 = 2(𝑚 − 1)𝜀 + ((𝑚 − 𝑘)2 + (𝑘 − 1)2 +𝑚 −

1)𝛿 = 2(𝑚 − 1)𝜀 + (𝑚2 − 2𝑚𝑘 − 2𝑘 +𝑚 + 2𝑘2)𝛿.

To find the minimum return time to machine 𝑖𝑘, 2(𝑚 − 1)𝜀 + (𝑚2 +𝑚)𝛿 depends

only on 𝑚 but the remaining part, which is (2𝑘2 − 2𝑚𝑘 − 2𝑘)𝛿, must be

minimized. Therefore, the derivation
𝜕(2𝑘2−2𝑚𝑘−2𝑘)

𝜕𝑘
= 4𝑘 − 2𝑚 − 2 = 0, where 𝑘 =

𝑚+1

2
. By putting

𝑚+1

2
 instead of 𝑘 in 2(𝑚 − 1)𝜀 + (𝑚2 − 2𝑚𝑘 − 2𝑘 +𝑚 + 2𝑘2)𝛿,

the minimum return time to machine 𝑖𝑘will be equal to 2(𝑚 − 1)𝜀 + (
𝑚2−1

2
) 𝛿.

Return time to machine 𝒊𝒎: Considering Table 9, the return time to machine 𝑖𝑚is

calculated as follows:

Return time to 𝑖𝑚 = 2(𝑚 − 1)𝜀 + (|𝑖𝑚 − 𝑖1| + (𝑚 − 1)(𝑚 + 1) − (∑ 𝑖𝑗
𝑚
𝑗=2)) 𝛿 +

((𝑚 − 1)(𝑚 + 1) − (∑ 𝑖𝑗
𝑚−1
𝑗=1)) 𝛿 = 2(𝑚 − 1)𝜀 + (|𝑖𝑚 − 𝑖1| + (𝑚 − 2)(𝑚 + 1) +

𝑖1 + 𝑖𝑚)𝛿.

Its minimum value is 2(𝑚 − 1)𝜀 + ((𝑚 − 2)(𝑚 + 1) + 2)𝛿 = 2(𝑚 − 1)𝜀 +

(𝑚2 −𝑚)𝛿. It is obtained when either 𝑖1 = 1 or 𝑖𝑚 = 1.

The comparison among the minimum values of 𝑖1, 𝑖2, 𝑖𝑘, and 𝑖𝑚 which are equal to

2(𝑚 − 1)𝜀 + (𝑚2 +𝑚 − 2)𝛿, 2(𝑚 − 1)𝜀 + (𝑚2 − 3𝑚 + 8)𝛿, 2(𝑚 − 1)𝜀 +

(
𝑚2−1

2
) 𝛿, and 2(𝑚 − 1)𝜀 + (𝑚2 −𝑚)𝛿, respectively, shows that the return time to

machine 𝑘 =
𝑚+1

2
 when m is an odd number and 𝑘 =

𝑚

2
 or 𝑘 =

𝑚

2
+ 1 when m is an

even number. Therefore, we can obtain the minimum possible return time in the

46

cycle of the type 𝐿𝑖1𝐿𝑖2 …𝐿𝑖𝑚𝑈𝑖1𝑈𝑖2…𝑈𝑖𝑚that is equal to 2(𝑚 − 1)𝜀 + (
𝑚2−1

2
) 𝛿.

This value is obtained when the last 𝑘 − 1 machines have the indices from 𝑚 − 𝑘 +

2 to 𝑚 (regardless of the order of how the robot services them) and also for the

machines 𝑖𝑚−𝑘+1 = 𝑚 − 𝑘 + 2. □

3.9.3 The L1LmUm-1Lm-1…U2L2U1Um cycle

Lemma 3: The minimum return time is not greater than (4𝑚 − 6)𝜀 + (2𝑚2 − 4)𝛿

for any of the solutions of the type 𝐿1𝐿𝑚𝑈𝑚−1𝐿𝑚−1…𝑈2𝐿2𝑈1𝑈𝑚. This value is

obtained for the return time to machines 1 and 𝑚.

Proof: Considering Table 6, the cycle time of 𝐿1𝐿𝑚𝑈𝑚−1𝐿𝑚−1…𝑈2𝐿2𝑈1𝑈𝑚 is one

of the minimum cycle times when all the waiting times are zero. According to

Theorem 3, it is equal to 4𝑚𝜀 + 2(𝑚2 +𝑚)𝛿. To calculate the return times of all the

machines, we can subtract the complementary of the return time for each machine

from the cycle time presented in Theorem 2. The complementary of a return time, let

say for machine 𝑖, is the robot movements’ time from when the robot is beside

machine 𝑖 to unload it to the end of loading the same machine. For example, to

calculate the complementary of the return time to machine 𝑘 when 𝑈𝑘 is followed by

𝐿𝑘, only unloading machine 𝑘 (when the robot is beside it) and loading the same

machine must be considered. This duration of time is the summation of the time for

unloading machine 𝑘 (which is equal to 2𝜀 + (𝑚 + 1 − 𝑘)𝛿), the robot movement

from the output station to the input station ((𝑚 + 1)𝛿), and loading machine 𝑘(2𝜀 +

𝑘𝛿),. Therefore, the total time is 4𝜀 + 2(𝑚 + 1)𝛿. Since the complementary of

return times for all the machines except machines 1 and 𝑚 of the given cycle is equal

to 4𝜀 + 2(𝑚 + 1)𝛿, therefore the return times for these machines are calculated as

follows:

47

(4𝑚𝜀 + 2(𝑚2 +𝑚)𝛿) − (4𝜀 + 2(𝑚 + 1)𝛿) = (4𝑚 − 4)𝜀 + (2𝑚2 − 2)𝛿.

In the same way, it can be shown that the return times to machines 1 and 𝑚 are equal

to (4𝑚 − 6)𝜀 + (2𝑚2 − 4)𝛿. Thus, the minimum return time for the cycle

𝐿1𝐿𝑚𝑈𝑚−1𝐿𝑚−1…𝑈2𝐿2𝑈1𝑈𝑚 is obtained for machines 1 and 𝑚. □

48

Chapter 4

4 THE FMC WITH INDIVIDUAL BUFFER FOR EACH

MACHINE

4.1 Preface

In this chapter, we consider m parallel and identical CNC machines placed on a line.

Different parts with different processes can be performed by each machine and

consequently the process time of each machine can be different. Each machine

contains individual input buffer. There are an input station in which the items to be

processed are kept and an output station in which the finished items are kept. When

an item is processed by any of the machines, it becomes a finished item and it must

be taken to the output station. There is a robot that performs the loading/unloading

activities and transports the items.

4.2 Sequential part production matrix

To determine the optimal cycle time in an FMC, all of the potential cycles of the

system should be considered. To represent the cycles, the sequential part production

(SPP) matrix for an m-machine FMC when machines 1 to m produce n1, n2, … , nm

parts, respectively, is presented in the following.

The SPP matrix contains two rows. The first row represents the loading operations

and the second row represents the unloading operations. Every column indicates one

production; therefore, there are n1 + n2 +⋯+ nm columns. The columns related to

the production of machines are separated with the vertical lines in the matrix and the

49

sequence of the operations is distinguished by numbers. For example, suppose there

are two machines in a cell and each machine produces two parts, there will be a 2*4

SPP matrix like [−
−
−
−
| −
−
−
−
]. Figure 11 presents the cycle L1L2L1L2U1U2U1U2. This

cycle is shown by using the SPP matrix. The first activity is loading machine 1, so in

the first step the matrix will be [1
−
−
−
| −
−
−
−
] in the first step. In the next step, machine 2

is loaded. Therefore, the matrix will become [1
−
−
−
| 2
−
−
−
]. Then, to load the buffers of

machines 1 and 2, respectively, the matrix will become [1
−
3
−
| 2
−
4
−
]. To complete the

cycle, machines 1 and 2 will be unloaded, respectively. Thus, the matrix will be

represented as [1
5
3
7
| 2
6
4
8
].

Figure 11. Robot movement sequence related to the L1L2L1L2U1U2U1U2 cycle.

To determine the number of different cycles in an m-machine FMC without any

individual buffer before machines, since each machine must be loaded and unloaded

one time, there are two activities related to each machine and totally there are 2m

unique activities in a cycle. To prevent the repetitive permutation, such as L1L2U1U2

and U1U2L1L2 that are different representations of the same cycle, without loss of

generality it can be assumed that all of the cycles start with activity L1. Hence, there

are (2m1)! different cycles in such a cell. Based on this idea, to determine all of the

11-U2

Input

 M1

M2

1-L1

Output

5-L1

6

2

10

7-L2

4

3-L2

8

15-U2

14

12

14-U2

9-U2

16

50

cycles for an m-machine FMC with an input buffer before each machine (when each

buffer has only the capacity of storing one part), and assuming that 2m parts are

produced in a cycle in which each machine produces exactly two parts, there are four

activities related to each machine including two loading and two unloading activities.

In this case, the SPP matrix is represented as [−
−
−
−
|−
−
−
−
|… |−

−
−
−
]. In this matrix, there

are m1 vertical lines that separate all of the activities related to each of the

machines. Generally, an m-machine cell consists
(4m−1)!

(2!)2m−1
 different cycles in which

the first loading of machine 1 is the first activity and the other L1 can be in any place

from the second to the last.

4.3 Definitions, parameters and sets

The loading of machine i includes taking an item from the input station, robot

movement from the input station to machine i, and putting the item to the input

buffer of the machine. It is assumed that when a machine is idle and there is an item

in its input buffer, the machine takes this item from its input buffer and starts

processing it automatically. It means there is no need to use the robot for this

operation. The unloading of machine i includes taking the finished item from the

machine by the robot, the robot movement from the machine i to the output station,

and putting the item to the output station. Note that the robot stays at machine i at the

end of the loading of machine i, and stays at the output station after the unloading of

any machine.

It is assumed that the system repeats the same cycle in the long run. If the system is

at a specific state at the beginning of a cycle, it reaches the same state at the end of

the cycle and repeats the same activities in the following cycle. The duration of a

cycle is called the cycle time. It is assumed that each machine processes only two

51

items in each cycle. Let Lik be the loading and Uik be the unloading of the kth item of

machine i in each cycle. Let Li be the set of loading activities of machine i, i.e., Li =

{Lik| k=1,2}, and Ui be the set of unloading activities of machine i, i.e., Ui = {Uik|

k=1,2}. Let A be the set of all loading and unloading activities, i.e., A={Lik, Uik|

i=1,2,…, m; k=1,2}.

Let ε be the time for taking an item from the input station or from a machine, or the

time for putting an item to the input buffer of a machine or to the output station. Let

δ be the travel time of the robot for a one-unit distance. The distances between the

input station and the first machine, between any two consecutive machines, and

between the last machine and the output station are assumed to be one unit of

distance. So, the time that the robot needs to perform activity b after finishing

activity a (dab) is























ji

ji

ji

ji

Lb and Ua if)1(2

Ub and Ua if)1(22

Ub and La if)1|(|2

 Lb and La if)(2









jm

jm

jmji

ji

dab

On the other hand, the robot may need to wait before starting the unloading of an

item if its process has not finished. The time between the completion times of

activities a, and b related to machine i cannot be less than the following values

(MTi
ab):





















otherwise

Uba, if

Ub and La if)1(2

 Ub and La if)1(2

i

i2i2

i1i1

ab

i

i

i

i

ab

d

p

pim

pim

MT




52

In order to start such a cyclic production, the system needs a setup. All of the loading

and unloading activity orders of machine i at the beginning of the first cycle are as

follows:

- The machine is idle and its input buffer is empty:

1. Li1, Li2, Ui1, Ui2

2. Li1, Ui1, Li2, Ui2

- The machine has a processed part and its input buffer is empty:

3. Li2,Ui1, Ui2, Li1

4. Li2, Ui1, Li1, Ui2

5. Ui1, Li2, Ui2, Li1

6. Ui1, Li2, Li1, Ui2

- The machine has a processed part and its input buffer is full:

7. Ui1, Ui2, Li1, Li2

8. Ui1, Li1, Ui2, Li2

The order of the loading and unloading activities of each machine can be one of the

eight above-mentioned orders in the cyclic production. According to the orders of the

activities, each machine should be setup before starting the cyclic production and

then the system may repeat the same operations continuously.

Since the system will repeat the same cycle continuously, each activity may be

considered as the first activity. We consider L11 as the first activity in this study.

Therefore, the time between two L11 is called the cycle time. A reduction in the cycle

time means an increase in the production rate of such a system. The problem is to

determine the order of all loading and unloading activities for minimizing the cycle

53

time. We have developed the following mixed integer programming formulation to

resolve this problem where the decision variables are as follows:

T: cycle time

ta: completion time of activity Aa






o.w.0

aactivity after bactivity performsrobot if1
abx



 


o.w.0

8 ..., 2, 1,k i; machine of actvities for the applied isorder k if1 th

ikz

4.4 Mathematical model

The mathematical formulation for the provided problem is the following:

Minimize T (21)

1
 aAb

abx , Aa , (22)

1
 bAa

abx , Ab , (23)

)1(ababab xMdtt  , bAaLAb  ,11 , (24)

1111 aLaLa xdtT  , 11LAa  , (25)

1
8

1


j

ijz , mi ,...,1 ,
(26)

)(87654311 iiiiiiUiLi zzzzzzMtt  , mi ,...,1 , (27)

)(75321 iiiUiLi zzzMtt  , mi ,...,1 , (28)

)(654321 iiiiLiLi zzzzMtt  , mi ,...,1 , (29)

)(2111 iiLiUi zzMtt  , mi ,...,1 , (30)

)(43121 iiiLiUi zzzMtt  , mi ,...,1 , (31)

54

)(8765212 iiiiiUiLi zzzzzMtt  , mi ,...,1 , (32)

)(8722 iiUiLi zzMtt  , mi ,...,1 , (33)

)(872112 iiiiLiLi zzzzMtt  , mi ,...,1 , (34)

)(8642112 iiiiiLiUi zzzzzMtt  , mi ,...,1 , (35)

)(65432122 iiiiiiLiUi zzzzzzMtt  , mi ,...,1 , (36)

)1(1,111 ik

i

ULLiUi zMMTtt  , 2,1;,...,1  kmi , (37)

)1(2,112 ik

i

LUUiLi zMMTtt  , 6,5,2;,...,1  kmi , (38)

)1(2,222 ik

i

ULLiUi zMMTtt  , 6,5,4,2;,...,1  kmi , (39)

)1(2,222 ik

i

ULLiUi zMMTtt   , 3,1;,...,1  kmi , (40)

)1(1,221 ik

i

LUUiLi zMMTtt  , 7,5,3;,...,1  kmi , (41)

)1(2,112 ik

i

LLLiLi zMMTtt  , 7,1;,...,1  kmi , (42)

)1(1,111 ik

i

LUUiLi zMMTtt  , 8,4;,...,1  kmi , (43)

)1(2,112 ik

i

ULLiUi zMMTtt  , 8,6,4;,...,1  kmi , (44)

)1(1,221 ik

i

LLLiLi zMMTtt  , 6;,...,1  kmi , (45)

)1(2,222 ik

i

LUUiLi zMMTtt  , 8;,...,1  kmi , (46)

)1(1,221 ik

i

ULLiUi zMMTtt  , 4,3,1;,...,1  kmi , (47)

)1(2,112 ik

i

UUUiUi zMMTtt  , 8,7,4,3,1;,...,1  kmi , (48)

ik

i

ULUiLi zMTTtt 1,111  , 8,7,6,5,4,3;,...,1  kmi , (49)

ik

i

ULUiLi zMTTtt 2,222  , 8;,...,1  kmi , (50)

ik

i

ULUiLi zMTTtt)(2,222   , 7;,...,1  kmi , (51)

55

0at , Aa , (52)

0T (53)

}1,0{abx , aAbAa  , , (54)

}1,0{ijz , 6,...,1;,...,1  jmi , (55)

The objective function of this model is to minimize the cycle time. Constraint (22)

guarantees that the robot passes from each activity to another activity. Constraint

(23) guarantees that the robot passes to each activity from another activity.

Constraints (22) and (23) together guarantee that each activity is performed by the

robot. Constraint (24) computes the completion times of the activities considering the

robot moving time to perform successive activities. Constraint (24) also eliminates

the sub-cycles. Constraint (25) computes the cycle time considering the completion

time of the last activity and the robot moving time until just before performing the

first activity of the cycle. Constraint (26) guarantees that for each machine one of the

eight possible orders is applied. Constraints (27)–(36) compare the completion times

of the activities of each machine and force the related z variables to be 1. Since in all

of the eight orders, Ui1 is before Ui2; considering constraint (26), there is no need to

use the similar constraints for Ui2–Ui1. Constraints (37)–(51) compute the completion

times of the activities considering the process times of the machines and the time that

the robot needs to perform these tasks.

Two of the main concerns of the researchers are the execution time reduction of the

exact methods and to solve the larger problems. In the present study, for decreasing

the CPU time to solve the small-size problems, a linear relaxation approach is

employed. Using this approach, some of the fractional solutions are eliminated from

the solution space. The linear relaxation is expressed as follows:

56

UbT  , (56)

where Ub is an upper bound for the cycle time. To find Ub, a system when only

machine 1 has been loaded and the robot is besides it is considered. Generally, the

activity orders for this cycle are L1L2L2…LmLmU1U1…UmL1. To find Ub by using a

mathematical model, constraints (57)–(61) must be added to the proposed

mathematical model (PMM) as follows:

21 LiLi tt  , mi ,...,1 , (57)

12 LjLi tt  , 1,...,1  mi , 1 ij , (58)

112 ULm tt  , (59)

21 UiUi tt  , mi ,...,1 , (60)

12 UjUi tt  , 1,...,1  mi , 1 ij . (61)

The cycle time, which is obtained in less than 3 s, is considered as Ub and must be

added to the original mathematical model for the second run. This method is called

the time reduction method (TRM) in this study.

4.5 Numerical results

To compare the performance of TRM and PMM, several small-size problems with

identical parts and processing times are considered. Both the exact models are coded

in CPLEX 12.6 software and executed on an Intel(R) Pentium(R) Dual CPUE 2180

at 2.00 GHz CPU with a RAM of 2.0 GB. Table 10 shows the objective functions,

lower bounds, and the CPU times for solving the two-machine problems using both

the proposed exact models.

57

Table 10. The results of the mathematical models for two-machine cells.

Processing times Objective function Lower Bound
CPU time (in seconds)

PMM TRM

30 76 112 0.83 0.77

35 86 127 1.14 0.51

40 96 142 0.98 0.79

45 106 157 0.92 0.64

50 116 172 1.00 0.85

55 126 187 1.25 0.92

60 136 202 0.90 0.71

65 146 217 1.07 0.76

70 156 232 0.79 0.78

75 166 247 0.98 0.81

80 176 262 1.03 1.01

85 186 277 1.06 1.20

90 196 292 0.81 0.89

95 206 307 1.11 0.78

100 216 322 1.00 0.71

From Table 10, it can be observed that when the processing times of both the

machines are the same and equal to 30 time units, the cycle time will be 76 units.

This objective function is obtained by PMM in 0.83 s using the lower bound of 112

time units. TRM obtains the optimal solution in 0.77 s. To compare the performance

of both the methods, their CPU times are plotted in Figure 12.

Figure 12. CPU times of the mathematical models for two-machine cells.

Comparing the CPU times of TRM and PMM for the two-machine cell problems

demonstrates that the performance of the TRM is significantly better than the PMM.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

MMP

TRM

58

Table 11, similar to Table 10, presents the process of solving the three-machine cell

problems by using both the proposed models.

Table 11. The results of the mathematical models for three-machine cells.

Processing times Objective function Lower Bound
CPU time (in seconds)

PMM TRM
30 120 180 395.90 124.30

35 120 195 160.90 63.16

40 120 210 33.39 49.49

45 120 225 41.68 20.13

50 120 240 9.26 20.80

55 130 256 109.90 8.53

60 140 276 42.17 7.89

65 150 296 37.74 12.20

70 160 316 17.50 13.60

75 170 336 17.69 11.64

80 180 356 25.87 14.44

85 190 376 70.51 14.87

90 200 396 44.94 11.54

95 210 416 46.50 31.79

100 220 436 33.09 16.30

Table 11 shows that when the processing times are less than 50, the objective

functions are the same and equal to 120; and by increasing each five units to the

processing times, the objective functions are increased by 10 units. To obtain a better

comparison between the models for the three-machine cell problems, the CPU times

of solving the problems are plotted in Figure 13.

Figure 13. CPU times of the mathematical models for three-machine cells.

The graph of PMM demonstrates that for small processing times, the CPU times are

very large but by increasing the processing times the CPU times decrease

0

100

200

300

400

500

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

MMP

TRM

59

significantly and fluctuate around 40.7 s. The graph of TRM shows a more logical

trend in which the CPU times for small processing times are large but by increasing

the processing times the CPU times decrease gradually and fluctuate around 14.5 s.

Considering Figure 13, it can be seen that for the three-machine cell problems TRM

is more efficient than PMM in most of the cases.

4.6 A lower bound explained by an assignment problem

In a cycle, the minimal total time of the robot movements provides a lower bound for

the cycle time. The cycle time is longer than the total movement time if and only if

there is at least one positive waiting time for the robot. The presence of the positive

waiting time depends on the length of the processing time.

Theorem 5. The minimum cycle time to produce 2m parts when each machine

produces two parts is (4𝑚2 + 4𝑚)𝛿 + 8𝑚𝜀.

Proof: When the total movement time of the robot is determined, all waiting times

can be considered zero. Table 12 shows the time distance matrix for every two

activities in an m-machine cell.

60

Table 12. Time distance matrix for an FMC when each machine has an input buffer.

j \ k L1 L2 … Lm-1 Lm U1 U2 … Um-1 Um

L1 2δ+2ε 3δ+2ε … mδ+2ε (m+1)δ+2ε mδ+2ε+p
mδ+2ε

+w2
…

mδ+2ε

+wm-1

mδ+2ε

+wm

L2 3δ+2ε 4δ+2ε … (m+1)δ+2ε (m+2)δ+2ε
(m+1)δ

+2ε+w1

(m-1)δ

+2ε+p
…

(m-1)δ

+2ε+wm-1

(m-1)δ

+2ε+wm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Lm-1 mδ+2ε (m+1)δ+2ε … (2m-2)δ+2ε (2m-1)δ+2ε
(2m-2)δ

+2ε+w1

(2m-4)δ

+2ε+w2
… 2δ+2ε+p

2δ+2ε

+wm

Lm (m+1)δ+2ε (m+2)δ+2ε … (2m-1)δ+2ε (2m)δ+2ε
(2m-1)δ

+2ε+w1

(2m-3)δ

+2ε+w2
…

3δ+2ε

+wm-1
δ+2ε+p

U1 (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1

(2m-2)δ

+2ε+w2
…

4δ+2ε

+wm-1

2δ+2ε

+wm

U2 (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1

(2m-2)δ

+2ε+w2
…

4δ+2ε

+wm-1

2δ+2ε

+wm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Um-1 (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1

(2m-2)δ

+2ε+w2
…

4δ+2ε

+wm-1

2δ+2ε

+wm

Um (m+2)δ+2ε (m+3)δ+2ε … (2m)δ+2ε (2m+1)δ+2ε
(2m)δ

+2ε+w1

(2m-2)δ

+2ε+w2
…

4δ+2ε

+wm-1

2δ+2ε

+wm

Since each cell in Table 12 includes 2ε for the loading/unloading activities, if we

decrease each cell by 2ε, the optimal robot movement sequence remains the same.

Then, every cell in the table will be a multiple of δ (see Table 13). Therefore, it

should be noted that for those cells that include processing times, 𝑝𝑘 will be changed

to
𝑝𝑘

𝛿
 to be a multiple of δ. Moreover, since each machine produces two parts in a

cycle, there are two loading and two unloading activities for each machine. Thus,

there are four rows and columns for each machine in which the first row or column is

related to the first part which is processed by machine k.

61

Table 13. Time distance matrix in terms of the δ coefficient.
ij L1 … Lk Lk … Lm U1 … Uk Uk … Um

L1 - … 1+k 1+k … 1+m 𝑚 +
𝑝1
𝛿

 … m m … m

…

…

…

…

…

…

…

…

…

…

…

…

…

Lj j+1 … - j+k … j+m j+m-1 … |j-k|+m-k+1 |j-k|+m-k+1 … m-j+1

Lj j+1 … j+k - … j+m j+m-1 … |j-k|+m-k+1 |j-k|+m-k+1 … m-j+1

…

…

…

…

…

…

…

…

…

…

…

…

…

Lk k+1 … - 2k … k+m k+m-1 … 𝑚 − 𝑘 + 1 +
𝑝𝑘
𝛿

 m-k+1 … m-k+1

Lk k+1 … 2k - … k+m k+m-1 … m-k+1 𝑚 − 𝑘 + 1 +
𝑝𝑘
𝛿

 … m-k+1

…

…

…

…

…

…

…

…

…

…

…

…

…

Lm m+1 … m+k m+k … - 2m-1 … 2(m-k)+1 2(m-k)+1 … 1 +
𝑝𝑚
𝛿

U1 m+2 … m+k+1 m+k+1 … 2m+1 - … 2(m-k+1) 2(m-k+1) … 2

…

…

…

…

…

…

…

…

…

…

…

…

…

Uj m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) 2(m-k+1) … 2

Uj m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) 2(m-k+1) … 2

…

…

…

…

…

…

…

…

…

…

…

…

…

Uk m+2 … m+k+1 m+k+1 … 2m+1 2m … - 2(m-k+1) … 2

Uk m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) - … 2

…

…

…

…

…

…

…

…

…

…

…

…

…

Um m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) 2(m-k+1) … -

Each feasible solution has an element in every row and column. To find the optimal

solution, an assignment problem is solved as shown in Table 13. The dual variables

of this problem are shown in Table 14 (see the row and the column of “Dual

coefficient”). It must be shown that these dual variables are feasible in the dual of the

assignment problem.

62

Table 14. Distance matrix in terms of the δ coefficient and dual solutions.
ij L1 … Lk Lk … Lm U1 … Uk Uk … Um Dual

L1 - … 1+k 1+k … 1+m 𝑚 +
𝑝1
𝛿

 … m m … m 2

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Lj j+1 … j+k j+k … j+m j+m-1 … |j-k|+m-k+1 |j-k|+m-k+1 … m-j+1 j+1

Lj j+1 … j+k j+k … j+m j+m-1 … |j-k|+m-k+1 |j-k|+m-k+1 … m-j+1 j+1

…

…

…

…

…

…

…

…

…

…

…

…

…

Lk k+1 … - 2k … k+m k+m-1 … 𝑚 − 𝑘 + 1 +
𝑝𝑘
𝛿

 m-k+1 … m-k+1 k+1

Lk k+1 … 2k - … k+m k+m-1 … m-k+1 𝑚 − 𝑘 + 1 +
𝑝𝑘
𝛿

 … m-k+1 k+1

…

…

…

…

…

…

…

…

…

…

…

…

…

Lm m+1 … m+k m+k … - 2m-1 … 2(m-k)+1 2(m-k)+1 … 1 +
𝑝𝑚
𝛿

 m+1

U1 m+2 … m+k+1 m+k+1 … 2m+1 - … 2(m-k+1) 2(m-k+1) … 2 m+2

…

…

…

…

…

…

…

…

…

…

…

…

…

Uj m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) 2(m-k+1) … 2 m+2

Uj m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) 2(m-k+1) … 2 m+2

…

…

…

…

…

…

…

…

…

…

…

…

…

Uk m+2 … m+k+1 m+k+1 … 2m+1 2m … - 2(m-k+1) … 2 m+2

Uk m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) - … 2 m+2

…

…

…

…

…

…

…

…

…

…

…

…

…

Um m+2 … m+k+1 m+k+1 … 2m+1 2m … 2(m-k+1) 2(m-k+1) … - m+2

 0 … k-1 k-1 … m-1 m-2 … m-2k m-2k … -m

To examine the feasibility in the dual problem, each coefficient in the matrix of the

assignment problem must be greater than or equal to the sum of the dual variables of

its row and column. When a variable of the assignment problem is 1, if its dual

variables are feasible in the dual problem and there is a feasible solution for the

assignment problem, the related constraint of the dual problem is satisfied by the

following equations and both of the primal and dual solutions are optimal. The sums

of the dual variables are as follows:

LjLk: (j+1) + (k1) = j+k

LkLk: (k+1) + (k1) = 2k

LjUk: (j+1) + (m2k) = m+j2k+1

63

LkUk: (k+1) + (m2k) = mk+1

UjLk: (m+2) + (k1) = m+k+1

UkLk: (m+2) + (k1) = m+k+1

UjUk: (m+2) + (m2k) = 2m–2k+2

UkUk: (m+2) + (m2k) = 2m2k+2

Therefore, to examine all of these feasibilities, the following equations must be

evaluated with their conjunctions of their rows and columns of Table 14:

LjLk: j+k ≤ j+k

LkLk: 2k ≤ 2k

LjUk: m+j2k +1 ≤ |jk|+mk+1

There are two different cases as j > k and j < k. If j > k, then m+j2k+1 ≤

|jk|+mk+1 = jk+mk+1 = m+j2k+1. If j < k, then m+j2k+1 ≤ |jk|+mk+1

= kj+mk+1 = mj+1. By eliminating m+1 from both sides of the inequality and

taking all the parameters to one side, it will be simplified as 0 ≤ 2(𝑘 − 𝑗); and as k is

greater than j, this inequality is always true. Therefore,

LkUk: mk+1 ≤ mk+1 and also 𝑚 − 𝑘 + 1 ≤ 𝑚 − 𝑘 + 1 +
𝑝𝑘

𝛿
. Considering every

value of p in the second case, both the inequalities are correct:

UjLk: m+k+1 ≤ m+k+1

UkLk: m+k+1 ≤ m+k+1

UjUk: 2m–2k+2 = 2(m–k+1)

UkUk: 2m2k+2 = 2(m–k+1)

64

If the elements of Table 14 are reduced by the row and column of dual variables,

then it becomes Table 15.

Table 15. The last table for the assignment problem.
Ij L1 L1 … Lk Lk … Lm U1 … Uk Uk … Um

L1 - 0 … 0 0 … 0
𝑝1
𝛿

 … 2(k-1) 2(k-1) … 2(m-1)

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Lj 0 0 … 0 0 … 0 0 … 2(k-j) 2(k-j) … 2(m-j)

Lj 0 0 … 0 0 … 0 0 … 2(k-j) 2(k-j) … 2(m-j)

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Lk 0 0 … - 0 … 0 0 …
𝑝𝑘
𝛿

 0 … 2(m-k)

Lk 0 0 … 0 - … 0 0 … 0
𝑝𝑘
𝛿

 … 2(m-k)

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Lm 0 0 … 0 0 … - 0 … 0 0 …
𝑝𝑚
𝛿

U1 0 0 … 0 0 … 0 - … 0 0 … 0

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Uj 0 0 … 0 0 … 0 0 … 0 0 … 0

Uj 0 0 … 0 0 … 0 0 … 0 0 … 0

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Uk 0 0 … 0 0 … 0 0 … - 0 … 0

Uk 0 0 … 0 0 … 0 0 … 0 - … 0

…

…

…

…

…

…

…

…

…

…

…

…

…

…

Um 0 0 … 0 0 … 0 0 … 0 0 … 0

Um 0 0 … 0 0 … 0 0 … 0 0 … -

In Table 15, the rectangles indicate an optimal solution of the assignment problem.

Therefore, considering the related δ coefficients of the rectangles in Table 14, the

total time of producing 2m parts in a cycle using an FMC can be calculated as

follows:

𝑇 = 8𝑚𝜀 + (∑ 𝑘2𝑚
𝑘=2 + (2𝑚 − 1) + (2𝑚) + 2∑ 2(𝑚 − 𝑘 + 1)𝑚

𝑘=0 + (𝑚 + 2)) 𝛿.

65

Since ∑ 𝑘2𝑚
𝑘=2 = 2𝑚2 +𝑚 − 1and ∑ 2(𝑚 − 𝑘 + 1)𝑚

𝑘=0 = 𝑚2 −𝑚, the cycle time

can be calculated as follows:

𝑇 = 8𝑚𝜀 + ((2𝑚2 +𝑚 − 1) + (2𝑚 − 1) + (2𝑚) + (2𝑚2 − 2𝑚) + (𝑚 + 2))𝛿 =

8𝑚𝜀 + (4𝑚2 + 4𝑚)𝛿. □

4.7 Optimal cycles of different structures in a general case

The optimal solution of the assignment problem, which is the minimal total time, the

robot moves in a cycle, provides a lower bound for the minimal cycle time. Table 15

shows that there are numerous different optimal solutions for the assignment

problem. If the processing times are such that all waiting times are zero, then the

lower bound is equal to the minimal cycle time. Otherwise, the minimal cycle time

becomes significantly greater than the lower bound. To find the optimal solutions of

the problem, first we solve the problem when the processing times are small enough,

i.e., which can be neglected from the calculations (P = 0). Then, we find the solution,

and under that condition we maximize p such that all of the waiting times (wi) are

still zero.

4.7.1 Return time

The return time to a machine is the time between loading the machine and the

moment that the robot returns to the same machine to unload it. The total working

time of the robot during a return time is a lower bound of the return time. It is

possible that some of the waiting times during the return time can be positive. The

total working times of the robot contain both transportations and the

loading/unloading operations. Therefore, the return time can be reduced by

calculating the working times of the robot. The waiting time on machine k is zero if

the return time is longer than its processing time. In this study, we have considered

two return times for each machine because each machine is loaded twice. For

66

example, assume that a cycle has an order like L1L1...LmLmU1U1...UmUm. Then, the

first return time to machine k is the time from machine k, just after loading machine k

for the first time, and passing the route of Lk...LmLmU1U1...Uk1 until the robot reaches

besides machine k to unload it for the first time. To calculate this return time, all the

robot movements are divided into loaded movements, when the robot is carrying a

part, and unloaded movements, when the robot is moving when it is empty. The δ

coefficients of all the robot movements for return to machine k are provided in Table

16.

Table 16. Loaded and unloaded robot movement times for machine k.

Activity Lk Lk+1 Lk+1 … Lm-1 Lm Lm U1 U1 … Uk-1 Uk

Unloaded

movement
k k k+1 … m-1 m-1 m m-1 m … m-k+2 m-k+1

Loaded

movement
k k+1 k+1 … m-1 m m m m … m-k+2

The times related to the unloaded robot movements are the summation of the second

row of Table 16, and it is calculated as follows:

2(∑ jm
j=k) + (𝑚 − 1) + 2(∑ jm−1

j=m−k+2) + (𝑚 − 𝑘 + 1) = (m2 +m− k2 + k) +

(m − 1) + (2mk − k2 − 4m + 3k − 2) + (𝑚 − 𝑘 + 1) = m2 −m− 2k2 + 2km +

3k − 2.

The times related to the loaded robot movements are the summation of the third row

of Table 16, and it is calculated as follows:

𝑘 + 2(∑ jm
j=k+1) + 2(∑ jm

j=m−k+2) = k + (m
2 +m− k2 − k) + (2km − k2 − 2m +

3k − 2) = m2 −m− 2k2 + 2mk + 3k − 2.

67

Therefore, the first return time of the robot for Lk...LmLmU1U1...Uk is equal to

2(𝑚2 − 2𝑘2 + 2𝑘𝑚 −𝑚 + 3𝑘 − 2)𝛿 + 2(2𝑚 − 1)𝜀. The properties of the δ

coefficient are as follows:

1- It is a quadratic function in terms of k.

2- Its maximum point is equal to
2𝑚+3

4
 and the maximum value of this function is

(3𝑚2 +𝑚 −
7

4
)δ + 2(2m − 1)ε.

3- It is symmetric to the vertical line of 𝑘 =
2𝑚+3

4
.

4- The minimal value of this function in the [1, m] interval is 2m2 + 2m − 2.

To calculate the second return time to machine k, the loaded and the unloaded robot

movements of activity Lk must be neglected from Table 16, and the loaded robot

movement of the first Uk and the unladed robot movement of the second Uk must be

added (see Table 17).

Table 17. Loaded and unloaded robot movement times for Lk+1...LmLmU1U1...UkUk.
Activity Lk+1 Lk+1 … Lm-1 Lm-1 Lm Lm U1 U1 … Uk-1 Uk Uk

Unloaded

movement
k k+1 … m-2 m-1 m-1 m m-1 m …

m-

k+2

m-

k+1

m-

k+1

Loaded

movement
k+1 k+1 … m-1 m-1 m m m m …

m-

k+2

m-

k+1

As it is obvious from Table 17, by adding 2(𝑚 − 𝑘 + 1)𝛿 to the total robot

movement time of the first return time to machine k and subtracting 2𝑘𝛿 from it, the

total robot movement time of the second return time to machine k is as follows:

68

2(𝑚2 − 2𝑘2 + 2𝑘𝑚 −𝑚 + 3𝑘 − 2)𝛿 + 2(2𝑚 − 1)𝜀 + (2(𝑚 − 𝑘 + 1)𝛿 − 2𝑘𝛿) =

2(𝑚2 − 2𝑘2 + 2𝑘𝑚 + 𝑘 − 1)𝛿 + 2(2𝑚 − 1)𝜀.

The properties of the δ coefficient for the second return time to machine k are as

follows:

1- It is a quadratic function of k.

2- Its maximum point is equal to
2𝑚+1

4
 and its maximum value is the same as the

first return time to machine k.

3- It is symmetric to the vertical line of 𝑘 =
2𝑚+1

4
.

4- The minimal value of this function in the [1,m] interval is the same as the

minimum value of the first return time to machine k.

A comparison between the first and the second return time to machine k shows that

the first return time to machine k is shorter if 𝑘 <
𝑚+1

2
. On the other hand, these

calculations show that the following lemma is true.

Lemma 4. In the L1L1...LmLmU1U1...UmUm cycle, the minimal return time is at least

2(𝑚2 +𝑚 − 1)𝛿 + 2(2𝑚 − 1)𝜀.

Proof. The first return time to machine 1 and the second return time to machine m

are the same and equal to 2(𝑚2 +𝑚 − 1)𝛿 + 2(2𝑚 − 1)𝜀. If there are positive

waiting times, then the minimal return time can be larger but not shorter. □

69

Assume that pk is the processing time of machine k to process the parts. The first and

the second return time define the lemma as follows:

Lemma 5. If for each machine k in which k <
𝑚+1

2
, 𝑝𝑘 ≤ 2(𝑚

2 − 2𝑘2 + 2𝑘𝑚 −

𝑚 + 3𝑘 − 2)𝛿 + 2(2𝑚 − 1)𝜀, then all waiting times are zero. Also, if for each

machine k in which 𝑘 ≥
𝑚+1

2
, 𝑝𝑘 ≤ 2(𝑚2 − 2𝑘2 + 2𝑘𝑚 + 𝑘 − 1)𝛿 + 2(2𝑚 − 1)𝜀,

then all waiting times are zero.

Corollary. In an FMC with identical parallel machines, if 𝑝 ≤ 2(𝑚2 +𝑚 − 1) 𝛿 +

2(2𝑚 − 1)𝜀, then all waiting times are zero.

Proof. The statement is a direct consequence of the last two lemmas. □

4.7.2 Optimal cycles

All loaded robot movements contain the same elements: taking a part from the input

buffer and loading machine k which needs kδ+2ε time units, unloading it, and putting

it into the output buffer which needs (m+1k)δ+2ε; and the total time is the same

and equal to (m+1)δ+4ε time units for each part. Therefore, to minimize the working

times of the robot, only the unloaded robot movements should be minimized. For this

reason, it is sufficient to determine the optimal solution of the assignment problem

defined by the matrix consisting of the distances between two machines as a unit (δ).

Table 18 provides the distances in terms of the δ coefficient for only unloaded robot

movements.

70

Table 18. Matrix of the δ coefficient for unloaded robot movements.

k L1 … Li Li … Lm U1 … Uk Uk … Um

L1 - … 1 1 … 1 0 … k-1 k-1 … m-1

L1 1 … 1 1 … 1 0 … k-1 k-1 … m-1
…

…

…

…

…

…

…

…

…

…

…

…

…

Li i … - i … i i-1 … |k-i| |k-i| … m-i

Li i … i - … i i-1 … |k-i| |k-i| … m-i

…

…

…

…

…

…

…

…

…

…

…

…

…

Lk k … k k … k k-1 … 0 0 … m-k

Lk k … k k … k k-1 … 0 0 … m-k

…

…

…

…

…

…

…

…

…

…

…

…

…

Lm m … m m … - m-1 … m-k m-k … 0

U1 m+1 … m+1 m+1 … m+1 - …
m-

k+1

m-

k+1
… 1

…

…

…

…

…

…

…

…

…

…

…

…

…

Ui m+1 … m+1 m+1 … m+1 m …
m-

k+1

m-

k+1
… 1

Ui m+1 … m+1 m+1 … m+1 m …
m-

k+1

m-

k+1
… 1

…

…

…

…

…

…

…

…

…

…

…

…

…

Uk m+1 … m+1 m+1 … m+1 m … -
m-

k+1
… 1

…

…

…

…

…

…

…

…

…

…

…

…

…

Um m+1 … m+1 m+1 … m+1 m …
m-

k+1

m-

k+1
… -

If we assume that 𝑝𝑖 = 0, then we can obtain the optimal solution by minimizing the

assignment problem. There are a number of optimal solutions for 𝑝𝑖 = 0. Some of

the solutions are as follows:

1. According to Table 18, the total time for the unloaded robot movement cycle like

L1L1...LmLmU1U1...UmUm in terms of the δ coefficient is equal to (2(∑ 𝑘𝑚
𝑘=1) − 1 +

2(∑ (𝑚 − 𝑘 + 1)𝑚
𝑘=1) − 𝑚 + (𝑚 + 1))𝛿 = (2𝑚2 + 2𝑚)𝛿.

2. The cycle that contains any order of loading activities like LiLj… Lm at first and

continues by any order of unloading activities that will be started with U1.

71

3. Any order of the robot movement cycle which includes loading and unloading

activities of each machine consecutively as LiUiLjUj…LmUm.

4.7.3 Comparison between three similar cycles

Let’s consider the L1U1L1U1L2U2…LmUm cycle in which all the machines are empty

at the beginning of the cycle (the first case). The other cycle is U1L1U1L1U2L2…UmLm

with two different situations. In the first situation, each machine has been loaded two

times in the previous cycle without any unloading between them until the end of the

cycle (the second case). In the second situation, the cycle is started when there is

only one processed part in each machine (the third case).

In the first case, all of the data related to loaded/unloaded robot movements and the

waiting times of the robot are presented in Table 19. It should be noted that the

loading/unloading times of the robot are considered in the calculations.

Table 19. Robot movement times for the L1U1L1U1L2U2…LmUm cycle.
Activity U1 L1 U1 L2 U2 … Lk Uk … Lm Um L1

Unloaded movement - m+1 - m+1 - … m+1 - … m+1 - m+1

Robot waiting time p1 - P1 - P2 … - pk … - pm -

Loaded movement m 1 m 2 m-1 … k m-k+1 … m 1 1

The summations of the unloaded and loaded robot movement times in terms of the δ

coefficient are equal to 2𝑚(𝑚 + 1) and 2𝑚(𝑚 + 1), respectively, from Table 19.

By adding 8mε for the loading and unloading of the machines, the total cycle time is

equal to (4𝑚2 + 4𝑚)𝛿 + 2(∑ 𝑝𝑖
𝑚
𝑖=1) + 8𝑚𝜀, which is similar to the result of

Theorem 5, considering 𝑝𝑖 > 0. Generally, this cycle is considered as

LkUkLkUk…LmUmL1U1…Lk1Uk1Lk1Uk1.

72

In the second case, at the beginning of the cycle each machine has one processed part

that is ready to unload and one unprocessed part in its input buffer. In this case, we

assume that the processing time is less than the return time for each machine. Table

20 shows the data of this cycle.

Table 20. Cycle times related to the U1L1U1L1U2L2…UmLm cycle.
Activity L1 U1 L1 U2 L2 U2 L2 … Um Lm Um Lm U1

Unloaded

movement
m+1 - m+1 1 m+1 - m+1 … 1 m+1 - m+1 m-1

Loaded

movement
1 m 1 m-1 2 m-1 2 … 1 m 1 m m

Table 20 shows that the unloaded and loaded robot movements take 2(𝑚2 + 2𝑚 −

1)𝛿 and 2(𝑚2 +𝑚)𝛿 time units, respectively, where the robot needs 8𝑚𝜀 time units

to load and unload all of the machines. To reach to the initial state, from where the

cycle was started, when the robot is ready to unload machine 1, the processing time

of machine 1 should be considered. Thus, all of the calculated times are considered

as the return time to machine 1 that is equal to 2(2𝑚2 + 3𝑚 − 1)𝛿 + 8𝑚𝜀.

Considering this return time, the cycle time of this case will become

max {2𝑝𝑖, 2(2𝑚
2 + 3𝑚 − 1)𝛿 + 8𝑚𝜀}.

In the third case, in addition to the loaded and unloaded robot movements, the

waiting time of the robot for the second unloading of the machines must be

considered. Table 21 shows the data for calculating the cycle time in this case.

73

Table 21. Cycle times of U1L1U1L1U2L2…UmLm cycle considering waiting times.
Activity L1 U1 L1 … Uk Lk Uk Lk … Um Lm U1

Unloaded movement m+1 - m+1 … 1 m+1 - m+1 … - m+1 m-1

Robot waiting time - w1 - … - - wk - … wm - -

Loaded movement 1 m 1 … m-k+1 k m-k+1 k … 1 m m

Considering Table 21 and following the similar procedure to calculate the cycle time

show that the total cycle time in this case is equal to 2(2𝑚2 + 3𝑚 − 1)𝛿 +

∑ 𝑤𝑖
𝑚
𝑖=1 + 8𝑚𝜀.

A comparison between the cycle time for the first and the second case shows that if

 ∑ 𝑝𝑖
𝑚
𝑖=1 ≥ (𝑚 − 1)𝛿, ∀𝑖, then the cycle time of the second case is always shorter;

otherwise, the cycle time of the first case is shorter. The cycle time of the third case

is greater than the cycle time of the second case unless all waiting times are equal to

zero or the processing times are large enough. Also, a comparison between the first

and the third cycle time shows that if ∑ 𝑝𝑖
𝑚
𝑖=1 ≥ (𝑚 − 1)𝛿 +

∑ 𝑤𝑖
𝑚
𝑖=1

2
, then the cycle

time of the third case is less than the cycle time of the first one.

74

Chapter 5

4 DEVELOPED METAHEURISTIC ALGORITHM

5.1 Preface

Since the robotic flexible cell problems belong to NP-hard class of problems,

optimizer software like CPLEX can only find the optimal solutions of small-size

problems [29, 30]. Therefore, in order to solve large-size problems, metaheuristic

algorithms are used. A simulated annealing algorithm is proposed for the problems

with no individual buffers for each machine.

5.2 Representation

In our study, a solution is presented by an array having 2m elements in which the

numbers 1 to m correspond to the loading of the first machine to the mth machine and

the numbers m+1 to 2m correspond to the unloading of the first machine to the mth

machine, respectively. To prevent permutations, the first element of each array is

always 1. For example, a four-machine flexible cell having a cycle

𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝑈4𝐿2𝐿1 is presented in Figure 14.

Figure 14. Presentation of L1L3L4U2U3U1U4L2L1 cycle for a four-machine cell.

In this array, 1 is the first element and depicts 𝐿1. 𝐿3 and 𝐿4 are shown by 3 and 4

respectively. Since in this example 𝑚 = 4, all unloading activities are shown by 5 to

1 3 4 6 8 2 7 5

75

8, 𝑈2 and 𝑈3 are shown by 6 and 7, respectively. The same procedure is applied to

demonstrate the rest of this array.

5.3 Initial solution

An initial solution can be obtained by generating a random solution or a reasonable

solution; for the latter, there are two different methods. The first method is the cycle

of L1L2…LmU1U2…UmL1 (its array is shown in Figure 15 and discussed in Section

5.2).

Figure 15. Array of L1L2…LmU1U2…UmL1 cycle.

The second method is based on an iterative construction. For this, after loading the

first machine, the activity that has the lowest robot moving time from the previously

assigned activity among the remaining activities is selected until the cycle is

complete.

After some preliminary experiments and testing different initial solutions in practice,

to avoid considering a unique initial solution as the starting point of the algorithms,

we randomly generated the initial solution. Generating random solutions help start

from different initial solutions in each run that avoids entrapment in a local optimum.

5.4 Computing cycle time for a given solution

In finding of the objective value of each array, all of the parameters, except waiting

times, are known. Let's consider a cycle 𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝐿2𝑈4𝐿1, assuming that

loading/unloading times are 1, the robot move time between a pair of two

1 2 … m m+1 … 2m m+2

Loading activities Unloading activities

76

consecutive machines is 2 and all processing times are the same and equal to 80 time

units. To calculate the cycle time in this case, the duration time between a set of two

activities is calculated by using dab formula in Section 3.4. For example, the duration

time formula for 𝐿1𝐿3 is 2𝜀 + 4𝛿, which is equal to 10 time units. By applying the

same procedure, duration times of 𝐿3𝐿4, 𝐿4𝑈2, 𝑈2𝑈3, 𝑈3𝑈1, 𝑈1𝐿2, 𝐿2𝑈4 and 𝑈4𝐿1 are

calculated as 16, 12, 10, 18, 16, 8 and 14, respectively.

To compute waiting times, return time to each machine must be compared with its

corresponding processing time. If the processing time is greater than the return time,

the waiting time is positive, otherwise, it is equal to zero. There are two cases that

should be considered; if loading of a machine occurs before unloading of the same

machine in a cycle, like machine 1 in this example, the summation of the duration

between a set of two activities from loading a machine to return to the same machine

to unload it, in addition to the potential waiting times, should be considered. For

example, the return time to machine 1 is the summation of the times from L1 to U1,

which are 𝐿1𝐿3 + 𝐿3𝐿4 + 𝐿4𝑈2 + 𝑈2𝑈3 + 𝑈3𝑈1 = 66, plus potential robot waiting

time on machine 2 and machine 3. Since as mentioned in Section 3.4, before each

unloading activity, a positive robot waiting time may exist. Consequently, the robot

waiting time on machine 1 is equal to 𝑚𝑎𝑥{0, 𝑝1 − (66 + 𝑤2 + 𝑤3)}.

On the other hand, if loading a machine is done after unloading the same machine in

a cycle, like machine 2 in our example, the return time to the machine is the sum of

duration from loading that machine to the end of the cycle, i.e., the loading of

machine 1, and from loading machine 1 to return to the same machine to unload it in

the next cycle. Obviously, potential waiting times should also be considered if there

is any. For example, to calculate the return time to machine 2, at first, two cycles can

77

be considered consecutively (see Figure 16). Then, the duration from the first loading

of machine 2 to its unloading plus 𝑤4 is the return time to machine 2, which is equal

to 60 + 𝑤4. Therefore, 𝑤2 = 𝑚𝑎𝑥{0, 𝑝2 − (60 + 𝑤4)}.

Figure 16. Return time to machine 2 in L1L3L4U2U3U1L2U4L1 cycle.

Applying the same procedure leads us to reach to the waiting times for machines 3

and 4 equal to 𝑤3 = 𝑚𝑎𝑥{0, 𝑝3 − (38 + 𝑤2)} and 𝑤4 = 𝑚𝑎𝑥{0, 𝑝4 − (64 + 𝑤1 +

𝑤2 + 𝑤3)} respectively. Thus, 𝑇 = 16 + 12 + 10 + 18 + 16 + 8 + 14 + 𝑤1 +

𝑤2 + 𝑤3 + 𝑤4 = 94 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4.

Since the aim is to minimize cycle time, the minimal amount of the total waiting

times must be computed. On the other hand, increasing in any waiting time will

affect other waiting times that are related to. Therefore, a linear programming model

should be solved to minimize the cycle time. The linear programming model of our

example is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇 = 94 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4

Subject to:

𝑤1 ≥ 𝑝1 − (66 + 𝑤2 + 𝑤3)

𝑤2 ≥ 𝑝2 − (60 + 𝑤4)

𝑤3 ≥ 𝑝3 − (38 + 𝑤2)

𝑤4 ≥ 𝑝4 − (64 + 𝑤1 + 𝑤2 + 𝑤3)

𝑤𝑖 ≥ 0, 𝑖 = 1, 2, 3, 4

T T

Return time to machine 2

𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝐿2𝑈4𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝐿2𝑈4𝐿1

78

where all the processing times are known and must be substituted before solving the

model.

5.5 Generating the next solution

To generate a new solution and to select a solution for the next generation, three

different methods, based on local search algorithm, are considered. The algorithm

generates neighborhood solutions and tries to find the local optimums, iteratively.

Since this method accepts only a better solution as the current solution, it always

modifies the last improved solution [31]. In this study, three different operators that

are shift, swap, and reverse are employed. Figure 17 shows the shift operator for the

robot move sequence in a four-machine cell, which removes one of the activities

from the sequence and moves it at another place in the sequence, randomly (see

Figure 17).

Figure 17. Shift operator.

The swap operator finds two activities randomly and switches them together (see

Figure 18).

L1 U3 L2 U1 L4 L3 U4 U2

L1 U3 L2 L4 U2 L3 U1 U4

Current Offspring

New Offspring

79

Figure 18. Swap operator.

The reverse operator selects two activities, which are not next to each other, and

reverse all the activities among them as it can be seen in Figure 19.

Figure 19. Reverse operator.

In each iteration of the developed SAA, three new solutions are generated from the

current solution by using each of the shift, swap and reverse operators. The objective

function of each is computed, and the best of these three new solutions is selected as

the generated candidate neighboring solution. This solution is adopted as the next

current solution if it is better than the current solution or it is accepted by using the

acceptance probability function.

5.6 Cooling

The geometric cooling, which is the most common cooling method, is applied.

According to this method, the developed SAA starts its search at an initial

temperature. Then, after each iteration, a certain percent of T is counted as the value

of T for the next iteration, i.e., T=α*T where 0<α<1.

L4 L3 L1 U3 L2 U1 U4 U2

L1 U3 L2 L4 U1

Current Offspring

L3
New Offspring U2 U4

L4 L3 L1 U3 L2 U1 U4 U2

L1 U3 L2 L4 U1 L3

Current Offspring

U4 U2 New Offspring

80

5.7 Stopping criteria

Generally, if an approximate solution found by a metaheuristic algorithm is accurate

enough, the iterative method should be stopped. In this thesis, for small-size

problems that we know the optimal cycle time, when an optimal solution is found by

the method the solving procedure is finished. For the large-size problems which the

optimal cycle times are unknown for them, a limit on the solution time is used as the

stopping criterion. The starting time is kept and the total time from the starting time

to the current time is computed after each iteration. When it exceeds the limit, the

search is stopped. The pseudocode of the developed simulated annealing algorithm is

given below:

Step 0: Set values of the parameters T, Time Limit, α, m, p, ε and  . Record the time:

Tstart.

Step 1: Generate the Initial Solution.

Current Solution = Initial Solution. Best Solution = Current Solution.

Step 2: Compute the cycle time of the Current Solution: F[Current Solution].

F[Best Solution]=F[Current Solution]

Step 3: a) Generate a neighboring solution of the current solution by using the swap

mechanism.

b) Generate a neighboring solution of the current solution by using the shift

mechanism.

c) Generate a neighboring solution of the current solution by using the

reverse mechanism.

d) Compute the cycle time of these neighboring solutions and select the best

of them as the candidate solution.

Step 4: If

F[Candidate Solution]<F[Current Solution] or

Rand(0,1) < Exp(-(F[Candidate Solution]-F[Current Solution])/T)

then

Current Solution = Candidate Solution and

F[Current Solution]=F[Candidate Solution]

Step 5: If

F[Current Solution]<F[Best Solution]

then

Best Solution = Current Solution and

F[Best Solution]=F[Current Solution]

Step 6: Record the current time: Tnow.

If the duration from Tstart to Tnow is more than Time Limit, then STOP and

present the Best Solution, otherwise T = α*T and go to Step 3.

81

5.8 Experimental results

To evaluate the proposed metaheuristic algorithm, several problems are considered

and executed on an Intel(R) Pentium(R) Dual CPU E2180 @ 2.00 GHz CPU with 2.0

GB of RAM. The algorithm are coded in MATLAB R2013a software. The objective

functions (OBF) and the CPU times, are the average results of executions carried out

10 times for each problem.

The performance of the proposed SAA depends on the values of its parameters which

are the initial value of T, Time Limit as the stopping criterion and α. To determine

these values, some experiments are needed [32]. Since Taguchi orthogonal array

design is a type of general fractional factorial experiment design, it is very effective

in parameter setting. Based on noise minimization, this method selects the best level

of the parameters. Using the following equation, the deviation of the response is

examined, wherein Y designates the value of reply, and n characterizes the number

of orthogonal ranges.

S
N⁄ = (−10) ∗ log 10(sum(Y2)/n)

In this thesis for each of initial value of T, Time Limit, and α, a range are

determined. These ranges are [90-110] for the initial value of T, [1, 5] for Time Limit

and [0.993-0.997] for α. For each of these parameters three different values are used:

(1) the lower bound, (2) the average and (3) the upper bound of the corresponding

range. Thus, nine orthogonal arrays has been considered of these values and tested.

In these tests, the developed SA algorithm is used for solving 5 different instances

which are (4, 75), (6, 150), (8, 250), (10, 500) and (12, 750) where the first entry

shows the number of the machines and the second one shows the processing time

82

(i.e., (m, p)). For each of the nine combinations of the parameter values, each of

these five test instances is solved by the proposed SAA ten times. The average of the

cycle times of the best solutions found by these ten runs recorded and presented in

Table 22.

Table 22. Computational results for tuning SA parameters.

Combination

SA parameters Response

(A)

Initial

T value

(B)

Time

limit

(C)

α

(4,75) (6,150) (8,250) (10,500) (12,750) Sum

1 90 1 0.993 107.2 197.6 325.6 549.6 812.0 1992.0

2 90 3 0.995 107.4 204.8 328.0 550.8 828.4 2019.4

3 90 5 0.997 108.6 197.6 327.2 550.8 806.0 1990.2

4 100 1 0.995 105.6 200.8 324.8 555.6 839.6 2026.4

5 100 3 0.997 107.2 200.8 322.0 557.2 817.2 2004.4

6 100 5 0.993 108.0 205.6 328.0 550.8 815.2 2007.6

7 110 1 0.997 107.6 202.8 326.0 556.0 813.6 2006.0

8 110 3 0.993 107.2 203.6 330.4 553.2 817.2 2011.6

9 110 5 0.995 107.4 202.8 329.6 554.4 828.4 2022.6

Then the S/N ratios are computed using the results in the last column of Table 22.

Figure 20, shows the results of S/N ratios. According to these ratios, when the initial

value of T is set to its lower bound (which is 90), Time Limit is set to its upper

bound (which is 5 minutes), and α is set to its upper bound (which is 0.997) the best

results are obtained. Thus, these values are used in the following tests.

83

Figure 20. S/N ratio plot for SA parameters.

First, the performance of the proposed SAA is tested on the above test instances

whose optimal solutions are found by the mathematical models. Table 23 contains

the cycle times and solution times of all the examined test problems for 4- to 6-

machine cells found by the proposed SAA.

Table 23. Results of the SAA.

Process

time

4-machine cell 5-machine cell 6-machine cell

Optimal

cycle

time

SAA

cycle

time

SAA

solution

time

Optimal

cycle

time

SAA

cycle

time

SAA

solution

time

Optimal

cycle

time

SAA

cycle

time

SAA

solution

time

0 96 96 0.033 140 140 0.128 192 192 0.134

25 96 96 0.441 140 140 0.405 192 192 0.321

50 96 96 2.043 140 140 1.260 192 192 0.953

75 99 108.6 2.859 140 140 2.319 192 192 2.215

100 124 124 2.257 140 143.2 4.785 192 192 2.269

125 149 149 1.976 153 160.1 2.741 192 192 4.574

150 174 174 2.049 178 178 2.759 192 197.6 6.203

175 199 199 1.462 203 203 4.087 207 222.7 4.684

200 224 224 2.646 228 228 4.559 232 233 5.778

225 249 249 1.974 253 253 3.344 257 257 5.839

250 274 274 2.536 278 278 4.401 282 282 6.328

According to the results in Table 23, and figures 21 to 23, the proposed SAA found

almost all optimal solutions. Only 6 of the 33 instances could not be solved

optimally. In these instances, the gap between the optimal cycle times and the best

cycle times found by the proposed SAA is less than 10% of the optimal cycle times.

84

Thus, it may be concluded that the proposed SAA has a very good performance and

it may be used to find good solutions to larger instances.

Figure 21. Solution time of the SAA for 4-machine test instances.

Figure 22. Solution time of the SAA for 5-machine test instances.

85

Figure 23. Solution time of the SAA for 6-machine test instances.

86

Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

In this thesis, firstly the general case of a line layout flexible manufacturing system

that includes 𝑚 parallel machines for producing non-identical parts was considered.

The mathematical model associated with it was explained in details and the reduced

model was also presented. Furthermore, a new mathematical model was proposed for

maximizing the minimum robot return time to each machine in a cycle and the

optimal solution for the general case was calculated. A lower bound that has been

proposed in the literature was improved and for another lower bound a new proof

was provided. The proof was derived considering the optimality condition of an

assignment problem. The new proof provided a deeper insight into the structure of

the problem. Thus, it made possible to obtain several optimal solutions, and the

processing times were used to describe their optimality conditions.

In the second part of this study, a novel problem related to robotic flexible

manufacturing cells was discussed in which each machine has individual input buffer

with one capacity and the machines are identical and parallel. In these cells, a robot

transports the items from the input station that keeps unproduced items to the input

buffer of machines and from machines to the output station in which the finished

items are kept and loads/unloads the machines. The objective function was to

determine the robot movements for minimizing the cycle time. In addition, a lower

87

bound was provided based on the optimality condition of an assignment problem,

and with some new definitions three similar cycles were compared in general.

In the last part of the thesis, a metaheuristic algorithms based on simulated annealing

(SA) algorithm was proposed. This algorithm was proposed to solve the flexible

robotic cell problems that were discussed in the first part of this study. To evaluate

the algorithm, a number of problems have been generated and solved. The results

demonstrated that the proposed SA algorithm is very efficient.

As a topic for further research, all of the calculations, theorems, and lemmas can be

reformulated for a circular layout considering only one station as the input/output

station. In addition, the concept of using more than one robot to handle the material

in the cell can be a good area of future study. The development of the mathematical

model for the problems with different capacities of the individual input buffer can be

an interesting objective for the further research. The case that the machines have both

individual input and output buffers may also be considered for future research. In

addition, developing other metaheuristics for the given problem can be interesting in

the further research. Furthermore, considering these problems under uncertainty of

each parameter can be a future subject.

88

REFERENCES

[1] Mehrabi, M.G., Ulsoy, A.G., and Koren Y., Reconfigurable manufacturing

systems: Key to future manufacturing. Journal of Intelligent Manufacturing.

11(4): p. 403-419.

[2] Ghadiri Nejad, M. and Mosallaeipour, S., A New Approach to Optimize a

Flexible Manufacturing Cell, in 1st International Conference on New

Directions in Business, Management, Finance and Economics. 2013:

Famagusta, Northern Cyprus. p. 38.

[3] Abdekhodaee, A.H., Wirth, A. and Gan, H.S., Equal processing and equal

setup time cases of scheduling parallel machines with a single server.

Computers & Operations Research, 2004. 31(11): p. 1867-1889.

[4] Dawande, M., Geismar, H.N., Sethi, S.P. and Sriskandarajah, Ch.,

Sequencing and Scheduling in Robotic Cells: Recent Developments. Journal

of Scheduling, 2005. 8(5): p. 387-426.

[5] Gultekin, H., Ekin Karasan, O. and Akturk, M.S., Pure cycles in flexible

robotic cells. Computers & Operations Research, 2009. 36(2): p. 329-343.

[6] Crama, Y., Combinatorial optimization models for production scheduling in

automated manufacturing systems. European Journal of Operational

Research, 1997. 99(1): p. 136-153.

89

[7] Agnetis, A., Pacciarelli, D. and Rossi, F., Lot scheuling in a two-machine cell

with swapping devices. IIE Transactions (Institute of Industrial Engineers),

1996. 28(11): p. 911-917.

[8] Drobouchevitch, I.G., Sethi, S.P. and Sriskandarajah, C., Scheduling dual

gripper robotic cell: One-unit cycles. European Journal of Operational

Research, 2006. 171(2): p. 598-631.

[9] Sethi, S.P., Sriskandarajah, Ch., Sorger, G., Blazewicz, J. and Kubiak, W.,

Sequencing of parts and robot moves in a robotic cell. International Journal

of Flexible Manufacturing Systems, 1992. 4(3-4): p. 331-358.

[10] Crama, Y. and Van de Klundert, J., Cyclic scheduling in 3-machine robotic

flow shops. Journal of Scheduling, 1999. 2(1): p. 35-54.

[11] Hall, N.G., Potts, C.N. and Sriskandarajah, C., Parallel machine scheduling

with a common server. Discrete Applied Mathematics, 2000. 102(3): p. 223-

243.

[12] Brauner, N. and Finke, G., Cycles and permutations in robotic cells.

Mathematical and Computer Modelling, 2001. 34(5–6): p. 565-591.

[13] Akturk, M.S., Gultekin, H. and Karasan, O.E., Robotic cell scheduling with

operational flexibility. Discrete Applied Mathematics, 2005. 145(3): p. 334-

348.

90

[14] Gultekin, H., Akturk, M.S. and Karasan, O.E., Scheduling in a three-machine

robotic flexible manufacturing cell. Computers & Operations Research, 2007.

34(8): p. 2463-2477.

[15] Gultekin, H., Akturk, M.S., and Karasan, O.E., Scheduling in robotic cells:

process flexibility and cell layout. International Journal of Production

Research, 2008. 46(8): p. 2105-2121.

[16] Gultekin, H., Akturk, M.S., and Karasan, O.E., Bicriteria robotic cell

scheduling. Journal of Scheduling, 2008. 11(6): p. 457-473.

[17] Ghadiri Nejad, M., Kovács, G., Vizvári, B. and Vatankhah Barenji, R., An

optimization model for cyclic scheduling problem in flexible robotic cells.

The International Journal of Advanced Manufacturing Technology, 2017: p.

1-11.

[18] Ghadiri Nejad, M., Güden, H., Vizvári1, B., and Vatankhah Barenji, R., A

Mathematical Model and Simulated Annealing Algorithm for Solving the

Cyclic Scheduling Problem of a Flexible Robotic Cell. Advances in

Mechanical Engineering, 2018. 10: p. 1-12.

[19] Aktürk, M.S, Atamtürk, A. and Gürel, S.N., A strong conic quadratic

reformulation for machine-job assignment with controllable processing

times. Operations Research Letters, 2009. 37(3): p. 187-191.

91

[20] Yildiz, S., Karasan, O.E. and Akturk, M.S., An analysis of cyclic scheduling

problems in robot centered cells. Computers & Operations Research, 2012.

39(6): p. 1290-1299.

[21] Uruk, Z., Gultekin, H., and Akturk, M.S., Two-machine flowshop scheduling

with flexible operations and controllable processing times. Computers &

Operations Research, 2013. 40(2): p. 639-653.

[22] Zeballos, L.J., A constraint programming approach to tool allocation and

production scheduling in flexible manufacturing systems. Robotics and

Computer-Integrated Manufacturing, 2010. 26(6): p. 725-743.

[23] Foumani, M. and Jenab, K., Cycle time analysis in reentrant robotic cells

with swap ability. International Journal of Production Research, 2012. 50(22):

p. 6372-6387.

[24] Foumani, M. and Jenab, K., Analysis of flexible robotic cells with improved

pure cycle. International Journal of Computer Integrated Manufacturing,

2012. 26(3): p. 201-215.

[25] Jolai, F., Foumani, M., Tavakoli-Moghadam, R. and Fattahi, P., Cyclic

scheduling of a robotic flexible cell with load lock and swap. J. Intell.

Manuf., 2012. 23(5): p. 1885-1891.

92

[26] De Giovanni, L. and Pezzella, F., An Improved Genetic Algorithm for the

Distributed and Flexible Job-shop Scheduling problem. European Journal of

Operational Research, 2010. 200(2): p. 395-408.

[27] Batur, G.D., Karasan, O.E., and Akturk, M.S., Multiple part-type scheduling

in flexible robotic cells. International Journal of Production Economics, 2012.

135(2): p. 726-740.

[28] Kim, H., Kim, H., Lee., J. and Lee, T., Scheduling dual-armed cluster tools

with cleaning processes. International Journal of Production Research, 2013.

51(12): p. 3671-3687.

[29] Ghadiri Nejad, M., Shavarani, S. M., Vizvari, B. and Vatankhah Barenji, R.,

Trade-off between process scheduling and production cost in cyclic flexible

robotic cell. The International Journal of Advanced Manufacturing

Technology, 2018.

[30] Mosallaeipour, S., Ghadiri Nejad, M., Shavarani, S. M., and Nazerian, R.,

Mobile robot scheduling for cycle time optimization in flow-shop cells, a case

study. Production Engineering, 2017: p. 1-12.

[31] Sabar, N.R. and Kendall, G., An iterated local search with multiple

perturbation operators and time varying perturbation strength for the aircraft

landing problem. Omega, 2015. 56: p. 88-98.

93

[32] Shavarani, S.M., Ghadiri Nejad, M., Rismanchian, F. and Izbirak, G.,

Application of hierarchical facility location problem for optimization of a

drone delivery system: a case study of Amazon prime air in the city of San

Francisco. The International Journal of Advanced Manufacturing

Technology, 2017: p. 1-13.

