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ABSTRACT

In this thesis, we implemented and investigated Qian-Zhang reversible data hiding
scheme proposed in 2016. Qian-Zhang scheme uses Slepian-Wolf encoding based on
Low-Density Parity-Check (LDPC) codes to compress selected most significant bits
(MSB) from an encrypted image to vacate room for embedding additional data.
Compressing process depends on LDPC matrix, H, r<n, where r is number of rows
and n is number of columns. After extracting embedded data, the original image can
be recovered by applying iterative decoding algorithm. We found that the quality of
the recovered image depends on the construction method, size, and ratio R=r/n. We
implemented Qian-Zhang scheme using H matrices constructed by two methods,
Gallager and MacKay-Neal, having different sizes and ratios. We evaluated Qian-
Zhang scheme with these matrices using decoding time, embedding capacity, and
quality of the recovered image, approximate and decoded, by Peak Signal-to-Noise
Ratio (PSNR). We get a formula for embedding capacity dependence on the number
of bits to be compressed and value of R. In addition, we investigated relation between
PSNR of an approximate image and embedding capacity. Changing of the embedding
capacity does not affect PSNR of the approximate image. Since we used other H
matrices than the one used by Qian-Zhang, we obtained not exactly same PSNR and
embedding capacity but close to the values of Qian-Zhang. In addition, we investigated
the PSNR of decoded image when decoding fails. The PSNR decreases when the

embedding capacity increases.

We found that fixing ratio, R, and increasing size of H leads to the increase of the

PSNR of the recovered image. On the other hand, the time of decoding increases with



the matrix size growth. These results may be used for choosing suitable H matrix size
to meet specified decoding time. We investigated relation between the ratio, R , and
embedding capacity. Decreasing of R leads to the increase of the embedding capacity.
We investigated relation between R and PSNR of the decoded image. Decreasing of R
leads to the decrease of the PSNR. Our results show better embedding capacity than

that in the Qian-Zhang’s paper due to the use of different size H matrices.

Keywords: Reversible data hiding, Slepian-Wolf encoding, Low-Density Parity-
Check (LDPC) code, LDPC matrix , Most Significant Bit (MSB), Distributed Source
Decoding (DSD), Selection ratio, Embedding capacity, Host image, Approximate

image, Decoded image, Peak Signal-to-Noise Ratio (PSNR).



Oz

Bu tezde, Qian-Zhang tarafindan 2016 yilinda 6nerilen geri doniisiimlii veri gizleme
diizeni uygulanmisg ve incenlenmistir. Qian-Zhang duizeni, Diisiikk Yogunluklu Eslik

Kontrolini (LDPC) baz alan Slepian-Wolf kodlama yontemini kullanmistir. Bu

yontemde, LDPC matrisi, H I <n (r satir sayisi ve n siitun sayisi) kullanilarak ek

rxn?
veri gdmme iglemi i¢in yer agmak amaci ile sifrelenmis goriintiiden secilen en 6nemli
bitler (MSB) sikistirilmistir. Gomiilmis veri ¢ikartildiktan sonra, orijinal gorinti

yinelemeli kod ¢6zme algoritmast uygulayarak kurtarilabilir. Kurtarilan goriintiiniin

kalitesinin yap1 yontemine, H matrisinin biiyiikliigiine ve R=r/n oranma bagh
oldugunu tespit ettik. Gallager ve MacKay-Neal yontemleri kullanilarak olusturulan
farkli boyut ve orandaki H matrislerini kullanarak Qian-Zhang diizenini uyguladik. Bu
matrisleri kullanarak, Qian-Zhang duzenini, ¢ozllme siresi, gdmme kapasitesi ve
kurtarilan goriintiiniin kalitesini yaklagik olarak ve ¢0ziilmiis olarak, Tepe Sinyal-
Giriiltii Oran1 (PSNR) kullanarak degerlendirdik. GGmme kapasitesinin sikistirilacak
bit sayist ve R degerine bagimliligi ile ilgili bir formul elde ettik. Buna ek olarak
yaklasik gortintii PSNR's1 ve gomme kapasitesi arasindaki iligkiyi arastirdik. Gomme
kapasitesinin degistirilmesi, yaklagik goriintliniin PSNR'sini etkilemedigini gordiik.
Qian-Zhang tarafindan kullanilanlardan daha farkli H matrisleri kullandigimizdan,
PSNR ve gdbmme kapasitesi tam olarak Qian-Zhang sonuglari ile ayn1 degildi fakat
yakindi. Buna ek olarak, kod ¢6zme basarisiz oldugunda sifresi ¢6ziilmiis goriintiiniin
PSNR'sini arastirdik. Gomme kapasitesi artttkca PSNR degerinin azaldiginm

gozlemledik.



Elde edilen sonuclara gore, R oraninin sabitlenmesi durumunda H’nin boyutunun
artirilmasi kurtarilan goriintiiniin PSNR'sinin arttigim gordiik. Ote yandan, sifre ¢c6zme
stresinin, matris boyutuna gére buyumesini gézlemledik. Bu sonuclar, belirtilen kod
¢ozme stiresini karsilamak i¢in uygun H matris boyutunu se¢mek i¢in kullanilabilir.
Secme orani, R ve gomme kapasitesi arasindaki iliskiyi arastirdik. R'nin azalmasi
gbmme kapasitesinin artmasina yol agar. Coziilen goriintiideki R ve PSNR arasindaki
iliskiyi arastirdik. R'nin azalmasi PSNR'nin azalmasina neden olur. Sonuglarimiz farkli
boyutlardaki H matrislerinin kullanilmasi nedeniyle Qian-Zhang'in sonuglarindan

daha iyi gdmme kapasitesi gostermektedir.

Anahtar Kelimeler: Geri dondurilebilir veri gizleme, Slepian-Wolf kodlamasi,
Diisiik yogunluklu eslik kontroli kodu, LDPC matrisi, En 6nemli bit, Dagitilmis
kaynak kod ¢Ozme, Se¢cme orani, Gomme kapasitesi, Kaplama resmi, Yaklasik

goruntd, Coziilmiis goriintii, Tepe sinyal-giiriiltii orana.
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Chapter 1

INTRODUCTION

Reversible Data Hiding (RDH) is a technique of fully recovering a host image after
extracting embedded secret data. RDH has been emerged in the last few years in many
areas such as military and medical reports [2]. Qian and Zhang [1] proposed an RDH
scheme that embeds secret data in an encrypted gray scale image using Slepian-Wolf

encoding [3] based on LDPC matrix, H. Qian-Zhang scheme [1] is used in [4] [5] [6]

[7118].

Qian-Zhang scheme [1] encrypts an original gray scale image, O, using a stream cipher
encryption with an encryption key, Kenc. Then, with a selection key, Ksi, a data hider
chooses the Most Significant Bits (MSBs) of the encrypted image depending on a
selection ratio, . These selected bits are scrambled using a shuffle key, Ksg. Then, the
room for embedding secret data is vacated using Low Density Parity Check Codes
(LDPC) matrix [9] , H, r <n , where r is number of rows and n is number of columns,
by compressing the selected MSBs. The secret data bits are embedded in the vacated

room.

On the receiver side, using both selection key Ks. and shuffle key Ksr, the embedded
secret data bits are extracted perfectly. Having an encryption key, Kenc, the

approximated original image, Oapprox, iS constructed using the bilinear interpolation.



The original image, O, can be recovered perfectly using Oapprox, COMpressed bits, and

H matrix via iterative decoding method.

In this thesis, we implemented and investigated Qian-Zhang method [1]. We found by
experiments that the time of decoding, and the quality of the recovered image depend
on the size of H matrix and the matrix generation method. The matrix H is not exactly
specified neither in [1], nor in its reference [10]. Thus, we have generated different H
matrices using two different construction methods: Gallager [11] and MacKay-Neal
[12], and conducted experiments to evaluate the performance of the method [1]. We
evaluated our matrices using decoding time, embedding capacity, and quality of the
recovered image (Peak Signal-to-Noise Ratio (PSNR) of the approximate and decoded

images).

Our experiments show that matrices generated using Gallager construction method
have better decoding time than for MacKay-Neal method. Thus, we use Gallager
method for conducting experiments specified in [1] and in extensions of these
experiments. By rerun experiments specified in [1], we obtained the following two
results which comply with results in [1]:

1. Approximate image construction does not depend on the secret data or embedding
capacity.

2. When decoding fails, there is inverse relation between embedding capacity and

PSNR of the decoded image.

To extend experiments in [1], we generated different H matrices with different ratios,
R=r/ne{0.5, 0.3, 0.25, 0.2}. We found inverse relation between embedding capacity
and ratio, R. We also conducted and experiment by fixing R=0.5 and generating 9
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different matrices with sizes{4><8,8><16,...,1024>< 2048}; we found a proportional

relation between the matrix size and the PSNR of the decoded image and decoding
time. These results may be used for choosing suitable H matrix size to meet specified

decoding time.

Results obtained on the PSNR and time dependence on the matrix size may be used
for making decisions on the Qian-Zhang scheme [1] parameters selection that is not
done in [1]. In addition, these results are used in comparison with the other methods
to evaluate the performance of the proposed method [1] with our extended

experiments.

The remaining part of the thesis is organized as follows. Chapter 2 indicates the recent
studies about RDH methods which are used for comparison and the problem definition.
Chapter 3 explains the Qian-Zhang scheme implementation. In Chapter 4, the
experimental settings and results are discussed. Finally, in the last Chapter 5, the study
is concluded. Appendices contains codes implementing the scheme and results of the

experiments conducted.



Chapter 2

RELATED WORK AND PROBLEM DEFINITION

In this chapter we explain in details the Qian-Zhang scheme [1] which we implemented
and investigated. In addition, we briefly explain RDH schemes [2], [6], [13], [14] that

we compare our results with.
2.1 Qian-Zhang RDH Scheme

Qian-Zhang [1] scheme is divided into three stages: encryption, data hiding, and data
extraction and image recovery. Figure 1 illustrates Qian-Zhang scheme. Encryption
stage occurs at the sender side, data hiding stage occurs at the data hider side, while
data extraction and image recovery stage occurs at the receiver side.

2.1.1 Stage 1: Image Encryption Details

This stage occurs at the sender side. Sender is assumed to use an original gray scale
image, O, with size XxY pixels, and the value of a pixel is between 0 and 255; both X

and Y are power of two.

Initially, the original image pixels, O;, j, are converted into binary values as follows:
bi,j,u = lOi’j/Zu_ll mod 2 (1)
where b;;, is the u-th bit of ij-th pixel binary value, u = 12,..8

and 1<i<X, 1<j<Y.



Encryption key,Kenc

4

. _ Original
Stage 1: Encryption image, O
Encrypted
image, El
Selection ~ Secret Y Skelection "
. . s ey’ K
ratio, «  Data, SD Stage 2: Data hiding < -
Shuffle H
rxn
key, Kse
Marked encrypted Lr
Image. MEI

\J

Stage 3: Data extraction and
image recovery

4

Recovered ~ Extracted APproximate
image data Image
Figure 1: Qian-Zhang Scheme Stages. The Stages are: Encryption, Data Hiding, and
Data Extraction and Image Recovery

A4
A

Sender uses the encryption key, Kenc, of the size XxYx8 to create encrypted bit stream

as follows:
€iju = biju ® Kenc,,, ()
where Kgyc, ., is the iju-th bit of the encryption key, Kenc , e; ;,is the iju-th encrypted

bit, and & denotes exclusive-or (XOR) operation,u=1,2,....8, 1 <i<X,1<j <Y,

Encryption key, Kenc, construction is not clearly specified in [1], hence, we define it

as our implementation problem and generate it as specified in Section 4.2.

Finally, encrypted bits are converted into pixel values to generate the encrypted image,
El, with the size of the original image, O, using (3):

5



EIi,j = 23=1 eli,j‘u . Zu_l (3)
where El;; are the pixel values of the encrypted image, EI, 1 <i<X,1<j<Y.
Figure 2 illustrates image encryption described also by Algorithm 1. Example 1 shows

the steps of encryption.

Encryption key,Kenc

Original image - ] ] b
0 Convert image into binary xx¥x8 | Encrypt (XOR)
strean binary stream

lelxwxi}

Convert encrypted binary
stream into encrypted image

Encrypted image,
El +«——+

Figure 2: Stagel: Image Encryption Details

Example 1. Stagel: Encryption stage (Figure.1) example.

Let’s consider an original grayscale image O with size 8x8 and encryption key Kenc
with size 64x8.

Input:

— Original image O



15 215 5 183 3 12 100 10 |
125 7 190 20 10 4 93 102
62 2 31 85 242 121 10 1
121 17 8 3 102 18 52 130
78 108 5 150 27 70 140 175
201 200 27 5 95 41 89 210
108 3 28 172 55 100 48 72
88 130 64 81 117 82 94 1

— Original image O :

Algorithm 1. Stagel: Encryption (Figure 2) algorithm.

Input:
— X, Y: powers of 2;
— 0O: the original image, sized X x Y;
— Kenc: encryption key of the size X x Yx 8.
Output:
— El: encrypted image, sized X x Y.
Steps:
1. Convert pixels in O into binary values using equation (1).
2. Encrypt the binary values with encryption key using equation (2).
3. Convert the encrypted binary values into the pixel values using (3) to

generate encrypted image EI with size X and Y.




— Encryption key Kenc:

1101010 0]
10001011
01100001
01000111
000000O0O0O
11011011
11101001
00000011
10111011
0011100 0]

Output:
- El: encrypted image, sized X x Y.
Steps:

1. Using (1), O is converted into binary values in row major order as follows:

[0 0001 1 1 1]
11010111
0O 000 O0O1O01
1 0110111
0O 0O0OO0OO0OO0OTZ11
Binary stream: :
01 010001
01110101
01 010010
01011110
0 0000O0O0 1

2. Binary stream is encrypted using encryption key Kenc to obtain encrypted binary

stream using (2).



11011011
01011100
01100100
11110000
0 00 O0OO0O0OT101
Encrypted binary stream :
10001010
10011100
01 010001
11100101
0 011100 1]

3. Encrypted image EI is obtained by converting encrypted binary stream into pixel
values with size X x Y.

(219 92 100 240 3 63 160 218
200 125 74 229 68 8 193 61
67 177 142 50 78 247 77 176
181 2 34 149 233 188 155 207
121 32 137 171 152 168 57 227
195 110 209 75 13 162 251 212
255 189 74 185 254 58 93 153
90 242 116 138 156 81 229 57

Encrypted image EI:

2.1.2 Stage 2: Data Hiding Details

Data hider embeds secret data, SD, in the encrypted image EI by three phases:
— Most Significant Bits (MSBs) selection,

— Encoding and compressing,

— Embedding secret data phase.

Each phase will be described in details in next sections. Figure 3 shows the three
phases of the Stage 2: Data hiding (Figure 1). In MSBs selection phase, MSBs in the

encrypted image, El, are collected. Using a selection key, Ksi, respective number of



bits is selected. Then, the selected bits are shuffled using a shuffle key, Ksr, to get
shuffled bits, SHB. In encoding and compressing phase, the shuffled bits are divided
into K groups, each group contains n bits. Then, these groups are encoded using binary
H matrix with size r x n. In embedding phase, secret data are embedded into syndrome

groups, SGs, and reverse shuffled using Ksr to construct marked encrypted image,

MEI.
Selection key, Shuffle key, H
Ksu  Selection Ksr n L
ratio, a
Encrypted image, I
El Most Significant Bits (MSBs) SHB Encoding and
‘> R J4’ .
Selection Compressing

SGs
Y

EI1EI2,EI3El4 | Embedding Secret Secret data,
r -
Data SD

|

MEI
Figure 3: Stage 2: Data Hiding Details

Most Significant Bits (MSBs) Selection Details

In this phase, encrypted image EI is decomposed into 4 segments EI1, EI2, EI3, EI4
defined by (4). Then, MSBs are collected from, EI12, EI3, El4, forming collected bits,
CB. After that, a number of bits, SB, are selected from collected bits, CB, using

selection key, Ksi, and selection ratio, a. Then, the selected bits, SB, are shuffled using

Ksk. Figure 4 shows diagram of Phase 1.

10



> ElIl
—
El2, EI3, El4

El
— > Decompose

A

Collect bits

Collected bits, CB

Selected bits, SB

4
Shuffled bits,

. - .
sup € Shuffle bits . Select bits
bt

Ksr

a Ks|_

Figure 4: Most Significant Bits (MSBs) Selection Phase Details

Encrypted image EI is decomposed into four segments El1, EI2, EI3 and El4, each of
them with size (X / 2) x (Y / 2) as follows:

EIL(i, j)=EI(2i—-1,2j-1)

E12(i, j) = EI(2i -1,2]) 1=12,...,X/2

EI3(i, j) = EI(2i,2j-1) j=12,...Y/2 (4)
E14(i, j) = E1(2i,2])

Decompose (Figure 4) pseudo code is described in Algorithm 2 and Example 2

illustrates the decomposing process (4).

Algorithm 2. Pseudocode of the Decompose (Figure 4) an encrypted image into four
segments

Input:
— X, Y: power of 2.

— El: encrypted image, size X x Y.
Output:

Segments, EI1, EI2, EI3, EI4, each of the size (X/2) x (Y / 2).
Steps:

// Using MATLAB style pseudocode:

11



EI11(1:X/2,1:Y/2)=EI(1:2:X,1:2:Y);//odd rows and columns
EI2(1:X/2,1:Y[2)=EI(1:2:X,2:2:Y);//odd rows and even columns
EI3(1:X/2,1:Y[2)=EI(2:2:X,1:2:Y);//even rows and odd columns
El4(1:X/2,1:Y[2)=EI(2:2:X,2:2:Y);//even rows and columns

Where a:b:c means x values such that: a<=x<=c, x=c+ixb.

Example 2. Decompose (Figure 4) of an encrypted image into 4 segments.
Let’s consider encrypted image from Example 1.

Input:

Encrypted image El with size 8x8

[219 92 100 240 3 63 160 218]
200 125 74 229 68 8 193 61
67 177 142 50 78 247 77 176
181 2 34 149 233 188 155 207
121 32 137 171 152 168 57 227
195 110 209 75 13 162 251 212
255 189 74 185 254 58 93 153
90 242 116 138 156 81 229 57

— Encrypted image EI :

Output:
— Segments EI1, EI2, EI3, EI4 each of the size 4x4 (X /2) x (Y /2)

Steps:

1. Using (4), EI1 is obtained by taking the pixels in odd rows and odd columns of EI

1% row in EI1 is obtained by 1% row and 1%,3" 5" 7" columns of EI.
2" row in EI1 is obtained by 3 row and 1%,3" 5" 71" columns of El.
3 row in EI1 is obtained by 5" row and 1,3 5" 7" columns of EI.

4" row in EI1 is obtained by 7" row and 1%,3'9 5" 7" columns of EI.

2. Using (4), EI2 is obtained by taking the pixels in odd rows and even columns of

El
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1% row in EI2 is obtained by 1% row and 2", 4th, 6%, 8th columns of EI.
2" row in EI2 is obtained by 3™ row and 2" 4" 6" 8" columns of El.
3" row in EI2 is obtained by 5™ row and 2" 4" 6™ 8" columns of EI.
4" row in E12 is obtained by 7" row and 2" 4™ 6% 8" columns of El.
3. Using (4), EI3 is obtained by taking the pixels in even rows and odd columns of
El
1% row in EI3 is obtained by 2" row and 1%,3" 5" 7" columns of EI.
2" row in EI3 is obtained by 4" row and 1,3 5" 7" columns of EI.
3" row in E13 is obtained by 6™ row and 1,3 5" 7" columns of El.
4" row in EI3 is obtained by 8" row and 1,3 5" 7" columns of EI.
4. Using (4), El4 is obtained by taking the pixels in even rows and even columns of
El
1% row in El4 is obtained by 2" row and 2" 4" 6" 8™ columns of El.
2" row in El4 is obtained by 4" row and 2" 4™ 6" 8" columns of El.
3" row in E14 is obtained by 6™ row and 2" 4" 6" 8% columns of EI.

4™ row in E14 is obtained by 8" row and 2" 4" 6" 8™ columns of EI.

219 100 3 160 92 240 63 218
g 67 142 78 77| |177 50 247 176
121 137 152 57 32 171 168 227
255 74 254 93 189 185 58 153
200 74 68 193 125 229 8 61
eig:| 181 34 283 185 | 2 149 188 207
195 209 13 251 110 75 162 212
90 116 156 229 242 138 81 57

After segmentation, pixels of EI2, EI3 and EI4 are converted into binary values using

(2). Then, Most Significant Bits (MSBs) of EI2, EI3 and EI4 are collected and

13



concatenated into one row vector. The total number of the collected bits, |CB|=3XY/4.
Algorithm 3 describes Collect bits (Figure 4) of collecting MSBs of segments EI2, EI3

and El4. Example 3 shows Collect bits (Figure 4) example of MSBs collecting.

Algorithm 3. Collect bits (Figure 4) // collect MSBs from EI2...El4

Input:

— X, Y: power of two.

— EI2, EI3, El4: each of the size X/2 x Y/2
Output:

— CB (1:3XY/4): MSBs from EI2,..., El4, CBi € {1,0}
Steps:

1. Convert the pixels values in EI2, EI3, and El4 into binary values.
z=1
fori=1:X
forj=1Y
foru=1X
binaryEI2,, = |EI2;;/2**|mod 2
binaryEI3,,, = |EI3;;/2%* *|mod 2
binaryEl4,, = |EI4;;/2%*|mod 2
z=z+1
end
end
end
2. Get the MSBs in each EI2, EI3, El4

fori=1:X XY
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MSBinEI2[i] = binaryEI2[i, 8]
MSBinEI3[i] = binaryEI3][i, 8]
MSBinEI4[i] = binaryEI4][i, 8]
end
3. Concatenate the MSB bits from EI2, EI3, EI4 into row vector [cy, Co, ..., cica]]

CB = MSBInEI2||MSBinEI3||MSBinEIl4

Example 3: Example of Collect bits (Figure 4) collecting MSBs from EI2, EI3, and
El4.

Let’s consider E12, EI3, and EI4 from Example 3 output.

Input:

— EI2, EI3, El4, each of the size 4x4 (X /2 x Y [ 2)

92 240 63 218
177 50 247 176

El2
32 171 168 227
189 185 58 153
200 74 68 193 125 229 8 61
El3: 181 34 233 155 Ela: 2 149 188 207
195 209 13 251 110 75 162 212
90 116 156 229 242 138 81 57

Output:
— Collected bits CB (1:3XY/4) = CB (1:48)
Steps:

1. EI2 pixels values are converted into binary values
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2. MSBs are collected from binary EI2

MSBs of EI12:/0101101101101111]

3. EI3 pixel values are converted into binary values
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4. MSBs are collected from binary EI3

MSBs of EI3: [1110 001001011111]
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5. EIl4 pixel values are converted into binary values

MSB LSB
0 1 1 1 1 1 0 1]
0 00O O0OO0TZ11I0O0
01 1 01110
111 1 0 0 10
11 100101
10 01 01 01
_ 01001011
binaryEl 4 = 10001010
0 00O 1 00O
101 11100
101 000 1O
01 01 0 0 01
0 01 11101
11 001111
11 01 0100
0011100 1]

6. MSBs are collected from binary El4
MSBs of binary E14: [0001110101100110]

7. MSBs from EI2, EI3, El4 are concatenated into one row vector:

Collected hits CB

[010110110110111111100010010111110001110101100110]

Consider now Select bits (Figure 4). Data hider fixes selection ratio a, where « is the
selection ratio of the number of selected bits (SB) to the total collected bits (CB), where
selection process of SB is done using selection key Ks. according to selection ratio a.
Construction of Ks_ is not clarified in [1], hence construction of Ks_ is our problem and
it is described in Section 3.1.2. Since the number of collected bits [CB| = 3XY/4 and if

the number of selected bits SB is L, where L is1 < L < 3XY /4, then a=L / (3XY/4).

We can see that by fixing a, L is computed as follows:
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3XY
L=ax () ©)
The selected bits are chosen according to Ks. which contains the indices of L bits

selected from CB.

The Algorithm 4 of Select bits (Figure 4) describes the selecting bits steps and

Example 4 shows an example of selecting L from MSBs.

Algorithm 4. Select bits (Figure 4) // selects L bits from collected bits, CB, according
to KsL

Input:

— X, Y: power of 2.

— CB (1:3XY/4): collected bits.

— a: Selection Ratio,

—  Kse (1: L): Selection Key = [KsL1, Kst2, KsiL], L= a (3XY/4).
Output:

— SB (1: L): the Selected Bits.

—  L=a(3XY/4)
Steps:

1. Calculate L using (5).
2. Select L bits from CB :
fori=1:L
index = Kg; (i);
SB(i) = CB(index)

end

Example 4. Selecting bits (Figure 4) example of L bits selection from collected bits,
CB obtained in Example 3.

Input:

18



- a=1
— Collected bits CB are

[010110110110111111100010010111110001110101100110]

— KsL

[47 27 35 34 111 13 21 38 10 42 48 8 29 19 3 46 9 4 36 20 26 6
31 3230 37 25 334318 24 45 40 44 16 28 415 12 7 39 17 23 2 22 14 15]

Output:
- Selected bits SB (1: L) =SB (1:48).
Steps:
1. L=48 using (5).
fori=1:L
index = Kg;,(i);
SB(i) = CB(index)

end

According to indices in Ks_ bits are selected from CB. First bit in SB will be
the bit that has index equal to Ks. (1). For example, when i=1 then, Ks. (1) =
47, the selected bit, SB (1) will be CB (47), which is 1. The second value in

Ks is 27, so, the SB (2) = CB (27), and so on.

Consider now Shuffle bits (Figure 4). After getting, SB, it is shuffled using Ksr to
produce shuffled bits (SHB). Shuffling key Ksr is not specified in [1]. Hence,
construction of Ksg is our problem and will be described in Section 3.1.2.1. Steps of

shuffling selected bits, SB, are described in Algorithm 5 and Example 5.
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Algorithm 5. Shuffle bits (Figure 4) // shuffles selected bits, SB, according Ksr
Input:

3XY

— L: number of the bits inSB, L = a x (T)

— SB(1:L): Selected bits

— Kse: Shuffle key (positive integer such that gcd(Ksr, L)=1, where gcd is the
greatest common divisor

Output:
— SHB (1:L): Shuffled bits
Steps:
1. Create Shuffle row (SR) containing indices from 1 to L
SR=11,2,3,...,.]
2. Get SR1 indices by shuffling SR using Ksr.
fori=1:L
SR1(i) = ((K¢ xSR(i))mod L) +1
end
3. SR=SRL. Put each bit in the SB to the corresponding index in the SR.
fori=1:L
index = SR(i);
SHB(i) = SB(index);
end

Example 5: Example of Shuffle bits (Figure 4) that shuffles L selected bits, SB, getting
shuffled bits, SHB.

Let’s consider selected bits SB from Example 4 output.

Input:

- Number of bits in SB, L=48;

- Shuffle key Ksr =13, gcd(13,48)=1

- Selected bits, SB:

[100010101110111010110101111001100101101010111011].
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Output:

Shuffled bits SHB (1: L) = SHB (1:48).

Steps:

1. Create shuffle row, SR, vector containing values between 1 and L SR is

1234567891011 12 13 14 15 16 1718 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48]

2. Update shuffle row SR using
SR1(i)=(Ks.x SR(i)) mod L+1 for i=1,...,L
SR=SR1,

SR

[14 2740 5 18 31 44 9 22 3548 13 26 39 4 17 30 438 21 34 4712 25
38 3 16 29 42 7 20 33 46 11 24 37 2 15 28 41 6 19 32 4510 23 36 1]

3. According to SR, bits are shuffled to obtain SHB. The first bit in SHB will be the bit
in index 14 in SB: SHB (1) = SB (14) =1. The second bit in SHB will be the bit in index
27 in SB, SB (2) =SB (27) =1and so on to produce SHB as follows:
[110101111011110111001101000001100111010101011011]
Encoding and Compressing Phase Details

In this phase, Shuffled bits, SHB(1: L) obtained by Most Significant Bits (MSBs)
Selection (Figure 4) phase divided into K groups, KGs , each containing n bits. After
that, KGs are compressed using binary H matrix with size r x n to produce syndrome

groups, SGs. Figure 5 shows diagram of Phase 2.
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Figure 5: Encoding and Compressing Phase Details

The shuffled bits SHB with size L are divided into K groups, KGs, each group contains
n bits, the number of groups KGs, K, is calculated as follows:

K =|L/n] (6)

Creation groups (Figure 5) pseudo code is described in Algorithm 6 and Example 6

illustrates the creation process.

Algorithm 6. Create groups (Figure 5) // divide SHB(1: L) into KGs

Input:
— X, Y: power of 2.
— L: number of the bits in SB, L:ax(¥).
— SHB (1: L): Shuffled bits,
— n € [1: L], number of bits in each group
Output:
— KGs: K groups, size K x n, K is the number of the groups, n is the number of
bits in each group
— RB[K xn+1...L]: the remaining bits
Steps:

— Calculate the number of the groups using (6).

— Create matrix KGs with size Kxn.
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x=1
fori=1:K
for j=1:n
KGs(i, j) = SHB(x)
X=X+1
end
end
— Calculate number of remaining bits |RB|=L mod n.
T =Lmodn
for z=1.T
RB(z) = SHB(x)
X=Xx+1
end

Example 6: Example of create K groups (Figure 5) from shuffled bits SHB
Let’s consider SHB from Example 5. n=8;
Inputs:

- Shuffled bits SHB

[1101 01111011110111001101000001100111010101011011]
-n=8

Outputs:

- KGs

-RB[(K xn)+1..L]

Steps:

1. Number of shuffled bits SHB: L =48.
) 48 .
2. Using (6): K= ry = 6. Number of group is 6

3. Divide the SHB into 6 groups, each group contains 8 bits to get KGs
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11010111
1 01 11101
11 001101
KGs=
0O 00O0O0OT1T110O0
01110101
01 01101 1]

Remainder bits RB = 48 mod 8 =0. No remainder bits.

RB= []. There is no remainder bits.

Consider now K groups, KGs (Figure 5) phase. After create KGs, the bits in each group
are encoded using Slepian-Wolf encoding [12]. In [2], using LDPC H matrix [10] with
size rxn, where 0 < r <n, compress each group into syndrome or encoded groups,
SGs, as follows:
SGs(LD)...... SGs(L,r) KGs(L,1)...... KGs(1,n)
SGs(2,1)...... SGs(2,r) | | KGs(2D)...... KGs(2,n) .

HT k=12, K (7

SGs(k,1)...... SGs(k,r) KGs(k,1)...... KGs(k,n)

Where k the group number and K is the total number of KGs groups. SGs (K, r) is the
syndrome or encoded bit. LDPC H matrix in [2] is used as in [6] with size n=6336,
r=3840. However, this H matrix can’t be obtained exactly neither in [2] nor in it
reference [10]. Thus, construction of H is our problem and it is described in Section

3.4.

Algorithm 7 of encoding and compressing process (Figure 5) describes compressing

procedure and Example 7 shows an example of encoding KGs into SGs.
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Algorithm 7. Encoding (Figure 5) // encodes and compresses KGs into SGs groups
Inputs:

— KGs: K groups, size Kxn.
— H: binary matrix, size r rows and n columns.
Output:
— SGs: encoded groups, size K: rows (groups), r: columns (number of bits in
each group).

— r:0<r<n.

1. Convert H matrix into transpose H=H".
2. Logical multiplication: SGs=KGs. H".

Example 7. Encoding and compressing (Figure 5) of K groups.

Let’s K group from Example 6. H is constructed using Gallager method described in

Section 3.3 with size 4x8.

Inputs:
1 12 01 0 1 1 1]
1 0111101
KGs = 11001101
*“looo000110
01110101
01 0110 1 1]
11110000
H o 00001111
/121100001
00011110
Outputs:
-SGs, size K x .
Steps:

1. H is transposed.
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2. Using (7), logical multiplying KGs withHT, SGs is obtained
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Embedding Secret Data (Figure 3) Phase Details
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18x4

In this phase, secret data, SD, are embedded into syndrome group SGs obtained by

encoding and compressing phase (Figure 5) to produce embedded groups, EMBG, with

size K x n. Then, embedded groups with remainder bits RB after create groups (Figure

5) are reverse shuffled using Kse to obtain inversed shuffle bits, ISHB. After that,

MSBs in segments EI2, EI3, EI4 which are obtained after decomposing (Figure 4) are

replaced with inversed shuffle bits ISHB to get EI'2, EI'3, EI'4. Marked encrypted

image, MEI, are obtained from composing EI1, EI'2, EI'3, EI'4. Figure 6 shows

diagram of Phase 3.
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Figure 6: Embedding Secret Data Phase Details

After encoding and compression (Figure 5) phase, the total vacated room for
embedding both Secret data SD and syndrome groups SGs will be divided into K
groups, each of size r bits. Each of these K groups will hold SD in size n - r and the
left r bits hold SGs as follows:

EMBG =SGs || SD (8)
Where EMBG is a matrix holds both SGs and SD of size K x n. Algorithm 8 describes
embedding secret data SD (Figure 6) and syndrome groups SGs into EMBG. Example

8 shows embedding secret data SD (Figure 6) example of embedding SD.

Algorithm 8. Embed Secret Data (Figure 6) into EMBG

Input:
— SGs: syndrome groups K x r, K: number of the groups, r: number of groups
after encoding.
— SD: Secret data, K% (n-r).
- rejl,...n-1]
Output:
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— EMBG: Embedded groups, size K x n, K: number of the groups, n: number of
groups after embedding.
Steps:
1. Declare a matrix EMBG with size K x n: EMBG [K, n] = {0}.

2. Divide SD into groups with size K x (n - r) to concatenate SGs with SD

x=1
fori=1K
forj=1lin—r

SDG(i,j) = SD(x)
x=x+1
end
end
3. Embed the syndrome SGs in EMBG in K x r space
fory=1K
forz=1:r
EMBG(y,z) = SGs(y, z)
end
end
4. Embed the secret data with K x (n - )
fora=1K
forb=n—-r+1in
EMBG(a,b) = SDG(a, b)
end

end
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Example 8. Example of embedding secret data SD (Figure 6) with syndrome groups
SGs into embedded group EMBG.

Let’s consider SD are generated randomly with size K x (n - r) = 6x (8-4) = 24 bits.
Input:

-SD:[1010 01011000100000010110]

1111

1111

0110
— SGs =

0 00O

1 010

01 0 1]
Outputs

- EMBGsize K xn
Steps

1. SD are divided into K = 6 groups, each group contains 4 bits

o Ok Fk O K
R O O O +— O
R O O O O k-
O B O O +— O

2. Declare EMBG matrix with size 6x8 contains zeros values

3. Assign SD groups to EMBG matrix inspace i =1...6andj=4...8

EMBG =

R O O O O =

O O O O o o
OO O O O o o
OO O O O o o
OO O O O o o
OO Ok -k O Bk
R O O O +— O
O B, O O +— O

4. Assign SGs to EMBG matrix in space i =1..6and j= 1.4
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11111010
11110101
01101000

EMBG =
00001000
10100001

01010110

After embedding secret data (Figure 6), EMBG are converted into row vector then
concatenated with remainder bits RB obtained by create groups Algorithm 6 (Figure
5). The resultant vector will be shuffled in reverse way using Ksr (Figure 6) to obtain
Inversed Shuffled Bits (ISHB). Algorithm 9 describes inverse shuffle bits (Figure 6)
of embedded group EMBG. Example 9 shows inverse shuffle bits (Figure 6) of

embedded group EMBG.

Algorithm 9. Inverse shuffled bits (Figure 6) of embedded groups EMBG

Input:

— EMBG: Embedded groups, size K x n, K: number of the groups, n: number of
groups after embedding.

— Kse: Shuffle key (positive integer such that gcd (Ksg, L)=1, where gcd is the
greatest common divisor

— RB[(K x n) + 1...L]: the remaining bits

Output:

. 3XY
— ISHB (1 :L): Inversed Shuffled Bits, L =& X

Steps:

1. Reshape the EMBG from matrix into row vector B
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x=1
fori=1K
forj=1n
B(x) = EMBG(i, )
x=x+1
end
end
2. Concatenate the row vector of EMBG with RB
C=B||RB
3. Declare shuffle row vector SR contains indices between 1 and L.
4. Get SR1 indices by shuffling SR using Kse.
forj=1:L
SR1(i) = ((KSF x SR(i))mod L) + 1
end
5. Shuffle the selected bits depend on the row vector SR1. Each bit in the selected
bit vector to the corresponding index in the shuffle vector.
fori=1:L
index = SR1(i)
ISHB(i) = C(index)

end

Example 9. Example of Inverse Shuffle bits ISHB (Figure 6) in embedding groups
EMBG.
Let’s consider embedded groups EMBG from Example 8 and remainder bits from

Example 6.
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Input:

1 12 1 1 1 0 1 0]
11110101
01 1 01000
- EMBG =
0O 00OO0O1O0O0TO0
1 01 00 OO0 1
_O 1 01011 O_
- Kse =13

-RB =[]. There is no remainder bits which is obtained from Example 6.
Outputs:

- ISHB (1: L) = ISHB (1:48)

Steps:

1. Reshape EMBG into row vector

[111110101111010101101000000010001010000101010110]

2. Concatenate EMBG of row vector with RB = EMBG || RB

3. Declare shuffle row SR containing values from 1 .... L, L= 48

SR =

[L23456789 10 ------ 37 38 39 40 41 42 43 44 45 46 47 48]
4. Get SR1 using SR1= (Ksr x SR) mod L.

[14 27 40 5 18 31 44 9 22 3548 13 26 39 4 17 30 43 8 21 34 4712 25
38 3 1629 42 7 203346 11 24372 15 28416 19 32 4510 23 36 1]

5. Using SR1, bits in EMBG in row vector are shuffled in reverse order to produce

ISHB

[000010010000110011100111001000000111001111111101]

Consider now inverse shuffle bits (Figure 6). After getting, ISHB, the MSB of the

segments EI2, EI3, and El4 (Figure 4) are replaced with the ISHB to get EI2’, EI3",
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and EI4". By converting the EI2, EI3, and EI4 into binary values using (1), the MSBs
are collected and selected using Ks. using same steps in Algorithm 3 and 4. Then, the
selected bits SB are replaced with ISHB. Steps of replacing MSBs (Figure 6) are

described in Algorithm 10 and Example 10.

Algorithm 10. Replace MSB bits (Figure 6) in EI2,..., EI4 with ISHB

Inputs:
—  X,Y: power of 2;

— ISHB: Inversed shuffle bits vector [1....L ], L =a (3XY /4)
— EI2, EI3, El4, each of the size X/2 x Y/2
— K Selection Key = [Ksi1,Ksiz, ... Ksu], Ksui € [1,...,L], L =a (3XY /4)
Output:
— Segments, EI2’, EI3", El4", each of the size X/2 x Y/2
Steps:
— Collect MSBs from EI2, EI3, El4 using Algorithm 3.
— K. defines indices of collected bits that will be replaced by ISHB
— Then, the replaced modified collected bits are return into segments EI2, EI3,
El4
— Convert the binary values into pixels values using (3) to obtain EI2", EI3",
El4".

Example 10. Replace MSBs (Figure 6) in EI2, EI3 and EI4 to obtain EI2", EI3™ and
El4’.

Let’s consider EI2,..., EI4 obtained from Example 2 and inversed shuffle bits obtained
from Example 9.

Inputs:

- ISHB

[000010010000110011100111001000000111001111111101]
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92 240 63 218 200 74 68 193

Elo= 177 50 247 176 E13= 181 34 233 155
32 171 168 227 195 209 13 251
189 185 58 153 90 116 156 229

125 229 8 61
2 149 188 207
El4=
110 75 162 212
242 138 81 57

-KsL

[47 27 35 34 111 13 21 38 10 42 48 8 29 19 3 46 9 4 36 20 26 6
31 3230 3725 334318 24 4540 44 16 28 415 12 7 39 17 23 2 22 14 15]

Outputs:
- Segments EI2°, EI3", EI4" each of the size 4x4 (X/2 x Y/2)
Steps:

Collected bhits CB

1. [010110110110111111100010010111110001110101100110]

2. Using Ks, the collected bits are replaced with ISHB
KsL

[47 27 35 34 111 13 21 38 10 42 48 8 29 19 3 46 9 4 36 20 26 6
31 3230 37 25 334318 24 4540 44 16 28 415 12 7 39 17 23 2 22 14 15]

ISHB

[000010010000110011100111001000000111001111111101]

To obtain modified collected bits, CB’

[010111111011001110001110010010100000101100010100]

1. MSBs in EI2 is replaced with CB’ from (1 : 16)
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01011100
1 0110001
0 01 00O0O0OTGO
10111101
11110000
10110010

1 0101011

10111001

10111111

01110111

10101000
10111010
01011010
001 10O0O0O0
11100011
1 0011001

2. MSBs in EI3 is replaced with CB’ from (16 +1: 16x2)

11001000
001 101°01
01000011

01011010

11001010

10100010
11010001
01110100
01000100
11101001

0 0001101

00011100

11000001

00011011

11111011
01100101

3. MSBs in El4 is replaced with CB’ from (16x2+1 : 16x3)
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R O FrF kP OO F FP PFP PFP OOOLPEFP O Pk
O r Pr P OO PFPrP OO0 O FkFr, kP O Fk Ok
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O Fr P P OO OOOF P P OO O Pk

4. Convert binary EI2, EI3, El4 after replacing bits to produce EI2", EI3", EI4" using

3).

92 240

. |177 178
EI2" =

32 171

189 185

200 202 68 193
53 162 233 27

EI3 = , El4

67 209 13 251
90 116 28 101

191
119
168
186

90
48
227
153

125 229 8 61
2 21 60 207

110 203 34 84

114 138 209 57

After MSBs in EI2... EI4 are replaced with ISHB to obtain EI2"... EI4" (Figure 6) are

converted into pixels values. Marked encrypted image (MEI) is constructed from EI1,

EI2", EI3" and EI4" which are composed (Figure 6) to construct MEI using (4).

Algorithm 11 describes the composition (Figure 6) of EI1, EI2°, EI3" and EI4" to get
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MEI. Example 11 shows compose (Figure 6) example of EI1, EI2°, EI3" and El4" to

obtain MEIL.

Algorithm 11. Compose EI1, EI2", EI3" and EI4" (Figure 6) to get marked encrypted
image MEI

Input:
— X, Y: power of 2.
— Segments EI1, EI2°, EI3", EI47, size X /2, Y/2.

Output:
— MELI: Marked encrypted image MEI , size X, Y
Steps:

— Combine the EI1, EI2°, EI3", EI4" using (4) to construct MELI.

// Using MATLAB style pseudocode:
MEI(1:2:X,1:2:Y)=EI1(1:X/2,1:Y/2);//odd rows and columns
MEI(1:2:X,2:2:Y)=EI’2(1:X/2,1:Y/2)=//0odd rows and even columns
MEI(2:2:X,1:2:Y)= EI’3(1:X/2,1:Y/2);//even rows and odd columns
MEI(2:2:X,2:2:Y)= EI’4(1:X/2,1:Y/2);//even rows and columns

Where a:h:c means x values such that: a<=x<=c, x=c+ixb.

Example 11. Compose (Figure 6) El1, EI2", EI3", EI4" to obtain Marked Encrypted
Image MEI.

Let’s consider EI1 obtained from Example 2 and EI2"... EI4" obtained from Example
10.

Inputs:
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219 100 3 160 92 240 191 90

- 67 142 78 77 £l 177 178 119 48
1121 137 152 57 | 132 171 168 227
255 74 254 93 189 185 186 153
200 202 68 193 125 229 8 61

53 162 233 27 e 2 21 60 207
67 209 13 251} 1110 203 34 84
90 116 28 101 114 138 209 57

EI3":

Outputs:

- Marked encrypted image MEI with size 8x8

Steps:

1. Using Step 1 in Algorithm 11, MEI is constructed.

(219 92 100 240 3 191 160 90 |
200 125 202 229 68 8 193 61
67 177 142 178 78 119 77 48
53 2 162 21 233 60 27 207
121 32 137 171 152 168 57 227
67 110 209 203 13 34 251 &84
255 189 74 185 254 186 93 153
90 114 116 138 28 209 101 57

MEI:

The data hider constructs Ks., Ksr and Kenc to be used in receiver side. Also, the
parameters L, n and r are used to extract the secret data. These data are transmitted

through trusted channel.

In [1], the embedding capacity formula are not clearly specified. Thus, we analysis to
find formula for embedding capacity. By definition, embedding capacity is the number

of bits to be embedded in each pixel in the encrypted image,

E number of embedded bits _ number of selected bits xembedding ratio (9)
emb = image size - image size
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where number of selected bits is L, and embedding ratio is (1 — r/n). Thus, embedding

capacity Eem is

L x(l—r)
Eemb = —n

XY
From (5) we can write (10) as follows:

ax(?,XY jx(l—rj
E 4 n :3a(n—r)

emb XY 4n

2.1.3 Stage 3: Data Extraction and Image Recovery Details

Receiver may use three options depending on his authority and privileges:
- Optionl: data extraction,

- Option 2:approximate image construction,

- Option 3: lossless recovery.

(10)

(11)

Option 1 is used when the receiver has only Ksi, Ksr, L, n and r. The secret data, SD,

is extracted perfectly without distortion. However, the image can’t be constructed.

Option 2 is used when the receiver has only the encryption key Kenc, an approximate

image is constructed with high quality. Option 3 is used when the receiver has Ks,

Ksr, L, n, r and Kenc. In that case, the secret data is extracted perfectly, and recovered

image is constructed perfectly in some conditions. Figure 7 shows the diagram of Stage

3. Data Extraction and Image Recovery (Figure 3) details. Each option will be

explained in details further.
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I—vr!nyKSL!KSF

Option 1: Data Extracted

extraction data

KENC RSN, W, S

thlon 2: Approxmate Approxmate
VEI LA »| Image reconstruction image
S
— P . )
Option 3: Lossless Re_covered
q recovery image
H———»

Figure 7: Stage 3: Data Extraction and Image Recovery Stage Details

Option 1: Data Extraction Details

In this option, the receiver has only Ksi, Ksr, L, nand r. In this option, the secret data
will be extracted perfectly. Marked encrypted image MEI is decomposed into 4
segments V1, V2, V3, V4 defined by (4). Then, MSBs are collected from V2, V3, V4,
forming collected bits, CB’. After that, L bits SB™ are selected from collected bits CB’
using Ks.. Then, the selected bits SB™ are shuffled using Ksg. Shuffled bits SHB™ are
divided into K groups, each with size r forming KGs groups. After that, created groups
KGs, the secret data will be n - r bits in each group. Figure 8 shows diagram of Option

1.
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L Kst

v | |

MEI CB’
—> Decompose V2’V3’V4: Collect bits > Select bits

SB®

A

KGs® SHB®
Extlgztt:;ed Extract Create groups [« Shuffle bits ~ [¢——

| |

r n

Figure 8: Data Extraction Details

A

Receiver divides the marked encrypted image, MEI, (Figure 8) into four segments, V1,
V2, V3 and V4, using (4) and steps in Algorithm 2 of image decomposition. Then, the
Most Significant Bits (MSBs) are collected from V2, V3 and V4 segments using steps
Collect MSBs (Figure 8) Algorithm 3 to obtain CB". After that, L bits, SB, are selected
from CB" using Ks. Selecting bits, SB", (Figure 8) in Algorithm 4 is used except the

first step.

After SB™ are selected, they are shuffled using the Ksr to obtain shuffled bits SHB®
(Figure 8) using same steps as in Algorithm 5. Then, the shuffled bits SHB" are divided
into K groups (KGs") using steps of create groups Algorithm 6. Each of these groups

contains r bits. Up to here, the same steps are used as in the data hiding phase.

As we mentioned in embedding secret data phase in Section 2.1.2, the groups consist
of syndrome groups SGs with size (K x r) and secret data with size K x (n - r). Thus,
each group contains (n - r) secret data. The secret bits can be extracted from the last (n
- r) bits in each group, that is, [ED (k, r+1),... ,ED (k, n)] are the extracted bits. Data

extraction (Figure 8) is described in Algorithm 12 and Example 12.
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Algorithm 12. Data extraction (Figure 8)

Input:
— KGs: K groups, size K x n, K: number of groups, r : number of bits in each
group
— re[l,..,njwhere 1<r<n
Output:
— ED(1: Kx(n -r)) : Extracted data
Steps:
Get the [ED (k, 1), ..., ED (k, n-r)] in each group [KGs (k, r+1),..., KGs (k, n)].
1. Store the ED as row vector.
y=1
fori=1:K
forj=n—-rn

ED(y) = KGs(i,))

y=y+1
end

end

Example 12. Data extraction (Figure 8) from marked encrypted image MEI

Let’s consider the MEI from Example 11. The same procedure will apply to have KGs
groups after decomposing, collecting, selecting, shuffling and division procedure. n
and r are received with MEI.

Input:

-KGs =

O B, O O - B
_ O O - = B
o r O F - -
R O O O +— -
o O k O K
R O O O +— O
R O O O O
o r O O+ O
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-n=8

- ED(1: Kx(n-r)) = ED(1: 24)
Steps:
1. x=Kx (n-r)=6x (8 - 4) =24 bits

Syndrom groups Secret data

o O Fr + O K
R O O O+ O
R O O O O
ok O o Fr o

OFRr OO R R
P OO R R R
O O R R R
P OO0 O R R

The right side of KGs are the extracted data.

2. Extract the secret data SD groups and put them in a row vector as follows:

[1010 010110001000 0001 0110]

K=1 K=2 K=3 K=4 K=5 K=6
If we compare the extracted data with secret data SD in Example 8. We will see that

they are same. Thus, the secret data is extracted perfectly.

In this option, receiver granted authority and privilege doesn’t allow him to know the
encryption key, the image can’t be decrypted.

Option 2: Approximate Image Construction Details

In this option, receiver granted authority and privilege allow him to possesses Kenc
only without Ksi, Ksr, L, r and n. Hence, receiver can construct approximate image
without extracting embedded secret data causing approximate image to be with quality

satisfactory to the human eye.
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Marked encrypted image is decrypted using encryption key Kenc. Then, decrypted
image, Al is decomposed into 4 segments All, Al2, Al3, Al4 defined by (4). The
procedure of decomposing Al (Figure 8) is followed by constructing reference image
BI with size XxY using bilinear interpolation (Figure 8) depending on the segment All
to construct reference image Bl. The reference image Bl is decomposed into 4
segments BI1, BI2, BI3, Bl4 defined by (4). Segments Al2, Al3, Al4 and BI2, BI3, Bl4
are used in estimation the MSBs to form Al2°, Al3", Al4". Then, approximate image

Al is constructed by compose All, Al2°, Al3", Al4". Figure 8 shows diagram of Option

Encryption Key, Kenc
Marked Encrypted l
Image (MEI) Decrypted image
All
—P> Decryption Al > Decompose »  Bilinear interpolation
All Reference image
Al2, AI3, Al4 Bl
Approximate image 4 4
Al AlI2°,AI3°, Al4® BI2,BI3, Bl4
- Compose < MSBs estimation < Decompose

!

BI1

Figure 9: Approximate Image Construction Details

At the beginning, MEI is processed using (1), pixel values of MEI are converted into

binary values. Then, these bits are decrypted using Kenc, which contains embedded data
as follows:

bijk = Viju® Kenc,,, (12)

KENCi'].'uis the iju-th bit of the encryption key, Kenc, eiju is the iju-th encrypted bit, and

@ denotes exclusive-or (XOR) operation, u = 0,1,2,...,7. Then, the decrypted binary
values are converted into pixel values to construct decrypted image, Al (Figure 9) using

(3). The decrypted image is the same as the original one, but with modified MSBs due

44



to embedding secret data (Section 2.1.2). Since the MSBs are modified, the decrypted
image Al will not be identified to human eye. Then, Al is decomposed (Figure 9) into
4 segments All, Al2, Al3, Al4 (Figure 8) according to (4).Example 13 illustrates the

image decryption of MEI and decomposing process (4).

Example 13. Image decryption (Figure 9) from marked encrypted image MEI and
decompose (Figure 9) into segments Al 4, ..., Al4

Let’s consider MEI from Example 11.

(219 92 100 240 3 191 160 90 |
200 125 202 229 68 8 193 61
67 177 142 178 78 119 77 48
53 2 162 21 233 60 27 207
121 32 137 171 152 168 57 227
67 110 209 203 13 34 251 84
255 189 74 185 254 186 93 153
90 114 116 138 28 209 101 57

MEI:

1. MEl is decrypted by encryption key in Example 1 using (2). Decrypted image Al as

follows

15 215 5 183 3 140 100 138]
125 7 62 20 10 4 93 102
62 2 31 213 242 249 10 129
249 17 136 131 102 146 180 130
78 108 S5 150 27 70 140 175
73 200 27 133 95 169 89 82
108 3 28 172 55 228 48 72
88 2 64 81 245 210 222 1

Al

2. Al is decomposed into Al1, Al 2, Al 3, Al 4 using (4)

15 5 3 100 215 183 140 138
62 31 242 10 2 213 249 129
All= , Al2=
78 5 27 140 108 150 70 175
108 28 55 48 3 172 228 72
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125 62 10 93 7 20 4 102

Aja_| 249 136 102 180| |17 131 146 130
|73 27 95 89 |’ |200 133 169 82

88 64 245 222 2 81 210 1

After segmentation, All is used to construct reference image Bl using bilinear
interpolation algorithm (Figure 9). To construct reference image Bl, All is used to be
interpolated. Bilinear interpolation (Figure 9) is construct new points from known
points. We know that the size of reference image is XxY and size of one segment after

decomposing is X/2 x Y/2.

Example 14 shows constructing reference image using bilinear interpolation (Figure

9).

Example 14. Construct reference image using bilinear interpolation (Figure 9).
Lets’ consider All from example 13. Size of segment All is 4x4, size of reference
image is 8x8.

1 2 3 4
1115 5 3 100
All=2 | 62 31 242 10
3 |78 5 27 140
4 1108 28 55 48

1. Initially, the matrix Al1l is expanded into 8x8 matrix as follows
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i 15 pl1 5 : p2
: pS p6 p7: p8
| G2 p13 31y pus
pl7 pl8 pl9 p20
78 p25 5 p26
p29 p30 p3l p32
108 p37 28 p38

| p4l pd42 pd3 p44

We want to find the unknown values in (13) as follows:

242
p21
27
p33
55
p45

p3
p10
p15
p22
p27
p34
p39
p46

100
pll
10
p23
140
p35
48
p47

p4
pl2
pl6
p24
p28
p36
p40

p48 |

(13)

First, we traverse rows and we calculate unknown values as average of the two known

neighboring in the row values.

Second, we traverse columns and we calculate unknown values as average of the two

known neighboring in the column values. Figure 10 shows the grid representation of

4 known values from the left top corner of matrix shown in (13) specified by dash one

in solid boxes, and where values (p1, p6, p13) are calculated and displayed in dashed

boxes.

Xp-1
pl
Y= — 15 —i
ps p6
T
£ v=15 | a5 s .
o [ i !
J p13
Y,=2 — 62  E———
|

Columns ————»

XZ:Z
i
_— 5
—
p7
i T
fommenmeen . 18
__________ I
i
— 31

Figure 10: Example of Bilinear Interpolation of Grayscale Values. Dashed Boxes
Refer to Unknown Values are Interpolated.
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For calculating p1, we use neighboring values 15 and 5 by taking the average as
follows:

1545

1
P 2

For calculating p13, we use neighboring values 15 and 5 by taking the average as
follows:

_ 62+31 465

pl3

For p5, we use the neighboring values 15 and 62 as follows:

_15+62

p6 =385

For p7, we use neighboring values 5 and 31 as follows:

_31+5

6
P 2

18

Then, the middle point p6 are calculated using p1 and p13 as follows:

10+465

p6 =28.25

Other points will be calculated in a same way. The right border and bottom border

cannot be calculated using bilinear interpolation, since there is only one neighboring

known value beside each value in the border. In order to calculate the unknown values

in right and bottom border, we use extrapolation. Figure 11 shows example of

extrapolation points.
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Columns ——»

X1-6 X2=7 X=8

Yy Y2

100 Y B

Figure 11: Example of Extrapolation in Grayscale Values. Dashed Boxes Refer to
Unknown Values are Extrapolated

We calculate all unknown values in right and bottom borders using MATLAB function
in Appendix A.3.4.1, as follows:
B(512,1:511)=interp1(1:512,B(1:511,1:511),512,'linear','extrap");
B(1:512,512)=interp1(1:512,B(1:512,1:512),512,'linear','extrap");

We obtained unknown values as shown below:

15 10 5 4 3 52 100 123]
39 28 18 70 123 89 55 81
62 47 31 137 242 126 10 40
70 44 18 76 135 71 7 S4
78 42 5 16 27 16 4 69
93 55 17 29 41 34 26 70
108 68 28 42 55 52 48 70
123 81 40 54 69 70 70 58

Bl=

After constructing image BI, it is divided into BI1, BI2, BI3, BI4 segments using (4).
Consider now MSBs estimation (Figure 9) from Al2,A13,Al4 and BI2, BI3, Bl4 Since,
All was not modified in the embedding stage (Section 2.1.2), the pixels values in All
are the same as in the original, EI1, while, the MSBs in Al2,AlI3,Al4 are modified in
embedding stage. Since BI1 and All are same, no don’t need to estimate their MSBs.

The MSBs are estimated to get Al2°, AlI3", Al4" using Algorithm13.
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Since, LSBs in each segment are not modified while inserting secret data, the
interpolated values of Bl are used to estimate MSBs in Al. For each bit in segment Al2,
Al3, Al4, if |128 + AI2(i,j)mod 128 — BI2| is greater than the interpolated value
mod(Al(i, j),128), the MSB of the pixel in (i, j) is 1, otherwise is 0. Algorithm 13
describes the mechanism of MSBs estimation. Example 13 shows an example of

estimating MSBs.

Algorithm 13. MSBs estimation.

Input:
— Al2, Al3, Al4: segments with size X / 2xY / 2, after decomposing Al.
— BI2, BI3, Bl4: segments with size X/ 2xY / 2, after decomposing Bl.
Output:
— AI2°, AI3", Al4" : segment with size X/ 2xY / 2.
Steps:
1. Calculating the MSBs in Al2" using Al2, BI2 as follows
fori=1:X/2
forj=1Y/2
if 1128 4+ AI2(i, j)mod 128 — BI2| < |AI2(i, j)mod 128 — BI2(i, j)| then
AI2'(i,j) = 128 + AI2(i, ) mod 128
else
AI2'(i,j) = AI2(i,j) mod 128
end
end
2. Calculating the MSBs in Al3 using Al3, BI3. Using step 1

3. Calculating the MSBs in Al4" using Al4, Bl4. using step 1

50



Example 13. MSBs estimation (Figure 9) from Al2, ..., Al4 and BI2,..., Bl4

Let’s consider Al2 and BI2 after decomposing

215 183 140 138 10 4 52 100
2 213 249 129 47 137 126 55
Al2= ,and Bl2=
108 150 70 175 42 16 84 10
3 172 228 72 68 42 52 75

1. Al2 (1, 1) =215, BI2 (1, 1) =10, using (13) and step 1 in Algorithm 12
Is (|J128+ (215 mod 128) -10 |) < (| 215 mod 128 — 10 |)?
(205 < 77) it’s false
Then, the estimated MSB is
Al2" =215 mod 128= 87. This will be the approximate pixel value. All other pixels
calculating in same procedure.

After calculating all pixels, the resultant Al"2 as follows

87 55 12 138 125 62 138 93

.| 2 8 121 1 . 1121 8 102 52
Al2 = ,AI3 =

108 22 70 47 73 27 95 89

131 44 100 72 88 64 117 94

7 20 132 102
17 131 146 2
72 5 41 82

130 81 82 129

Al4d =

The final step, the receiver can construct the approximate image by composing (Figure
9) the estimated 4 segments Al1",Al2°,Al3",Al4" using same steps in Algorithm 11.
Option 3: Lossless Recovery Details

In the third option, receiver possesses keys: Kenc, Kst, Ksr, L, r and n to extract secret

data SD without any distortion and the image is recovered lossless.
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At the beginning, secret data SD is extracted from MEI. L bits are selected from MSBs,
and divided into Kxn groups. Thus, SD resultant as K x (n - r). The remaining groups
in Kxn are the syndrome groups SGs with size K x r. The syndrome groups SGs are
extracted to be used in decoding process. After that, an approximate image Al is
constructed using steps in Section 2.1.3. The approximate image Al is encrypted using
encryption key Kenc. Then, decrypted approximate image is decomposed into 4
segments All, Al2, Al3, Al4 defined by (4). After that, MSBs are collected from Al2,
Al3, Al4. L bits are selected from collected bits using selection key Ks. and shuffled
using shuffle key Ksr. Then, the shuffled bits are divided into K groups, each with size
n to form UG groups. These groups UG are using with H matrix and syndrome groups
SGs in sum-product decoding (Figure 11). The UG groups are decoded to get R groups.
Then, bits in UG groups are replaced (Figure 11) with decoded group R groups to
obtain R™ groups. The replaced groups R groups are reversed shuffle (Figure 11) using
Kse. After that, MSBs in Al2, Al3, Al4 which obtained from decomposing approximate
image are replaced (Figure 11) with inversed shuffle bits to get Al2°, AI3", Al4".
Segments All, Al2°, AI3°, Al4" are composed (Figure 11) into encrypted decoded
image. Decoded image is obtained by decrypting (Figure 11) encrypted decoded image

using Kenc. Figure 12 shows the diagram of decoding and obtaining decoded image.
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SGs H UG groups Kse

|| l l

R groups N
UG groups ——»{  Sum-product decoding » Replace bits R groups » Inversed shuffle
T Inversed shuffle
q bits
Encrypted decoded v
. image Al2°,AI3" Al4
Decoded image ——— Decrypt - Compose -t Replace MSBs
T T Al2,AI3,Al4
Kenc All

Figure 12: Lossless Recovery Details

Using same steps in Algorithm 12 the secret data is extracted. Marked encrypted image
is decomposed into 4 segments V1, V2, V3, and V4 using Algorithm 2. MSBs are
collected from V2, V3, and V4 using Algorithm 3. L bits are selected from collected
bits using selection key Ksi, see Algorithm 4 except Step 1. Selected bits are shuffled
using shuffle key Ksr. The, shuffled bits are divided into K groups, each group contains
n bits. After that, (n - r) from each group are extracted, as a result, K (n - r) are the

extracted data.

Consider now get syndrome (Figure 13). Syndrome groups SGs are
extracted from K groups. The extracted data is in n — r space in each group.
Thus, the total secret data is in K (n - r) space in K groups. Syndrome
extraction (Figure 13) is described in Algorithm 14. Example 14 shows an

example of syndrome extraction.
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K groups

r ——» Get Syndrome

Compressed bits
r.K

y

Create Groups

Syndrome groups
SGs

Figure 13: Syndrome Extraction Details. Using K Groups and r, r.K Compressed Bits
are Extracted, then Form Compressed Bits into Syndrome Groups SGs

Algorithm 14. Syndrome extraction (Figure 13) from K groups.

Input:
— KGs: K groups, size Kx n, K: number of groups, n: number of bits in each
group.
— reJl,..,nJwherel<r<n.
Output:

— SGs: syndrome groups, size K (n - r), K: number of groups, r: number of bits
in each syndrome group.
Steps:
1. Get the [SGs(k,1),..., SGs(k , r)] in each group

fori=1:K
forj=1r
SGs(i,j) = KGs(i, )
end

end
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Example 14. Syndrome extraction (Figure 13) from K groups.
Let’s consider the MEI from Example 11. The same procedure will apply to have KGs
groups after decomposing, collecting, selecting, and shuffling and division procedure.

n and r are received with MEI

Input

-r=
1111101 0]
11110101
01101000

-KGs =
0 0O00O0O1O0O0TGO
1 01 00001
01 01011 0]

Output:

- SGs: syndrome groups, size K (n - r)
Steps:
1. x = Kx r =6x4=24 bits

Syndrom groups Secret data

o O ok, o

O Rr OO R Bk
P OO R kL B
O R O R kL B
P O O O Kk Bk
OO R PR O R
R O O O Fr O
P O 0O OO0 R

2. The left side of KGs are the syndrome groups.

SGs =

O P O O Kk K
=T =T = S S =
O R, O KL B P
R O O O Kk K
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With Kenc, approximate image Al is constructed using the estimating algorithm as in
Section 2.1.3. Then, Al is encrypted when the SD are embedded, the original image
was encrypted. Then, encrypted approximate image is decomposed into 4 segments
All, Al2, Al3, Al4 using (4). After that, the L bits are selected from MSBs Al2, Al3,
Al4 segments using selection key Ksc. Then, the selected bits are shuffled using shuffle

key Ksr. The shuffled bits are denoted as UG.

Shuffled bits UG are divided into K groups [UG (k, 1),..., UG (k, 2),..., UG (k, n)]
using create groups Algorithm 6, each group has n bits. In other words, we follow the
same procedure in MSBs selection phase. As a result UG groups are produced with

size K x n that will be used in decoding algorithm.

In decoding algorithm, the log-likelihood ratios (LLR) are calculated using g, where g

is the crossover probability of the channel.

Pr[R(k,i) =0|UG(k,i)]

LLR(k,i) = log Pr[R(k,i) =1|UG(K, )]

i=1,2,...,n (14)
:[1—2UG(k,i)]Iogl_Tq

Using LLR defined by (14), SGs groups, H matrix and UG groups, the original bits

[R (k, 1), R (k, 2), R (k, n)] are restored. Decoding algorithm in [2] is not specify clearly

and not in its reference [15], so we use Sum-Product decoding algorithm [16].

To get the recovered image, UG groups are replaced with R groups (Figure 12) to get R
groups. Then, the replaced bits R™ groups are inversed shuffled (Figure 12) using Ksr,
same steps in Algorithm 9. MSBs in approximate image are replaced (Figure 12) with
inversed shuffle bits to produce modified segments Al2", AI3", Al4". Four segments

All, Al2°, Al3", Al4" are composed (Figure 12) to produce encrypted decoded image.
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Using encryption key Kenc, the encrypted decoded image are decrypted (Figure 12) to

get decoded image.

Pseudo code of sum-product algorithm (Figure 12) is detailed in Algorithm 13.

Example 15 shows sum-product decoding (Figure 12) of UG groups.

Algorithm 13. Sum-Product Decoding (Figure 12) of UG groups to obtain R

groups.

Inputs:
— S: Syndrome, size 1% r.
— H:withsizerxn.
— UG: sizel xn.
Outputs:
— R:sizelxn
Steps:
1. Initiation z

fori=1:n

LL =log((1-q)/q)

z(i) = (1—-(2xUG(i))) x LL
end

2 Iter =1,
Iter,,, =10;

| =0
forx=1:n
fory=1:r
Ny,x = Zi
end for

end for
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3. Check

while(lter < Iter, . )
fory=1:r do
forxeC, do
1+1 e, woox tanh(N, ../ 2)
1_Hx‘eCy,x'¢x tanh(Ny,x‘ / 2)

By, x =log

end for
end for

4, Test

forx=1:ndo
Lx = Z:yeAx By,x + Zx

1L,<0
x {0, L, >0.
end for
if Iter = Iter,_ or J.HT=S then
Finished

else
5. Bit messages

forx=1:ndo
fory e Ax do
N,, = Zy'eAx,y':ty B, t1,
end for
end for
Iter = Iter +1
end if
until Finished

Example 15. Sum-Product decoding (Figure 12) of UG groups.

Let’s consider Kix12 as original group with n =12,
Kz[OOllOOOOlllO]

H matrix is constructed using Gallager method with size 9x12 showed as follow
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111100000000
000011110000
000000001111
101001000100
H=/0 10000110001
000110001010
100100100100
010001010010
00101000100 1]

K is compressed using (6) to obtain the syndrome S
S=K. HT=[001001010].
Let’s consider received group as
UG=[000100001110]
To recover K: S, UG and H are used in decoding.

Initially, p values are calculated using (15)

Iogﬁ, if UG, =1,
P = 1- (15)
Iong, if UG, =0.

We obtain p as follows

[2197 2197 2197 -2197 2197 2197 2197 2197 -2197 -2.197 -2.197 2.197]

Negative values refer to 1’°s and positive values refer to 0’s. Then, a matrix N with size
rx n are defined contains zeros. Each element in each row of M matrix multiplied to
the corresponding element in p. For example, the values in the first row in N matrix
will be N; ; = 2.197,N; , = 2.197,N; 3 = 2.197,N; , = —2.197. The other values
will be zeros since the first 4 values in the first row in H matrix are 1’s and the other

are zeros. N matrix shows as follows:
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(2197 2197 2197 -2.197 0 0 0 0 0 0 0 0
0 0 0 0 2197 2197 2197 2197 0 0 0 0
0 0 0 0 0 0 0 0 -2.197 -2.197 -2.197 2.197

2197 0 2197 0 0 2197 0 0 0 2197 0 0
0 2197 0 0 0 0 2197 2197 0 0 0 2.197
0 0 0 -2197 2197 0 0 0 -2197 0 2197 0
2197 0 0 -2.197 0 0 2197 0 0 2197 0 0
0 2197 0 0 0 2197 0 2197 0 0 -2.197 0

0 0 2197 0 2197 0 0 0 2197 0 0 2.197

Graphical representation of H matrix are represented in Figure 14. Using graphical
representation of H matrix is used in decoding process. UG values are assigned into

variable nodes in left side and S values are assigned into check nodes in right side.

Check nodes

0 0 0 1 0 0 0 0 1 1 1 0
Variables nodes

Figure 14: H Matrix Graphical Representation. Left Side are Variable Nods Contain
UG Values. Right Side are Check Nods Contain S Values. 1’s in H are Represented
as a Connection between Variable Nods and Check Nods

Number of iteration are initialized, such as Iteration No = 7. The next step is to

calculate the outer probabilities at the check nodes using (16)

1+11, ¢ ;. tanh(M ;. /2
Bj’izlog( T, M, )J (16)

1_Hi'ecj,i'¢i tanh(M it 12)
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C vector containing the indices of bits variable nodes. For first check node,
C={1, 2, 3, 4}. Thus, outer probability of first bit depends on probability of second,

third and fourth bits

=-1.131

8 —lo 1+tanh(N,, / 2)tanh(N, , / 2)tanh(N, , / 2)
1 =19 Ttann(N,,, /2)tanh(N, , 1 2) tanh(N, , /2)

Similarly, the outer probability from first check to second bit depends on first, third

and fourth bits

8 —lo 1+tanh(N,, /2)tanh(N,,/2)tanh(N,, /2) | 1131
12 =09 T tanh(N,, /2) tanh(N,,, /2)tanh(N,,, 12) |

1+tanh(N,, /2)tanh(N,, / 2)tanh(N,, / 2)
. =log : : ’ =-1.131
1-tanh(N,, / 2) tanh(N,, / 2) tanh(N, , / 2)

1+tanh(N,, / 2)tanh(N, , / 2)tanh(N, ./ 2
BMlog[* (N,; /2)tanh(N,, /2) tanh(N, )Jl_m

1-tanh(N,, / 2)tanh(N, , / 2) tanh(N, , / 2)

Repeating for all checks gives the outer LLR: B is represented as follows:

[-1.131 -1.131 -1131 1131 0 0 0 0 0 0 0 0 |
0 0 0 0 1131 1131 1131 1131 O 0 0 0

0 0 0 0 0 0 0 0 -1131 -1131 -1.131 1131

-1131 0 -1131 0 0 -1131 ©0 0 0 1131 0 0
0 1131 0 0 0 0 1131 1131 O 0 0 113
0 0 0 -1131 1131 O 0 0 -1131 0 -1131 O
1131 0 0 -1131 0 0 1131 O 0 -1131 0 0
0 1131 0 0 0 1131 0 1131 O 0 -1131 0
0 0 -1131 0 -1131 0 0 0 1131 0 0 -1131

Outer values from check nodes are inner values for variable nodes
L=p +ZBi,j
The 1-st bit has outer LLRs from the 1%, 4™ and 7™ checks and an inner to first variable

nodes as follows:
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L1 =pt Bl,l + Bl,4 + B1,7 =1.066

L,=p,+B,+B;+B;=3328

Repeating for variable nodes. L represented as follows:

[1.066 3328 -1195 -3.328 3328 3.328 5590 5590 -3.328 -3.328 -5.590 3.328]
Values of L are converted into binary. If Li < 0 then J; =1, otherwise J;=0. J showed as
follows:

[0 0 1 1 0 0 0 0 1 1 1 0]
Next, S™ are calculated using (7).

S=J.H'

If S==S" then, J is obtained to the recovered one from UG, otherwise, N is recalculated
using obtained new values

2.2 Qian-Zhang Experimental Settings and Results

Experiments in [1] are conducted using one H matrix with size r = 3840 and n = 6336,
and selection ratio « =1. Using Lena, Baboon, Lake, and Man images of size

512 x 512 grayscale as shown in Figure 15.
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Y,
Figure 15: Gray Scale Images are Used in Qian-Zhang

The total number of collected bits from EI2, EI3, El4is (3 x 512 x 512)/4 = 196608
bits. L bits are selected from collected bits where selection ratio o =1, using (5)
L=1.0x196608=196608. These selected bits are shuffled then divided into 31 groups
using (7) where n = 6336, K=[196608/6336| = 31. Each group is encoded with the
H3g40x6336Matrix using (8). The resultant syndrome group SGs with size 31x3840 .
Number of bits to be embedded in each group is n — r = 6336 - 3840=2496. The total
number of bits is K (n - r) =31 x 2496 = 77376. Embedding capacity is obtained from

[1] defining using (11)

3x1.0%(6336-3840) _

Eemp= =0.2952 bpp.

4X6336

The PSNR of approximate image keeps constant for all embedding capacity. Figure

16 results of PSNR of approximate image in [1].
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Figure 16: Results for PSNR of Approximate Image in Qian-Zhang Scheme. PSNR
of Approximate Image is Constant When Embedding Capacity Changes [1]

Embedding Rate(bpp)

When decoding fails, PSNR of decoded image decreases when embedding capacity
increases. Figure 17 shows results of PSNR of decoded image in [1] when decoding

fails.

64



—8—Lena
501 ©— Peppers
~é— Barbara
45t ~5— Lake
Z
St B =
2 40 TE—p o
? ‘ —B—p
35 e
“*-#.t%:=“=
~P—yg
30p
T
—4h
= S
2 . . . e
0 0.05 0.1 0.15 0.2 0.25 0.3

Embedding Rate(bpp)

Figure 17: PSNR of Decoded Image When Decoding Fails [1]

2.3 Review of RDH schemes

In this section, we review RDH data embedding techniques. In [2], a RDH data
embedding scheme is proposed that embedded bits into an encrypted image by flipping
a small number of LSBs (less than 5) of pre-defined pixels in the encrypted image after
dividing the encrypted image into blocks. Conducted experiments of [2] embedded
256 bits to gray scale Lena image with size 512x512 pixels, results PSNR value 37.9
dB after decrypting encrypted image holds embedded data, with error extraction rate
1.21 % from recovered image. In [13], a n new algorithm is proposed to better estimate
the smoothness of image blocks. This algorithm improved data extraction and image
recovery strategies in [2]. Using this algorithm, with error extraction rate from

recovered image drops from 1.21% in [2] to 0.34% in [13].

In [14], an RDH method proposed embeds secret data after compressing bits in
encrypted image. The test images are sized 512x512. The embedding capacity
achieves 0.033 bpp for Lena image with PSNR 37.96 dB after decryption while for
Man and Lake 0.0250 bpp and 0.0130 bpp respectively with PSNR 37.95 dB for both

after decryption.
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In [6], an RDH method proposed embeds secret data after encoding encrypted image.
The original images are used sized 512x512. Embedding capacity for Lena is 0.043

bpp and for man 0.035 bpp with PSNR 38.1 dB.

In [1] , the embedding capacity achieves 0.2952 bpp for all images with different

PSNR of approximate image.
2.4 Problem Definition

The following problems related to Qian-Zhang scheme are solved in the thesis:

1. Implement the Qian-Zhang scheme and get the same experimental results as in [1].
2. The selection key Ks. that is used is not specified clearly in [1]. Thus, we need
proposing an algorithm to generate different selection keys depending on the selection
ratio.

3. The shuffle key Ksr generation is not defined in [1]. Hence, we have to propose an
algorithm to generate shuffle key.

4. The encryption key Kenc used is not defined in [1]. Thus we have to propose an
algorithm to generate an encryption key.

5. The decoding process done in [1] is not clearly explained. We used sum-product
decoding algorithm [20].

6. In [1], only one H matrix is used in (7) of size n = 3840 and r = 6336 with ratio
R =r/n = 0.62 without specifying the construction method of this matrix. Hence,
we need to find a construction method provides higher embedding capacity with higher
PSNR of decoded image. We conducted experiments on two construction methods:
Gallager and MacKay-Neal by generating different H matrices for construction

method and applying these matrices scheme [1].
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7. Qian-Zhang scheme studies relation between the embedding capacity and the quality
of approximate image using only one matrix. We have to confirm this relation by
conducting experiments in [1] using several constructed H matrices by Gallager
method each of with different sizes.

8. We need to extend the experiments by generating different H matrices with different
sizes with the same ratio R to find the relation between the H matrix size and the quality
of the recovered image. Moreover, these experiments are used to find the relation
between the H matrix size and decoding time.

9. The extension of the experiments settings of [1] also shall be done by generating
different H matrices with different R and sizes to find the relation between H matrix
ratio and the embedding capacity and to be confirmed by conducting experiments.
10. When the decoding fails, the relation between embedding capacity and the quality

of recovered image is investigated.
2.5 Summary of Chapter 2

In this chapter we have:

1. Presented Qian-Zhang scheme [2] experimental results and settings

2. Presented the related work on RDH and provided known experimental results on
PSNR and embedding capacity.

3. Problem definition for the thesis is given.
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Chapter 3

QIAN-ZHANG SCHEME IMPLEMENTATION

In this chapter, we present implementation of Qian-Zhang scheme [1]. We have chosen
6 images as shown in Figure 18 with size 512 x 512 from [21] for implementation.
These images are “pgm” format, in this format we couldn’t measure the quality of
approximate and decoded images. Hence, these images are converted into “bmp” in
order to identify each one. In Appendix A.2 the implementation of image conversion
is given. In Appendix A.2, line 3, images with “pgm” format are read. In lines 6-13,

each image is converted into matrix contains pixel values, then saved as “bmp” format.

d) Lena e) Ma f) Peppers
Figure 18: Images used in our implementation for Qian-Zhang scheme

We implemented Qian-Zhang scheme as follows:
1. Selection ratio « is fixed equal to 1, Appendix A.3, to find:

1.1. Optimal H matrix construction method.
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1.2. The relation between H matrix size and decoding time and PSNR of decoded
image.

1.3. Relation between H matrix ratio and embedding capacity.

2. Selection ratio a € [0.1,1.0] with step 0.1, Appendix A.4 , to find:

2.1 Relation between embedding capacity and PSNR of approximate image.

2.2 Relation between embedding capacity and PSNR of decoded image.
3.1 Qian-Zhang Implementation

Appendix A.3 present implementation of Qian-Zhang scheme using 9 H matrices
constructed by Gallager and MacKay-Neal method with selection ratio « equal to 1.0,
line 9. In line 3, the images loaded from directory. In line 5, we declare variable of for
storing PSNR for each decoded image for each H matrix. In line 6, we declare variable
for storing decoding time for each image of each H matrix. Line 7, define the column
size of H matrix which is equal to n. In lines 8-54, each image goes through three
stages: image encryption in line 20, data hiding in line 28 and data extraction and
image recovery in line 46. The resultant PSNR of decode image is assigned in line 48
for each H matrix of each image and decoding time is assigned in line 49 for each H
matrix of each image. Code 1 shows MATLAB code for Qian-Zhang implementation
steps. In Code 1 line 1, the original image is encrypted. Then, the secret data is

embedded in line 2. The data is extracted and the image is recovered in line 3.

Code 1: Qian-Zhang implementation

1. [EncryptedImage]=encrypt(Originallmage,EncryptionKey );
2.Marked_encrypted_image,selectionkey,Shufflekey,L,r,H,syndorm,kgroups,secret
Data]=HideData(Encryptedimage,selectionRatio,seed,numberofbits,secretData,im

Name,j);
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3.[extractedData,Approximatelmage,PSNR,Recievedimage,
DecodedPSNR]=Reciever(Marked_encrypted_image,selectionkey,Shufflekey,L,r,

numberofbits,EncryptionKey,imName,Originallmage,H);

The implementation for three stages is described in details in the next sections.

3.1.1 Stage 1: Image Encryption Implementation

We use 512x512 grayscale images in Appendix A.1 Figure A.1. In Appendix A.3.1,
we implemented Section 2.1.1. In line 4, the image is converted into binary values

using de2bi MATLAB function to obtain 2621448 binary image according to (1).

Then, the binary image is encrypted in line 5 by MATLAB xor function using
encryption key, which is obtained from Appendix A.3.1.1, according to (2). After that,
encrypted binary image is converted into decimal values using bi2de MATLAB
function to obtain 262144 x1 decimal image in line 6. In lines 7 and 8, the decimal
image is converted into 512x512 grayscale encrypted image using reshape MATLAB

function according to (3).

In Appendix A.3.1.1 line 2, encryption key Kenc is generated randomly with size
(512x512) x8 binary values. Then in line 6, Kenc are stored in ‘.mat’ file in order not
to be generated each time during running. Code 2 shows the MATLAB
implementation of image encryption stage. In line 1, the original image is converted
into binary values. Then, in line 2, the binary values are encrypted using encryption

key. After that, the encrypted binary are converted into pixel values in line 3.

70



Code 2: Image Encryption Implementation Stage

1.binary=de2bi(Originallmage,8,2,'left-mshb’);
2.binarylmage=xor(binary,EncryptionKey);

3.Encryptedimage=bi2de(binarylmage,'left-msb");

3.1.2 Stage 2: Data Hiding Implementation

In this section we present implementation of, Section 2.1.2, of three phases.

In Appendix A.3.2 lines 3-12, presents MSBs selection phase steps. The encrypted
image is decomposed into 4 segments EI1, EI2, EI3, EI4 in line 3. Then, in line 4, the
MSBs are collected from EI2, EI3, EI4. After that, in line 5, the selection key Ks_ is
constructed with selection ratio a equal to 1.0. After constructing Ksi, number of bits
are selected from collected bits in line 9. After selecting bits, shuffle key Ksk is
generated based on selected bits in line 10. Then, the selected bits are shuffled using

Ksk in line 12.

Lines 13-23 present encoding and compressing phase steps. In line 14, K groups are
created. In lines 18-21, H matrix is loaded for encoding. In line 23, syndrome groups

SGs is obtained.

Lines 25-31 present embedding secret data phase steps. In line 5, secret data SD is
embedded into syndrome groups SGs. In line 27, the embedded groups is reversed
shuffle. In line 29, MSBs are replaced with inversed shuffle bits. Marked encrypted

image MEI is constructed in line 31.
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Code 3 shows the steps of data hiding stage implementation. Lines 1-5 presents MSBs
selection phase steps. In line 1, the encrypted image is decomposed into 4 segments.
Then, the MSBs are collected from the last three segments in line 2. After that, in line
3, number of bits are selected using selection key. In line 4, the shuffle key is

generated. In line 5, the selected bits are shuffled using shuffle key.

Lines 6-7 presents encoding and compressing phase steps. In line 6, K groups are

created. In line 7, syndrome groups SGs is obtained.

Lines 8-11 present embedding secret data phase steps. In line 8, secret data SD is
embedded into syndrome groups SGs. In line 9, the embedded groups is reversed
shuffle. In line 10, MSBs are replaced with inversed shuffle bits. Marked encrypted

image MEI is constructed in line 11.

Code 3: Data Hiding Stage Implementation

1. [E1,E2,E3,E4]=decompose(A);

2. [collectedbits]=collectBits(E2,E3,E4);

3. [selectedBits]=selectbits(collectedbits,selectionkey);

4. [shufflekey]=generateshuffelkey(selectedBits);

5. [shuffledbits]=shufflebits(selectedBits,shufflekey);

6. [kgroups,reminderBits]=createGroups(shuffledbits,numberofbits);

7. [syndorm]=GetSyndorm(kgroups,H);

8. [image_after_embedding,r,secretData]=embedData(kgroups,syndorm,additional

Bits)
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9. [inverseSuhffledBits]=inverseshuffle(image_after_embedding,reminderBits,shu
fflekey);
10. [EE2,EE3,EE4]=returnBits(inverseSuhffledBits,E2,E3,E4,selectionkey);

11. [MarkedEncryptedimage]=compose(A,E1,EE2, EE3,EE4);

Most Significant Bits (MSBs) Selection Phase

This section presents implementation of MSBs selection phase.

Appendix A.3.2.1 present implementation of decomposing encrypted image into EI1,
EI2, EI3, El4. In lines, 2-14, the size encrypted image is checked if it is power of 2. In

lines 15-18, the encrypted image is decomposed.

Appendix A.3.2.2 presents implementation collecting of MSBs from EI2, EI3, El4. In
lines 5-7, MSBs from EI2 are collected. In lines 8-11, MSBs from EI3 are collected.
In lines 12-15, MSBs from EIl4 are collected. In line 16, the collected bits CB from are

El2, EI3, El4 concatenated into row vector.

For selecting bits, we have to construct selection key Ks that is used to select number
of bits, L, pseudo randomly from the collected MSB bits. The construction of Ks.
depends on the selection ratio (a) and selection seed (Seed). Selection ratio, a, is in
range [0.1, 1.0] and we define seed as a positive integer number. We fix selection ratio

equal to 1.0, hence, L will be all the MSBs are selected according to (5).

The size of Ks. will be same as L containing the indices between 1 and L. Algorithm
15 describes the algorithm of constructing selection key Ks. and Example 15 shows an

example of Kst.
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Algorithm 15. Selection key construction

Input:

— Seed € Z*, Z is positive integer numbers set

— «: selection Ratio, a =L/(3XY /4).

— CB: MSB’s, [c1, C2, ..., ccgy]; Ci€ {1,0}, |CB| = 3XY /4
Output:

—  Koi: Selection Key = [ Ksiy, Kszz,.., Ksio], L = a X (%) :
Steps:

1. Take the length of the CB: T .

2. Determine the number of the bits to be selected based on a:L = |a X T|.

3. Seeds the random number generator using the seed

4. Select randomly number between 1 and T.

5. Checks whether in the Ks. or not, if not stored in the Ksi, if yes, select again
another number. Until we generate a key with length L.

The next pseudo-code, Code 4, implements Algorithm 15:

Code 4 :
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T =|CollectedBits|
L= \_a xT J
randomNumberGenerator (Seed)
Ko [L L1={}
index =1
while index <=L

y = select Random Number between 1 and L

if (y inKy,)

repeat

else

K (index) =y

index =index+1

end if
end

Example 15. Selection key Ks. construction
Let’s consider

Input:

- a=1.0,

— T=48. Total number of collected bits CB
— Seed =4.

Output:

- KsL

[47 27 35 34 111 13 21 38 10 42 48 8 29 19 3 46 9 4 36 20 26 6
31 3230 37 25 334318 24 45 40 44 16 28415 12 7 39 17 23 2 22 14 15]

Steps:

1. L = 1.0x48=48. Number of bits to be selected
2.Ks [1, L] ={}

3. index=1

4. While
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5.y =47. Based on seed
6. if (y in Ks.) > false

7. KsL (index) = [47]. index = index +1. Go to step 3.

Appendix A.3.2.3 presents the implementation of the Ks. construction. We fixed
selection seed equal to 4 in line 2. In line 3, total number, T, of collected bits CB are
calculated. According to (5), L bits is determined in line 4 which is length of Ks_ using
total number of collected (T) and a equal 1.0. In order to selected bits pseudo
randomly, in line 5, we use rng MATLAB function which is control the generation of
random number between 1 and L based on selection seed. In line 6, Ks_ is initialized
with size L containing zeros. Lines 7-14 describes assigning random numbers between
1 and L to Ks. ‘randi’ function which is controlled by rng function . If the random
number is exist in Ks., another random number is generated, otherwise, generated
random number is added into Ksi. At the end of this function, Ks is created containing

all the indices between 1 and L to select bits from the collected bits CB.

Appendix A.3.2.4 presents selecting bits SB from collected bits CB using constructed
selection key Ks.. In line 2, the bits are selected using selection key Ks. from collected

bits CB.

For shuffling bits, shuffle key Ksg is constructed in Appendix A.3.2.5. For Ksr
construction, length of the selected bits L is used. Then, we select all the prime numbers
in L. After that, a number from selected prime number are chosen that is not equal to
1, not selected before and GCD between the number and L equal to 1. Algorithm 16
below describes the construction of Ksr. An example of Ksg construction is given in
Example 16.

76



Algorithm 16. Shuffle key construction

Input:
— SB: the Selected Bits =[1....L],L = a(3XY/4).
Output:
— Ksr: the Shuffle Key € Z*
Steps:
1. Find the length of the SB : L
L: length of selected bits
2.declare empty “selected primes” array
2. Find all prime numbers form L: Ps.

Ps[]= all prime numbers in L

3. Select randomly prime number P from Ps such that P# 1, P not in “selected

primes” array, and gcd (P, L) =1, where gcd is greatest common divisor.

K, = select random prime number in Ps
if (Kge =1)
continue
end
if GCD(Kg-and L)
done =1
end if

The next pseudo-code, Code 5, implements Algorithm 16:

Code 5:
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K = construct Shuffle key(SB)
{
L =length of selected bits
selected primes =[]
while done =1
Ps []=all prime numbers inL
K¢ = select random prime number in Ps
If (K =1or K in selected primes)
continue
end
if GCD(Kg-and L)
done=1
else
selected primes = K.
end if
end while

}

Example 16. Example of Ksr construction.
Let’s consider L = 48
Steps:
Selectedprimes= [];
1. While done # 1

2. Prime numbers in Zsg are

p=[2 35 7 11 13 17 19 23 29 31 37 41 43 47]

3. Select randomly from PN : Kse =3 and check 3=GCD(3, 48) ==1 is false

4. Selectedprimes= Ksr and go to step 2

5. The next random number Ksg =13 - GCD(13 and 48)=1-> true

6. End
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We implemented constructing shuffle key Ksr function as in Appendix A.3.2.5 taking
the selected bits SB as an input. In line 3, the number of selected bits, L, are obtained.
In lines 4-10, all prime numbers is obtained depending on the number of selected bits
L. Then, in line 6, select randomly one of the prime numbers (x). In line 10, if the
Greatest Common Divisor (GCD) between the x and L is equal to 1, then Ksg = X,

otherwise, another prime number is selected.

After constructing shuffle key Ksg, shuffle bits SHB are obtained from Appendix
A.3.2.6. Line 4, shuffle vector is created containing indices after shuffling. Then, in
line 5, the shuffled bits SHB are obtained from selected bits SB using shuffle row.
Encoding and Compressing Phase Implementation

This section presents implementation of encoding and compressing phase.

In Appendix A.3.2.7 line 4, K groups are calculated which is defined by (7). In line 5,
number of remainder bits are calculated. In lines 5-8, the remainder after division are

stored in row vector in line 8. In lines 9-11, groups are created with size K x n.

After create groups, we have to construct H matrix to obtain syndrome groups. For
constructing H matrix, we use two methods for constructing: Gallager method and
MacKay-Neal method. For Gallager method, we used implemented code [21], which
takes the number of columns as an input and produced H matrix with size r x n. For
MacKay-Neal method, we used implemented code [22] which takes (r, n, method,
noCycle, onePerCol) as inputs to produce H matrix with size r x n. We have generated
different 9 H matrices for each method and store them in “.mat” file format. Appendix
A.3.2.8 shows the code of storing H matrices. Line 4, we construct Gallager H matrix
which takes n as an input that determine the number of columns in H matrix. In lines
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5-6, we construct MacKay-Neal H matrix which takes r and n, the other inputs
determine the distribution of 1’s in H matrix. For more details, see [22]. In line 7-11,
we store the constructed H matrix with unique name. For Example, we use
“HGST2 1” name for first H matrix constructed by Gallager for trial 2. “HGST2 2”
name for second H matrix constructed by Gallager for trial 2, and so on. The detailed
H matrix with its name are shown in Appendix. Details of Gallager and MacKay-Neal

methods in Section 3.2.

After construction H matrix, in Appendix A.3.2.9 line 2, H matrix is transposed then,
K groups are compressed using transposed H matrix according to (7) in line 4 to obtain
syndrome groups.

Embedding Secret Data Phase Implementation

This section presents implementation of embedding secret data phase.

In Appendix A.3.2, in line 25, we implemented function to embed secret data. In line
27, the groups after embedding is inversed shuffled. Then, the modified MSB bits are

replaced with original MSB bits in lines 29-31.

In Appendix A.3.2.10, in line 7-8, secret data are generated randomly with size
K(n —r) to be embedded. In line 9, the secret data is divided into K groups, each
group with size n - r. In line 11, an embedded matrix defined with size K x n. In line
12, secret data is embedded into embedded matrix in n - r space in each group. In line

13, the syndrome groups is assigned into embedded matrix in r space in each group.

In appendix A.3.2.11, the embedded group is reverse shuffle using constructed shuffle

key. In line 7, the embedded matrix is converted into row vector. In line 9, the
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remainder bits are concatenated to the embedded matrix after conversion using horzcat

function in MATLAB. In lines 12-13, the bits is reversed shuffle using shuffle key.

In Appendix A.3.2.12, collected MSBs are replaced with the inversed shuffle bits in
line 2. In lines 6-5, MSB bits are collected and replaced from EI2. In lines 7-8, MSB
bits are collected and replaced from EI3. In lines 9-10, MSB bits are collected and
replaced from EI4. In lines 11-13, modified MSB bits are returned into EI2 segment

to get EE2 segment. Same procedure for EI3, EI4 in lines 14-109.

In Appendix A.3.2.13, in lines 2-6, EI1, EE2, EE3, EE4 are composed according to
(4) to obtain marked encrypted image.

3.1.3 Stage 3: Data Extraction and Image Recovery Implementation

This section presents implementation of Section 2.1.3. There are 3 options: data

extraction, approximate image reconstruction, and lossless recovery.

Code 6 shows the implementation of data extraction and image recovery stage. In line
1, the data is extracted using selection key Ksi, shuffle key Ksr, L, n, and r from marked
encrypted image MEI. In line 2, an approximate image is constructed using encryption

key Kenc. The last option in line 3, the data is extracted and the image is recovered.

Code 6: Data Extraction and Image Recovery Implementation

1.[extractedData]=DataExtraction(Marked_encrypted_image,selectionkey,Shufflek
ey,L,r,numberofbits);
2.[Approximatelmage,PSNR]=DecryptionAndEstimation(Marked_encrypted ima

ge,EncryptionKey,imName,Originallmage);
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3.[Recievedimage,
DecodedPSNR]=Recovery(Marked_encrypted_image,selectionkey,Shufflekey,H
,L,r,numberofbits,EncryptionKey,secretData,syndorm,kgroups,imName,fid2,0Ori

ginallmage);

Option 1: Data Extraction Implementation

This section present the implementation of option 1: data extraction.

In Appendix A.3.3, in line 2, the Marked encrypted image is decompose into 4
segments using (4) same as in Appendix A.3.2.1. In line 3, the MSB bits are collected
same in Appendix A.3.2.2. In line 4, number of bits are selected using Ks. same as in
Appendix A.3.2.4. In line 5, the bits are shuffled using shuffle key Ksr same Appendix
A.3.2.6. The K groups are created same Appendix A.3.2.7. In line 7, the secret data are
extracted by implementation function in Appendix A.3.3.1. In Appendix A.3.3.1 line
5, the secret data is extracted from K groups (K, (r +1)...n). The extracted groups are

converted into row vector in lines 6-8.

Code 7 shows the MATLAB code implementation of data extraction. In line 1, the
marked encrypted image is decomposed into 4 segments. Then, in line 2, MSBs are
collected from the last three segments. In line 3, number of bits are selected using the
selection key. In line 4, the selected bits are shuffled using the shuffle key. After that,
in line 5, the shuffled bits are divided into K groups. The secret data is extracted in line

6.
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Code 7: Data Extraction Implementation

1. [V1,V2,V3,V4]=decompose(A);

N

. [collectedbits]=collectBits(V2,V3,V4);

w

. [selectedBits]=SelectBitsUsingSelectionKey(collectedbits,L,selectionKey);

S

. [shuffledbits]=shufflebits(selectedBits,shuffleKey);

ol

. [kgroups,reminderBits]=createGroups(shuffledbits,n);

[op}

. [extractedData]=extractData(kgroups,n,r);

Option 2: Approximate Image Reconstruction Implementation

This section present implementation of option 2: approximate image reconstruction.

In Appendix A.3.4 line 2, the marked encrypted image is decrypted using the
encryption key according to (2) same in Appendix A.3.1 to obtain marked image. In
line 6, marked image is decomposed into 4 segments using (4) same as in Appendix
A.3.2.1. Then, in line 7, a reference image BI is constructed using interpolation
function that we implemented in Appendix A.3.4.1. After that, reference image Bl is
decomposed using same as Appendix A.3.2.1. To get an approximate image Al, we
implemented estimation function in Appendix A.3.4.2 using reference image Bl and
marked image Al according to (13) lines 9-12. Then, approximate segments after
estimation is composed into one image to construct approximate image in line 13 same
in Appendix A.3.2.13. In line 23, we use MATLAB PSNR function to get the PSNR

of approximate image.

For bilinear interpolation, we implement function in Appendix A.3.4.1. In lines 3-5, X
and Y coordinates are defined using meshgrid in MATLAB to expand the segment

El1 . Then, in line 6, interpolated values are calculated using interpl function in
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MATLAB. Lines 7 and 8, interpl function used bilinear extrapolation to calculated
border values. In line 9, interpolated values are rounded and reference image Bl is

obtained.

In Appendix A.3.4.2, according to (13), in line 6, approximate segments is constructed.

Code 8 shows the MATLAB implementation of option 2, approximate image
reconstruction. In line 1, the marked encrypted image is decrypted using the encryption
key. Then, in line 2, the decrypted image is decomposed into 4 segments. Using the
first segment, in line 3, the reference image is constructed using the bilinear
interpolation. The reference image, in line 4, is divided into 4 segments. The MSBs
estimation is calculated for the 4 segments in lines 5-8. After calculating the MSBs the

approximate image is constructed by composing the 4 segments in line 9.

Code 8: Approximate Image Reconstruction Implementation

1. [Decryptedimage]=decrypt(A,EncryptionKey);
2. [Al,A2,A3,A4]=decompose(Marked_image);
3. [B]=interplation(Al,Marked_image);

4. [B1,B2,B3,B4]=decompose(B);

5. [BB1] = calculate_approximate_image(Al, B1);
6. [BB2]=calculate_approximate_image(A2, B2);
7. [BB3]=calculate_approximate_image(A3, B3);
8. [BB4]=calculate_approximate_image(A4, B4);

9. [ approximatelmage ] =compose(Marked image,BB1,BB2,BB3,BB4);
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Option 3: Lossless Recovery Implementation

This present implementation of option 3: lossless recovery.

Appendix A.3.5, shows lossless recovery steps. In this case, the data extracted
perfectly in line 5 using same implementation in Appendix A.3.3. Then, in lines 7-20,
the syndrome groups are extracted from marked encrypted image. In line 21, an
approximate image is constructed then, in line 22, approximate image is encrypted. In
lines, 23-28, encrypted approximate image is decomposed using implementation in
AppendixA.3.2.1. Then MSB bits are collected from using implementation in
Appendix A.3.2.2. After that, selected bits are obtained using implementation in
Appendix A.3.2.4 using KsL. Then, the selected bits are shuffled using implementation
in Appendix A.3.2.6. Then, K groups are created using implementation in Appendix
A.3.2.7. Using syndrome groups, K groups, and H matrix, we implemented decoding
process in line 4 as given in Appendix A.3.5.1, (Section 3.3) to obtained decoded
groups. Then, decoded groups are inversed shuffle using function in line 56. In line
57, the inversed shuffle bits are replaced with MSBs in in encrypted approximate
image. After that, the segments after decoding are composed as given in Appendix
A.3.2.13. To get decoded image, the composed image is decrypted as in line 61 as

given in Appendix A.3.1.

Code 9 shows the MATLAB implementation of lossless recovery. In lines 1-6, the
syndrome groups are extracted. In line 7, an approximate image is constructed. Then,
in lines 8-14, the K groups ate obtained from approximate image using same steps in
MSBs selection phase. In lines 15-18, using H matrix, extracted syndrome and K
groups are used for decoding to recover the MSBs. The recovered MSBs are inversed

shuffle in line 19 using the shuffle key. In lines 20-21, the MSBs are returned into
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MSBs in segments in approximate image. Then, in lines 22-32, the recovered image is

constructed after composing and decryption using encryption key.

Code 9: Lossless Recovery Implementation

1. [E1,E2,E3,E4]=decompose(A);

2. [collectedbits]=collectBits(E2,E3,E4);

3. [selectedBits]=SelectBitsUsingSelectionKey(collectedbits,L,selectionKey);

4. [shuffledbits]=shufflebits(selectedBits,Shufflekey);

5. [kgroups,reminderBits]=createGroups(shuffledbits,numberofbits);

6. [compressedData,compressedGroup]=GetCompressedData(kgroups,numberofbi
ts,r);

7. [Approximatelmage,ApproPSNR]=DecryptionAndEstimation(A,EncryptionKey
,imName,Originallmage);

8. [EncryptedApproximatelmage]=encrypt(Approximatelmage,EncryptionKey);

9. [E1,E2,E3,E4]=decompose(EncryptedApproximatelmage);

10. n=numberofbits;

11. [collectedbits]=collectBits(E2,E3,E4);

12. [selectedBits]=selectbits(collectedbits,selectionKey);

13. [shuffledbits]=shufflebits(selectedBits,Shufflekey);

14. [kgroupsappro,reminderBits]=createGroups(shuffledbits,n);

15. for i=1:r

16. [decodedString]=decodeStatisticsOriginal(compressedGroup(i,1:end),kgroupsap
pro(i,1:end),H);
[decodedString]=decodeStatisticsOriginal(compressedGroup(i,1:end),kgroupsap

pro(i,1:end),H,kgroupsOriginal(i,1:end));
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17. decoded(i,1:numberofbits)=decodedString;

18. end

19. [inverseShuffledBits]=inverseshuffle (decoded,reminderBits,Shufflekey );

20. [E1,E2,E3,E4]=decompose(EncryptedApproximatelmage);

21. [EE2,EE3,EE4]=returnBitsAfterDecoding(inverseShuffledBits,E2,E3,E4,selecti
onKey);

22. [decocedIlmage]=compose(Approximatelmage,E1,EE2,EE3,EE4);

23. [decocedImage]=decrypt(decocedImage,EncryptionKey);

3.2. H Matrix Construction Methods

In encoding and compression phase, H matrix is used to compress groups of bits to
obtain syndrome. In addition, in lossless recovery stage, H is used for recovered MSBs.
However, the H matrix that is used is not exactly specified in [1] nor in its reference
[10].Thus, we have generated different H matrices using Gallager method [11] and

MacKay-Neal method [12].

An LDPC H matrix, is a binary matrix contains few number of 1’s that are using for
error correction. The H matrix can be represented via matrix and graphical
representation. The graphical representation are used for decoding which will be
described in Section 3.5. In Figure 18, an example of H matrix with size 4x8
represented by matrix and graphically is given. Figure 18 (a) The H matrix, Figure 18

(b) Graphical representation of H matrix
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Variable nodes
Check nodes

(@) (b)
Figure 19: Representation of H Matrix. (a) H Matrix (b) Graphical Representation of
H. Columns of H Matrix are Represented as Variable Nodes in Left Side. Rows of H
Matrix are Represented as a Check Nodes in Right Side

In the rows of H matrix are represented as variable nodes and the columns are
represented as a check nodes. The 1°s are represented as a connection between variable

nodes and check nodes.

The H matrix presented by Gallager is regular, that means each column has w¢ of 1’s
and each row has w; of 1’s. To construct H matrix, we have to define the number of
I’s in each column which defines by w¢ and the number of 1’s in each rows defines by
w;. Then, the sub-H matrices are constructed based on the number of wc. For example
if we=4, then we have 4 sub matrices. Each column in each sub-matrix contains a single
1 and wr of 1’s in each row. The first rows in the first sub-matrix contains w, successive
ones ordered from left to right across the columns then the other sub-matrices are

randomly chosen based on the first sub-matrix.
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For construction, we determine the number of the columns (n), the number of 1’s in
each row (Wr) and number of 1’s in each column (w¢). Then, to determine the size of
H matrix, we have to know the number of the rows (r) using (17)

r=nxW/w) (17)

For example, when n =20, WC = 3, wy = 4 then r = (20x3)/4 = 15.

Thus, the H matrix size is r =15 and n= 20.

After that, we have to construct the first sub-matrix. We have to distribute the w; 1’s
in each row sequentially. The other sub-matrices are constructed based on the first sub-
matrix permuting the rows randomly [22]. We generated another different H matrices
using MacKay-Neal [12] method. In this method, the 1°s are added at one column at
time from left to right. The location of 1’s in each column are chosen randomly for
rows are not full yet. We determined the number of the rows r and the number of

columns (n). For example, r =9 and n = 12 then the H matrix is

I

I
o O b O O O O =
O b O Ok O O O k-
P O O O Ok O O k-
O Ok kB OO O O -
O O B O O O B+~ O
o b O O O b O P+ O
o O r Ok O O L O
o r O O kP O O+, O
. O O b O O+ O O
o O b O O+ B+ O O
o r O OO Bk, O o
O O O O O O

We have used implemented Gallager method to construct H matrices as in Appendix
A.6 [22]. This function takes the number of columns n as an input. The number of 1’s
in columns (w¢) and rows (wy) are assigned in lines 3 and 4 where w¢=4 and w; =8. In

line 5, number of rows r are determined. First sub matrix are generated in lines 6-12.
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The generation of other sub-matrices are generated using permutation from sub-matrix
in lines 14 — 23. We generated 10 different sizes of matrices 3 times matrices. In other
words, we generated 10 x3 matrices with different sizes with same ratio R=0.5. In

Appendix A.6.1 the generated matrices are shown.

We have generated different H matrices using MacKay-Neal [23] method

implemented using Appendix A.7.
3.3 Sum-Product Decoding Algorithm

In lossless recovery case, decoding algorithm is used to restore the original ones. Using
LLR in (15) values, the SGs which are obtained after the secret data is extracted and H
matrix, the original bits are restored using Sum-Product Decoding [16] and [20]
algorithm. The decoding algorithm is described in Algorithm 14 in Section 2.1.3.3.

In Appendix A.3.5.1 shows the implementation of Sum-product decoding algorithm.
In line 2, we defined the number of iteration equal to 15. In line 13, we initialized
vector z to calculate LLR using g= 0.1. Then, in lines 20-28, we calculate the check
nodes values in matrix N. In lines 34-51, vector C which contains variable nodes are
connected to each check node. After calculating C vector , in lines 52-58, we calculate
the inverse tanh using MATLAB function atanh and store values in B in line 59.a.
using E, in lines 63-74, we calculate a vector J that it is decoded from received vector.
To check if it’s decoded correct, in line 75, we multiply vector J with H transpose to
get syndrome and comparing with received syndrome. If they are same, then J is the
decoded vector. Else, recalculating using variable nodes values. In line 82, we declare
vector A contains values of variable nodes in lines 80-91. In lines 92, E matrix is

updated using values for vector A.
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In Appendix A.4, we use same steps in section 3.1 except we define the selection ratio
in line 6 when a € [0.1, 1.0].

3.4 Summary of Chapter 3

In this chapter we present:

1. The implementation of Qian-Zhang method when selection ratio « is fixed equal to
1 and when a € [0.1, 1.0] .

2. The implementation and algorithms of constructing selection key, shuffle key and
encryption key.

3. H matrix construction methods using Gallager and MacKay-Neal.

4. Sum-product decoding algorithm
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Chapter 4

EXPERIMENTAL SETTINGS AND RESULTS

In this chapter, we discuss conducted experiments in [2] using our defined parameters,
in addition, we explain extended experiments on PSNR of decoded image, decoding

time, embedding capacity and H matrix ratio.
4.1 Experimental Settings

Qian-Zhang method [1] (See Chapter 2), encodes grayscale images with size 512x512
using H matrix defined in [10], with r =3840 and n = 6336 and cross-over probability*
gq=0.1. Using our defined parameters (selection key Ks., encryption key Kenc, shuffle

key Ksr, H matrix), we conducted same experiments [1] in order to confirm results in

[1].

Since, the H matrix are not defined clearly neither in [1] nor in its reference [10], we
generated different H matrices with different sizes and different ratios using Gallager
[11] and Mackay-Neal method [12].These experiments include relation between the
quality of approximate image (PSNR) and embedding capacity using (10). Moreover,
relation between the quality of decoded image (PSNR) and embedding capacity is
studied in case of decoding fails. Since H matrix is not defined in [1] nor its reference
[10], we had to find optimum H matrix construction method. We tested by experiments
two H matrix construction methods, Gallager [11] and MacKay-Neal [12] to find

optimum H matrix construction method and used it in conducted experiments in [2].

1 A small probabilty that a most significant bit will be flipped.
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We also extended experiments in [2] to find relation between H matrix size and both
decoded PSNR and decoding time. Experiments conducted using MATLAB 2016 on
a PC equipped with 2 GHz Intel Pentium Dual CPU E2180, 3 GB RAM, and Windows

10. Six of grayscale images with size 512512 are used to conduct our experiments.
4.2 Comparison of Different H Matrix Construction Methods

We generated three different H matrices using Gallager [11] and Mackey Neal [12]
with sizes (r = 64, n = 128) (r = 128, n = 256) and (r = 256, n = 512) (see Appendix
B). For each size we generated 3 matrices for each method. In Appendix B.1, shows
the parts of H matrix we used in our implementation with size 64x 128. The other H
matrices are constructed using implementation in Appendix B.2. We constructed H
matrix using Gallager method by determining the number of columns in H matrix as
shown below (Appendix B.2, line 3):

HG=Gallager_construction_LDPC (number_of columns).

We constructed H matrix using MacKay-Neal method by determining the number of
rows and columns in H matrix as shown below (Appendix B.2, line 4):

HM=makeLdpc (number_of rows, number_of columns, 0, 0, 1).

For each generated matrix six gray scale images have been tested by implementing
Qian-Zhang method [1] in Appendix A.3. In Appendix A.3.2 lines 19-21, H matrix is
loaded. In Appendix A.3.5 line 64, PSNR of decoded image are calculated for each H
matrix. Appendix A.3 line 47 decoding time is calculated using tic and toc MATLAB

functions.

In Appendix C.3, the details of experiments are shown. In Appendix C.3.1, PSNR for

decoded image using Gallager method are shown for each run in Tables C.3.1.1,
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C.3.1.2and C.3.1.3. In Appendix C.3.2, PSNR for decoded image using MacKay-Neal
method is shown in Tables C.3.2.1, C.3.2.2 and C.3.2.3. We see from we see that
PSNR for decoded image using Gallager method is better than using MacKay-Neal
method. In Appendix C.3.3 in Tables (C.3.3.1, C.3.3.2 and C.3.3.3) show decoding
time using Gallager method. In appendix C.3.4, decoding time using MacKay-Neal
method is shown in Tables C.3.4.1, C.3.4.2 and C.3.4.3. We see that decoding time

using Gallager method is less than using MacKay-Neal method.

Average PSNR of decoded image and decoding time is measured to compare between

construction methods.

Table 1: Average Decoding Time for Each Image (seconds)
Image

Baboon | Barbara Lake Lena Man Pepper
Method

Gallager 852.648 | 775.785 | 432.138 | 380.004 | 446.409 | 430.336

'\N":Z;Kay' 3830.568 | 5462.701 | 3910.733 | 3970.931 | 4654.994 | 4556.044

Table 2: Average PSNR for Each Decoded Image (dB)

Image
Baboon | Barbara Lake Lena Man Peppers
Method
Gallager 0 oo o o o -
'\N/';;Kay' 32037 | 24459 | 26582 | 26957 | 26.6 26.4

We see from Table 1 that average decoding time for six tested images using Gallager
is less than using MacKay-Neal and from Table 2 we see that for six tested images
Gallager shows higher average PSNR than MacKay-Neal method.

We conclude that H matrix generated by Gallager method shows better performance

than MacKay-Neal so we used Gallager in next conducted experiments.
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4.3 Relation between PSNR of Approximate Image and Embedding
Capacity

Depending on result from Section 5.1, we used Gallager method to generate different
H matrices with sizes (r = 42, n = 210), (r = 64, n = 256), (r = 70, n = 210) and (r =
64, n = 128), put there different H matrices with different sizes and different ratios, in
order to test relation between approximate PSNR and embedding capacity. Having

selection ratio a € [0.1, 1.0] starting with o =0.1 and incrementing by 0.1 obtain 10
values of a, Appendix A.4, line 5. Embedding capacity is obtained by substituting «

values in (11).

In Appendix A.3.4, approximate image is constructed. Line 23 in Appendix A.3.4,

PSNR of approximate image is calculated using psnr MATLAB function.

We found that approximate PSNR doesn’t depend on embedding capacity. Since,
approximate image is constructed using bilinear interpolation regardless the embedded
secret data and H matrix size. Values for different embedding capacity is shown in

Tables 3-6 as follows.

Table 3: PSNR (dB) of Approximate Image. H Matrix Size (r = 42, n = 210). a is
selection ratio

a Baboon | Barbara Lake Lena Man Peppers
0.1 24.698 25.749 32.333 34.42 31.983 32.097
0.2 24.698 25.749 32.333 34.42 31.983 32.097
0.3 24.698 25.749 32.333 34.42 31.983 32.097
0.4 24.698 25.749 32.333 34.42 31.983 32.097
0.5 24.698 25.749 32.333 34.42 31.983 32.097
0.6 24.698 25.749 32.333 34.42 31.983 32.097
0.7 24.698 25.749 32.333 34.42 31.983 32.097
0.8 24.698 25.749 32.333 34.42 31.983 32.097
0.9 24.698 25.749 32.333 34.42 31.983 32.097

1 24.698 25.785 32.097 34.432 31.983 32.097

95



Table 4: PSNR (dB) of Approximate Image. H Matrix Size (r = 64, n = 256). a is
selection ratio

a Baboon | Barbara Lake Lena Man Peppers
0.1 24.698 25.749 32.333 34.42 31.983 32.097
0.2 24.698 25.749 32.333 34.42 31.983 32.097
0.3 24.698 25.749 32.333 34.42 31.983 32.097
0.4 24.698 25.749 32.333 34.42 31.983 32.097
0.5 24.698 25.749 32.333 34.42 31.983 32.097
0.6 24.698 25.749 32.333 34.42 31.983 32.097
0.7 24.698 25.749 32.333 34.42 31.983 32.097
0.8 24.698 25.749 32.333 34.42 31.983 32.097
0.9 24.698 25.749 32.333 34.42 31.983 32.097

1 24.698 25.785 32.097 34.432 31.983 32.097

Table 5: PSNR (dB) of Approximate Image. H Matrix Size (r =70, n = 210). a is
selection ratio

a Baboon | Barbara Lake Lena Man Peppers
0.1 24.698 25.749 32.333 34.42 31.983 32.097
0.2 24.698 25.749 32.333 34.42 31.983 32.097
0.3 24.698 25.749 32.333 34.42 31.983 32.097
0.4 24.698 25.749 32.333 34.42 31.983 32.097
0.5 24.698 25.749 32.333 34.42 31.983 32.097
0.6 24.698 25.749 32.333 34.42 31.983 32.097
0.7 24.698 25.749 32.333 34.42 31.983 32.097
0.8 24.698 25.749 32.333 34.42 31.983 32.097
0.9 24.698 25.749 32.333 34.42 31.983 32.097

1 24.698 25.785 32.097 34.432 31.983 32.097

Table 6: PSNR (dB) of Approximate Image. H Matrix Size (r = 64, n = 128). a is
selection ratio

a Baboon | Barbara Lake Lena Man Peppers
0.1 24.698 25.749 32.333 34.42 31.983 32.097
0.2 24.698 25.749 32.333 34.42 31.983 32.097
0.3 24.698 25.749 32.333 34.42 31.983 32.097
0.4 24.698 25.749 32.333 34.42 31.983 32.097
0.5 24.698 25.749 32.333 34.42 31.983 32.097
0.6 24.698 25.749 32.333 34.42 31.983 32.097
0.7 24.698 25.749 32.333 34.42 31.983 32.097
0.8 24.698 25.749 32.333 34.42 31.983 32.097
0.9 24.698 25.749 32.333 34.42 31.983 32.097

1 24.698 25.785 32.097 34.432 31.983 32.097

96




We see from Tables 3-6 that the approximate PSNR is constant with different H
matrices and different selection ratio a. Hence, approximate PSNR embedding
capacity doesn’t depend on embedding capacity. Figure 19 shows the relation between

PSNR of approximate image and embedding capacity with different selection ratio a.

40.000
35.000

30.000

25.000

20.000

PSNR (dB)

15.000
10.000
5.000

0.000
0.037 0.075 0.112 0.150 0.188 0.225 0.262 0.300 0.333 0.375
Embedding capacity (bpp)

==@==Baboon Barbara Lake Lena ==@==|an ==@==Peppers

Figure 20: PSNR of Approximate Image of Baboon, Barbara, Lake, Lena, Man and
Peppers Images. PSNR of Approximate Image is Constant for Different Selection
Ratio o

In Appendix D.1, plots of relation between PSNR of approximate image and

embedding capacity are shown for each H matrix.

4.4 Relation between PSNR of Decoded Image and Embedding
Capacity
Depending on result from Section 5.1, we used Gallager method [11] to generate 3 H

matrices with size (r = 16, n = 32), see Appendix E.1.

In Appendix E.1, screen shots of PSNR for decoded image for each run are shown in
tables for six images. Tables E.1.1, E.1.2, E.1.3 show the PSNR of decoded images in

Appendix A.1 Figure A.1.
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Then we took the average PSNR of decoded each image (see Appendix E.1). In order
to test relation between PSNR of decoded image and embedding capacity, selection
ratio & € (0,1] starting with a = 0.1 is incremented by 0.1 to obtain 10 values of a.
Embedding capacity is obtained by substituting a values in (10). Table 7 shows the
relation between selection ratio @« and embedding capacity when ratio R is fixed.

According to (10), the embedding capacity increases when selection ratio « increases.

Table 7: Relation between Selection Ratio @ and Embedding Capacity (bpp) with
Fixed Ratio R

a Embedding Capacity (bpp)
0.1 0.0375
0.2 0.075
0.3 0.1125
0.4 0.15
0.5 0.1875
0.6 0.225
0.7 0.2625
0.8 0.3
0.9 0.3375

1 0.375

We found that PSNR of decoded image depends on embedding capacity. Increasing
embedding capacity by increasing selection ratio o in (10) will lead to decrease

decoded PSNR. In addition, decoding time increases when embedding capacity

increases.

We see from Table 8 that average PSNR of decoded image decreases when embedding

capacity increases.
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Table 8: Average PSNR of All Decoded Images (dB)

a Baboon | Barbara Lake Lena Man Peppers
0.1 44.663 58.667 45.148 100 51.235 40.544
0.2 43982 | 44.264 | 46.199 | 60.172 | 47.883 | 41.018
0.3 42.202 | 31.188 | 46.688 | 56.281 | 45.099 | 40.637
0.4 33.823 | 29.054 | 40.192 | 41.329 | 40.884 | 37.362
0.5 32,209 | 29.037 | 40.212 | 41.142 | 41.044 | 37.368
0.6 31.209 | 29.036 | 38.265 | 40.072 | 40.267 | 36.649
0.7 28.913 | 29.136 | 37.851 | 40.965 39.88 35.222
0.8 28.06 29.009 | 37.292 | 40.584 | 38.974 | 35.126
0.9 27.866 | 28.887 | 37.226 | 39.821 | 38.502 | 35.034

1 27.377 | 26.795 | 36.778 | 38.025 | 37.555 | 34.409

Table 9: Average Decoding Time for All Images (seconds). a is selection ratio

a Baboon | Barbara Lake Lena Man Peppers
0.1 4.593 3.274 3.647 3.179 3.38 4.603
0.2 6.884 6.703 5.438 491 6.494 6.693
0.3 10.142 | 23.356 7.768 6.941 9.167 8.468
0.4 23.34 34.358 | 11.355 10.76 12.902 | 11.803
0.5 28.429 | 36.363 | 13.126 12.95 15.469 | 14.045
0.6 36.205 | 38.442 | 16.514 | 16.216 | 18.558 | 16.976
0.7 55.803 | 40.254 | 19.972 | 17.379 | 20.552 | 20.857
0.8 65.301 | 43.227 | 23.371 | 20.314 | 23.112 | 23.382
0.9 71.274 | 46.105 | 26.874 22.66 27.212 | 26.832

1 81.179 | 65951 | 28.624 | 25.098 | 29.615 | 28.115

Appendix E.2 shows average PSNR of decoded image and average decoding time for

each image in each run.

We see from Table 9 that average decoded time increased when embedding capacity
increases. Figure 20 shows the relation between decoded PSNR and embedding
capacity. As we see, the PSNR of decoded image decreases when the embedding

capacity increases.
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Figure 21: The Relation between PSNR of Decoded Image and «

Figure 21 shows the relation between decoding time and embedding capacity. As we
see from the Figure 20 the decoding time increases when the embedding capacity

increases.
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Figure 22: Relation between Decoding Time and a

4.5 Relation between H Matrix Size and PSNR of Decoded Image

We generated different H matrices with different sizes (r =4, n = 8), (r = 8, n = 16),
(r=16,n=32), (r=32,n=64), (r =64, n=128), (r =128, n = 256), (r = 256, n =
512), (r=512,n =1024) and (r = 1024, n = 2048) and with same R=0.5 using Gallager
method to find the relation between H matrix size and decoded PSNR when ratio is
fixed. In Appendix F.1, 9 H matrices are constructed using Gallager method with
different sizes and same ratio R=0.5 for each run. For each size we generate 3 H
matrices. Appendix F.1.1, shows sample of H matrices for first run with sizes 4x8,

8x16. The other sizes and runs are constructed using code in Appendix B.2.

After generation 3 H matrices for each size, we took the average for each H matrix
size for all images. In Appendix F.2, values of PSNR for decoded image for each H

matrix is described in tables F.2.1, F.2.2, F.2.3for each image.
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We found that increasing the size of H matrix keeping the ratio R constant will lead to

increase the PSNR of decoded image.

Table 10: Average PSNR of Decoded Image Using Different H Matrices Sizes with

R=0.5 (dB)
H matrix size | Baboon | Barbara Lake Lena Man Peppers
4%8 24.174 25.235 24.705 33.828 | 31.43 31.57

8x16 26.165 27.364 26.765 36.483 | 33.872 | 34.011
16x32 29.813 31.534 30.673 45218 | 41.21 40.886
32x64 32.208 34.918 33.563 62.969 | 44.855 | 46.232
64x128 40.22 46.531 43.375 82.185 | 81.458 | 81.348
128x%256 79.239 64.993 72.116 83.714 | 82.123 | 84.394

256x512 00 00 00 00 () 00

512x1024 00 00 0o 0o o0 00

1024x2048 00 00 0o 0o o0 00

We see from Table 10 that the PSNR of decoded image is getting better when the size

of H matrix increases.

Figure 22 shows the relation between H size and average PSNR of decoded image. As

we see, the PSNR for decoded images increases when the size of H matrix increase.
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Figure 23: Average PSNR of All Images

In Appendix F.3, PSNR is shown for each decoded image.
4.6 Relation between H Matrix Size and Decoding Time

We generated different H matrices with different sizes (r = 4, n = 8), (r = 8, n = 16),
(r=16,n=32), (r=32,n=164), (r=64,n=128), (r = 128, n = 256), (r = 256, n =
512), (r=512,n=1024) and (r = 1024, n = 2048) and with same R=0.5 using Gallager
method to find the relation between H matrix size and decoding time when ratio is
fixed. This relation helps selecting suitable H matrix size for specified decoding time
and PSNR of decoded image. In Appendix F.1, 9 H matrices are constructed using
Gallager method with different sizes and same ratio R=0.5 for each run. For each size

we generate 3 H matrices, then we took the average for each H matrix size.

Sample of H matrices for first run with sizes 4x8, 8x16 are shown in Appendix F.1. The

other sizes and runs are constructed using code in Appendix B.2.

We found that increasing the size of H matrix keeping the ratio R constant leads to the

increase of the decoding time as shown in Appendix F.4.

103



Table 11: Average Decoding Time Using Different H Matrices Sizes with R=0.5

(Seconds)
H rsri]?;rlx Baboon | Barbara Lake Lena Man Peppers
4x8 28.32 23.07 12.21 11.71 12.99 13.25
8x16 61.02 54.39 21.07 19.08 22.52 23.75

16x32 91.48 80.55 31.07 28.96 33.39 35.29

32x64 203.23 181.43 69.67 61.29 73.20 76.37
64x128 323.28 308.09 133.88 126.09 144.62 156.29
128x256 659.09 600.13 300.64 263.37 325.63 315.96
256x512 | 1226.68 | 1152.50 796.61 737.73 843.49 890.90
512x1024 | 2870.23 | 2481.30 | 1851.25 | 1744.11 | 1952.29 | 1960.94
1024x2048 | 6459.64 | 5703.86 | 3770.50 | 3746.50 | 4020.32 | 3967.10

We see from Table 11 that the decoding time is getting better when the size of H matrix

increases.

Figure 23 shows the relation between H matrix size and decoding time.
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Figure 24: Average Decoding for Images

In Appendix F.5 Figures for decoding time of each decoded image.
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4.7 Relation between H Matrix Ratio and PSNR of Decoded Image

We generated different H matrices (r = 42, n = 210), (r = 64, n = 256), (r =70, n =
210) and (r = 64, n = 128) with different ratios (0.2, 0.25, 0.33, 0.5) respectively, to

find the relation between H matrix ratio and PSNR of decoded image.

We found that decreasing ratio i.e. increasing the embedding capacity will lead to
decrease PSNR of decoded image. For example, when R=0.33 according to (10),
embedding capacity = 0.5 bpp. While, when R= 0.25 embedding capacity = 0.5625

bpp and R=0.2 embedding capacity =0.6 bpp.

Using (9), we expect that embedding capacity increase when the R=r / n decrease and

selection ratio a is constant.

Let’s consider a =1 and size of encrypted image is512x512. According to (9) the

embedding capacity of each ratio is calculated as shown in Table 12.

Table 12: Embedding Capacity with Different Ratios (bpp)
H matrix ratio R=0.2 R=0.25 R=0.33 R=0.5

Embedding capacity 0.6 0.5625 0.5 0.375

Figure 24 shows the relation between R = r / n and embedding capacity. When R
increases, the embedding capacity decreases. Thus, PSNR of decoded image increase

since, the number of bits to be embedded decreases.
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Figure 25: Relation between R and Embedding Capacity. When R Increases,
Embedding Capacity Decreases

Table 13: PSNR of Decoded Images When R=0.2, R=0.25, R=0.33 and R=0.5 (dB)

Image R=0.2 R=0.25 R=0.33 R=0.5
Baboon 24.698 25.425 29.341 34.909
Barbara 25.749 27.050 31.285 36.574

Lake 32.333 37.919 40.827 45,121
Lena 34.420 40.727 42.848 46.555
Man 31.983 37.524 39.490 44,374
Peppers 32.097 37.792 40.349 44,044

We see from Table 13 that average PSNR of decoded image increases when

embedding capacity decreases. As we expected from (10) in Figure 25.
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R=0.33 and R=0.5

The original image Figure 27(a) is encrypted into Figure 27(b). After encryption, the
data hider collect 196608 bits, then with L= 3XY/4 and a =1, by embedding 98304
bits with embedding capacity 0.375 bpp into encrypted image. Figure 27(c) shows the
encrypted image that containing secret data. On the receiver side, secret data are
extracted perfectly with error free when the embedding key is known. Figure 27(d)
shows the approximate image after construction using the encryption key and the
bilinear interpolation. The differences between the original image and the approximate
one are shown in Figure 27(e). When the receiver knows the embedding and the
encryption keys, the image is recovered perfectly which is shown in Figure 27(f). The
other test image results (Baboon, Barbara, Lake, Man, Peppers) are shown in Appendix

G.
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() ()
Figure 27: (a) The Original Image Lena. (b) The Encrypted Image (Stage 1). (c)

Marked Encrypted Image (Stage 2). (d) The Approximate Image (Stage3, Option 2).
(e) The Difference between the Original and the Approximate Images. (f) Perfectly
Recovered Image (Stage3, Option3)

4.8 Comparison versus Qian-Zhang Scheme Results

By fixing H matrix ratio R=0.5 and a =1.0 (see Appendix A.3.2), we achieved
maximum payload equal 98304 bits with embedding capacity 0.375 bpp (for both
construction method , Gallager MacKay-Neal) which is higher than 77376 payload
bits with embedding capacity 0.295 bpp in [1]. The payload bits are extracted perfectly.

The secret data is generated randomly according to R which will equal
(3x512x512/4)x(1-1/2) (See Appendix A.3.2.10, line 8). Embedding capacity is

calculated using (10) (See Appendix A.3.2 line 34). Since the Qian-Zhang scheme [1]
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modifies the MSBs and using estimation algorithm to construct the approximate
image, the quality of the image is fix, regardless the amount of the added payload bits
(See Figure 18). Figure 28 shows the comparisons between our implementation results
and Qian-Zhang scheme. Figure 28 shows that our results have same behavior as in
Qian-Zhang scheme with little difference. In Figure 28(a) our results is less than Qian-
Zhang scheme for Lena and Man images while in Figure 28(b) the results are comply
for Baboon. For Lake image Figure 28(c) our results is better that Qian-Zhang scheme.
The differences between our results and Qian-Zhang results refer to using different

source of images which they are different in resolution and grayscale pixels values.
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Figure 28: Comparison versus Qian-Zhang Scheme Results using the images. (a)
Lena. (b) Baboon (c) Lake. (d) Man

Table 14 shows the comparison between our implementation results and Qian-Zhang
results. By using the same size of grayscale images (512 x 512), the total number of
bits to be embedded in Qian-Zhang scheme is 77376 while in our implementation the
total number of bits to be embedded is 98304. Since, the size of used H matrix in Qian-
Zhang scheme is 3840 x 6336 with R=0.61, while in our implementation we used H

matrix size 1024 x 2048 with R= 0.5 which leads to compress more according to (11).
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Table 14: Comparison versus Qian-Zhang Scheme Results

Qian-Zhang

Ours

Grayscale images with size 512 x 512

Grayscale images with size 512 x 512

Total number of collected bhits=196608

Total number of collected bits=196608

Selection ratio, o =1.0

Selection ratio, o =1.0

H matrix size : r = 3840, n = 6336

H matrix size: r = 1024, n = 2048

H matrix ratio, R =r/n = 0.61

H matrix ratio, R=r/n=0.5

31 groups.

96 groups.

Total number of bits to be embedded

=77376

Total number of bits to be embedded

=98304

Embedding capacity Eemn = 0.2952 bpp

Embedding capacity Eem» = 0.375 bpp

4.9 Summary of Chapter 4

In this chapter, we have compared our results with experiments in [2], we found that:

1. PSNR of approximate image is constant when embedding capacity varies (See

Figure 18 , Tables 5-8)

2. In the case of decoding fails, the PSNR of decoded image decreases when

embedding capacity increases (See Figure 20).

3. We extend our experiments to find the effect of H matrix on decoding time and

PSNR of decoded image (See Figure 19, Table 9).

4. By fixing ratio R and increasing H matrix size, both PSNR of decoded image and

decoding time increase (See Figure 21, Figure 22).

5. When H matrix ratio R increases the embedding capacity decreases, and PSNR of

decoded image increases (See Figure 24).
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Chapter 5

CONCLUSION

This thesis aimed to investigate and study Qian-Zhang scheme [1], several
fundamental parameters where not clearly specified and shown in [2] such as method
of constructing LDPC H matrix, selection key Ksi, encryption key Kenc, and shuffle
key Ksr. Our implementation shows that the data extracted perfectly. In this thesis, we
studied two H matrix construction methods Gallager and MacKay-Neal. We found that
matrices constructed by Gallager provide less decoding time with higher PSNR. We
studied the effect of H matrices size and ratio on the PSNR of decoded images. We
found that by fixing the ratio and increasing the size of H matrix improves the PSNR
of the decoded image. In addition, we studied the effect of H matrices size and ratio
on the decoding time. We found that by fixing ratio and increasing the size of H matrix

increases decoding time exponentially (See Figure 22). We obtained after decoding
PSNR of 40.629, 41.659 dB for H,.., , Henuea, respectively while for Hyg,, 0008 »

the image was recovered perfectly. On the other hand, the time of decoding increases
with the matrix size growth: (1426.90, 3668.93, and 5721.153 seconds, respectively).
Moreover, increasing H matrix ratio R = r / n leads to the decrease of embedding
capacity and increase of PSNR of decoded image. Decreasing of R (we considered 0.5,
0.33, 0.25, 0.2) leads to the increase of the embedding capacity (0.375, 0.5, 0.5625,
and 0.6 bits per pixel (bpp), respectively). In addition, decreasing R (0.5, 0.33, 0.25,
0.2) leads to the decrease of the PSNR (122.96, 64.95, 32.186 and 29.252 dB

respectively).;.
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We constructed LDPC H matrix using Gallager method [11], and we defined a
selection key Kst, encryption key Kenc, and shuffle key Ksg. Then, we implemented
Qian-Zhang [1]. We managed to obtain similar PSNR of approximate image results in
[1] with little difference, for example in Lena image PSNR value in [1] higher than
ours by 3.5 bpp. Since we use different H matrix size and method construction in
addition, the images are obtained from another source. By extending experiments in
[1], we found that the relation between PSNR of approximate image keeps unchanged
when the embedding capacity varies. We also found that when decoding fails, the
PSNR of decoded image decreases when embedding capacity increases by 0.0375 bpp,
since the number of selected bits increase. Our experimental results showed that using
H matrix constructed by Gallager with ratio R=0.5 leads to better embedding capacity

by 1.27% than in Qian-Zhang [1].

Results obtained on PSNR of the decoded image and time dependence on the matrix
size may be used for making decisions on Qian-Zhang scheme selection parameters

and may be used for choosing suitable H matrix size to meet specified decoding time.
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Appendix A: Qian-Zhang scheme implementation

Appendix A.1 Grayscale images used in our experiments

e_ﬁ \ 1 :;
. 2R B
i) Lake

j) Lena K) Man I) Peppers
Figure A.1. Images used in Qian-Zhang scheme implementation

A.2 Images conversion

1.

2.

8.

9.

clc;

clear all

P ="imagesPgm\’;

D = dir(fullfile(P,*.pgm));

C = cell(size(D));

for k = 1:numel(D)

| = imread(fullfile(P,D(k).name));
C{k} = 1();

kk=num2str(k);

10. h=".bmp";

11. saveN = sprintf('%s%s','images/',kk,h);

12. imwrite(l,saveN);

119



13.

end

Appendix A.3 Qian-Zhang Scheme for o =1.0

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

clc;

clear all;

FileName = dir('images3/*.bmp");%read images from folder

nfiles = length(FileName); %get the number of images

DecodedPSNR={'name','HG1','HG2','HG3','HG4','HG5''HG6','HG7','HG8','HGY'

%

DecodedTime={'name','HG1','HG2''HG3''HG4''HG5','HG6','HG7','HG8','HGI'}

sizes=[8,16,32,64,128,256,512,1024,2048]; % define the columns of H matrices

which is equal to n

selectionSeed=4;

selectionRatio=1.0;

for ii=1:nfiles

imName=";
imName=FileName(ii).name;

rN = sprintf('%s','images3/',imName);
Originallmage= imread(rN);%read the original image
DecodedPSNR(ii+1,1)={imName},
DecodedTime(ii+1,1)={imName};
[m,n] = size(Originalimage);

%% encrption

load('EncryptionKey.mat');

[EncryptedImage]=encrypt(Originallmage,EncryptionKey);
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21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Encryptedimage=double(Encryptedimage);

saveN = sprintf('%s','EncryptedImages/Encryptedimage_',imName);
imwrite(Encryptedimage,saveN); % store the encrypted image
Encryptedimage=uint8(Encryptedimage);

%% hide data

for j=1:9

n=sizes(j); // get n=number of bits

[Marked_encrypted image,selectionkey,Shufflekey,L,r,H,syndorm,kgroups]=Hid
eData(EncryptedImage,selectionRatio,selectionSeed,n, imName,j);
%% data extraction
[extractedData]=DataExtraction(Marked_encrypted_image,selectionkey,Shufflek
ey,L,r,n);

% re=double(secretData)-double(extractedData);

% X =nnz(re);

% non_zero_Ptg=(X/(m*n))*100;

% zero_Ptg=(1-(non_zero_Ptg/100))*100;

% if(zero_Ptg==100)

% fprintf('\n Secert Data is extracted %0.4f \n', zero_PtQ);

% end

%

[ree,cee]=size(extractedData);

ebeee=cee/(512*512);

disp(ebeee);

%% get the Approximatelmage
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43.

44,

45,

46.

47.

48.

49,

50.

o1,

52.

53.

54,

[Approximatelmage,PSNR]=DecryptionAndEstimation(Marked_encrypted_imag
e,EncryptionKey,imName,Originallmage);

%% decode and get the original image

tic;

[RecievedImage,
DecodedPSNR]=Recovery(Marked_encrypted_image,selectionkey,Shufflekey,H,
L,r,n,EncryptionKey,secretData,syndorm,kgroups,imName,OriginalImage);
DecodedTime=toc;

GDecodedPSNR(ii+1,j+1)={DecodedPSNR};
GDecodedTime(ii+1,j+1)={DecodedTime};

end

% end for read files

end

xlswrite('GRun_1.xlsx',GDecodedPSNR,1);

xlswrite('GRun_1.xlsx',GDecodedTime,2);

Appendix A.3.1. Stage 1: Image Encryption

=

function [ Encryptedimage ] = encrypt( Originallmage,EncryptionKey )
[M,N] = size(Originallmage);

Originallmage=0Originallmage’;

binary=de2bi(Originallmage,8,2,'left-msb"); % convert from pixel into binary
binarylmage=xor(binary,EncryptionKey); % encrypt using encryption key
Encryptedimage=bi2de(binarylmage,'left-msb'); % convert binary into pixel
Encryptedimage=reshape(Encryptedimage,M,N); % get encrypted image
Encryptedimage=Encryptedimage’;

end
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Appendix A.3.1.1. Generate Encryption Key

1. s fieldnames = 'EncryptionKey';

2. a_nums =randi([0 1], 512*512, 8);

3. % % create the variable containing the values of a_nums

4. eval([s_fieldnames '=a_nums;']);

5. % save it in a mat file

6. save('EncryptionKey',s_fieldnames);

Appendix A.3.2. Stage 2: Data Hiding

1. function[MarkedEncryptedImage,selectionkey,shufflekey,L,r,H,syndorm,kgroups
]= HideData(encryptedImage,selectionRatio,selectionSeed,n,imName,j)

2. % 1. decompose

3. [E1,E2,E3,E4]=decompose(encryptedimage);

4. [collectedbits]=collectBits(E2,E3,E4);

5. % create selection key

6. T=length(collectedbits); % total number of collected bits

7. L=floor(selectionRatio*T); % number of selected bits

8. [selectionkey]=createSelectionKey(collectedbits,selectionSeed,selectionRatio);

9. [selectedBits]=selectbits(collectedbits,selectionkey);

10. [shufflekey]=generateshuffelkey(selectedBits);

11. % 4. ShuffleBits

12. [shuffledbits]=shufflebits(selectedBits,shufflekey);

13. % 5. createGroups

14. [kgroups,reminderBits]=createGroups(shuffledbits,n); % return the group to
multiply with H matrix

15. siize=size(kgroups);
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16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Krows=siize(1,1);

Kcols=siize(1,2);

nu=int2str(j);

Hname=strcat(HGST2_',nu);

Hname2=strcat(Hname,'.mat’);

load(Hname2);

% 6. getSyndrom

[syndorm]=GetSyndorme(kgroups,H);

% 7. embedData

[ image_after_embedding,r,secretData] = embedData(kgroups,syndorm);
% 8. inverse shuffle

[inverseSuhffledBits]=inverseshuffle
(image_after_embedding,reminderBits,shufflekey );

%9. return back to MSB with remainder
[EE2,EE3,EE4]=returnBits(inverseSuhffledBits,E2,E3,E4,selectionkey);
%10. compose into 1 image
[MarkedEncryptedImage]=compose(A,E1,EE2,EE3,EE4);

saveN = sprintf('%s','MElimages/MarkedEncryptedImage_',imName);
imwrite(MarkedEncryptedImage,saveN);
embCap=secretData/(512*512);

end

Appendix A.3.2.1 Decompose Encrypted Image

1.

2.

3.

function [E1,E2,E3,E4]=decompose(encryptedimage)
% to check of n and m is power of 2

[m,n] = size(encryptedimage);
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4. [f.e] =log2(n);

5. if f==0.5000

6. else

7. return;

8. end

9. [f1,el] =log2(m);

10. if f1 == 0.5000

11. else

12. return;

13.end

14. % end of check

15. E1 = encryptedlmage (1:2:end,1:2:end); % EZ1 odd matrix

16. E2 = encryptedlmage (1:2:end,2:2:end);

17. E3 = encryptedlmage (2:2:end,1:2:end);

18. E4 = encryptedlmage (2:2:end,2:2:end) ; % E4 even matrix

19. end

Appendix A.3.2.2 Collect MSBs From E2,E3,E4

1. function [collectedBits] = collectBits(E2,E3,E4)

2. [m,n] =size(E2); % M/2 * N/2

3. siz=(m) *(n);

4. %from E2

5. bits2=de2bi(E2,[],2,'left-msb’); % CONVERT THE PIXELS INTO BINARY
coluns by couluns

6. c=bits2(1:siz,1); % get only the MSB from the plane

7. b2=c"; % convert from column to row
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8. %from E3

9. bits3=de2bi(E3,[],2,'left-msb");

10. c=bits3(1:siz,1);

11. b3=c’;

12. %form E4

13. bits4=de2bi(E4,[],2,' left-msb’);

14. c=bits4(1:siz,1);

15. b4=c’,

16. collectedBits = horzcat(b2,b3,b4);

17.end

Appendix A.3.2.3 Create Selection Key

1. function[selectionKey,L]=createSelectionKey(collectedbits,selectionSeed,selecti
onRatio)

2. selectionSeed=4;

3. T=length(collectedbits); % total number of collected bits

4. L=selectionRatio*T; % determine the number of bits to be selected according to
the selection ratio

5. rng(selectionSeed);

6. selectionKey=zeros(1,L);

7. index=1,;

8. while index <=L

9. y = floor(randi(T,1,1)); % rand

10. if(ismember(y,selectionKey)) % this is return the index

11. continue;

12. end
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13. selectionKey(1,index)=y; % here added the selected bits according to the KSL
(we add the index of each selected bit)

14. index=index+1;

15.end

16. end

Appendix A.3.2.4 Select Bits Using Selection Key

1. function [selectedBits] = selectbits(collectedbits,selectionKey)

2. selectedBits=collectedbits((selectionKey));

3. end

Appendix A.3.2.5 Shuffle Key Construction

=

function [ shuffleKey ] = generateshuffelkey(selectedBits)
2. done=0;

3. L=length(selectedBits);

4. selectedPrimes=zeros(1,1);

5. while done==

6. p=primes(L);

7. x=p(randi(numel(p)));

8. if((x==1) [|(ismember(x,selectedprimes)) )
9.  continue;

10. end

11.if ged(x,L)==1

12. done=1,

13. x= shuffleKey

14. else

15. selectedprimes=x;
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16. end

17.end

18. end

Appendix A.3.2.6 Shuffle Bits Using Shuffle Key

1. function [ shuffledbits ] = shufflebits(selectedbits,key)

2. sizeOfSelectedBits=length(selectedbits);

3. shuffleRow=(1:sizeOfSelectedBits);

4. shuffleRow=mod(key*(shuffleRow),sizeOfSelectedBits)+1;
5. shuffledbits=selectedbits(shuffleRow);

6. end

Appendix A.3.2.7 Create Groups

1. function [ kgroups,arrayrem ] = createGroups(shuffledbits,numberofbits)
2. % create groups from L bits

3. L=length(shuffledbits);

4. k=floor(L/numberofbits); % no. of groups

5. reminder=mod(L,numberofbits);

6. arrayrem=zeros(1,reminder);

7. x=k*numberofbits;

8. arrayrem(1.end)=shuffledbits(x+1:end);% store the reminder
9. Cs=shuffledbits(1:x);

10. kgroups=reshape(C,numberofbits,k);

11. kgroups=kgroups.";

12. end
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Appendix A.3.2.8 Store Generated Matrices In “.mat” Files
1. clc;

2. clear all;

3. n=1024,

4. HG=Gallager_construction_LDPC(1024);
5. r=9;n=12;

6. % HM=makeLdpc(9, 12, 0, 0, 1);

7. s_fieldnames = 'H’;

8. a_nums=HG,;

9. eval([s_fieldnames '=a_nums;']);

10. % save it in a mat file

11. save('HGST2_8',s_fieldnames);
Appendix A.3.2.9 Get Syndrom Groups

1. function [synd]=GetSyndrom (kgroups,H)
2. HT=H.;

3. kgroups=double(kgroups);

4. synd=mod((kgroups*(HT)),2);

5. end

Appendix A.3.2.10 Embed Secret Data
1. function [ image_after_embedding,r,Data] = embedData(kgroups,synd)

2. groups_size=size(kgroups);

.

synd_size=size(synd);

4. K=groups_size(1,1); % no of the groups

(621

. n=groups_size(1,2); % no of bits in each group
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6. r=synd_size(1,2); % no of bits in syn group

7. embedding_size=K*(n-r); % number of bits to be embedding

8. Data=randi([0 1],1,embedding_size); %divided these bits in to K groups
9. Data2=reshape(Data,n-r,K);

10. Data2=Data2.",

11. image_after_embedding=zeros(K,n);

12. image_after_embedding(1:end,r+1:end)=Data2(1:end,1:end);

13. image_after_embedding(1:end,1:r)=synd(1:end,1:end);

14. end

Appendix A.3.2.11 Inverse Shuffle Bits

1. function[inverseShuffleBits]=inverseshuffle(embeddedImage,reminder,shuffledk
ey)

2. sz=size(embeddedImage);

3. sz_row=sz(1,1); % no of rows

4. sz_col=sz(1,2);

5. siz=sz_row*sz_col;

6. embeddedImage=embeddedimage.’;

7. B = reshape(embeddedlmage,[1 siz]); % convert the groups into row vector

8. % now add the reminder bits into B (row vector);

9. C=horzcat(B,reminder);

10. sizeOfSelectedBits=length(C);

11. index=(1:sizeOfSelectedBits);

12. BB=mod(index*shuffledkey,sizeOfSelectedBits)+1;

13. inverseShuffleBits(BB)=C;
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14. end

Appendix A.3.2.12 Replace Bits

15. function [EE2,EE3,EE4] =returnBits(inverseSuhffledBits,E2,E3,E4,selectionkey)
1. collectedbits(selectionkey)=inverseSuhffledBits;

2. [m2,n2]=size(E2);

3. siz=(m2) * (n2) ;

4. bits2=de2bi(E2,[],2,'left-msb"); % CONVERT THE PIXELS INTO BINARY
5. bits2(1:siz,1)=collectedbits(1,1:siz);

6. bits3=de2bi(E3,[],2,'left-msb’); % CONVERT THE PIXELS INTO BINARY
7. bits3(1:siz,1)=collectedbits(1,siz+1:5iz*2);

8. bits4=de2bi(E4,[],2,'left-msb’); % CONVERT THE PIXELS INTO BINARY
9. bits4(1:siz,1)=collectedbits(1,(siz*2)+1:end);

10. bits2 = fliplr(bits2);

11. EE2 =bi2de(bits2);

12. EE2=reshape(EE2,m2,n2);

13. bits3 = fliplr(bits3);

14. EE3 =hi2de(bits3);

15. EE3=reshape(EE3,m2,n2);

16. bits4 = fliplr(bits4);

17. EE4 =bi2de(bits4);

18. EE4=reshape(EE4,m2,n2);

19. end

Appendix A.3.2.13 Compose Segments
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1. function [MarkedEncryptedimage] =compose(encryptedimage,E1,EE2,EE3,EE4)
2. MarkedEncryptedimage= encryptedimage;

3. MarkedEncryptedimage(1:2:end,1:2:end)=E1; % E1 odd matrix

4. MarkedEncryptedimage(1:2:end,2:2:end)= EE2;

5. MarkedEncryptedimage(2:2:end,1:2:end)=EE3;

6. MarkedEncryptedimage(2:2:end,2:2:end)=EE4 ; % E4 even matrix

7. End

Appendix A.3.3 Data Extraction

1. function
[extractedData]=DataExtraction(MarkedEncryptedImage,selectionKey,shuffleKe
y,L,r,n)

2. [V1,v2,v3,V4]=decompose(A); % same as in (4);

3. [collectedbits]=collectBits(V2,V3,V4);

4. [selectedBits]=SelectBitsUsingSelectionKey(collectedbits,L,selectionKey);

5. [shuffledbits]=shufflebits(selectedBits,shuffleKey);

6. [kgroups,reminderBits]=createGroups(shuffledbits,n);

7. [extractedData]=extractData(kgroups,n,r);

8. end

Appendix A.3.3.1 Extract Data from Marked Encrypted Image

=

function [ extractedBits2,extractedSynd ] = extractData(kgroups,n,r)

N

. [row,c]=size(kgroups);
3. k=row;

4. x=k*(n-r);
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extractedSynd=kgroups(1:k,1:r);
extractedBits=kgroups(1:k,r+1:end);% i put -1
extractedBits=extractedBits.";
extractedBits2=reshape(extractedBits,1,x);

end

Appendix A.3.4 Approximate Image Reconstruction

1.

10.

11.

12.

13.

14.

15.

16.

17.

function [approximatelmage,PSNR]= DecryptionAndEstimation
(MarkedEncryptedImage,EncryptionKey,imName,original)
[Decryptedimage]=decrypt(MarkedEncryptedimage,EncryptionKey);
Marked _image=Decryptedimage;

[m,n] = size(Marked_image);
Marked_image=double(Marked_image);
[A1,A2,A3,A4]=decompose(Marked_image);
[B]=interplation(Al,Marked_image);
[B1,B2,B3,B4]=decompose(B);

[BB1] = calculate_approximate_image(Al, B1);
[BB2]=calculate_approximate_image(A2, B2);
[BB3]=calculate_approximate_image(A3, B3);
[BB4]=calculate_approximate_image(A4, B4);

[ approximatelmage ] =compose(Marked _image,BB1,BB2,BB3,BB4);
approximatelmage = uint8(approximatelmage);
original=uint8(original);
evaluate=uint8(original)-uint8(approximatelmage);

[rows,cols] = find(evaluate);
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18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

indeces=horzcat(rows,cols);

X = nnz(evaluate);

non_zero_Ptg=(X/(m*n))*100;

zero_Ptg=(1-(non_zero_Ptg/100))*100;

fprintf(\n percentage for appro. %0.4f \n', zero_PtQ);
PSNR=psnr(approximatelmage,original);

fprintf(\n The PSNR value for approximate Image is %0.4f \n', PSNR);
saveN = sprintf('%s',' Approximatelmages/Approximatelmage_',imName);
imwrite(approximatelmage,saveN);

saveN = sprintf('%s','Differencelmages/diffDecoded_',imName);
imwrite(evaluate,saveN);

end

Appendix A.3.4.1 Bilinear Interpolation

=

8.

9.

10.

function [ B ] = interplation( E1,A)

[m,n] = size(A);

[X,Y] = meshgrid(1:256,1:256);%//revise size as variable

El=double(El);

[X2,Y2] = meshgrid(1:0.5:256.5,1:0.5:256.5); %!// Define expanded grid of
points

B = interp2(X,Y,E1,X2,Y2,'linear");
B(512,1:511)=interp1(1:512,B(1:511,1:511),512,'linear",'extrap’);
B(1:512,512)=interp1(1:512,B(1:512,1:512),512,'linear",'extrap’);
B=round(B);

end
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Appendix A.3.4.2 Calculate Approximate Image

1.

2.

3.

10.

11.

12.

13.

function [ approximatelmage ] = calculate_approximate_image( A, B)
[m,n] = size(A);

approximatelmage=zeros(m,n);

for i=1:m

for j=1:n

if (abs(128+mod(A(i,j),128)-B(i,j)) < abs(mod(A(i,j),128)-B(i,j)))
approximatelmage(i,j)=128+mod(A(i,j),128);

else

approximatelmage(i,j)=mod(A(i,j),128);

end

end

end

end

Appendix A.3.5 Lossless Recovery

1.

function [Recievedimage,DecodedPSNR]
=Recovery(Marked_encrypted_image,selectionKey,Shufflekey,H,L,r,numberofbi
ts,EncryptionKey,secertData,syndorm,kgroupsOriginal,imName,OriginalImage)
A=Marked_encrypted_image;

[M,N]=size(A);

Originallmage=uint8(Originallmage);
[extractedData]=DataExtraction(Marked_encrypted_image,selectionKey,Shuffle

key,L,r,numberofbits);
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

%% DataExtraction---->DONE

[E1,E2,E3,E4]=decompose(A);

[collectedbits]=collectBits(E2,E3,E4);
[selectedBits]=selectbits(collectedbits,selectionKey);
[shuffledbits]=shufflebits(selectedBits,Shufflekey);
[kgroups,reminderBits]=createGroups(shuffledbits,numberofbits);
[compressedData,compressedGroup]=GetCompressedData(kgroups,numberofbit
s,r);

re=double(syndorm)-double(compressedGroup); % compressedGroup = syndrom
[m,n]=size(compressedGroup);

X =nnz(re);

non_zero_Ptg=(X/(m*n))*100;

zero_Ptg=(1-(non_zero_Ptg/100))*100;

if(zero_Ptg==100)

% fprintf('\n syndrome is extracted in Recovery Stage %0.4f \n', zero_PtQ);

end

[Approximatelmage, ApproPSNR]=DecryptionAndEstimation(A,EncryptionKey,
imName,Originallmage);% get the approximate Image
[EncryptedApproximatelmage]=encrypt(Approximatelmage,EncryptionKey );%
encrypt the approximate Image
[E1,E2,E3,E4]=decompose(EncryptedApproximatelmage);

n=numberofbits;

[collectedbits]=collectBits(E2,E3,E4);
[selectedBits]=selectbits(collectedbits,selectionKey);

[shuffledbits]=shufflebits(selectedBits,Shufflekey);
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49,

50.

51.

[kgroupsappro,reminderBits]=createGroups(shuffledbits,n);
[krows,kcols]=size(kgroupsappro);
diff=double(kgroupsOriginal)-double(kgroupsappro);
[rows1,cols] = find(diff);

indeces=horzcat(rows1,cols);

lenl=length(rowsl);

[rrr,ccc]=size(indeces);

fprintf("\n the differences between the original and approx. %0.4f \n', rrr);
C=unique(indeces);

X = nnz(diff);

decoded=zeros(1,1);

[r,c]=size(kgroupsOriginal);

tic;

for i=1:r
[decodedString]=decodeStatisticsOriginal(compressedGroup(i,1:end),kgroupsapp
ro(i,1:end),H);

decoded(i,1:numberofbits)=decodedString;

end

tDecoded=toc;
diff2=double(kgroupsOriginal)-double(decoded);
[rows2,cols] = find(diff2);

indeces2=horzcat(rows2,cols);

len2=length(rows2);

[rrr,ccc]=size(indeces?2);

fprintf(\n the differences after decoding. %0.4f \n', rrr);
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52.

53.

54,

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

C2=unique(indeces?);
X2 = nnz(diff2);
%% reshuffle the decoded bits

decoded=uint8(decoded);

[inverseShuffledBits]=inverseshuffle (decoded,reminderBits,Shufflekey );

[E1,E2,E3,E4]=decompose(EncryptedApproximatelmage);

[EE2,EE3,EE4]=returnBitsAfterDecoding(inverseShuffledBits,E2,E3,E4,selectio

nKey);
[decocedImage]=compose(Approximatelmage,E1,EE2,EE3,EE4);
[decocedImage]=decrypt(decocedImage,EncryptionKey);
decocedImage=uint8(decocedImage);

saveN = sprintf('%s','DecodedImages/decoced_',imName);
imwrite(decocedImage,saveN);
DecodedPSNR=psnr(uint8(decocedImage),Originallmage);
fprintf("\n PSNR after decoding %0.4f \n', DecodedPSNR);
diffDecoded=uint8(Originallmage)-uint8(decocedimage);

X = nnz(diffDecoded);

non_zero_Ptg=(X/(m*n))*100;
zero_Ptg=(1-(non_zero_Ptg/100))*100;

fprintf('\n percentage after decoding %0.4f \n', zero_Ptg);

saveN = sprintf('%s','Differencelmages/diffDecoded_',imName);
imwrite(diffDecoded,saveN);

RecievedImage=decocedimage;

end
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Appendix A.3.5.1 Sum-Product Decoding
1. function [z]= decodeStatisticsOriginal(synd,U,H)
2. Itermax=15;

3. synd=double(synd);
4. y=double(y);

5. HT=H.

6. yy=0;

7. g=0.1;

8. N=zeros(size(H));

9. E=zeros(size(H));

10. r=zeros(size(y));

11. [rows,cols]=size(r);
12. [m,n]=size(H);

13. %Initialization z

14. for i=1:cols

15. lI=log((1-9)/q);

16. z(i)=(1-2*U(i)))*(I);
17.end

18. %Initialization N

19. Iter=1;

20. for i=1:n

21. for j=1:m

22. if(H(j,i)==0)

23. continue;

24. end
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25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49,

N(.1)=z(i);

end

end

%% processing at check nodes
zz=1;

L=zeros(1,n);

z=zeros(1,n);
while(lter<=Itermax)

%Check messages

for j=1:m

%create C vector (to check variable nodes each check node is connected)

% n : size of cols in H
x=1,

for k=1:n
if(H(j,k)==0)
continue;

end

C(x)=k;

X=X+1,

end

len=length(C);

%
fori=1:n
cc=ismember(i,C);

if(cc==0)
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50.

51.

52.

53.

54,

55.

56.

S7.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

continue;

end

% move over C and calculate tanh

for t=1:len
if(i==C(t))
continue;
end
2z=tanh(N(j,C(t))/2)*2z:
end
vv =atanh((1-(2*synd(j)))*zz)*2;
B(j,i)=vv;
zz=1;
end
end
fori=1:n
L(i)=z(i);
r2=0;
for j=1:m
r2=B(j,i)+r2;
end
L(i)=r2+L(i):
if(L(i)<0)
J(i)=1;
end

if(L(i)>=0)
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73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

J()=0;
end

end

syn=mod((J*(HT)),2);

if(syn==synd)
break; %%finish
else
[rows,co]=size(H);
for i=1:n
x2=1; % just index
A=zeros(1,1);
for k=1:rows
if(H(k,i)==0)
continue;
end

a. A(x2)=k;

b. x2=x2+1;
end
len=length(A);
for j=1:rows
cc=ismember(j,A);
if(cc==1)

xx=0;

for jj=1:len

if(==A(1))
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94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

continue;

end

xX=B(A(j)),)+ xx;

end
N(j,1)=xx+z(i);

end

end

end

end

Iter=Iter+1,

end

end

end

Appendix A.4 Qian-Zhang for o <[0.1,1.0]

1.c

2.

8.

9.

10.

11.

Ic;

clear all;
DecodedPSNR={'na’,'0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.8",'0.9",'1.0'};
Time={'na','0.1','0.2','0.3','0.4','0.5','0.6','0.7",'0.8','0.9','1.0'};
EmbedddingCapacity={'na','0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.8','0.9','"1.0'};
selectionRatio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0];

FileName = dir('images3/*.omp");

nfiles = length(FileName); % Number of files found

for ii=1:nfiles

imName=";

imName=FileName(ii).name;
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

rN = sprintf('%s','images3/',imName);

Originallmage= imread(rN);

DecodedPSNR(ii+1,1)={imName};

Time(ii+1,1)={imName};

EmbedddingCapacity(ii+1,1)={imName};

[m,n] = size(Originallmage);

[m,n] = size(Originallmage);

seed=4;

numberofbits=32;

%% encrption

load('EncryptionKey.mat");
[EncryptedImage]=encrypt(Originallmage,EncryptionKey );
Encryptedimage=double(Encryptedimage);

saveN = sprintf('%s','images/EncryptedImage’,imName);
imwrite(Encryptedimage,saveN);

Encryptedimage=uint8(Encryptedimage);

%% hide data

for j=1:10

selectionRatio=selection(j);
[Marked_encrypted_image,selectionkey,Shufflekey,L,r,H,syndorm,kgroups,selec
tionkey?2,secretData,collectedbitsF,selectedBits,shuffledbits]=HideData(Encrypte
dimage,selectionRatio,seed,numberofbits, imName,EncryptionKey);

%% data extraction
[extractedData]=DataExtraction(Marked_encrypted_image,selectionkey2,Shuffle

key,L,r,numberofbits);
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34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

46.

47.

48.

49,

50.

51.

52.

53.

54,

re=double(secretData)-double(extractedData);

X =nnz(re);

non_zero_Ptg=(X/(m*n))*100;

zero_Ptg=(1-(non_zero_Ptg/100))*100;

if(zero_Ptg==100)

fprintf(\n Secert Data is extracted %0.4f \n', zero_Ptg);

end

%% get the Approximatelmage
[Approximatelmage,zero_Ptg,ApproPSNR]=DecryptionAndEstimation(Marked _
encrypted_image,EncryptionKey,imName,Originallmage);
[rr,cc]=size(secretData);

b3=cc/(512*512);

tic;
[Recievedimage,PSNR]=Recovery(Marked_encrypted_image,selectionkey,Shuff
lekey,H,L,r,numberofbits,EncryptionKey,secretData,syndorm,kgroups,imName,s
electionkey2,0Originallmage,collectedbitsF,b3,selectedBits,shuffledbits);

t=toc;

Time(ii+1,j+1)={t};

DecodedPSNR(ii+1,j+1)={PSNR};

EmbedddingCapacity(ii+1,j+1)={b3};

end

end

xlswrite('results.xIsx',EmbedddingCapacity,'Sheet1");

xlswrite('results.xlsx’,ApproPSNR,'Sheet2");
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Appendix A.3.1 Encryption key.

OrRROOROOQOO
OrROCOOOROQOO
RRROOOROOO
RORORORROHK
OOORRFRORROR
RROFROOOROHK
O00Q0FROPROQOO
RRORRFRROROR

OOROROORRDO
OORRFRRORORDO
ROOROKROROR
OROORREROOO
ROORREOOOR
OCOKRROOROR
RRROOOOROO
RROOKRORROR

Appendix A.4.1 Selection keys depending on .

a=01- KSL=[190126 107591 191238 140539 .-+ .- 82608 158627 153605 155714]

a=02-Ky =[190126 107591 191238 140539 .- --- 11421 124520 132931 85635]

a=03-> KSL:[190126 107591 191238 140539 --- .- 185059 18782 157093 82356]

a=04-K, =[190126 107591 191238 140539 --- --- 104635 173429 82457 182720]

a=05-> KSL:[190126 107591 191238 140539 .-+ .- 76780 20130 193339 160105]
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a=0.6—>KSL=[190126 107591 191238 140539 --- .- 114946 159016 75903 172242]

a=07-Kg =[190126 107591 191238 140539 - - 154162 101616 186494 165151
a=08— KSL:[190126 107591 191238 140539 --- - 179383 33854 18658 115188]
a:0.9—>KSL:[190126 107591 191238 140539 --- .- 33464 121075 134712 122549]
a=10—- KSL:[190126 107591 191238 140539 .- - 24554 15636 37396 13761]
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Appendix B. Different H Matrix Construction Methods

Appendix B.1. H matrices constructed using Gallager method

Appendix B.1.1: H matrix sample constructed for run 1 using Gallager method

H matrix with size 64 « 128

0000O0O0OGO OO0 0]
0000O00O0O0OGOOTO OO
00000O0O0OGO0TO 0O
0000O0O0O0OOO0TO 0O
00000O0O0OO0TO 0O
0 00000O0O0GO0TO0SO
0000O0O0O0OOO0TO 0O
00000O0O0OOGO0TO 00O
00000O00O0OO0TO 0O
0000O0O0OOO0T 0O

1111000000

0000111100

0 000OOOOT1T1

0 000O0OOOOOTG OO
0 0O00O0OOOOOTG OO

0000000000
0 000OOOOODPO
0 000O0OOOOODPO
0 000OOOOODP
0 000O0OOOOODPO

0 000O0O0OOOOOSO OGO
0 00100O0O0O0O0CDTGO
0 00O0O0OOOOOOGO
0O 000O0OOOOOOPO
0 000O0OO0OOOOO OO OGO
‘0 0000 1O0O0O0O0CO
010000O0O0O0COTGO0CDPO
0 000O0O0OO0OOOOO
0 000O0OOOOOPO
0 000O0O0OOOOOO

0 000O0OOOOOTG OO O
0 000O0OOOOOTG OO O
0 000O0OOOOOTG OO
0 00 0OO0OO0OOT11O0TGO0

0 00O0OO0OOOOOTGO

O OO O O O O O O Qeeeeeerrnnes
0 000O0OOOOOO OO
01000O0O0OO0CTI1O
0 000OOOOOTPO
0 000O0OO0OOOOO OO
0 000O0OO0OOOOOTP O

0 00O0O0OOOGOOTO0 O]
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Appendix B.2. code for constructing H matrices using Gallager and MacKay-
Neal implemented code.

1. clc;

2. clear all;

3. HG=Gallager_construction_LDPC(1024);
4. HM=makelLdpc(9, 12, 0, 0, 1);

5. s_fieldnames = 'H';

6. a_nums=HG,;

7. eval([s_fieldnames '=a_nums;");

8. % save it in a mat file

9. save('HGST4 _8',s_fieldnames);

Weconstructed all H matrices using the above code.

We constructed H matrix using Gallager method by determining the number of
columns in H matrix.

HG=Gallager_construction_LDPC(number_of_columns);
We constructed H matrix using MacKay-Neal method by determining the number of
rows and columns in H matrix.

HM=makeLdpc(number_of rows, number_of columns, 0, 0, 1);
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Appendix C.Comparison of Different H Matrix Construction
Methods Results

Appendix C.3. Screenshots for Each Run (Section 4.2 results)
Appendix C.3.1 PSNR for decoded image using Gallager method

These results are taken from Appendix A.3 line 48 and the H matrices are used from
Appendix B.1

Table C.3.1.1. PSNR for decoded images in run 1.

Run 1
image B4x128 | 128x256 | 256x512
'‘Baboon.bmp' 34.90861 | 37.71688 Inf
'Barbara.bmp' 36.57365 | 40.82702 Inf
'Lake.bmp’ 45.1205 | 48.71072 Inf
"Lena.bmp' 46.55473 | 511411 Inf
'‘WMan.bmp' 44.37417 | 46.36989 Inf
'Peppers.omp' | 44.04416 | 53.1823 Inf

Table C.3.1.2 . PSNR for decoded images in run 2.

Run 2
image 04x128 | 128=256 | 256%512
'Baboon.bmp’ 421102 Inf Inf
'‘Barbara.bmp' |[50.62958 Inf Inf
‘Lake.bmp’ Inf Inf Inf
"Lena.bmp' Inf Inf Inf
'‘WMan.bmp' Inf Inf Inf
'Peppers.bmp’ Inf Inf Inf

Table C.3.1.2 . PSNR for decoded images in run3.
Rumn 3
image 04x128 | 128=256 | 256%512
'‘Baboon.bmp’ | 43.63988 Inf Inf
'Barbara.bmp' |52.39049 | 54,1514 Inf
‘Lake.bmp’ Inf Inf Inf
'Lena.bmp’ Inf Inf Inf
"Man.bmp' Inf Inf Inf
'Peppers.bmp’ Inf Inf Inf
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Appendix C.3.2 PSNR for decoded image using MacKay-Neal method

These results are taken from Appendix A.3 line 48 and the H matrices are used from

Appendix B.2.

Table C.3.2.1. PSNR for decoded image in run 1.

Runl
image 6Ax128  |128x256 |256%512
'Baboon.bmp' 23.22244| 23.19013| 25.39934
'‘Barbara.bmp’ 23.96336| 23.70307| 25.70974
'Lake.bmp' 26.95395| 25.96255| 20.82948
'‘Lena.bmp’ 27.31193| 26.16662| 27.39133
"Man.bmp' 26.76558| 25.85033| 27.18347
'Peppers.bmp’ 26.7537| 25.80561| 26.54054

Table C.3.2.2 .PSNR for decoded image in run 2

Run 2
image B4x128 | 128256 | 256x512
'‘Baboon.bmp' 42.1102 Inf Inf
'‘Barbara.bmp' |[50.62958 Inf Inf
'Lake.bmp’ Inf Inf Inf
"Lena.bmp' Inf Inf Inf
'‘WMan.bmp' Inf Inf Inf
'Peppers.bmp’ Inf Inf Inf

Table C.3.2.3. PSNR for decoded image in run 3

Rumn 3
image 64x128 | 128x256 | 256512
'Baboon.bmp’ 36.17527 | 39.83777 | 41.655942
'‘Barbara.bmp’ 37.99716 | 41.36387 [ 43.35959
'Lake.bmp' 45,54802 | 49.38019 | 51.72102
Lena.bmp’ 4938019 | 54.1514 | 55.40079
'Man.bmp' 47.61928 | 48.71072 | 51.1411
'Peppers.omp’ |45.85837| 51.1411 | 50.172
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Appendix C.3.3 Decoding time using Gallager method

These results are taken from Appendix A.3 line 49 and the H matrices are used from
Appendix B.1

Table C.3.3.1. Decoding time in run 1

Runl
image 64x128 | 128x256 | 256x512
'‘Baboon.bmp' | 422,688 | 867.914 | 1267.343
'‘Barbara.bmp' |406.9153 | 716.45 |1203.991

'Lake.bmp’ 143.7532 | 278.65 | 874.0114
'Lena.bmp’ 134.4695 | 222.5902 | 782.9538
'Man.bmp' 146.7786 | 300.4301 | 892.0185

'Peppers.bmp’ | 156.7987 | 221.8305 | 912.3776

Table C.3.3.2. Decoding time in run 2

Run 2
image 64x128 | 128x256 | 256%512
'‘Baboon.bmp' | 246.3277 | 512.4624 | 1104.598
'‘Barbara.bmp' | 263.2507 | 538.3843 | 1114.911

'Lake.bmp’ 149.1373 | 367.0309 | 879.5724
'Lena.bmp' 135.0534 | 311.2852 | 793.9917
"WMan.bmp' 159.2285 | 372.3432 | 899.5021

'Peppers.bmp' | 158.9155 | 367.9125 | 888.3298

Table C.3.3.3. Decoding time in run 3

Run 3
image 64x128 | 128x256 | 256%512
'‘Baboon.bmp' | 300.8356 | 596.8973 | 1308.089
'‘Barbara.bmp' | 254,1145 | 545.5668 | 1138.593

'Lake.bmp' 1444779 | 339.4831 | 814.0754
'Lena.bmp' 108.7579 | 256.2376 | 636.2363
'‘Man.bmp' 127.8655 | 304.1008 | 738.9555

'Peppers.bmp' | 153.1474 | 358.1463 | 871.9793
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Appendix C.3.4 Decoding time using MacKay-Neal method

These results are taken from Appendix A.3 line 49 and the H matrices are used from
Appendix B.2

Table C.3.4.1. Decoding time in run 1

Runl
image 64x128  |128x256 |256%512
'Baboon.bmp’ 1808.244| 3345.74| 6337.719
'‘Barbara.bmp’ 2413.731| 4718.708| 9255.665
'Lake.bmp' 1971.245| 3593.738| 6167.216
Lena.bmp’ 1639.259| 3665.876| 0607.658
'Man.bmp' 2147.971| 4295.927| 7521.084
'Peppers.bmp’ 2052.906| 4100.582| 7514.644

Table C.3.4.2. Decoding time in run 2

Run 2
image 64x128 |128x256 |256%512
'‘Baboon.bmp' | 481.1471| 1355.936| 1694.186
'‘Barbara.bmp' | 333.3271| 940.5488| 1075.772

'Lake.bmp’ 135.9766| 329.4257| 341.5015
'Lena.bmp’ 109.4576( 294.4683| 300.5307
'‘WMan.bmp' 127.544) 314.1997| 368.9872

'Peppers.omp' | 133.884| 334.1103| 356.4929

Table C.3.4.3. Decoding time in run 3

Run 3
image Bdx128  [128Bx256 |[256x512
'‘Baboon.bmp’ 380.0721| 840.524| 2208.247
'‘Barbara.bmp’ 270.3143| 558.8403| 1334.854
'Lake.bmp' 118.1959| 205.7858| 496.1075
'Lena.bmp'’ 97.06124( 178.6593| 388.7530
'Man.bmp' 110.0446( 239.7486| 522.3316
'Peppers.bmp’ 121.4274( 215.7534| 573.9224
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Appendix D. Relation between PSNR of Approximate Image and
Embedding Capacity.

Appendix D.1. Figures of relation between PSNR pf approximate image and embedding
capacity

These results obtained from Appendix A.4 line 54 and drew in Excel.
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o
15.000
10.000
5.000
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0.037 0.075 0.112 0.150 0.188 0.225 0.262 0.300 0.333 0.375
embedding capacity
«=@==Baboon ==@==Barbara Lake Lena «==@=Man ==@=Peppers

Figure D.1.1. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man
and Peppers images with H matrix size 42x210. PSNR of approximate image is
constant with different selection ratio
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Figure D.1.2. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man
and Peppers images with H matrix size 64x256. PSNR of approximate image is
constant with different selection ratio . .
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Figure D.1.3. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man
and Peppers images with H matrix size 70x210. PSNR of approximate image is
constant with different selection ratio . .

40.000

35.000

30.000 G e e e e e——e— —)

25000 S ——————30—
% 20.000

15.000

10.000

5.000

0.000

0.037 0.075 0.112 0.150 0.188 0.225 0.262 0.300 0.333 0.375
embedding capacity
«=@==Baboon e=@==Barbara ==@=lake Lena «==@=Man ==@=Peppers

Figure D.1.4. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man
and Peppers images with H matrix size 64x128. PSNR of approximate image is
constant with different selection ratio . .
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Appendix E. Relation between PSNR of Decoded Image and
Embedding Capacity

Appendix E.1. Screen shots for 3 runs using 3 different H matrices with size

16x%32

Results from Appendix A.4 line 49 — 50 shows the PSNR of decoded image and
decoding time.

Table E.1.1. Screen shot for the run 1 using H matrix with size 16x32. Output

from

Decoded PSNR
'na’ 0.1 '0.2' '0.3' '0.4' '0.5' '0.6' 0.7 0.8 '0.89" "1.0"
'‘Baboon.bmp' 45,25839| 46.55473| 44.60898| 34.26136| 32.19933| 31.61076| 28.94002| 28.23797| 28.16623| 27.55462
'‘Barbara.bmp’ 60.172| 44.48999| 31.20674| 29.11009| 28.90744| 29.05266| 29.22729| 29.1169| 28.74186| 26.39265
'Lake.bmp’ 49.75808| 46.36989| 49.38019| 40.77681 40.086( 39.13397( 38.32509( 37.97092( 37.69227| 36.65018
'Lena.bmp’ Inf Inf 57.1617 41.3071| 41.25106| 41.19573| 41.08715| 40.98122( 40.04363( 38.15803
‘Man.bmp' 52.39049| 50.62958| 46.94981| 40.58159| 41.25106| 41.84691| 41.53877| 39.64122| 39.41653| 38.15803
'Peppers.bmp’ 41.3071| 41.78351| 40.34929( 37.59522( 37.76651( 36.63092( 35.92319( 35.48853( 35.2444( 34.59693

Decoding time
'na’ '0.1' '0.2' '0.3' '0.4' '0.5' '0.6' '0.7' '0.8' '0.89' "1.0'
'‘Baboon.bmp' 4.553346| 7.207947| 9.989396| 24.04089| 26.73861| 32.92438| 50.53063| 55.12887| 62.12613| 72.29037
'‘Barbara.bmp' 2.95727| 6.388064| 21.13061( 30.00963( 31.27537| 33.43192( 32.38402( 38.44484( 40.66086( 57.35785
'Lake.bmp’ 3.116078| 4.173732| 6.765961( 9.34774| 9.747093| 12.05504| 17.25501| 19.49169( 22.86653| 24.91006
'Lena.bmp’ 3.135189| 4.297842| A.758447( 9.275991( 11.31722( 14.29564( 14.79261( 17.72381( 20.01436( 22.7438
'Man.bmp' 3.169711| 6.058579| B.198942( 12.76935( 14.84527( 17.43823( 18.35466( 20.01948( 24.66623( 25.50749
'Peppers.bmp’ 4.518196| 6.389718| 7.994263| 10.5923| 12.50944( 14.53996| 19.27694| 20.96444| 25.20058| 26.02837
Table E.1.2. Screen shot for the run 2 using H matrix with size 16x32

Decoded PSMR
'na' 0.1' '0.2' ‘0.3 '0.4' 0.5 '0.6' 0.7 '0.8' '0.89' "1.0'
'‘Baboon. 45.54802( 43.54443| 41.91126( 33.1305| 32.39049( 31.09789| 28.04912| 27.67757| 27.51439| 27.34125
'‘Barbara.y  57.1617| 46.1926| 31.04978| 28.82386| 29.08635| 28.87188| 28.87188| 28.85201| 28.78266| 26.741806
'Lake.bmp 41.19573| 45.85837( 44.48999| 39.79774| 40.62958| 37.76651| 37.38447| 37.29399| 37.0757| 37.03333
'Lena.bmpginf 60.172( 55.40079| 41.1411| 41.03386| 39.60295| 40.98122| 40.72718| 40.21565| 37.94484
‘Man.bmpg  51.1411| 45.85837( 46.36989| 41.1411| 42.04287( 40.62958| 39.71877| 35.30841| 38.46939| 37.43042
'Peppers.} 39.23779| 40.12879( 40.98122| 37.50029| 37.57129( 37.14004| 34.78124| 35.1341| 34.8957| 34.46657

Decoding time
'na' ‘0.1 '0.2' 0.3 ‘0.4' ‘0.5 '0.6" ‘0.7 ‘0.8 '0.89" 1.0'
'Baboon.n 5.473112| 7.181073( 9.281864| 23.15091| 25.84418( 36.93274| 60.68582| 74.82411| 80.83109| 87.86073
'‘Barbara.n 3.433396| 7.012335( 24.95245| 36.99691| 38.98896( 40.91105| 45.33478| 45.3304| 48.92857| 71.40598
‘Lake.bmpg 3.968241| 6.032774| 7.74554| 12,18162| 14.60098| 19.20528| 21.36327| 25.12496| 28.81613| 29.8336
'lena.bmp 3.12614( 5.311592| 7.915263| 11.27973| 13.54071( 17.29732| 18.59696| 21.39393| 23.99623( 26.00923
'‘Man.bmp 3.716287| 6.631338 9.5647| 13.42476| 15.66311( 19.45844| 22.12255| 26.07359| 29.55342( 32.53696
'Peppers.j 4.782635| 6.76876| 8.413011| 12.35968| 14.70538| 18.63446| 22.39591| 24.38323| 28.77215| 30.25371
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Table E.1.3. Screen shot for the run 3 using H matrix with size 16x32

Decoded PSNR

'na’ 0.1 '0.2' '0.3' '0.4' '0.5' '0.6' 0.7 '0.8' '0.89' "1.0'

'Baboon.bmp' 43.1823| 41.84691 40.086| 34.07606( 32.03619| 30.91888| 29.1511| 28.26309| 27.91633| 27.23617
'‘Barbara.bmp' |Inf 42,1102 31.3071| 29.22729| 29.1169| 29.18211| 29.30841| 29.05602| 29.13739| 27.05023
'Lake.bmp’ 44.48999| 46.36989| 46.1926| 40.00167| 39.91854| 37.89314| 37.84204| 36.61174| 36.50864| 36.65018
'Lena.bmp’ Inf Inf Inf 41.53877| 41.1411| 39.41653| 40.82702| 40.04363| 39.2029| 37.97092
'Man.bmp' 50.172| 47.1617( 41.97656| 40.92921| 39.83777| 38.32509( 38.38223| 37.97092| 37.61928| 37.0757
'Peppers.bmp’ | 41.08715| 41.1411( 40.58159| 36.99137| 36.76756| 36.17527| 34.96062| 34.75621| 34.96062| 34.16227

Decoding time

'na’ 0.1 '0.2' '0.3' '0.4' '0.5' '0.6' 0.7 '0.8' '0.89' "1.0'

'‘Baboon.bmp' 3.753821| 6.264045| 11.1543| 22.82801| 32.70518| 3B.7568| 56.1913 65.95| 70.86365| 83.38525
'‘Barbara.bmp’ 3.430226| 6.708176| 23.98624| 36.00612| 3B8.82556| 40.98383| 43.04409| 45.90643| 48.72464| 69.09038
'Lake.bmp’ 3.856352| 6.1065944( 8.791316| 12.53488| 15.02886| 18.28211| 21.29641| 25.49636| 28.93823| 31.1276
'Lena.bmp’ 3.275215| 5.120785( 8.149749| 11.72423| 13.9922| 17.05403| 18.7478| 21.82527| 23.96893| 26.54119
'Man.bmp' 3.252687| 6.791309( 9.73734| 12.51106| 15.89959| 18.77812| 21.17931| 23.2423| 27.41695| 30.79951
'Peppers.bmp’ | 4.508908| 6.921923( 8.99801| 12.45671| 14.91977| 17.75208| 20.89691| 24.79863| 26.52282| 28.06354

Appendix E.2, Average PSNR of decoded image and average decoding time for

each image.

Figure E.2.1. Screen shot for PSNR of decoded image and decoding time for

baboon in each run
Decoded PSNR

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6" '0.7" '0.8' '0.89' "1.0'
runl 45.25839| 46.55473| 44.60838( 34.26136| 32.19933| 31.61076| 28.94002| 28.23797| 28.16623| 27.55462
run 2 45.54802| 43.54443| 41.91126| 33.1305| 32.39049| 31.09789| 28.64912| 27.67757| 27.51439| 27.34125
run 3 43.1823| 41.84691 40.086| 34.07606| 32.03619| 30.91888| 29.1511| 28.26308| 27.91633| 27.23617
avg 44.6629| 43.98202| 42.20208| 33.82264| 32.20867| 31.20918| 28.91341| 28.05954| 27.86565| 27.37735

decoding time

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6" '0.7' '0.8' '0.89' "1.0'
runl 4.553546| 7.207947| 9.980396( 24.04083| 26.73861| 32.92438| 50.53063| 55.12887| 62.12613] 72.29037
run 2 5.473112| 7.181073| 9.281864| 23.15091| 25.84418| 36.93274| 60.68582| 74.82411| 80.83109| 87.86073
run 3 3.753821) 6.204045| 11.1543| 22.82801| 32.70518| 38.7363| 56.1913 65.95| 70.863063| 83.38323
avg 4.593493| 6.884355| 10.14185( 23.33994| 28.42932| 36.20464| 55.80259| 65.30099| 71.27362| 81.17873
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Figure E.2.2. Screen shot for PSNR of decoded image and decoding time for
barbara in each run

Decoded PSMR

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6' '0.7' '0.8' '0.89" "1.0'
runl 49.75808| 46.365983( 49.38019| 40.77681 40.086| 39.13397| 38.32509| 37.97092| 37.69227| 36.65018
run2 41.19573| 45.85837( 44.48999| 39.79774| 40.62958| 37.76651| 37.38447| 37.29399| 37.0757| 37.03333
run3 44.48999| 46.36989( 46.1926| 40.00167| 39.91894| 37.89314| 37.84204| 36.61174| 36.90864| 36.65018
avg 45.14793| 46.19935( 46.68759| 40.19207| 40.21151| 38.26454| 37.85053| 37.29222| 37.22554| 36.7779

decoding time

'0.1' '0.2' '0.3' '0.4" '0.5' '0.6' 0.7 '0.8' '0.89" "1.0'
runl 3.116078| 4.173732| 6.765961| 9.34774( 9.747098| 12.05504| 17.25501| 19.49169| 22.86653| 24.91006
run2 3.968241| 6.032774| 7.74354| 12.18162| 14.60098| 19.20528| 21.36327| 25.12496| 28.31613| 239.8336
run3 3.856352| 6.106944| 8.791316| 12.53488( 15.02886| 18.28211| 21.29641| 25.49636| 28.93823| 31.1276
avg 3.64689| 5.437817( 7.767606| 11.35475| 13.12565| 16.51414| 19.97156 23.371| 26.87363| 28.62442

Figure E.2.3. Screen shot for PSNR of decoded image and decoding time for Lake

in each run
Decoded PSMR

'0.1' '0.2' '0.3' '0.4' '0.5" '0.6' '0.7' '0.8' '0.89' "L.0'
runl 495.75808| 46.36989| 49.38019| 40.77681 40.086| 39.13397| 38.32509| 37.97092| 37.69227| 36.65018
run2 41.19573| 45.85837| 44.48999| 39.79774| 40.62958| 37.76651| 37.38447| 37.29399| 37.0757| 37.03333
run3 44.48999| 46.36989| 46.1926| 40.00167| 39.918%94| 37.89314| 37.84204| 36.61174| 36.90864| 36.65018
avg 45.14793| 46.19938| 46.68759| 40.19207| 40.21151| 38.26454| 37.85053| 37.29222| 37.22554| 36.7779

decoding time

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6' '0.7' '0.8' '0.89' '1.0'
runl 3.116078| 4.173732| 6.765961( 9.34774| 9.747098| 12.05504| 17.25501| 19.49169| 22.86653| 24.91006
run2 3.968241| 6.032774| 7.74554( 12.18162| 14.60098| 19.20528| 21.36327| 25.12496| 28.81613| 29.8356
run3 3.856352| 6.106944| 8.791316( 12.53488| 15.02886| 18.28211| 21.29641| 25.49636| 28.93823| 31.1276
avg 3.04689| 5.437817| 7.767006| 11.353475| 13.12503| 16.51414| 19.97136 23.371| 26.87363| 28.02442

Figure E.2.4. Screen shot for PSNR of decoded image and decoding time for Lena
in each run

Decoded PSNR
0.1' '0.2' '0.3' '0.4" '0.5' '0.6' 0.7 '0.8' '0.89" "1.0'
runl Inf Inf 57.1617| 41.3071( 41.25106( 41.19573| 41.08715| 40.98122| 40.04363| 38.15803
run2 Inf 60.172| 55.40079| 41.1411| 41.03386( 35.600295| 40.98122| 40.72718| 40.21565| 37.944584
run3 Inf Inf Inf 41.53877| 41.1411| 39.41653| 40.82702| 40.04363| 39.2029| 37.97092
avg INF 60.172| 56.28125| 41.32899| 41.14201| 40.07174| 40.96513| 40.58401| 39.82073| 38.0246

decoding time

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6' '0.7' '0.8' '0.89' '1.0'
runl 3.135189| 4.297842| 4.758447| 9.275991| 11.31722| 14.29564| 14.79261| 17.72381| 20.01436| 22.7438
run2 3.12614| 5.311592| 7.915263| 11.27973| 13.54071| 17.29732| 18.59696| 21.39393| 23.99623| 26.00923
run3 3.275215| 5.120785| 8.149749| 11.72423| 13.9922| 17.05403| 18.7478| 21.82527| 23.96893| 26.54119
avg 3.178848| 4.910073| 6.941153| 10.75998| 12.95004| 16.21566| 17.37912| 20.31434| 22.65984| 25.09807
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Figure E.2.5. Screen shot for PSNR of decoded image and decoding time for Man

in each run
Decoded PSMR

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6' '0.7' '0.8' '0.89' '1.0'
runl 52.39049| 50.62958( 46.94981| 40.58159| 41.25106| 41.84691| 41.53877| 39.64122| 39.41653| 38.15803
run2 51.1411| 45.85837| 46.36989| 41.1411| 42.04287| 40.62958| 39.71877| 39.30841| 38.46933| 37.43042
run3 50.172| 47.1617| 41.97656| 40.92921| 39.83777| 38.32509| 38.38223| 37.97092| 37.61928| 37.0757
avg 51.23453| 47.88322( 45.09876| 40.88397| 41.0439| 40.26719| 39.87993| 38.97352| 38.50173| 37.55472

decoding time

'0.1' '0.2' '0.3' '0.4' '0.5' '0.68' '0.7' '0.8' '0.89" '1.0'
runl 3.169711| 6.058579| 8.198942| 12.76935| 14.84527| 17.43823| 18.35466| 20.015948| 24.66623| 25.50743
run2 3.716287| 6.631338 9.5647| 13.42476| 15.66311| 19.45844| 22.12255| 26.07359| 29.55342| 32.53696
run3 3.252687| 6.791309| 9.73734| 12.51106( 15.89959| 18.77812| 21.17931| 23.2423| 27.41695| 30.79951
avg 3.379562| 6.493742| 9.166994| 12.90172| 15.46932| 18.55827| 20.55217| 23.11173| 27.2122{ 29.61465

Figure E.2.6. Screen shot for PSNR of decoded image and decoding time for
Peppers in each run
Decoded PSNR

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6' '0.7' '0.8' '0.89' '1.0'
runl 41.3071| 41.738351) 40.34929| 37.539522| 37.76651| 36.63092| 353.92319| 35.48833| 33.2444] 34.39693
run2 39.23779| 40.12879| 40.98122| 37.50029( 37.57129| 37.14004| 34.78124| 35.1341| 34.8957| 34.46657
run3 41.08715| 41.1411( 40.58159| 36.99137| 36.76756| 36.17527| 34.96062( 34.75621| 34.96062| 34.16227
avg 40.54401| 41.0178( 40.63737| 37.36229| 37.36845| 36.64874| 35.22168| 35.12628| 35.03358| 34.40859

decoding time

'0.1' '0.2' '0.3' '0.4' '0.5' '0.6' 0.7 '0.8' '0.89' "1.0'
runl 4.518196| 6.389718( 7.994263| 10.5923| 12.50944| 14.53996| 19.27654( 20.96444| 25.20058| 26.02837
run2 4.782635| 6.76876( 8.413011| 12.35968| 14.70538| 18.63446| 22.39591| 24.38323| 28.77215| 30.25371
run3 4.508908| 6.921923( 8.93801| 12.45671| 14.91977| 17.75208| 20.89691| 24.73863| 26.52282| 28.06354
avg 4.603247| 6.693467( 8.468428| 11.8029| 14.04486| 16.9755| 20.85659| 23.3821| 26.83185| 28.1152
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Appendix F. Relation between H Matrix Size and PSNR of Decoded

Image
Appendix F.1. 9 H matrices are constructed using Gallager method.

Appendix F.1.1 H matrices for first run

4x8

}

11110000

00001111

01110100
111100000O0O0O0O0O0O0TO
00001111 000O0O0O0O0O0O0
0 000O0O0OO0OO111100O0O0T0 0

1 0001011

{

8x16

0 000OO00O0O0O0OO0OOO0OO11IT1I11

100010100O0O0O0O01O0O0

0 000O01O0O0OO0OO0O1O0O0OO0T11

001 000O0OO0O1O0O0O11QO0O00

01 010001O01O0O0O0OO0OO0OTPO
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Appendix F.2. PSNR of decoded image for each run

The results of the following tables are from Appendix A.3 line 48

Table F.2.1. Screen shot of run 1 for PSNR of decoded image

Gallager Runl

image AxE 8x16 16v32 32x64 6Ax128 128256 |256x512 |(512x1024 (1024x2048
'‘Baboon.bmp' | 23.12707| 26.79541| 28.98605| 29.93536| 34.90861| 37.71688|Inf Inf Inf
'‘Barbara.bmp' | 24.20823| 28.11184| 30.46385| 31.09789| 36.57365| 40.82702|Inf Inf Inf
'Lake.bmp' 30.85742( 35.05317| 38.41109| 35.03257| 45.1205| 48.71072|Inf Inf Inf
‘Lena.bmp’ 32.64384( 37.31643| 39.71877| 40.77681| 46.55473| 51.1411(Inf Inf Inf
'Man.bmp' 30.32223( 34.51353| 37.59522| 38.02356| 44.37417| 46.36989(Inf Inf Inf
'Peppers.omp’| 30.51528| 35.1205| 37.69227| 37.89314| 44.04416( 53.1B23|Inf Inf Inf
Table F.2.2. Screen shot of run 2 for PSNR of decoded image.

Gallager Run 2
image Axg 8«16 1ov32 32xp4d 64x128 |128x256 |256x512 |512x1024 |1024x2048
'Baboon.bmp' | 24.69795| 25.60076| 31.8278| 36.28034| 42.1102|Inf Inf Inf Inf
'‘Barbara.bmp' | 25.74877| 26.83149| 34.20603| 39.41653| 50.62958|Inf Inf Inf Inf
'Lake.bmp' 32.33297| 33.65922| 49.38019( 54.1514|Inf Inf Inf Inf Inf
'Lena.bmp' 34.42012| 35.93954| 52.39049|Inf Inf Inf Inf Inf Inf
'Man.bmp' 31.98315| 33.30564| 47.38447| 54.1514|Inf Inf Inf Inf Inf
'Peppers.bmp’| 32.09665| 33.44179| 45.40079| 55.40073|Inf Inf Inf Inf Inf
Table F.2.3. Screen shot of run 3 for PSNR of decoded image.

Gallager Run 3
image Ax3 8x16 16v32 32x04 64x128 |128x256 |256x512 (512x1024 |1024x2048
'‘Baboon.bmp' | 24.69795| 26.09979| 28.62472| 30.4085| 43.63988|Inf Inf Inf Inf
'‘Barbara.bmp' | 25.74877| 27.14869| 25.93125| 34.23914( 52.39049| 54.1514|Inf Inf Inf
'Lake.bmp’ 32.33297| 33.91888( 39.71877| 43.45102|Inf Inf Inf Inf Inf
'Lena.bmp’ 34.42012| 36.1926| 43.54443| 48.1308(Inf Inf Inf Inf Inf
'Man.bmp' 31.98315| 33.79711| 3B8.64912| 42.39045(Inf Inf Inf Inf Inf
'Peppers.bmp'| 32.09665| 33.46954| 39.56503| 45.40079|Inf Inf Inf Inf Inf
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Appendix F.4. Decoding time for each run.

The results of the following tables are from Appendix A.3 line 49

Table F.4.1. Screen shot of run 1 for decoding time for six images.
Gallager Runl

image Axg Bx16 16v32 32xp4 64x128 128x256 |256:x512 |(512x1024 |1024x2048
'‘Baboon.bmp' | 10.47673( 54.14742| 102.472| 321.3167| 422.6088| 867.914| 1267.343| 3007.546| 6701.473
'‘Barbara.bmp' | 10.68511| 49.52742| 96.92752| 293.352| 406.9153 716.45| 1203.991| 2647.709| 6014.362
'Lake.bmp' 10.35693| 21.95986( 39.29046| 98.06526| 143.7532 278.65| 874.0114| 1997.799| 3943.389
'Lena.bmp' 9.302672| 18.90812( 33.41373| 76.17266| 134.4695| 222.5902| 782.9538| 1836.171| 4030.259
'Man.bmp' 9.787246| 22.3549| 38.03738| 97.39861| 146.7786| 300.4301| 892.0185| 1944.709| 3992.399
'Peppers.omp’ | 10.0224a( 21.81069| 41.06283| 101.9598| 156.7987| 221.8305| 912.3776| 2005.541| 3955.913
Table F.4.2. Screen shot of run 2 for decoding time for six images.
Gallager Run2
image dxd 8x16 16v32 32xb4 64x128 |128=256 |236x512 |512x1024 |1024x2043
'‘Baboon.bmp' | 38.56491( 50.08845| 61.60266| 106.3889| 246.3277| 512.4624| 1104.598| 2718.944| 6355.402
'‘Barbara.bmp' | 29.01061( 48.25352| 59.33074| 112.0737| 263.2507| 538.3843| 1114.911| 2404.545| 5554.317
'Lake.bmp’ 14.63632| 22.23997| 28.22339| 59.68289| 149.1373| 367.0309| 879.5724| 2013.097| 4085.283
'Lena.bmp’ 14.17402| 19.32453| 27.76404| 56.43714| 135.0534| 311.2852| 793.9917| 1833.284| 3526.428
'Man.bmp' 15.63008| 22.08051| 30.51494| 62.6272| 159.2285| 372.3432| 899.5021| 1998.015| 4054.955
'Peppers.bmp' | 15.50616( 22.82836| 29.8847| 62.65376| 158.9159| 367.9129| 888.3298| 1953.765| 4070.833
Table F.4.3. Screen shot of run 3 for decoding time for six images.
Gallager Run 3

image AxE 8x16 lov32 32x64 B64x128 128x256 |256x512 |512x1024 (1024x2048
'‘Baboon.bmp' 35.9228| 78.82967| 110.3673| 181.9725| 300.8356| 396.8973| 1308.089| 2884.198| 6322.043
'‘Barbara.bmp' 29.5108| 65.07362| 85.37798| 136.662| 254.1145| 545.5668| 1138.593| 2391.63| 5542.89
'Lake.bmp' 14.56222| 25.69115| 34.45064| 65.24599( 144.4779| 339.4831| 814.0754| 1858.856| 3613.74
'Lena.bmp' 11.64157| 19.01288| 25.70931| 51.2655| 108.7579| 256.2376| 636.2363| 1542.868| 3282.807
‘Man.bmp' 13.56617| 23.13476| 31.60919| 55.58722| 127.8655| 304.1008| 738.9555| 1914.146| 4013.5%4
'Peppers.bmp' | 14.20992| 26.59643| 34.92618| 64.4915| 153.1474| 358.1463| 871.5793| 1923.503| 3B874.55
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Appendix G. Results of Our Implementation for All Images

@ 0

(€)

Figure G.1: (a) The Original Image Baboon. (B) The Encrypted Image (Stage 1). (C)
Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2).
(E) The Difference Between The Original And The Approximate Images. (F)
Perfectly Recovered Image (Stage3, Option3).
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(e) (f)

Figure G.2: (a) The Original Image Barbara. (B) The Encrypted Image (Stage 1). (C)
Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2).
(E) The Difference Between The Original And The Approximate Images. (F)
Perfectly Recovered Image (Stage3, Option3).
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Figure G.3: (a) The Original Image Lake. (B) The Encrypted Image (Stage 1). (C)
Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2).
(E) The Difference Between The Original And The Approximate Images. (F)
Perfectly Recovered Image (Stage3, Option3).
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Figure G.4: (a) The Original Image Man. (B) The Encrypted Image (Stage 1). (C)
Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2).
(E) The Difference Between The Original And The Approximate Images. (F)
Perfectly Recovered Image (Stage3, Option3).
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Figure G.5: (a) The Original Image Peppers. (B) The Encrypted Image (Stage 1). (C)
Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2).
(E) The Difference Between The Original And The Approximate Images. (F)
Perfectly Recovered Image (Stage3, Option3).
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