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ABSTRACT 

In this thesis, we implemented and investigated Qian-Zhang reversible data hiding 

scheme proposed in 2016. Qian-Zhang scheme uses Slepian-Wolf encoding based on 

Low-Density Parity-Check (LDPC) codes to compress  selected most significant bits 

(MSB) from an encrypted image to vacate room for embedding additional data. 

Compressing process depends on LDPC matrix, H, r<n, where r is number of rows 

and n is number of columns. After extracting embedded data, the original image can 

be recovered by applying iterative decoding algorithm. We found that the quality of 

the recovered image depends on the construction method, size, and ratio R=r/n. We 

implemented Qian-Zhang scheme using H matrices constructed by two methods, 

Gallager and MacKay-Neal, having different sizes and ratios. We evaluated Qian-

Zhang scheme with these matrices using decoding time, embedding capacity, and 

quality of the recovered image, approximate and decoded, by Peak Signal-to-Noise 

Ratio (PSNR). We get a formula for embedding capacity dependence on the number 

of bits to be compressed and value of R. In addition, we investigated relation between 

PSNR of an approximate image and embedding capacity. Changing of the embedding 

capacity does not affect PSNR of the approximate image. Since we used other H 

matrices than the one used by Qian-Zhang, we obtained not exactly same PSNR and 

embedding capacity but close to the values of Qian-Zhang. In addition, we investigated 

the PSNR of decoded image when decoding fails. The PSNR decreases when the 

embedding capacity increases.  

We found that fixing ratio, R, and increasing size of H  leads to the increase of the 

PSNR of the recovered image.  On the other hand, the time of decoding increases with 
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the matrix size growth. These results may be used for choosing suitable H matrix size 

to meet specified decoding time. We investigated relation between the ratio, R , and 

embedding capacity. Decreasing of R leads to the increase of the embedding capacity. 

We investigated relation between R and PSNR of the decoded image. Decreasing of R 

leads to the decrease of the PSNR. Our results show better embedding capacity than 

that in the Qian-Zhang’s paper due to the use of different size H  matrices.  

Keywords: Reversible data hiding, Slepian-Wolf encoding, Low-Density Parity-

Check (LDPC) code, LDPC matrix , Most Significant Bit (MSB),  Distributed Source 

Decoding (DSD), Selection ratio, Embedding capacity, Host image, Approximate 

image, Decoded image, Peak Signal-to-Noise Ratio (PSNR). 
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ÖZ 

Bu tezde, Qian-Zhang tarafından 2016 yılında önerilen geri dönüşümlü veri gizleme 

düzeni uygulanmış ve incenlenmiştir. Qian-Zhang düzeni, Düşük Yoğunluklu Eşlik 

Kontrolünü (LDPC) baz alan Slepian-Wolf kodlama yöntemini kullanmıştır. Bu 

yöntemde, LDPC matrisi, r nH  ,  r n  (r satır sayısı ve n sütun sayısı) kullanılarak ek 

veri gömme işlemi için yer açmak amacı ile şifrelenmiş görüntüden seçilen en önemli 

bitler (MSB) sıkıştırılmıştır. Gömülmüş veri çıkartıldıktan sonra, orijinal görüntü 

yinelemeli kod çözme algoritması uygulayarak kurtarılabilir. Kurtarılan görüntünün 

kalitesinin yapı yöntemine, H matrisinin büyüklüğüne ve /R r n  oranına bağlı 

olduğunu tespit ettik. Gallager ve MacKay-Neal yöntemleri kullanılarak oluşturulan 

farklı boyut ve orandaki H matrislerini kullanarak Qian-Zhang düzenini uyguladık. Bu 

matrisleri kullanarak, Qian-Zhang düzenini, çözülme süresi, gömme kapasitesi ve 

kurtarılan görüntünün kalitesini yaklaşık olarak ve çözülmüş olarak, Tepe Sinyal-

Gürültü Oranı (PSNR) kullanarak değerlendirdik. Gömme kapasitesinin sıkıştırılacak 

bit sayısı ve R değerine bağımlılığı ile ilgili bir formül elde ettik. Buna ek olarak 

yaklaşık görüntü PSNR'si ve gömme kapasitesi arasındaki ilişkiyi araştırdık. Gömme 

kapasitesinin değiştirilmesi, yaklaşık görüntünün PSNR'sini etkilemediğini gördük. 

Qian-Zhang tarafından kullanılanlardan daha farklı H matrisleri kullandığımızdan, 

PSNR ve gömme kapasitesi tam olarak Qian-Zhang sonuçları ile aynı değildi fakat 

yakındı. Buna ek olarak, kod çözme başarısız olduğunda şifresi çözülmüş görüntünün 

PSNR'sini araştırdık. Gömme kapasitesi arttıkça PSNR değerinin azaldığını 

gözlemledik. 
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Elde edilen sonuçlara göre, R oranının sabitlenmesi durumunda H’nin boyutunun 

artırılması kurtarılan görüntünün PSNR'sinin arttığını gördük. Öte yandan, şifre çözme 

süresinin, matris boyutuna göre büyümesini gözlemledik. Bu sonuçlar, belirtilen kod 

çözme süresini karşılamak için uygun H matris boyutunu seçmek için kullanılabilir. 

Seçme oranı, R ve gömme kapasitesi arasındaki ilişkiyi araştırdık. R'nin azalması 

gömme kapasitesinin artmasına yol açar. Çözülen görüntüdeki R ve PSNR arasındaki 

ilişkiyi araştırdık. R'nin azalması PSNR'nin azalmasına neden olur. Sonuçlarımız farklı 

boyutlardaki H matrislerinin kullanılması nedeniyle Qian-Zhang'ın sonuçlarından 

daha iyi gömme kapasitesi göstermektedir. 

Anahtar Kelimeler: Geri döndürülebilir veri gizleme, Slepian-Wolf kodlaması, 

Düşük yoğunluklu eşlik kontrolü kodu, LDPC matrisi, En önemli bit, Dağıtılmış 

kaynak kod çözme, Seçme oranı, Gömme kapasitesi, Kaplama resmi, Yaklaşık 

görüntü, Çözülmüş görüntü, Tepe sinyal-gürültü oranı. 
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Chapter 1 

INTRODUCTION 

Reversible Data Hiding (RDH) is a technique of fully recovering a host image after 

extracting embedded secret data. RDH has been emerged in the last few years in many 

areas such as military and medical reports [2].  Qian and Zhang [1] proposed an RDH 

scheme that embeds secret data in an encrypted gray scale image using Slepian-Wolf  

encoding [3] based on LDPC matrix, H. Qian-Zhang scheme [1] is used in [4] [5] [6] 

[7] [8]. 

Qian-Zhang scheme [1] encrypts an original gray scale image, O, using a stream cipher 

encryption with an encryption key, KENC. Then, with a selection key, KSL, a data hider 

chooses the Most Significant Bits (MSBs) of the encrypted image depending on a 

selection ratio, α. These selected bits are scrambled using a shuffle key, KSF. Then, the 

room for embedding secret data is vacated using Low Density Parity Check Codes 

(LDPC) matrix [9] , H, r < n  , where r is number of rows and n is number of columns, 

by compressing the selected MSBs. The secret data bits are embedded in the vacated 

room.  

On the receiver side, using both selection key KSL and shuffle key KSF, the embedded 

secret data bits are extracted perfectly. Having an encryption key, KENC, the 

approximated original image, Oapprox, is constructed using the bilinear interpolation. 
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The original image, O, can be recovered perfectly using Oapprox, compressed bits, and 

H matrix via iterative decoding method. 

In this thesis, we implemented and investigated Qian-Zhang method [1]. We found by 

experiments that the time of decoding, and the quality of the recovered image depend 

on the size of H matrix and the matrix generation method. The matrix H is not exactly 

specified neither in [1], nor in its reference [10]. Thus, we have generated different H 

matrices using two different construction methods: Gallager [11] and MacKay-Neal 

[12], and conducted experiments to evaluate the performance of the method [1]. We 

evaluated our matrices using decoding time, embedding capacity, and quality of the 

recovered image (Peak Signal-to-Noise Ratio (PSNR) of the approximate and decoded 

images).  

Our experiments show that matrices generated using Gallager construction method 

have better decoding time than for MacKay-Neal method. Thus, we use Gallager 

method for conducting experiments specified in [1] and in extensions of these 

experiments. By rerun experiments specified in [1], we obtained the following two 

results which comply with results in [1]: 

1. Approximate image construction does not depend on the secret data or embedding 

capacity.  

2. When decoding fails, there is inverse relation between embedding capacity and 

PSNR of the decoded image. 

To extend experiments in [1], we generated different H  matrices with different ratios, 

R= r / n ∈{0.5, 0.3, 0.25, 0.2}. We found inverse relation between embedding capacity 

and ratio, R. We also conducted and experiment by fixing R=0.5 and generating 9 
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different matrices with sizes 4 8,8 16,...,1024 2048   ; we found a proportional 

relation between the matrix size and the PSNR of the decoded image and decoding 

time. These results may be used for choosing suitable H matrix size to meet specified 

decoding time. 

Results obtained on the PSNR and time dependence on the matrix size may be used 

for making decisions on the Qian-Zhang scheme [1] parameters selection that is not 

done in [1].  In addition, these results are used in comparison with the other methods 

to evaluate the performance of the proposed method [1] with our extended 

experiments.  

The remaining part of the thesis is organized as follows. Chapter 2 indicates the recent 

studies about RDH methods which are used for comparison and the problem definition. 

Chapter 3 explains the Qian-Zhang scheme implementation. In Chapter 4, the 

experimental settings and results are discussed. Finally, in the last Chapter 5, the study 

is concluded. Appendices contains codes implementing the scheme and results of the 

experiments conducted. 
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Chapter 2 

RELATED WORK AND PROBLEM DEFINITION 

In this chapter we explain in details the Qian-Zhang scheme [1] which we implemented 

and investigated. In addition, we briefly explain RDH schemes [2], [6], [13], [14] that 

we compare our results with. 

2.1 Qian-Zhang RDH Scheme 

Qian-Zhang [1] scheme is divided into three stages: encryption, data hiding, and data 

extraction and image recovery. Figure 1 illustrates Qian-Zhang scheme. Encryption 

stage occurs at the sender side, data hiding stage occurs at the data hider side, while 

data extraction and image recovery stage occurs at the receiver side. 

2.1.1 Stage 1:  Image Encryption Details 

This stage occurs at the sender side. Sender is assumed to use an original gray scale 

image, O, with size X×Y pixels, and the value of a pixel is between 0 and 255; both X 

and Y are power of two. 

Initially, the original image pixels, Oi, j, are converted into binary values as follows: 

𝑏𝑖,𝑗,𝑢  = ⌊𝑂𝑖,𝑗 2𝑢−1⁄ ⌋ 𝑚𝑜𝑑 2  (1) 

where 𝑏𝑖,𝑗,𝑢 is the u-th bit of ij-th pixel binary value, u = 1,2,…,8 

and  1 ≤ 𝑖 ≤ 𝑋,  1 ≤ 𝑗 ≤ 𝑌. 
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Stage 1: Encryption 

Encryption key,KENC

Original 

image, O

Encrypted

 image, EI

Approximate

 image
Extracted

 data

Recovered 

image

Marked encrypted 

Image. MEI

Stage 2: Data hiding

 Stage 3: Data extraction and 

image recovery

Selection 

key, KSL

Shuffle

 key, KSF

Selection 

ratio, α 

n

Hr×n

Secret

Data, SD

L, r

 
Figure 1: Qian-Zhang Scheme Stages. The Stages are: Encryption, Data Hiding, and 

Data Extraction and Image Recovery 

Sender uses the encryption key, KENC, of the size X×Y×8 to create encrypted bit stream 

as follows: 

𝑒𝑖,𝑗,𝑢 = 𝑏𝑖,𝑗,𝑢 ⊕ 𝐾𝐸𝑁𝐶𝑖,𝑗,𝑢
                                           (2) 

where 𝐾𝐸𝑁𝐶𝑖,𝑗,𝑢
 is the iju-th bit of the encryption key, KENC , 𝑒𝑖,𝑗,𝑢is the iju-th encrypted 

bit, and ⊕ denotes exclusive-or (XOR) operation, u = 1,2,…,8,  1 ≤ 𝑖 ≤ 𝑋, 1 ≤ 𝑗 ≤ 𝑌. 

 Encryption key, KENC, construction is not clearly specified in [1], hence, we define it 

as our implementation problem and generate it as specified in Section 4.2.  

Finally, encrypted bits are converted into pixel values to generate the encrypted image, 

EI, with the size of the original image, O, using (3): 
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𝐸𝐼𝑖,𝑗 =  ∑ 𝑒𝐼𝑖,𝑗,𝑢 . 2𝑢−18
𝑢=1                                                (3) 

where  EIi, j  are the  pixel  values  of  the  encrypted  image, EI, 1 ≤ 𝑖 ≤ 𝑋 , 1 ≤ 𝑗 ≤ 𝑌. 

Figure 2 illustrates image encryption described also by Algorithm 1.  Example 1 shows 

the steps of encryption. 

Convert image into binary 

strean

Encrypt (XOR) 

binary stream

Convert encrypted binary 

stream into encrypted image

8X Yb  

8X YeI  

Original image,

 O

Encryption key,KENC

Encrypted image, 

EI

 
Figure 2: Stage1: Image Encryption Details 

Example 1. Stage1: Encryption stage (Figure.1) example.  

Let’s consider an original grayscale image O with size 8×8 and encryption key KENC 

with size 64×8.  

Input:  

 Original image O 
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 Original image O : 

15 215 5 183 3 12 100 10

125 7 190 20 10 4 93 102

62 2 31 85 242 121 10 1

121 17 8 3 102 18 52 130

78 108 5 150 27 70 140 175

201 200 27 5 95 41 89 210

108 3 28 172 55 100 48 72

88 130 64 81 117 82 94 1

 
 
 
 
 
 
 
 
 
 
 
  

 

 

  

Algorithm 1. Stage1: Encryption (Figure 2) algorithm. 

Input:  

 X, Y: powers of 2; 

 O: the original image, sized X × Y; 

 KENC: encryption key of the size X × Y× 8.  

Output:  

 EI: encrypted image, sized X × Y. 

Steps: 

1. Convert pixels in O into binary values using equation (1). 

2. Encrypt the binary values with encryption key using equation (2). 

3. Convert the encrypted binary values into the pixel values using (3) to 

generate encrypted image EI with size X and Y. 
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 Encryption key KENC: 

1 1 0 1 0 1 0 0

1 0 0 0 1 0 1 1

0 1 1 0 0 0 0 1

0 1 0 0 0 1 1 1

0 0 0 0 0 0 0 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

0 0 0 0 0 0 1 1

1 0 1 1 1 0 1 1

0 0 1 1 1 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

Output: 

- EI: encrypted image, sized X × Y. 

Steps: 

1. Using (1), O is converted into binary values in row major order as follows:  

Binary stream: 

0 0 0 0 1 1 1 1

1 1 0 1 0 1 1 1

0 0 0 0 0 1 0 1

1 0 1 1 0 1 1 1

0 0 0 0 0 0 1 1

0 1 0 1 0 0 0 1

0 1 1 1 0 1 0 1

0 1 0 1 0 0 1 0

0 1 0 1 1 1 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

2. Binary stream is encrypted using encryption key KENC to obtain encrypted binary 

stream using (2). 
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Encrypted binary stream 

1 1 0 1 1 0 1 1

0 1 0 1 1 1 0 0

0 1 1 0 0 1 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0

1 0 0 1 1 1 0 0

0 1 0 1 0 0 0 1

1 1 1 0 0 1 0 1

0 0 1 1 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

3. Encrypted image EI is obtained by converting encrypted binary stream into pixel 

values with size X × Y. 

Encrypted image EI:

219 92 100 240 3 63 160 218

200 125 74 229 68 8 193 61

67 177 142 50 78 247 77 176

181 2 34 149 233 188 155 207

121 32 137 171 152 168 57 227

195 110 209 75 13 162 251 212

255 189 74 185 254 58 93 153

90 242 116 138 156 81 229 57

 
 
 
 
 
 
 
 
 
 
 
  

 

2.1.2 Stage 2: Data Hiding Details 

Data hider embeds secret data, SD, in the encrypted image EI by three phases:  

 Most Significant Bits (MSBs) selection,  

 Encoding and compressing, 

 Embedding secret data phase.  

Each phase will be described in details in next sections. Figure 3 shows the three 

phases of the Stage 2: Data hiding (Figure 1). In MSBs selection phase, MSBs in the 

encrypted image, EI, are collected. Using a selection key, KSL, respective number of 
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bits is selected. Then, the selected bits are shuffled using a shuffle key, KSF, to get 

shuffled bits, SHB. In encoding and compressing phase, the shuffled bits are divided 

into K groups, each group contains n bits. Then, these groups are encoded using binary 

H matrix with size r × n. In embedding phase, secret data are embedded into syndrome 

groups, SGs, and reverse shuffled using KSF to construct marked encrypted image, 

MEI.  

Most Significant Bits (MSBs) 

Selection

Encoding and 

Compressing

Embedding Secret 

Data

Encrypted image,

 EI  SHB

 SGs

Selection key, 

KSL

Shuffle key, 

KSFSelection 

ratio, α 

n Hr×n

Secret data,

SD

MEI

EI1,EI2,EI3,EI4

L

r

 
Figure 3: Stage 2: Data Hiding Details 

Most Significant Bits (MSBs) Selection Details 

In this phase, encrypted image EI is decomposed into 4 segments EI1, EI2, EI3, EI4 

defined by (4). Then, MSBs are collected from, EI2, EI3, EI4, forming collected bits, 

CB. After that, a number of bits, SB, are selected from collected bits, CB, using 

selection key, KSL, and selection ratio, α. Then, the selected bits, SB, are shuffled using 

KSF. Figure 4 shows diagram of Phase 1. 
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Decompose Collect bits

Select bitsShuffle bits

EI

Collected bits, CB

 Selected bits, SB

Shuffled bits, 

SHF

α KSL
 KSF

 EI2, EI3, EI4

EI1

L

 
Figure 4: Most Significant Bits (MSBs) Selection Phase Details 

Encrypted image EI is decomposed into four segments EI1, EI2, EI3 and EI4, each of 

them with size (X / 2) × (Y / 2) as follows: 

1( , ) (2 1,2 1)

2( , ) (2 1,2 )

3( , ) (2 ,2 1)

4( , ) (2 ,2 )

EI i j EI i j

EI i j EI i j

EI i j EI i j

EI i j EI i j

  


 


 
 

                      
1, 2, , / 2

1, 2, , / 2

i X

j Y




.                                     (4) 

Decompose (Figure 4) pseudo code is described in Algorithm 2 and Example 2 

illustrates the decomposing process (4).  

Algorithm 2. Pseudocode of the Decompose (Figure 4) an encrypted image into four 

segments 

Input: 

 X, Y: power of 2. 

 EI:  encrypted image, size X × Y. 

Output:  

 Segments, EI1, EI2, EI3, EI4, each of the size (X / 2) × (Y / 2). 

Steps: 

// Using MATLAB style pseudocode: 
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EI1(1:X/2,1:Y/2)=EI(1:2:X,1:2:Y);//odd rows and columns 

EI2(1:X/2,1:Y/2)=EI(1:2:X,2:2:Y);//odd rows and even columns 

EI3(1:X/2,1:Y/2)=EI(2:2:X,1:2:Y);//even rows and odd columns 

EI4(1:X/2,1:Y/2)=EI(2:2:X,2:2:Y);//even rows and columns 

Where a:b:c means x values such that: a<=x<=c, x=c+i×b. 

Example 2. Decompose (Figure 4) of an encrypted image into 4 segments. 

 Let’s consider encrypted image from Example 1. 

Input: 

Encrypted image EI with size 8×8  

 Encrypted image EI :

219 92 100 240 3 63 160 218

200 125 74 229 68 8 193 61

67 177 142 50 78 247 77 176

181 2 34 149 233 188 155 207

121 32 137 171 152 168 57 227

195 110 209 75 13 162 251 212

255 189 74 185 254 58 93 153

90 242 116 138 156 81 229 57

 
 
 
 
 
 
 
 
 
 
 
  

 

Output: 

 Segments  EI1, EI2, EI3, EI4 each of the size 4×4 (X / 2) × (Y / 2)  

Steps: 

1. Using (4), EI1 is obtained by taking the pixels in odd rows and odd columns of EI 

1st  row in EI1 is obtained by 1st  row  and 1st,3rd,5th,7th  columns of EI.  

2nd row in EI1 is obtained by 3rd row and  1st,3rd,5th,7th  columns of EI.  

3rd row in EI1 is obtained by 5th row and  1st,3rd,5th,7th  columns of EI.  

4th row in EI1 is obtained by 7th row and  1st,3rd,5th,7th  columns of EI. 

2. Using (4), EI2 is obtained by taking the pixels in odd rows and even columns of 

EI. 
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1st row in EI2 is obtained by 1st row and 2nd, 4th, 6th, 8th columns of EI. 

2nd row in EI2 is obtained by 3rd row and 2nd ,4th, 6th ,8th columns of EI.  

3rd row in EI2 is obtained by 5th row and 2nd ,4th, 6th ,8th columns of EI.  

4th row in EI2 is obtained by 7th row and 2nd ,4th, 6th ,8th columns of EI. 

3. Using (4), EI3 is obtained by taking the pixels in even rows and odd columns of 

EI. 

1st  row in EI3 is obtained by 2nd  row  and 1st,3rd,5th,7th  columns of EI.   

2nd row in EI3 is obtained by 4th row and 1st,3rd,5th,7th  columns of EI.  

3rd row in EI3 is obtained by 6th row and 1st,3rd,5th,7th  columns of EI.   

4th row in EI3 is obtained by 8th row and 1st,3rd,5th,7th  columns of EI. 

4. Using (4), EI4 is obtained by taking the pixels in even rows and even columns of 

EI. 

1st  row in EI4 is obtained by 2nd  row  and 2nd ,4th, 6th ,8th columns of EI.   

2nd row in EI4 is obtained by 4th row and 2nd ,4th, 6th ,8th columns of EI. 

3rd row in EI4 is obtained by 6th row and 2nd,4th, 6th ,8th columns of EI.  

4th row in EI4 is obtained by 8th row and 2nd,4th, 6th ,8th columns of EI. 

EI1:

219 100 3 160

67 142 78 77

121 137 152 57

255 74 254 93

 
 
 
 
 
 

 , EI2:

92 240 63 218

177 50 247 176

32 171 168 227

189 185 58 153

 
 
 
 
 
 

 

EI3:

200 74 68 193

181 34 233 155

195 209 13 251

90 116 156 229

 
 
 
 
 
 

, EI4: 

125 229 8 61

2 149 188 207

110 75 162 212

242 138 81 57

 
 
 
 
 
 

 

 

After segmentation, pixels of EI2, EI3 and EI4 are converted into binary values using 

(1). Then, Most Significant Bits (MSBs) of EI2, EI3 and EI4 are collected and 
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concatenated into one row vector. The total number of the collected bits, |CB|=3XY/4. 

Algorithm 3 describes Collect bits (Figure 4) of collecting MSBs of segments EI2, EI3 

and EI4. Example 3 shows Collect bits (Figure 4) example of MSBs collecting. 

Algorithm 3. Collect bits (Figure 4) // collect MSBs from EI2…EI4 

Input:  

 X, Y: power of two. 

 EI2, EI3, EI4: each of the size X/2 × Y/2 

Output:  

 CB (1:3XY/4): MSBs from EI2,…, EI4, CBi ∈ {1,0}  

Steps:   

1. Convert the pixels values in EI2, EI3, and EI4 into binary values.  

𝑧 = 1 

𝑓𝑜𝑟 𝑖 = 1: 𝑋 

𝑓𝑜𝑟 𝑗 = 1: 𝑌 

𝑓𝑜𝑟 𝑢 = 1: 𝑋 

𝑏𝑖𝑛𝑎𝑟𝑦𝐸𝐼2𝑧,𝑢 = ⌊𝐸𝐼2𝑗,𝑖/2𝑢−1⌋𝑚𝑜𝑑 2 

𝑏𝑖𝑛𝑎𝑟𝑦𝐸𝐼3𝑧,𝑢 = ⌊𝐸𝐼3𝑗,𝑖/2𝑢−1⌋𝑚𝑜𝑑 2 

𝑏𝑖𝑛𝑎𝑟𝑦𝐸𝐼4𝑧,𝑢 = ⌊𝐸𝐼4𝑗,𝑖/2𝑢−1⌋𝑚𝑜𝑑 2 

𝑧 = 𝑧 + 1 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

1. 2. Get the MSBs in each EI2, EI3, EI4 

𝑓𝑜𝑟 𝑖 = 1: 𝑋 × 𝑌 
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𝑀𝑆𝐵𝑖𝑛𝐸𝐼2[𝑖] = 𝑏𝑖𝑛𝑎𝑟𝑦𝐸𝐼2[𝑖, 8] 

𝑀𝑆𝐵𝑖𝑛𝐸𝐼3[𝑖] = 𝑏𝑖𝑛𝑎𝑟𝑦𝐸𝐼3[𝑖, 8] 

𝑀𝑆𝐵𝑖𝑛𝐸𝐼4[𝑖] = 𝑏𝑖𝑛𝑎𝑟𝑦𝐸𝐼4[𝑖, 8] 

𝑒𝑛𝑑 

2. 3. Concatenate the MSB bits from EI2, EI3, EI4 into row vector  [c1, c2, …, c|CB|] 

𝐶𝐵 = 𝑀𝑆𝐵𝑖𝑛𝐸𝐼2||𝑀𝑆𝐵𝑖𝑛𝐸𝐼3||𝑀𝑆𝐵𝑖𝑛𝐸𝐼4 

Example 3: Example of Collect bits (Figure 4) collecting MSBs from EI2, EI3, and 

EI4.  

Let’s consider EI2, EI3, and EI4 from Example 3 output. 

Input:  

 EI2, EI3, EI4, each of the size 4×4 (X / 2 × Y / 2)  

2:EI  

92 240 63 218

177 50 247 176

32 171 168 227

189 185 58 153

 
 
 
 
 
 

 

3:EI  

200 74 68 193

181 34 233 155

195 209 13 251

90 116 156 229

 
 
 
 
 
 

, 4:EI  

125 229 8 61

2 149 188 207

110 75 162 212

242 138 81 57

 
 
 
 
 
 

 

Output:  

 Collected bits CB (1:3XY/4) = CB (1:48)  

Steps: 

1. EI2 pixels values are converted into binary values 
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2binaryEI   

MSB                               LSB

0 1 0 1 1 1 0 0

1 0 1 1 0 0 0 1

0 0 1 0 0 0 0 0

1 0 1 1 1 1 0 1

1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 0

1 0 1 0 1 0 1 1

1 0 1 1 1 0 0 1
  

0 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1

1 0 1 0 1 0 0 0

0 0 1 1 1 0 1 0

1 1 0 1 1 0 1 0

1 0 1 1 0 0 0 0

1 1 1 0 0 0 1 1

1 0 0 1 1 0 0 1

 
 
 
 
 
 
 

















 



















 

2. MSBs are collected from binary EI2  

MSBs of EI2: 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1  

3. EI3 pixel values are converted into binary values 

3binaryEI   

MSB                               LSB

1 1 0 0 1 0 0 0

1 0 1 1 0 1 0 1

1 1 0 0 0 0 1 1

0 1 0 1 1 0 1 0

0 1 0 0 1 0 1 0

0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 1

0 1 1 1 0 1 0 0
 

0 1 0 0 0 1 0 0

1 1 1 0 1 0 0 1

0 0 0 0 1 1 0 1

1 0 0 1 1 1 0 0

1 1 0 0 0 0 0 1

1 0 0 1 1 0 1 1

1 1 1 1 1 0 1 1

1 1 1 0 0 1 0 1

 
 
 
 
 
 
 
 
















 


















 

 

4. MSBs are collected from binary EI3 

MSBs of EI3:  1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1  
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5. EI4 pixel values are converted into binary values 

4binaryEI = 

  MSB                               LSB

0 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0

0 1 1 0 1 1 1 0

1 1 1 1 0 0 1 0

1 1 1 0 0 1 0 1

1 0 0 1 0 1 0 1

0 1 0 0 1 0 1 1

1 0 0 0 1 0 1 0
   

0 0 0 0 1 0 0 0

1 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0

0 1 0 1 0 0 0 1

0 0 1 1 1 1 0 1

1 1 0 0 1 1 1 1

1 1 0 1 0 1 0 0

0 0 1 1 1 0 0 1

 
 
 
 




















 






















 

 

6. MSBs are collected from binary EI4 

MSBs of binary EI4:  0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0  

7. MSBs from EI2, EI3, EI4 are concatenated into one row vector: 

Collected bits CB 

 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0   

Consider now Select bits (Figure 4). Data hider fixes selection ratio α, where α is the 

selection ratio of the number of selected bits (SB) to the total collected bits (CB), where 

selection process of SB is done using selection key KSL according to selection ratio α. 

Construction of KSL is not clarified in [1], hence construction of KSL is our problem and 

it is described in Section 3.1.2. Since the number of collected bits |CB| = 3XY/4 and if 

the number of selected bits SB is L, where L is1 ≤ 𝐿 ≤ 3𝑋𝑌/4, then α=L / (3XY/4). 

We can see that by fixing α, L is computed as follows: 
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 𝐿 =  𝛼 × (
3𝑋𝑌

4
)                                                        (5) 

The selected bits are chosen according to KSL which contains the indices of L bits 

selected from CB. 

 

The Algorithm 4 of Select bits (Figure 4) describes the selecting bits steps and 

Example 4 shows an example of selecting L from MSBs.  

Algorithm 4. Select bits (Figure 4) // selects L bits from collected bits, CB, according 

to KSL 

Input: 

 X, Y: power of 2. 

 CB (1:3XY/4): collected bits. 

 α: Selection Ratio,  

 KSL (1: L): Selection Key = [KSL1, KSL2, KSLL], L= α (3XY/4).  

Output:  

 SB (1: L): the Selected Bits.   

 L = α (3XY/4) 

Steps:  

1. Calculate L using (5). 

2. Select L bits from CB :  

𝑓𝑜𝑟 𝑖 = 1: 𝐿 

𝑖𝑛𝑑𝑒𝑥 = 𝐾𝑆𝐿(𝑖); 

𝑆𝐵(𝑖) = 𝐶𝐵(𝑖𝑛𝑑𝑒𝑥) 

𝑒𝑛𝑑 

Example 4. Selecting bits (Figure 4) example of L bits selection from collected bits, 

CB obtained in Example 3.  

Input:  
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 α=1 

 Collected bits CB are 

 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0  

 KSL  

[47   27   35    34   11 1   13 21   38   10   42   48 8   29 19   3 46   9 4   36 20  26 6  

 31    32  30    37  25 33  43 18  24 45  40 44  16 28  41 5   12 7   39 17  23 2   22 14   15 ]  

Output:  

- Selected bits SB (1: L) =SB (1:48). 

Steps: 

1. L=48 using (5). 

𝑓𝑜𝑟 𝑖 = 1: 𝐿 

𝑖𝑛𝑑𝑒𝑥 = 𝐾𝑆𝐿(𝑖); 

𝑆𝐵(𝑖) = 𝐶𝐵(𝑖𝑛𝑑𝑒𝑥) 

𝑒𝑛𝑑 

According to indices in KSL bits are selected from CB. First bit in SB will be 

the bit that has index equal to KSL (1). For example, when i=1 then, KSL (1) = 

47, the selected bit, SB (1) will be CB (47), which is 1. The second value in 

KSL is 27, so, the SB (2) = CB (27), and so on. 

 

Consider now Shuffle bits (Figure 4). After getting, SB, it is shuffled using KSF to 

produce shuffled bits (SHB). Shuffling key KSF is not specified in [1]. Hence, 

construction of KSF is our problem and will be described in Section 3.1.2.1. Steps of 

shuffling selected bits, SB, are described in Algorithm 5 and Example 5. 
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Algorithm 5. Shuffle bits (Figure 4) // shuffles selected bits, SB, according KSF 

Input: 

 L: number of the bits in SB , L = α × (
3𝑋𝑌

4
)  

 SB(1: L): Selected bits 

 KSF: Shuffle key  (positive integer such that gcd(KSF, L)=1, where gcd is the 

greatest common divisor 

Output: 

 SHB (1:L): Shuffled bits 

Steps: 

1. Create Shuffle row (SR) containing indices from 1 to L 

SR = [1, 2, 3,…,L] 

2. Get SR1 indices by shuffling SR using KSF.  

 1:

    1( ) (( ( )) mod ) 1SF

for i L

SR i K SR i L

end



                                                 

3. SR=SR1. Put each bit in the SB to the corresponding index in the SR.  

 1:

   ( );

   ( ) ( );

for i L

index SR i

SHB i SB index

end






 

Example 5: Example of Shuffle bits (Figure 4) that shuffles L selected bits, SB, getting 

shuffled bits, SHB. 

 Let’s consider selected bits SB from Example 4 output. 

Input: 

- Number of bits in SB, L=48; 

- Shuffle key KSF =13, gcd(13,48)=1 

- Selected bits, SB: 

 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 . 
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Output:  

Shuffled bits SHB (1: L) = SHB (1:48). 

Steps: 

1. Create shuffle row, SR, vector containing values between 1 and L SR is 

[1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17 18  19  20  21  22  23  24  25  

26  27  28  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45  46  47  48] 
 

2. Update shuffle row SR using  

SR1(i)=(KSL× SR(i)) mod L+1 for i=1,…,L 

SR=SR1;  

SR 

[14  27 40   5 18  31 44   9 22  35 48  13 26  39 4   17 30  43 8   21 34  47 12  25

38   3 16  29 42   7 20  33 46  11 24  37 2   15 28  41 6   19 32  45 10  23 36  1]
 

 

3. According to SR, bits are shuffled to obtain SHB. The first bit in SHB will be the bit 

in index 14 in SB: SHB (1) = SB (14) =1. The second bit in SHB will be the bit in index 

27 in SB, SB (2) =SB (27) =1and so on to produce SHB as follows:  

 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1  

Encoding and Compressing Phase Details 

In this phase, Shuffled bits, SHB(1: L) obtained by Most Significant Bits (MSBs) 

Selection (Figure 4) phase divided into K groups, KGs , each containing n bits. After 

that, KGs are compressed using binary H matrix with size r × n to produce syndrome 

groups, SGs. Figure 5 shows diagram of Phase 2. 



 

22 
 

Create groups Encode 
KGs

H matrix

SGs

n

SHF

RB

r

 
Figure 5: Encoding and Compressing Phase Details 

The shuffled bits SHB with size L are divided into K groups, KGs, each group contains 

n bits, the number of groups KGs, K, is calculated as follows: 

𝐾 = ⌊𝐿 𝑛⁄ ⌋                                                                     (6) 

Creation groups (Figure 5) pseudo code is described in Algorithm 6 and Example 6 

illustrates the creation process. 

Algorithm 6. Create groups (Figure 5) // divide SHB(1: L) into KGs 

Input: 

 X, Y: power of 2. 

 L: number of the bits in SB, L=α×(
3𝑋𝑌

4
). 

 SHB (1: L): Shuffled bits, 

 n ∈ [1: 𝐿], number of bits in each group 

Output: 

 KGs: K groups, size K × n, K is the number of the groups, n is the number of 

bits in each group 

 𝑅𝐵[𝐾 × 𝑛 + 1 … 𝐿]: the remaining bits 

Steps: 

 Calculate the number of the groups using (6). 

 Create matrix KGs with size K×n.  
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1;

 1:

     1:

       ( , ) ( )

       1

    

x

for i K

for j n

KGs i j SHB x

x x

end

end









 

 

 Calculate number of remaining bits |RB|=L mod n. 

mod

  1:

    ( ) ( )

     1

T L n

for z T

RB z SHB x

x x

end







 

 

Example 6: Example of create K groups (Figure 5) from shuffled bits SHB  

Let’s consider SHB from Example 5. n=8; 

 Inputs:  

- Shuffled bits SHB 

 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 1  

- n =8 

Outputs: 

- KGs 

- 𝑅𝐵[(𝐾 × 𝑛) + 1 … 𝐿] 

Steps: 

1. Number of shuffled bits SHB: L  = 48. 

2. Using (6): K=
48

8

 
 
 

 = 6. Number of group is 6 

3. Divide the SHB into 6 groups, each group contains 8 bits to get KGs 
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KGs= 

1 1 0 1 0 1 1 1

1 0 1 1 1 1 0 1

1 1 0 0 1 1 0 1

0 0 0 0 0 1 1 0

0 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1

 
 
 
 
 
 
 
 
 

 

Remainder bits RB = 48 mod 8 =0. No remainder bits. 

RB= []. There is no remainder bits. 

Consider now K groups, KGs (Figure 5) phase. After create KGs, the bits in each group 

are encoded using Slepian-Wolf encoding [12]. In [2], using LDPC H matrix [10] with 

size r×n, where 0 < r < n,  compress each group into syndrome or encoded groups, 

SGs , as follows: 

(1,1) (1, ) (1,1) (1, )

(2,1) (2, ) (2,1) (2, )

( ,1) ( , ) ( ,1) ( , )

T

SGs SGs r KGs KGs n

SGs SGs r KGs KGs n
H

SGs k SGs k r KGs k KGs k n

   
   
   
   
   
   

  , 1,2, ,k K           (7) 

Where k the group number and K is the total number of KGs groups. SGs (k, r) is the 

syndrome or encoded bit. LDPC H matrix in [2] is used as in [6] with size n=6336, 

r=3840. However, this H matrix can’t be obtained exactly neither in [2] nor in it 

reference [10]. Thus, construction of H is our problem and it is described in Section 

3.4.  

Algorithm 7 of encoding and compressing process (Figure 5) describes compressing 

procedure and Example 7 shows an example of encoding KGs into SGs.  
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Algorithm 7. Encoding (Figure 5) // encodes and compresses KGs into SGs groups 

Inputs: 

 KGs: K groups, size K×n.  

 H: binary matrix, size r rows and n columns. 

Output:  

 SGs: encoded groups, size K: rows (groups), r: columns (number of bits in 

each group). 

 r : 0 < r < n. 

Steps: 

1. Convert H matrix into transpose H=HT. 

2. Logical multiplication: SGs=KGs. HT. 

Example 7. Encoding and compressing (Figure 5) of K groups. 

Let’s K group from Example 6. H is constructed using Gallager method described in 

Section 3.3 with size 4×8. 

Inputs: 

- KGs  = 

1 1 0 1 0 1 1 1

1 0 1 1 1 1 0 1

1 1 0 0 1 1 0 1

0 0 0 0 0 1 1 0

0 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1

 
 
 
 
 
 
 
 
 

 

- H    

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 1

0 0 0 1 1 1 1 0

 
 
 
 
 
 

 

Outputs: 

- SGs, size K × r. 

Steps: 

1. H is transposed.  
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TH  =

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 1 0

 
 
 
 
 
 
 
 
 
 
 
  

 

2. Using (7), logical multiplying KGs with𝐻𝑇, SGs is obtained 

6 4

1 1 1 1

1 1 1 1

0 1 1 0

0 0 0 0

1 0 1 0

0 1 0 1

                    
r



 
 
 
 
 
 
 
 
 

=

6 8

1 1 0 1 0 1 1 1

1 0 1 1 1 1 0 1

1 1 0 0 1 1 0 1

0 0 0 0 0 1 1 0

0 1 1 1 0 1 0 1

0 1 0 1 1 0 1 1

                                            
n



 
 
 
 
 
 
 
 
 

   

8 4

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 1 0


 
 
 
 
 
 
 
 
 
 
 
  

 

Embedding Secret Data (Figure 3) Phase Details 

In this phase, secret data, SD, are embedded into syndrome group SGs obtained by 

encoding and compressing phase (Figure 5) to produce embedded groups, EMBG, with 

size K × n. Then, embedded groups with remainder bits RB after create groups (Figure 

5) are reverse shuffled using KSF to obtain inversed shuffle bits, ISHB. After that, 

MSBs in segments EI2, EI3, EI4 which are obtained after decomposing (Figure 4) are 

replaced with inversed shuffle bits ISHB to get EI`2, EI`3, EI`4. Marked encrypted 

image, MEI, are obtained from composing EI1, EI`2, EI`3, EI`4. Figure 6 shows 

diagram of Phase 3. 
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Inverse ShuffleEmbed Secret Data

Compose Replace Bits

Secret data

EMBG

ISHB

MEI

SFK

SGs

Remainder bits, 

RB

EI2`,EI3`,EI4` EI2,EI3,EI4

EI1
 

Figure 6: Embedding Secret Data Phase Details 

After encoding and compression (Figure 5) phase, the total vacated room for 

embedding both Secret data SD and syndrome groups SGs will be divided into K 

groups, each of size r bits. Each of these K groups will hold SD in size n - r and the 

left r bits hold SGs as follows: 

EMBG =SGs || SD                                                       (8) 

Where EMBG is a matrix holds both SGs and SD of size K × n. Algorithm 8 describes 

embedding secret data SD (Figure 6) and syndrome groups SGs into EMBG. Example 

8 shows embedding secret data SD (Figure 6) example of embedding SD. 

Algorithm 8. Embed Secret Data (Figure 6) into EMBG 

Input: 

 SGs: syndrome groups K × r, K: number of the groups, r: number of groups 

after encoding. 

 SD: Secret data, K × (n - r).  

 r ∈ [1,…,n-1] 

Output:  
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 EMBG: Embedded groups, size K × n, K: number of the groups, n: number of 

groups after embedding. 

Steps: 

1. Declare a matrix EMBG with size K × n: EMBG [K, n] = {0}. 

2. Divide SD into groups with size K × (n - r) to concatenate SGs with SD  

𝑥 = 1 

   𝑓𝑜𝑟 𝑖 = 1: 𝐾 

     𝑓𝑜𝑟 𝑗 = 1: 𝑛 − 𝑟 

        𝑆𝐷𝐺(𝑖, 𝑗) = 𝑆𝐷(𝑥) 

        𝑥 = 𝑥 + 1 

    𝑒𝑛𝑑 

𝑒𝑛𝑑 

3. Embed the syndrome SGs in  EMBG in K × r  space 

 𝑓𝑜𝑟 𝑦 = 1: 𝐾 

     𝑓𝑜𝑟 𝑧 = 1: 𝑟 

       𝐸𝑀𝐵𝐺(𝑦, 𝑧) = 𝑆𝐺𝑠(𝑦, 𝑧) 

    𝑒𝑛𝑑 

𝑒𝑛𝑑 

4. Embed the secret data with K × (n - r) 

   𝑓𝑜𝑟 𝑎 = 1: 𝐾 

     𝑓𝑜𝑟 𝑏 = 𝑛 − 𝑟 + 1: 𝑛 

        𝐸𝑀𝐵𝐺(𝑎, 𝑏) = 𝑆𝐷𝐺(𝑎, 𝑏) 

    𝑒𝑛𝑑 

𝑒𝑛𝑑 



 

29 
 

Example 8. Example of embedding secret data SD (Figure 6) with syndrome groups 

SGs into embedded group EMBG. 

Let’s consider SD are generated randomly with size K × (n - r) = 6× (8-4) = 24 bits. 

Input: 

- SD =  1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0  

 SGs =

1 1 1 1

1 1 1 1

0 1 1 0
 

0 0 0 0

1 0 1 0

0 1 0 1

 
 
 
 
 
 
 
 
 

 

Outputs 

- EMBG size K × n 

Steps  

1. SD are divided into K   6 groups, each group contains 4 bits 

1 0 1 0

0 1 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 1 1 0

 
 
 
 
 
 
 
 
 

 

2. Declare EMBG matrix with size 6×8 contains zeros values 

3. Assign SD groups to EMBG matrix in space i  = 1…6 and j = 4…8 

EMBG =

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0

 
 
 
 
 
 
 
 
 

 

4. Assign SGs to EMBG matrix in space i  =1...6 and j   1...4 



 

30 
 

EMBG =

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 1 1 0

 
 
 
 
 
 
 
 
 

 

After embedding secret data (Figure 6), EMBG are converted into row vector then 

concatenated with remainder bits RB obtained by create groups Algorithm 6 (Figure 

5). The resultant vector will be shuffled in reverse way using KSF (Figure 6) to obtain 

Inversed Shuffled Bits (ISHB). Algorithm 9 describes inverse shuffle bits (Figure 6) 

of embedded group EMBG. Example 9 shows inverse shuffle bits (Figure 6) of 

embedded group EMBG. 

Algorithm 9. Inverse shuffled bits (Figure 6) of embedded groups EMBG 

Input: 

 EMBG: Embedded groups, size K × n, K: number of the groups, n: number of 

groups after embedding. 

 KSF: Shuffle key  (positive integer such that gcd (KSF, L)=1, where gcd is the 

greatest common divisor 

 𝑅𝐵[(𝐾 × 𝑛) + 1 … 𝐿]: the remaining bits 

Output:  

 ISHB (1 : L): Inversed Shuffled Bits , L =
3

4

XY


 
 
 

 

Steps: 

1. Reshape the EMBG from matrix into row vector B 
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𝑥 = 1 

   𝑓𝑜𝑟 𝑖 = 1: 𝐾 

     𝑓𝑜𝑟 𝑗 = 1: 𝑛 

        𝐵(𝑥) = 𝐸𝑀𝐵𝐺(𝑖, 𝑗) 

        𝑥 = 𝑥 + 1 

    𝑒𝑛𝑑 

𝑒𝑛𝑑 

2. Concatenate the row vector of EMBG with RB 

C=B||RB 

3. Declare shuffle row vector SR contains indices between 1 and L. 

4. Get SR1 indices by shuffling SR using KSF.         

          𝑓𝑜𝑟 𝑗 = 1: 𝐿 

        𝑆𝑅1(𝑖) = ((𝐾𝑆𝐹  × 𝑆𝑅(𝑖))𝑚𝑜𝑑 𝐿) + 1 

𝑒𝑛𝑑                                    

5. Shuffle the selected bits depend on the row vector SR1. Each bit in the selected 

bit vector to the corresponding index in the shuffle vector. 

   𝑓𝑜𝑟 𝑖 = 1: 𝐿 

        𝑖𝑛𝑑𝑒𝑥 = 𝑆𝑅1(𝑖) 

        𝐼𝑆𝐻𝐵(𝑖) = 𝐶(𝑖𝑛𝑑𝑒𝑥) 

𝑒𝑛𝑑 

Example 9. Example of Inverse Shuffle bits ISHB (Figure 6) in embedding groups 

EMBG. 

Let’s consider embedded groups EMBG from Example 8 and remainder bits from 

Example 6. 
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Input: 

- EMBG =

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 1 1 0

 
 
 
 
 
 
 
 
 

 

- KSF =13 

- RB = []. There is no remainder bits which is obtained from Example 6.  

Outputs: 

- ISHB (1: L) = ISHB (1:48)  

Steps: 

1. Reshape EMBG into row vector 

 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0  

2. Concatenate EMBG of row vector with RB = EMBG || RB 

3. Declare shuffle row SR containing values from 1 …. L, L= 48  

SR = 

[1  2  3  4  5  6  7  8  9  10   37  38  39  40  41  42  43  44  45  46  47  48]  

4. Get SR1 using SR1= (KSF × SR) mod L. 

[14  27 40   5 18  31 44   9 22  35 48  13 26  39 4   17 30  43 8  21   34   47 12  25

38   3 16  29 42   7 20  33 46  11 24  37 2   15 28  41 6   19 32  45 10  23 36  1 ]
 

5. Using SR1, bits in EMBG in row vector are shuffled in reverse order to produce  

ISHB 

 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1   

Consider now inverse shuffle bits (Figure 6). After getting, ISHB, the MSB of the 

segments EI2, EI3, and EI4 (Figure 4) are replaced with the ISHB to get EI2`, EI3`, 
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and EI4`. By converting the EI2, EI3, and EI4 into binary values using (1), the MSBs 

are collected and selected using KSL using same steps in Algorithm 3 and 4. Then, the 

selected bits SB are replaced with ISHB.  Steps of replacing MSBs (Figure 6) are 

described in Algorithm 10 and Example 10. 

Algorithm 10. Replace MSB bits (Figure 6) in EI2,…, EI4 with ISHB   

Inputs: 

 X,Y: power of 2; 

 ISHB: Inversed shuffle bits vector [1….L ], L =α (3XY /4)  

 EI2, EI3, EI4, each of the size X/2 × Y/2 

 KSL: Selection Key = [KSL1 ,KSL2, … KSLL], KSLi [1,…,L], L =α (3XY /4) 

Output: 

 Segments, EI2`, EI3`, EI4`, each of the size X/2 × Y/2  

Steps: 

 Collect MSBs from EI2, EI3, EI4 using Algorithm 3. 

 KSL defines indices of collected bits that will be replaced by ISHB   

 Then, the replaced modified collected bits are return into segments EI2, EI3, 

EI4 

 Convert the binary values into pixels values using (3) to obtain EI2`, EI3`, 

EI4`. 

Example 10. Replace MSBs (Figure 6) in EI2, EI3 and EI4 to obtain EI2`, EI3` and 

EI4`. 

Let’s consider EI2,…, EI4 obtained from Example 2 and inversed shuffle bits obtained 

from Example 9. 

Inputs: 

-  ISHB 

[0 0 0 0 1 0 0 10 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1]  
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EI2=

92 240 63 218

177 50 247 176

32 171 168 227

189 185 58 153

 
 
 
 
 
 

, EI3= 

200 74 68 193

181 34 233 155

195 209 13 251

90 116 156 229

 
 
 
 
 
 

 

EI4= 

125 229 8 61

2 149 188 207

110 75 162 212

242 138 81 57

 
 
 
 
 
 

 

-KSL 

[47   27   35    34   11 1   13 21   38   10   42   48 8   29 19   3 46   9 4   36 20  26 6  

 31    32  30    37  25 33  43 18  24 45  40 44  16 28  41 5   12 7   39 17  23 2   22 14   15 ]  

Outputs:  

- Segments EI2`, EI3`, EI4` each of the size 4×4 (X/2 × Y/2)  

Steps: 

Collected bits CB 

1.  0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0  

2. Using KSL, the collected bits are replaced with ISHB 

KSL 

[47   27   35    34   11 1   13 21   38   10   42   48 8   29 19   3 46   9 4   36 20  26 6  

 31    32  30    37  25 33  43 18  24 45  40 44  16 28  41 5   12 7   39 17  23 2   22 14   15 ]
 

ISHB 

[0 0 0 0 1 0 0 10 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1]  

To obtain modified collected bits, CB’ 

[0 1 0 1 1 1 1 1 1 0 1 1 0  0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0] 

1. MSBs in EI2 is replaced with CB’ from (1 : 16) 
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0 1 0 1 1 1 0 0

1 0 1 1 0 0 0 1

0 0 1 0 0 0 0 0

1 0 1 1 1 1 0 1

1 1 1 1 0 0 0 0

1 0 1 1 0 0 1 0

1 0 1 0 1 0 1 1

1 0 1 1 1 0 0 1

1 0 1 1 1 1 1 1

0 1 1 1 0 1 1 1

1 0 1 0 1 0 0 0

1 0 1 1 1 0 1 0

0 1 0 1 1 0 1 0

0 0 1 1 0 0 0 0

1 1 1 0 0 0 1 1

1 0 0 1 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2. MSBs in EI3 is replaced with CB’ from (16 +1: 16×2) 

1 1 0 0 1 0 0 0

0 0 1 1 0 1 0 1

0 1 0 0 0 0 1 1

0 1 0 1 1 0 1 0

1 1 0 0 1 0 1 0

1 0 1 0 0 0 1 0

1 1 0 1 0 0 0 1

0 1 1 1 0 1 0 0

0 1 0 0 0 1 0 0

1 1 1 0 1 0 0 1

0 0 0 0 1 1 0 1

0 0 0 1 1 1 0 0

1 1 0 0 0 0 0 1

0 0 0 1 1 0 1 1

1 1 1 1 1 0 1 1

0 1 1 0 0 1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. MSBs in EI4 is replaced with CB’ from (16×2+1 : 16×3) 
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0 1 1 1 1 1 0 1

0 0 0 0 0 0 1 0

0 1 1 0 1 1 1 0

0 1 1 1 0 0 1 0

1 1 1 0 0 1 0 1

0 0 0 1 0 1 0 1

1 1 0 0 1 0 1 1

1 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0

0 0 1 1 1 1 0 0

0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 1

0 0 1 1 1 1 0 1

1 1 0 0 1 1 1 1

0 1 0 1 0 1 0 0

0 0 1 1 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. Convert binary EI2, EI3, EI4 after replacing bits to produce EI2`, EI3`, EI4` using 

(3).  

EI2` =

92 240 191 90

177 178 119 48

32 171 168 227

189 185 186 153

 
 
 
 
 
 

 

EI3` =

200 202 68 193

53 162 233 27

67 209 13 251

90 116 28 101

 
 
 
 
 
 

, EI4` =

125 229 8 61

2 21 60 207

110 203 34 84

114 138 209 57

 
 
 
 
 
 

 

 

After MSBs in EI2… EI4 are replaced with ISHB  to obtain EI2`… EI4` (Figure 6) are 

converted into pixels values. Marked encrypted image (MEI) is constructed from  EI1, 

EI2`, EI3` and EI4` which are composed (Figure 6) to construct MEI using (4).  

Algorithm 11 describes the composition (Figure 6) of EI1, EI2`, EI3` and EI4`   to get 
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MEI. Example 11 shows compose (Figure 6) example of EI1, EI2`, EI3` and EI4` to 

obtain MEI. 

Algorithm 11. Compose EI1, EI2`, EI3` and EI4`  (Figure 6) to get marked encrypted 

image MEI 

Input: 

 X, Y: power of 2. 

 Segments EI1, EI2`, EI3`, EI4`, size X /2, Y/2.  

Output: 

 MEI: Marked encrypted image MEI , size X , Y   

Steps:  

 Combine the EI1, EI2`, EI3`, EI4` using (4) to construct MEI. 

// Using MATLAB style pseudocode: 

MEI(1:2:X,1:2:Y)=EI1(1:X/2,1:Y/2);//odd rows and columns 

MEI(1:2:X,2:2:Y)=EI’2(1:X/2,1:Y/2)=//odd rows and even columns 

MEI(2:2:X,1:2:Y)= EI’3(1:X/2,1:Y/2);//even rows and odd columns 

MEI(2:2:X,2:2:Y)= EI’4(1:X/2,1:Y/2);//even rows and columns 

Where a:b:c means x values such that: a<=x<=c, x=c+i×b. 

Example 11. Compose (Figure 6) EI1, EI2`, EI3`, EI4` to obtain Marked Encrypted 

Image MEI. 

Let’s consider EI1 obtained from Example 2 and EI2`… EI4` obtained from Example 

10. 

Inputs: 
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  EI1:

219 100 3 160

67 142 78 77

121 137 152 57

255 74 254 93

 
 
 
 
 
 

, EI2` :

92 240 191 90

177 178 119 48

32 171 168 227

189 185 186 153

 
 
 
 
 
 

 

EI3` :

200 202 68 193

53 162 233 27

67 209 13 251

90 116 28 101

 
 
 
 
 
 

, EI4` :

125 229 8 61

2 21 60 207

110 203 34 84

114 138 209 57

 
 
 
 
 
 

 

Outputs: 

- Marked encrypted image MEI with size 8 8   

Steps: 

1.  Using Step 1 in Algorithm 11, MEI is constructed. 

MEI: 

219 92 100 240 3 191 160 90

200 125 202 229 68 8 193 61

67 177 142 178 78 119 77 48

53 2 162 21 233 60 27 207

121 32 137 171 152 168 57 227

67 110 209 203 13 34 251 84

255 189 74 185 254 186 93 153

90 114 116 138 28 209 101 57

 
 
 
 
 
 
 
 
 
 
 
  

 

The data hider constructs KSL, KSF and KENC to be used in receiver side. Also, the 

parameters L, n and r are used to extract the secret data. These data are transmitted 

through trusted channel. 

In [1], the embedding capacity formula are not clearly specified. Thus, we analysis to 

find formula for embedding capacity. By definition, embedding capacity is the number 

of bits to be embedded in each pixel in the encrypted image, 

Eemb = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑 𝑏𝑖𝑡𝑠

𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
=  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑖𝑡𝑠 ×𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜

𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
  (9) 
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where number of selected bits is L, and embedding ratio is (1 – r/n). Thus, embedding 

capacity Eemb is 

1

emb

r
L

n
E

XY

 
  
                                                     (10) 

From (5) we can write (10) as follows: 

3
1

3 ( )4

4
emb

XY r

n rn
E

XY n




   
         

                                     (11) 

2.1.3 Stage 3: Data Extraction and Image Recovery Details 

Receiver may use three options depending on his authority and privileges:  

- Option1: data extraction,  

- Option 2:approximate image construction,  

- Option 3: lossless recovery.  

Option 1 is used when the receiver has only KSL, KSF, L, n and r. The secret data, SD, 

is extracted perfectly without distortion. However, the image can’t be constructed. 

Option 2 is used when the receiver has only the encryption key KENC, an approximate 

image is constructed with high quality. Option 3 is used when the receiver has KSL, 

KSF, L, n, r and KENC. In that case, the secret data is extracted perfectly, and recovered 

image is constructed perfectly in some conditions. Figure 7 shows the diagram of Stage 

3: Data Extraction and Image Recovery (Figure 3) details.  Each option will be 

explained in details further. 
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Extracted 

data

Option 1: Data 

extraction

MEI

Option 2: Approximate 

image reconstruction 

Option 3: Lossless 

recovery

Approximate 

image

Recovered 

image

L,r,n,KSL,KSF

KENC

q

H
 

Figure 7: Stage 3: Data Extraction and Image Recovery Stage Details 

Option 1: Data Extraction Details 

In this option, the receiver has only KSL, KSF, L, n and r. In this option, the secret data 

will be extracted perfectly. Marked encrypted image MEI is decomposed into 4 

segments V1, V2, V3, V4 defined by (4). Then, MSBs are collected from V2, V3, V4, 

forming collected bits, CB`. After that, L bits SB` are selected from collected bits CB` 

using KSL. Then, the selected bits SB` are shuffled using KSF. Shuffled bits SHB` are 

divided into K groups, each with size r forming KGs groups. After that, created groups 

KGs, the secret data will be n - r bits in each group.  Figure 8 shows diagram of Option 

1. 
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Decompose Collect bits Select bits

Shuffle bitsCreate groups

 KSL

 KSF

n

Extract  

r

MEI `CB

`SB

`SHB`KGs

L

Extracted

 Data

V2,V3,V4

V1

 
Figure 8: Data Extraction Details 

Receiver divides the marked encrypted image, MEI, (Figure 8) into four segments, V1, 

V2, V3 and V4, using (4) and steps in Algorithm 2 of image decomposition. Then, the 

Most Significant Bits (MSBs) are collected from V2, V3 and V4 segments using steps 

Collect MSBs (Figure 8) Algorithm 3 to obtain CB`. After that, L bits, SB`, are selected 

from CB` using KSL. Selecting bits, SB`, (Figure 8) in Algorithm 4 is used except the 

first step.  

After SB` are selected, they are shuffled using the KSF to obtain shuffled bits SHB` 

(Figure 8) using same steps as in Algorithm 5. Then, the shuffled bits SHB` are divided 

into K groups (KGs`) using steps of create groups Algorithm 6. Each of these groups 

contains r bits. Up to here, the same steps are used as in the data hiding phase. 

As we mentioned in embedding secret data phase in Section 2.1.2, the groups consist 

of syndrome groups SGs with size (K × r) and secret data with size K × (n - r). Thus, 

each group contains (n - r) secret data. The secret bits can be extracted from the last (n 

- r) bits in each group, that is, [ED (k, r+1),… ,ED (k, n)] are the extracted bits. Data 

extraction (Figure 8) is described in Algorithm 12 and Example 12. 
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Algorithm 12. Data extraction (Figure 8) 

Input:  

 KGs: K groups, size K × n, K: number of groups, r : number of bits in each 

group 

 𝑟 ∈ [1,…,n] where 1 r n    

Output: 

 ED(1: K×(n - r)) : Extracted data 

Steps: 

Get the [ED (k, 1), …, ED (k, n-r)] in each group [KGs (k, r+1),…, KGs (k, n)]. 

1. Store the ED as row vector. 

𝑦 = 1 

   𝑓𝑜𝑟 𝑖 = 1: 𝐾 

     𝑓𝑜𝑟 𝑗 = 𝑛 − 𝑟: 𝑛 

        𝐸𝐷(𝑦) = 𝐾𝐺𝑠(𝑖, 𝑗) 

        𝑦 = 𝑦 + 1 

    𝑒𝑛𝑑 

𝑒𝑛𝑑 

Example 12. Data extraction (Figure 8) from marked encrypted image MEI  

Let’s consider the MEI from Example 11. The same procedure will apply to have KGs 

groups after decomposing, collecting, selecting, shuffling and division procedure. n 

and r are received with MEI.  

Input: 

-KGs =

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 1 1 0

 
 
 
 
 
 
 
 
 
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- n=8 

- r =4 

Output: 

- ED(1: K×(n - r)) = ED(1: 24)  

Steps: 

1. x =K× (n - r) =6× (8 - 4) =24 bits 

 Sec  

                                          

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0
   

0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 1 1 0

Syndrom groups ret data

 
 
 
 
 
 
 
 
 

 

 The right side of KGs are the extracted data. 

 

2. Extract the secret data SD groups and put them in a row vector as follows: 

1 2 3 4 5 6

[1 0 1 0  0 1 0 1 1 0 0 0  1 0 0 0  0 0 0 1 0 1 1 0]
K K K K K K     

 

If we compare the extracted data with secret data SD in Example 8. We will see that 

they are same. Thus, the secret data is extracted perfectly. 

In this option, receiver granted authority and privilege doesn’t allow him to know the 

encryption key, the image can’t be decrypted. 

Option 2: Approximate Image Construction Details  

In this option, receiver granted authority and privilege allow him to possesses KENC 

only without KSL, KSF, L, r and n. Hence, receiver can construct approximate image 

without extracting embedded secret data causing approximate image to be with quality 

satisfactory to the human eye. 
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Marked encrypted image is decrypted using encryption key KENC.  Then, decrypted 

image, AI is decomposed into 4 segments AI1, AI2, AI3, AI4 defined by (4). The 

procedure of decomposing AI (Figure 8) is followed by constructing reference image 

BI with size X×Y using bilinear interpolation (Figure 8) depending on the segment AI1 

to construct reference image BI. The reference image BI is decomposed into 4 

segments BI1, BI2, BI3, BI4 defined by (4). Segments AI2, AI3, AI4 and BI2, BI3, BI4 

are used in estimation the MSBs to form AI2`, AI3`, AI4`. Then, approximate image 

AI is constructed by compose AI1, AI2`, AI3`, AI4`. Figure 8 shows diagram of Option 

2. 

Decryption

Marked Encrypted 

Image (MEI)

Encryption Key, KENC

Decompose 

Decrypted image

 AI
Bilinear interpolation 

AI1

AI2, AI3, AI4

Decompose 

Reference image

 BI

MSBs estimation
BI2,BI3, BI4

Approximate image 

AI`
Compose

AI2`,AI3`, AI4`

BI1

AI1

 
Figure 9: Approximate Image Construction Details 

At the beginning, MEI is processed using (1), pixel values of MEI are converted into 

binary values. Then, these bits are decrypted using KENC, which contains embedded data 

as follows: 

𝑏`𝑖,𝑗,𝑘 =  𝑣`𝑖,𝑗,𝑢 ⊕ 𝐾𝐸𝑁𝐶𝑖,𝑗,𝑢
                                  (12) 

𝐾𝐸𝑁𝐶𝑖,𝑗,𝑢
is the iju-th bit of the encryption key, KENC, ei,j,u  is the iju-th encrypted bit, and 

⊕ denotes exclusive-or (XOR) operation, u = 0,1,2,…,7. Then, the decrypted binary 

values are converted into pixel values to construct decrypted image, AI (Figure 9) using 

(3). The decrypted image is the same as the original one, but with modified MSBs due 
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to embedding secret data (Section 2.1.2). Since the MSBs are modified, the decrypted 

image AI will not be identified to human eye. Then, AI is decomposed (Figure 9) into 

4 segments AI1, AI2, AI3, AI4 (Figure 8) according to (4).Example 13 illustrates the 

image decryption of MEI and decomposing process (4). 

Example 13. Image decryption (Figure 9) from marked encrypted image MEI and 

decompose (Figure 9) into segments AI1,…, AI4 

Let’s consider MEI from Example 11. 

MEI: 

219 92 100 240 3 191 160 90

200 125 202 229 68 8 193 61

67 177 142 178 78 119 77 48

53 2 162 21 233 60 27 207

121 32 137 171 152 168 57 227

67 110 209 203 13 34 251 84

255 189 74 185 254 186 93 153

90 114 116 138 28 209 101 57

 
 
 
 
 
 
 
 
 
 
 
  

 

1. MEI is decrypted by encryption key in Example 1 using (2). Decrypted image AI as 

follows 

AI =

15 215 5 183 3 140 100 138

125 7 62 20 10 4 93 102

62 2 31 213 242 249 10 129

249 17 136 131 102 146 180 130

78 108 5 150 27 70 140 175

73 200 27 133 95 169 89 82

108 3 28 172 55 228 48 72

88 2 64 81 245 210 222 1

 
 
 
 
 
 
 
 
 
 
 
  

 

2. AI is decomposed into 1, 2, 3, 4AI AI AI AI  using (4) 

AI1= 

15 5 3 100

62 31 242 10

78 5 27 140

108 28 55 48

 
 
 
 
 
 

 , AI2=

215 183 140 138

2 213 249 129

108 150 70 175

3 172 228 72

 
 
 
 
 
 
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AI3=

125 62 10 93

249 136 102 180

73 27 95 89

88 64 245 222

 
 
 
 
 
 

 , AI4=

7 20 4 102

17 131 146 130

200 133 169 82

2 81 210 1

 
 
 
 
 
 

 

After segmentation, AI1 is used to construct reference image BI using bilinear 

interpolation algorithm (Figure 9). To construct reference image BI, AI1 is used to be 

interpolated. Bilinear interpolation (Figure 9) is construct new points from known 

points. We know that the size of reference image is X×Y and size of one segment after 

decomposing is X/2 × Y/2. 

Example 14 shows constructing reference image using bilinear interpolation (Figure 

9). 

Example 14. Construct reference image using bilinear interpolation (Figure 9).  

Lets’ consider AI1 from example 13. Size of segment AI1 is 4×4, size of reference 

image is 8×8. 

AI1= 

1

2

3

4

  

    1     2       3        4 

15 5 3 100

62 31 242 10

78 5 27 140

108 28 55 48

 
 
 
 
 
 

 

1. Initially, the matrix AI1 is expanded into 8×8 matrix as follows 
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15 p1 5 p2 3 p3 100 p4

p5 p6 p7 p8 p9 p10 p11 p12

62 p13 31 p14 242 p15 10 p16

p17 p18 p19 p20 p21 p22 p23 p24

78 p25 5 p26 27 p27 140 p28

p29 p30 p31 p32 p33 p34 p35 p36

108 p37 28 p38 55 p39 48 p40

p41 p42 p43 p44 p45 p46 p47 p48

 
 
 
 
 
 
 
 
 
 
 
                       (13) 

We want to find the unknown values in (13) as follows: 

First, we traverse rows and we calculate unknown values as average of the two known 

neighboring in the row values. 

Second, we traverse columns and we calculate unknown values as average of the two 

known neighboring in the column values. Figure 10 shows the grid representation of 

4 known values from the left top corner of matrix shown in (13) specified by dash one 

in solid boxes, and where values (p1, p6, p13) are calculated and displayed in dashed 

boxes. 

  

15 10 5

3146.3562

28.25

Columns 

R
o

w
s

X1=1 X=1.5 X2=2

Y1=1

Y=1.5

Y2=2

38.5 18

p1

p5 p7

p13

p6

 
Figure 10: Example of Bilinear Interpolation of Grayscale Values. Dashed Boxes 

Refer to Unknown Values are Interpolated. 
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For calculating p1, we use neighboring values 15 and 5 by taking the average as 

follows:  

15 5
p1

2


  

For calculating p13, we use neighboring values 15 and 5 by taking the average as 

follows:  

62 31
p13 46.5

2


   

For p5, we use the neighboring values 15 and 62 as follows: 

15 62
p6 38.5

2


   

For p7, we use neighboring values 5 and 31 as follows: 

31 5
p6 18

2


   

Then, the middle point p6 are calculated using p1 and p13 as follows: 

10 46.5
p6 28.25

2


   

Other points will be calculated in a same way. The right border and bottom border 

cannot be calculated using bilinear interpolation, since there is only one neighboring 

known value beside each value in the border. In order to calculate the unknown values 

in right and bottom border, we use extrapolation. Figure 11 shows example of 

extrapolation points. 
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51.5 100 p4

Columns 

X1=6 X2=7 X=8

Y1 Y2 Y(X)

 
Figure 11: Example of Extrapolation in Grayscale Values. Dashed Boxes Refer to 

Unknown Values are Extrapolated 

We calculate all unknown values in right and bottom borders using MATLAB function 

in Appendix A.3.4.1, as follows: 

B(512,1:511)=interp1(1:512,B(1:511,1:511),512,'linear','extrap'); 

B(1:512,512)=interp1(1:512,B(1:512,1:512),512,'linear','extrap'); 

 We obtained unknown values as shown below: 

BI=

15 10 5 4 3 52 100 123

39 28 18 70 123 89 55 81

62 47 31 137 242 126 10 40

70 44 18 76 135 71 7 54

78 42 5 16 27 16 4 69

93 55 17 29 41 34 26 70

108 68 28 42 55 52 48 70

123 81 40 54 69 70 70 58

 
 
 
 
 
 
 
 
 
 
 
  

 

After constructing image BI, it is divided into BI1, BI2, BI3, BI4 segments using (4). 

Consider now MSBs estimation (Figure 9) from AI2,AI3,AI4 and BI2, BI3, BI4 Since, 

AI1 was not modified in the embedding stage (Section 2.1.2), the pixels values in AI1 

are the same as in the original, EI1, while, the MSBs in AI2,AI3,AI4 are modified in 

embedding stage. Since BI1 and AI1 are same, no don’t need to estimate their MSBs. 

The MSBs are estimated to get AI2`, AI3`, AI4` using Algorithm13.  
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Since, LSBs in each segment are not modified while inserting secret data, the 

interpolated values of BI are used to estimate MSBs in AI. For each bit in segment AI2, 

AI3, AI4, if  |128 + 𝐴𝐼2(𝑖, 𝑗)𝑚𝑜𝑑 128 − 𝐵𝐼2| is greater than the interpolated value 

mod(AI(i, j),128), the MSB of the pixel in (i, j) is 1, otherwise is 0. Algorithm 13 

describes the mechanism of MSBs estimation. Example 13 shows an example of 

estimating MSBs. 

Algorithm 13. MSBs estimation. 

Input:  

 AI2, AI3, AI4: segments with size X / 2×Y / 2 , after decomposing AI.  

 BI2, BI3, BI4:  segments with size X / 2×Y / 2 , after decomposing BI.  

Output: 

 AI2`, AI3`, AI4` : segment with size X / 2×Y / 2. 

Steps: 

1. Calculating the MSBs in AI2` using  AI2 , BI2  as follows 

 𝑓𝑜𝑟 𝑖 = 1: 𝑋 2⁄  

       𝑓𝑜𝑟 𝑗 = 1: 𝑌 2⁄  

          𝑖𝑓 |128 + 𝐴𝐼2(𝑖, 𝑗)𝑚𝑜𝑑 128 − 𝐵𝐼2| < |𝐴𝐼2(𝑖, 𝑗)𝑚𝑜𝑑 128 − 𝐵𝐼2(𝑖, 𝑗)| 𝑡ℎ𝑒𝑛 

                 𝐴𝐼2`(𝑖, 𝑗) = 128 + 𝐴𝐼2(𝑖, 𝑗) 𝑚𝑜𝑑 128 

            𝑒𝑙𝑠𝑒 

               𝐴𝐼2`(𝑖, 𝑗) = 𝐴𝐼2(𝑖, 𝑗) 𝑚𝑜𝑑 128 

           𝑒𝑛𝑑 

𝑒𝑛𝑑 

2. Calculating the MSBs in AI3` using  AI3, BI3. Using step 1 

3. Calculating the MSBs in AI4` using  AI4, BI4. using step 1 
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Example 13. MSBs estimation (Figure 9) from AI2, …, AI4 and BI2,…, BI4 

Let’s consider AI2 and BI2 after decomposing  

AI2=

215 183 140 138

2 213 249 129

108 150 70 175

3 172 228 72

 
 
 
 
 
 

, and  BI2= 

10 4 52 100

47 137 126 55

42 16 84 10

68 42 52 75

 
 
 
 
 
 

 

1. AI2 (1, 1) =215, BI2 (1, 1) =10, using (13) and step 1 in Algorithm 12 

       Is (|128+ (215 mod 128) -10 |) < (| 215 mod 128 – 10 |)? 

           (205 < 77) it’s false 

Then, the estimated MSB is 

AI2` = 215 mod 128= 87. This will be the approximate pixel value. All other pixels 

calculating in same procedure. 

After calculating all pixels, the resultant AI`2 as follows 

AI2`=

87 55 12 138

2 85 121 1

108 22 70 47

131 44 100 72

 
 
 
 
 
 

, AI3`= 

125 62 138 93

121 8 102 52

73 27 95 89

88 64 117 94

 
 
 
 
 
 

 

AI4`=

7 20 132 102

17 131 146 2

72 5 41 82

130 81 82 129

 
 
 
 
 
 

 

The final step, the receiver can construct the approximate image by composing (Figure 

9) the estimated 4 segments AI1`,AI2`,AI3`,AI4` using same steps in Algorithm 11. 

Option 3: Lossless Recovery Details 

In the third option, receiver possesses keys: KENC, KSL, KSF, L, r and n to extract secret 

data SD without any distortion and the image is recovered lossless. 
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At the beginning, secret data SD is extracted from MEI. L bits are selected from MSBs, 

and divided into K×n groups. Thus, SD resultant as K × (n - r). The remaining groups 

in K×n are the syndrome groups SGs with size K × r. The syndrome groups SGs are 

extracted to be used in decoding process. After that, an approximate image AI is 

constructed using steps in Section 2.1.3. The approximate image AI is encrypted using 

encryption key KENC. Then, decrypted approximate image is decomposed into 4 

segments AI1, AI2, AI3, AI4 defined by (4). After that, MSBs are collected from AI2, 

AI3, AI4. L bits are selected from collected bits using selection key KSL and shuffled 

using shuffle key KSF. Then, the shuffled bits are divided into K groups, each with size 

n to form UG groups. These groups UG are using with H matrix and syndrome groups 

SGs in sum-product decoding (Figure 11). The UG groups are decoded to get R groups. 

Then, bits in UG groups are replaced (Figure 11) with decoded group R groups to 

obtain R` groups. The replaced groups R` groups are reversed shuffle (Figure 11) using 

KSF. After that, MSBs in AI2, AI3, AI4 which obtained from decomposing approximate 

image are replaced (Figure 11) with inversed shuffle bits to get AI2`, AI3`, AI4`. 

Segments AI1, AI2`, AI3`, AI4` are composed (Figure 11) into encrypted decoded 

image. Decoded image is obtained by decrypting (Figure 11) encrypted decoded image 

using KENC. Figure 12 shows the diagram of decoding and obtaining decoded image. 
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Sum-product decoding 

H

UG groups

SGs

Replace bits

KSF

R groups
Inversed shuffle

Replace MSBs

Inversed shuffle 

bits

UG groups

AI2`,AI3`,AI4`

AI2,AI3,AI4

Compose

AI1

Decrypt

KENC

Encrypted decoded 

image
Decoded image

R` groups

q

 
Figure 12: Lossless Recovery Details 

Using same steps in Algorithm 12 the secret data is extracted. Marked encrypted image 

is decomposed into 4 segments V1, V2, V3, and V4 using Algorithm 2. MSBs are 

collected from V2, V3, and V4 using Algorithm 3. L bits are selected from collected 

bits using selection key KSL, see Algorithm 4 except Step 1. Selected bits are shuffled 

using shuffle key KSF. The, shuffled bits are divided into K groups, each group contains 

n bits. After that, (n - r) from each group are extracted, as a result, K (n - r) are the 

extracted data. 

Consider now get syndrome (Figure 13). Syndrome groups SGs are 

extracted from K groups. The extracted data is in n – r space in each group. 

Thus, the total secret data is in K (n - r) space in K groups. Syndrome 

extraction (Figure 13) is described in Algorithm 14. Example 14 shows an 

example of syndrome extraction.  
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K groups

Get Syndrome

Compressed bits 

r.K

Create Groups

r

Syndrome groups 

SGs
 

Figure 13: Syndrome Extraction Details. Using K Groups and r, r.K Compressed Bits 

are Extracted, then Form Compressed Bits into Syndrome Groups SGs 

 

Algorithm 14. Syndrome extraction (Figure 13) from K groups. 

Input:  

 KGs: K groups, size K× n, K: number of groups, n: number of bits in each 

group. 

 r ∈ [1,…, n] where 1 < r < n. 

Output: 

 SGs: syndrome groups, size K (n - r), K: number of groups, r: number of bits 

in each syndrome group. 

Steps: 

1. Get the [SGs(k,1),…, SGs(k , r)] in each group  

𝑓𝑜𝑟 𝑖 = 1: 𝐾 

       𝑓𝑜𝑟 𝑗 = 1: 𝑟 

        𝑆𝐺𝑠(𝑖, 𝑗) = 𝐾𝐺𝑠(𝑖, 𝑗) 

      𝑒𝑛𝑑 

𝑒𝑛𝑑 
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Example 14. Syndrome extraction (Figure 13) from K groups. 

Let’s consider the MEI from Example 11. The same procedure will apply to have KGs 

groups after decomposing, collecting, selecting, and shuffling and division procedure. 

n and r are received with MEI 

Input:  

- r =4  

- KGs =

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0

0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 1 1 0

 
 
 
 
 
 
 
 
 

 

Output: 

- SGs: syndrome groups, size K (n - r) 

Steps: 

1. x = K× r =6×4=24 bits 

 Sec  

                                          

1 1 1 1 1 0 1 0

1 1 1 1 0 1 0 1

0 1 1 0 1 0 0 0
   

0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1

0 1 0 1 0 1 1 0

Syndrom groups ret data

 
 
 
 
 
 
 
 
 

 

2. The left side of KGs are the syndrome groups. 

SGs 

1 1 1 1

1 1 1 1

0 1 1 0

0 0 0 0

1 0 1 0

0 1 0 1

 
 
 
 

  
 
 
 
 
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With KENC, approximate image AI is constructed using the estimating algorithm as in 

Section 2.1.3. Then, AI is encrypted when the SD are embedded, the original image 

was encrypted. Then, encrypted approximate image is decomposed into 4 segments 

AI1, AI2, AI3, AI4 using (4). After that, the L bits are selected from MSBs AI2, AI3, 

AI4 segments using selection key KSL. Then, the selected bits are shuffled using shuffle 

key KSF. The shuffled bits are denoted as UG. 

Shuffled bits UG are divided into K groups [UG (k, 1),…, UG (k, 2),…, UG (k, n)] 

using create groups Algorithm 6, each group has n bits. İn other words, we follow the 

same procedure in MSBs selection phase. As a result UG groups are produced with 

size K × n that will be used in decoding algorithm. 

In decoding algorithm, the log-likelihood ratios (LLR) are calculated using q, where q 

is the crossover probability of the channel. 

 
 

 

Pr ( , ) 0 | ( , )
( , ) log

Pr ( , ) 1| ( , )

1
                = 1 2 ( , ) log

R k i UG k i
LLR k i

R k i UG k i

q
UG k i

q









      i=1, 2,…, n              (14) 

Using LLR defined by (14), SGs groups, H matrix and UG groups, the original bits    

[R (k, 1), R (k, 2), R (k, n)] are restored. Decoding algorithm in [2] is not specify clearly 

and not in its reference [15], so we use Sum-Product decoding algorithm [16].   

To get the recovered image, UG groups are replaced with R groups (Figure 12) to get R` 

groups. Then, the replaced bits R` groups are inversed shuffled (Figure 12) using KSF, 

same steps in Algorithm 9. MSBs in approximate image are replaced (Figure 12) with 

inversed shuffle bits to produce modified segments AI2`, AI3`, AI4`. Four segments 

AI1, AI2`, AI3`, AI4` are composed (Figure 12) to produce encrypted decoded image. 
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Using encryption key KENC, the encrypted decoded image are decrypted (Figure 12) to 

get decoded image. 

Pseudo code of sum-product algorithm (Figure 12) is detailed in Algorithm 13. 

Example 15 shows sum-product decoding (Figure 12) of UG groups. 

Algorithm 13. Sum-Product Decoding (Figure 12) of UG groups to obtain R 

groups. 

Inputs: 

 S: Syndrome, size 1× r. 

 H: with size r × n. 

 UG:  size 1 × n.  

Outputs: 

 R: size 1 × n 

Steps: 

1. Initiation  z 

for 1:

      log((1 ) / )

      ( ) (1 (2 ( )))

end

i n

LL q q

z i UG i LL



 

   
  

2. 
max

1;

10;

Iter

Iter




  

,

0

for x 1:  

    for 1:  

          

     end for

end for

y x i

I

n

y r

N z








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3. Check 

max

' , ' , '

' , ' , '

( )

   for 1:  do

        for x  do

1 tanh( / 2)
            , log

1 tanh( / 2)

         end for

end for

y

y

y

x C x x y x

x C x x y x

while Iter Iter

y r

C

N
By x

N

 

 







 
 
 
 

 

4. Test 

,

T

max

for 1:  do

      

1,  0
      

0,  0.

end for

if  or . =  then

Finished

else

x y Ax y x x

x

x

x

x n

L B z

L
J

L

Iter Iter J H S





  


 





 

5. Bit messages 

, ' , ' ',

for x 1:  do

      for y  do

           

       end for

end for

1

end if

until Finished

xy x y A y y y x x

n

Ax

N B r

Iter Iter

 





  

 

 

 

Example 15. Sum-Product decoding (Figure 12) of UG groups. 

Let’s consider K1×12  as original group with n =12.  

 0 0 1 1 0 0 0 0 1 1 1 0K   

H matrix is constructed using Gallager method with size 9 12  showed as follow 



 

59 
 

H 

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 0 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

K is compressed using (6) to obtain the syndrome S 

S=K. 𝐻𝑇= [0 0 1 0 0 1 0 1 0]. 

Let’s consider received group as  

UG = [0 0 0 1 0 0 0 0 1 1 1 0] 

To recover K:  S, UG and H are used in decoding.  

Initially, p values are calculated using (15) 

log ,  if 1,
1

1
log ,  if 0.

i

i

i

p
UG

p
p

p
UG

p


 

 
 



                                                (15) 

We obtain p as follows 

 2.197 2.197 2.197 2.197 2.197 2.197 2.197 2.197 2.197 2.197 2.197 2.197     

Negative values refer to 1’s and positive values refer to 0’s. Then, a matrix N with size 

r× n are defined contains zeros. Each element in each row of M matrix multiplied to 

the corresponding element in p. For example, the values in the first row in N matrix 

will be 𝑁1,1 = 2.197, 𝑁1,2 = 2.197, 𝑁1,3 = 2.197, 𝑁1,4 = −2.197. The other values 

will be zeros since the first 4 values in the first row in H matrix are 1’s and the other 

are zeros. N matrix shows as follows:  
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2.197 2.197 2.197 2.197 0 0 0 0 0 0 0 0

0 0 0 0 2.197 2.197 2.197 2.197 0 0 0 0

0 0 0 0 0 0 0 0 2.197 2.197 2.197 2.197

2.197 0 2.197 0 0 2.197 0 0 0 2.197 0 0

0 2.197 0 0 0 0 2.197 2.197 0 0 0 2.197

0 0 0 2.197 2.197 0 0 0 2.197 0 2.197 0

2.197 0 0 2.197 0 0 2.197 0 0 2



  



  

  .197 0 0

0 2.197 0 0 0 2.197 0 2.197 0 0 2.197 0

0 0 2.197 0 2.197 0 0 0 2.197 0 0 2.197

 
 
 
 
 
 
 
 
 
 
 
 
 




 

 

Graphical representation of H matrix are represented in Figure 14. Using graphical 

representation of H matrix is used in decoding process. UG values are assigned into 

variable nodes in left side and S values are assigned into check nodes in right side.  

Variables nodes

Check nodes

 
Figure 14: H Matrix Graphical Representation. Left Side are Variable Nods Contain 

UG Values. Right Side are Check Nods Contain S Values. 1’s in H are Represented 

as a Connection between Variable Nods and Check Nods 

Number of iteration are initialized, such as Iteration No = 7. The next step is to 

calculate the outer probabilities at the check nodes using (16)  

' , ' , '

,

' , ' , '

1 tanh( / 2)
  log

1 tanh( / 2)

j

j

i C i i j i

j i

i C i i j i

M
B

M

 

 

 
 
 
 

                                   (16) 



 

61 
 

C vector containing the indices of bits variable nodes. For first check node,                     

C= {1, 2, 3, 4}. Thus, outer probability of first bit depends on probability of second, 

third and fourth bits 

1,2 1,3 1,4

1,1

1,2 1,3 1,4

1 tanh( / 2) tanh( / 2) tanh( / 2)
  log 1.131

1 tanh( / 2) tanh( / 2) tanh( / 2)

N N N
B

N N N

 
     

 

Similarly, the outer probability from first check to second bit depends on first, third 

and fourth bits 

1,1 1,3 1,4

1,2

1,1 1,3 1,4

1 tanh( / 2) tanh( / 2) tanh( / 2)
log 1.131

1 tanh( / 2) tanh( / 2) tanh( / 2)

N N N
B

N N N

 
     

 

1,1 1,2 1,4

1,3

1,1 1,2 1,4

1 tanh( / 2) tanh( / 2) tanh( / 2)
log 1.131

1 tanh( / 2) tanh( / 2) tanh( / 2)

N N N
B

N N N

 
     

 

1,1 1,2 1,3

1,4

1,1 1,2 1,3

1 tanh( / 2) tanh( / 2) tanh( / 2)
log 1.131

1 tanh( / 2) tanh( / 2) tanh( / 2)

N N N
B

N N N

 
    

 

Repeating for all checks gives the outer LLR: B is represented as follows: 

-1.131 -1.131 -1.131 1.131 0 0 0 0 0 0 0 0

0 0 0 0 1.131 1.131 1.131 1.131 0 0 0 0

0 0 0 0 0 0 0 0 -1.131 -1.131 -1.131 1.131

-1.131 0 -1.131 0 0 -1.131 0 0 0 1.131 0 0

0 1.131 0 0 0 0 1.131 1.131 0 0 0 1.131

0 0 0 -1.131 1.131 0 0 0 -1.131 0 -1.131 0

1.131 0 0 -1.131 0 0 1.131 0 0 -1.131 0 0

0 1.131 0 0 0 1.131 0 1.131 0 0 -1.131 0

0 0 -1.131 0 -1.131 0 0 0 1.131 0 0 -1.131

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Outer values from check nodes are inner values for variable nodes 

,i i i jL p B   

 The 1-st bit has outer LLRs from the 1st, 4th and 7th checks and an inner to first variable 

nodes as follows: 



 

62 
 

1 1 1,1 1,4 1,7 1.066L p B B B      

2 2 1,1 1,5 1,8 3.328L p B B B      

Repeating for variable nodes. L represented as follows: 

 1.066 3.328 1.195 3.328 3.328 3.328 5.590 5.590 3.328 3.328 5.590 3.328      

Values of L are converted into binary. If Li < 0 then Ji =1, otherwise Ji =0. J showed as 

follows: 

 0 0 1 1 0 0 0 0 1 1 1 0  

Next, S` are calculated using (7).  

` . TS J H  

If S==S` then, J is obtained to the recovered one from UG, otherwise, N is recalculated 

using obtained new values 

2.2 Qian-Zhang Experimental Settings and Results  

Experiments in [1] are conducted using one H matrix with size r = 3840 and n = 6336, 

and selection ratio α =1.  Using Lena, Baboon, Lake, and Man images of size                

512   512 grayscale as shown in Figure 15. 
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a) Lena b) Baboon 

  
c) Lake d) Man 

Figure 15: Gray Scale Images are Used in Qian-Zhang 

The total number of collected bits from EI2, EI3, EI4 is (3 × 512 × 512) 4⁄   = 196608  

bits. L bits are selected from collected bits where selection ratio α =1, using (5) 

L=1.0×196608=196608. These selected bits are shuffled then divided into 31 groups 

using (7) where n = 6336, K=⌊196608 6336⁄ ⌋ = 31. Each group is encoded with the 

𝐻3840×6336matrix using (8). The resultant syndrome group SGs with size 31 3840  . 

Number of bits to be embedded in each group is n – r = 6336 - 3840=2496. The total 

number of bits is K (n - r) =31 × 2496 = 77376. Embedding capacity is obtained from 

[1] defining using (11) 

𝐸𝑒𝑚𝑏=
3×1.0×(6336−3840)

4×6336
 = 0.2952 bpp.  

The PSNR of approximate image keeps constant for all embedding capacity. Figure 

16 results of PSNR of approximate image in [1]. 
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Figure 16: Results for PSNR of Approximate Image in Qian-Zhang Scheme. PSNR 

of Approximate Image is Constant When Embedding Capacity Changes [1] 

When decoding fails, PSNR of decoded image decreases when embedding capacity 

increases. Figure 17 shows results of PSNR of decoded image in [1] when decoding 

fails. 
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Figure 17: PSNR of Decoded Image When Decoding Fails [1] 

2.3 Review of RDH schemes 

In this section, we review RDH data embedding techniques. In [2], a RDH data 

embedding scheme is proposed that embedded bits into an encrypted image by flipping 

a small number of LSBs (less than 5) of pre-defined pixels in the encrypted image after 

dividing the encrypted image into blocks. Conducted experiments of [2] embedded 

256 bits to gray scale Lena image with size 512512 pixels, results PSNR value 37.9 

dB after decrypting encrypted image holds embedded data, with error extraction rate 

1.21 % from recovered image. In [13], a n new algorithm is proposed to better estimate 

the smoothness of image blocks. This algorithm improved data extraction and image 

recovery strategies in [2]. Using this algorithm, with error extraction rate from 

recovered image drops from 1.21% in [2] to 0.34% in [13]. 

In [14], an RDH method proposed embeds secret data after compressing bits in 

encrypted image. The test images are sized 512×512. The embedding capacity 

achieves 0.033 bpp for Lena image with PSNR 37.96 dB after decryption while for 

Man and Lake 0.0250 bpp and 0.0130 bpp respectively with PSNR 37.95 dB for both 

after decryption.  
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In [6], an RDH method proposed embeds secret data after encoding encrypted image. 

The original images are used sized 512×512. Embedding capacity for Lena is 0.043 

bpp and for man 0.035 bpp with PSNR 38.1 dB. 

In [1] , the embedding capacity achieves 0.2952 bpp for all images with different 

PSNR of approximate image. 

2.4 Problem Definition 

The following problems related to Qian-Zhang scheme are solved in the thesis: 

1. Implement the Qian-Zhang scheme and get the same experimental results as in [1]. 

2. The selection key KSL that is used is not specified clearly in [1]. Thus, we need 

proposing an algorithm to generate different selection keys depending on the selection 

ratio. 

3. The shuffle key KSF generation is not defined in [1]. Hence, we have to propose an 

algorithm to generate shuffle key. 

4. The encryption key KENC  used is not defined in [1]. Thus we have to propose an 

algorithm to generate an encryption key. 

5. The decoding process done in [1] is not clearly explained. We used sum-product 

decoding algorithm [20]. 

6. In [1], only one H matrix is used in (7) of size n = 3840 and r = 6336 with ratio   

𝑅 = 𝑟 𝑛⁄ ≈ 0.62 without specifying the construction method of  this matrix. Hence, 

we need to find a construction method provides higher embedding capacity with higher 

PSNR of decoded image. We conducted experiments on two construction methods: 

Gallager and MacKay-Neal by generating different H matrices for construction 

method and applying these matrices scheme [1]. 
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7. Qian-Zhang scheme studies relation between the embedding capacity and the quality 

of approximate image using only one matrix. We have to confirm this relation by 

conducting experiments in [1] using several constructed H matrices by Gallager 

method each of with different sizes. 

8. We need to extend the experiments by generating different H matrices with different 

sizes with the same ratio R to find the relation between the H matrix size and the quality 

of the recovered image. Moreover, these experiments are used to find the relation 

between the H matrix size and decoding time. 

9. The extension of the experiments settings of [1] also shall be done by generating 

different H matrices with different R and sizes to find the relation between H matrix 

ratio and the embedding capacity and to be confirmed by conducting  experiments. 

10. When the decoding fails, the relation between embedding capacity and the quality 

of recovered image is investigated. 

2.5 Summary of Chapter 2 

In this chapter we have: 

1. Presented Qian-Zhang scheme [2]  experimental results and settings 

2. Presented the related work on RDH and provided known experimental results on 

PSNR and embedding capacity. 

3. Problem definition for the thesis is given.   
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Chapter 3 

QIAN-ZHANG SCHEME IMPLEMENTATION  

In this chapter, we present implementation of Qian-Zhang scheme [1]. We have chosen 

6 images as shown in Figure 18 with size 512 × 512 from [21] for implementation. 

These images are “pgm” format, in this format we couldn’t measure the quality of 

approximate and decoded images. Hence, these images are converted into “bmp” in 

order to identify each one. In Appendix A.2 the implementation of image conversion 

is given. In Appendix A.2, line 3, images with “pgm” format are read. In lines 6-13, 

each image is converted into matrix contains pixel values, then saved as “bmp” format. 

   
a) Baboon b) Barbara c) Lake 

   
d) Lena e) Man f) Peppers 

Figure 18: Images used in our implementation for Qian-Zhang scheme 

We implemented Qian-Zhang scheme as follows: 

1. Selection ratio α is fixed equal to 1, Appendix A.3, to find: 

1.1.  Optimal H matrix construction method. 
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1.2.  The relation between H matrix size and decoding time and PSNR of decoded 

image. 

1.3.  Relation between H matrix ratio and embedding capacity. 

2. Selection ratio 𝛼 ∈ [0.1, 1.0]  with step 0.1, Appendix A.4 , to find: 

2.1 Relation between embedding capacity and PSNR of approximate image. 

2.2 Relation between embedding capacity and PSNR of decoded image. 

3.1 Qian-Zhang Implementation 

Appendix A.3 present implementation of Qian-Zhang scheme using 9 H matrices 

constructed by Gallager and MacKay-Neal method with selection ratio α equal to 1.0, 

line 9. In line 3, the images loaded from directory. In line 5, we declare variable of for 

storing PSNR for each decoded image for each H matrix. In line 6, we declare variable 

for storing decoding time for each image of each H matrix. Line 7, define the column 

size of H matrix which is equal to n.  In lines 8-54, each image goes through three 

stages: image encryption in line 20, data hiding in line 28 and data extraction and 

image recovery in line 46. The resultant PSNR of decode image is assigned in line 48 

for each H matrix of each image and decoding time is assigned in line 49 for each H 

matrix of each image. Code 1 shows MATLAB code for Qian-Zhang implementation 

steps. In Code 1 line 1, the original image is encrypted. Then, the secret data is 

embedded in line 2. The data is extracted and the image is recovered in line 3. 

Code 1: Qian-Zhang implementation 

1. [EncryptedImage]=encrypt(OriginalImage,EncryptionKey ); 

2.Marked_encrypted_image,selectionkey,Shufflekey,L,r,H,syndorm,kgroups,secret

Data]=HideData(EncryptedImage,selectionRatio,seed,numberofbits,secretData,im

Name,j); 
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3.[extractedData,ApproximateImage,PSNR,RecievedImage, 

DecodedPSNR]=Reciever(Marked_encrypted_image,selectionkey,Shufflekey,L,r,

numberofbits,EncryptionKey,imName,OriginalImage,H); 

The implementation for three stages is described in details in the next sections.   

3.1.1 Stage 1: Image Encryption Implementation 

We use 512×512 grayscale images in Appendix A.1 Figure A.1. In Appendix A.3.1, 

we implemented Section 2.1.1. In line 4, the image is converted into binary values 

using de2bi MATLAB function to obtain 262144×8 binary image according to (1). 

 Then, the binary image is encrypted in line 5 by MATLAB xor function using 

encryption key, which is obtained from Appendix A.3.1.1, according to (2). After that, 

encrypted binary image is converted into decimal values using bi2de MATLAB 

function to obtain 262144 ×1 decimal image in line 6. In lines 7 and 8, the decimal 

image is converted into 512×512 grayscale encrypted image using reshape MATLAB 

function according to (3). 

 In Appendix A.3.1.1 line 2, encryption key KENC is generated randomly with size 

(512×512) ×8 binary values. Then in line 6, KENC are stored in ‘.mat’ file in order not 

to be generated each time during running. Code 2 shows the MATLAB 

implementation of image encryption stage. In line 1, the original image is converted 

into binary values. Then, in line 2, the binary values are encrypted using encryption 

key. After that, the encrypted binary are converted into pixel values in line 3. 
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Code 2: Image Encryption Implementation Stage 

1.binary=de2bi(OriginalImage,8,2,'left-msb'); 

2.binaryImage=xor(binary,EncryptionKey); 

3.EncryptedImage=bi2de(binaryImage,'left-msb'); 

3.1.2 Stage 2: Data Hiding Implementation 

In this section we present implementation of, Section 2.1.2, of three phases.  

In Appendix A.3.2 lines 3-12, presents MSBs selection phase steps. The encrypted 

image is decomposed into 4 segments EI1, EI2, EI3, EI4 in line 3. Then, in line 4, the 

MSBs are collected from EI2, EI3, EI4. After that, in line 5, the selection key KSL is 

constructed with selection ratio α equal to 1.0. After constructing KSL, number of bits 

are selected from collected bits in line 9. After selecting bits, shuffle key KSF is 

generated based on selected bits in line 10. Then, the selected bits are shuffled using 

KSF in line 12. 

Lines 13-23 present encoding and compressing phase steps. In line 14, K  groups are 

created. In lines 18-21, H matrix is loaded for encoding. In line 23, syndrome groups 

SGs is obtained. 

Lines 25-31 present embedding secret data phase steps. In line 5, secret data SD is 

embedded into syndrome groups SGs. In line 27, the embedded groups is reversed 

shuffle. In line 29, MSBs are replaced with inversed shuffle bits. Marked encrypted 

image MEI is constructed in line 31. 



 

72 
 

Code 3 shows the steps of data hiding stage implementation. Lines 1-5 presents MSBs 

selection phase steps. In line 1, the encrypted image is decomposed into 4 segments. 

Then, the MSBs are collected from the last three segments in line 2. After that, in line 

3, number of bits are selected using selection key. In line 4, the shuffle key is 

generated. In line 5, the selected bits are shuffled using shuffle key. 

 Lines 6-7 presents encoding and compressing phase steps. In line 6, K  groups are 

created. In line 7, syndrome groups SGs is obtained. 

Lines 8-11 present embedding secret data phase steps. In line 8, secret data SD is 

embedded into syndrome groups SGs. In line 9, the embedded groups is reversed 

shuffle. In line 10, MSBs are replaced with inversed shuffle bits. Marked encrypted 

image MEI is constructed in line 11. 

Code 3: Data Hiding Stage Implementation 

1. [E1,E2,E3,E4]=decompose(A); 

2. [collectedbits]=collectBits(E2,E3,E4); 

3. [selectedBits]=selectbits(collectedbits,selectionkey); 

4. [shufflekey]=generateshuffelkey(selectedBits); 

5. [shuffledbits]=shufflebits(selectedBits,shufflekey); 

6. [kgroups,reminderBits]=createGroups(shuffledbits,numberofbits); 

7. [syndorm]=GetSyndorm(kgroups,H); 

8. [image_after_embedding,r,secretData]=embedData(kgroups,syndorm,additional

Bits) 
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9. [inverseSuhffledBits]=inverseshuffle(image_after_embedding,reminderBits,shu

fflekey); 

10. [EE2,EE3,EE4]=returnBits(inverseSuhffledBits,E2,E3,E4,selectionkey); 

11. [MarkedEncryptedImage]=compose(A,E1,EE2,EE3,EE4); 

Most Significant Bits (MSBs) Selection Phase 

This section presents implementation of MSBs selection phase. 

Appendix A.3.2.1 present implementation of decomposing encrypted image into EI1, 

EI2, EI3, EI4. In lines, 2-14, the size encrypted image is checked if it is power of 2. In 

lines 15-18, the encrypted image is decomposed. 

Appendix A.3.2.2 presents implementation collecting of MSBs from EI2, EI3, EI4. In 

lines 5-7, MSBs from EI2 are collected. In lines 8-11, MSBs from EI3 are collected. 

In lines 12-15, MSBs from EI4 are collected. In line 16, the collected bits CB from are 

EI2, EI3, EI4 concatenated into row vector. 

For selecting bits, we have to construct selection key KSL that is used to select number 

of bits, L, pseudo randomly from the collected MSB bits. The construction of KSL 

depends on the selection ratio (α) and selection seed (Seed). Selection ratio, α, is in 

range [0.1, 1.0] and we define seed as a positive integer number. We fix selection ratio 

equal to 1.0, hence, L will be all the MSBs are selected according to (5). 

The size of KSL will be same as L containing the indices between 1 and L.  Algorithm 

15 describes the algorithm of constructing selection key KSL and Example 15 shows an 

example of KSL. 
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Algorithm 15. Selection key construction 

Input:  

  Seed ∈ 𝑍+, 𝑍 is positive integer numbers set 

 α: selection Ratio, α =𝐿 (3𝑋𝑌 4⁄ )⁄ . 

 CB: MSB’s , [c1, c2, …, c|CB|]; ci ϵ {1,0}, |CB| = 3𝑋𝑌 4⁄  

Output:  

 KSL: Selection Key = [ KSL1, KSL2,…, KSLL], 𝐿 = 𝛼 × (
3𝑋𝑌

4
) . 

Steps:  

1. Take the length of the CB: T . 

2. Determine the number of the bits to be selected based on 𝛼:𝐿 = ⌊𝛼 × 𝑇⌋. 

3.  Seeds the random number generator using the seed 

4. Select randomly number between 1 and T. 

5. Checks whether in the KSL or not, if not stored in the KSL, if yes, select again 

another number. Until we generate a key with length L. 

The next pseudo-code, Code 4, implements Algorithm 15: 

Code 4 : 
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    ( )

    1

  

SL
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SL

T CollectedBits

L T

randomNumberGenerator Seed

K L

index

while index L

y select Random Number between and L

if y K

repeat

else

K index y

index index





   











 

  end if

end

 

 

Example 15. Selection key KSL construction 

Let’s consider  

Input: 

 α=1.0, 

 T= 48. Total number of collected bits CB 

 Seed = 4. 

Output: 

 KSL 

[47   27   35    34   11 1   13 21   38   10   42   48 8   29 19   3 46   9 4   36 20  26 6  

 31    32  30    37  25 33  43 18  24 45  40 44  16 28  41 5   12 7   39 17  23 2   22 14   15 ]  

Steps: 

1. L = 1.0×48=48. Number of bits to be selected 

2. KSL [1, L] = {} 

3. index=1 

4. While  
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5. y =47. Based on seed 

6. if (y in KSL)  false 

7. KSL (index) = [47]. index = index +1. Go to step 3. 

Appendix A.3.2.3 presents the implementation of the KSL construction. We fixed 

selection seed equal to 4 in line 2. In line 3, total number, T, of collected bits CB are 

calculated. According to (5), L bits is determined in line 4 which is length of KSL using 

total number of collected (T) and α equal 1.0. In order to selected bits pseudo 

randomly, in line 5, we use rng MATLAB function which is control the generation of 

random number between 1 and L based on selection seed. In line 6, KSL is initialized 

with size L containing zeros. Lines 7-14 describes assigning random numbers between 

1 and L to KSL ‘randi’ function which is controlled by rng function . If the random 

number is exist in KSL, another random number is generated, otherwise, generated 

random number is added into KSL. At the end of this function, KSL is created containing 

all the indices between 1 and L to select bits from the collected bits CB.  

Appendix A.3.2.4 presents selecting bits SB from collected bits CB using constructed 

selection key KSL. In line 2, the bits are selected using selection key KSL from collected 

bits CB. 

For shuffling bits, shuffle key KSF is constructed in Appendix A.3.2.5. For KSF 

construction, length of the selected bits L is used. Then, we select all the prime numbers 

in L. After that, a number from selected prime number are chosen that is not equal to 

1, not selected before and GCD between the number and L equal to 1. Algorithm 16 

below describes the construction of KSF. An example of KSF construction is given in 

Example 16. 
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Algorithm 16. Shuffle key construction 

Input:  

  SB: the Selected Bits = [1….L],𝐿 = 𝛼(3𝑋𝑌/4).  

Output:  

 KSF: the Shuffle Key ∈ 𝑍+ 

Steps:  

1. Find the length of the SB : L    

L: length of selected bits 

2.declare empty “selected primes” array  

2. Find all prime numbers form L: Ps. 

Ps[]= all prime numbers in L 

3. Select randomly prime number P from Ps such that P≠ 1, P not in “selected 

primes” array, and gcd (P, L) =1, where gcd is greatest common divisor. 

     

   ( 1)

    

    

  (  )

         1

      

SF

SF

SF

K select random prime number in Ps

if K

continue

end

if GCD K and L

done

end if







 

The next pseudo-code, Code 5, implements Algorithm 16: 

Code 5: 
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  ( )

{
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  1

      []    in

         

   ( 1     )

    

SF

SF

SF SF

K construct Shuffle key SB

L length of selected bits

selected primes

while done

Ps all prime numbers L

K select random prime number in Ps

if K or K in selected primes















    

  (  )

         1

 

      

 

}

SF

SF

continue

end

if GCD K and L

done

else

selected primes K

end if

end while





 

Example 16. Example of KSF construction. 

Let’s consider L = 48  

Steps: 

Selectedprimes= []; 

1. While done ≠ 1 

2. Prime numbers in  Z48 are  

p= 2  3  5 7  11  13   17 19  23 29  31 37  41 43  47  

3. Select randomly from PN : KSF =3 and  check  3=GCD(3, 48) ==1 is false 

4. Selectedprimes= KSF and go to step 2 

5. The next random number KSF =13  GCD(13 and 48)=1 true 

6. End 
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We implemented constructing shuffle key KSF function as in Appendix A.3.2.5 taking 

the selected bits SB as an input. In line 3, the number of selected bits, L, are obtained. 

In lines 4-10, all prime numbers is obtained depending on the number of selected bits 

L. Then, in line 6, select randomly one of the prime numbers (x). In line 10, if the 

Greatest Common Divisor (GCD) between the x and L is equal to 1, then KSF = x, 

otherwise, another prime number is selected. 

After constructing shuffle key KSF, shuffle bits SHB are obtained from Appendix 

A.3.2.6. Line 4, shuffle vector is created containing indices after shuffling. Then, in 

line 5, the shuffled bits SHB are obtained from selected bits SB using shuffle row.  

Encoding and Compressing Phase Implementation 

This section presents implementation of encoding and compressing phase. 

In Appendix A.3.2.7 line 4, K groups are calculated which is defined by (7). In line 5, 

number of remainder bits are calculated. In lines 5-8, the remainder after division are 

stored in row vector in line 8.  In lines 9-11,   groups are created with size K × n. 

After create groups, we have to construct H matrix to obtain syndrome groups. For 

constructing H matrix, we use two methods for constructing: Gallager method and 

MacKay-Neal method. For Gallager method, we used implemented code [21], which 

takes the number of columns as an input and produced H matrix with size r × n. For 

MacKay-Neal method, we used implemented code [22] which takes (r, n, method, 

noCycle, onePerCol) as inputs to produce H matrix with size r × n. We have generated 

different 9 H matrices for each method and store them in “.mat” file format. Appendix 

A.3.2.8 shows the code of storing H matrices. Line 4, we construct Gallager H matrix 

which takes n as an input that determine the number of columns in H matrix. In lines 
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5-6, we construct MacKay-Neal H matrix which takes r and n, the other inputs 

determine the distribution of 1’s in H matrix. For more details, see [22]. In line 7-11, 

we store the constructed H matrix with unique name. For Example, we use 

“HGST2_1” name for first H matrix constructed by Gallager for trial 2. “HGST2_2” 

name for second H matrix constructed by Gallager for trial 2, and so on. The detailed 

H matrix with its name are shown in Appendix. Details of Gallager and MacKay-Neal 

methods in Section 3.2.  

After construction H matrix, in Appendix A.3.2.9 line 2, H matrix is transposed then, 

K groups are compressed using transposed H matrix according to (7) in line 4 to obtain 

syndrome groups. 

Embedding Secret Data Phase Implementation 

This section presents implementation of embedding secret data phase. 

In Appendix A.3.2, in line 25, we implemented function to embed secret data. In line 

27, the groups after embedding is inversed shuffled. Then, the modified MSB bits are 

replaced with original MSB bits in lines 29-31.  

In Appendix A.3.2.10, in line 7-8, secret data are generated randomly with size    

𝐾(𝑛 − 𝑟) to be embedded. In line 9, the secret data is divided into K groups, each 

group with size n - r. In line 11, an embedded matrix defined with size K × n. In line 

12, secret data is embedded into embedded matrix in n - r space in each group. In line 

13, the syndrome groups is assigned into embedded matrix in r space in each group. 

In appendix A.3.2.11, the embedded group is reverse shuffle using constructed shuffle 

key. In line 7, the embedded matrix is converted into row vector. In line 9, the 
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remainder bits are concatenated to the embedded matrix after conversion using horzcat 

function in MATLAB. In lines 12-13, the bits is reversed shuffle using shuffle key. 

In Appendix A.3.2.12, collected MSBs are replaced with the inversed shuffle bits in 

line 2. In lines 6-5, MSB bits are collected and replaced from EI2. In lines 7-8, MSB 

bits are collected and replaced from EI3. In lines 9-10, MSB bits are collected and 

replaced from EI4. In lines 11-13, modified MSB bits are returned into EI2 segment 

to get EE2 segment. Same procedure for EI3, EI4 in lines 14-19. 

In Appendix A.3.2.13, in lines 2-6, EI1, EE2, EE3, EE4 are composed according to 

(4) to obtain marked encrypted image. 

3.1.3 Stage 3: Data Extraction and Image Recovery Implementation 

This section presents implementation of Section 2.1.3. There are 3 options: data 

extraction, approximate image reconstruction, and lossless recovery.  

Code 6 shows the implementation of data extraction and image recovery stage. In line 

1, the data is extracted using selection key KSL, shuffle key KSF, L, n, and r from marked 

encrypted image MEI. In line 2, an approximate image is constructed using encryption 

key KENC. The last option in line 3, the data is extracted and the image is recovered. 

Code 6: Data Extraction and Image Recovery Implementation  

1.[extractedData]=DataExtraction(Marked_encrypted_image,selectionkey,Shufflek

ey,L,r,numberofbits); 

2.[ApproximateImage,PSNR]=DecryptionAndEstimation(Marked_encrypted_ima

ge,EncryptionKey,imName,OriginalImage); 
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3.[RecievedImage, 

DecodedPSNR]=Recovery(Marked_encrypted_image,selectionkey,Shufflekey,H

,L,r,numberofbits,EncryptionKey,secretData,syndorm,kgroups,imName,fid2,Ori

ginalImage); 

Option 1: Data Extraction Implementation 

This section present the implementation of option 1: data extraction. 

In Appendix A.3.3, in line 2, the Marked encrypted image is decompose into 4 

segments using (4) same as in Appendix A.3.2.1. In line 3, the MSB bits are collected 

same in Appendix A.3.2.2. In line 4, number of bits are selected using KSL same as in 

Appendix A.3.2.4. In line 5, the bits are shuffled using shuffle key KSF same Appendix 

A.3.2.6. The K groups are created same Appendix A.3.2.7. In line 7, the secret data are 

extracted by implementation function in Appendix A.3.3.1. In Appendix A.3.3.1 line 

5, the secret data is extracted from K groups (K, (r +1)…n). The extracted groups are 

converted into row vector in lines 6-8.  

Code 7 shows the MATLAB code implementation of data extraction. In line 1, the 

marked encrypted image is decomposed into 4 segments. Then, in line 2, MSBs are 

collected from the last three segments. In line 3, number of bits are selected using the 

selection key. In line 4, the selected bits are shuffled using the shuffle key. After that, 

in line 5, the shuffled bits are divided into K groups. The secret data is extracted in line 

6. 
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Code 7: Data Extraction Implementation  

1. [V1,V2,V3,V4]=decompose(A); 

2. [collectedbits]=collectBits(V2,V3,V4); 

3. [selectedBits]=SelectBitsUsingSelectionKey(collectedbits,L,selectionKey); 

4. [shuffledbits]=shufflebits(selectedBits,shuffleKey); 

5. [kgroups,reminderBits]=createGroups(shuffledbits,n); 

6. [extractedData]=extractData(kgroups,n,r); 

Option 2:  Approximate Image Reconstruction Implementation 

This section present implementation of option 2: approximate image reconstruction. 

In Appendix A.3.4 line 2, the marked encrypted image is decrypted using the 

encryption key according to (2) same in Appendix A.3.1 to obtain marked image. In 

line 6, marked image is decomposed into 4 segments using (4) same as in Appendix 

A.3.2.1. Then, in line 7, a reference image BI is constructed using interpolation 

function that we implemented in Appendix A.3.4.1. After that, reference image BI is 

decomposed using same as Appendix A.3.2.1. To get an approximate image AI, we 

implemented estimation function in Appendix A.3.4.2 using reference image BI and 

marked image AI according to (13) lines 9-12. Then, approximate segments after 

estimation is composed into one image to construct approximate image in line 13 same 

in Appendix A.3.2.13. In line 23, we use MATLAB PSNR function to get the PSNR 

of approximate image. 

For bilinear interpolation, we implement function in Appendix A.3.4.1. In lines 3-5, X 

and Y coordinates are defined using meshgrid in MATLAB to expand the segment 

1EI  . Then, in line 6, interpolated values are calculated using interp1 function in 
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MATLAB. Lines 7 and 8, interp1 function used bilinear extrapolation to calculated 

border values. In line 9, interpolated values are rounded and reference image BI is 

obtained.  

In Appendix A.3.4.2, according to (13), in line 6, approximate segments is constructed.  

Code 8 shows the MATLAB implementation of option 2, approximate image 

reconstruction. In line 1, the marked encrypted image is decrypted using the encryption 

key. Then, in line 2, the decrypted image is decomposed into 4 segments. Using the 

first segment, in line 3, the reference image is constructed using the bilinear 

interpolation. The reference image, in line 4, is divided into 4 segments. The MSBs 

estimation is calculated for the 4 segments in lines 5-8. After calculating the MSBs the 

approximate image is constructed by composing the 4 segments in line 9. 

Code 8: Approximate Image Reconstruction Implementation 

1. [DecryptedImage]=decrypt(A,EncryptionKey); 

2. [A1,A2,A3,A4]=decompose(Marked_image); 

3. [B]=interplation(A1,Marked_image); 

4. [B1,B2,B3,B4]=decompose(B); 

5. [BB1] = calculate_approximate_image(A1, B1); 

6. [BB2]=calculate_approximate_image(A2, B2); 

7. [BB3]=calculate_approximate_image(A3, B3); 

8. [BB4]=calculate_approximate_image(A4, B4); 

9. [ approximateImage ] =compose(Marked_image,BB1,BB2,BB3,BB4); 
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Option 3: Lossless Recovery Implementation 

This present implementation of option 3: lossless recovery. 

Appendix A.3.5, shows lossless recovery steps. In this case, the data extracted 

perfectly in line 5 using same implementation in Appendix A.3.3. Then, in lines 7-20, 

the syndrome groups are extracted from marked encrypted image. In line 21, an 

approximate image is constructed then, in line 22, approximate image is encrypted. In 

lines, 23-28, encrypted approximate image is decomposed using implementation in 

AppendixA.3.2.1. Then MSB bits are collected from using implementation in 

Appendix A.3.2.2. After that, selected bits are obtained using implementation in 

Appendix A.3.2.4 using KSL. Then, the selected bits are shuffled using implementation 

in Appendix A.3.2.6. Then, K groups are created using implementation in Appendix 

A.3.2.7. Using syndrome groups, K groups, and H matrix, we implemented decoding 

process in line 4 as given in Appendix A.3.5.1, (Section 3.3) to obtained decoded 

groups. Then, decoded groups are inversed shuffle using function in line 56. In line 

57, the inversed shuffle bits are replaced with MSBs in   in encrypted approximate 

image. After that, the segments after decoding are composed as given in Appendix 

A.3.2.13. To get decoded image, the composed image is decrypted as in line 61 as 

given in Appendix A.3.1.  

Code 9 shows the MATLAB implementation of lossless recovery. In lines 1-6, the 

syndrome groups are extracted. In line 7, an approximate image is constructed. Then, 

in lines 8-14, the K groups ate obtained from approximate image using same steps in 

MSBs selection phase. In lines 15-18, using H matrix, extracted syndrome and K 

groups are used for decoding to recover the MSBs. The recovered MSBs are inversed 

shuffle in line 19 using the shuffle key. In lines 20-21, the MSBs are returned into 
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MSBs in segments in approximate image. Then, in lines 22-32, the recovered image is 

constructed after composing and decryption using encryption key.  

Code 9: Lossless Recovery Implementation 

1. [E1,E2,E3,E4]=decompose(A); 

2. [collectedbits]=collectBits(E2,E3,E4); 

3. [selectedBits]=SelectBitsUsingSelectionKey(collectedbits,L,selectionKey); 

4.  [shuffledbits]=shufflebits(selectedBits,Shufflekey); 

5. [kgroups,reminderBits]=createGroups(shuffledbits,numberofbits); 

6. [compressedData,compressedGroup]=GetCompressedData(kgroups,numberofbi

ts,r); 

7. [ApproximateImage,ApproPSNR]=DecryptionAndEstimation(A,EncryptionKey

,imName,OriginalImage); 

8. [EncryptedApproximateImage]=encrypt(ApproximateImage,EncryptionKey); 

9. [E1,E2,E3,E4]=decompose(EncryptedApproximateImage); 

10. n=numberofbits; 

11. [collectedbits]=collectBits(E2,E3,E4); 

12. [selectedBits]=selectbits(collectedbits,selectionKey); 

13. [shuffledbits]=shufflebits(selectedBits,Shufflekey); 

14. [kgroupsappro,reminderBits]=createGroups(shuffledbits,n); 

15. for i=1:r 

16. [decodedString]=decodeStatisticsOriginal(compressedGroup(i,1:end),kgroupsap

pro(i,1:end),H); 

[decodedString]=decodeStatisticsOriginal(compressedGroup(i,1:end),kgroupsap

pro(i,1:end),H,kgroupsOriginal(i,1:end)); 
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17. decoded(i,1:numberofbits)=decodedString; 

18. end 

19. [inverseShuffledBits]=inverseshuffle (decoded,reminderBits,Shufflekey ); 

20. [E1,E2,E3,E4]=decompose(EncryptedApproximateImage); 

21. [EE2,EE3,EE4]=returnBitsAfterDecoding(inverseShuffledBits,E2,E3,E4,selecti

onKey); 

22. [decocedImage]=compose(ApproximateImage,E1,EE2,EE3,EE4); 

23. [decocedImage]=decrypt(decocedImage,EncryptionKey); 

3.2. H Matrix Construction Methods 

In encoding and compression phase, H matrix is used to compress groups of bits to 

obtain syndrome. In addition, in lossless recovery stage, H is used for recovered MSBs. 

However, the H matrix that is used is not exactly specified in [1] nor in its reference 

[10].Thus, we have generated different H matrices using Gallager method [11] and 

MacKay-Neal method [12]. 

An LDPC H matrix, is a binary matrix contains few number of 1’s that are using for 

error correction. The H matrix can be represented via matrix and graphical 

representation. The graphical representation are used for decoding which will be 

described in Section 3.5. In Figure 18, an example of H matrix with size 4×8 

represented by matrix and graphically is given. Figure 18 (a) The H matrix, Figure 18 

(b) Graphical representation of H matrix 
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(a) (b) 

Figure 19: Representation of H Matrix. (a) H Matrix (b) Graphical Representation of 

H. Columns of H Matrix are Represented as Variable Nodes in Left Side. Rows of H 

Matrix are Represented as a Check Nodes in Right Side 

 In the rows of H matrix are represented as variable nodes and the columns are 

represented as a check nodes. The 1’s are represented as a connection between variable 

nodes and check nodes. 

The H matrix presented by Gallager is regular, that means each column has wc of 1’s 

and each row has wr of 1’s. To construct H matrix, we have to define the number of 

1’s in each column which defines by wc and the number of 1’s in each rows defines by 

wr. Then, the sub-H matrices are constructed based on the number of wc. For example 

if wc=4, then we have 4 sub matrices. Each column in each sub-matrix contains a single 

1 and wr of 1’s in each row. The first rows in the first sub-matrix contains wr successive 

ones ordered from left to right across the columns then the other sub-matrices are 

randomly chosen based on the first sub-matrix.  
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For construction, we determine the number of the columns (n), the number of 1’s in 

each row (wr) and number of 1’s in each column (wc). Then, to determine the size of 

H matrix, we have to know the number of the rows (r) using (17) 

𝑟 = 𝑛 × (𝑤𝑐/𝑤𝑟)                             (17) 

For example, when n =20, WC = 3, wr = 4 then r = (20×3)/4 = 15. 

Thus, the H matrix size is r =15 and n= 20.  

After that, we have to construct the first sub-matrix. We have to distribute the wr 1’s 

in each row sequentially. The other sub-matrices are constructed based on the first sub-

matrix permuting the rows randomly [22]. We generated another different H matrices 

using MacKay-Neal [12] method. In this method, the 1’s are added at one column at 

time from left to right. The location of 1’s in each column are chosen randomly for 

rows are not full yet. We determined the number of the rows r and the number of 

columns (n). For example, r = 9 and n = 12 then the H matrix is  

1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1 0

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 0 1 0 1 0 0 1 0

0 0 1 0 1 0 0 0 1 0 0 1

H

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We have used implemented Gallager method to construct H matrices as in Appendix 

A.6 [22]. This function takes the number of columns n as an input. The number of 1’s 

in columns (wc) and rows (wr) are assigned in lines 3 and 4 where wc=4 and wr =8. In 

line 5, number of rows r are determined. First sub matrix are generated in lines 6-12. 
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The generation of other sub-matrices are generated using permutation from sub-matrix 

in lines 14 – 23.  We generated 10 different sizes of matrices 3 times matrices. In other 

words, we generated 10 ×3 matrices with different sizes with same ratio R=0.5.  In 

Appendix A.6.1 the generated matrices are shown. 

We have generated different H matrices using MacKay-Neal [23] method 

implemented using Appendix A.7. 

3.3 Sum-Product Decoding Algorithm 

In lossless recovery case, decoding algorithm is used to restore the original ones. Using 

LLR in (15) values, the SGs which are obtained after the secret data is extracted and H

matrix, the original bits are restored using Sum-Product Decoding [16] and [20] 

algorithm. The decoding algorithm is described in Algorithm 14 in Section 2.1.3.3. 

In Appendix A.3.5.1 shows the implementation of Sum-product decoding algorithm. 

In line 2, we defined the number of iteration equal to 15. In line 13, we initialized 

vector z to calculate LLR using q= 0.1. Then, in lines 20-28, we calculate the check 

nodes values in matrix N. In lines 34-51, vector C which contains variable nodes are 

connected to each check node. After calculating C vector , in lines 52-58, we calculate 

the inverse tanh using MATLAB function atanh and store values in B in line 59.a. 

using E, in lines 63-74, we calculate a vector J that it is decoded from received vector. 

To check if it’s decoded correct, in line 75, we multiply vector J with H transpose to 

get syndrome and comparing with received syndrome. If they are same, then J is the 

decoded vector. Else, recalculating using variable nodes values. In line 82, we declare 

vector A contains values of variable nodes in lines 80-91. In lines 92, E matrix is 

updated using values for vector A. 
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In Appendix A.4, we use same steps in section 3.1 except we define the selection ratio 

in line 6 when α ∈ [0.1, 1.0]. 

3.4 Summary of Chapter 3 

In this chapter we present: 

1.  The implementation of Qian-Zhang method when selection ratio α is fixed equal to 

1 and when α ∈ [0.1, 1.0] . 

2. The implementation and algorithms of constructing selection key, shuffle key and 

encryption key. 

3. H matrix construction methods using Gallager and MacKay-Neal.   

4. Sum-product decoding algorithm  
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Chapter 4 

EXPERIMENTAL SETTINGS AND RESULTS  

In this chapter, we discuss conducted experiments in [2] using our defined parameters, 

in addition, we explain extended experiments on PSNR of decoded image, decoding 

time, embedding capacity and H matrix ratio. 

4.1 Experimental Settings 

Qian-Zhang method [1] (See Chapter 2),  encodes grayscale images with size 512×512 

using H matrix defined in  [10], with r =3840 and n = 6336 and cross-over probability1 

q = 0.1 .  Using our defined parameters (selection key KSL, encryption key KENC, shuffle 

key KSF, H matrix), we conducted same experiments [1] in order to confirm results in 

[1].  

Since, the H matrix are not defined clearly neither in [1] nor in its reference [10], we 

generated different H matrices with different sizes and different ratios using Gallager 

[11] and Mackay-Neal method [12].These experiments include relation between the 

quality of approximate image (PSNR) and embedding capacity using (10). Moreover, 

relation between the quality of decoded image (PSNR) and embedding capacity is 

studied in case of decoding fails. Since H  matrix is not defined in [1] nor its reference 

[10], we had to find optimum H matrix construction method. We tested by experiments 

two H matrix construction methods, Gallager [11] and MacKay-Neal [12] to find 

optimum H matrix construction method and used it in conducted experiments in [2]. 

                                                           
1 A small probabilty that a most significant bit will be flipped. 
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We also extended experiments in [2] to find relation between H matrix size and both 

decoded PSNR and decoding time. Experiments conducted using MATLAB 2016 on 

a PC equipped with 2 GHz Intel Pentium Dual CPU E2180, 3 GB RAM, and Windows 

10. Six of grayscale images with size 512512 are used to conduct our experiments.  

4.2 Comparison of Different H Matrix Construction Methods   

We generated three different H  matrices using Gallager [11] and Mackey Neal [12] 

with sizes (r = 64, n = 128) (r = 128, n = 256) and (r = 256, n = 512) (see Appendix 

B). For each size we generated 3 matrices for each method. In Appendix B.1, shows 

the parts of H matrix we used in our implementation with size 64  128. The other H 

matrices are constructed using implementation in Appendix B.2. We constructed H 

matrix using Gallager method by determining the number of columns in H matrix as 

shown below (Appendix B.2, line 3): 

HG=Gallager_construction_LDPC (number_of_columns).  

We constructed H matrix using MacKay-Neal method by determining the number of 

rows and columns in H matrix as shown below (Appendix B.2, line 4): 

HM=makeLdpc (number_of_rows, number_of_columns, 0, 0, 1). 

 For each generated matrix six gray scale images have been tested by implementing 

Qian-Zhang method [1] in Appendix A.3. In Appendix A.3.2 lines 19-21, H matrix is 

loaded. In Appendix A.3.5 line 64, PSNR of decoded image are calculated for each H 

matrix. Appendix A.3 line 47 decoding time is calculated using tic and toc MATLAB 

functions.  

In Appendix C.3, the details of experiments are shown. In Appendix C.3.1, PSNR for 

decoded image using Gallager method are shown for each run in Tables C.3.1.1, 
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C.3.1.2 and C.3.1.3. In Appendix C.3.2, PSNR for decoded image using MacKay-Neal 

method is shown in Tables C.3.2.1, C.3.2.2 and C.3.2.3. We see from we see that 

PSNR for decoded image using Gallager method is better than using MacKay-Neal 

method. In Appendix C.3.3 in Tables (C.3.3.1, C.3.3.2 and C.3.3.3) show decoding 

time using Gallager method. In appendix C.3.4, decoding time using MacKay-Neal 

method is shown in Tables C.3.4.1, C.3.4.2 and C.3.4.3. We see that decoding time 

using Gallager method is less than using MacKay-Neal method. 

 Average PSNR of decoded image and decoding time is measured to compare between 

construction methods.  

Table 1: Average Decoding Time for Each Image (seconds) 

           Image 

 

Method 

Baboon Barbara Lake Lena Man Pepper 

Gallager 852.648 775.785 432.138 380.004 446.409 430.336 

MacKay-

Neal 
3830.568 5462.701 3910.733 3970.931 4654.994 4556.044 

Table 2: Average PSNR for Each Decoded Image (dB) 

          Image 

 

Method 

Baboon Barbara Lake Lena Man Peppers 

Gallager ∞ ∞ ∞ ∞ ∞ ∞ 

MacKay-

Neal 
32.937 24.459 26.582 26.957 26.6 26.4 

We see from Table 1 that average decoding time for six tested images using Gallager 

is less than using MacKay-Neal and from Table 2 we see that for six tested images 

Gallager shows higher average PSNR than MacKay-Neal method.  

We conclude that H matrix generated by Gallager method shows better performance 

than MacKay-Neal so we used Gallager in next conducted experiments.  
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4.3 Relation between PSNR of Approximate Image and Embedding 

Capacity 

Depending on result from Section 5.1, we used Gallager method to generate different 

H matrices with sizes (r = 42, n = 210), (r = 64, n = 256), (r = 70, n = 210) and (r = 

64, n = 128), put there different H matrices with different sizes and different ratios, in 

order to test relation between approximate PSNR and embedding capacity. Having 

selection ratio 𝛼 ∈ [0.1, 1.0] starting with α =0.1 and incrementing by 0.1 obtain 10 

values of α, Appendix A.4, line 5. Embedding capacity is obtained by substituting α 

values in (11).  

In Appendix A.3.4, approximate image is constructed. Line 23 in Appendix A.3.4, 

PSNR of approximate image is calculated using psnr MATLAB function.  

We found that approximate PSNR doesn’t depend on embedding capacity. Since, 

approximate image is constructed using bilinear interpolation regardless the embedded 

secret data and H matrix size. Values for different embedding capacity is shown in 

Tables 3-6 as follows. 

Table 3: PSNR (dB) of Approximate Image. H Matrix Size (r = 42, n = 210). α is 

selection ratio 

α Baboon Barbara Lake Lena Man Peppers 

0.1 24.698 25.749 32.333 34.42 31.983 32.097 

0.2 24.698 25.749 32.333 34.42 31.983 32.097 

0.3 24.698 25.749 32.333 34.42 31.983 32.097 

0.4 24.698 25.749 32.333 34.42 31.983 32.097 

0.5 24.698 25.749 32.333 34.42 31.983 32.097 

0.6 24.698 25.749 32.333 34.42 31.983 32.097 

0.7 24.698 25.749 32.333 34.42 31.983 32.097 

0.8 24.698 25.749 32.333 34.42 31.983 32.097 

0.9 24.698 25.749 32.333 34.42 31.983 32.097 

1 24.698 25.785 32.097 34.432 31.983 32.097 
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Table 4: PSNR (dB) of Approximate Image. H Matrix Size (r = 64, n = 256). α is 

selection ratio 

α Baboon Barbara Lake Lena Man Peppers 

0.1 24.698 25.749 32.333 34.42 31.983 32.097 

0.2 24.698 25.749 32.333 34.42 31.983 32.097 

0.3 24.698 25.749 32.333 34.42 31.983 32.097 

0.4 24.698 25.749 32.333 34.42 31.983 32.097 

0.5 24.698 25.749 32.333 34.42 31.983 32.097 

0.6 24.698 25.749 32.333 34.42 31.983 32.097 

0.7 24.698 25.749 32.333 34.42 31.983 32.097 

0.8 24.698 25.749 32.333 34.42 31.983 32.097 

0.9 24.698 25.749 32.333 34.42 31.983 32.097 

1 24.698 25.785 32.097 34.432 31.983 32.097 

Table 5: PSNR (dB) of Approximate Image. H  Matrix Size (r = 70, n = 210). α is 

selection ratio 

α Baboon Barbara Lake Lena Man Peppers 

0.1 24.698 25.749 32.333 34.42 31.983 32.097 

0.2 24.698 25.749 32.333 34.42 31.983 32.097 

0.3 24.698 25.749 32.333 34.42 31.983 32.097 

0.4 24.698 25.749 32.333 34.42 31.983 32.097 

0.5 24.698 25.749 32.333 34.42 31.983 32.097 

0.6 24.698 25.749 32.333 34.42 31.983 32.097 

0.7 24.698 25.749 32.333 34.42 31.983 32.097 

0.8 24.698 25.749 32.333 34.42 31.983 32.097 

0.9 24.698 25.749 32.333 34.42 31.983 32.097 

1 24.698 25.785 32.097 34.432 31.983 32.097 

Table 6: PSNR (dB) of Approximate Image. H Matrix Size (r = 64, n = 128). α is 

selection ratio 

α Baboon Barbara Lake Lena Man Peppers 

0.1 24.698 25.749 32.333 34.42 31.983 32.097 

0.2 24.698 25.749 32.333 34.42 31.983 32.097 

0.3 24.698 25.749 32.333 34.42 31.983 32.097 

0.4 24.698 25.749 32.333 34.42 31.983 32.097 

0.5 24.698 25.749 32.333 34.42 31.983 32.097 

0.6 24.698 25.749 32.333 34.42 31.983 32.097 

0.7 24.698 25.749 32.333 34.42 31.983 32.097 

0.8 24.698 25.749 32.333 34.42 31.983 32.097 

0.9 24.698 25.749 32.333 34.42 31.983 32.097 

1 24.698 25.785 32.097 34.432 31.983 32.097 
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We see from Tables 3-6 that the approximate PSNR is constant with different H 

matrices and different selection ratio α. Hence, approximate PSNR embedding 

capacity doesn’t depend on embedding capacity. Figure 19 shows the relation between 

PSNR of approximate image and embedding capacity with different selection ratio α. 

 
Figure 20: PSNR of Approximate Image of Baboon, Barbara, Lake, Lena, Man and 

Peppers Images. PSNR of Approximate Image is Constant for Different Selection 

Ratio α 

In Appendix D.1, plots of relation between PSNR of approximate image and 

embedding capacity are shown for each H matrix.  

4.4 Relation between PSNR of Decoded Image and Embedding 

Capacity 

Depending on result from Section 5.1, we used Gallager method [11] to generate 3 H 

matrices with size (r = 16, n = 32), see Appendix E.1.  

In Appendix E.1, screen shots of PSNR for decoded image for each run are shown in 

tables for six images. Tables E.1.1, E.1.2, E.1.3 show the PSNR of decoded images in 

Appendix A.1 Figure A.1. 
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Then we took the average PSNR of decoded each image (see Appendix E.1). In order 

to test relation between PSNR of decoded image and embedding capacity, selection 

ratio 𝛼 ∈ (0,1] starting with  α = 0.1 is incremented by 0.1 to obtain 10 values of α. 

Embedding capacity is obtained by substituting α values in (10).  Table 7 shows the 

relation between selection ratio 𝛼 and embedding capacity when ratio R is fixed. 

According to (10), the embedding capacity increases when selection ratio α increases. 

Table 7:  Relation between Selection Ratio α and Embedding Capacity (bpp) with 

Fixed Ratio R 

α Embedding Capacity (bpp) 

0.1 0.0375 

0.2 0.075 

0.3 0.1125 

0.4 0.15 

0.5 0.1875 

0.6 0.225 

0.7 0.2625 

0.8 0.3 

0.9 0.3375 

1 0.375 

We found that PSNR of decoded image depends on embedding capacity. Increasing 

embedding capacity by increasing selection ratio α in (10) will lead to decrease 

decoded PSNR. In addition, decoding time increases when embedding capacity 

increases. 

We see from Table 8 that average PSNR of decoded image decreases when embedding 

capacity increases.  
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Table 8: Average PSNR of All Decoded Images (dB) 

α Baboon Barbara Lake Lena Man Peppers 

0.1 44.663 58.667 45.148 100 51.235 40.544 

0.2 43.982 44.264 46.199 60.172 47.883 41.018 

0.3 42.202 31.188 46.688 56.281 45.099 40.637 

0.4 33.823 29.054 40.192 41.329 40.884 37.362 

0.5 32.209 29.037 40.212 41.142 41.044 37.368 

0.6 31.209 29.036 38.265 40.072 40.267 36.649 

0.7 28.913 29.136 37.851 40.965 39.88 35.222 

0.8 28.06 29.009 37.292 40.584 38.974 35.126 

0.9 27.866 28.887 37.226 39.821 38.502 35.034 

1 27.377 26.795 36.778 38.025 37.555 34.409 

Table 9: Average Decoding Time for All Images (seconds). α is selection ratio 

α Baboon Barbara Lake Lena Man Peppers 

0.1 4.593 3.274 3.647 3.179 3.38 4.603 

0.2 6.884 6.703 5.438 4.91 6.494 6.693 

0.3 10.142 23.356 7.768 6.941 9.167 8.468 

0.4 23.34 34.358 11.355 10.76 12.902 11.803 

0.5 28.429 36.363 13.126 12.95 15.469 14.045 

0.6 36.205 38.442 16.514 16.216 18.558 16.976 

0.7 55.803 40.254 19.972 17.379 20.552 20.857 

0.8 65.301 43.227 23.371 20.314 23.112 23.382 

0.9 71.274 46.105 26.874 22.66 27.212 26.832 

1 81.179 65.951 28.624 25.098 29.615 28.115 

Appendix E.2 shows average PSNR of decoded image and average decoding time for 

each image in each run. 

We see from Table 9 that average decoded time increased when embedding capacity 

increases. Figure 20 shows the relation between decoded PSNR and embedding 

capacity. As we see, the PSNR of decoded image decreases when the embedding 

capacity increases. 
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Figure 21: The Relation between PSNR of Decoded Image and α 

Figure 21 shows the relation between decoding time and embedding capacity. As we 

see from the Figure 20 the decoding time increases when the embedding capacity 

increases. 
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Figure 22: Relation between Decoding Time and α 

4.5 Relation between H Matrix Size and PSNR of Decoded Image 

We generated different H matrices with different sizes (r = 4, n = 8), (r = 8, n = 16),   

(r = 16, n = 32), (r = 32, n = 64), (r = 64, n = 128), (r = 128, n = 256), (r = 256, n = 

512), (r = 512, n = 1024) and (r = 1024, n = 2048) and with same R=0.5  using Gallager 

method to find the relation between H matrix size and decoded PSNR when ratio is 

fixed. In Appendix F.1, 9 H matrices are constructed using Gallager method with 

different sizes and same ratio R=0.5 for each run. For each size we generate 3 H 

matrices. Appendix F.1.1, shows sample of H matrices for first run with sizes 4×8, 

8×16. The other sizes and runs are constructed using code in Appendix B.2. 

 After generation 3 H matrices for each size, we took the average for each H matrix 

size for all images. In Appendix F.2, values of PSNR for decoded image for each H 

matrix is described in tables F.2.1, F.2.2, F.2.3for each image. 

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
ec

o
d

in
g 

ti
m

e 
(s

ec
)

Selection ratio, α

Baboon Barbara Lake Lena Man Peppers



 

102 
 

We found that increasing the size of H matrix keeping the ratio R constant will lead to 

increase the PSNR of decoded image. 

Table 10: Average PSNR of Decoded Image Using Different H Matrices Sizes with 

R=0.5 (dB) 

H matrix size Baboon Barbara Lake Lena Man Peppers 

4×8 24.174 25.235 24.705 33.828 31.43 31.57 

8×16 26.165 27.364 26.765 36.483 33.872 34.011 

16×32 29.813 31.534 30.673 45.218 41.21 40.886 

32×64 32.208 34.918 33.563 62.969 44.855 46.232 

64×128 40.22 46.531 43.375 82.185 81.458 81.348 

128×256 79.239 64.993 72.116 83.714 82.123 84.394 

256×512 ∞ ∞ ∞ ∞ ∞ ∞ 

512×1024 ∞ ∞ ∞ ∞ ∞ ∞ 

1024×2048 ∞ ∞ ∞ ∞ ∞ ∞ 

We see from Table 10 that the PSNR of decoded image is getting better when the size 

of H  matrix increases.  

Figure 22 shows the relation between H size and average PSNR of decoded image. As 

we see, the PSNR for decoded images increases when the size of H matrix increase. 
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Figure 23: Average PSNR of All Images 

In Appendix F.3, PSNR is shown for each decoded image. 

4.6 Relation between H Matrix Size and Decoding Time 

We generated different H matrices with different sizes (r = 4, n = 8), (r = 8, n = 16),   

(r = 16, n = 32), (r = 32, n = 64), (r = 64, n = 128), (r = 128, n = 256), (r = 256, n = 

512), (r = 512, n = 1024) and (r = 1024, n = 2048) and with same R=0.5  using Gallager 

method to find the relation between H matrix size and decoding time when ratio is 

fixed. This relation helps selecting suitable H matrix size for specified decoding time 

and PSNR of decoded image.  In Appendix F.1, 9 H matrices are constructed using 

Gallager method with different sizes and same ratio R=0.5 for each run. For each size 

we generate 3 H matrices, then we took the average for each H matrix size. 

Sample of H matrices for first run with sizes 4×8, 8×16 are shown in Appendix F.1. The 

other sizes and runs are constructed using code in Appendix B.2. 

We found that increasing the size of H matrix keeping the ratio R constant leads to the 

increase of the decoding time as shown in Appendix F.4. 
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Table 11: Average Decoding Time Using Different H Matrices Sizes with R=0.5 

(Seconds) 

H matrix 

size 
Baboon Barbara Lake Lena Man Peppers 

4×8 28.32 23.07 12.21 11.71 12.99 13.25 

8×16 61.02 54.39 21.07 19.08 22.52 23.75 

16×32 91.48 80.55 31.07 28.96 33.39 35.29 

32×64 203.23 181.43 69.67 61.29 73.20 76.37 

64×128 323.28 308.09 133.88 126.09 144.62 156.29 

128×256 659.09 600.13 300.64 263.37 325.63 315.96 

256×512 1226.68 1152.50 796.61 737.73 843.49 890.90 

512×1024 2870.23 2481.30 1851.25 1744.11 1952.29 1960.94 

1024×2048 6459.64 5703.86 3770.50 3746.50 4020.32 3967.10 

 

We see from Table 11 that the decoding time is getting better when the size of H matrix 

increases.  

Figure 23 shows the relation between H matrix size and decoding time. 

 
Figure 24: Average Decoding for Images 

In Appendix F.5 Figures for decoding time of each decoded image. 
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4.7 Relation between H Matrix Ratio and PSNR of Decoded Image 

We generated different H matrices (r = 42, n = 210), (r = 64, n = 256), (r = 70, n = 

210) and (r = 64, n = 128) with different ratios (0.2, 0.25, 0.33, 0.5) respectively, to 

find the relation between H matrix ratio and PSNR of decoded image. 

We found that decreasing ratio i.e. increasing the embedding capacity will lead to 

decrease PSNR of decoded image. For example, when R=0.33 according to (10), 

embedding capacity = 0.5 bpp. While, when R= 0.25 embedding capacity = 0.5625 

bpp and R=0.2 embedding capacity =0.6 bpp. 

Using (9), we expect that embedding capacity increase when the R=r / n decrease and 

selection ratio α is constant. 

Let’s consider α =1 and size of encrypted image is512 512 . According to (9) the 

embedding capacity of each ratio is calculated as shown in Table 12. 

Table 12: Embedding Capacity with Different Ratios (bpp) 

H matrix ratio R=0.2 R=0.25 R=0.33 R=0.5 

Embedding capacity 0.6 0.5625 0.5 0.375 

Figure 24 shows the relation between R = r / n and embedding capacity. When R  

increases, the embedding capacity decreases. Thus, PSNR of decoded image increase 

since, the number of bits to be embedded decreases.  
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Figure 25: Relation between R and Embedding Capacity. When R Increases, 

Embedding Capacity Decreases 

Table 13: PSNR of Decoded Images When R=0.2, R=0.25, R=0.33 and R=0.5 (dB) 

Image R=0.2  R=0.25 R=0.33 R=0.5 

Baboon 24.698 25.425 29.341 34.909 

Barbara 25.749 27.050 31.285 36.574 

Lake 32.333 37.919 40.827 45.121 

Lena 34.420 40.727 42.848 46.555 

Man 31.983 37.524 39.490 44.374 

Peppers 32.097 37.792 40.349 44.044 

We see from Table 13 that average PSNR of decoded image increases when 

embedding capacity decreases. As we expected from (10) in Figure 25. 
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Figure 26: Relation between PSNR of Decoded Images and H Ratio, R=0.2, R=0.25, 

R=0.33 and R=0.5 

The original image Figure 27(a) is encrypted into Figure 27(b). After encryption, the 

data hider collect 196608 bits, then with L= 3XY/4  and α =1, by embedding 98304 

bits with embedding capacity 0.375 bpp into encrypted image. Figure 27(c) shows the 

encrypted image that containing secret data. On the receiver side, secret data are 

extracted perfectly with error free when the embedding key is known. Figure 27(d) 

shows the approximate image after construction using the encryption key and the 

bilinear interpolation. The differences between the original image and the approximate 

one are shown in Figure 27(e). When the receiver knows the embedding and the 

encryption keys, the image is recovered perfectly which is shown in Figure 27(f). The 

other test image results (Baboon, Barbara, Lake, Man, Peppers) are shown in Appendix 

G. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 27: (a) The Original Image Lena. (b) The Encrypted Image (Stage 1). (c) 

Marked Encrypted Image (Stage 2). (d) The Approximate Image (Stage3, Option 2). 

(e) The Difference between the Original and the Approximate Images. (f) Perfectly 

Recovered Image (Stage3, Option3) 

4.8 Comparison versus Qian-Zhang Scheme Results 

By fixing H matrix ratio R=0.5 and α =1.0 (see Appendix A.3.2),  we achieved 

maximum payload equal 98304 bits with embedding capacity 0.375 bpp (for both 

construction method , Gallager MacKay-Neal) which is higher than 77376 payload 

bits with embedding capacity 0.295 bpp in [1]. The payload bits are extracted perfectly. 

The secret data is generated randomly according to R which will equal 

   3 512 512 / 4 1 1/ 2     (See Appendix A.3.2.10, line 8). Embedding capacity is 

calculated using (10) (See Appendix A.3.2 line 34). Since the Qian-Zhang scheme [1] 
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modifies the MSBs and using estimation algorithm to construct the approximate 

image, the quality of the image is fix, regardless the amount of the added payload bits 

(See Figure 18). Figure 28 shows the comparisons between our implementation results 

and Qian-Zhang scheme. Figure 28 shows that our results have same behavior as in 

Qian-Zhang scheme with little difference. In Figure 28(a) our results is less than Qian-

Zhang scheme for Lena and Man images while in Figure 28(b) the results are comply 

for Baboon. For Lake image Figure 28(c) our results is better that Qian-Zhang scheme. 

The differences between our results and Qian-Zhang results refer to using different 

source of images which they are different in resolution and grayscale pixels values. 
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(a) Lena (b) Baboon 

  
(c) Lake (d) Man 

Figure 28: Comparison versus Qian-Zhang Scheme Results using the images. (a) 

Lena. (b) Baboon (c) Lake. (d) Man 

Table 14 shows the comparison between our implementation results and Qian-Zhang 

results. By using the same size of grayscale images (512 × 512), the total number of 

bits to be embedded in Qian-Zhang scheme is 77376 while in our implementation the 

total number of bits to be embedded is 98304. Since, the size of used H matrix in Qian-

Zhang scheme is 3840 × 6336 with R=0.61, while in our implementation we used H 

matrix size 1024 × 2048 with R= 0.5 which leads to compress more according to (11). 

 

 

 



 

111 
 

Table 14:  Comparison versus Qian-Zhang Scheme Results 

Qian-Zhang Ours 

Grayscale images with size 512 × 512 Grayscale images with size 512 × 512 

Total number of collected bits=196608 Total number of collected bits=196608 

Selection ratio, α =1.0  Selection ratio, α =1.0  

H matrix size : r = 3840 , n = 6336 H matrix size: r = 1024, n = 2048 

H matrix ratio, R =r/n = 0.61 H matrix ratio, R = r/n = 0.5 

31 groups. 96 groups. 

Total number of bits to be embedded 

=77376 

Total number of bits to be embedded 

=98304 

Embedding capacity Eemb = 0.2952 bpp Embedding capacity Eemb = 0.375 bpp 

 

4.9 Summary of Chapter 4 

In this chapter, we have compared our results with experiments in [2], we found that: 

1. PSNR of approximate image is constant when embedding capacity varies (See 

Figure 18 , Tables 5-8) 

2. In the case of decoding fails, the PSNR of decoded image decreases when 

embedding capacity increases (See Figure 20). 

3. We extend our experiments to find the effect of H matrix on decoding time and 

PSNR of decoded image (See Figure 19, Table 9). 

4. By fixing ratio R and increasing H matrix size, both PSNR of decoded image and 

decoding time increase (See Figure 21, Figure 22). 

5. When H matrix ratio R increases the embedding capacity decreases, and PSNR of 

decoded image increases (See Figure 24).  
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Chapter 5 

CONCLUSION 

This thesis aimed to investigate and study Qian-Zhang scheme [1], several 

fundamental parameters where not clearly specified and shown in [2] such as method 

of constructing LDPC H matrix, selection key KSL, encryption key KENC, and shuffle 

key KSF. Our implementation shows that the data extracted perfectly. In this thesis, we 

studied two H matrix construction methods Gallager and MacKay-Neal. We found that 

matrices constructed by Gallager provide less decoding time with higher PSNR. We 

studied the effect of H matrices size and ratio on the PSNR of decoded images. We 

found that by fixing the ratio and increasing the size of H matrix improves the PSNR 

of the decoded image. In addition, we studied the effect of H matrices size and ratio 

on the decoding time. We found that by fixing ratio and increasing the size of H matrix 

increases decoding time exponentially (See Figure 22). We obtained after decoding 

PSNR of 40.629, 41.659 dB for 256 512H   , 512 1024H  , respectively while for 1024 2048H  , 

the image was recovered perfectly.  On the other hand, the time of decoding increases 

with the matrix size growth: (1426.90, 3668.93, and 5721.153 seconds, respectively). 

Moreover, increasing H matrix ratio R = r / n leads to the decrease of embedding 

capacity and increase of PSNR of decoded image. Decreasing of R (we considered 0.5, 

0.33, 0.25, 0.2) leads to the increase of the embedding capacity (0.375, 0.5, 0.5625, 

and 0.6 bits per pixel (bpp), respectively). In addition, decreasing R (0.5, 0.33, 0.25, 

0.2) leads to the decrease of the PSNR (122.96, 64.95, 32.186 and 29.252 dB 

respectively).;.  
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 We constructed LDPC H matrix using Gallager method [11], and we defined a  

selection key KSL, encryption key KENC, and shuffle key KSF. Then, we implemented 

Qian-Zhang [1]. We managed to obtain similar PSNR of approximate image results in 

[1] with little difference, for example in Lena image PSNR value in [1] higher than 

ours by 3.5 bpp. Since we use different H matrix size and method construction in 

addition, the images are obtained from another source. By extending experiments in 

[1], we found that the relation between PSNR of approximate image keeps unchanged 

when the embedding capacity varies. We also found that when decoding fails, the 

PSNR of decoded image decreases when embedding capacity increases by 0.0375 bpp, 

since the number of selected bits increase. Our experimental results showed that using 

H matrix constructed by Gallager with ratio R=0.5 leads to better embedding capacity 

by 1.27% than in Qian-Zhang [1]. 

Results obtained on PSNR of the decoded image and time dependence on the matrix 

size may be used for making decisions on Qian-Zhang scheme selection parameters 

and may be used for choosing suitable H matrix size to meet specified decoding time. 
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Appendix A: Qian-Zhang scheme implementation  

Appendix A.1 Grayscale images used in our experiments 

   
g) Baboon h) Barbara i) Lake 

   
j) Lena k) Man l) Peppers 

Figure A.1. Images used in Qian-Zhang scheme implementation 

A.2 Images conversion 

1. clc; 

2. clear all 

3. P = 'imagesPgm\'; 

4. D = dir(fullfile(P,'*.pgm')); 

5. C = cell(size(D)); 

6. for k = 1:numel(D) 

7. I = imread(fullfile(P,D(k).name)); 

8. C{k} = I(:); 

9. kk=num2str(k); 

10. h='.bmp'; 

11. saveN = sprintf('%s%s','images/',kk,h); 

12. imwrite(I,saveN); 
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13. end 

Appendix A.3 Qian-Zhang Scheme for 1.0    

1. clc; 

2. clear all; 

3. FileName = dir('images3/*.bmp');%read images from folder 

4. nfiles = length(FileName); %get the number of images  

5. DecodedPSNR={'name','HG1','HG2','HG3','HG4','HG5','HG6','HG7','HG8','HG9'

}; 

6. DecodedTime={'name','HG1','HG2','HG3','HG4','HG5','HG6','HG7','HG8','HG9'}

; 

7. sizes=[8,16,32,64,128,256,512,1024,2048]; % define the columns of H matrices 

which is equal to n 

8. selectionSeed=4; 

9. selectionRatio=1.0; 

10. for ii=1:nfiles 

11. imName=''; 

12. imName=FileName(ii).name; 

13. rN = sprintf('%s','images3/',imName); 

14. OriginalImage= imread(rN);%read the original image 

15. DecodedPSNR(ii+1,1)={imName}; 

16. DecodedTime(ii+1,1)={imName}; 

17. [m,n] = size(OriginalImage); 

18. %% encrption 

19. load('EncryptionKey.mat'); 

20. [EncryptedImage]=encrypt(OriginalImage,EncryptionKey); 
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21. EncryptedImage=double(EncryptedImage); 

22. saveN = sprintf('%s','EncryptedImages/EncryptedImage_',imName); 

23. imwrite(EncryptedImage,saveN); % store the encrypted image 

24. EncryptedImage=uint8(EncryptedImage); 

25. %% hide data 

26. for j=1:9 

27. n=sizes(j); // get n=number of bits 

28. [Marked_encrypted_image,selectionkey,Shufflekey,L,r,H,syndorm,kgroups]=Hid

eData(EncryptedImage,selectionRatio,selectionSeed,n, imName,j); 

29. %% data extraction 

30. [extractedData]=DataExtraction(Marked_encrypted_image,selectionkey,Shufflek

ey,L,r,n); 

31. % re=double(secretData)-double(extractedData); 

32. % X = nnz(re); 

33. % non_zero_Ptg=(X/(m*n))*100; 

34. % zero_Ptg=(1-(non_zero_Ptg/100))*100; 

35. % if(zero_Ptg==100) 

36. % fprintf('\n Secert Data is extracted %0.4f \n', zero_Ptg); 

37. % end 

38. %  

39. [ree,cee]=size(extractedData); 

40. ebeee=cee/(512*512); 

41. disp(ebeee); 

42. %% get the ApproximateImage 
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43. [ApproximateImage,PSNR]=DecryptionAndEstimation(Marked_encrypted_imag

e,EncryptionKey,imName,OriginalImage); 

44. %% decode and get the original image 

45. tic; 

46. [RecievedImage, 

DecodedPSNR]=Recovery(Marked_encrypted_image,selectionkey,Shufflekey,H,

L,r,n,EncryptionKey,secretData,syndorm,kgroups,imName,OriginalImage); 

47. DecodedTime=toc; 

48. GDecodedPSNR(ii+1,j+1)={DecodedPSNR}; 

49. GDecodedTime(ii+1,j+1)={DecodedTime}; 

50. end 

51. % end for read files 

52. end 

53. xlswrite('GRun_1.xlsx',GDecodedPSNR,1); 

54. xlswrite('GRun_1.xlsx',GDecodedTime,2); 

Appendix A.3.1. Stage 1: Image Encryption  

1. function [ EncryptedImage ] = encrypt( OriginalImage,EncryptionKey ) 

2. [M,N] = size(OriginalImage); 

3. OriginalImage=OriginalImage'; 

4. binary=de2bi(OriginalImage,8,2,'left-msb'); % convert from pixel into binary 

5. binaryImage=xor(binary,EncryptionKey); % encrypt using encryption key 

6. EncryptedImage=bi2de(binaryImage,'left-msb'); % convert binary into pixel 

7. EncryptedImage=reshape(EncryptedImage,M,N); % get encrypted image 

8. EncryptedImage=EncryptedImage'; 

9. end  
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Appendix A.3.1.1. Generate Encryption Key 

1. s_fieldnames = 'EncryptionKey'; 

2. a_nums = randi([0 1], 512*512, 8); 

3. % % create the variable containing the values of a_nums 

4. eval([s_fieldnames '=a_nums;']); 

5. % save it in a mat file 

6. save('EncryptionKey',s_fieldnames); 

Appendix A.3.2. Stage 2: Data Hiding  

1. function[MarkedEncryptedImage,selectionkey,shufflekey,L,r,H,syndorm,kgroups

]= HideData(encryptedImage,selectionRatio,selectionSeed,n,imName,j) 

2. % 1. decompose 

3. [E1,E2,E3,E4]=decompose(encryptedImage); 

4. [collectedbits]=collectBits(E2,E3,E4); 

5. % create selection key 

6. T=length(collectedbits); % total number of collected bits 

7. L=floor(selectionRatio*T); % number of selected bits 

8. [selectionkey]=createSelectionKey(collectedbits,selectionSeed,selectionRatio);  

9. [selectedBits]=selectbits(collectedbits,selectionkey); 

10. [shufflekey]=generateshuffelkey(selectedBits); 

11. % 4. ShuffleBits 

12. [shuffledbits]=shufflebits(selectedBits,shufflekey); 

13. % 5. createGroups 

14. [kgroups,reminderBits]=createGroups(shuffledbits,n); % return the group to 

multiply with H matrix 

15. siize=size(kgroups); 
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16. Krows=siize(1,1); 

17. Kcols=siize(1,2); 

18. nu=int2str(j); 

19. Hname=strcat('HGST2_',nu); 

20. Hname2=strcat(Hname,'.mat'); 

21. load(Hname2); 

22. % 6. getSyndrom 

23. [syndorm]=GetSyndorme(kgroups,H); 

24. % 7. embedData 

25. [ image_after_embedding,r,secretData] = embedData(kgroups,syndorm); 

26. % 8. inverse shuffle 

27. [inverseSuhffledBits]=inverseshuffle 

(image_after_embedding,reminderBits,shufflekey ); 

28. %9. return back to MSB with remainder 

29. [EE2,EE3,EE4]=returnBits(inverseSuhffledBits,E2,E3,E4,selectionkey); 

30. %10. compose into 1 image 

31. [MarkedEncryptedImage]=compose(A,E1,EE2,EE3,EE4); 

32. saveN = sprintf('%s','MEIimages/MarkedEncryptedImage_',imName); 

33. imwrite(MarkedEncryptedImage,saveN); 

34. embCap=secretData/(512*512); 

35. end 

Appendix A.3.2.1 Decompose Encrypted Image 

1. function [E1,E2,E3,E4]=decompose(encryptedImage) 

2. % to check of n and m is power of 2 

3. [m,n] = size(encryptedImage); 
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4. [f,e] = log2(n); 

5. if f == 0.5000 

6. else 

7. return; 

8. end 

9. [f1,e1] = log2(m); 

10. if f1 == 0.5000 

11. else 

12. return; 

13. end 

14. % end of check 

15. E1 = encryptedImage (1:2:end,1:2:end);  %  E1 odd matrix 

16. E2 = encryptedImage (1:2:end,2:2:end); 

17. E3 = encryptedImage (2:2:end,1:2:end); 

18. E4 = encryptedImage (2:2:end,2:2:end) ; % E4 even matrix 

19. end         

Appendix A.3.2.2 Collect MSBs From E2,E3,E4 

1. function [collectedBits] = collectBits(E2,E3,E4) 

2.  [m,n] = size(E2); % M/2 * N/2 

3. siz=(m) * (n) ; 

4. %from E2 

5. bits2=de2bi(E2,[],2,'left-msb'); % CONVERT THE PIXELS INTO BINARY 

coluns by couluns 

6. c=bits2(1:siz,1); % get only the MSB from the plane 

7. b2=c'; % convert from column to row 
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8. %from E3 

9. bits3=de2bi(E3,[],2,'left-msb'); 

10. c=bits3(1:siz,1); 

11. b3=c'; 

12. %form E4 

13. bits4=de2bi(E4,[],2,'left-msb'); 

14. c=bits4(1:siz,1); 

15. b4=c'; 

16. collectedBits =  horzcat(b2,b3,b4); 

17. end 

Appendix A.3.2.3 Create Selection Key 

1. function[selectionKey,L]=createSelectionKey(collectedbits,selectionSeed,selecti

onRatio) 

2. selectionSeed=4; 

3. T=length(collectedbits);  % total number of collected bits 

4. L=selectionRatio*T;  % determine the number of bits to be selected according to 

the selection ratio 

5. rng(selectionSeed); 

6. selectionKey=zeros(1,L); 

7. index=1; 

8. while index <= L 

9. y = floor(randi(T,1,1)); % rand 

10. if(ismember(y,selectionKey)) % this is return the index 

11. continue; 

12. end 
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13. selectionKey(1,index)=y; % here added the selected bits according to the KSL 

(we add the index of each selected bit) 

14. index=index+1; 

15. end 

16. end 

Appendix A.3.2.4 Select Bits Using Selection Key 

1. function [selectedBits] = selectbits(collectedbits,selectionKey) 

2. selectedBits=collectedbits((selectionKey)); 

3. end 

Appendix A.3.2.5 Shuffle Key Construction 

1. function [ shuffleKey ] = generateshuffelkey(selectedBits) 

2. done=0; 

3. L=length(selectedBits); 

4. selectedPrimes=zeros(1,1); 

5. while done==0 

6. p = primes(L); 

7. x= p(randi(numel(p))); 

8. if((x==1) ||(ismember(x,selectedprimes)) ) 

9.     continue; 

10. end 

11. if gcd(x,L)==1 

12. done=1; 

13. x= shuffleKey 

14. else 

15. selectedprimes=x; 
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16. end 

17. end 

18. end 

Appendix A.3.2.6 Shuffle Bits Using Shuffle Key 

1. function [ shuffledbits ] = shufflebits(selectedbits,key) 

2. sizeOfSelectedBits=length(selectedbits); 

3. shuffleRow=(1:sizeOfSelectedBits); 

4. shuffleRow=mod(key*(shuffleRow),sizeOfSelectedBits)+1; 

5. shuffledbits=selectedbits(shuffleRow); 

6. end 

 

Appendix A.3.2.7 Create Groups 

1. function [ kgroups,arrayrem ] = createGroups(shuffledbits,numberofbits) 

2. % create groups from L bits 

3. L=length(shuffledbits); 

4. k=floor(L/numberofbits); % no. of groups 

5. reminder=mod(L,numberofbits); 

6. arrayrem=zeros(1,reminder); 

7. x=k*numberofbits; 

8. arrayrem(1:end)=shuffledbits(x+1:end);% store the reminder 

9. C=shuffledbits(1:x); 

10. kgroups=reshape(C,numberofbits,k); 

11. kgroups=kgroups.'; 

12. end 
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Appendix A.3.2.8 Store Generated Matrices In “.mat” Files  

1. clc; 

2. clear all; 

3. n=1024; 

4. HG=Gallager_construction_LDPC(1024); 

5. r=9;n=12; 

6. % HM=makeLdpc(9, 12, 0, 0, 1); 

7. s_fieldnames = 'H'; 

8. a_nums=HG; 

9. eval([s_fieldnames '=a_nums;']); 

10. % save it in a mat file 

11. save('HGST2_8',s_fieldnames); 

Appendix A.3.2.9 Get Syndrom Groups 

1. function [synd]=GetSyndrom (kgroups,H) 

2. HT=H.'; 

3. kgroups=double(kgroups); 

4. synd=mod((kgroups*(HT)),2); 

5. end 

 

Appendix A.3.2.10 Embed Secret Data 

1. function [ image_after_embedding,r,Data] = embedData(kgroups,synd) 

2. groups_size=size(kgroups); 

3. synd_size=size(synd); 

4. K=groups_size(1,1); % no of the groups 

5. n=groups_size(1,2); % no of bits in each group 
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6. r=synd_size(1,2); % no of bits in syn group 

7. embedding_size=K*(n-r); % number of bits to be embedding 

8. Data=randi([0 1],1,embedding_size); %divided these bits in to K groups 

9. Data2=reshape(Data,n-r,K); 

10. Data2=Data2.'; 

11. image_after_embedding=zeros(K,n); 

12. image_after_embedding(1:end,r+1:end)=Data2(1:end,1:end); 

13. image_after_embedding(1:end,1:r)=synd(1:end,1:end); 

14. end 

 

Appendix A.3.2.11 Inverse Shuffle Bits 

1. function[inverseShuffleBits]=inverseshuffle(embeddedImage,reminder,shuffledk

ey) 

2. sz=size(embeddedImage); 

3. sz_row=sz(1,1); % no of rows 

4. sz_col=sz(1,2); 

5. siz=sz_row*sz_col; 

6. embeddedImage=embeddedImage.'; 

7. B = reshape(embeddedImage,[1 siz]); % convert the groups into row vector 

8. % now add the reminder bits into B (row vector); 

9. C=horzcat(B,reminder); 

10. sizeOfSelectedBits=length(C); 

11. index=(1:sizeOfSelectedBits); 

12. BB=mod(index*shuffledkey,sizeOfSelectedBits)+1; 

13. inverseShuffleBits(BB)=C; 
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14. end 

 

Appendix A.3.2.12 Replace Bits 

15. function [EE2,EE3,EE4] =returnBits(inverseSuhffledBits,E2,E3,E4,selectionkey) 

1. collectedbits(selectionkey)=inverseSuhffledBits; 

2. [m2,n2]=size(E2); 

3. siz=(m2) * (n2) ;  

4. bits2=de2bi(E2,[],2,'left-msb'); % CONVERT THE PIXELS INTO BINARY 

5. bits2(1:siz,1)=collectedbits(1,1:siz); 

6. bits3=de2bi(E3,[],2,'left-msb'); % CONVERT THE PIXELS INTO BINARY 

7. bits3(1:siz,1)=collectedbits(1,siz+1:siz*2); 

8. bits4=de2bi(E4,[],2,'left-msb'); % CONVERT THE PIXELS INTO BINARY 

9. bits4(1:siz,1)=collectedbits(1,(siz*2)+1:end); 

10. bits2 = fliplr(bits2); 

11. EE2 =bi2de(bits2); 

12. EE2=reshape(EE2,m2,n2); 

13. bits3 = fliplr(bits3); 

14. EE3 =bi2de(bits3); 

15. EE3=reshape(EE3,m2,n2); 

16. bits4 = fliplr(bits4); 

17. EE4 =bi2de(bits4); 

18. EE4=reshape(EE4,m2,n2); 

19. end            

 

Appendix A.3.2.13 Compose Segments    
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1. function [MarkedEncryptedImage] =compose(encryptedImage,E1,EE2,EE3,EE4) 

2. MarkedEncryptedImage= encryptedImage; 

3. MarkedEncryptedImage(1:2:end,1:2:end)=E1;  %  E1 odd matrix 

4. MarkedEncryptedImage(1:2:end,2:2:end)= EE2; 

5. MarkedEncryptedImage(2:2:end,1:2:end)=EE3; 

6. MarkedEncryptedImage(2:2:end,2:2:end)=EE4 ; % E4 even matrix 

7. End 

 

Appendix A.3.3 Data Extraction 

1. function 

[extractedData]=DataExtraction(MarkedEncryptedImage,selectionKey,shuffleKe

y,L,r,n) 

2. [V1,V2,V3,V4]=decompose(A); % same as in (4); 

3. [collectedbits]=collectBits(V2,V3,V4); 

4.  [selectedBits]=SelectBitsUsingSelectionKey(collectedbits,L,selectionKey); 

5. [shuffledbits]=shufflebits(selectedBits,shuffleKey); 

6. [kgroups,reminderBits]=createGroups(shuffledbits,n); 

7.  [extractedData]=extractData(kgroups,n,r); 

8. end 

 

Appendix A.3.3.1 Extract Data from Marked Encrypted Image 

1. function [ extractedBits2,extractedSynd ] = extractData(kgroups,n,r) 

2. [row,c]=size(kgroups); 

3. k=row; 

4. x=k*(n-r); 
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5. extractedSynd=kgroups(1:k,1:r);  

6. extractedBits=kgroups(1:k,r+1:end);% i put -1  

7. extractedBits=extractedBits.'; 

8. extractedBits2=reshape(extractedBits,1,x); 

9. end 

 

Appendix A.3.4 Approximate Image Reconstruction 

1. function [approximateImage,PSNR]= DecryptionAndEstimation 

(MarkedEncryptedImage,EncryptionKey,imName,original) 

2. [DecryptedImage]=decrypt(MarkedEncryptedImage,EncryptionKey); 

3. Marked_image=DecryptedImage; 

4. [m,n] = size(Marked_image); 

5. Marked_image=double(Marked_image); 

6. [A1,A2,A3,A4]=decompose(Marked_image); 

7. [B]=interplation(A1,Marked_image); 

8. [B1,B2,B3,B4]=decompose(B); 

9. [BB1] = calculate_approximate_image(A1, B1); 

10. [BB2]=calculate_approximate_image(A2, B2); 

11. [BB3]=calculate_approximate_image(A3, B3); 

12. [BB4]=calculate_approximate_image(A4, B4); 

13. [ approximateImage ] =compose(Marked_image,BB1,BB2,BB3,BB4); 

14. approximateImage = uint8(approximateImage); 

15. original=uint8(original); 

16. evaluate=uint8(original)-uint8(approximateImage); 

17. [rows,cols] = find(evaluate); 
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18. indeces=horzcat(rows,cols); 

19. X = nnz(evaluate); 

20. non_zero_Ptg=(X/(m*n))*100; 

21. zero_Ptg=(1-(non_zero_Ptg/100))*100; 

22. fprintf('\n percentage for appro. %0.4f \n', zero_Ptg); 

23. PSNR=psnr(approximateImage,original); 

24. fprintf('\n The PSNR value for approximate Image is %0.4f \n', PSNR); 

25. saveN = sprintf('%s','ApproximateImages/ApproximateImage_',imName); 

26. imwrite(approximateImage,saveN); 

27. saveN = sprintf('%s','DifferenceImages/diffDecoded_',imName); 

28. imwrite(evaluate,saveN); 

29. end 

 

Appendix A.3.4.1 Bilinear Interpolation 

1. function [ B ] = interplation( E1,A ) 

2. [m,n] = size(A); 

3. [X,Y] = meshgrid(1:256,1:256);%//revise size as variable 

4. E1=double(E1); 

5. [X2,Y2] = meshgrid(1:0.5:256.5,1:0.5:256.5); %// Define expanded grid of 

points 

6. B = interp2(X,Y,E1,X2,Y2,'linear'); 

7. B(512,1:511)=interp1(1:512,B(1:511,1:511),512,'linear','extrap'); 

8. B(1:512,512)=interp1(1:512,B(1:512,1:512),512,'linear','extrap'); 

9. B=round(B); 

10. end 
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Appendix A.3.4.2 Calculate Approximate Image 

1. function [ approximateImage ] = calculate_approximate_image( A, B ) 

2. [m,n] = size(A); 

3. approximateImage=zeros(m,n); 

4. for i=1:m 

5. for j=1:n 

6. if (abs(128+mod(A(i,j),128)-B(i,j)) < abs(mod(A(i,j),128)-B(i,j))) 

7. approximateImage(i,j)=128+mod(A(i,j),128); 

8. else 

9. approximateImage(i,j)=mod(A(i,j),128); 

10. end 

11. end 

12. end 

13. end 

 

Appendix A.3.5 Lossless Recovery 

1. function [RecievedImage,DecodedPSNR] 

=Recovery(Marked_encrypted_image,selectionKey,Shufflekey,H,L,r,numberofbi

ts,EncryptionKey,secertData,syndorm,kgroupsOriginal,imName,OriginalImage) 

2. A=Marked_encrypted_image; 

3. [M,N]=size(A); 

4. OriginalImage=uint8(OriginalImage); 

5. [extractedData]=DataExtraction(Marked_encrypted_image,selectionKey,Shuffle

key,L,r,numberofbits); 
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6. %% DataExtraction---->DONE 

7. [E1,E2,E3,E4]=decompose(A); 

8. [collectedbits]=collectBits(E2,E3,E4); 

9. [selectedBits]=selectbits(collectedbits,selectionKey); 

10. [shuffledbits]=shufflebits(selectedBits,Shufflekey); 

11. [kgroups,reminderBits]=createGroups(shuffledbits,numberofbits); 

12. [compressedData,compressedGroup]=GetCompressedData(kgroups,numberofbit

s,r); 

13. re=double(syndorm)-double(compressedGroup); % compressedGroup = syndrom  

14. [m,n]=size(compressedGroup); 

15. X = nnz(re); 

16. non_zero_Ptg=(X/(m*n))*100; 

17. zero_Ptg=(1-(non_zero_Ptg/100))*100; 

18. if(zero_Ptg==100) 

19. % fprintf('\n syndrome is extracted in Recovery Stage %0.4f \n', zero_Ptg); 

20. end 

21. [ApproximateImage,ApproPSNR]=DecryptionAndEstimation(A,EncryptionKey,

imName,OriginalImage);% get the approximate Image 

22. [EncryptedApproximateImage]=encrypt(ApproximateImage,EncryptionKey );% 

encrypt the approximate Image 

23. [E1,E2,E3,E4]=decompose(EncryptedApproximateImage); 

24. n=numberofbits; 

25. [collectedbits]=collectBits(E2,E3,E4); 

26. [selectedBits]=selectbits(collectedbits,selectionKey); 

27. [shuffledbits]=shufflebits(selectedBits,Shufflekey); 
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28. [kgroupsappro,reminderBits]=createGroups(shuffledbits,n); 

29. [krows,kcols]=size(kgroupsappro); 

30. diff=double(kgroupsOriginal)-double(kgroupsappro); 

31. [rows1,cols] = find(diff); 

32. indeces=horzcat(rows1,cols); 

33. len1=length(rows1); 

34. [rrr,ccc]=size(indeces); 

35. fprintf('\n the differences between the original and approx. %0.4f \n', rrr); 

36. C=unique(indeces); 

37. X = nnz(diff); 

38. decoded=zeros(1,1); 

39. [r,c]=size(kgroupsOriginal); 

40. tic; 

41. for i=1:r 

42. [decodedString]=decodeStatisticsOriginal(compressedGroup(i,1:end),kgroupsapp

ro(i,1:end),H); 

43. decoded(i,1:numberofbits)=decodedString; 

44. end 

45. tDecoded=toc; 

46. diff2=double(kgroupsOriginal)-double(decoded); 

47. [rows2,cols] = find(diff2); 

48. indeces2=horzcat(rows2,cols); 

49. len2=length(rows2); 

50. [rrr,ccc]=size(indeces2); 

51. fprintf('\n the differences after decoding. %0.4f \n', rrr); 
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52. C2=unique(indeces2); 

53. X2 = nnz(diff2); 

54. %% reshuffle the decoded bits 

55. decoded=uint8(decoded); 

56. [inverseShuffledBits]=inverseshuffle (decoded,reminderBits,Shufflekey ); 

57. [E1,E2,E3,E4]=decompose(EncryptedApproximateImage); 

58. [EE2,EE3,EE4]=returnBitsAfterDecoding(inverseShuffledBits,E2,E3,E4,selectio

nKey); 

59. [decocedImage]=compose(ApproximateImage,E1,EE2,EE3,EE4); 

60. [decocedImage]=decrypt(decocedImage,EncryptionKey); 

61. decocedImage=uint8(decocedImage); 

62. saveN = sprintf('%s','DecodedImages/decoced_',imName); 

63. imwrite(decocedImage,saveN); 

64. DecodedPSNR=psnr(uint8(decocedImage),OriginalImage); 

65. fprintf('\n PSNR after decoding %0.4f \n', DecodedPSNR); 

66. diffDecoded=uint8(OriginalImage)-uint8(decocedImage); 

67. X = nnz(diffDecoded); 

68. non_zero_Ptg=(X/(m*n))*100; 

69. zero_Ptg=(1-(non_zero_Ptg/100))*100; 

70. fprintf('\n percentage after decoding %0.4f \n', zero_Ptg); 

71. saveN = sprintf('%s','DifferenceImages/diffDecoded_',imName); 

72. imwrite(diffDecoded,saveN); 

73. RecievedImage=decocedImage; 

74. end 
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Appendix A.3.5.1 Sum-Product Decoding 

1. function [z]= decodeStatisticsOriginal(synd,U,H) 

2. Itermax=15; 

3. synd=double(synd); 

4. y=double(y); 

5. HT=H.'; 

6. yy=0; 

7. q=0.1; 

8. N=zeros(size(H)); 

9. E=zeros(size(H)); 

10. r=zeros(size(y)); 

11. [rows,cols]=size(r); 

12. [m,n]=size(H); 

13. %Initialization z 

14. for i=1:cols 

15. ll=log((1-q)/q); 

16. z(i)=(1-(2*U(i)))*(ll); 

17. end 

18. %Initialization N  

19. Iter=1; 

20. for i=1:n 

21. for j=1:m 

22. if(H(j,i)==0) 

23. continue; 

24. end 
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25. N(j,i)=z(i); 

26. end 

27. end 

28. %% processing at check nodes 

29. zz=1; 

30. L=zeros(1,n); 

31. z=zeros(1,n); 

32. while(Iter<=Itermax) 

33. %Check messages 

34. for j=1:m 

35. %create C vector (to check variable nodes each check node is connected) 

36. % n : size of cols in H 

37. x=1; 

38. for k=1:n 

39. if(H(j,k)==0) 

40. continue; 

41. end 

42. C(x)=k; 

43. x=x+1;    

44. end 

45. len=length(C); 

46. % 

47. for i=1:n 

48. cc=ismember(i,C); 

49. if(cc==0) 
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50. continue; 

51. end 

52. % move over C and calculate tanh 

53. for t=1:len 

54. if(i==C(t)) 

55. continue; 

56. end 

57. zz=tanh(N(j,C(t))/2)*zz; 

58. end 

59. vv =atanh((1-(2*synd(j)))*zz)*2; 

B(j,i)=vv; 

60. zz=1; 

61. end 

62. end 

63. for i=1:n 

64. L(i)=z(i);  

65. r2=0; 

66. for j=1:m 

67. r2=B(j,i)+r2; 

68. end 

69. L(i)=r2+L(i); 

70. if(L(i)<0) 

J(i)=1; 

71. end 

72. if(L(i)>=0) 
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J(i)=0; 

73. end  

74. end 

75. syn=mod((J*(HT)),2); 

76. if(syn==synd)  

77. break; %%finish  

78. else 

79. [rows,co]=size(H); 

80. for i=1:n 

81. x2=1; % just index 

82. A=zeros(1,1); 

83. for k=1:rows 

84. if(H(k,i)==0) 

85. continue; 

86. end 

a. A(x2)=k; 

b. x2=x2+1;    

87. end 

88. len=length(A); 

89. for j=1:rows 

90. cc=ismember(j,A); 

91. if(cc==1) 

xx=0; 

92. for jj=1:len 

93. if(j==A(jj)) 
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94. continue; 

95. end 

96. xx=B(A(jj),i)+ xx; 

97. end 

N(j,i)=xx+z(i); 

98. end 

99. end 

100. end  

101. end 

102. Iter=Iter+1; 

103. end     

104. end 

105. end 

Appendix A.4 Qian-Zhang for [0.1,1.0]   

1. clc; 

2. clear all; 

3. DecodedPSNR={'na','0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.8','0.9','1.0'}; 

4. Time={'na','0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.8','0.9','1.0'}; 

5. EmbedddingCapacity={'na','0.1','0.2','0.3','0.4','0.5','0.6','0.7','0.8','0.9','1.0'}; 

6. selectionRatio=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]; 

7. FileName = dir('images3/*.bmp'); 

8. nfiles = length(FileName);     % Number of files found 

9. for ii=1:nfiles 

10. imName=''; 

11. imName=FileName(ii).name; 
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12. rN = sprintf('%s','images3/',imName); 

13. OriginalImage= imread(rN); 

14. DecodedPSNR(ii+1,1)={imName}; 

15. Time(ii+1,1)={imName}; 

16. EmbedddingCapacity(ii+1,1)={imName}; 

17. [m,n] = size(OriginalImage); 

18. [m,n] = size(OriginalImage); 

19. seed=4; 

20. numberofbits=32; 

21. %% encrption 

22. load('EncryptionKey.mat'); 

23. [EncryptedImage]=encrypt(OriginalImage,EncryptionKey ); 

24. EncryptedImage=double(EncryptedImage); 

25. saveN = sprintf('%s','images/EncryptedImage',imName); 

26. imwrite(EncryptedImage,saveN); 

27. EncryptedImage=uint8(EncryptedImage); 

28. %% hide data 

29. for j=1:10 

30. selectionRatio=selection(j); 

31. [Marked_encrypted_image,selectionkey,Shufflekey,L,r,H,syndorm,kgroups,selec

tionkey2,secretData,collectedbitsF,selectedBits,shuffledbits]=HideData(Encrypte

dImage,selectionRatio,seed,numberofbits, imName,EncryptionKey); 

32. %% data extraction 

33. [extractedData]=DataExtraction(Marked_encrypted_image,selectionkey2,Shuffle

key,L,r,numberofbits); 
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34. re=double(secretData)-double(extractedData); 

35. X = nnz(re); 

36. non_zero_Ptg=(X/(m*n))*100; 

37. zero_Ptg=(1-(non_zero_Ptg/100))*100; 

38. if(zero_Ptg==100) 

39. fprintf('\n Secert Data is extracted %0.4f \n', zero_Ptg); 

40. end 

41. %% get the ApproximateImage 

42. [ApproximateImage,zero_Ptg,ApproPSNR]=DecryptionAndEstimation(Marked_

encrypted_image,EncryptionKey,imName,OriginalImage); 

43. [rr,cc]=size(secretData); 

44. b3=cc/(512*512); 

45. tic; 

46. [RecievedImage,PSNR]=Recovery(Marked_encrypted_image,selectionkey,Shuff

lekey,H,L,r,numberofbits,EncryptionKey,secretData,syndorm,kgroups,imName,s

electionkey2,OriginalImage,collectedbitsF,b3,selectedBits,shuffledbits); 

47. t=toc; 

48. Time(ii+1,j+1)={t}; 

49. DecodedPSNR(ii+1,j+1)={PSNR}; 

50. EmbedddingCapacity(ii+1,j+1)={b3}; 

51. end 

52. end 

53. xlswrite('results.xlsx',EmbedddingCapacity,'Sheet1'); 

54. xlswrite('results.xlsx',ApproPSNR,'Sheet2'); 
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Appendix A.3.1 Encryption key.  

0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 1

0 1 1 1 1 0 1 0

1 0 0 0 0 0 0 1

0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1

1 0 1 1 0 0 0 0

1 1 1 0 0 1 0 1

0 0 1 1 0 1 0 1

0 0 1 0 1 1 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 1 1 1

0 1 0 1 0 0 0 1

0 0 1 1 1 0 0 0

1 1 0 1 1 1 0 1

0 1 1 0 1 1 0 0

1 1 0 0 0 0 1 0

0 0 0 1 0 0 1 1

0 0 1 0 1 0 1 1
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Appendix A.4.1 Selection keys depending on  .  

 0.1 190126 107591 191238 140539 82608 158627 153605 155714SLK     

 0.2 190126 107591 191238 140539 11421 124520 132931 85635SLK     

 0.3 190126 107591 191238 140539 185059 18782 157093 82356SLK     

 0.4 190126 107591 191238 140539 104635 173429 82457 182720SLK     

 0.5 190126 107591 191238 140539 76780 20130 193339 160105SLK     
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 0.6 190126 107591 191238 140539 114946 159016 75903 172242SLK     

 0.7 190126 107591 191238 140539 154162 101616 186494 165151SLK     

 0.8 190126 107591 191238 140539 179383 33854 18658 115188SLK     

 0.9 190126 107591 191238 140539 33464 121075 134712 122549SLK     

 1.0 190126 107591 191238 140539 24554 15636 37396 13761SLK     
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Appendix B. Different H Matrix Construction Methods 

 

Appendix B.1. H matrices constructed using Gallager method 

Appendix B.1.1: H matrix sample constructed for run 1 using Gallager method 

 H matrix with size 64   128 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
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Appendix B.2. code for constructing H matrices using Gallager and MacKay-

Neal implemented code. 

1. clc; 

2. clear all; 

3. HG=Gallager_construction_LDPC(1024); 

4. HM=makeLdpc(9, 12, 0, 0, 1); 

5. s_fieldnames = 'H'; 

6. a_nums=HG; 

7. eval([s_fieldnames '=a_nums;']); 

8. % save it in a mat file 

9. save('HGST4_8',s_fieldnames); 

 

Wconstructed all H matrices using the above code. 

We constructed H matrix using Gallager method by determining the number of 

columns in H matrix. 

HG=Gallager_construction_LDPC(number_of_columns);  

We constructed H matrix using MacKay-Neal method by determining the number of 

rows and columns in H matrix. 

HM=makeLdpc(number_of_rows, number_of_columns, 0, 0, 1); 
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Appendix C.Comparison of Different H Matrix Construction 

Methods Results 

Appendix C.3. Screenshots for Each Run (Section 4.2 results) 

Appendix C.3.1 PSNR for decoded image using Gallager method 

These results are taken from Appendix A.3 line 48 and the H matrices are used from 

Appendix B.1 

Table C.3.1.1.  PSNR for decoded images in run 1. 

 

Table C.3.1.2 . PSNR for decoded images in run 2.  

 

Table C.3.1.2 . PSNR for decoded images in run3. 
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Appendix C.3.2 PSNR for decoded image using MacKay-Neal method 

These results are taken from Appendix A.3 line 48 and the H matrices are used from 

Appendix B.2. 

Table C.3.2.1. PSNR for decoded image in run 1. 

 

Table C.3.2.2 .PSNR for decoded image in run 2  

 

 

Table C.3.2.3. PSNR for decoded image in run 3 
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Appendix C.3.3 Decoding time using Gallager method 

These results are taken from Appendix A.3 line 49 and the H matrices are used from 

Appendix B.1 

 

Table C.3.3.1. Decoding time in run 1 

 

Table C.3.3.2. Decoding time in run 2 

 

Table C.3.3.3. Decoding time in run 3 
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Appendix C.3.4 Decoding time using MacKay-Neal method 

These results are taken from Appendix A.3 line 49 and the H matrices are used from 

Appendix B.2 

Table C.3.4.1. Decoding time in run 1 

 

Table C.3.4.2. Decoding time in run 2 

 

Table C.3.4.3. Decoding time in run 3 
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Appendix D. Relation between PSNR of Approximate Image and 

Embedding Capacity.  

 

Appendix D.1. Figures of relation between PSNR pf approximate image and embedding 

capacity 

 

These results obtained from Appendix A.4 line 54 and drew in Excel. 

 

 
Figure D.1.1. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man 

and Peppers images with H matrix size 42×210. PSNR of approximate image is 

constant with different selection ratio  

 

 
Figure D.1.2. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man 

and Peppers images with H matrix size 64×256. PSNR of approximate image is 

constant with different selection ratio  . 
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Figure D.1.3. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man 

and Peppers images with H matrix size 70×210. PSNR of approximate image is 

constant with different selection ratio  . 

 

 

 
Figure D.1.4. PSNR of approximate image of Baboon, Barbara, Lake, Lena, Man 

and Peppers images with H matrix size 64×128. PSNR of approximate image is 

constant with different selection ratio  . 
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Appendix E. Relation between PSNR of Decoded Image and 

Embedding Capacity 
 

Appendix E.1. Screen shots for 3 runs using 3 different H matrices with size 

16×32 

 Results from Appendix A.4 line 49 – 50 shows the PSNR of decoded image and 

decoding time. 

 

Table E.1.1. Screen shot for the run 1 using H matrix with size 16×32. Output 

from  

 
 

 

Table E.1.2. Screen shot for the run 2 using H matrix with size 16×32 
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Table E.1.3. Screen shot for the run 3 using H matrix with size 16×32 

 
 

 

Appendix E.2, Average PSNR of decoded image and average decoding time for 

each image. 

 

 

Figure E.2.1. Screen shot for PSNR of decoded image and decoding time for 

baboon in each run 
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Figure E.2.2. Screen shot for PSNR of decoded image and decoding time for 

barbara in each run 

 

 

Figure E.2.3. Screen shot for  PSNR of decoded image and decoding time for Lake 

in each run 

 
 

 

Figure E.2.4. Screen shot for PSNR of decoded image and decoding time for Lena 

in each run 
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Figure E.2.5. Screen shot for  PSNR of decoded image and decoding time for Man 

in each run 

 

 

Figure E.2.6. Screen shot for PSNR of decoded image and decoding time for 

Peppers in each run 

 
 

 

  



 

160 
 

Appendix F.  Relation between H Matrix Size and PSNR of Decoded 

Image 

Appendix F.1. 9 H matrices are constructed using Gallager method. 

Appendix F.1.1 H matrices for first run 

4×8 

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 1

 
 
 
 
 
 

 

8×16 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0

0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  
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Appendix F.2. PSNR of decoded image for each run  

The results of the following tables are from Appendix A.3 line 48 

Table F.2.1. Screen shot of run 1 for PSNR of decoded image 

 
 

Table F.2.2. Screen shot of run 2 for PSNR of decoded image. 

 

 

Table F.2.3. Screen shot of run 3 for PSNR of decoded image. 
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Appendix F.4. Decoding time for each run.  

The results of the following tables are from Appendix A.3 line 49 

Table F.4.1. Screen shot of run 1 for decoding time for six images.

 

Table F.4.2. Screen shot of run 2 for decoding time for six images.

 

Table F.4.3. Screen shot of run 3 for decoding time for six images.
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Appendix G. Results of Our Implementation for All Images 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure G.1: (a) The Original Image Baboon. (B) The Encrypted Image (Stage 1). (C) 

Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2). 

(E) The Difference Between The Original And The Approximate Images. (F) 

Perfectly Recovered Image (Stage3, Option3). 

 

 



 

164 
 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure G.2: (a) The Original Image Barbara. (B) The Encrypted Image (Stage 1). (C) 

Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2). 

(E) The Difference Between The Original And The Approximate Images. (F) 

Perfectly Recovered Image (Stage3, Option3). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure G.3: (a) The Original Image Lake. (B) The Encrypted Image (Stage 1). (C) 

Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2). 

(E) The Difference Between The Original And The Approximate Images. (F) 

Perfectly Recovered Image (Stage3, Option3). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  

 

Figure G.4: (a) The Original Image Man. (B) The Encrypted Image (Stage 1). (C) 

Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2). 

(E) The Difference Between The Original And The Approximate Images. (F) 

Perfectly Recovered Image (Stage3, Option3). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure G.5: (a) The Original Image Peppers. (B) The Encrypted Image (Stage 1). (C) 

Marked Encrypted Image (Stage 2). (D) The Approximate Image (Stage3, Option 2). 

(E) The Difference Between The Original And The Approximate Images. (F) 

Perfectly Recovered Image (Stage3, Option3). 

 




