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ABSTRACT 

In this research, the optimal hedge ratio (OHR) for crude oil, natural gas, and 

gasoline spot and futures prices were examined by using the recently developed 

quantile on quantile (QQ) approach (Sim and Zhou, 2015). Compared to the previous 

methods, QQ approach can provide more extensive and complete picture of the 

overall dependence structure between the variables under investigation. I used 

monthly data, and the time span was dictated by the data availability for each 

variable. Obtained results confirmed the asymmetric response of the spot prices to 

the changes in futures prices for all three commodities. Besides, findings show that 

the OHR is significantly higher than one in a bullish market and for large positive 

shocks for all the commodities. Also, as the maturities of the futures contracts 

increase lower fluctuations in the OHR were observed. The most important 

contribution of this research is to provide evidence on the variation of the OHR 

across the distributions of spot and futures prices which has important implications 

for policy makers and practitioners.  

Keywords: Optimal Hedge Ratio, Energy Market, Spot Market, Futures Market, 

Quantile-on-Quantile Approach 
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ÖZ 

Bu araştırmada, ham petrol, doğal gaz ve benzinin spot ve vadeli işlemler fiyatları 

için en uygun korunma oranı (OHR) yakın zamanda geliştirilen QQ yaklaşımı (Sim 

ve Zhou, 2015) kullanılarak incelenmiştir. QQ yaklaşımı, önceki yöntemlere kıyasla, 

incelenen değişkenler arasındaki genel bağımlılık yapısını daha kapsamlı bir şekilde 

ortaya koyabilmektedir. Aylık veriler kullanılan bu çalışmada, zaman aralığı her 

değişken için veri erişiminin elverdiği ölçüde geniş tutulmuştur. Elde edilen 

sonuçlar, her üç emtia için spot fiyatların vadeli işlem fiyatlarındaki değişikliklere 

asimetrik yanıt verdiğini doğrulamıştır. Ayrıca, bulgular OHR’nin boğa piyasasında 

ortaya çıkan büyük pozitif şoklar durumunda incelenen tüm emtialar için “bir”den 

önemli ölçüde yüksek olduğunu göstermektedir. Ayrıca, vadeli işlem sözleşmelerinin 

vadeleri uzadıkça OHR'de daha düşük dalgalanmalar gözlenmiştir. Bu araştırmanın 

en önemli katkısı, spot ve vadeli piyaslar arasındaki OHR’nin her iki piyasanın o 

anki koşullarına bağlı olarak değiştiğini göstermesidir. Elde edilen bulguların 

politika yapıcılar ve yatırımcılar için önemi çalışmanın sonuç kısmında ortaya 

konmaktadır.  

Anahtar Kelimeler : Optimal Koruma Oranı, Enerji Piyasası, Spot Piyasası, Future 

Piyasası, Quantile-on-Quantile (QQ) Yaklaşımı 
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Chapter 1 

INTRODUCTION 

The growing global population, along with high economic growth, the rise in social 

complexity and the desire for a higher quality of life, which are all consequences of 

the development of human societies, increase the need for energy. Higher energy 

demand drives the urge to control larger inventories, diversify types of energy, and 

process it more efficiently and at a lower cost. Energy influences many aspects of 

human life; in residential settings (houses and apartments), energy is used to provide 

power for various home devices and equipment including televisions, lights and air 

conditioners. Energy is used in transportation as gasoline to power cars, boats and 

motorbikes; energy is used to operate the compressors that move natural gas through 

pipelines; and electricity is used to power increasingly popular electric cars. Energy 

is also used in the industrial sector (agriculture, construction, manufacturing, etc.) 

and in the commercial sector (hotels, hospitals, restaurants, etc.). It has been claimed 

that the electric power sector makes the energy market one of the most important 

markets in the world (Independent Statistics and Analysis U.S. Energy Information 

Administration [EIA], 2019).  

The global energy market, with 14,035 Mtoe of production in 2017, is still heavily 

dominated by the use of fossil fuels, which accounted for 81.3 percent of all 

production in 2017 (The International Energy Agency [IEA], 2017). Energy sources 

can be divided into two main categories: renewable energy (solar, geothermal, wind, 
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biomass, hydropower) and nonrenewable energy (petroleum products, hydrocarbon 

gas liquids, natural gas, coal, nuclear energy). Fossil fuels, which are categorized as 

nonrenewable energy, are the most-consumed energy source all around the world. 

The EIA (2018) stated that nonrenewable energies account for 90% of the United 

States’ energy consumption, with 36% in the form of petroleum, 31% natural gas, 

15% coal and 8% nuclear electric power; while the share of renewable energy is only 

10%, of which 2% is geothermal, 6% solar, 21% wind, 45% biomass and 25% 

hydroelectric. According to the numbers, it can be concluded that petroleum products 

such as crude oil and gasoline, along with natural gas, are the most important sources 

of energy; together they comprised a cumulative 67% of the 90% share in the United 

States’ nonrenewable energy consumption.  

Crude oil is one of the world’s most strategic resources; it has a vital effect on many 

macroeconomic variables, including economic growth, especially in developing 

countries such as China and India (Cheng, Li, Wei and Fan, 2019; Gupta and 

Banerjee, 2019; Wang, Geng, and Meng, 2019; Wang and Wang, 2019), as well as 

currency fluctuations and inflation (Lang and Auer, 2019). Crude oil also plays an 

important role in the financial stability and economic growth of developing counties; 

it directly affects the domestic economy and its use at times has international 

repercussions. Moreover, crude oil is the main energy source for the transportation 

sector, as its energy density is higher than other sources and transporting oil from one 

place to another is more convenient than transporting other kinds of fuel. 

Furthermore, several petroleum products can be refined from crude oil, such as 

heating oil, gasoline, diesel fuel and lubricating oil (Wang and Wang, 2019). 

Transportation accounted for 28% of the United States’ energy consumption in 2018; 
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almost 89% of that came from petroleum products. Therefore, changes in crude oil 

prices can dramatically affect the global economy and political stability.  

Although crude oil remains the most important energy source worldwide, ever-

increasing concerns about environmental degradation have enhanced the importance 

of natural gas as a cleaner alternative (Li, Sun, Gao, and He, 2019; Lin, Zhou, Liu 

and Jiang, 2019). Thirty trillion cubic feet (TCF) of natural gas were used by the 

United States in 2018, the equivalent of 31% of the country’s total primary energy 

consumption. Of the natural gas consumption in the United States, 35% is used for 

electric power, 34% for industrial, 17% for residential, 12% for commercial and 3% 

for transportation (EIA, 2019). In terms of the growth in global energy consumption, 

natural gas accounted for 45% of the rise in consumption of energy globally in 2018; 

this is considered to be the biggest gain in this area, specifically as gas demand was 

much stronger in the United States and China (IEA, 2019). From a global production 

perspective, natural gas usage reached a new record high in 2018 with 3,937 billion 

cubic meters, the equivalent of a 4% rise in comparison with 2017. Natural gas 

global demand reached a new peak of 3,922 billion cubic meters in 2018, a 4.9 

percent increase in demand compared to 2017. More specifically, natural gas demand 

rose by 4.5% in the OECD countries; however, in the non-OECD countries the rise 

in natural gas demand was higher at 5.3% (IEA, 2019). Therefore, due to the 

significant role of natural gas in the worldwide economy, changes in natural gas 

prices should be carefully taken into consideration.  

Gasoline is one of the most-consumed petroleum products worldwide. Moreover, it is 

the major product produced from oil refineries. Gasoline is refined from petroleum 

liquids, especially from crude oil, and is essentially used as an engine power source 
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in automobiles. In 2018, 143 billion gallons of motor gasoline per day, in other 

words, 392 million gallons of automobile gasoline and 186 million gallons of 

aviation gasoline per day were consumed in the United States alone. Of the total 

transportation energy sector consumption, 58% was provided by gasoline; it also 

accounts for 46% of total petroleum consumption. Out of total energy consumption 

in the United States, the share of gasoline was 17%; of this amount, 45% was derived 

from petroleum consumption (EIA, 2019). Given the significant role of gasoline in 

the transportation energy sector, any unexpected events in the gasoline market 

leading to unexpected price movements can affect the global economy. 

Energy is a vital element for producers and refiners. Energy producers and refiners 

use energy sources as raw materials to produce a refined product, so one might say 

that energy is the main ingredient for these firms. Examples include end users such 

companies that use energy to produce power for their generators and in their 

production processes, such as using natural gas and gasoline to generate power to 

produce heat to melt, dry or glaze products, along with producing electricity to power 

electrical equipment such as machinery. Energy is also important for organizations 

and households that make use of it to produce light, heat, and electrical power for 

equipment such as computers, televisions and mobile phones, etc. All of the end 

users mentioned above also make use of gasoline in their transportation services. 

Accordingly, for all of them, energy products can be considered as inputs that affect 

operational costs in the case of firms, companies and organizations, and the cost of 

living in the case of households. Consequently, any unexpected change in energy 

prices can affect them all. Unfavorable energy price movements can reduce the net 

profits of firms, companies and organizations, and increase expenditures in the case 

of households.  
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It is clear that energy commodities are the main input and output of many firms 

worldwide; thus, any changes in their prices have a significant impact on costs and 

revenues. In other words, any change in energy prices can alter the costs and sales 

prices and ultimately the firms’ profit. Given the importance of energy for industry, 

then, energy risk is a key factor for firms. Energy risk management is especially 

crucial for firms involved in the industrial sector because of the effect of unexpected 

economic and geopolitical events on corporate competitiveness, profitability and 

development. These events are inevitable, and they need to be taken into 

consideration constantly so that when they occur, they can be handled and managed 

correctly. During the last two decades the number of these events has increased. 

Geopolitical instability and military conflicts, particularly in the Middle East, as well 

as the strong economic growth of countries such as China and India, affect the supply 

of energy market commodities such as crude oil, natural gas and gasoline (Wang et 

al., 2019; Halkos and Tsirivis, 2019).  

Investing directly in commodities like crude oil, natural gas, and gasoline is 

considered impractical, except for governments and oil companies; thus, investing in 

financial market assets (futures, options, and ETFs) with energy market commodities 

as an underlying asset has garnered a lot of attention among individual and 

institutional investors (Chincarini, 2019). For instance, a portfolio manager can 

invest in oil, natural gas and gasoline futures or in public companies engaged in the 

energy market to manage a liquid oil investment vehicle instead of entering into the 

energy spot market. Consequently, energy price fluctuations can affect both political 

and economic stability and, relatedly, traders’ positions and financial markets (Wu 

and Zhang, 2014; Zhang, Zhang, and Zhang, 2015; Billio, Casarin, and Osuntuyi, 

2018; Lang and Auer, 2019). Also, several factors, such as natural disasters, 
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extraction costs, inventory costs, exchange rates, geopolitical instability, climate 

change and military conflicts can cause significant changes in energy prices. All of 

these factors can have a direct effect on energy price fluctuations, and the status of 

energy on the market as a commodity in which traders invest. As a result, hedging 

against energy price volatility is crucial for participants in the energy market 

(Shrestha, Subramaniam, Peranginangin, and Philip, 2018; Halkos and Tsirivis, 

2019). 

Producers or owners of an asset who wish to sell their products in the future, or 

consumers who want to buy an asset in the future, are examples of hedgers who wish 

to offset their risk exposure to inauspicious underlying commodity price movements 

as much as possible. Hedgers want to eliminate risk to the greatest extent. One of the 

popular instruments in hedging strategies is a futures contract, which is an agreement 

between two parties to buy or sell a certain amount of an asset for predetermined 

price and at a specific place and time in the future. In most cases, only a small 

number of futures trades conclude with the delivery of an underlying asset, because 

usually futures market participants desire to benefit from price movements in the 

futures market, and thus close out their position by taking an opposite position prior 

to the delivery date. When it comes to the hedging feature of futures contracts, 

traders simply integrate their activity in both the spot and futures markets (Johnson, 

1960).  

Futures contracts are on the rise, with 17.15 billion global trades in 2018, up from 

12.13 billion in 2013 (Statista, 2019); they are widely used to hedge against energy 

price movements because of their low transaction costs, high liquidity, low 

counterparty risk, and low margin requirements. Also, taking a short position is just 
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as easy as taking a long position in the futures market. In addition, information is 

expected to be divulged in the futures market first, thus it is where price discovery 

takes place.  

The simplest way to conduct a hedging strategy is to use a very well-known naïve 

hedge ratio. In this strategy, a trader simply buys or sells a number of futures 

contracts exactly the same as the spot position. In most cases, however, spot and 

futures prices are not perfectly correlated, i.e. they do not move perfectly in the same 

direction and thus create the basis risk, which in this context is the difference 

between the changes in spot and futures prices (De Jong, De Roon, and Veld, 1997). 

Thus, the determination of the Optimal Hedge Ratio (OHR), the optimal number of 

futures positions to hold to reduce the risk associated with spot price fluctuations, has 

long been the main topic of discussion among energy market participants. The 

question is: Which model is able to hedge the spot price risk exposure to the greatest 

extent? By utilizing the concept of the minimum variance (MV) hedge ratio, we 

regressed each quantile of spot returns against the entire distribution of futures 

returns by employing the quantile on quantile (QQ) approach to document possible 

changes in the OHR under different conditions, namely, different spot market states 

and shocks in the futures markets with different signs and magnitudes.  

The spot market may react asymmetrically to changes in the futures market because 

of the complex and unstable linkage between spot and futures prices. For instance, 

spot price may react to futures price shocks in a different way when the spot market 

is bearish than when it is bullish. In addition, there might be a difference between the 

effect of large shocks in futures prices and the effect of smaller shocks. Moreover, 

spot prices may respond asymmetrically to negative versus positive futures price 
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shocks. As a result, the effect of futures prices on spot prices may vary according to 

market conditions and the nature of the futures price shocks. The literature has 

shown that asset price movements differ under varying market conditions, such as a 

bearish versus bullish market. These asymmetrical impacts in upward and downward 

price patterns may further drive diverse co-movement behaviors or conditional 

covariance among spot and futures prices among ascending and descending trending 

patterns (Meneu and Torro, 2003; Chang, Lai, and Chuang, 2010). Therefore, while 

investigating the spot-futures market relationship, it is necessary to take into account 

its potential non-linear characteristics.  

The complex relationship between the spot and futures markets also affects hedging 

strategies, more specifically the OHR. The OHR under normal market conditions 

may not be the same as when the spot market is bullish or bearish. Similarly, it may 

vary significantly when there are positive or negative shocks in the futures market. 

Exploring changes in the OHR is difficult by utilizing conventional frameworks like 

ordinary least squares (OLS) because of the disability of these methods in taking into 

account the time-varying structure of the hedge ratio, cointegration, and 

heteroscedasticity. Even comparatively more recent approaches cannot capture the 

overall dependence structure. For example, the quantile regression (QR) approach 

can only take into account the quantiles of a single variable. Accordingly, the QR 

approach captures the hedge ratio by regressing the quantiles of spot price on average 

points of futures prices, which omits the fact that the hedge ratio might be different 

when the nature of the futures market differs. 

We employed a recently developed QQ approach (Sim and Zhou, 2015) to uncover 

state-dependent variations of the OHR under different market conditions. The QQ 
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approach is appropriate for estimating the effects of futures price shocks when these 

effects may be dependent on the performance of the spot market and the sign and 

size of these shocks. To achieve this, the QQ approach first models the quantiles of 

the spot price as an explained variable, since it provides information about how well 

the spot market is performing. Second, it models the quantiles of the futures price as 

an independent variable to capture the information about the sign and size of the 

shocks in the futures market. For example, the 98th percentile of the futures price 

represents large positive shocks in the futures market, and the 60th percentile of the 

futures price shows the smaller positive shocks in the futures market. In the same 

way, the 2nd percentile of the futures price demonstrates the large negative shocks, 

while the 40th percentile is representative of the smaller negative shocks. Regarding 

the concept that the quantiles contain information about the states of the market and 

the sign and size of the shocks, by employing the QQ approach we are able to 

determine the OHR in a way that is attentive to spot market conditions and accounts 

for futures market shocks of different signs and sizes. 

The QQ model is an amalgam of quantile regression and non-parametric estimation 

techniques; it enables us to regress quantiles of spot returns on quantiles of futures 

returns (Raza, Zaighum, and Shah, 2018; Gupta, Pierdzioch, Selmi, and Wohar, 

2018; Han, Liu, and Yin, 2019; Mallick, Padhan, and Mahalik, 2019; Mishra, Sharif, 

Khuntia, Meo, and Rehman Khan, 2019; Mo, Chen, Nie, and Jiang, 2019) which 

leads to discovering the OHR disparity. The main reason to apply the QQ method is 

that the nexus between the spot and futures market is non-linear, which causes the 

OHR to vary in response to varying market conditions. In other words, the ability to 

explore the effects of shocks at varying degrees, as well as heterogeneous tail 

dependence structures, are the most important advantages of the QQ approach. 
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Furthermore, it sheds light on the probable changes of the OHR across the whole 

distribution of spot and futures returns. In a specific manner, the QQ approach 

models the quantiles of spot returns conditioning on the quantile of futures returns, 

hence providing a complete picture of the relationship between spot and futures 

prices.  

In this study, we use the QQ approach to examine three important energy 

commodities by detecting each state of conditional distribution among them. Hence, 

our findings can be used to establish more efficient hedging strategies in general, and 

in the energy market in particular.  
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Chapter 2 

LITERATURE REVIEW  

Discovering the hedge ratio with the use of futures has always been complicated. 

Johnson (1960) and Stein (1961), followed by Ederington (1979), introduced futures 

contracts to use in hedging strategies and argued that the slope coefficient in OLS 

regression is the OHR. Further studies argued that the hedge ratio between spot and 

futures prices might be dependent on several factors, such as the hedger’s holding 

period, the futures contract maturity and the level of price discovery. Chen, Sears, 

and Tzang (1987) analyzed the differences in hedging effectiveness with different 

hedger’s holding periods and futures contract maturities. They found that the longer 

the hedger’s horizon and the nearer the futures contract maturity, the more effective 

the hedging strategy for crude oil, leaded gasoline and heating oil. Ripple and Moosa 

(2007) found more effective hedging when the near-month contract is incorporated. 

They also revealed that hedge ratios are lower when using futures contracts with a 

shorter time to maturity. Conlon and Cotter (2013) demonstrated that hedging 

effectiveness increases as the hedging horizon increases in the heating oil market, 

and decreases in high confidence intervals as the level of uncertainty increases. They 

also revealed that hedging effectiveness is not particularly sensitive to different 

objective functions. Shrestha et al. (2018) indicated that quantile hedge ratios have 

an inverted “U” shape for crude oil and heating oil, while for natural gas the quantile 

hedge ratio is lower than the MV hedge ratio, which was significantly lower than the 

one-to-one naïve hedge ratio. In addition they found that the OHR could vary 
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according to the level of price discovery in the futures market. They claimed that the 

OHR is lower than the naïve hedge ratio of 1 for commodities whose price discovery 

mostly takes place in the futures market and vice versa. Finally, they demonstrated 

that for longer hedging horizons the quantile hedge ratio converges with the MV 

hedge ratio.  

We observed two main attempts in the literature to determine the OHR. The first 

attempt is to use different objective functions for the OHR. Minimizing the variance 

of the hedged portfolio, also known as the MV hedge ratio, is one of the popular 

objectives in the literature (Johnson, 1960; Ederington and Salas, 2008). To derive 

the MV hedge ratio, the underlying commodity spot returns are simply regressed 

against futures returns, where the slope coefficient represents the MV hedge ratio 

(Ederington, 1979). The MV hedge ratio is quite simple to understand and estimate, 

and is the most widely used hedging strategy in the literature (Hung, Wang, Chang, 

Shih, and Kao, 2011; Conlon and Cotter, 2013; Cotter and Hanly, 2015; Turner and 

Lim, 2015; Wang, Wu, and Yang, 2015; Markopoulou, Skintzi, and Refenes, 2016; 

Park and Shi, 2017; Shrestha, Subramaniam, and Rassiah, 2017; Chun, Choa, and 

Kim, 2019; Qu, Wang, Zhang, and Sun, 2019; Wang et al., 2019). For instance, Chun 

et al. (2019) incorporated stochastic volatility (SV), Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) and diagonal Bollerslev, Engle, Kroner, 

and Kraft (BEKK) to estimate the MV hedge ratio in the crude oil market. They 

argued that although time-varying variance and covariance are the most important 

factors in MV hedge ratio estimation, accurate volatility estimation does not 

guarantee better MV portfolio performance. Thus, they demonstrated that while 

investigating the MV hedge ratio, variance forecasting accuracy should be separated 

from out-of-sample hedging performance. Nevertheless, when deriving the OHR 
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based on the MV objective function, the main focus is to minimize the variance of 

the hedged portfolio, leading to neglect of the expected return of the portfolio (Chen, 

Lee, and Shrestha, 2008). 

Minimizing the mean-extended Gini (MEG) is another objective function in the 

exploration of the OHR that has been used to solve for the problem associated with 

the MV hedge ratio when there is interdependence between the futures price and 

error terms. In such cases, the OLS estimator will be biased; thus, the MV hedge 

ratio is not an appropriate measure of the hedge ratio. By including risk aversion 

differentials into hedging and utilizing the instrumental variables method (IV), MEG-

based hedge ratios are assumed to have a superior objective function among 

practitioners (Cheung, Kwan, and Yip, 1990; Kolb and Okunev, 1992; Lien and Lou, 

1993; Shalit, 1995). The MEG approach was first developed by Cheung et al. (1990), 

who demonstrated that it solves for the return normality assumption and the 

quadratic utility function problem. More specifically, when returns cross over the 

efficient frontier at high levels, the MV approach leads to a bias estimation because it 

does not take into account the expected return estimation, although both the expected 

return and variance covariance matrix are determinants of a positively sloped 

efficient frontier. For example, Shalit (1995) used the MEG approach to include 

differentiated risk aversion in futures hedging. He argued that the MEG method can 

be utilized whenever the OLS is unable to produce a consistent estimate for MV. 

Further, he revealed a way of choosing the relevant value of risk aversion by first 

determining whether or not contracts are normally distributed. When normality is 

rejected, the MEG hedge ratio should be used instead of the MV hedge ratio. Further, 

the MEG hedge ratio can be estimated by using different values of risk aversion and 
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can be compared with the MV hedge ratio. The appropriate MEG hedge ratio can 

then be chosen among those that are significantly different from the MV hedge ratio. 

Minimizing the value-at-risk is another advantageous objective function; it has an 

analytical solution that is simple to compute, it is consistent with the maximization of 

the expected utility function hypothesis, and it aids in discovering the risk aversion 

level and choosing confidence level because of the conceptual simplicity of 

quantitative risk measures (Lien and Tse, 2000; Hung, Chiu, and Lee, 2006; Chang, 

2011; Conlon and Cotter, 2013; Halkos and Tsirivis, 2019). Conlon and Cotter 

(2013) indicated the dependency of the OHR on the confidence interval. At the 

highest uncertainty levels, they found the lowest OHR. Further, they revealed that to 

minimize downside risk, energy hedgers with longer time horizons should short more 

futures contracts than those with shorter hedging horizons. Finally, they 

demonstrated that although Value at Risk (VaR) and Conditional Value at Risk 

(CVaR) were found to be superior to other objective functions in determining the 

OHR, the difference was relatively low for those investors with long hedging 

horizons. Chang (2011) incorporated the bivariate Markov regime Switching 

Autoregressive Conditional Heteroscedastic (SWARCH) model to explore the VaR 

hedging strategy. He chose the VaR objective function because the variance is the 

only index to evaluate the second-order central moment in a series; however, the 

ability of variance to present the applicability of loss risk was highly questioned. 

Hence, he utilized the VaR as a risk index to measure the downside risk. He 

demonstrated that hedging performance is affected by the risk aversion coefficient 

and confidence level. 
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Minimizing the generalized semivariance (GSV) with stochastic dominance is 

another objective function in the literature (De Jong et al., 1997; Lien and Tse, 2000; 

Chen, Lee, and Shrestha, 2001). Academicians have used the sharp ratio model due 

to its ability to take into account the risk-return trade-off associated with the hedged 

portfolio, rather than focusing on variance minimization (Howard and D’Antonio, 

1984; Chen et al., 2008). Although there are several disadvantages to using the MV 

hedge ratio, if futures prices follow a pure martingale process and if there is joint 

normality in spot and futures prices, most of the objective functions will converge to 

the MV hedge ratio (Shalit, 1995; Chen et al., 2001; Lien, Shrestha, and Wu, 2016). 

The second approach used in the literature to calculate the OHR is to employ 

different econometric methodologies. Many different empirical frameworks have 

been used to calculate the OHR. The ordinary least squares (OLS) method is a 

conventional approach that has been extensively used in OHR derivation (Lien and 

Tse, 2000; Turner and Lim, 2015; Wang et al., 2015; Wang et al., 2019). Turner and 

Lim (2015) indicated that while the previous literature had suggested that a more 

advanced model should be used because of the failure of OLS in the derivation of the 

OHR, they did not reach the same conclusion. They utilized ECM and GARCH 

models and generated the same hedge ratios as the OLS method. Finally, they 

concluded that no model is superior to other models consistently. Wang et al. (2015) 

incorporated the naïve hedge strategy and 18 MV hedging strategies, including OLS, 

to investigate the consensus on the OHR. Their results indicated that none of the 

models outperform the naïve strategy. Further, they stipulated that it is difficult to 

find a hedging strategy that is able to outperform others consistently because of 

estimation error and model misspecification. Wang et al. (2019) found that if the 
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objective is to minimize the variance of the portfolio, the OLS performs better 

compared to the VAR, VEC, CCC, DCC, BEKK-GARCH and Copula models. 

Since the OLS method fails to take into consideration the problems associated with 

several issues, including heteroscedasticity, the long term relationship (cointegration) 

between spot and futures prices, and the time-varying structure of the hedge 

portfolio, it has been widely criticized by researchers as a method for OHR 

derivation (Chang, et al., 2010; Chang, McAleer, and Tansuchat, 2010; Wang et al., 

2015). To compensate for the disability of the OLS method to investigate 

cointegration, error correction models (ECM) have been utilized to take into account 

the error correction term where there is cointegration between series (Lien and Tse, 

2000; Turner and Lim, 2015; Wang et al., 2015; Qu et al., 2019; Wang et al., 2019). 

Furthermore, in order to solve the problems regarding heteroscedasticity and time-

variant variance co-variance matrix, conditional heteroscedasticity, models such as 

ARCH and GARCH have been applied. Random coefficient models can also be 

utilized to account for the heteroscedasticity problem. Kroner and Sultan (1993) 

pointed out the two main concerns regarding the hedge ratio measurement, such that 

the time-varying return distribution of many assets and cointegration employed a 

bivariate error correction framework with a GARCH error structure to calculate the 

risk-minimizing hedge ratios in foreign currency futures. They demonstrated that the 

model they used is superior to the conventional frameworks. In addition to these 

methods, many others such as constant conditional correlation (CCC) and dynamic 

conditional correlation (DCC) (among others, Lanza, Manera, and McAleer, 2006), 

VARMA (Manera, McAleer, and Grasso, 2006), BEKK (Chang, McAleer, and 

Tansuchat, 2010a), and Bayesian models (Billio et al., 2018) have been used by 

researchers with the aim of estimating the OHR. 
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Not surprisingly, given the complicated behavior of the times series variables, the 

complex structure of the financial markets and the number of econometric models 

that have been proposed with the aim of calculating the OHR accurately, there has 

been a long-lasting and intense discussion in the literature about which model 

performs better. Hence, researchers have used several methods to estimate the OHR 

and have compared the performance of various models in their studies. These studies 

contain contradictory claims about the performance of the methods employed. For 

example, Chang et al. (2010) stated that the CCC-GARCH model is superior 

compared with the other multivariate GARCH frameworks; however, Chang, 

McAleer, and Tansuchat (2011) found that the performance of multivariate GARCH 

models is better in exploring the OHR. Hung et al. (2011) used a four-regime 

bivariate Markov regime switching GARCH model to estimate the time-varying MV 

hedge ratio, and showed that for both in- and out-of-sample hedging, their model 

outperforms the competing two-regime, CC- and TVC-GARCH and OLS models. 

Chang, McAleer and Tansuchat (2010) utilized BEKK, diagonal BEKK, VARMA-

GARCH models; the estimated conditional covariance matrices from those models 

were employed to measure the OHR. Their results from multivariate volatility 

models suggest holding a larger proportion of Brent Oil futures compared with the 

Brent oil spot position. In contrast, for WTI, the results from the BEKK model 

recommend holding spot positions in larger proportions than futures. Although 

outcomes from DCC, VARMA GARCH and CCC suggest holding futures in a larger 

proportion than spots for WTI, they also reveal the existence of the time-varying 

hedge ratio. Moreover, they indicate that in the case of hedge portfolio variance 

reduction, the diagonal BEKK model is the most effective and the BEKK is the 

worst. Billio et al. (2018) utilized Bayesian multi-chain Markov switching GARCH 
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model to take into account the parameter of uncertainty in hedging decisions, and to 

estimate the state-dependent time-varying MV hedge ratio. They also investigated 

the change in hedging effectiveness by relaxing the assumption of a common 

switching dynamic. Their main and most interesting findings suggest that in terms of 

hedging strategy, several models should be employed since they can outplay each 

other in different stages of the market. For instance, their findings illustrate that MS-

GARCH models outperform other competing models such as OLS before and during 

financial crisis out-of-sample, while after the financial crisis period OLS models 

perform better than MS-GARCH models.  

One of the important lessons from the literature is the idea that OHR might be time 

dependent, and that is there is a different OHR based on different market states 

(Chang et al., 2010). This finding calls for the application of a new methodology that 

can take into account different market states while estimating the OHR. In a 

conventional regression framework, the central focus is on the nexus between spot 

market returns and futures market returns on average to get the OHR, which leaves 

us with no information about changes in the hedge ratio at various quantiles of the 

distributions of the two variables (Shrestha et al., 2018). Recently, Lien et al. (2016) 

incorporated a linear conditional quantile model to initiate a new measure of hedge 

ratio, called the quantile hedge ratio, for 20 different commodities at 15 quantiles; 

this model allows for the investigation of different hedge ratios at different quantiles 

of spot returns. They found that the hedge ratio depends on various quantiles like the 

upper and lower tails of spot return distribution. Further, Shrestha et al. (2018) 

utilized the same method for crude oil, heating oil and natural gas, and arrived at the 

same conclusions as Lien et al. (2016), that the hedge ratio has an inverted “U” shape 

associated with various quantiles, and that the OHR is higher than the MV hedge 
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ratio at medium quantiles and strongly depends on the different spot market states. 

They also found that for natural gas, the MV hedge ratio is below the one-to-one 

naïve hedge ratio, which is consistent with their price discovery in which they 

demonstrated that for natural gas, price discovery takes place mainly in the futures 

market.  

Several studies related to the energy market have recently utilized quantile 

regression. Reboredo and Ugolini (2016) investigated the quantile dependence of oil 

price movements with respect to stock returns. Their finding revealed that the co-

movements between the two were weak before the financial crisis; however, they 

increased after the financial crisis. Further, they demonstrated that extreme upward 

or downward price changes in crude oil had an asymmetric and critical effect on the 

large upward or downward stock price changes before the crisis. Their results imply 

that the signs of oil price changes have no impact on stock prices. Zhu, Guo, You, 

and Xu (2016) found the heterogenous reaction of market returns to crude oil across 

conditional distribution of stock returns. Khalifa, Caporin, and Hammoudeh (2017) 

demonstrated that the relationship between crude oil prices and rig counts is 

nonlinear.  

There is still one area of study that has been neglected: the effects of various futures 

market conditions on the OHR have not been explored in the hedge ratio literature 

annals. In the current study, we extended the research that has been done recently in 

exploring hedge ratios with the use of a new method proposed by Sim and Zhou 

(2015), referred to as the QQ approach. This approach allows us to investigate in 

detail the variations of the hedge ratio in different quantiles of spot and future returns 

simultaneously.  
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Chapter 3 

DATA AND METHODOLOGY 

This section divided into two parts. First, the data that have been used in order to 

investigate the OHR in three energy market commodities will be explained. Second, 

the QQ approach will be explained in detail to make it more obvious how it enables 

us to find the OHR.  

3.1 Variables and Data 

In order to investigate the variation of OHR at different energy market states we used 

the commodity spot prices and futures prices. The pricing information was retrieved 

from Independent Statistics and Analysis U.S Energy Information Administration 

database (EIA, 2019). Then, we transform the prices into spot and futures returns, 

defined as the first order differences in log prices. Below we define each data set in 

detail. 

Crude oil: In this paper, we used the monthly prices of spot and futures contracts of 

West Texas Intermediate (WTI) crude oil. OK WTI Spot Price FOB (Dollars per 

Barrel) as a proxy for crude oil spot prices and Cushing, OK crude oil future 

contracts 1, 2, 3 and 4 (Dollars per Barrel) for futures prices have employed. Crude 

oil sample data covers the period of February 1986 to March 2019 resulting in 398 

observations (EIA, 2019). WTI crude oil prices used in this study because of the 

popularity of this commodity globally and among academicians (Chang, et al., 2010; 
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Cotter and Hanly, 2015; Wang, et al., 2015; Billio, Casarin and Osuntuyi, 2018; 

Cheng, et al., 2019). 

Natural Gas: Henry Hub Natural Gas Spot Price (Dollars per Million Btu) as a proxy 

for natural gas spot prices and Natural Gas Futures Contract 1, 2, 3 and 4 (Dollars 

per Million Btu) as a proxy for natural gas futures prices were utilized in this study. 

Natural gas data comprises monthly data covers the period of February 1997 to 

March 2019 results in 296 observations (EIA, 2019). The reason to use these proxies 

is because they have been widely used in the literature and have a high degree of 

popularity globally (Ederington and Salas, 2008; Wang, et al., 2015; Li, et al., 2019). 

Gasoline: For gasoline we used the Los Angeles Reformulated RBOB Regular 

Gasoline Spot Price (Dollars per Gallon) for spot prices and New York Harbor 

Reformulated RBOB Gasoline Future Contract 1, 2, 3 and 4 (Dollars per Gallon) as a 

proxy for Gasoline futures prices. The sample for gasoline covers the period of 

January 2006 to March 2019 with 159 observations (EIA, 2019). There is no denying 

that in the literature most of the academicians used these proxies for gasoline (Wang, 

et al., 2015; Wang and Wang, 2019). In addition, availability of the data was another 

reason for us to come up with these proxies. 

3.2 Methodology 

In this section, we explain the main characteristics of the QQ approach (Sim and 

Zhou, 2015). QQ approach has become popular among researchers as it enables one 

to investigate the effect of quantiles of the explanatory variable on the quantiles of 

the dependent variable, thus provides more comprehensive information compared to 

conventional models.  
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We can discern the QQ approach as a generalization of the standard quantile 

regression method. More specifically, the QQ approach is a combination of quantile 

regression and nonparametric estimations. First, the quantile regression is used to 

find the effects of the independent variable on the quantiles of the dependent 

variable. The quantile regression model, proposed by Koenker and Basset (1978), is 

an extended version of the classical linear regression model. OLS estimation only 

focuses on the effects of one variable on the other variable by average; however, 

quantile regression enables us to explore the effect of an independent variable not 

only at the center but at the entire distribution of the dependent variable. Second, 

local linear regression is utilized to find the local effect of certain quantiles of the 

independent variable on the regressand. Local linear regression, developed by Stone 

(1977) and Cleveland (1979), avoids the problem “curse of dimensionality,” which is 

related to nonparametric models. Additionally, the key feature of the local linear 

regression model is to find a linear regression locally around the neighborhood of 

each data point in the sample by giving more weights to closer neighbors. Hence, by 

combining these two approaches one can enable to regress the quantiles of one 

variable on the quantiles of another variable. 

In this paper, the QQ approach is utilized to find the possible variation of the OHR in 

three energy market commodities. We start with the following nonparametric 

quantile regression equation: 

Spott = βθ(Futurest) + 𝑈𝑡
𝜃         (1) 

Where Spott denotes the spot market returns of a given commodity in period t, 

Futurest represents the futures market returns for that commodity in period t, θ is the 

θth quantile of the conditional distribution of the spot returns and 𝑈𝑡
𝜃 is a quantile 
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error term whose conditional θth quantile is equal to zero. βθ(.) is an unknown 

function because we have no prior information about the nexus between spot and 

futures returns. 

Although quantile regression has some interesting features, such as enabling us to 

explore the varying effects of futures market returns on conditional quantiles of spot 

market returns, it doesn’t take into account the effects of quantiles of futures returns 

on the spot returns. Hence, it doesn’t provide the information about the relationship 

between spot and futures returns when there are large positive or negative shocks in 

the futures market that may also affect the OHR in crude oil, natural gas, and 

gasoline hedging strategy. Hence, to capture the relationship between the θth quantile 

of spot returns and τth quantile of the futures returns represented by Futuresτ, 

equation (1) is examined in the neighborhood of the Futuresτ by utilizing the local 

linear regression. Recall that the βθ(.) is an unknown function, we can expand it with 

the first-order Taylor expansion around a quantile of Futuresτ by the help of the 

following equation: 

βθ(Futurest) ≈ βθ(Futuresτ) + βθ΄(Futuresτ) (Futurest - Futuresτ)   (2) 

Where βθ΄ is the partial derivative of βθ(Futurest) with respect to Futures, which is the 

marginal response. This coefficient has a similar interpretation as the slope 

coefficient in a linear regression framework. The main feature of equation (2) is that 

it considers both θ and τ as doubled indexed parameters that are illustrated as β-

θ(Futuresτ) and βθ΄(Futuresτ). Moreover, βθ(Futuresτ) and βθ΄(Futuresτ) are both 

functions of θ and Futuresτ, and Futuresτ is a function of τ. Thus βθ(Futuresτ) and β-

θ΄(Futuresτ) are both functions of θ and τ. It is also possible to rename βθ(Futuresτ) 

and βθ΄(Futuresτ) as β0(θ,τ) and β1(θ,τ) respectively. Based on that, the modified 

version of equation (2) can be rewritten as: 
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βθ(Futurest) ≈ β0(θ,τ)  + β1(θ,τ)(Futurest - Futuresτ)     (3) 

We derive the equation (4) by substituting equation (3) in equation (1): 

Spott = β0(θ, τ)   +  β1(θ, τ)(Futurest  −  Futuresτ) ⏟                            
(∗)

+ 𝑈𝑡
𝜃    (4) 

The part (*) in equation (4) represents the θth conditional quantile of the spot returns. 

However, since β0  and β1 are dual indexed in θ and τ, (*) shows the relationship 

between the θ quantile of spot returns and τ quantile of futures returns, dissimilar to 

the standard quantile regression model. Next, Futurest and Futuresτ need to be 

replaced by their estimated counterparts Futurest̂  and Futuresτ̂  in equation (4) so 

that the local linear regression estimation of the parameters β0 and β1, which are b0 

and b1 can be obtained through minimizing the following equation:  

𝑚𝑖𝑛𝑏0,𝑏1∑ 𝜌𝜃
𝑛
𝑖=1  [Spott - b0 - b1 (Futurest̂  - Futuresτ̂ )] × K(

𝐹𝑛(Futurest)− 𝜏̂

ℎ
)  (5) 

Where ρθ is the quantile loss function, interpreted as 𝜌𝜃(𝑢) = 𝑢(𝜃 − 𝐼(𝑢 < 1)); I is 

the usual indicator function; K(.) represents the Kernel function, and the parameter h 

in the denominator is the bandwidth of the Kernel. 

To weight the observations in the neighborhood of Futuresτ, we used one of the 

simplest and efficient Kernel functions, named Gaussian Kernel function. Given that 

Gaussian Kernel is symmetric around zero, therefore assigning least weights to 

observations farther away. Moreover, there is an inverse relationship between these 

weights and the distance of the observations among the distribution function of  

Futurest̂  defined by: 

𝐹𝑛(Futurest̂ ) = 
1

𝑛
 ∑ 𝐼𝑛

𝑘=1 (Futures𝑘̂ < Futurest̂ ) and eventually generates the value 

from the distribution function corresponds to the Futuresτ, representing as τ. 
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Bandwidth parameter in Kernel function is one of the most important factors as it 

represents the size of the neighborhood around the target point in which choosing a 

large number for h can lead to estimation bias, and a small number can generate a 

greater variance in our estimation. In this study, we set the bandwidth parameter as h 

= 0.09.  
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Chapter 4 

EMPIRICAL FINDINGS 

In this section, the OHR between spot and futures prices in the crude oil, natural gas 

and gasoline markets are investigated by using the QQ approach. We used futures 

contracts with four different times to maturity: one, two, three and four months. In 

appendix A, Figure 1 (a-l) illustrates the QQ relationship and estimates the slope 

coefficient β1(θ, τ), which captures the effect of futures τth quantile return on the θth 

quantile return of spots at different values of τ and θ for the three energy market 

commodities under investigation.  

Four interesting results emerged from the figures. First, all of the figures show a 

positive relationship for the entire quantiles of spot and futures returns for all three 

commodities. This result is consistent with the positive nexus between the spot and 

futures markets documented in the prior literature, and it sheds light on the fact that 

the futures market plays a vital role in price discovery (Shrestha, 2014; Chang and 

Lee, 2015; Shrestha et al., 2018). Second, we observed heterogeneity across crude 

oil, gasoline and natural gas regarding the association between spot and futures 

returns. Third, there are considerable variations in the OHR across the distributions 

of spot and futures returns for all three commodities. This result suggests that across 

quantiles, the relationship between spot and futures returns is not uniform; rather, 

this relationship depends on the size and sign of futures market shocks and, at the 

same time, the particular state of the spot market. Additionally, we found the most 
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variations of the OHR for the three commodities at the highest and the lowest 

quantiles of the spot and futures returns distributions, that is, when there are extreme 

events in the spot and futures markets. Finally, as the time to maturity in the futures 

contracts increased, fluctuations in the OHR decreased considerably. This result 

indicates that a three to four month timespan is enough for spot prices to converge to 

future prices, and for the new information to be reflected in the crude oil, natural gas 

and gasoline markets.  

Among the three commodities investigated, we observed the lowest variation in the 

OHR for the natural gas market. Figure1(a-d) show the results generated from the 

QQ approach for natural gas spot returns and one-, two-, three-, and four-month 

futures returns, respectively. We found positive and close-to-one OHR for medium 

quantiles (the central points of the distributions) for both variable distributions for all 

maturities of futures contracts; this corresponds to cases when the spot market is 

under normal conditions and the futures market is experiencing a peaceful phase. 

However, the OHR tends to strengthen or weaken at the highest or lowest quantiles 

of the spot and futures returns. For instance, the OHR is significantly lower than one 

at the highest quantiles of the spot market (0.7–0.9) and the lowest quantiles of the 

futures market (0.1–0.2). This can be explained by cases in which natural gas is on 

high demand relative to its supply in the spot market, while the expectation for the 

one-to-four-month period is that prices will decline.  

As we move from low quantiles of futures to higher quantiles of futures returns, 

while the spot market is still on high quantiles, the OHR fluctuates such that in the 

medium quantiles of futures returns the OHR approaches the one-to-one naïve hedge 

ratio, and then even goes above one at 0.7 and 0.8 quantile of futures returns, then 
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starts to decrease ending up with almost one at 0.9 quantile. This is the case when the 

spot market is performing well and there are large positive shocks in the futures 

market. While the futures market is in high quantiles, if we move from high quantiles 

of spot returns to the lowest quantiles again, we observe significant fluctuations in 

the OHR, such that the OHR starts to sharply increase in 0.8 and 0.7 quantiles of spot 

returns and then starts to decrease as we approach medium quantiles until it reaches 

one, and then again increases to more than one at the lowest quantiles of spot, while 

the futures returns are still at high quantiles (0.7–0.9). This scenario is representative 

of situations in which there is a surplus of natural gas in the spot market, and the 

futures price is expected to increase due to projected high demand for natural gas in 

the future. Our results show that the OHR is below the naïve hedge ratio at lower 

quantiles of both spot and futures returns (0.1–0.3), which is the case when the spot 

market is bearish and when there is a large negative shock in the futures market. 

Finally, the natural gas graphs became smoother as we shift from a one-month 

futures time to maturity to a two-, three- and four-month time to maturity. 

In the case of crude oil, Figure1(e-h) illustrate the changes in the OHR in spot returns 

distributions and one-, two-, three- and four-month futures returns, respectively. The 

OHR is positive and close to one for the combination of the medium quantiles (0.4–

0.6) of both variables. Nevertheless, we observed a significant variation in the OHR 

at the extreme quantiles. More precisely, we found that the OHR is higher than one at 

the lowest quantiles (0.1–0.3) of both spot and futures returns, that is, when the spot 

market is bearish and when there is a large negative shock in the futures market. For 

example, such a situation arises when the crude oil spot market is on short demand 

and prices are expected to decline in the medium and long term due to consistent 

high supply compared with demand. As we move from low quantiles of spot returns 
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to high quantiles while the futures return is still in low quantiles, OHR approaches 

the naïve hedge ratio at medium quantiles of spot returns (0.5). This corresponds to 

equilibrium in supply and demand in the spot market when the futures price is still 

expected to decline.  

At high quantiles of spot returns, when we start to move from low quantiles of 

futures returns to higher quantiles, we observe a gradual increase in OHR as it 

approaches the one-to-one naïve hedge ratio at medium quantiles (0.5), then a 

dramatic increase at high quantiles of both spot and futures returns. In other words, 

in a bullish crude oil spot market which can be caused by high demand, and when 

there is large positive shock in the futures market, the OHR is significantly higher 

than one. The highest value of the OHR was found at the intermediate to high 

quantiles (0.6–0.9) of both spot and futures returns, which corresponds to the 

combination of a bullish spot market and a positive shock in the futures market. The 

OHR is higher than one at relatively low quantiles of spot returns (0.1–0.3) and high 

tails of futures returns (0.8–0.9), which can be assumed as a bearish spot market 

phase and large positive shocks in the futures market. As mentioned above, at 

medium quantiles of both spot and futures returns, the OHR is close to the naïve 

hedge ratio, but—more interestingly—even if one of the markets is at medium 

quantiles despite the other market being in high or low quantiles, the OHR is again 

almost close to one in most cases. As we move from one-month to maturity futures 

contracts to longer maturities, we observe smoother changes and a lower variation in 

the OHR for crude oil. 

For gasoline, our empirical findings from Figure1 (i-l) show that high variation in the 

OHR mostly occurs at the highest and lowest quantiles of spot and futures returns. 
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Similar to the natural gas and crude oil graphs, the OHR for the gasoline market is 

close to one when the spot and futures market condition is normal; that is, at medium 

quantiles of spot and futures returns (0.4–0.6). The changes in the OHR are bigger at 

higher quantiles. We observed that the OHR is significantly higher than one at the 

intermediate to upper quantiles of both variables (0.7–0.9). One interesting result, 

especially in the gasoline market, is that OHR still remains above the naïve hedge 

ratio as we move from high quantiles of futures returns to low quantiles (0.9–0.1) 

when the spot market is still at high quantiles in one- and two-month time to 

maturities while in the case of three- and four-month time to maturities OHR 

decreases in lower quantiles of futures returns. Accordingly, a high OHR was 

observed at the high tails of spot (0.7–0.9) which might be due to a short supply 

compared to demand because of war in the Middle East, or new regulations in the 

energy market and low tails of futures returns (0.1–0.3). However, this effect flattens 

out as the time to maturity of the futures contract lengthens. 

In the case of a bearish spot market (0.1–0.3) and large negative shocks in the futures 

market (0.1–0.3), the OHR is higher than one but not as strong as the highest 

quantiles of both variables. Also, at the medium quantiles of spot returns, which 

correspond to the normal phases in the gasoline spot market, when we move from 

lower quantiles of futures returns to higher quantiles there is not much change in the 

OHR and it is almost close to the naïve hedge ratio. In other words, when there is 

equilibrium in the spot market, regardless of whether there is a large or small positive 

or negative shock in the futures market, the OHR is close to one. These results 

indicate that the hedging strategy should be adjusted according to changes in the state 

of the spot market, and whether there are positive or negative shocks in the futures 

market. 
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The QQ approach decomposes the findings of the standard quantile regression; 

therefore, it can provide certain estimates for the quantiles of the independent 

variable. In this paper, we regressed the θ quantiles of the spot market returns on the 

futures market returns by using the quantile regression model. Thus, the estimates of 

the quantile regression parameters are only indexed by the θ, although, as we 

mentioned above in the methodology section, the QQ approach regresses the θth 

quantile of the spot returns on the τth quantile of the futures returns. Thus, θ and τ 

can be considered as indexes for QQ approach parameters. It is possible to recover 

the estimates of the quantile regression, which are only indexed by θ, by taking the 

average of the QQ coefficients along τ. As an example, the slope coefficient of the 

standard quantile regression method, which captures the effect of futures returns on 

the distribution of spot returns and is denoted γ1(θ) can be generated as follows: 

γ 1(θ) ≡ ͡β (θ) = 
1

𝑆
 ∑ β͡ (θ, τ)τ          (6) 

where S = 19 is the number of quantiles τ = [0.05, 0.10, …, 0.95] considered. 

One way to check the validity of the QQ approach is to compare the estimates 

obtained by taking the averages of the QQ coefficients with those of the standard 

quantile regression model. In appendix A, Figure 2 (a-l) illustrates that the averaged 

QQ estimates and the quantile regression estimates are quite identical for all three 

variables. Referring to these graphs, we can provide a simple validation for the QQ 

findings by showing that the quantile regression estimates can be recovered by taking 

the averages of the parameters estimated from the QQ approach. 

Our results are in line with Chang, et al. (2010) who found that the hedging 

performance is dependent on the upward and downward trends, thus, on market 

states and the investors should adjust their hedging position accordingly. Also, our 
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findings are in harmony with Lien, Shrestha and Wu, (2016) who demonstrated the 

contingency of hedge ratio on spot return distribution. However, they argued that the 

hedge ratio is lower at both high and low extreme quantiles which are contradictory 

to our results. This contradiction can be explained by the fact that their estimation 

was just based on the quantiles of spot returns and they neglect the effect of futures 

market shocks. Our findings are also consistent with Shrestha et al. (2018) in a way. 

They also found that hedge ratio is dependent on the market states, and four weeks 

period is long enough for spot market to reflect the new information stems from the 

futures market. We also found that the OHR varies across spot and futures market 

distribution and also in most cases the OHR at medium quantiles are very close to the 

one to one naïve hedge ratio.  
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Chapter 5 

CONCLUSION AND POLICY RECOMMENDATION 

This study empirically examined the OHR between spot and futures prices for crude 

oil, natural gas and gasoline. The main objective of this study was to emphasize the 

dynamic quality of the OHR throughout the entire distribution of spot and futures 

prices. In contrast to the majority of the previous empirical studies that explored the 

OHR only on average, we used a more inclusive measure, the QQ approach, to shed 

light on the variation of the OHR by taking into account two main concerns: 1) 

different states of the spot market, and 2) shocks of different magnitude and signs in 

the futures market. We also examined the effect of the time to maturity for the 

futures contract on the OHR. As our empirical evidence highlights, the OHR can 

significantly vary across the distribution of spot and futures prices. According to the 

results, the OHR is higher than the one-to-one naive hedge ratio at high quantiles of 

both spot and futures prices for all three commodities. At the lower tail distributions 

of spot and futures returns, the findings were the same as the high tail distribution for 

crude oil and gasoline. The obtained findings also confirmed the decrease in the 

variation of the OHR as the time to maturity in futures contracts increases from one 

month to four months. This result indicates that four months is long enough for spot 

prices to reflect the new information in the futures market. 

Accordingly, hedging strategies should be calibrated in relation to changes in spot 

market states, and when there are positive or negative shocks in the futures market. 
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Based on our findings, there is no doubt that for each energy market participant, a 

dynamic hedge ratio estimation should be taken into account according to the current 

spot market states and new information in the futures market, i.e. new shocks of large 

or small magnitude and different signs. For instance, crude oil producing companies 

need to short more futures contracts compared with their crude oil holdings in the 

case of extreme spot market conditions and when there are large positive or negative 

shocks in the futures market, except when the spot market is bullish and when there 

are large negative shocks in the futures market; in the latter case they need to short 

fewer futures contracts in comparison with their spot positions. Natural gas 

participants should short more futures contracts compared with their holdings in 

bearish market states and when there are large positive shocks in the futures market. 

However, they need to change their strategy when the market conditions are 

reversed, such as when the spot market is bullish and there are large negative shocks 

in the futures market; in this case they need to short fewer futures contracts relative 

to their natural gas holdings. Moreover, energy market participants should enter into 

the energy futures market to reduce the risk that they have been exposed to in the 

spot market. Consequently, they will face a new type of risk called basis risk. Our 

findings can help them to reduce the basis risk to a greater extent than previous 

studies with the help of a new estimation of the OHR which we call QQ-OHR, which 

is going to be a more accurate estimation of the OHR.  

The findings of this study are valuable for policymakers, portfolio managers and 

companies. These agents should know the variation of the OHR in different spot and 

futures market conditions such as bullish, bearish, contango and backwardation, and 

also across the entire market distribution for more efficient diversification and policy 

formation. The empirical results are beneficial for portfolio managers, as these 
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results provide clear and comprehensive information about the linkage between spot 

and futures prices so that managers can reduce the risk associated with the portfolio 

under management with the use of futures contracts. In particular, energy market 

companies can take advantage of our findings by better understanding the pattern of 

dynamic hedge ratio among spot and futures prices, such that during the different 

market states they can follow dynamic hedging strategies and change their positions 

accordingly. These findings can be crucial and beneficial for market companies when 

the energy market is facing crisis, or when instant unexpected changes occur in the 

market and critical decisions need to be made in order to stabilize the situation. 

When events take place and cause any sort of change in the market and its values, 

energy market companies can take action and either avoid loss or make profit out of 

those events. In the case of practitioners involved in the energy market, it is crucial to 

know how to modify their positions in the derivatives market to avoid adverse price 

movements. They should consider that for shorter times to maturity, the hedge ratio 

significantly depends on the quantiles of both spot and futures prices, although this 

dependency flattens out for longer futures contract maturities such as three and four 

months. For instance, during extreme spot market conditions and when there is a 

large positive shock in the futures market, they need to increase their short position 

in the futures market compared with their commodity holdings. Furthermore, 

policymakers can benefit from this study, as our results show the important role of 

the futures market in price discovery, although this role can vary according to 

changes in the commodity.  
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Quantile on Quantile Validation Graphs 
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Appendix B: Literature Review Table 
Authors  Time Span  Variables Methodology Main findings 

Cheng, Li, Wei & 

Fan (2019) 

January 1, 2003 

to December 31, 

2014 

 

 Brent, WTI, 

Oman, and Dubai 

oil prices 

VEC-NAR 

 

VEC-NAR model provided superior forecasting accuracy 

to traditional models such as GARCH class models, VAR, 

VEC and NAR model in multi-step ahead short-term 

forecast. 

Chincarini (2019) 

 

1994 to 2005, 

2006 to 2017 

 

 Stock return 

CRSP, treasury 

bill, WTI, spot and 

futures prices 

Static mean-

variance 

optimizations, 

dynamic 

optimizations 

It is extremely difficult to track spot oil using a 

combination of oil futures, oil stocks, and oil ETFs. 

Chun, Cho & Kim 

(2019) 

June 23, 1988 to 

June 29, 2017 

 Brent spot and 

futures prices 

SV, GARCH, 

diagonal BEKK  

 

Hedging strategies based on the SV model are able to 

outperform the GARCH and BEKK models in terms of 

variance reduction. Reducing the mean squared and mean 

absolute errors does not guarantee superior hedge 

performance. 

 

Gupta & Banerjee 

(2019) 

2003 to 2014 

 

 News sentiments, 

several US firms 

stock returns 

Fixed effect, 

random effect 

OPEC news sentiment is a key determinant of a US-listed 

energy firm's financial performance. Adverse news 

originating from OPEC affects the stock returns of the 

US-listed energy firms favorably. 

Han, Liu & Yin 

(2019) 

January, 1994 to 

June, 2017 

 AUD,  CAD,  

CHF, EUR, GBP, 

JY, USD,  BRL, 

CNY, INR, RUB,  

ZAR 

QQ  

 

When US uncertainty is at a high level, safe-haven 

currencies are favored, while the weak currencies 

depreciate. However, with a low quantile of uncertainty, 

the developed currencies remain relatively stable, while 

emerging currencies are confronted by greater 

depreciation.  

Lang & Auer 

(2019) 

NA  Crude oil Structured 

review 

 

Identified important developments and gaps in each field. 

overview of what scientists know about crude oil 

dynamics and highlights which topics areparticularly 



 

 

promising for future research 

Li, Sun, Gao & He 

(2019) 

January 7, 1997 

to November 13,  

2017 

 Natural gas and 

WTI spot prices 

Multi-scale 

analysis, 

network 

research, 

BEMD, fine-to-

coarse 

reconstruction, 

Grey correlation 

degree, GCPN 

Except the period of financial crisis, the main correlation 

patterns are ‘‘WWWWW’’ and ‘‘CCCCC’’ on short time-

scale. The main correlation pattern is ‘‘SSSSS’’ on 

medium timescale. During the period of financial crisis, 

the pattern of short time-scale is ‘‘SSSSS’’. The pattern of 

medium time-scale is ‘‘WWWWW’ 

Lin, Zhou, Liu & 

Jiang (2019) 

January 4, 1994 

to March 18, 

2016 

 Chinese stock 

market indexes, 

American stock 

markets index 

natural gas   

MS-VAR 

model, regime 

switching 

process with 

DCC-

FIAPARCH 

 

There exists granger causality from natural gas market to 

the Chinese stock markets in crisis regime. Dynamic 

correlations between these markets are vulnerable to 

extreme weather, government policies and financial crisis. 

Investors in stock markets should have more stocks than 

natural gas asset in order to reduce their portfolio risk. 

Mallick, Padhan & 

Mahalik (2019) 

 1980 to 2014 

 

 CO2 emissions 

and skewed 

pattern of income 

distribution 

QQ 

 

For India and Brazil that as income rises, although both 

lower and upper income people degrade the environmental 

quality by releasing more CO2 emissions but interestingly, 

it is the poor who intensively degrade the environmental 

quality than the rich. 

Mishra, Sharif, 

Khuntia, Meo & 

Rehman Khan 

(2019) 

January 1, 1996 

to April 13, 

2018 

 WTI, Brent spot  

prices and Dow 

Jones 

Islamic Stock 

Index 

Wavelet-based 

QQ 

 

The heterogeneity in the influence of global crude oil 

prices on Islamic Stock Index. The positive influence 

across all the quantiles, the positive influence starts 

decreasing and with the advent of stability in the time 

series of global crude oil prices, the negative effect 

becomes stronger. 

Mo, Chen, Nie & 

Jiang (2019) 

1996Q2 to 

2018Q3 

 WTI spot prices, 

GDP 

Wavelet-based 

QQ 

Heterogeneous effects exist in different countries, periods 

and quantiles. 

Qu, Wang, Zhang 

& Sun (2019) 

January 4, 2012 

to December 

 CSI 300 index, 

S&P 500 index, 

Several OLS, 

ARMA, ECM 

Dynamic hedging performance of the RMVHR-based 

models dominates that of the conventional methods in 



 

 

29, 2017 spot and futures 

prices 

and GARCH 

type models 

different market structures and in all the volatility 

regimes, including China's abnormal market fluctuations 

in 2015 and the US financial crisis in 2008. 

Wang, Geng & 

Meng (2019) 

January 3, 1986 

to April 13, 

2018 

 WTI spot and 

futures prices 

OLS, VAR, 

VEC, CCC-

GARCH, DCC-

GARCH, 

BEKK-

GARCH, 

dynamic copula 

methods. 

None of the models of interest can outperform all 

competitors in or out of sample for all futures contracts. 

More importantly, the equal-weighted combination of all 

constant and dynamic hedge ratios results in better out-of-

sample performance than the combination of either type of 

hedge ratios only.  

Wang & Wang 

(2019) 

December, 2009 

to November, 

2017 

 WTI, Brent, 

natural gas, 

gasoline, heating 

oil and Rotterdam 

coal, spot and 

futures prices 

DPFWR neural 

network 

 

The forecast performance of DPFWR can be distinguished 

from other models by its great accuracy. The MAPE 

values of GBP and SARIMA are usu- ally greater than 1, 

and the MAPE values of both LSTM and DPFWR are 

closer to 0.5 than other models. Forecasting prices of 

LSTM and DPFWR have the smaller deviation errors than 

other models.  

Billio, Casarin & 

Osuntuyi (2018) 

 

September 14, 

2001 to July 31, 

2013 

 WTI spot and 

futures prices 

Bayesian multi-

chain Markov 

switching 

GARCH model 

Different models could perform differently in various 

phases of the market. 

Gupta, Pierdzioch, 

Selmi & Wohar 

(2018) 

January, 1981 to  

April, 2017 

 RV of S&P500, 

PCI. output 

growth, inflation,  

short-term interest 

rate 

QQ 

 

PCI tends to predict reduced volatility, with the effect 

being stronger at levels of volatility that are moderately 

low (i.e., below the median, but not at its extreme) for an 

increase in the predictor, especially with moderately low 

and high initial values (i.e., when PCI is at quantiles 

around the median). 

Raza, Zaighum & 

Shah (2018) 

January 1989 to 

December 2015 

 Economic policy 

uncertainty and 

equity 

premium 

QQ  

 

Existence of a negative association between equity 

premium and EPU predominately in all G7 countries, 

especially in the extreme low and extreme high tails. 

Existence of heterogeneity across countries. 



 

 

Shrestha,  

Subramaniam, 

Peranginangin & 

Philip (2018) 

Varies 

depending on 

the variable  

 Crude oil, heating 

oil, and natural gas 

futures prices 

 

QR Quantile hedge ratios to have inverted U shape using daily 

data.. For longer hedging horizons, the quantile hedge 

ratios converges to MV hedge ratio. Hedging effectiveness 

to increase with hedging horizon. 

Khalifa, Caporin, 

& Hammoudeh 

(2017) 

September, 1990 

to June, 2015 

 

 WTI spot prices, 

Rig Counts 

QR, QQ The presence of positive lagged relationships between oil 

returns and changes in rig counts. The relationships are 

predominantly strong when the impact is from changes in 

oil prices (oil returns) to changes in rig counts. Presence 

of a non-linear link between the variables.  

Park & Shi (2017) March 1,  

1996 to March 

14, 2014 

 Copper, gold, 

silver, crude oil, 

heating oil, natural 

gas spot and 

futures prices 

Markov regime 

switching 

model, MV 

hedging strategy 

 

Metal and energy markets, particularly the copper, gold, 

crude oil and natural gas markets, are strongly subject to 

the impact of hedging and speculative pressures 

Shrestha, 

Subramaniam & 

Rassiah (2017) 

Varies 

depending on 

the variable 

 Crude oil, heating 

oil and natural gas 

futures prices 

 

 GMM 

 

Pure martingale hypothesis holds for all three 

commodities and all five horizons. expected return on 

futures contract can be ignored in determining the optimal 

hedge ratio. reject the joint normality hypothesis for all 

three commodities and five hedging horizons. hedgers 

with different utility function have different optimal hedge 

ratios. 

Lien, Shrestha & 

Wu (2016) 

Varying time 

periods for 

different 

variables 

 Several metals, 

agricultural 

commodities, 

currencies, spot 

and futures prices  

QR Quantile hedge ratio is contingent on the spot return 

distribution and is generally lower for the upper and lower 

quantiles of the spot distribution. More stable hedge ratio 

can be find by incorporating longer hedging horizon. 

 

Markopoulou, 

Skintzi & Refenes 

(2016) 

January 01, 

2009 to 

December 31, 

2012 

 S&P 500 Index, 

FTSE 100 Index, 

EUR/USD 

Exchange rate, 

GBP/USD 

exchange rate 

ARMA, 

ARFIMA, 

ARMA–

GARCH, regime 

switching, 

heterogeneous 

Realized hedge ratio forecasts dominate conventional 

methods that use daily data while the benefit is 

pronounced when economic gains are considered. The 

superior performance of RMVHR methods holds across 

different asset classes but is more conspicuous in the case 

of stock indices. 



 

 

AR model  

Reboredo & 

Ugolini (2016) 

January 7, 2000  

to December 19, 

2014 (weekly 

data) 

 Brent spot price, 

stock returns of 

several developed 

and emerging 

countries 

QR Oil and stock prices weakly co-moved in the period before 

the onset of the global financial crisis, whereas 

dependence significantly increased after the onset of the 

crisis. Furthermore, before the crisis, large upward or 

downward oil price changes had an asymmetric and 

limited impact on extreme upward or downward stock 

price changes, whereas interquantile positive or negative 

oil price movements had no impact at all. 

Zhu, Guo, You & 

Xu (2016) 

March,  1994 to 

June,  2014 

 Crude oil price 

changes and 

Chinese real 

industry stock 

market returns 

QR The reaction of market returns to crude oil is highly 

heterogeneous across conditional distribution of industry 

stock returns. Dependence is positive and exists only in 

recessions or bearish markets with low expected returns. 

The dependence at low quantiles is not limited to one 

market, but is a common feature across industries.  

Chang and Lee 

(2015) 

January 1986 to 

February 2014 

 

 WTI spot and 

futures prices 

 

Wavelet 

coherence 

analysis 

 

Long-run cointegration relationship between oil spot and 

futures prices. Short-run causality is more significant in 

shorter maturity pairs versus longer maturity pairs 

Cotter & Hanly 

(2015) 

January 1, 1990 

to September 5, 

2011 

 

 WTI spot and 

futures prices 

Uility based 

performance 

metrics, rolling 

window 

approach 

Significant differences between the minimum variance 

and utility based hedging strategies in-sample for all 

frequencies. However performance differentials between 

the different strategies are small and not economically 

significant. 

Sim & Zhou 

(2015) 

January, 1973 to 

December, 2007 

 Crude oil spot 

prices, US stock 

return 

 

QQ US stock return positively affected by large negative 

shocks in crude oil market when the US market is bullish. 

The effect of positive oil price shocks is weak.  

Turner & Lim 

(2015) 

April 15, 1994 

to February 

27, 2014 

 WTI, Brent , 

heating oil, 

gasoline, jet fuel 

OLS, ECM, 

ARCH, GARCH 

 

No model clearly and consistently generates a better hedge 

ratio than the other models. Airlines' cross hedges created 

with futures should use heating oil as the underlying 



 

 

spot and futures 

prices 

commodity.  

Wang, Wu & 

Yang (2015) 

January 3, 1994 

to December 26, 

2011 

 Several energy 

products, metals, 

agricultural 

commodities, 

currencies spot 

and futures prices 

Several OLS, 

ARMA, ECM, 

VEC and 

GARCH type 

models 

 

Naïve strategy performs as well as the other strategies.  

 

Zhang, Zhang & 

Zhang (2015) 

 

January 2, 2013 

to December 10, 

2013 

 WTI and Brent 

spot prices 

EEMD, 

LSSVM–PSO, 

GARCH 

The newly proposed hybrid method has a strong 

forecasting capability for crude oil prices, due to its 

excellent performance in adaptation to the random sample 

selection, data frequency and structural breaks in samples.  

Shrestha (2014) on 31 December 

2013 

 Crude oil, 

heating oil and 

natural gas spot 

and futures price 

GIS,  

PT/GG 

Almost all the price discovery takes place in the futures 

markets for the heating oil and natural gas. However, for 

the crude oil, the price discovery takes place both in the 

futures and spot markets. Futures markets play an 

important role in the price discovery process. 

Wu & Zhang 

(2014) 

October 2005 to 

November 2013 

 China’s crude oil 

net imports, Brent 

price changes 

Augmented 

VAR 

China’s crude oil imports do not significantly affect Brent 

price changes, no matter in the long run or short run. 

Conlon & Cotter 

(2013) 

January 1, 

1997 to 

December 31, 

2010 

 Heating oil spot 

and futures prices 

Wavelet 

multiscaling 

techniques 

 

All metrics showing increasing hedging effectiveness at 

longer horizons. Decreased hedging effectiveness is 

demonstrated for increased levels of uncertainty at higher 

confidence intervals.  

Chang, McAleer  

& Tansuchat 

(2011) 

November 4, 

1997 to  

November  4, 

2009 

 WTI and Brent 

spot and futures 

prices 

CCC, VARMA-

GARCH, 

DCC, BEKK 

and diagonal 

BEKK 

Time-varying hedge ratios, and recommend to short in 

crude oil futures with a high proportion of one dollar long 

in crude oil spot. 

Hung, Wang, 

Chang, Shih & 

Kao (2011) 

January 2, 2002 

to  December 

31,  2007 

 WTI spot and 

futures prices 

Markov regime-

switching, CC-

GARCH, TVC-

Four-regime Markov switching model outperforms the 

other models for both in- and out-of-sample hedging 

performance. four-regime model significantly outperforms 



 

 

GARCH, OLS the other models for only in-sample hedging 

Chang, Lai, & 

Chuang (2010) 

January 1, 1996 

to 

December 31, 

2005 

 WTI and gasoline, 

spot and futures  

prices 

Several OLS, 

ECM and 

GARCH type 

models 

 

Hedging effectiveness is higher in an increasing pattern 

than in a decreasing pattern. Asymmetric hedging 

performance between upward and downward price trends. 

Investors should adjust their hedging strategies 

accordingly. 

Chang, McAleer 

& Tansuchat 

(2010) 

November 4, 

1997 to  

November 4,  

2009 

 WTI and Brent 

spot and futures 

prices 

CCC, VARMA-

GARCH, 

DCC, BEKK, 

diagonal BEKK 

 

Volatility spillovers and asymmetric effects on the 

conditional variances for most pairs of series. A long 

position of one dollar in the light sweet grade category 

(WTI) should be shorted by only a few cents in the 

heavier and less sweet grade category (Dubai and Tapis). 

Chen, Lee & 

Shrestha (2008) 

Varies 

depending on 

the variable 

 25 different 

futures contracts 

GMM, extended 

GMM 

Pure martingale hypothesis holds for all commodities and 

all hedging horizons except for three stock index futures 

contracts. The joint normality hypothesis generally does 

not hold except for a few contracts and relatively long 

hedging horizons. 

Ederington & 

Salas (2008) 

April, 1994 to 

March, 2006 

 Natural gas, spot 

and futures prices 

MV 

 

When spot price is partially predictable then: 1) although 

unbiased, MV hedge ratio is inefficient 2) estimates of the 

riskiness of both hedged and unhedged positions are 

biased upward 3)estimates of the percentage risk reduction 

achievable through hedging are biased downward. 

Ripple & Moosa 

(2007) 

January 2, 1998 

to April 29, 

2005 

 WTI, spot and 

futures prices 

OLS 

 

Futures hedging is more effective when the near-month 

contract is used. Hedge ratios are lower for near-month 

hedging 

Hung, Chiu & Lee 

(2006) 

January, 1997 to 

December, 1999 

 

 S&P 500 index, 

spot and futures 

prices 

Zero-VaR, 

bivariate error 

correction, 

bivariate 

constant 

correlation 

GARCH(1,1) 

Minimum zero-VaR hedging strategy has a similar 

hedging ability with the maximum mean-variance utility 

hedging strategy. The zero-VaR hedge ratio converges to 

the standard MV hedge ratio as the risk-averse level 

approaches 100%. 



 

 

Lanza, Manera & 

McAleer (2006) 

January 3, 1985 

to January 16,  

2004 

 WTI forward and 

futures prices 

Multivariate 

conditional 

volatility models 

Dynamic conditional correlations can vary dramatically, 

being negative in four of ten cases and being close to zero 

in another five cases. Only in the case of the dynamic 

volatilities of the three-month and six-month futures 

returns is the range of variation relatively narrow. 

Manera, McAleer 

& Grasso (2006) 

June 2, 1992 

to January 16, 

2004 

 Tapis oil spot and 

one-month 

forward prices 

Several 

GARCH, 

VARMA, DCC 

type models 

The existence of interdependency over time in the 

dynamic volatilities in the Tapis oil spot and forward 

market returns. 

Meneu & Torro 

(2003) 

January 3, 

1994, to June 

29, 2001 

 Spanish  stock 

index, 

IBEX-35, spot and 

futures prices 

Multivariate 

GARCH 

 

The spot-futures variance system is more sensitive to 

negative than positive shocks, and that spot volatility 

shocks have much more impact on futures volatility than 

vice versa. Optimal hedge ratios are insensitive to the 

well-known asymmetric volatility behavior in stock 

markets. 

Chen, Lee & 

Shrestha (2001) 

April 21, 1982 

to December 27, 

1991 

 S&P 500 spot and 

futures prices 

M-GSV 

 

The joint normality and martingale hypotheses do not hold 

for the S&P 500 futures. 

Lien & Tse (2000)   Nikki Stock 

Average (NSA) 

OLS, VaR, EC 

 

It is better to use a sample with shorter intervals to have a 

more effective use of sample data if the under aggregation 

property holds. 

De.Jong, De Roon 

& Veld (1997) 

December, 1976 

to October, 1993 

 USD, GBP, DM, 

JY futures prices 

Minimum-

variance model, 

α-t model, 

Sharpe-ratio 

model 

Hedging is only effective when the MV model and the a-t 

model are used out of sample. When these two models are 

used   the naively hedged position yields a higher 

effectiveness than the model-based hedges or the hedges 

based on a constant hedge ratio. 

Shalit (1995) January 1977 to 

December 1990 

 Gold, silver, 

copper, and 

aluminum futures 

prices 

Mean-extended-

Gini, 

instrumental 

variables  

Once normality is rejected, the practitioner will benefit by 

using a MEG hedge ratio instead of a MV ratio, because 

the latter is not consistent.  



 

 

Kroner & Sultan 

(1993) 

February 8, 

1985, to 

February 23, 

1990 

 GBP, CD, DM, 

JY, SF spot and 

futures prices 

Bivariate error 

correction 

model with a 

GARCH error 

structure 

The proposed model provides greater risk reduction than 

the conventional models. Furthermore, a dynamic hedging 

strategy is proposed in which the potential risk reduction 

is more than enough to offset the transactions costs for 

most investors. 

Lien & Luo (1993) January 1, 1984 

to December 27, 

1988  

 S&P 500 weekly 

spot and futures 

prices  

MEG MEG hedge ratio is a smooth function of the underlying 

risk aversion parameter. The ratio tends to be a monotonic 

function of the parameter. 

Kolb 

& Okunev (1992) 

January 1, 1989 

to December 31, 

1989 

 Corn, gold, 

copper, DM, and 

the S&P 500 stock 

index spot and 

futures prices 

MEG For low levels of risk aversion (V = 2 to V = 5), investors 

adopt hedge ratios similar to risk-minimizing M-V hedge 

ratios. More risk-averse investors adopt hedge ratios that 

differ substantially from those M-V investors would 

select.  

Cheung, Kwan & 

Yip (1990) 

September, 1983 

to December,  

1984 

 GBP, CD, DM, 

JY, SF spot and 

options prices 

MEG 

 

Due to the crossing over of efficient frontiers at higher 

levels of returns, minimum variance portfolio can lead to 

erroneous conclusions regarding the hedging 

effectiveness. 

Chen, Sears & 

Tzang (1987) 

July 20, 1983 to 

March 31, 1986 

 Heating oil, crude 

oil and gasoline 

spot and futures 

prices 

MV, Sharp ratio 

hedging 

 

Strong correlation between futures price movements and 

spot prices in the crude oil, heating oil and leaded gasoline 

markets observed. 

 

Ederington (1979) March, 1976 to  

December, 1977 

 Wheat, corn,  spot 

and futures prices 

GNMA and t-bill 

futures prices 

Portfolio model 

of hedging 

 

Even pure risk-minimizers may wish to hedge only a 

portion of their portfolios. In most cases the estimated b 

was less than one. The GNMA futures market appears to 

be a more effective instrument for risk avoidance than the 

T-Bill market particularly for short-term (i.e., two-week) 

hedges. 

Johnson (1960) 

 

  Spot and futures 

price 

MV Several markets, both primary and futures markets, could 

be included in a multi- dimensional analysis in which the 

trader selects an optimum combination on the basis of his 



 

 

indifference map again in terms of E(R) and V(R). 

 




