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ABSTRACT 

Navier-Stokes differential equations constitute the most prominent mathematical 

model for explaining and describing the behavior of fluids. These equations found the 

basis of fluid mechanics and have countless applications in numerous fields. Besides 

their wide applications, the problem of existence and smoothness of solutions of 

Navier-Stokes equations, remains of the most challenging open problem of 

mathematics. Regarding the practical and scientific significance of these equations, 

this thesis discusses the details of derivation of Navier-Stokes equations and other 

related issues of fluid mechanics. Furthermore, some of the key mathematical 

theorems and techniques used for derivation and analysis of Navier-Stokes equations 

are explained and reviewed.  

Keywords: Navier-Stokes equations, fluid dynamics, fluid mechanics  
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ÖZ 

Navier-Stokes diferansiyel denklemleri akışkanlar mekaniği için çok önemlidir ve 

birçok farklı alanda uygulamalara sahiptir. Bu denklemler akışkanların hareketini 

açıklamaktadır. Bu tez, akışkanların temel mekaniklerini incelemekte ve Navier-

Stokes diferansiyel denklemlerini ele almaktadır.  

Anahtar Kelimeler: Navier-Stokes denklemleri, Akışkanlar dinamiği, akışkanlar 

mekaniği 
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Chapter 1 

INTRODUCTION 

Navier-Stokes equations, named after the Irish mathematician and physicist George 

Stokes and French physicist Claude-Louis Navier, are the most fundamental equations 

at the core of fluid mechanics and provide a mathematical model for describing the 

governing dynamics of fluids. These equations are of significant scientific and 

practical importance in numerous fields, including but not limited to fluid mechanics, 

mechanical engineering, geophysics, aerodynamics, astrophysics, thermal 

engineering, ocean engineering, and biology. Navier-Stokes equations are extensively 

used in weather forecasts, aircraft design, engineering of piping systems, design of 

power stations, study of blood circulation in body, and many other areas.  

Apart from their numerous practical applications, Navier-Stokes equations have also 

been amongst the major mathematical challenges of the 21th century, and have 

generated a large body of purely mathematical research. The problem of existence and 

smoothness of solution of Navier-Stokes equations for three and higher dimensions, 

remains one of the open millennial problems in mathematics.  

Given the indisputable importance of Navier-Stokes equations, the aim of the current 

thesis is to provide a review of Navier-Stokes equations in fluid mechanics and an in-

depth discussion of their derivation. The thesis is divided into seven chapters, starting 

with the introduction and moving to the second chapter, which provides a brief review 
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of key required material from vector calculus and fluid mechanics. Some important 

theorems of vector calculus including Stokes and divergence theorems together with 

some basic notions of fluid mechanics such as viscosity and pressure, are provided and 

discussed.  

The third chapter focuses in more details on the notions of pressure and pressure 

gradients and discusses of how the gradient of the pressure field relates to the force 

per unit volume produced by it. Furthermore, Pascal’s Law for isotropic fluids is 

reviewed and other properties of pressure fields are discussed. The fourth chapter 

introduces the notions of internal stresses in fluids and briefly presents the 

mathematical methods used for analyzing stresses in fluids. 

The fifth chapter deals with the kinematics of fluid flow, introducing the Lagrangian 

and Eulerian coordinates and material derivative. The chapter continues with a 

discussion about control volumes and physical interpretations of the gradient of the 

velocity field. The last section of the chapter, states and proves the Reynolds transport 

theorem for both fixed and deformable control volumes. Chapter 6 mainly focuses on 

derivation of mass and linear momentum conservation equations for both compressible 

and incompressible fluids. The chapter also provides a detailed discussion about the 

applications of Reynolds transport theorem and Cauchy stress theorem in deriving the 

conservation of linear momentum equation.  

The last chapter of the current thesis, discusses the derivation of Navier-Stokes 

equations for compressible and incompressible fluids. Decomposition of stress tensor 

into volumetric and deviatoric tensors is explained and Stokes constitutive equations 
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are employed to calculate the deviatoric tensor. Finally, Navier-Stokes equations are 

driven for both compressible and incompressible flows and the details are discussed. 
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Chapter 2 

PRELIMINARIES 

The first section of this chapter reviews some of the key notions and theorems of vector 

calculus that are required for later chapters. It starts with an introduction to vector and 

scalar fields, and continues with explaining the gradient, divergence, and curl operators 

and their properties. Subsequently, the section reviews the details of line, surface, and 

volume integration in vector spaces and explains the Gauss, divergence and Stokes 

theorems. The second section of the chapter provides an introduction to the basics of 

fluid mechanics and some of the essential thermodynamic notions, such as density and 

pressure, that are used in the formulation of Navier-Stokes equations, are briefly 

explained. This chapter is written based on the textbooks of Rutherford [1989] and Fay 

[1998]. 

2.1 Vector Calculus Review 

A scalar field on 
3
 could be defined as a function 3:g   and a vector field on 

3
  could be defined as a function 3 3:f   that has the following general form:  

1 2 3( , , ) ( , , ) ( , , ) ( , , )f x y z f x y z i f x y z j f x y z k    

where 
1f  ,

2f , and 
3f  are scalar fields on 

3
. Examples of scalar and vector fields 

include;  
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2 2

2 2

2 2

2 2 2
2

2 2 2

( , , )

( , , ) sin ( ) cos ( )

( , , )

( , , ) sinh( )

z x

x y z x z

V x y z x y i y x j zk

x y z e xe

T x y z i x j y z k
x y z





 

 

  

  

     
   
  

  

2.1.1 Gradient, Divergence, and Curl Operators 

The gradient of a scalar field, S , is defined as: 

S S S
Grad S i j k

x y z

  
  
  

   

The gradient of a scalar field, is a vector field such that for every point, the gradient of 

the scalar field at that point, heads to the direction with the maximum rate of increase 

in the field. By using the  differential operator, defined as:  

i j k
x y z

  
   

  
  

The gradient of S  can be written as:  

S
S S S

i j k
x y z

  
   

  
   

The divergence of a vector field V is a scalar field that is defined as:  

31 2
VV V

div V
x y z

 
  
  

 

The divergence of a vector field can be written as its inner product with the  operator; 

 31 2
1 2 3. V ( ) . ( )

VV V
i j k V i V j V k

x y z x y z

   
        

     
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The Curl of a vector field is another vector field that is defined as: 

3 32 1 2 1( ) ( ) ( )
V VV V V V

Curl V i j k
y z z x x y

    
     

     
  

The curl of a vector field can be written as its cross product with the  operator;  

1 2 3 1 2 3

3 32 1 2 1

( ) (V V V ) V V V

( ) ( ) ( )

x y z

V i j k i j k
x y z

i j k

V VV V V V
i j k

y z z x x y

  

  
  

        
  

    
    

     
  

Another important differential operator that is commonly used in vector calculus is the 

Laplacian operator that is defined as the inner product of the del operator with itself; 

2 2 2

2 2 2
. ( ) . ( )i j k i j k

x y z x y z x y z

        
          

        
  

In this regard, the Laplacian of a scalar field is a scalar field, and the Laplacian of a 

vector field is a vector field. 

Some of the important relations among the gradient, divergence and curl operators are 

summarized in the next theorem. 

Theorem 2.1 

For any scalar fields S and S  , and vector fields V and V  , the following equations 

hold: 
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2.1.1) ( ) 0

2.1.2) ( ) 0

2.1.3) ( )

2.1.4) . ( ) . .

2.1.5) ( )

2.1.6) . ( ) . .

curl grad S

div curl V

SS S S S S

SV S V S V

SV S V S V

V V V V V V





      

   

     

       

  

2.1.2 Line, Surface, and Volume integrals 

Let 1 2 3( ) ( ) ( ) ( )u r u r i u r j u r k   , be a piecewise smooth curve restricted to a r b 

, and let 3 3:f   be an arbitrary Riemann integrable function. Then the line 

integral of f along u  is defined as: 

2 2 231 2
1 2 3 1 2 3( , , ) ( ( ), ( ), ( )) ( ) ( ) ( )

b

a
u

dudu du
f u u u ds f u r u r u r dr

dr dr dr
       

Line integration can also be defined for vector fields in the following way. Let 

1 1 2 3 2 1 2 3 3 1 2 3( , , ) ( , , ) ( , , )F F u u u i F u u u j F u u u k    be a real vector field on 3  , and let 

1 2, ,F F and 
3F  be Riemann integrable functions. Furthermore, let ( )C r  be a piecewise 

smooth curve in 
3
, restricted to .a r b   Then the line integral of F along C , is 

defined as: 

1 2 3.
C C C C

F dS F dx F dy F dz       

Note that here d S  is the vector curve element, and is defined as d S n ds , where n  

is normal unit vector of the curve.  Let 1 2 3( , ) ( , ) ( , ) ( , )u r s u r s i u r s j u r s k    be a 

smooth surface in 
3
, restricted to a r b   and c s d  , and let 3 3:f   be an 
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arbitrary Riemann integrable function. Then the surface integral of f over u , is 

defined as: 

1 2 3 1 2 3( , , ) ( ( , ), ( , ), ( , )) || ||
b d

a c
u

u u
f u u u dA f u r s u r s u r s dsdr

r s

 
 

     

Surface integration for vector fields can be defined in a similar way. Let ( , )u r s  be a 

2-parameter oriented smooth surface over the region a r b   and c s d  , and let 

1 1 2 3 2 1 2 3 3 1 2 3( , , ) ( , , ) ( , , )F F u u u i F u u u j F u u u k    be a vector field on 3  , where 

1 2, ,F F and 
3F  are Riemann integrable functions. Then the surface integral of F  over 

u  is defined as: 

1 2 3.
u u u u

F d A FdA F dA F dA       

Note that here d A  is the vector surface element, and is defined as d A ndA , where 

n  is the outward normal unit vector of the surface.  

2.1.4 Divergence and Stokes Theorems 

Divergence theorem is one of the fundamental theorems in vector calculus that relates 

the surface integral of a vector field to the volume integral of its divergence. 

Theorem 2.3 (Divergence Theorem) 

Let F  be a vector field on 
3
, let V  be a smooth completely closed surface in 

3
, 

and let V be the volume enclosed by V . Then the following integral equation holds: 

. .

VV

FdV F d S



                              (2.1) 
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Stokes theorem relates the surface integral of the curl of a vector field on a closed 

smooth surface to its line integral on the boundary of that surface.  

Theorem 2.4 (Stokes Theorem) 

Let 3 3: ( )F V  be a vector field and let S  be a closed smooth 1-parameter curve 

in 3  let S  be the surface enclosed by S . Then 

( ) . d .
S S

F A F dS


                              (2.2) 

2.2 Basic Notions of Fluid Mechanics 

2.2.1 Density 

Density of a fluid, generally denoted by  , is defined as the mass contained in its unit 

volume, and is one of the fundamental physical properties of fluids. The density of a 

fluid determines its mass per unit volume and hence determines how the fluid reacts 

to the forces acting upon it. Fluids with lower density accelerate more rapidly in 

presence of a force and have generally weaker viscous stresses, however fluids with 

higher density are harder to accelerate and usually have stronger viscous stresses.  

As such, low density fluids are in general more turbulent than high density fluids. 

Moreover, density is more likely to change with the thermodynamic conditions of the 

fluid such as its temperature or pressure, when its level is low. Theoretically, density 

is assumed to be the mass per unit volume contained in a fluid element and hence can 

be treated as a continuous scalar field.     

2.2.2 Pressure 

The pressure on an element of a hydrostatic fluid is the compressive force that acts on 

the boundary of the fluid element, pressing it inwards in all directions. The 
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compressive pressure force is in fact produced through the molecular interactions on 

the boundary of the fluid element. The pressure on a fluid element can significantly 

change, relative to the behavior of the velocity field, external forces and 

thermodynamic properties of the fluid, such as its temperature and density. In fact, 

pressure and velocity fields are coupled in all fluids and any change in one could 

produce a change in the other. By and large, pressure gradients produce motion in 

fluids, with the flow heading from high pressure regions to low pressure ones.     

2.2.3 Viscosity 

Viscosity of a fluid is a measure of how the fluid resists shear deformations caused by 

its internal stresses. In fact, viscous fluids are more likely to resist the flow and 

preserve their shape against the shear forces acting upon them, compared to fluids with 

low viscosity, that are more susceptible to strain. The above definition illustrates the 

notion of viscosity in a plain manner, but does not provide a quantitative method for 

measuring viscosity. So as to find such a quantitative definition, a simple experimental 

setting can be assumed, where a layer of fluid is placed between two parallel plates.  

Now assume that the lower plate is fixed and the upper plates moves at a constant 

velocity. Then a reasonable measure of fluid’s resistance to flow could be the amount 

of force per unit area, required for moving the upper plate. Evidently, the required 

force per unit area would to be higher for fluids with higher viscosity that are more 

resistant to strain, and lower for fluids with lower viscosity. In practice, experimental 

data has indicated that the required force is proportional to the velocity with which the 

plate is moving, and inversely proportional to the distance between the plates.  
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If we let F  denote the force per unit area required for moving the plate with the 

constant velocity u , and let y  denote the distance between the two plates. Then 

based on numerous experimental observations in many known fluids, the following 

equations holds:  

u
F

y






                                   (2.3) 

where   is the constant of proportionality. Note that this observation was first made 

by Sir Isaac Newton, and fluids for which the equation (2.3) holds, are called 

Newtonian Fluids. As it could be seen in Figure 2.1,   indicates the angular 

deformation of the fluid due to the shear stress, in the time interval t , and therefore, 

t




 is the average time-rate of shear deformation in the fluid. Evidently,  

tan( )
tan( )

u t u

y t y




   
   

  
  

Figure 2.1:  A layer of viscous fluid is placed 

between two plates. The upper plate is moving 

with a constant velocity, while the other plate is 

fixed. 
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Taking the limit of both sides as the time interval approaches zero yields; 

0

0

tan( )
lim

lim

t

y

d

d dut dt

u du dt dy

y dy

 

 

 

 
  

 



 

                         (2.4) 

The equation (2.5) relates the rate of deformation in the fluid with the rate of change 

in its velocity with respect to y . Then putting equations (2.3) and (2.4) together we 

obtain: 

du d
F

dy dt


    

Note that the constant of proportionality in this equation, does in fact provide a 

measure of fluid’s resistance to shear strain, which was the intuitive definition of 

viscosity. Hence,   can be reasonably used as a quantitative measure of viscosity for 

Newtonian fluids, and is called the viscosity constant. Furthermore, experimental data 

have revealed that in most known Newtonian fluids, thermodynamic conditions do not 

significantly change the viscosity of the fluid, and therefor it can be assumed constant. 
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Chapter 3 

PRESSURE FIELDS 

The first section of the following chapter introduces the notion of pressure gradient 

and provides a thorough investigation of how the gradient of the pressure field relates 

to the force per unit volume produced by it. Pascal’s Law for isotropic fluids is stated 

and proved, and further properties of pressure fields are explored. The second section 

of the chapter generalizes the findings to an arbitrary fixed control volume, and shows 

how the total pressure force acting on the surface of the control volume can be obtained 

by integrating the gradient of the pressure field. This chapter is organized and written 

based on the books of Fay [1998] and White [2011] on fluid mechanics.  

3.1 Pressure Gradient 

It is known that shear stresses are zero in hydrostatic fluids, and therefore stress 

analysis at any point of the fluid would be restricted to that point. That is to say, the 

Mohr circle for any fluid element becomes a point, and the only force to consider 

would be the pressure. This evidently implies that pressure in a hydrostatic fluid is a 

point property that can be fully described by a scalar field. This scalar field associates 

with each point in the fluid, the magnitude of the force, compressing the fluid element 

at that point, equally in all directions.  

For a more in-depth investigation of how the pressure field acts in a fluid, assume an 

infinitesimally small right triangular prism, where x  and z  are the perpendicular 
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legs of the lower base, s  is the hypotenuse, and y  is the distance between the bases. 

Moreover, let x   and z  denote the pressure forces acting on the volume, 

respectively in x  and z  directions, and let   denote the pressure force in the direction 

of the normal unit vector of the hypotenuse. Then since the fluid is hydrostatic, all 

fluid elements in the volume have zero acceleration, and hence the sum of forces acting 

on the volume must be zero. 

0 sin

0 cos
2

x x

z z

F y z s y

g x y z
F y x s y

  


  

      

   

      





                                                                 (3.1) 

where   denotes the angle facing z , g  is the standard gravity constant, and the 

gravity force is assumed to be acting in the z  direction, pressing the fluid downwards. 

 

Considering Figure 3.1, evidently sinz s      and cosx s    . Substituting these 

into equation (3.1), yields: 
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2

x

z

g z

 


 



 

 


                                                                                                                                (3.2) 

These equations indicate that the pressure field is constant in x  and y  directions, and 

changes in the z  direction, proportional to z . This property is in fact shared by all 

hydrostatic fluids, and is of critical importance in hydrostatics. Using equations (3.1) 

and taking their limit as z  approaches to zero, yields: 

x z                                                                                                                                          (3.4) 

Note that when 0z  , the triangular prism shrinks into a point, and since the angle 

  can be chosen arbitrarily, equation (3.4) proves that at any point of a hydrostatic 

fluid, the pressure force acts equally in all directions. This result is known as the 

Pascal’s Law and is one of the fundamental properties of isotropic hydrostatic fluids.  

Now, let P  denote the pressure field in an isotropic fluid, and consider the fluid 

element illustrated in Figure 3.2. Knowing that pressure is the compressive force per 

unit area that is normal to the surface of the fluid element, the force pressing the left 

dydz  side of the fluid element in the x  direction, would be 
0 0 0( , , )P x y z dydz , where 

0 0 0( , , )x y z  is the mid-point of the left dydz  face.  Likewise, the pressure force acting 

on the right dydz  face of the fluid element in the x -direction is: 

0 0 0 0 0 0( ( , , ) ( , , ) )P x y z P x y z dx dydz
x


 


  



16 

 

Therefore the net force produced by the pressure field, acting on the fluid element in 

the x -direction is: 

( )xdF Pdydz P Pdx dydz Pdxdydz
x x

 
    

 
  

In a similar manner, it can be shown that the net forces produced by pressure field in 

the y  and z -directions, are respectively: 

( )

( )

y

z

dF Pdxdz P Pdy dxdz Pdxdydz
y y

dF Pdxdy P Pdz dxdy Pdxdydz
z z

 
    

 

 
    

 

 

Hence, the net force acting on the surface of the element fluid can be written as: 

( )

( )

x y zdF dF i dF j dF k Pi P j Pk d
x y z

i j k Pd Pd
x y z



 

  
      

  

  
     

  
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Therefore 

(   )total
total

per unite volume

dF
dF Pd P dF

d



                                       (3.5) 

Equation (3.5) clearly shows that the net force per unit area is in fact produced by the 

gradient of the pressure field, and not the pressure field itself. 

3.2 Pressure force on an Arbitrary Volume 

Evidently, to obtain the pressure forces acting upon the boundary of an arbitrary 

control volume V  the pressure field must be integrated over V . It is trivial that at 

any point on the boundary of V , the pressure force acts in the direction of the inward 

normal unit vector at that point. Hence, at each point ( , , )x y z  on V , the pressure 

force can be written as ( , , )P x y z n , and the total pressure force acting on V can be 

obtained by integrating P n  over V . 

total

V V

F PndS PdS
 

                                                                                                           (3.6) 

Applying the Gauss theorem, to equation (3.6) yields: 

total

V V

F Pd S Pd


      

Moreover, note that: 

(   )

(   )

(   )

          ( ) 0

          

total per unite volume

per unite volume

per unite volume

V V

V

F F dV PdV

F P d

F P



 

   

  



 

  
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Chapter 4 

STRESS ANALYSIS 

This chapter explains internal stresses in fluids and provides the required mathematical 

background for describing and analyzing such stresses. The stress tensor and its 

derivation are briefly explained and reviewed. The last section of this chapter provides 

a detailed explanation and the proof of the Cauchy’s stress theorem, that is one of the 

fundamental and theoretical basis of stress analysis in fluid mechanics and plays a key 

role in derivation of Navier-Stokes differential equations. The current chapter is 

prepared and written based on the books of Rutherford [1989], White [2011], and Fay 

[1998]. 

4.1 Stress in Fluids 

The action of a surface force on the boundary of a control volume in a fluid, condenses 

the layer of fluid molecules at the boundary and reduces the distance of the boundary 

and the adjacent molecules inside the volume. Consequently, the molecules inside the 

contracted layer repel each other and impose a compressing force on the next adjacent 

layer, and as a result of these molecular interactions, the force is conveyed through the 

fluid. Such internal forces, that are produced and transmitted through the molecular 

interactions within the fluid, are called stresses.  

To obtain a quantitative definition of internal stress, assume a control volume, V , that 

is contained in a fluid. The molecules situated right outside the control volume surface, 
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exert a force per unit area on the fluid elements on the boundary. This force per unit 

area is called the stress acting on the surface of control volume, and is denoted by  .  

 

More precisely, let S  denote the surface element of the control volume at point A , 

and let F be the net surface force acting upon S . Then the stress vector at point A  

can be defined as: 

0
lim
S

F

S


 





  

In general, surface forces can be categorized as shear and normal stresses. The shear 

component at any point is tangent to the surface at that point, and the normal stress is 

perpendicular to the surface. That is to say, the normal stress is always parallel to the 

normal unit vector of the surface and the shear stress is always perpendicular to it.  

 

 

4.2 Stress Tensor 

As will be shown in the next section, in order to determine normal and shear stresses 

on any surface element with arbitrary orientation, its sufficient to have the stresses on 
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the three standard surface elements, dxdy , dxdz , and dydz . The stress force acting on 

dxdz  composes of one normal and two shear stress vectors, denoted by yy  , yx  , and 

yz  respectively. The normal stress vector, yy  , is perpendicular to the dxdz  surface 

in the y  direction. The shear stresses yx  is tangent to dxdz  in the x  direction, and 

yz  is tangent to dxdz  in the z  direction. 

Hence, using the vector notation, the stress force acting on dxdz  surface element, can 

be written as: 

( , , )xz yx yy yzT      

Similarly, stress forces acting on the dxdy  and dydz , can be written as: 

( , , )

( , , )

yz xx xy xz

xy zx zy zz

T

T

  

  




 

These three stress vectors can be summarized in a second-rank tensor, called the stress 

tensor, that is defined as: 

xx xy xz

yx yy yz

zx zy zz

T

  

  

  

 
 

  
  
 

                                                                                                                   (4.1) 

4.3 Cauchy Stress Theorem 

This section deals with the Cauchy’s stress theorem, that states the stress vectors on a 

surface element with arbitrary orientation can be written as a linear combination of the 

stress vectors on dxdy , dydz , and dxdz  surface elements.  
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More precisely, if T  is the stress tensor at a given point, and n  is the normal unit 

vector of an arbitrary surface at that point, then  

( ) .nT n T    

where ( )nT  is the stress vector for the given surface at the given point. To prove 

Cauchy’s theorem, let D  be an imaginary tetrahedron volume in a fluid. As is shown 

in Figure 4.2, faces 
1S , 

2S , and 
3S  are parallel to the xy , xz , and yz  planes 

respectively, and the oblique surface, S  , has an arbitrary orientation.  

 

Regarding the fact that the mass of the volume D , can be written as 
3

h g
S


 , The 

Newton’s second law of motion states that: 

3

h g
F S A


                                                                                                                                     (4.2) 
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where A  denotes the acceleration of D  . Note that the sum of forces acting on the 

volume D can be written as: 

( ) (1) 1 (2) 2 (3) 3nF T S T S T S T S                                                                                            (4.3) 

Putting equations (4.2) and (4.3) together, we obtain: 

( ) (1) 1 (2) 2 (3) 3
3

n

h g
S A T S T S T S T S


                                                                                  (4.4) 

Now assuming that, 1 2 3n a i a j a k   , the areas of the three perpendicular faces of 

the tetrahedron, can be written as the projections of the oblique surface on xy  , xz  , 

and yz  planes, in the following manner: 

1 1

2 2

3 3

( . )

( . )

( . )

S i n S a S

S j n S a S

S k n S a S

    

    

    

  

Substituting these equalities into equation (4.4), yields: 

( ) (1) 1 (2) 2 (3) 3

( ) 1 (1) 2 (2) 3 (3)

3

3

n

n

h g
S A T S T a S T a S T a S

h g
T a T a T a T A





        

    

           

Taking the limit of both sides, as the height of tetrahedron goes to zero, will make the 

right-hand side of the equation zero, and we obtain:  

( ) 1 (1) 2 (2) 3 (3)nT a T a T a T       
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This clearly proves that the stress vector for an arbitrary surface element, can be written 

as a linear combination of the stress vectors of dxdy , dxdz , and dydz .  

By expanding the stress vectors of dxdy , dxdz , and dydz , we obtain: 

1 2 3

(1) 1 1 1

1 2 3

(2) 2 2 2

1 2 3

(3) 3 3 3

T T i T j T k

T T i T j T k

T T i T j T k

  

  

  

                                                                                                                       (4.5) 

Note that, j
iT ’s in equations (4.5), are in fact the elements of the stress tensor, such 

that 
j

i ijT  , and hence we can write: 

(1)

(2)

(3)

xx xy xz

yx yy yz

zx zy zz

T i j k

T i j k

T i j k

  

  

  

  

  

  

 

Summarizing these equations in the matrix form, yields the Cauchy stress theorem: 

1 2 3

( ) ( ) ( ) 1 2 3( , , ) ( , , )n n n

xx xy xz

yx yy yz

zx zy zz

T T T n n n

  

  

  

 
 

  
  
 

 

( ) .nT n T                                                                                                                                         (4.6) 

In the next chapter, it will be shown that the stress tensor is in fact symmetric and can 

be represented with 6 variables at each point. 
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Chapter 5 

KINEMATICS OF FLUID FLOW 

The first section of this chapter introduces the concept of Eulerian and Lagrangian 

coordinate systems. The two reference system are explained and contrasted in details, 

so as to provide a firm theoretical ground for the subsequent material that are based on 

these coordinates. The second section of the chapter, explains the material derivative 

of a field and its physical interpretation. Furthermore, local and convective derivatives 

are described and their relation with material derivative is explained. In the third 

section of the chapter, the gradient of the velocity field is explained in more details 

and a thorough review of both its physical and mathematical interpretations is 

provided. The last section, deals with the Reynolds transport theorem and explains 

how conservation laws can be formulated for control volumes. Reynolds transport 

theorem is stated and proved for both fixed and deformable control volumes. This 

chapter is based on the textbooks of Batchelor [1998], Fay [1998], and White [2011]. 

5.1 Lagrangian versus Eulerian Coordinates 

Eulerian and Lagrangian coordinates are two of the main reference systems used for 

formulation of physical laws. The Eulerian coordinate system could be conceived of 

as a static reference system, where the laws of physics are observed from a fixed point 

of view.  
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In a Eulerian system, physical properties such as temperature, velocity, acceleration, 

and pressure, are assigned to fix coordinate points, and not to the dynamic material 

moving in the coordinate system. As an instance, the motion of a fluid is represented 

by a velocity vector field, that assigns to each point ( , , , )x y z t  in space-time, a velocity 

vector, V( , , , )x y z t , that represents the velocity of the fluid element that happens to be 

at point ( , , )x y z  and at time t .  

Therefore, the values of the velocity vector field at a point, at different times, represent 

the velocity of different fluid elements, that happened to be at that point, at the given 

times. In fact, the Eulerian coordinate system does not keep track of fixed fluid 

elements over time, but rather observes the behavior of the fluid in a fixed coordinate, 

through time. The Eulerian coordinate is indeed the most appropriate choice of 

reference system in fluid mechanics, since most of what is needed to be known about 

the behavior of a fluid, could be obtained from its behavior at certain fixed spatial 

points, and the data concerning the behavior of single fluid elements, is both irrelevant 

and extremely complicated to analyze.  

On the other hand, formulation of physical laws would considerably easier, if the 

coordinate system could move together with the fluid elements, where only local 

changes in physical properties would be observable. This type of dynamic reference 

system is called the Lagrangian coordinate, which travels with the flow and observes 

the physical properties of fixed fluid element at different points in space and time. As 

such, in Lagrangian system, the velocity vectors are assigned to fixed fluid elements, 

and not fixed coordinate points.  
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The flow in Lagrangian coordinate system at each point in time, can be mathematically 

described as a 1-parameter family of smooth mappings from 3  to 3 , where the 

domain represents the location of fluid elements at time 0t  , and the range represents 

the location of fluid elements at time t . Let this 1-parameter family of mappings be 

denoted by 
3 3( , , ) :tM x y z  , where ( , , )x y z  labels a fluid element at time 0t    

and ( , , )tM x y z specifies the location of that fluid element at time t . 

Note that using the Lagrangian coordinate, the velocity of a given fluid element, 

( , , )x y z , can be readily calculated as: 

( , , , ) ( , , )tV x y z t M x y z
t





  

Regarding the fact that tM  is bijective, the inverse mapping, 1 3 3:tM    can be 

defined, and its plain to show that the following equations hold: 

1( , , , ) ( ( , , ), )

( , , , ) ( ( , , ), )

t

t

V x y z t V M x y z t

V x y z t V M x y z t




                                                                                                       (5.1) 

5.2 Material Derivative 

Fig. 6. shows the motion of a fluid element through a path in 3 ,  starting at point 

1( , )A t  and ending at point 
2( , )B t . Let 

1 1 1( , , )x y z  and 
2 2 2( , , )x y z  denote the spatial 

coordinates of A  and B , respectively, and let 1 2 3V V VV i j k    denote the velocity 

vector field, where  

1 1

2 2

3 3

V V ( , , , )

V V ( , , , )

V V ( , , , )

x y z t

x y z t

x y z t





 
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Note that since the x , y , and z  components of the velocity field are both space and 

time variable, the described motion is an unsteady flow. 

 

Now, let ( , , , )T T x y z t  denote the temperature of the fluid at point ( , , , )x y z t . Then 

the temperature of the fluid element at points A  and B  are given by 
1( , )T A t  and 

2( , )T B t , respectively.  Using Taylor expansion of 
2( , )T B t  around 

1( , )A t , would 

yield: 

2 1 1 1 1

2 2 2 2

1

( , ) ( , ) ( , ) ( , ) ( , )

( , ) O( )

T B t T A t T A t X T A t Y T A t Z
x y z

T A t t X Y Z t
t

  
      

  


      


 

O( )
T T X T Y T Z

T X Y Z t
t x t y t z t t

       
         

       
                        (5.2) 

where, 
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2 1

2 1

2 1

2 1( , ) ( , )

X x x

Y y y

Z z z

T T B t T A t

  

  

  
  

  

Note that left-hand side of the equation (5.2) is the average time-rate of change in the 

temperature of the fluid element, between points A  and B . Let 
DT

Dt
 denote the limit 

of the left-hand side of the equation (5.2), as the time interval approaches to zero. 

0
lim

t

DT T

Dt t 





  

Then the right-hand side of the equation (5.2) can be written as: 

0
lim O( )

t

T X T Y T Z
T X Y Z t

x t y t z t t

T dX T dY T dZ
T

x dt y dt z dt t

 

      
       

      

   
   
   

  

and hence, 
DT T dX T dY T dZ

T
Dt x dt y dt z dt t

   
   
   

  

Note that here, T  indicates the change in the temperature of the fluid element that 

moves from A  to B , which implies the Lagrangian coordinate is being used. Indeed, 

DT

Dt
 indicates the time-rate of change in the temperature of the fluid element, which 

is clearly different from 
T

t




, which indicates the time-rate of change of the 

temperature field. Indeed, 
T

t




 is the time-rate of change in temperature, served in the 
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Eulerian coordinates. Furthermore, since 
dX

dt
, 

dY

dt
, and 

dZ

dt
 indicate the 

instantaneous time-rate of change in the location of the fluid element, in the x , y , and 

z  directions, evidently: 

1 2 3

dX dY dZ
V V V

dt dt dt
     

and therefore we have: 

1 2 3( ) (V . )
DT T T T T T

V V V T
Dt x y z t t

    
      

    
 

The operator 
D

Dt
 is called the material or substantial derivative and is defined as: 

1 2 3(V . )
D

V V V
Dt t x y z t

    
      

    
 

Material derivative of any physical property is the total time-rate of change in that 

property, which is the sum of the local instantaneous changes in that property and the 

changes due to the instantaneous change in the location. Indeed, the term 
t




 captures 

the local changes that occur at a fixed point, where the fluid element happens to be, 

and is called the local derivative. Local derivative is in fact the normal time-derivative 

of the considered physical property in Eulerian coordinate. The term V .  captures 

the changes of the physical property due to the change in the location of the fluid 

element and is called the convective derivative.  
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A key application of the material derivative appears in the calculation of the 

acceleration field in a flow. As stated earlier, taking the time-derivative of the velocity 

field would only yield the local time-rate of change in the velocity field, which is not 

the same as the acceleration field experienced by moving fluid elements. As such 

calculating the acceleration field for fixed coordinate points would require the material 

derivative of the velocity field, where both local and convective changes are taken into 

account. Then in the light of the previous discussion, the acceleration field can be 

written as:  

(V . )V Convective acceleration
DV V

Dt t


   


                                                                    (5.3) 

Equation (5.3) is called the convective acceleration and plays a key role in all 

continuum equations, such as the Navier-Stokes differential equations. Holding the 

assumption that the density of the fluid is constant, the convective momentum of a 

fluid element can be written as: 

 ((V . ) V )
DV V

d d
Dt t

Convective momentum    


   


                                             (5.4) 

5.3 Control Volumes and the Divergence of Velocity Field 

In general, physical problems are mainly formulated in terms of systems that interacts 

with their surroundings, and conservation laws are applied to such systems. The most 

notable of such conservation laws are the conservation of mass, linear momentum, 

angular momentum, and energy. The conservation of a physical property plainly 

means that the net change in that property is zero over any time interval, in the given 

system.  
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Conservation laws in fluid mechanics are commonly formulated on a particular type 

of physical systems, called the control volumes. A control volume is an imaginary 

closed surface within the fluid, that the flow can pass through with no resistance. In 

this regard, conservation laws can be formulated based on the net quantity of certain 

physical properties, carried by the flow passing through the surface of a control volume 

and the changes in those physical properties within the control volume. In fluid 

mechanics, such physical properties typically include mass, energy, and linear 

momentum. 

Nonetheless, in order to calculate the net quantity of any physical property, carried by 

the flow that passes through a given surface, the volume of the passing flow must be 

calculated first. The later could be accomplished by calculating the flow passing 

through an arbitrary surface element of the boundary of the control volume, and 

integrate it over the whole boundary.  

 Let CV  be a control volume, let dA  be an arbitrary surface element of CV , and let 

n  denote the outward unit vector normal to dA . Then the volume of the flow passing 

through dA , in the time interval t , can be written as: 

|| || cosd V tdA      

where   is the angel between the velocity vector, V  and n .  Note that since || || 1n  , 

we can write;  

|| || cos || || . || ||cos .V V n V n    , and hence: 
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(V . )d n t dA                                                                                                                                 (5.5) 

Note that since n  is assumed to be the outward normal vector of dA , positive values 

of .V n  indicate the outflow of the fluid, and negative values indicate the inflow.  

Hence, the net volume of the flow passed through CV  in the time interval t , can 

be written as: 

(V . ) V .
CV CV CV

d t n dA t d A
  

                                                                            (5.6) 

where d A ndA , is the vector surface element. Applying the divergence theorem to 

the equation (5.6), we obtain: 

. ( . V)
CV CV

t V d A t d


                

The time-rate of change in the net volume of the flow passing through the surface of 

the control volume, can be obtain by letting 0t  : 

( . V)
CV

d
d

dt



                                                                                                                      (5.7) 

Likewise, the net flow of mass through the boundary of the control volume in the time 

interval t , can be written as: 

( . V)
CV

m t d     
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And the time-rate of change in the net mass of the flow passing through the surface of 

the control volume can be written as: 

( . V)
CV

dm
d

dt
                                                                                                                  (5.8) 

In case of an incompressible fluid, where the density is constant, equation (5.8), can 

be further simplified into: 

( . V)
CV

dm
d

dt
    

Another approach for formulating conservation laws, is to use a deformable control 

volume, that can travel with the flow and change shape. Evidently, this approach uses 

a Lagrangian coordinate and material derivative would be required for calculating the 

instantaneous changes in the physical properties of the fluid contained in the control 

volume. 

To apply this method, let CV   be a deformable control volume, and let dA  be an 

arbitrary surface element on the boundary of CV  , that moves as the control volume 

changes shape. Note that the movement of dA  in the infinitesimal time interval t , 

would change the volume of CV , by  

|| || cosd V dA t      

Where, V  is the velocity vector of dA , n  is the outward normal vector of dA , and   

is the angle between them. 
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Then similar to previous section, d  can be written as: 

( . )d V n t dA     

and the time-rate of change in the volume of CV   can be obtain by taking the limit of 

t




 as 0t  .  

( . ) . ( . V)
CV CV CV

D
V n dA V d A d

Dt


   


        

Note that here, the rate of change in the volume of CV  , must be written as the material 

derivative, since CV   is moving the flow.  

Now if we let the size of the control volume approach zero, for the obtained 

infinitesimally small control volume, the gradient of the velocity field can be assumed 

constant over CV  , and hence:  

( . V) ( . V) ( . V)
CV CV

d d 
 

          

Then evidently 

1
( . V) . V

D D

Dt Dt

 
     


                                                                                       (5.9) 

Indeed, the term . V  repeatedly appears in fluid mechanics and is one of the key 

terms in the formulation of Navier-Stokes equations as well.  
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Note that since the size of the moving control volume is differentially small, it can be 

considered as a fluid element, and in this regard, the exact physical interpretation of 

. V could be obtained from the equation (5.9), as the time-rate of change in the 

volume of the fluid element, per unit volume.  

5.4 Reynolds Transport Theorem 

As was mentioned earlier, the conservation laws in fluid mechanics are formulated for 

control volumes. That is, the system under consideration is restricted to an imaginary 

volume of the fluid and its physical properties are investigated, and subsequently 

generalized to the whole system. As such, certain mathematical tools are required to 

relate the findings in a control volume to the whole system. Reynolds transport 

theorem is one of the fundamental mathematical tools, commonly used in this regard.  

In the following section, Reynolds transport theorem will be driven and explained for 

both fixed and deformable control volumes.  

5.3.1 Fixed Control Volumes 

Let G  denote a fixed control volume, and let dA  be a surface element on its boundary. 

Then based on equation (5.5), the volume of the flow passing through dA  in the time 

interval t  can be written as: 

( . )d V n tdA     

Now, let   denote a physical property of the system, such as its pressure, temperature, 

energy, or linear momentum, and let  , denote the intensive form of  , that is the 

amount of  per unit mass of the fluid: 

d

dm


   
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Then the total amount of   in the control volume can be written as: 

G

G G G

d dm d           

In essence, Reynolds transport theorem states that:  

The change in the total The change in the total The amount of 

amount of  in the whole amount of  in the control

system, in  the time volume in  the time

interval  interval  t t



 

   
   
    
   
   

    

in

the  fluid leaving the

control volume, in the 

time interval  

The amount of in

the  fluid entering the

control volume, in the 

time interval  

t

t



 
 
  
 
 

 

 
 
 
 
 

 

  

That in short can be written as: 

 system control volume out in        

Note that the net amount of  entering and leaving the control volume in the time 

interval t , can be written as:  

( . )out in

G

t V n dA  


      

Hence,  

( . )

( . )

system

G G

system

G G

d t V n dA

d d
d V n dA

dt dt

   


  





   

 

 

   
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Note that, since the shape and volume of that control volume does not vary with time, 

the time-derivative can be moved inside the integral and we obtain the Reynolds 

transport theorem for fixed control volumes: 

( ) ( . )
system

G G

d
d V n dA

dt t


  




 

                                                                     (5.10) 

5.3.2 Deformable Control Volumes 

A major difficulty of formulating conservation laws for arbitrary deformable control 

volumes, is that the surface of the control volume varies with time.  Let 
0D  denote the 

deformable control volume at time 0  and note that since the control volume is moving 

with the flow, the Lagrangian coordinate system must be used. Then, the control 

volume at time t  can be written as: 

 0 0( ) {( , , ) | ( , , ) ( , , ), ( , , ) } ( )t tD t x y z x y z M x y z x y z D M D          

Where tM  denotes the Lagrangian flow map, that takes each fluid element to its 

location at time t . Then the time-rate of change in the amount of   in the fluid 

contained in ( )D t , can be obtain by taking the time-derivative of  
( )D t

d   , which 

clearly is the total amount of  , contained in ( )D t . 

Let ( , )tJ M t be the Jacobian matrix of tM , and ( )D t  denote the volume of ( )D t . 

Then evidently, 

0( )

( ) det( )D

D t D

tt d J dM                                                                                                    (5.11) 
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It is plain to show that the change in ( )D t  in the time interval t , can be written as: 

( )

( ) ( ) ( . )D D

D t

t t t t V n dA


                                                                    (5.12) 

0
( )

( ) ( )
lim ( . )D D D

t
D t

d t t t
V n dA

dt t 


   
 

                                                                        (5.13) 

Putting equations (5.11) and (5.12) together, we obtain: 

0

0

( ) ( )

det( ) ( . ) ( . V)

( . V)det( )

D

D D t D t

D

t

t

d
J dM V n dA d

t dt

J dM





    





  


 

Note that since the choice of 
0D  is arbitrary,   

0 0

det( ) ( . V)det( )

det( ) ( . V)det( )

D D

t tJ dM J dM
t

J J
t


  




 



 
                                                                      (5.14) 

By applying equation (5.14), we can write: 
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0

0

0

( )

( , , , ) ( ( , , ), )det( )

                                   ( ( ( , , ), )det( ))

                                   ( ( ( , , ), ))det( )

    

D t D

D

D

t t

t t

t t

d d
x y z t d M x y z t J dM

dt dt

M x y z t J dM
t

D
M x y z t J dM

Dt

  














 





0

0

                               ( ( , , ), ) det( )

                                   ( ( ( , , ), ))det( )

                                   ( ( , , ), )( . V)det( )

D

D

D

t t

t t

t t

M x y z t J dM
t

D
M x y z t J dM

Dt

M x y z t J dM














 





0

0

( )

                                   ( ( ( ( , , ), )) ( ( , , ), )( . V))det( )

                                   ( ( , , , )) ( , , , )( . V)

                         

D

D t

t t t

D
M x y z t M x y z t J dM

Dt

D
x y z t x y z t d

Dt

 

  

  

  







( )

( )

( )

          ( . V)

                                   V . ( . V)

                                   . ( V)

D t

D t

D t

D
d

Dt

d
t

d
t


 


  


 

  


    




 









 

Hence, we obtain the general form of the Reynolds transport theorem: 

( ) ( ) ( )

( . V)) . ( V)
D t D t D t

d D
d d d

dt Dt t

 
     


    

                       (5.15)                                    



40 

Chapter 6 

CONSERVATION LAWS IN FLUID MECHANICS 

Building upon previous material, this chapter deals with the derivation of conservation 

laws for fluids. The first section of this chapter explains the conservation of mass 

equation in both integral and differential forms, and explores the details of deriving 

the equation by using the control volume technique. The second section, focuses on 

the conservation of linear momentum, and shows how the conservation equation can 

be driven by equating the sum of body and surface forces acting on the control volume, 

to the time-rate of change in its total momentum. Applications of Reynolds transport 

theorem and Cauchy stress theorem in deriving the conservation of linear momentum 

equation are discussed in details. This chapter is prepared and written based on the 

books of Batchelor [1998], Fay [1998], and White [2011]   

6.1 Conservation of Mass 

The integral form of the conservation of mass for a fluid, could be obtained by using 

the Reynolds transport theorem for the mass contained in an arbitrary control volume. 

Note that in classical mechanics, the conservation of mass principle states that the 

time-rate of change in the mass of a physical system, is always zero. In this regard, let 

G  be an arbitrary fixed control volume, and let m  denote its mass. Then the 

conservation of mass equation can be written as: 

 0
dm

dt
                                                                                                                                                (6.1) 
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By applying the Reynolds transport theorem (5.10) for the mass contained in G  , we 

obtain: 

( . )
G G

dm
d V n dA

dt t
  




 

   

and hence using the equation (6.1), the integral form of the conservation of mass 

principle, can be written as: 

( . ) 0
G G

d V n dA
t
  




 

                                                                                              (6.2) 

Note that in case of an incompressible fluid, for which the density field could be 

assumed constant, further simplification of the above equation is possible. In fact, the 

majority of known liquids and some gases under normal thermodynamic conditions 

and low velocity, could be treated as incompressible fluids, since the variations in their 

density field is practically insignificant. 

For an incompressible fluid, where   is a constant,  

0 0
G

d
t t


 

 
  

                                                                                                             (6.3) 

Moreover,  

( . ) ( . ) .
G G G

V n dA V n dA V d A  
  

      

and by applying the divergence theorem we obtain: 
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. ( .V)
G G

V d A d 


                                                                                                                     (6.4) 

Putting equations (6.2), (6.3), and (6.4) together, we obtain: 

0 ( . ) 0 ( .V) ( .V)
G G G G

d V n dA d d
t
    




      

      

But since the integral is taken over an arbitrary fixed control volume, and the integral 

is always zero, the integrand must be zero, hence: 

( .V) 0 .V 0
G

d                                                                                                           (6.5) 

Equation (6.5) describes the conservation of mass for incompressible fluids, and is also 

known as the continuity equation. Remembering, that the divergence of the velocity 

field, indicates the time-rate of change in the volume of fluid elements per unit volume, 

the continuity equation implies that in an incompressible fluid, where the density of 

fluid elements cannot change, the volume of fluid elements must not change as well.  

In other words, let   denote the volume of a fluid element, then as was shown 

previously: 

1
. V

D

Dt


 


  

and the continuity equation can be written as: 

0
D

Dt


                                                                                                                                                (6.6) 
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The conservation of mass principle can also be formulated for a deformable control 

volume. In case of a deformable control volume, note that the control volume would 

always contain the same fluid elements, and hence according to the conservation of 

mass principle, the time-rate of change in the mass of the control volume must be zero. 

Let ( )D t  be a deformable control volume, then the mass contained in ( )D t  can be 

obtained from the following integral: 

( )

   ( ) 
D t

mass contained in D t d     

and the conservation of mass principle can be written as: 

( )

(    ( )) 0 0
D t

d d
mass contained in D t d

dt dt
      

Applying the Reynolds transport theorem (5.15), to the above equation yields: 

( ) ( )

0 . ( V)
D t D t

d
d d

dt t


   


  

    

Note that since, the above integral is zero for any arbitrary choice of ( )D t , then the 

integrand must be zero, and we obtain the general form of the continuity equation, that 

holds for both compressible and incompressible fluids: 

0 . ( V) . V+ V .
t t

 
  

 
      
 

  

V . . V 0
t


 


    


                                                                                                                 (6.7) 
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As can be seen, the first part of the equation (6.7) is in fact the material derivative of 

the density field, and the equation can be in short written as: 

+ . V 0
D

Dt


                                                                                                                                    (6.8) 

6.2 Conservation of Linear Momentum  

The conservation of linear momentum principle, is in fact the reformulation of 

Newton’s second law of motion for fluids. The main principle is that the sum of forces 

acting on the control volume, such as the gravity, internal stresses, and pressure, must 

be equal to the time-rate of change in the net momentum of the control volume. 

Therefore, to formulate the conservation of linear momentum principle, the time-rate 

of change in the momentum of the control volume must be obtained, using the 

Reynolds transport theorem, and equated to the sum of forces. Note that similar to 

previous section, the control volume can be assumed fixed or deformable. 

Let G  be a fixed control volume, and let U mV  denote momentum. Then the 

intensive momentum would be: 

( )
0

dU d mV dm dV
U V m V V

dm dm dm dm
         

Hence, the Reynolds transport theorem (5.10) for the intensive momentum can be 

written as: 

( ) ( . ) ( ) ( . )total

G G G G

d
U U d U V n dA V d V V n dA

dt t t
     

 

 
   

        

Then by equating the time-rate of change the in momentum of the control volume to 

the sum of forces acting on it, we obtain: 
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( ) ( . )
G G G

F V d V V n dA
t
  




 


                                                               (6.9) 

The above equation might be further simplified, for incompressible fluids, where the 

scalar field,  , could be assumed constant and removed outside the integrals. 

In case of considering a deformable control volume, the general form of the Reynolds 

transport theorem (5.15) must be applied. In this regard, let ( )D t  denote a deformable 

control volume at time t  . Then the total momentum of ( )D t  can be written as: 

( )

( , , , )total

D t

U V x y z t d     

The time-rate of change in the total momentum of ( )D t , is simply the time-derivative 

of the above integral, which must be equal to the sum of forces acting on ( )D t , and 

we can write: 

( ) ( )

( , , , )total

D t D t

dU d
F V x y z t d

dt dt
                                                                                 (6.10) 

Note that, the time-derivative of the above integral could be calculated using the 

Reynolds transport theorem (5.15), as follows: 

( ) ( )

( ) ( )

( ) ( ) ( )

( , , , ) ( . V)

                                   = ( . V)

                                   = ( . V)

     

D t D t

D t D t

D t D t D t

d D V
V x y z t d V d

dt Dt

D V
d V d

Dt

DV D
d V d V d

Dt Dt


   


  


    

  

 

  

 

 

  

( ) ( )

                              = ( ( . V))
D t D t

DV D
d V d

Dt Dt


      
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Note that, due to the conservation of mass principle (6.7), we have: 

( . V) 0
D

Dt


     

which evidently implies that: 

( )

( ( . V)) 0
D t

D
V d

Dt


      

and hence the equation (6.10) can be simplified into: 

( ) ( ) ( ) ( )

( ( . V))total

D t D t D t D t

dU DV D DV
F d V d d

dt Dt Dt Dt


                                                

( ) ( )D t D t

DV
F d

Dt
                                                                                                                          (6.11) 

Note that the material derivative of the velocity field is in fact, the acceleration field 

experienced by fluid elements as they travel with the flow, which agrees with the 

intuitive meaning of the above equation as the integral form of the Newton’s second 

law of motion. Moreover, using the definition of material derivative, we can write: 

(V . ) V
DV V

Dt t


  


  

and the above integral can be written as: 

( ) ( )

((V . ) V )
D t D t

DV V
d d

Dt t
   


  

    

and hence equation (6.11) becomes: 
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( ) ( )

((V . ) V )
D t D t

V
F d

t
 


  


                                                                                            (6.12) 

Now, if we let the size of the control volume approach zero, ( )D t  would become a 

fluid element, and on the differential level, the term ((V . ) V )
V

t



 


 could be 

assumed to have the same value over ( )D t , and hence the above integral reduces to 

the  differential form of its integrand, that is: 

((V . ) V )
V

d
t

  


 


 

Note that the forces acting on ( )D t  would also reduce to the differential size, and the 

equation (6.12) can be written as: 

((V . ) V )
V

dF d
t

  


  


                                                                                     (6.13) 

This partial differential equation is in essence, the conservation of linear momentum 

principle. 

The next step in completing the equation is to calculate the sum of forces acting on an 

arbitrary fluid element. In fact, the forces acting on a fluid element can be categorized 

in two classes, namely the surface and body forces. Surface forces refer to the type of 

forces that are experienced on the boundary of the fluid element. These forces could 

arise from hydrostatic pressure and stresses produced by neighboring fluid elements 

or external objects such as walls or barriers that meet the surface of the fluid element. 

Body forces refer to the type of forces that act of the whole fluid element without any 



48 

actual material interactions. Such forces for the most part include but are not limited 

to gravity and electromagnetic fields.  

Let gF  denote the gravity field acting on the fluid. Then the differential gravity force 

acting on the body of a fluid element, can be written as:  

gdF gd   

where g  is the standard gravity constant.  

Furthermore, let f  denote the sum of other body forces per unit volume, acting on a 

fluid element. Then  

( )BF g f d     

Surface forces acting on the boundary of the fluid element are composed of the stresses 

produced by the movement of neighboring fluid elements and the hydrostatic pressure 

produced by the compressive force imposed on the boundary of the fluid element by 

the fluid surrounding it.  

Note that, the hydrostatic pressure force is always normal to the surface of the fluid 

element and presses it inwards. As was shown in chapter 4. surface forces acting on 

the boundary of a fluid element, can be represented by the following stress tensor (4.1); 

 

xx xy xz

yx yy yz

zx zy zz

T

  

  

  

 
 

  
  
 
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where ij  denotes the force per unit area in the j -direction acting on the face of the 

fluid element, perpendicular to the i -axis.  

In this regard, the sum of stresses acting on the surface of the fluid element in the x -

direction, can be calculated in the following way. 

If we consider the point sitting at the center of the fluid element, then the force per unit 

area acting on the right dydz  face of the fluid element, in the x -direction would be: 

1

2
xx

xx dx
x








   

and the force per unit area acting on the left dydz  face, in the x -direction would be: 

1

2
xx

xx dx
x





 


 

That is since, xx  is the normal stress acting on the dydz  faces of the fluid element 

and is always assumed to be pointing outwards and positive in the x -direction, by 

convention.  

Therefore, the sum of forces acting on the dydz  faces, in the x -direction would be: 

1 1
( ) ( )

2 2
xx xx xx xx

xx xxdx dydz dx dydz dxdydz d
x x x x

   
  

   
     

   
        (6.14) 

In the same manner, it can be shown that the shear forces per unit area acting on the 

dxdz  faces of the fluid elements are: 
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1

2

1

2

yx
yx

yx
yx

dy
y

dy
y













 



 

and the sum of forces in the x -direction acting on the dxdz  faces of the fluid element 

would be: 

1 1
( ) ( )

2 2

yx yx yx
yx yxdy dxdz dy dxdz d

y y y

  
  

  
    

  
                                       (6.15) 

Finally, the shear forces per unit area for the dxdy  faces can be written as: 

1

2

1

2

zx
zx

zx
zx

dz
z

dz
z













 



 

and likewise, the sum of forces acting on the dxdy  faces, in the x -direction, would 

be: 

1 1
( ) ( )

2 2
zx zx zx

zx zxdz dxdy dz dxdy d
z z z

  
  

  
    

  
                                  (6.16) 

Putting equations (6.14), (6.15) and (6.16) together, the total sum of forces acting on 

the fluid element in the x -direction can be written as: 

( )x

yxxx zxdF d
x y z

 


 
  

  
   
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In the same way, it is easy to show that the sum of forces acting on the boundary of 

the fluid element in the y  and z -directions, would be: 

( )y

xy yy zy
dF d

x y z

  


  
  

  
  

( )z

yzxz zzdF d
x y z

 


 
  

  
   

Then the total sum of surface forces acting on the fluid element can be written as: 

( )

                                                ( )

                                                ( )

s x y z

yxxx zx

xy yy zy

yzxz zz

dF dF i dF j dF k i d
x y z

j d
x y z

k d
x y z

 


  


 


 
     

  

  
  

  

 
  

  

 

( ) ( ) ( )[ ]yx xy yy zy yzxx zx xz zzi j k d
x y z x y z x y z

       


       
        

        

  

Note that using the matrix notations, we can write: 

( ) ( ) ( )

( ) .

yx xy yy zy yzxx zx xz zz

xx xy xz

yx yy yz

zx zy zz

i j k
x y z x y z x y z

i j k T
x y z

       

  

  

  

       
       

        

 
   

     
     

 

  

and the above equation can be summarized in the tensor form as: 

( . )sdF T d    
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Hence, the total sum of forces acting on the fluid element, can be written as the sum 

of body and surface forces, as follows: 

( ( ) ( . ))B sdF dF dF g f T d         

and the conservation of linear momentum principle, can be written as: 

( ( ) ( . )) ((V . ) V )
V

g f T d d
t

    


      


  

( ) ( . ) (V . ) V
V

g f T
t

  


     


                                                                            (6.17) 

Note that by using the material derivative, the equation (6.17) can be further simplified 

into: 

( ) ( . )
DV

g f T
Dt

      

This vector equation indeed summarizes the following equations: 

( ) ( )
yxxx zx

x x y x z x x x xV V V V V V V g f
x y z t x y z

 
 

    
       

      
  

( ) ( )
xy yy zy

x y y y z y y y yV V V V V V V g f
x y z t x y z

  
 

     
       

      
  

( ) ( )
yzxz zz

x z y z z z z z zV V V V V V V g f
x y z t x y z

 
 

    
       

      
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This result could also be found a mathematically shorter and more rigorous way, using 

the Cauchy stress theorem. Note that from the equation (6.12) we have: 

( ) ( )

((V . ) V )
D t D t

V
F d

t
 


  


   

and that the forces acting on the fluid element can be written as the sum of surface and 

body forces; 

( ) ( ) ( )

S B

D t D t D t

F F F      

The action of body forces on the control volume can be written as the volume integral 

of differential body forces acting on a fluid element; 

( ) ( )

( )B

D t D t

F g f d      

and the action of surface forces on the control volume can be written as the surface 

integral of differential surface forces acting on a fluid element. But note that according 

to Cauchy stress theorem (4.6), surface forces acting on an arbitrary surface element 

dA  can be written as .n T , where n  denotes the normal unit vector of dA , and T  is 

the stress tensor.  

Hence we can write, 
( ) ( )

( . )S

D t D t

F n T dA


  , and the total sum of forces acting on ( )D t  

can be written as: 

( ) ( ) ( )

( ) ( . )
D t D t D t

F g f d n T dA 


                                                                                 (6.18) 
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Applying the divergence theorem to the surface integral in the equation (6.18), yields: 

( ) ( ) ( )

( ) ( )

( )

( ) ( . )

        ( ) ( . )

        ( ) ( . )

D t D t D t

D t D t

D t

F g f d n T dA

g f d T d

g f T d

 

  

 



  

   

   

  

 



 

By equating the above equation with the time-rate of change in the total momentum of 

the control volume, we obtain: 

( )( ) ( )

( ) ( . ) ((V . ) V )
D tD t D t

V
g f T d F d

t
   


       


   

( )

( ) ( . ) ((V . ) V ) 0[ ]
D t

V
g f T d

t
  


      

   

Note that since the choice of the control volume is arbitrary, and the integral is always 

zero, the integrand must be zero, and hence; 

((V . )V ) ( ) ( . )
V

g f T
t

 


     


                                                                           (6.19) 

which is the conservation of linear momentum equation for fluids. Note that the left-

hand side of the equation (6.19) is indeed the material derivative of the velocity field, 

which is the convective acceleration of the flow, and can physically be interpreted as 

the acceleration field experienced by the flow depending on its location, and in-

dependent of time. An example of convective acceleration of a steady flow moving in 

a cylindrical duct with decreasing diameter. Note that in this example, the velocity 
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field is constant at each coordinate point over time, but the speed of fluid elements 

increases as they move along the duct. As such, the acceleration field experienced by 

the flow, depends on the location of the flow in the duct and is constant over time at 

each coordinate point.    
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Chapter 7 

NAVIER-STOKES EQUATIONS 

This chapter provides an in-depth discussion about the derivation of Navier-Stokes 

equations for both compressible and incompressible fluids. It explains how the stress 

tensor can be decomposed into volumetric and deviatoric stress tensors and uses the 

Stokes constitutive equations to calculate the deviatoric tensor based on the velocity 

field. Subsequently, Navier-Stokes equations for compressible and incompressible 

fluids are driven and discussed. This chapter is written based on the books of 

Ladyzhenskaya [1969], Rutherford [1989], and White [2011]. 

7.1 Decomposition of Stress Tensor 

As was shown in the previous chapter, mass and linear momentum conservation laws 

for a fluid can be written as: 

V . ( V) 0

(V . ) V ( ) ( . )

t

V
g f T

t




  


  


      

 

 

which in case of an incompressible fluid, can be reduced to: 

. V 0

(V . ) V ( ) ( . )
V

g f T
t

  

 



      
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Note that the above system of partial differential equations, is unsolvable due to the 

number of unknown variables contained in the stress tensor, that exceed the number 

of equations. As such, a constitutive equation is required to relate the stress variables 

to the velocity field. The stress tensor in fact contains all the normal and shear stresses 

acting on the surface on an arbitrary control volume, say ( )D t , and can be decomposed 

into two simpler tensors. The first tensor, called the volumetric stress tensor, contains 

all the stresses that tend to change the volume of ( )D t , and the second tensor, called 

the deviatoric stress tensor, includes all the viscous stresses that tend to deform ( )D t .  

As was explained in chapter 2, in Newtonian fluids, the only volumetric stress acting 

on the surface of control volumes, is the hydrostatic pressure that compresses the 

surface in the direction of its inward normal vector. Moreover, in Newtonian Fluids 

hydrostatic pressure has no preference in direction and acts equally in all directions. 

Hence, the volumetric tensor would be a diagonal matrix, where all the diagonal entries 

are P . The negative sign is due to the fact that by convention, the outward normal 

unit vector of the surface is assumed positive. 

Then the stress tensor can be written as: 

T PI                                                                                                                                          (7.1) 

where I  is the 3 3  identity matrix, and   denotes the deviatoric stress tensor. 
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A major assumption about the nature of viscous stresses in Newtonian fluids, is that 

such stresses are always proportional to the time-rate of deformation, where the 

constant of proportionality is called the viscosity constant.  

7.2 Derivation of Navier-Stokes Equations 

As was shown in chapter 1, in case of a simple steady flow in the x -direction, with 

the constant speed xV , the shear stress acting in the x -direction on the surface 

perpendicular to y , can be written as:  

xdV

dy
    

This phenomenon was initially found by Isaac Newton and eventually generalized by 

Stokes in 1845. The Stokes equations relate the viscous stresses acting on the surface 

of a control volume, with the time-rate of deformation of that surface.  

Let ij  denote the viscous stress acting in the j -direction on the surface perpendicular 

to the i -axis. Then the deviatoric stress tensor can be written as: 

xx xy xz

yyyx yz

zzzx zy

  

  

  

 
 

   
  
 

                                                                                                                            (7.2) 

and stokes constitutive equations can be written as: 
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1
2 ( . V )

3

( )

( )

( )

1
2 ( . V )

3

( )

( )

( )

1
2 ( . V )

3

xx x

xy y x

xz z x

yx x y

yy y

yz z y

zx x z

zy y z

zz z

V
x

V V
x y

V V
x z

V V
y x

V
y

V V
y z

V V
z x

V V
z y

V
z

 

 

 

 

 

 

 

 

 

 
   




 
 

  


 
 

  


   
  



   


  

 
 

  
 

 
  

 
 


 

   


 

In case of an incompressible fluid, the deviatoric stress tensor can be simplified into: 

2

2

2

x
y x z x

y
x y z y

z
x z y z

V
V V V V

x x y x z

V
V V V V

y x y y z

V
V V V V

z x z y z



     
      

 
    

    
     

    
  

     

                                                     (7.3) 

Equation (7.3) can be summarized in the matrix form, in the following way: 

2

2

2

x y x z x

x y y z y

x z y z z

V V V V V
x x y x z

V V V V V
y x y y z

V V V V V
z x z y z

     
  

     
     

   
     

     
  

     
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T

x yx z
x x

y y y yx z

z z z yx z

V VV VV V
x y z x x x

V V V VV V
V V

x y z y y y

V V V VV V

x y z z z z

       
           
       

      
        

       
   
       

  

 and hence, the deviatoric stress tensor can be written as: 

T( )V V                                                                                                                                   (7.4) 

Finally, the general form of the Navier-Stokes equations for Newtonian fluids can be 

acquired by substituting the volumetric and deviatoric stress tensors, into the 

conservation of linear momentum equation (6.19). 

Note that by using the equation (7.1) and Stokes constitutive equations, entries of the 

stress tensor can be written as: 
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1
2 ( . V )

3

( )

( )

( )

1
2 ( . V )

3

( )

( )

( )

1
2 ( . V )

3

xxx

xy y x

xz z x

yx x y

yy y

yz z y

zx x z

zy y z

zz z

P V
x

V V
x y

V V
x z

V V
y x

P V
y

V V
y z

V V
z x

V V
z y

P V
z

 

 

 

 

 

 

 

 

 

 
     




 
 

  


 
 

  


   
  



     


  

 
 

  
 

 
  

 
 


     








 

and by substituting them into the equation (6.19), we obtain: 
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2
( ) ( . V 2 )

3

                                                               ( )

                                                               

x x y x z x x x

x y

V V V V V V V P V
x y z t x x

V V
y y x

  



     
       

     

  
 

  

 ( ) ( )

2
( ) ( . V 2 )

3

                                                               ( )

                                      

x z x x

x y y y z y y y

y x

V V g f
z z x

V V V V V V V P V
x y z t y y

V V
x x y

 

  



  
  

  

     
       

     

  
 

  

                         ( ) ( )

2
( ) ( . V 2 )

3

                                                               ( )

            

y z y y

x z y z z z z z

z x

V V g f
z z y

V V V V V V V P V
x y z t z z

V V
x x z

 

  



  
   

  

     
       

     

  
 

  

                                                   ( ) ( )z y z zV V g f
y y z

 

























   

   
  

 

These equations, together with the continuity equation, are known as the Navier-

Stokes equations for Newtonian Fluids in conservation form.  

These equations can be further simplified for incompressible fluids, where the 

divergence of the velocity field is zero. In that case, the . V  can be removed from 

the above equations, and we obtain: 
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( ) ( 2 )

                                                               ( )

                                                               (

x x y x z x x x
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7.2 Navier-Stokes Equations in Vector Form 

To write Navier-Stokes equations in vector form, note that the stress tensor for 

incompressible fluids can be written as: 
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Let ( . )xT  denote the x  component of the divergence of the stress tensor. Then we 

can write: 
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Likewise, other components of  .T  can be written as: 
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and hence 
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By substituting .T  into equation (6.19), we obtain: 
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This equation can be divided by the density constant, and the convective form of 

incompressible Navier-Stokes equations can be written as: 

2

. V 0

1
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where v



  is the kinematic viscosity constant, and F  denotes the sum of body 

forces per unit volume. 

To obtain the vector form of the Navier-Stokes equations for compressible fluids, note 

that the deviatoric stress tensor, can be written as: 
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Then the stress tensor can be written as:  
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and by substituting .T  into equation (6.19), we obtain: 
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Hence, compressible Navier-Stocks equations can be written as: 
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