

Imbalance Learning Using Heterogeneous
Ensembles

Hossein Ghaderi Zefrehi

Submitted to the
Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Engineering

Eastern Mediterranean University
September 2018

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Assoc. Prof. Dr. Ali Hakan Ulusoy
Acting Director

I certify that this thesis satisfies the requirements of thesis for the degree of Master
of Science in Computer Engineering.

Prof. Dr. Hadi Işık Aybay
 Chair, Department of Computer

Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

 Prof. Dr. Hakan Altınçay

 Supervisor

 Examining Committee

1. Prof. Dr. Hakan Altınçay

2. Prof. Dr. Hasan Kömürcügil

3. Asst. Prof. Dr. Nazife Dimililer

4. Asst. Prof. Dr. Zafer Erenel

5. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

In pattern classification, class-imbalance problem occurs when the number of

samples in one of the classes is much larger than those in the others. In such cases,

the performance of classifiers is generally poor on the minority class. Ensembles of

classifiers are used to tackle this problem where each member is developed using a

different balanced dataset. In this approach, one balancing strategy and a classifier

prototype is generally used. In order to increase the diversity among the members,

bagging and boosting are also considered. In this thesis, the use of heterogeneous

ensembles utilizing multiple prototypes and multiple balancing schemes for

imbalance learning is addressed. Experiments conducted on 66 datasets have shown

that significant improvements can be achieved by employing multiple prototypes. It

is also observed that multiple balancing schemes contribute to the performance

scores, especially in simple and bagging-based ensembles.

Keywords: imbalance learning, classifier ensembles, bagging, boosting,

heterogeneous ensembles, multi-balancing

iv

ÖZ

Örüntü tanımada, bir sınıftaki örnek sayısı diğer sınıflarınkinden çok daha fazla

olduğunda sınıf-denksizliği problem oluşmaktadır. Bu tür durumlarda, sınıflandırıcı

başarımı kıüçük sınflarda düşük olmaktadır. Bu problemi aşmak için, her üyenin

denkleştirilmiş bir veri kümesi ile eğitildiği çoğul sınıflandırıcılı sistemler

kullanılmaktadır. Bu sistemler, genellikle bir denkleştirme ve bir sınıflandırıcı tipi ile

geliştirilmektedir. Sınıflandırıcılar arasındaki farklılıkları artırmak için, torbalama ve

artırma teknikleri de kullanılmaktadır. Bu tezde, birden fazla denkleştirme ve

sınıflandırcı tipi kullanan heterojen çoğul sınıflandırıcı sistemlerin denksizlik

öğrenmede kullanımı çalışılmıştır. 66 veri kümesinde yapılan deneysel çalışmalar,

birden fazla sınıflandırıcı tipi kullanılarak başarımda belirgin iyileştirmeler

sağlanabileceğini göstermiştir. Ayrıca, birden fazla denkleştirme algoritmasının

kullanılmasının, özellikle basit ve torbalama-tabanlı sistemlerin başarımına katkıda

bulunduğu gözlemlenmiştir.

Anahtar Kelimeler: Denksizlik öğrenme, çoğul sınıflandırıcılı sistemler, torbalama,

artırma, heterojen çoklu sınıflandırıcılı sistemler, çoklu-denkleştirme

v

Dedicated to:

My dear daughters, my patient wife, and my kind parents who tolerated my

absence for three years.

vi

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my supervisor Prof. Dr. Hakan

Altınçay for continuous support during my thesis study and research, for his patience,

enthusiasm, and immense knowledge.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

ACKNOWLEDGMENT ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

1 INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Significance ... 1

1.3 Aim of Study .. 2

2 A BRIEF LITERATURE REVIEW .. 4

2.1 Introduction ... 4

2.2 Algorithm Level Approaches .. 5

2.3 Data Level Approaches .. 5

2.4 Ensemble Learning Approaches ... 6

2.5 Classifier Prototypes .. 7

2.5.1 RIMARC ... 7

2.5.2 Logistic Regression (LR) ... 8

2.5.3 Support Vector Machine (SVM) ... 9

2.5.4 KNN .. 9

2.5.5 J48 ... 9

3 METHODOLOGY ... 10

3.1 Introduction ... 10

3.2 Generation of Parallel Ensembles ... 13

viii

3.3 Generation of Serial Ensembles ... 17

3.4 Summary of the Ensembles Evaluated.. 19

4 EXPERIMENTAL RESULTS .. 21

5 CONCLUSIONS ... 36

REFERENCES ... 37

ix

LIST OF TABLES

Table 1: The multi-prototype and multi-balancing ensemble architectures evaluated

in this thesis. .. 12

Table 2: The list of ensembles evaluated. .. 20

Table 3: The datasets in KEEL collection and their imbalance ratios. 21

Table 4: Categorization of datasets according to their imbalance ratios and size of the

minority classes. .. 22

Table 5: The balancing schemes and prototypes used in this study. 23

Table 6: Average AUC scores achieved using (a) ri*tk*Simple, (b) ri*tk*Bagging and

ri*tk*Boosting. ... 25

Table 7: Average AUC scores achieved using (a) ri×T*Simple*P, (b) R×tk*Simple*P

and (c) R×T*Simple*P. ... 26

Table 8: Average AUC scores achieved using (a) ri×T*Bagging*P , (b)

R×tk*Bagging*P and (c) R×T*Bagging*P. ... 26

Table 9: Average AUC scores achieved using (a) ri×T*Boosting*P, (b)

R×tk*Boosting*P and (c) R×T*Boosting*P. ... 27

Table 10: The average AUC scores and ranks obtained for the ensembles

implemented in this study. Ensembles in first six rows utilize multiple-

prototypes.The size of all ensembles is 100. .. 33

Table 11: Statistical evaluation of multi-balancing and multi-prototype systems

developed. The size of all ensembles is 100. [1]: R×T*Simple*P, [2]:

R×T*Bagging*P, [3]: R×T*Boosting*P , [4]: R×T*Simple*S, [5]: R×T*Bagging*S,

[6]: R×T*Boosting*S. .. 34

x

LIST OF FIGURES

Figure 1: Generation of the ensembles (a) ri*tk*Simple and (b) ri*tk*Bagging that are

based on using a single balancing scheme, ri and a single prototype, tk. 14

Figure 2: Generation of ri×T*Simple*P that is based on using a single balancing

scheme, ri and the whole set of all prototypes. The ensemble corresponds to the

classifiers in the dashed-line box. .. 15

Figure 3: Generation of R×tk*Simple*P that is based on using a single prototype, tk

and the set of all balancing schemes. The ensemble corresponds to the classifiers in

the dashed-line box. ... 16

Figure 4: The average AUC scores achieved using Rm and Tm for m = 1, . . . , 5. 29

Figure 5: The average AUC scores achieved using simple serial ensembles. 30

Figure 6: The average AUC scores achieved using bagging-based serial ensembles. 31

Figure 7: The average AUC scores achieved using boosting-based serial ensembles.

 .. 31

Figure 8: The average AUC scores obtained for different subsets of datasets. The first

row presents the scores over all datasets. The second row corresponds to scores on

datasets having high and low imbalance ratios (IR). The last row is average scores on

datasets having small and large minority classes. .. 32

Figure 9: Comparative evaluation of all ensembles using Nemenyi test where α=0:05.

The R package “scmamp” is used. ... 35

1

Chapter 1

1 INTRODUCTION

1.1 Introduction

Pattern classification plays a critical role in various domains including medicine,

computer vision, text categorization for effective search of electronic documents,

analysis of gene expression arrays, combinatorial chemistry, high-value customer

prediction, and disease pre-diagnosis. Typical problems that are generally observed

in solving machine learning tasks are noise in the data, large numbers of features and

class-imbalance. Many researchers are actively working on these problems and

numerous solutions are already proposed.

In the case of imbalanced datasets, the number of samples for the target class (also

called the positive class) is generally small. Consider a two-class classification

problem where the target class is the minority, having much smaller number of

samples than the other class (majority or negative class). In such cases, almost all

algorithms tend to classify the test samples as the majority class, making large

classification errors on the minority samples. In order to deal with this problem, in

general, the data is balanced before training a classifier. Undersampling the majority

class and oversampling the minority are two widely used techniques for this purpose.

1.2 Significance

When a classifier is generated using an imbalanced dataset, since accuracy is the

most widely-used measure for parameter tuning, the decision boundaries will be

2

computed in such a way that the samples in the majority class will be classified with

high accuracy [1]. Such classifiers are not useful in practice since the cost of

misclassifying a minority sample is generally much more than misclassifying a

majority sample. For example, consider a disease classification problem where the

number of patients who has the disease is less than those who do not, which occurs

naturally. When a conventional classifier is used, it is highly likely that majority of

patients will be misclassified as healthy. In fact, true diagnosis of a positive cancer is

more important than a false alarm due to misclassifying a healthy person. Therefore,

building a classifier that provides expected level of performance on the target class

when the data is imbalanced attracts the interest of many researchers.

1.3 Aim of Study

In majority of the studies conducted on imbalance learning, the ultimate goal is set as

balancing the dataset before training a classifier. This is generally done by removing

some instances from majority class and/or adding some new instances to the minority

class. In random undersampling, some randomly selected samples are discarded from

the majority class. On the other hand, in oversampling approach, the number of

minority instances is increased by duplicating randomly selected minority instances

until the desired number of samples is obtained. Experimental results conducted on

imbalanced datasets originating from different domains have shown that the highest

performance scores are generally achieved using an ensemble of classifiers, where

each member of the ensemble is trained on a different randomly-generated dataset

[2].

In this thesis, taking into account the fact that effectiveness of a balancing scheme

depends on the number of training samples in different classes [4] and, the possibility

3

of obtaining more diverse members especially in cases of small minority classes by

employing multiple base learners, multi-balancing and multi-prototype ensembling

for imbalance learning is addressed. To explore the effectiveness of utilizing multiple

balancing schemes and multiple prototypes, different subsets of prototype and

balancing schemes are evaluated in a systematic procedure. For each of the a priori

selected prototype and balancing scheme, the performance scores achieved using

simple, bagging- and boosting-based ensembles are firstly computed. For each

balancing scheme, by studying different prototype subsets having different

cardinalities, the effectiveness of using heterogeneous ensembles is then explored.

Similarly, for each prototype, utilizing different subsets of data balancing techniques

is addressed for comparative evaluation of employing single or multiple balancing

techniques in generating powerful ensembles. Ensembling multi-balancing and

multi-prototype members are then investigated. The area under the receiver operating

characteristics curve (AUC) is used as the performance metric in all simulations.

Experiments conducted on 66 datasets in KEEL repository [35] have demonstrated

that heterogeneous ensembles achieve significantly better performance scores than

their homogeneous counterparts. The experimental results also support using

multiple balancing techniques.

The rest of the thesis is organized as follows. Chapter 2 presents a brief literature

review. In Chapter 3, the proposed ensembling framework utilized for investigating

heterogeneous and multi-balancing ensembles is explained. Chapter 4 presents the

experiments conducted and the results obtained. The conclusions of this thesis and

future directions of research to deal with the imbalance problem are presented in

Chapter 5.

4

Chapter 2

2 A BRIEF LITERATURE REVIEW

2.1 Introduction

The class-imbalance problem arises when the number of samples belonging to one

class is much more than that of another class [1, 5]. In two-class classification

problems, the positive class is in general the minority, including smaller number of

samples than the negative (majority) class. Since the classifiers are generally tuned to

minimize the number of misclassified training samples, the classification accuracy is

higher for the majority class. However, the performance on the minority class may be

of primary concern. Because of this, the models obtained using imbalanced data are

generally unacceptable in practice.

The class-imbalance problem is extensively studied and numerous techniques have

been proposed [2, 3, 4, 6, 7, 8]. These efforts can be broadly categorized into three

groups, namely algorithm level, data level and ensemble learning approaches [2, 9,

10, 11]. In the algorithm level approach which also includes cost-sensitive methods,

the main aim is to develop algorithms that mainly focus on the minority class [12, 13,

14, 15]. In the data level approach, the data is balanced using a preprocessing

technique [18]. Ensemble learning is the most widely used approach, aiming to

utilize algorithm level or data level techniques together with resampling approaches

such as bagging and boosting [1, 2, 9, 23].

5

2.2 Algorithm Level Approaches

The algorithms in this group are based on adapting current classifiers so that they

focus more on the minority class [1]. In other words, by making some modifications

in the algorithm such as assigning a large penalty/cost for misclassification of the

minority class, the algorithm is enforced to correctly classify the positive samples.

For example, Hellinger Distance Decision Tree (HDDT) takes into account the size

of the classes [9]. On the other hand, Class Confidence Proportion Decision Tree

(CCPDT) is insensitive to the class distribution [13]. Similarly, large penalties can be

assigned to misclassification of the minority class in SVM classifier [17]. Cost-

sensitive decision trees [16] and cost-sensitive neural networks [18] also assign a

different cost to each class. Another well-known approach is the cost-sensitive

variant of AdaBoost, namely AdaCost [24].

2.3 Data Level Approaches

This group includes the most widely-used techniques, namely undersampling and

oversampling [2]. In random undersampling approach, the number of negative

samples is reduced by selecting a random subset of samples. Selection can be done

with replacement or without replacement. When replacement is considered, a

negative sample can appear in the target dataset more than once. When replacement

is not allowed, any sample can appear only once in the final dataset.

In random oversampling, minority samples are duplicated until the desired number of

samples is obtained. Duplications are done by replacement. In some cases the

original minority sample will be kept and desired number of samples are randomly

selected from original minority class and added to the dataset.

6

As more intelligent oversampling schemes, SMOTE [19] and its variants such as

DBSMOTE [20], ANS [21] and ADASYN [22] are also proposed where, additional

samples are generated by interpolating randomly selected pairs of the samples in the

minority class. The main idea of SMOTE is to balance the dataset by creating new

minority instances. For each sample in the minority class, SMOTE finds K nearest

neighbors with the same label. Then, two of these neighbors are randomly selected. A

point that is lying on the segment joining these samples is randomly selected as a

new minority instance and it is be added to the dataset. The algorithm is repeated

until the desired numbers of minority instances are obtained. In DBSMOTE [20], for

generating a new positive instance, the segment between a randomly selected

minority sample and the center of the minority class is considered. ANS [21]

automatically determines the number of neighbors and adapts it for different regions

of minority samples. In this algorithm, the minority instances that have no neighbor

around themselves are labeled as outcast and they are not utilized in sample creation

process. ADASYN [22] employs a weighting strategy to assign a weight to each

minority sample by considering its difficulty in learning process. Consequently, for

hard (difficult to learn) minority samples, more new instances will be created.

2.4 Ensemble Learning Approaches

In cost-sensitive ensembles, multiple cost-sensitive classifiers are utilized where each

classifier is developed using a resampled dataset [24, 25]. On the other hand, in

SMOTEBagging [2, 26], UnderBagging [2, 26] and OverBagging [26, 5], both

bagging and balancing are considered in forming the training sets of ensemble

members. In boosting based ensembles such as SMOTEBoost [27], RUSBoost [28]

and DataBoost-IM [23], after balancing the data, the weights of samples are utilized

in computing the training set of the following member. It should be noted that, in

7

bagging-based ensembles, the training data of each member is independent of the

previous members whereas, in boosting-based ones, each member is trained on the

samples which are generally misclassified by the previous members. More than one

balancing scheme may also be used. For instance, SMOTEBagging technique uses

both SMOTE and random oversampling. As an alternative approach, simple

ensembles are also studied [9]. In this technique, resampling is omitted where each

member is generated using a randomly balanced dataset. In other words, either the

minority class is oversampled or the majority class is undersampled. In almost all

ensemble-based methods, a single classifier prototype is used. In fact, the use of so-

called homogeneous ensembles highly dominates the efforts in learning imbalanced

datasets [4].

2.5 Classifier Prototypes

SVM, decision trees, neural networks, logistic regression and KNN are among the

most frequently used classifiers to generate ensemble members [4]. In this section,

the classifiers utilized in the thesis are briefly described.

2.5.1 RIMARC

RIMARC [37] is a supervised classification method which ranks instances by

assigning higher probabilities to samples in the positive class. It is originally

developed for binary classification. The main constraint of RIMARC is that all

features should be categorical. When this is not the case, RIMARC applies MAD2C

algorithm to discretize the features. During the discretization process, the main

objective of MAD2C is to keep the AUC for that feature as large as possible. After

converting all features to categorical form, RIMARC is used to compute the scores

for every interval of all features. This score is calculated as the ratio of positive

samples to total number of instances that are in the same interval as:

8

 �� = ��(�����) , � = 1,2, … ,� (� is number of intervals) (1)

where P� and N� are the number of positive and negative lables in ith interval

respectively. Then, for each feature a weight will be generated. This weight is based

on the AUC of the corresponding feature that is computed after discretization. The

weight is calculated as:

 �� = 2 ∗ (���� − 0.5) (2)

Finally, for each test sample, depending on the intervals of the feature values, the

overall rank score is computed as:

 � = ∑ (��∗��)����∑ ������) (3)

where d denotes the total number of features.

2.5.2 Logistic Regression (LR)

The binary logistic regression model computes the probability of a binary target

variable as a function of one or multiple features, x�. The relationship between the

probability of a particular class and the features is represented as:

 log � ����� = �� + ���� + ���� + ⋯+ ����.) (4)

where � is the probability that the label of the sample is “positive”. The expression

on the left-hand side of the equation given above is called logit, whereas (����) is

named as odds. After some manipulations, � can be expressed as:

 � = ��������������⋯���������������������⋯�����. (5)

In practice, the coefficients of the features denoted by �� are generally computed

using maximum likelihood estimation.

9

2.5.3 Support Vector Machine (SVM)

SVM builds a hyperplane in the instance space which maximizes the margin that is

defined as the gap between the samples of different classes. By utilizing a kernel

function, the feature vectors can also be mapped into a higher dimensional space

where a linear classifier developed in that space will correspond to a nonlinear one in

the original space. Second order polynomial and radial basis function are two widely-

used kernels in pattern classification. In this thesis, we employed radial basis

function as the mapping kernel.

2.5.4 KNN

KNN is one of the simplest classification algorithms. For any test sample, K nearest

neighbors are found where K is generally selected as an odd number. In computing

the neighbors, by taking into account a predefined measure, the distances between

the test sample and all samples in the training set are firstly calculated. Then, K

samples having smallest distance scores are selected as neighbors. By voting over

class labels of these neighbors, the label of the tested sample is determined.

2.5.5 J48

Decision trees are widely used classification schemes due to their simplicity and

interpretability of the models generated. The models are in the form of rule-sets.

They can handle various types of features at the same time. Each rule corresponds to

a different route from the root to a leaf of the tree. Various decision trees are studied,

each having a different feature selection or pruning strategy. J48 is a widely used tree

that is available in Weka platform which implements the C4.5 algorithm. C4.5 uses

normalized information gain to choose the best feature for each node. It applies post-

pruning to eliminate the redundant branches.

10

Chapter 3

3METHODOLOGY

3.1 Introduction

It is well known that a key factor in developing a good ensemble is the diversity of

the member classifiers where, two classifiers are defined to be diverse if their errors

do not overlap [29, 30]. In order to build a diverse ensemble, as described Chapter 2,

a different training set is generally used for each member by using bagging- or

boosting-based resampling together with random balancing. Since the performance

on minority class is the primary concern, diversity originating from differences in the

minority samples is highly crucial. However, only a few minority samples might be

available in some classification problems. Increasing the number of minority samples

by using an oversampling-based technique may not help to generate different diverse

training sets in these domains. For example, all sets of five hundred samples obtained

using random oversampling of only ten samples is expected to have around fifty

duplicates of each sample. In such cases, the majority class has a higher potential to

be the main source of diversity. However, the members trained on undersampled

majority class may still have overlapping errors on the minority class [31].

Experiments conducted on imbalance learning have shown that SMOTE is a more

effective approach when the minority class has small number of samples [4].

Moreover, the relative performance of different balancing schemes is observed to be

dependent on the total number of training samples and imbalance ratio as well.

11

As an alternative source of diversity to random balancing, using multiple learners

(prototypes) in generating member classifiers should also be taken into consideration

in imbalanced learning. Although multi-prototype (heterogeneous) ensembles have

been verified to perform consistently better than its members in various domains [32,

33, 34], the aforementioned schemes developed for imbalance learning are based on

a single prototype that is in general a decision tree [4, 5]. To the best of our

knowledge, the effectiveness of heterogeneous ensembles in imbalance learning is

not fully investigated.

Let R denote a set of balancing techniques and T represent a set of classifier

prototypes. In simple, bagging- and boosting-based ensemble approaches, all

members are generally built by utilizing one a priori selected 2-tuple (ri∈ R, ti∈T)

that is a member of the Cartesian product, R × T. In these ensembles, the main

sources of the diversity between different members are the randomness in the

balancing scheme, ri and the differences in the training sets. However, as a more

general approach, multiple 2-tuples can be considered in forming the ensemble.

Depending on the 2-tuples selected, the members may be generated using (1) a single

balancing scheme but multiple prototypes (2) multiple balancing schemes but a

single prototype and (3) multiple balancing schemes and multiple prototypes. When

compared with the classifiers obtained using a single 2-tuple, it is expected to

achieve a more diverse set of ensemble members when multiple 2-tuples are

employed. Table 1 illustrates 2-tuples for |R| = |T| = 5. When five balancing

techniques, i.e. R = {r1, r2, r3, r4, r5} and five prototypes, T = {t1, t2, t3, t4, t5} are

considered, 25 different ensembles can be built, one for each 2-tuple. Table 1

presents examplar setting. For instance in part (a), four 2-tuples are selected where,

12

three balancing schemes and three prototypes are considered. Assume that K

members will be generated for each 2-tuple. In such a case, using the 2-tuples (r2, t2),

(r2, t4), (r3, t3) and (r4, t2), an ensemble of 4×K members will be computed. In part

(b), 10 2-tuples in the Cartesian product of R and {t2, t4} (i.e. R × {t2, t4}) are

considered, leading to 10×K members. Similarly, 10×K members are generated using

all 2-tuples in {r2, r3}× T in part (c). In all three settings, diversities among the

members is expected to increase due to utilizing more than one classifier prototype

and balancing technique.

Table 1: The multi-prototype and multi-balancing ensemble architectures evaluated
in this thesis.

 t1 t2 t3 t4 t5
r1
r2 * *
r3 *
r4 *
r5

 t1 t2 t3 t4 t5
r1 * *
r2 * *
r3 * *
r4 * *
r5 * *

 t1 t2 t3 t4 t5
r1
r2 * * * * *
r3 * * * * *
r4
r5

(a) (b) (c)

In this thesis, to investigate the effectiveness of utilizing multiple prototypes and

multiple balancing schemes, simple, bagging- and boosting-based ensembles of

multiple 2-tuples is extensively studied. The experiments are organized in two major

parts. In the first part, the relative performances of different 2-tuple sets is

investigated. For each a priori selected 2-tuple, K members are generated in parallel.

The members corresponding to each 2-tuple are generated independently from the

members of the other 2-tuples. Then, members from different 2-tuples are combined

using averaging. In this part of experiments, various subsets of 2-tuples are also

evaluated. In the following context, this type of ensembles is referred as parallel (P).

In the second part of the experiments, random selection of a 2-tuple for each member

by using the weights assigned to each prototype in T is addressed. Weights of better

13

classifiers are assigned as larger than worse ones to have them more frequently

selected. Consequently, the number of members for each 2-tuple will not be the

same. In this approach, since member generation is iteratively done, this ensemble

architecture will be referred as serial (S) in the following context. As in the case of

parallel approach, the members are combined using averaging. The architectures of

multi-balancing and multi-prototype ensembles are described in more detail in the

following subsections.

3.2 Generation of Parallel Ensembles

Let U denote the original imbalanced dataset. Assume that a single balancing scheme

denoted by ri and a classifier prototype, tk is utilized. Consider a simple ensemble of

K members where the kth member is generated by employing a different balanced

dataset, Bk. In other words, ri is applied K times to generate K balanced training sets.

Then, the members are combined using averaging. Part (a) in Figure 1 shows the

flowchart of this ensemble that is referred as ri*tk*Simple in the following context. It

should be noted that the symbol ‘*’ does not denote any operator. It is used to

separate the design components of ensembles in their naming.

14

Figure 1: Generation of the ensembles (a) ri*tk*Simple and (b)

ri*tk*Bagging that are based on using a single balancing scheme,
ri and a single prototype, tk.

Part (b) in Figure 1 illustrates the flowchart of bagging-based ensemble that is

referred as ri*tk*Bagging in the following context. In this approach, the training set

of each member is computed by applying the balancing scheme to a bootstrap sample

of the original dataset. As in the case of simple ensembles, the members are

combined using averaging.

The algorithm used for developing boosting-based ensembles denoted by

ri*tk*Boosting for an a priori selected balancing scheme ri and prototype tk is

presented in Algorithm 1. The algorithm is obtained by adding data balancing (in

Line 3) to Adaboost.M2 [36]. In fact, when ri is selected as SMOTE, the algorithm

corresponds to SMOTEBoost. Similarly, when ri is undersampling, it is equivalent to

RUSBoost.

15

In this thesis, the main goal is to investigate combination of classifiers generated

using multiple balancing schemes and prototypes. This can be achieved using

ri*tk*Simple, ri*tk*Bagging and ri*tk*Boosting and multiple 2-tuples. For this

purpose, employing either the whole set of R or T is firstly addressed. Specifically,

ri×T*Simple*P corresponds to combination of 5×K members, where ri is used in all

members as shown in Figure 2.

Figure 2: Generation of ri×T*Simple*P that is based on using a single
balancing scheme, ri and the whole set of all prototypes. The ensemble

corresponds to the classifiers in the dashed-line box.

16

In this setting, K members are generated for each prototype. The label “P” denotes

parallel generation of members for different prototypes. Similarly, the ensembles

ri×T*Bagging*P and ri×T*Boosting*P can be computed by replacing ri*tk*Simple

with ri*tk*Bagging and ri*tk*Boosting, respectively.

Using a single prototype but multiple balancing schemes is also addressed.

R×tk*Simple*P, R×tk*Bagging*P and R×tk*Boosting*P correspond to ensembles of

5×K members, where tk is the prototype used and, K members are generated for each

balancing scheme in R. The ensemble corresponding to R×tk*Simple*P is shown in

Figure 3. Averaging is used for the combination of the member outputs. By studying

ri×tk*Simple, ri×T*Simple and R×tk*Simple*P , it is aimed to identify the relative

importance of using single or multiple schemes for balancing and model

development in the case of simple ensembles. This is also done for bagging- and

boosting-based ensembles.

Figure 3: Generation of R×tk*Simple*P that is based on using a
single prototype, tk and the set of all balancing schemes. The

ensemble corresponds to the classifiers in the dashed-line box.

The performances of different subsets of R and T are also evaluated. In particular,

Rm×T*Simple*P corresponds to using a subset of m balancing schemes in R and the

17

whole set of T in generating a simple ensemble. Consider the case for |R| = 5. We

have ten different subsets of m = 2 balancing schemes. In this study, we evaluated all

such ensembles and reported the average AUC scores. Similarly, utilizing subsets of

T together with the whole set of R denoted by R×Tm*Simple*P is explored. The

experiments are repeated for bagging- and boosting-based ensembles. The ensembles

obtained are named as Rm×T*Bagging*P and R×Tm*Bagging*P in the case of

bagging. Similarly, the ensembles are named as Rm×T*Boosting*P and

R×Tm*Boosting*P in the case of boosting.

3.3 Generation of Serial Ensembles

As mentioned above, all 2-tuples in R × T are used in generating serial ensembles. In

particular, each member is developed using a randomly selected balancing scheme

and a randomly selected prototype. Algorithm 2 presents R*T*Simple*S, which

corresponds to a simple serial (S) ensemble. In this type of ensembles, weighted

selection of the prototypes is addressed by taking into account various prototype

distributions, prDist in Line 3. It should be noted that the distributions investigated

include uniform distribution and others that are proportional to the individual

performances of the prototypes.

18

Algorithm 3 presents R*T*Bagging*S. This Algorithm is obtained by adding Line 4

into Algorithm 2. More specifically, balancing is performed on a bootstrap sample

from the imbalanced dataset. This is expected to contribute to the diversity among

the ensemble members. As in Algorithm 2, weighted selection of the prototypes is

addressed by taking into account various prDist values in line 3 of Algorithm 3.

Algorithm 4 presents R*T*Boosting*S, which is based on Adaboost.M2 algorithm

[36]. In each iteration of this algorithm, a balanced dataset denoted by Bk is

computed using the randomly selected balancing scheme. The weights of the selected

samples are normalized to compute ��� . The next classifier is then generated using Bk

and ��� and the randomly selected prototype, tk.

19

3.4 Summary of the Ensembles Evaluated

Table 2 presents the ensembles developed to study the effectiveness of utilizing

multiple balancing schemes and multiple prototypes in imbalance learning. The table

also includes the number of classifiers in each ensemble which is based on the value

of K, number of balancing methods and prototypes utilized in generating the

ensemble. Due to the higher computational cost of RIMARC and SVM, the ensemble

size is set to K = 50 for t1, t2 and t3 as in [1], whereas K = 100 for t4 and t5. The

ensembles implemented are also compared with six widely used techniques. These

are SMOTEBagging, UnderBagging, OverBagging, SMOTEBoost, RUSBoost and

DataBoost-IM. In fact, when ri is selected as SMOTE, ri*tk*Boosting is identical to

SMOTEBoost. Similarly, RUSboost is obtained when ri is random undersampling.

DataBoost-IM is the third ensemble from the boosting family of ensembles

considered in this study. Since it has an additional step of focusing only on the hard

samples in generating synthetic data, it is not identical to any of the ensembles listed

in Table 2. In SMOTEBagging, a bootstrap sample of the majority class is used.

20

Table 2: The list of ensembles evaluated.

Ensemble name
Number of

balancing methods
Number of
prototypes Ensemble size

ri*tk*Simple
ri*tk*Bagging
ri*tk*Boosting

1 1 50 for {t1, t2, t3}
100 for {t4, t5}

ri×T*Simple * P
ri×T*Bagging * P
ri×T*Boosting * P

1 5
20 for K = 4
50 for K = 10
100 for K = 20

R×tk*Simple * P
R×tk*Bagging * P
R×tk*Boosting * P

5 1
20 for K = 4
50 for K = 10
100 for K = 20

R×T*Simple*P
R×T*Bagging*P
R×T*Boosting*P

5 5
100 for K = 4
250 for K =10
500 for K =20

Rm×T*Simple*P
Rm×T*Bagging*P
Rm×T*Boosting*P

m 5 5 × m ×K

R×Tm*Simple*P
R×Tm*Bagging*P
R×Tm* Boosting*P

5 m 5 × m ×K

R*T*Simple*S
R*T*Bagging*S
R*T*Boosting*S

5 5 100

The minority samples are generated using both oversampling and SMOTE [26]. In

both UnderBagging and OverBagging, a bootstrap sample with replacement is taken

separately from both minority and majority classes [5]. In the case of UnderBagging,

the size of bootstrap samples in each class is equal to the original size of the minority

class whereas, in OverBagging, it is equal to the original size of the majority class.

As it can be seen in Figure 1, in our bagging family of ensembles, oversampling or

undersampling is applied after a bootstrap sample is taken and class labels are not

considered in selecting the samples. In all six reference ensembles, J48 was

considered as the base learner and ensemble size is set as 100.

21

Chapter 4

EXPERIMENTAL RESULTS

The experiments are conducted on 66 datasets in KEEL collection which are

originally from the UCI Repository [35].

Table 3: The datasets in KEEL collection and their imbalance ratios.
Dataset Minority

class size
Imbalance
ratio

Dataset Minority
class size

Imbalance
ratio

abalone19 32 129.44 ecoli-0-2-6-7 vs 3-5 22 9.18
yeast6 35 41.40 ecoli-0-1 vs 2-3-5 24 9.17
ecoli-0-1-3-7vs2-6 7 39.14 ecoli-0-4-6 vs 5 20 9.15
yeast5 44 32.73 yeast-0-2-5-7-9vs3-6-8 99 9.14
yeast-1-2-8-9 vs 7 30 30.57 yeast-0-2-5-6vs3-7-8-9 99 9.14
yeast4 51 28.10 yeast-0-3-5-9 vs 7-8 50 9.12
yeast-2 vs 8 20 23.10 glass-0-1-5 vs 2 17 9.12
glass5 9 22.78 ecoli-0-2-3-4 vs 5 20 9.10
yeast-1-4-5-8 vs 7 30 22.10 ecoli-0-6-7 vs 3-5 22 9.09
shuttle-c2-vs-c4 6 20.50 yeast-2 vs 4 51 9.08
glass-0-1-6 vs 5 9 19.44 ecoli-0-3-4 vs 5 20 9.00
abalone9-18 42 16.40 page-blocks0 559 8.79
page-blocks-13vs4 28 15.86 ecoli3 35 8.60
ecoli4 20 15.80 yeast3 163 8.10
glass4 13 15.46 glass6 29 6.38
yeast-1 vs 7 30 14.30 segment0 329 6.02
shuttle-c0-vs-c4 123 13.87 ecoli2 52 5.46
ecoli-0-1-4-6 vs 5 20 13.00 new-thyroid2 35 5.14
cleveland-0 vs 4 13 12.62 new-thyroid1 35 5.14
ecoli-0-1-4-7vs5-6 25 12.28 ecoli1 77 3.36
glass2 17 11.59 vehicle0 199 3.25
glass-0-1-4-6vs 2 17 11.06 glass-0-1-2-3 vs 4-5-6 51 3.20
ecoli-0-1 vs 5 20 11.00 vehicle3 212 2.99
glass-0-6 vs 5 9 11.00 vehicle1 217 2.90
led7digit-0-2-4-5- vs 1 37 10.97 vehicle2 218 2.88
ecoli-0-1-4-7vs2-3- 29 10.59 haberman 81 2.78
glass-0-1-6 vs 2 17 10.29 yeast1 429 2.46
ecoli-0-6-7 vs 5 20 10.00 glass0 70 2.06
vowel0 90 9.98 iris0 50 2.00
yeast-0-5-6-7-9vs 4 51 9.35 pima 268 1.87
ecoli-0-3-4-7vs5-6 25 9.28 wisconsin 239 1.86
ecoli-0-3-4-6vs 5 20 9.25 ecoli-0 vs 1 77 1.86
glass-0-4 vs 5 9 9.22 glass1 76 1.82

22

In this collection, some datasets are different partitions of one multi-class dataset. For

instance, in “glass0”, class-0 of “glass” dataset is the minority class whereas the

samples in all other classes form the majority class. The characteristics of these

datasets, namely the number of samples in the minority class and the imbalance ratio

that is defined as the ratio of the number of samples in majority class to that of the

minority are presented in Table 3. As seen in the table, each dataset is highly different

from many of the others. For instance, imbalance ratios are between 1.82 and 129.44.

Table 4 presents the distribution of the datasets according to their minority class sizes

(MS) and imbalance ratios (IR). The datasets having an imbalance ratio above 10.0

are categorized as high imbalance whereas the low imbalance datasets have ratios

less than 5.5. The datasets are grouped as small minority if the number of samples in

the minority class is at most 20 whereas large minority datasets include at least 90

samples.

Table 4: Categorization of datasets according to their imbalance ratios and
size of the minority classes.

Low imbalance

ratio
(IR<5.5)

Moderate
imbalance ratio
(5.5<=IR<=10)

High imbalance
ratio

(IR>10)
Small

minority
(MS<=20)

0 7 14

Moderate
minority

(20<MS<90)
10 9 12

Large
minority

(MS>=90)
7 6 1

Table 5 presents the balancing schemes and prototypes used in this thesis. In

SMOTE, the number of neighbors used for generating synthetic minority samples is

set as k = 5 as it generally used in [20]. ADASYN is a variant of SMOTE where

more minority samples are generated for samples that are harder to classify. ANS is

23

another variant where the number of neighbors, k is not fixed and a different value is

dynamically assigned to each minority instance.

 Table 5: The balancing schemes and prototypes used in this study.
Balancing method Classifier prototype

r1: Random undersampling t1: RIMARC
r2: Random oversampling t2: Logistic regression (LR)
r3: SMOTE t3: SVM with Gaussian kernel
r4: ADASYN t4: Nearest neighbor classifier
r5: ANS t5: Decision tree (J48)

RIMARC is a recently proposed classification scheme that is based on discretizing

continuous features [37]. The discretization thresholds of each feature are calculated

in a way that maximizes the AUC that can be achieved by the feature [38]. After

discretization, the feature values are computed as the percentage of positive samples

in each interval. The overall score generated by the classifier is calculated as the

weighted sum of the probabilities obtained from all features. The weight of each

feature is proportional to its individual AUC score. It is experimentally shown that

the discretization policy applied helps to achieve higher AUC scores when compared

to other widely used classifiers [37]. It should be noted that, logistic regression

classifier is also observed to achieve higher AUC scores when compared to many

other widely used classifiers [37]. J48 was used since it is one of the most frequently

used implementation of decision trees [1, 9]. The average AUC scores obtained using

5 × 2-fold cross validation are employed in comparing different ensembles [39].

Table 6 presents the average AUC scores obtained using a single balancing scheme

and a single prototype, namely ri*tk*Simple and ri*tk*Bagging and ri*tk*Boosting,

respectively in parts (a), (b) and (c). Last rows and columns present the column-wise

and row-wise averages, respectively. The scores presented in boldface are the highest

24

row or column averages. The average of all 25 AUC scores is presented in underlined

form. The results show that undersampling provides the highest score when averaged

over all prototypes in all three types of ensembles. SVM and LR provide the highest

scores for ri*tk*Simple and ri*tk*Bagging, respectively whereas J48 provides the best

score when used in ri*tk*Boosting. J48 is the second best in bagging-based

ensembles whereas LR is the second best in simple ensembles. Although the highest

AUC score is obtained by a boosting-based ensemble using J48 as the classifier

prototype (i.e. r3*t5*Boosting or SMOTEBoost), when the col-AVG scores are

compared, it can be seen that the performance of boosting based ensembles is higher

than those of both simple and bagging-based ensembles only for J48. Therefore,

selection of the classifier prototype is more critical in the case of boosting-based

ensembles. Comparing the overall averages given in underlined form, it can be

concluded that bagging-based ensembles generally achieve superior scores when

compared to simple and boosting-based ensembles. Table 7 presents the average

AUC scores obtained by using (a) ri×T*Simple*P, (b) R×tk*Simple*P and (c)

R×T*Simple*P for K = 4, 10 and 20. For the ensembles in (a) and (b), totally 5×K

members are utilized, leading to 20, 50 and 100 classifiers for K = 4, 10 and 20,

respectively. In the case of R×T*Simple*P, by considering all 25 2-tuples (ri, tk),

ensemble sizes are 100, 250 and 500, respectively for K = 4, 10 and 20. When

ri×T*Simple*P and R×tk*Simple*P are compared, it can seen that the scores

achieved using multiple prototypes given in part (a) are much higher than those

obtained by using a single prototype that are presented in part (b). The scores are also

superior to those obtained using individual 2-tuples presented in part (a) of Table 6. It

can be concluded that it is highly crucial to utilize multiple prototypes in simple

ensembles, regardless of the balancing scheme employed. R×T*Simple*P surpasses

25

the ensembles corresponding to ri×T*Simple*P and R×tk*Simple*P, which means

that better ensembles are generated by using multiple balancing techniques and

classifier prototypes.

Table 6: Average AUC scores achieved using (a) ri*tk*Simple, (b) ri*tk*Bagging and
ri*tk*Boosting.
 t1 t2 t3 t4 t5 row-AVG

r1 0.8966 0.9075 0.8871 0.8939 0.9083 0.8987
r2 0.8947 0.8938 0.9065 0.8014 0.8640 0.8736
r3 0.8950 0.8945 0.9058 0.8386 0.8788 0.8844
r4 0.8921 0.8929 0.9023 0.8397 0.8753 0.8817
r5 0.8871 0.8930 0.8993 0.8182 0.8583 0.8728

col-AVG 0.8931 0.8963 0.9002 0.8384 0.8769 0.8810
(a)

 t1 t2 t3 t4 t5 row-AVG
r1 0.8966 0.9151 0.9002 0.9018 0.9104 0.9048
r2 0.8940 0.9134 0.9085 0.8705 0.9094 0.8992
r3 0.8948 0.9146 0.9084 0.8870 0.9132 0.9036
r4 0.8927 0.9132 0.9053 0.8878 0.9123 0.9022
r5 0.8890 0.9139 0.9054 0.8839 0.9092 0.9003

col-AVG 0.8934 0.9140 0.9055 0.8862 0.9109 0.9020
(b)

 t1 t2 t3 t4 t5 row-AVG
r1 0.8264 0.9020 0.9130 0.8979 0.9131 0.8905
r2 0.8194 0.9013 0.9006 0.8696 0.9114 0.8805
r3 0.8176 0.9039 0.9027 0.8893 0.9153 0.8858
r4 0.8227 0.8990 0.8965 0.8844 0.9148 0.8835
r5 0.8117 0.9011 0.8947 0.8762 0.9110 0.8784

col-AVG 0.8196 0.9015 0.9015 0.8835 0.9131 0.8837

(c)

However, the actual gain due to using multiple resampling schemes can be better

evaluated when part (b) of Table 7 is compared with part (a) in Table 6. For instance,

the score achieved using t3 and R (0.9078) in Table 7 part (b) is higher than all the

scores in the third column in part (a) of Table 6. This shows that, for t3, utilizing

multiple resampling schemes should be preferred.

26

Table 7: Average AUC scores achieved using (a) ri×T*Simple*P, (b) R×tk*Simple*P
and (c) R×T*Simple*P.

 ri ×T * Simple * P
K=4 K=10 K=20

r1 0.9198 0.9237 0.9242
r2 0.9277 0.9281 0.9283
r3 0.9279 0.9284 0.9284
r4 0.9261 0.9266 0.9268
r5 0.9264 0.9267 0.9268

 R × tk * Simple * P
K=4 K=10 K=20

t1 0.8962 0.8963 0.8964
t2 0.9040 0.9082 0.9097
t3 0.9079 0.9075 0.9078
t4 0.8868 0.8917 0.8942
t5 0.8987 0.9049 0.9072

R × T * Simple * P
K=4 K=10 K=20

0.9297 0.9301 0.9301

(a) (b) (c)

In fact, this is also true for t2 and t4. However, the performance gain is not

significant when compared using only r1. Table 8 presents the average AUC scores

obtained by using, (a) ri×T*Bagging*P, R×tk*Bagging*P and (c) R×T*Bagging * P

for K = 4, 10 and 20.

Table8: Average AUC scores achieved using (a) ri×T*Bagging*P, (b)
R×tk*Bagging*P and (c) R×T*Bagging*P.

 ri × T * Bagging * P
K=4 K=10 K=20

r1 0.9179 0.9225 0.9250
r2 0.9274 0.9303 0.9310
r3 0.9281 0.9301 0.9305
r4 0.9266 0.9288 0.9296
r5 0.9268 0.9295 0.9300

 R × tk * Bagging * P
K=4 K=10 K=20

t1 0.8944 0.8954 0.8950
t2 0.9120 0.9163 0.9176
t3 0.9089 0.9096 0.9098
t4 0.8935 0.8990 0.9019
t5 0.9065 0.9134 0.9174

R × T * Bagging * P
K=4 K=10 K=20

0.9300 0.9311 0.9314

(a) (b) (c)

The results are consistent with those obtained in simple ensembles. However, slightly

better scores can be obtained in general. When the AUC scores presented in parts (a)

and (c) are compared, it can be seen that using multiple balancing schemes and large

K (i.e. 10 or 20) leads to better scores than all ensembles presented in part (a) which

are based on a single balancing scheme. Comparing part (b) of Table 8 with part (b)

in Table 6, it can be seen that utilizing multiple resampling schemes leads to better

scores for all classifiers except for t1. Therefore, as in the case of simple ensembles,

instead of selecting a good balancing strategy or classifier prototype, using multiple

27

schemes and prototypes should be considered. However, as in the case of simple

ensembles, the gain due to utilizing multiple balancing schemes is not as remarkable

as employing multiple prototypes. Table 9 presents the average AUC scores obtained

by using, (a) ri×T*Boosting*P, R×tk*Boosting*P and (c) R×T*Boosting*P for K = 4,

10 and 20.

Table 9: Average AUC scores achieved using (a) ri×T*Boosting*P, (b)
R×tk*Boosting*P and (c) R×T*Boosting*P.

As in the case of simple and bagging-based ensembles, totally 5×K members are

utilized in both (a) and (b), leading to 20, 50 and 100 classifiers for K = 4, 10 and 20,

respectively. Consider part (a) where the scores obtained using multiple prototypes

and a single balancing scheme are presented. When compared with the scores

presented in part (c) of Table 6, it can be seen that the performance may degrade

when multiple prototypes are employed. More specifically, inferior scores than the

best-fitting prototypes are obtained for r4. When 100 members are employed, the

AUC score achieved using {r4, t5} is 0.9148 (from Table 6) whereas 0.9035 is

obtained using r4 and multiple prototypes. On the other hand, the best score achieved

by using r1 is improved from 0.9131 to 0.9251, which is greater than the scores of all

tuples. In fact, r4 can be considered as an exception since multiple prototypes lead to

better scores than the best individual for all other balancing schemes.

 r i× T * Boosting * P
K=4 K=10 K=20

r1 0.9160 0.9212 0.9251
r2 0.9200 0.9186 0.9160
r3 0.9220 0.9181 0.9172
r4 0.9188 0.9047 0.9035
r5 0.9191 0.9063 0.9154

 R × tk * Boosting * P
K=4 K=10 K=20

t1 0.8053 0.8155 0.8205
t2 0.9095 0.9090 0.9105
t3 0.9112 0.9111 0.9095
t4 0.8947 0.8959 0.8953
t5 0.9125 0.9170 0.9198

R × T * Boosting * P
K=4 K=10 K=20

0.9253 0.9229 0.9210

(a) (b) (c)

28

In boosting-based ensembles, the performance gain from multiple balancing schemes

depends on the classifier prototype. As it can be seen in part (b) of Table 9, the scores

achieved using t1 are highly poor. These scores are also inferior than the score

achieved using (r1, t1), 0.8264. This is also the case for t3 and t4. In other words, using

multiple resampling schemes does not provide better ensembles for these base

learners. However, using multiple balancing schemes, the highest score obtained

using a single balancing scheme and prototype (i.e. (r3, t5), in Table 6) is improved

from 0.9153 to 0.9198.

The AUC scores obtained by utilizing multiple balancing schemes and multiple

classifier prototypes are presented in part (c) of Table 9. The scores are higher than

the best scores achieved using a single prototype given in part (b). This verifies the

importance of using multiple prototypes in boosting-based ensembles as well.

However, the difference in the scores is not notable when compared to using only r1

together with T as presented in the first row of part (a). In summary, as in simple and

bagging-based ensembles, the highest scores are obtained using multiple prototypes.

However, when multiple prototypes are used, a notable improvement is not observed

by utilizing multiple resampling schemes when compared with r1.

The experimental results presented in Tables 7, 8 and 9 clearly demonstrate the

importance of using heterogeneous ensembles in imbalance learning. In order to

investigate the contribution of subsets of T (denoted by Tm when m prototypes are

used) to the ensemble performance when used together with the whole set of R (i.e.

all 2-tuples in R×Tm), further experiments are conducted. Similarly, the performances

of all 2-tuples in Rm×T are evaluated. The average AUC values obtained for m = 1, 2,

3, 4, 5 are presented in Figure 4.

29

It should be noted that, when m = 1, the average AUCs obtained using five

ensembles are reported whereas the scores of ten ensembles are averaged when m =

2. Each ensemble involves m × |T| × K members. For instance, 200 members are

computed when m = 2 since |T| = 5 and K = 20, in both Rm×T*Simple*P and

R×Tm*Simple*P. Similarly, the ensemble size is 300 when m = 3. The first row of

the figures illustrates the gains obtaining by using increasing numbers of balancing

methods. The figures in the second row show that increasing the number of

prototypes leads to notable improvements in the performance scores for all three

types of ensembles.

Figure 4: The average AUC scores achieved using Rm and Tm for m = 1, . . . ,5.

The figure on the left in Figure 5 presents the average AUC scores obtained using

R×tk*Simple*S for individual prototypes denoted by tk, k = 1, . . . , 5 and the whole

set of prototypes, T.

30

Figure 5: The average AUC scores achieved using simple serial ensembles.

It should be noted that the prototype distribution, prDist is selected as uniform in the

case of T. The experimental results show that utilizing multiple prototypes is also

effective in serial ensembles. In Figure 5, the effect of using different distributions is

presented on the right. The selection of prDist is based on the col-AVG values

reported in Table 6. The first distribution is set as �� = (��� , ��� , ��� , ��� , ���) , aiming at

using the most successful prototypes determined using Table 6 in vast majority of the

members. The second distribution �� = (��� , ��� , ��� , ��� , ���) is used to select the

prototypes more uniformly by considering their relative performances into account.

w3 corresponds to the uniform distribution that is provided as a reference. It can be

seen that better scores are obtained using w2. The experiments are repeated for

bagging- and boosting-based serial ensembles as presented in Figures 6 and 7,

respectively.

31

Figure 6: The average AUC scores achieved using bagging-based serial ensembles.

Figure 7: The average AUC scores achieved using boosting-based serial ensembles.

In bagging-based ensembles, the weights are selected as �� = (��� , ��� , ��� , ��� , ���), and

�� = � ��� , ��� , ��� , ��� , ���� using the same logic as in case of simple ensembles. In

boosting-based ensembles the weights are selected as �� = � ��� , ��� , ��� , ��� , �����

and �� = � ��� , ��� , ��� , ��� , ����. The experimental results show that multiple prototypes

32

provides superior scores when compared to individual prototypes for all three type of

ensembles. The additional improvements that could be achieved by utilizing different

weights demonstrate that a good ensemble should include a rich set of prototypes,

where the percentage of each prototype is proportional to its individual performance.

Figure 8: The average AUC scores obtained for different subsets of datasets.

The first row presents the scores over all datasets. The second row corresponds
to scores on datasets having high and low imbalance ratios (IR). The last row is

average scores on datasets having small and large minority classes.

The average AUC scores obtained using ri*tk*Bagging and ri*tk*Boosting on

different subsets of datasets are presented in Figure 8. It should be noted that each

bar corresponds to the average for five balancing schemes. The figures show that the

highest scores are generally achieved using bagging-based ensembles. When the

33

imbalance ratio (IR) is low or the size of minority class is large, bagging J48

provides the highest scores whereas bagging LR provides the highest scores in the

other two cases. For LR, bagging is the best ensembling scheme for all four groups

of datasets whereas, in the case of J48, the relative performance of bagging and

boosting depends on the characteristic of the dataset. More specifically, boosting J48

leads to better scores when the dataset has high imbalance or small minority class.

Table 10: The average AUC scores and ranks obtained for the ensembles
implemented in this thesis. Ensembles in first six rows utilize multiple-prototypes.
The size of all ensembles is 100.

Type Ensemble Avg. AUC score Avg. rank

Multiple prototypes

R × T * Simple * P 0.9297 6.13
R × T * Bagging * P 0.9300 5.59
R × T * Boosting * P 0.9253 7.76
R × T * Simple * S 0.9293 6.83
R × T * Bagging * S 0.9298 5.83
R × T * Boosting * S 0.9233 9.09

Single prototype

r1 * t5 * Simple 0.8871 13.24
r1 * t2 * Bagging 0.8940 12.14
R × t2 * Simple * P 0.9097 13.47
R × t2 * Bagging * P 0.9176 11.61
R × t5 * Boosting * P 0.9198 9.78
R × t2 * Simple * S 0.9112 12.48
R × t2 * Bagging * S 0.9175 11.35
R × t5 * Boosting * S 0.9175 11.22
SMOTEBagging 0.9066 13.29
UnderBagging 0.9093 11.92
OverBagging 0.8975 15.65
SMOTEBoost 0.9153 10.73
RUSBoost 0.9131 10.65
DataBoost-IM 0.9157 11.22

Table 10 presents the average AUC scores and average ranks of a selected subset of

ensembles developed in this study. First six rows are multi-balancing and multi-

prototype simple, bagging- and boosting-based ensembles. Other 14 ensembles are

based on a single prototype.

34

More specifically, r1*t5*Simple is the best simple ensemble (highest score in part (a)

of Table 6) and r1*t2*Bagging is the best bagging-based ensemble (highest score in

part (b) of Table 6), both utilizing a single balancing scheme and prototype.

Following three ensembles are the best simple, bagging- and boosting-based parallel

ensembles utilizing a single prototype but multiple balancing schemes. The best

simple, bagging- and boosting- based serial ensembles employing a single prototype

but multiple balancing schemes are listed next. SMOTEBagging, UnderBagging,

OverBagging, SMOTEBoost, RUSBoost and DataBoost-IM are listed in last six

rows. Wilcoxon signed-rank test [41] is also performed to compare the multi-

prototype ensembles presented in top six rows of Table 10 with the other 14

ensembles using α = 0.05. The p-values obtained, numbers of wins, losses, ties are

presented in Table 11.

Table 11: Statistical evaluation of multi-balancing and multi-prototype systems
developed. The size of all ensembles is 100. [1]: R×T*Simple*P, [2]:
R×T*Bagging*P, [3]: R×T*Boosting*P , [4]: R×T*Simple*S, [5]: R×T*Bagging*S,
[6]: R×T*Boosting*S.

 [1] [2] [3] [4] [5] [6]
r1 * t5 * Simple 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
r1 * t2 * Bagging 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
R × t2 * Simple * P 0.0000 0.0000 0.0002 0.0000 0.0000 0.0011
R × t2 * Bagging * P 0.0000 0.0000 0.0119 0.0000 0.0000 0.0744
R × t5 * Boosting * P 0.0000 0.0000 0.0001 0.0000 0.0000 0.0417
R × t2 * Simple * S 0.0000 0.0000 0.0009 0.0000 0.0000 0.0059
R × t2 * Bagging * S 0.0000 0.0000 0.0145 0.0000 0.0000 0.0809
R × t5 * Boosting * S 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
SMOTEBagging 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
UnderBagging 0.0000 0.0000 0.0001 0.0000 0.0000 0.0015
OverBagging 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SMOTEeBoost 0.0000 0.0000 0.0004 0.0000 0.0000 0.0486
RUSBoost 0.0000 0.0000 0.0131 0.0000 0.0000 0.2764
DataBoost-IM 0.0000 0.0000 0.0001 0.0000 0.0000 0.0042

Number of wins 14 14 14 14 14 11
Number of losses 0 0 0 0 0 0
Number of ties 0 0 0 0 0 3

35

These two tables show that the ensembles constructed using multiple balancing

schemes and multiple prototypes perform significantly better that the others which

are based on a single prototype. “Nemenyi” test is used for pair wise comparison of

all ensembles [41].

Figure 9: Comparative evaluation of all ensembles using Nemenyi test where
α=0.05. The R package “scmamp” is used.

As presented in Figure 9, Ensembles for which the difference in average ranks is

lower than the critical difference (CD) is connected by a black line. According to this

test, R×T*Bagging*P and R×T*Bagging*S are significantly better than all

homogeneous ensembles employing only one type of a classifier.

36

Chapter 5

5 CONCLUSIONS

In this thesis, the use of multi-prototype and multi-balancing ensembles for

imbalance learning is addressed. Simple, bagging- and boosting-based ensembles are

implemented for this purpose. Experiments conducted on 66 datasets in KEEL

repository have shown that multiple prototype ensembles provides significantly

better AUC scores when compared to the ensembles utilizing a single prototype. The

contribution of employing multiple balancing schemes is also taken into

consideration. Experimental results have shown that slight improvements can be

achieved for majority of the classifier prototypes, especially in simple and bagging-

based ensembles. Prototype weighting is also addressed using serial ensembles.

Additional improvements are achieved by utilizing weights that are proportional to

the individual performance scores of the classifier prototypes.

The experimental results have also shown that the highest scores are achieved when

all five prototypes are used. Since multiple prototypes provide significant

improvements, further research should be conducted for obtaining an even better

prototype set. The effect of adding more classifier prototypes should be investigated.

Also, the characteristics of the classifiers that form the best-fitting set should also be

explored. The weights selected in serial ensembles were not tuned according to a

particular objective function. Further research should be conducted to investigate the

effect of alternative weighting strategies.

37

REFERENCES

[1] J. F. Díez-Pastor, J. J. Rodríguez, C. I. García-Osorio, and L. I. Kuncheva.

Random balance: Ensembles of variable priors classifiers for imbalanced

data. Knowledge-Based Systems, 85:96–111, 2015.

[2] L. I. Kuncheva, A. Arnaiz-Gonzalez, J. Diez-Pastor, and I. A. D. Gunn.

Instance selection improves geometric mean accuracy: A study on imbalanced

data classification, 2018. arXiv:1804.07155.

[3] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing.

Learning from class-imbalanced data: Review of methods and applications.

Expert Systems with Applications, 73:220–239, 2017.

[4] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrer. A review

on ensembles for the class imbalance problem: Bagging-, boosting-, and

hybrid-based approaches. IEEE Transactions on Systems Man and

Cybernetics Part C, 42(4):463–484, July 2012.

[5] A. Fernandez, M. J. del Jesus, and F. Herrera. Hierarchical fuzzy rule based

classification systems with genetic rule selection for imbalanced datasets.

International Journal of Approximate Reasoning, 50(3):561–577, 2009.

[6] X. Y. Liu, J. Wu, and Z. H. Zhou. Exploratory undersampling for class-

imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 39(2):539–550, April 2009.

38

[7] A. Irtaza, S. M. Adnan, K. T. Ahmed, A. Jaffar, A. Khan, A. Javed, and M. T.

Mahmood. An ensemble based evolutionary approach to the class imbalance

problem with applications in CBIR. Applied Sciences, 8(495), 2018.

[8] M. Galar, A. Fernandez, E. B. Tartas, and F. Herrera. EUSBoost: Enhancing

ensembles for highly imbalanced datasets by evolutionary undersampling.

Pattern Recognition, 46(12):3460–3471, 2013.

[9] J. F. Diez-Pastor, J. Rodriguez, C. Garcia-Osorio, and L. Kuncheva.

Diversity techniques improve the performance of the best imbalance learning

ensembles. Information Sciences, 325:98–117, 2015.

[10] V. Lopez, A. Fernandez, S. Garcia, V. Palade, and F. Herrera. An insight into

classification with imbalanced data: Empirical results and current trends on

using data intrinsic characteristics. Information Sciences, 250:113–141, 2013.

[11] J. Gong and H. Kim. RHSBOOST: Improving classification performance in

imbalance data. Computational Statistics and Data Analysis, 111:1–13, 2017.

[12] D. A. Cieslak and N. V. Chawla. Learning decision trees for unbalanced data.

In Proceedings of the 2008 European Conference on Machine Learning and

Knowledge Discovery in Databases - Part I, ECML PKDD ’08, pages 241–

256. Springer-Verlag, 2008.

[13] W. Liu, S. Chawla, D. A. Cieslak, and N. V. Chawla. A robust decision tree

algorithm for imbalanced data sets. In Proceedings of the SIAM International

39

Conference on Data Mining, pages 766–777, 2010.

[14] J. R. Quinlan. Improved estimates for the accuracy of small disjuncts.

Machine Learning, 6(1):93–98, Jan 1991.

[15] B. Zadrozny and C. Elkan. Learning and making decisions when costs and

probabilities are both unknown. In Proceedings of the Seventh ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’01, pages 204–213, NY, USA, 2001.

[16] C. X. Ling, V. S. Sheng, and Q. Yang. Test strategies for cost-sensitive

decision trees. IEEE Transactions on Knowledge and Data Engineering,

18(8):1055–1067, 2006.

[17] K. Veropoulos, C. Campbell, and N. Cristianini. Controlling the sensitivity of

support vector machines. In Proceedings of the International Joint Conference

on AI, pages 55–60, 1999.

[18] C. Jian, J. Gao, and Y. Ao. A new sampling method for classifying imbalanced

data based on support vector machine ensemble. Neurocomputing, 193:115–

122, 2016.

[19] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. SMOTE: Synthetic

minority over-sampling technique. Journal of Artificial Intelligence Research,

16:341–378, 2002.

40

[20] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap. DBSMOTE:

Density-based synthetic minority over-sampling technique. Applied

Intelligence, 36(3):664–684, 2012.

[21] W. Siriseriwan and K. Sinapiromsaran. Adaptive neighbor synthetic minority

oversampling technique under 1NN outcast handling. Songklanakarin Journal

of Science and Technology, 39(5):565–576, 2017.

[22] H. Haibo, Y. Bai, E. A. Garcia, and S. Li. ADASYN: Adaptive synthetic

sampling approach for imbalanced learning. In IEEE International Joint

Conference on Neural Networks (IEEE WorId Congress on Computational

Intelligence), pages 1322–1328, 2008.

[23] H. Guo and H. L. Viktor. Learning from imbalanced data sets with boosting

and data generation: The databoost-IM approach. SIGKDD Explorations,

6(1):30–39, June 2004.

[24] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacost: Misclassification

cost-sensitive boosting. In Proceedings of the Sixteenth International

Conference on Machine Learning, ICML’99, pages 97–105, San Francisco,

CA, USA, 1999.

[25] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang. Cost-sensitive boosting

for classification of imbalanced data. Pattern Recognition, 40:3358–3378,

2007.

41

[26] S. Wang and X. Yao. Diversity analysis on imbalanced data sets by using

ensemble models. In IEEE Symposium on Computational Intelligence and

Data Mining, CIDM 2009, pages 324–331, March 2009.

[27] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. Bowyer. SMOTEBoost:

Improving prediction of the minority class in boosting. In Knowledge

Discovery in Databases: PKDD 2003, pages 107–119. Springer Berlin

Heidelberg, 2003.

[28] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano. RUSBoost: A

hybrid approach to alleviating class imbalance. IEEE Transactions on

Systems, Man, and Cybernetics Part A:Systems and Humans, 40(1):185–197,

2010.

[29] C. J. Whitaker and L. I. Kuncheva. Examining the relationship between

majority vote accuracy and diversity in bagging and boosting. Technical

Report, School of Informatics, University of Wales, Bangor, 2003.

[30] L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier

ensembles and their relationship with the ensemble accuracy. Machine

Learning, 51:181–207, 2003.

[31] B. Krawczyk. Learning from imbalanced data: open challenges and future

directions. Progress in Artificial Intelligence, 5(4):221–232, Nov 2016.

[32] L. Nanni, S. Brahnam, S. Ghidoni, and A. Lumini. Toward a general-purpose

42

heterogeneous ensemble for pattern classification. Computational Intelligence

and Neuroscience, 2015.

[33] J. Large, J. Lines, and A. J. Bagnall. The heterogeneous ensembles of

standard classification algorithms (HESCA): the whole is greater than the

sum of its parts. CoRR, abs/1710.09220, 2017.

[34] E. N. de Souza and S. Matwin. Extending adaboost to iteratively vary its base

classifiers. In Proceedings of the 24th Canadian Conference on Advances in

Artificial Intelligence, Canadian AI’11, pages 384–389, Berlin, Heidelberg,

2011. Springer-Verlag.

[35] J. Alcal´a-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garc´ıa, L. S´anchez,

and F. Herrera. Keel data-mining software tool: Data set repository,

integration of algorithms and experimental analysis framework. Journal of

Multiple-Valued Logic and Soft Computing, 17:255–287, 2011.

[36] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

Machine Learning: Proceedings of the thirteenth national conference, Morgan

Kauffmann, pages 148–156, 1996.

[37] H. A. Guvenir and M. Kurtcephe. Ranking instances by maximizing

the area under roc curve. IEEE Transactions on Knowledge and Data

Engineering, 25(10):2356–2366, 2013.

[38] M. Kurtcephe and H. A. Guvenir. A discretization method based on

43

maximizing the area under receiver operating characteristic curve.

International Journal of Pattern Recognition and Artificial Intelligence,

27(01):1350002, 2013.

[39] T. G. Dietterich. Approximate statistical tests for comparing supervised

classification learning. Neural Computation, 7(10):1895–1923, 1998.

