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ABSTRACT 

In pattern classification, class-imbalance problem occurs when the number of 

samples in one of the classes is much larger than those in the others. In such cases, 

the performance of classifiers is generally poor on the minority class. Ensembles of 

classifiers are used to tackle this problem where each member is developed using a 

different balanced dataset. In this approach, one balancing strategy and a classifier 

prototype is generally used. In order to increase the diversity among the members, 

bagging and boosting are also considered. In this thesis, the use of heterogeneous 

ensembles utilizing multiple prototypes and multiple balancing schemes for 

imbalance learning is addressed. Experiments conducted on 66 datasets have shown 

that significant improvements can be achieved by employing multiple prototypes. It 

is also observed that multiple balancing schemes contribute to the performance 

scores, especially in simple and bagging-based ensembles. 

 

Keywords: imbalance learning, classifier ensembles, bagging, boosting, 

heterogeneous ensembles, multi-balancing 
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ÖZ 

Örüntü tanımada, bir sınıftaki örnek sayısı diğer sınıflarınkinden çok daha fazla 

olduğunda sınıf-denksizliği problem oluşmaktadır. Bu tür durumlarda, sınıflandırıcı 

başarımı kıüçük sınflarda düşük olmaktadır. Bu problemi aşmak için, her üyenin 

denkleştirilmiş bir veri kümesi ile eğitildiği çoğul sınıflandırıcılı sistemler 

kullanılmaktadır. Bu sistemler, genellikle bir denkleştirme ve bir sınıflandırıcı tipi ile 

geliştirilmektedir. Sınıflandırıcılar arasındaki farklılıkları artırmak için, torbalama ve 

artırma teknikleri de kullanılmaktadır. Bu tezde, birden fazla denkleştirme ve 

sınıflandırcı tipi kullanan heterojen çoğul sınıflandırıcı sistemlerin denksizlik 

öğrenmede kullanımı çalışılmıştır. 66 veri kümesinde yapılan deneysel çalışmalar, 

birden fazla sınıflandırıcı tipi kullanılarak başarımda belirgin iyileştirmeler 

sağlanabileceğini göstermiştir. Ayrıca, birden fazla denkleştirme algoritmasının 

kullanılmasının, özellikle basit ve torbalama-tabanlı sistemlerin başarımına katkıda 

bulunduğu gözlemlenmiştir. 

Anahtar Kelimeler: Denksizlik öğrenme, çoğul sınıflandırıcılı sistemler, torbalama, 

artırma, heterojen çoklu sınıflandırıcılı sistemler, çoklu-denkleştirme 
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Chapter 1 

1 INTRODUCTION 

1.1 Introduction 

Pattern classification plays a critical role in various domains including medicine, 

computer vision, text categorization for effective search of electronic documents, 

analysis of gene expression arrays, combinatorial chemistry, high-value customer 

prediction, and disease pre-diagnosis. Typical problems that are generally observed 

in solving machine learning tasks are noise in the data, large numbers of features and 

class-imbalance. Many researchers are actively working on these problems and 

numerous solutions are already proposed.  

In the case of imbalanced datasets, the number of samples for the target class (also 

called the positive class) is generally small. Consider a two-class classification 

problem where the target class is the minority, having much smaller number of 

samples than the other class (majority or negative class). In such cases, almost all 

algorithms tend to classify the test samples as the majority class, making large 

classification errors on the minority samples. In order to deal with this problem, in 

general, the data is balanced before training a classifier. Undersampling the majority 

class and oversampling the minority are two widely used techniques for this purpose. 

1.2 Significance 

When a classifier is generated using an imbalanced dataset, since accuracy is the 

most widely-used measure for parameter tuning, the decision boundaries will be 
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computed in such a way that the samples in the majority class will be classified with 

high accuracy [1]. Such classifiers are not useful in practice since the cost of 

misclassifying a minority sample is generally much more than misclassifying a 

majority sample. For example, consider a disease classification problem where the 

number of patients who has the disease is less than those who do not, which occurs 

naturally. When a conventional classifier is used, it is highly likely that majority of 

patients will be misclassified as healthy. In fact, true diagnosis of a positive cancer is 

more important than a false alarm due to misclassifying a healthy person. Therefore, 

building a classifier that provides expected level of performance on the target class 

when the data is imbalanced attracts the interest of many researchers. 

1.3 Aim of Study 

In majority of the studies conducted on imbalance learning, the ultimate goal is set as 

balancing the dataset before training a classifier. This is generally done by removing 

some instances from majority class and/or adding some new instances to the minority 

class. In random undersampling, some randomly selected samples are discarded from 

the majority class. On the other hand, in oversampling approach, the number of 

minority instances is increased by duplicating randomly selected minority instances 

until the desired number of samples is obtained. Experimental results conducted on 

imbalanced datasets originating from different domains have shown that the highest 

performance scores are generally achieved using an ensemble of classifiers, where 

each member of the ensemble is trained on a different randomly-generated dataset 

[2]. 

In this thesis, taking into account the fact that effectiveness of a balancing scheme 

depends on the number of training samples in different classes [4] and, the possibility 
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of obtaining more diverse members especially in cases of small minority classes by 

employing multiple base learners, multi-balancing and multi-prototype ensembling 

for imbalance learning is addressed. To explore the effectiveness of utilizing multiple 

balancing schemes and multiple prototypes, different subsets of prototype and 

balancing schemes are evaluated in a systematic procedure. For each of the a priori 

selected prototype and balancing scheme, the performance scores achieved using 

simple, bagging- and boosting-based ensembles are firstly computed. For each 

balancing scheme, by studying different prototype subsets having different 

cardinalities, the effectiveness of using heterogeneous ensembles is then explored. 

Similarly, for each prototype, utilizing different subsets of data balancing techniques 

is addressed for comparative evaluation of employing single or multiple balancing 

techniques in generating powerful ensembles. Ensembling multi-balancing and 

multi-prototype members are then investigated. The area under the receiver operating 

characteristics curve (AUC) is used as the performance metric in all simulations. 

Experiments conducted on 66 datasets in KEEL repository [35] have demonstrated 

that heterogeneous ensembles achieve significantly better performance scores than 

their homogeneous counterparts. The experimental results also support using 

multiple balancing techniques. 

The rest of the thesis is organized as follows. Chapter 2 presents a brief literature 

review. In Chapter 3, the proposed ensembling framework utilized for investigating 

heterogeneous and multi-balancing ensembles is explained. Chapter 4 presents the 

experiments conducted and the results obtained. The conclusions of this thesis and 

future directions of research to deal with the imbalance problem are presented in 

Chapter 5.  
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Chapter 2 

2 A BRIEF LITERATURE REVIEW 

2.1 Introduction 

The class-imbalance problem arises when the number of samples belonging to one 

class is much more than that of another class [1, 5]. In two-class classification 

problems, the positive class is in general the minority, including smaller number of 

samples than the negative (majority) class. Since the classifiers are generally tuned to 

minimize the number of misclassified training samples, the classification accuracy is 

higher for the majority class. However, the performance on the minority class may be 

of primary concern. Because of this, the models obtained using imbalanced data are 

generally unacceptable in practice. 

 

The class-imbalance problem is extensively studied and numerous techniques have 

been proposed [2, 3, 4, 6, 7, 8]. These efforts can be broadly categorized into three 

groups, namely algorithm level, data level and ensemble learning approaches [2, 9, 

10, 11]. In the algorithm level approach which also includes cost-sensitive methods, 

the main aim is to develop algorithms that mainly focus on the minority class [12, 13, 

14, 15]. In the data level approach, the data is balanced using a preprocessing 

technique [18]. Ensemble learning is the most widely used approach, aiming to 

utilize algorithm level or data level techniques together with resampling approaches 

such as bagging and boosting [1, 2, 9, 23]. 
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2.2 Algorithm Level Approaches 

The algorithms in this group are based on adapting current classifiers so that they 

focus more on the minority class [1]. In other words, by making some modifications 

in the algorithm such as assigning a large penalty/cost for misclassification of the 

minority class, the algorithm is enforced to correctly classify the positive samples. 

For example, Hellinger Distance Decision Tree (HDDT) takes into account the size 

of the classes [9]. On the other hand, Class Confidence Proportion Decision Tree 

(CCPDT) is insensitive to the class distribution [13]. Similarly, large penalties can be 

assigned to misclassification of the minority class in SVM classifier [17]. Cost-

sensitive decision trees [16] and cost-sensitive neural networks [18] also assign a 

different cost to each class. Another well-known approach is the cost-sensitive 

variant of AdaBoost, namely AdaCost [24]. 

2.3 Data Level Approaches 

This group includes the most widely-used techniques, namely undersampling and 

oversampling [2]. In random undersampling approach, the number of negative 

samples is reduced by selecting a random subset of samples. Selection can be done 

with replacement or without replacement. When replacement is considered, a 

negative sample can appear in the target dataset more than once. When replacement 

is not allowed, any sample can appear only once in the final dataset. 

In random oversampling, minority samples are duplicated until the desired number of 

samples is obtained. Duplications are done by replacement. In some cases the 

original minority sample will be kept and desired number of samples are randomly 

selected from original minority class and added to the dataset. 
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As more intelligent oversampling schemes, SMOTE [19] and its variants such as 

DBSMOTE [20], ANS [21] and ADASYN [22] are also proposed where, additional 

samples are generated by interpolating randomly selected pairs of the samples in the 

minority class. The main idea of SMOTE is to balance the dataset by creating new 

minority instances. For each sample in the minority class, SMOTE finds K nearest 

neighbors with the same label. Then, two of these neighbors are randomly selected. A 

point that is lying on the segment joining these samples is randomly selected as a 

new minority instance and it is be added to the dataset. The algorithm is repeated 

until the desired numbers of minority instances are obtained. In DBSMOTE [20], for 

generating a new positive instance, the segment between a randomly selected 

minority sample and the center of the minority class is considered. ANS [21] 

automatically determines the number of neighbors and adapts it for different regions 

of minority samples. In this algorithm, the minority instances that have no neighbor 

around themselves are labeled as outcast and they are not utilized in sample creation 

process. ADASYN [22] employs a weighting strategy to assign a weight to each 

minority sample by considering its difficulty in learning process. Consequently, for 

hard (difficult to learn) minority samples, more new instances will be created. 

2.4 Ensemble Learning Approaches 

In cost-sensitive ensembles, multiple cost-sensitive classifiers are utilized where each 

classifier is developed using a resampled dataset [24, 25]. On the other hand, in 

SMOTEBagging [2, 26], UnderBagging [2, 26] and OverBagging [26, 5], both 

bagging and balancing are considered in forming the training sets of ensemble 

members. In boosting based ensembles such as SMOTEBoost [27], RUSBoost [28] 

and DataBoost-IM [23], after balancing the data, the weights of samples are utilized 

in computing the training set of the following member. It should be noted that, in 
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bagging-based ensembles, the training data of each member is independent of the 

previous members whereas, in boosting-based ones, each member is trained on the 

samples which are generally misclassified by the previous members. More than one 

balancing scheme may also be used. For instance, SMOTEBagging technique uses 

both SMOTE and random oversampling. As an alternative approach, simple 

ensembles are also studied [9]. In this technique, resampling is omitted where each 

member is generated using a randomly balanced dataset. In other words, either the 

minority class is oversampled or the majority class is undersampled. In almost all 

ensemble-based methods, a single classifier prototype is used. In fact, the use of so-

called homogeneous ensembles highly dominates the efforts in learning imbalanced 

datasets [4].  

2.5 Classifier Prototypes 

SVM, decision trees, neural networks, logistic regression and KNN are among the 

most frequently used classifiers to generate ensemble members [4]. In this section, 

the classifiers utilized in the thesis are briefly described. 

2.5.1 RIMARC 

RIMARC [37] is a supervised classification method which ranks instances by 

assigning higher probabilities to samples in the positive class. It is originally 

developed for binary classification. The main constraint of RIMARC is that all 

features should be categorical. When this is not the case, RIMARC applies MAD2C 

algorithm to discretize the features. During the discretization process, the main 

objective of MAD2C is to keep the AUC for that feature as large as possible. After 

converting all features to categorical form, RIMARC is used to compute the scores 

for every interval of all features. This score is calculated as the ratio of positive 

samples to total number of instances that are in the same interval as: 
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                          �� =  ��(�����)  , � = 1,2, … ,�   (� is number of intervals)                  (1) 

where P� and N� are the number of positive and negative lables in ith interval 

respectively. Then, for each feature a weight will be generated. This weight is based 

on the AUC of the corresponding feature that is computed after discretization. The 

weight is calculated as: 

                                             �� =  2 ∗ (���� −  0.5)                                               (2) 

Finally, for each test sample, depending on the intervals of the feature values, the 

overall rank score is computed as: 

                                                     � =  ∑ (��∗��)����∑ ������ )                                                   (3) 

where d denotes the total number of features. 

2.5.2 Logistic Regression (LR) 

The binary logistic regression model computes the probability of a binary target 

variable as a function of one or multiple features, x�. The relationship between the 

probability of a particular class and the features is represented as: 

                               log � ����� = �� + ���� + ���� + ⋯+ ����. )                           (4) 

where � is the probability that the label of the sample is “positive”. The expression 

on the left-hand side of the equation given above is called logit, whereas ( ����) is 

named as odds. After some manipulations, � can be expressed as: 

                          � = ��������������⋯���������������������⋯�����.                                    (5) 

In practice, the coefficients of the features denoted by �� are generally computed 

using maximum likelihood estimation. 
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2.5.3 Support Vector Machine (SVM) 

SVM builds a hyperplane in the instance space which maximizes the margin that is 

defined as the gap between the samples of different classes. By utilizing a kernel 

function, the feature vectors can also be mapped into a higher dimensional space 

where a linear classifier developed in that space will correspond to a nonlinear one in 

the original space. Second order polynomial and radial basis function are two widely-

used kernels in pattern classification. In this thesis, we employed radial basis 

function as the mapping kernel. 

2.5.4 KNN 

KNN is one of the simplest classification algorithms. For any test sample, K nearest 

neighbors are found where K is generally selected as an odd number. In computing 

the neighbors, by taking into account a predefined measure, the distances between 

the test sample and all samples in the training set are firstly calculated. Then, K 

samples having smallest distance scores are selected as neighbors. By voting over 

class labels of these neighbors, the label of the tested sample is determined. 

2.5.5 J48 

Decision trees are widely used classification schemes due to their simplicity and 

interpretability of the models generated. The models are in the form of rule-sets. 

They can handle various types of features at the same time. Each rule corresponds to 

a different route from the root to a leaf of the tree. Various decision trees are studied, 

each having a different feature selection or pruning strategy. J48 is a widely used tree 

that is available in Weka platform which implements the C4.5 algorithm. C4.5 uses 

normalized information gain to choose the best feature for each node. It applies post-

pruning to eliminate the redundant branches. 
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Chapter 3 

3METHODOLOGY 

3.1 Introduction 

It is well known that a key factor in developing a good ensemble is the diversity of 

the member classifiers where, two classifiers are defined to be diverse if their errors 

do not overlap [29, 30]. In order to build a diverse ensemble, as described Chapter 2, 

a different training set is generally used for each member by using bagging- or 

boosting-based resampling together with random balancing. Since the performance 

on minority class is the primary concern, diversity originating from differences in the 

minority samples is highly crucial. However, only a few minority samples might be 

available in some classification problems. Increasing the number of minority samples 

by using an oversampling-based technique may not help to generate different diverse 

training sets in these domains. For example, all sets of five hundred samples obtained 

using random oversampling of only ten samples is expected to have around fifty 

duplicates of each sample. In such cases, the majority class has a higher potential to 

be the main source of diversity. However, the members trained on undersampled 

majority class may still have overlapping errors on the minority class [31]. 

Experiments conducted on imbalance learning have shown that SMOTE is a more 

effective approach when the minority class has small number of samples [4]. 

Moreover, the relative performance of different balancing schemes is observed to be 

dependent on the total number of training samples and imbalance ratio as well. 
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As an alternative source of diversity to random balancing, using multiple learners 

(prototypes) in generating member classifiers should also be taken into consideration 

in imbalanced learning. Although multi-prototype (heterogeneous) ensembles have 

been verified to perform consistently better than its members in various domains [32, 

33, 34], the aforementioned schemes developed for imbalance learning are based on 

a single prototype that is in general a decision tree [4, 5]. To the best of our 

knowledge, the effectiveness of heterogeneous ensembles in imbalance learning is 

not fully investigated. 

Let R denote a set of balancing techniques and T represent a set of classifier 

prototypes. In simple, bagging- and boosting-based ensemble approaches, all 

members are generally built by utilizing one a priori selected 2-tuple (ri∈ R, ti∈T) 

that is a member of the Cartesian product, R × T. In these ensembles, the main 

sources of the diversity between different members are the randomness in the 

balancing scheme, ri and the differences in the training sets. However, as a more 

general approach, multiple 2-tuples can be considered in forming the ensemble. 

Depending on the 2-tuples selected, the members may be generated using (1) a single 

balancing scheme but multiple prototypes (2) multiple balancing schemes but a 

single prototype and (3) multiple balancing schemes and multiple prototypes. When 

compared with the classifiers obtained using a single 2-tuple, it is expected to 

achieve a more diverse set of ensemble members when multiple 2-tuples are 

employed. Table 1 illustrates 2-tuples for |R| = |T| = 5. When five balancing 

techniques, i.e. R = {r1, r2, r3, r4, r5} and five prototypes, T = {t1, t2, t3, t4, t5} are 

considered, 25 different ensembles can be built, one for each 2-tuple. Table 1 

presents examplar setting. For instance in part (a), four 2-tuples are selected where, 
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three balancing schemes and three prototypes are considered. Assume that K 

members will be generated for each 2-tuple. In such a case, using the 2-tuples (r2, t2), 

(r2, t4), (r3, t3) and (r4, t2), an ensemble of 4×K members will be computed. In part 

(b), 10 2-tuples in the Cartesian product of R and {t2, t4} (i.e. R × {t2, t4}) are 

considered, leading to 10×K members. Similarly, 10×K members are generated using 

all 2-tuples in {r2, r3}× T in part (c). In all three settings, diversities among the 

members is expected to increase due to utilizing more than one classifier prototype 

and balancing technique. 

Table 1: The multi-prototype and multi-balancing ensemble architectures evaluated 
in this thesis. 

 

 t1 t2 t3 t4 t5 
r1      
r2  *  *  
r3   *   
r4  *    
r5      

 

 

 t1 t2 t3 t4 t5 
r1  *  *  
r2  *  *  
r3  *  *  
r4  *  *  
r5  *  *  

 

 

 t1 t2 t3 t4 t5 
r1      
r2 * * * * * 
r3 * * * * * 
r4      
r5      

 

(a) (b) (c) 
 
 
In this thesis, to investigate the effectiveness of utilizing multiple prototypes and 

multiple balancing schemes, simple, bagging- and boosting-based ensembles of 

multiple 2-tuples is extensively studied. The experiments are organized in two major 

parts. In the first part, the relative performances of different 2-tuple sets is 

investigated. For each a priori selected 2-tuple, K members are generated in parallel. 

The members corresponding to each 2-tuple are generated independently from the 

members of the other 2-tuples. Then, members from different 2-tuples are combined 

using averaging. In this part of experiments, various subsets of 2-tuples are also 

evaluated. In the following context, this type of ensembles is referred as parallel (P). 

In the second part of the experiments, random selection of a 2-tuple for each member 

by using the weights assigned to each prototype in T is addressed. Weights of better 
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classifiers are assigned as larger than worse ones to have them more frequently 

selected. Consequently, the number of members for each 2-tuple will not be the 

same. In this approach, since member generation is iteratively done, this ensemble 

architecture will be referred as serial (S) in the following context. As in the case of 

parallel approach, the members are combined using averaging. The architectures of 

multi-balancing and multi-prototype ensembles are described in more detail in the 

following subsections. 

3.2 Generation of Parallel Ensembles 

Let U denote the original imbalanced dataset. Assume that a single balancing scheme 

denoted by ri and a classifier prototype, tk is utilized. Consider a simple ensemble of 

K members where the kth member is generated by employing a different balanced 

dataset, Bk. In other words, ri is applied K times to generate K balanced training sets. 

Then, the members are combined using averaging. Part (a) in Figure 1 shows the 

flowchart of this ensemble that is referred as ri*tk*Simple in the following context. It 

should be noted that the symbol ‘*’ does not denote any operator. It is used to 

separate the design components of ensembles in their naming. 
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Figure 1: Generation of the ensembles (a) ri*tk*Simple and (b) 

ri*tk*Bagging that are based on using a single balancing scheme, 
ri and a single prototype, tk. 

 

Part (b) in Figure 1 illustrates the flowchart of bagging-based ensemble that is 

referred as ri*tk*Bagging in the following context. In this approach, the training set 

of each member is computed by applying the balancing scheme to a bootstrap sample 

of the original dataset. As in the case of simple ensembles, the members are 

combined using averaging. 

The algorithm used for developing boosting-based ensembles denoted by 

ri*tk*Boosting for an a priori selected balancing scheme ri and prototype tk is 

presented in Algorithm 1. The algorithm is obtained by adding data balancing (in 

Line 3) to Adaboost.M2 [36]. In fact, when ri is selected as SMOTE, the algorithm 

corresponds to SMOTEBoost. Similarly, when ri is undersampling, it is equivalent to 

RUSBoost. 
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In this thesis, the main goal is to investigate combination of classifiers generated 

using multiple balancing schemes and prototypes. This can be achieved using 

ri*tk*Simple, ri*tk*Bagging and ri*tk*Boosting and multiple 2-tuples. For this 

purpose, employing either the whole set of R or T is firstly addressed. Specifically, 

ri×T*Simple*P corresponds to combination of 5×K members, where ri is used in all 

members as shown in Figure 2.  

 
Figure 2: Generation of ri×T*Simple*P that is based on using a single 
balancing scheme, ri and the whole set of all prototypes. The ensemble 

corresponds to the classifiers in the dashed-line box. 
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In this setting, K members are generated for each prototype. The label “P” denotes 

parallel generation of members for different prototypes. Similarly, the ensembles 

ri×T*Bagging*P and ri×T*Boosting*P can be computed by replacing ri*tk*Simple 

with ri*tk*Bagging and ri*tk*Boosting, respectively. 

Using a single prototype but multiple balancing schemes is also addressed. 

R×tk*Simple*P, R×tk*Bagging*P and R×tk*Boosting*P correspond to ensembles of 

5×K members, where tk is the prototype used and, K members are generated for each 

balancing scheme in R. The ensemble corresponding to R×tk*Simple*P is shown in 

Figure 3. Averaging is used for the combination of the member outputs. By studying 

ri×tk*Simple, ri×T*Simple and R×tk*Simple*P , it is aimed to identify the relative 

importance of using single or multiple schemes for balancing and model 

development in the case of simple ensembles. This is also done for bagging- and 

boosting-based ensembles. 

Figure 3: Generation of R×tk*Simple*P that is based on using a 
single prototype, tk and the set of all balancing schemes. The 

ensemble corresponds to the classifiers in the dashed-line box. 

The performances of different subsets of R and T are also evaluated. In particular,  

Rm×T*Simple*P corresponds to using a subset of m balancing schemes in R and the 
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whole set of T in generating a simple ensemble. Consider the case for |R| = 5. We 

have ten different subsets of m = 2 balancing schemes. In this study, we evaluated all 

such ensembles and reported the average AUC scores. Similarly, utilizing subsets of 

T together with the whole set of R denoted by R×Tm*Simple*P is explored. The 

experiments are repeated for bagging- and boosting-based ensembles. The ensembles 

obtained are named as Rm×T*Bagging*P and R×Tm*Bagging*P in the case of 

bagging. Similarly, the ensembles are named as Rm×T*Boosting*P and 

R×Tm*Boosting*P in the case of boosting. 

3.3 Generation of Serial Ensembles 

As mentioned above, all 2-tuples in R × T are used in generating serial ensembles. In 

particular, each member is developed using a randomly selected balancing scheme 

and a randomly selected prototype. Algorithm 2 presents R*T*Simple*S, which 

corresponds to a simple serial (S) ensemble. In this type of ensembles, weighted 

selection of the prototypes is addressed by taking into account various prototype 

distributions, prDist in Line 3. It should be noted that the distributions investigated 

include uniform distribution and others that are proportional to the individual 

performances of the prototypes. 
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Algorithm 3 presents R*T*Bagging*S. This Algorithm is obtained by adding Line 4 

into Algorithm 2. More specifically, balancing is performed on a bootstrap sample 

from the imbalanced dataset. This is expected to contribute to the diversity among 

the ensemble members. As in Algorithm 2, weighted selection of the prototypes is 

addressed by taking into account various prDist values in line 3 of Algorithm 3. 

 

Algorithm 4 presents R*T*Boosting*S, which is based on Adaboost.M2 algorithm 

[36]. In each iteration of this algorithm, a balanced dataset denoted by Bk is 

computed using the randomly selected balancing scheme. The weights of the selected 

samples are normalized to compute ��� . The next classifier is then generated using Bk 

and ���  and the randomly selected prototype, tk.  
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3.4 Summary of the Ensembles Evaluated 

Table 2 presents the ensembles developed to study the effectiveness of utilizing 

multiple balancing schemes and multiple prototypes in imbalance learning. The table 

also includes the number of classifiers in each ensemble which is based on the value 

of K, number of balancing methods and prototypes utilized in generating the 

ensemble. Due to the higher computational cost of RIMARC and SVM, the ensemble 

size is set to K = 50 for t1, t2 and t3 as in [1], whereas K = 100 for t4 and t5. The 

ensembles implemented are also compared with six widely used techniques. These 

are SMOTEBagging, UnderBagging, OverBagging, SMOTEBoost, RUSBoost and 

DataBoost-IM. In fact, when ri is selected as SMOTE, ri*tk*Boosting is identical to 

SMOTEBoost. Similarly, RUSboost is obtained when ri is random undersampling. 

DataBoost-IM is the third ensemble from the boosting family of ensembles 

considered in this study. Since it has an additional step of focusing only on the hard 

samples in generating synthetic data, it is not identical to any of the ensembles listed 

in Table 2. In SMOTEBagging, a bootstrap sample of the majority class is used. 
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Table 2: The list of ensembles evaluated. 

Ensemble name 
Number of 

balancing methods 
Number of 
prototypes Ensemble size 

ri*tk*Simple 
ri*tk*Bagging 
ri*tk*Boosting 

1 1 50 for {t1, t2, t3} 
100 for {t4, t5} 

ri×T*Simple * P 
ri×T*Bagging * P 
ri×T*Boosting * P 

1 5 
20 for K = 4 
50 for K = 10 
100 for K = 20 

R×tk*Simple * P 
R×tk*Bagging * P 
R×tk*Boosting * P 

5 1 
20 for K = 4 
50 for K = 10 
100 for K = 20 

R×T*Simple*P 
R×T*Bagging*P 
R×T*Boosting*P 

5 5 
100 for K = 4 
250 for K =10 
500 for K =20 

Rm×T*Simple*P 
Rm×T*Bagging*P 
Rm×T*Boosting*P 

m 5 5 × m ×K 

R×Tm*Simple*P 
R×Tm*Bagging*P 
R×Tm* Boosting*P 

5 m 5 × m ×K 

R*T*Simple*S 
R*T*Bagging*S 
R*T*Boosting*S 

5 5 100 

The minority samples are generated using both oversampling and SMOTE [26]. In 

both UnderBagging and OverBagging, a bootstrap sample with replacement is taken 

separately from both minority and majority classes [5]. In the case of UnderBagging, 

the size of bootstrap samples in each class is equal to the original size of the minority 

class whereas, in OverBagging, it is equal to the original size of the majority class.  

As it can be seen in Figure 1, in our bagging family of ensembles, oversampling or 

undersampling is applied after a bootstrap sample is taken and class labels are not 

considered in selecting the samples. In all six reference ensembles, J48 was 

considered as the base learner and ensemble size is set as 100.  
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Chapter 4 

EXPERIMENTAL RESULTS 

The experiments are conducted on 66 datasets in KEEL collection which are 

originally from the UCI Repository [35].  

Table 3: The datasets in KEEL collection and their imbalance ratios. 
Dataset   Minority 

class size 
Imbalance 
ratio 

Dataset Minority 
class size 

Imbalance 
ratio 

abalone19   32 129.44 ecoli-0-2-6-7 vs 3-5 22 9.18 
yeast6   35 41.40 ecoli-0-1 vs 2-3-5 24 9.17 
ecoli-0-1-3-7vs2-6   7 39.14 ecoli-0-4-6 vs 5 20 9.15 
yeast5   44 32.73 yeast-0-2-5-7-9vs3-6-8 99 9.14 
yeast-1-2-8-9 vs 7   30 30.57 yeast-0-2-5-6vs3-7-8-9 99 9.14 
yeast4   51 28.10 yeast-0-3-5-9 vs 7-8 50 9.12 
yeast-2 vs 8   20 23.10 glass-0-1-5 vs 2 17 9.12 
glass5   9 22.78 ecoli-0-2-3-4 vs 5 20 9.10 
yeast-1-4-5-8 vs 7   30 22.10 ecoli-0-6-7 vs 3-5 22 9.09 
shuttle-c2-vs-c4   6 20.50 yeast-2 vs 4 51 9.08 
glass-0-1-6 vs 5   9 19.44 ecoli-0-3-4 vs 5 20 9.00 
abalone9-18   42 16.40 page-blocks0 559 8.79 
page-blocks-13vs4   28 15.86 ecoli3 35 8.60 
ecoli4   20 15.80 yeast3 163 8.10 
glass4   13 15.46 glass6 29 6.38 
yeast-1 vs 7   30 14.30 segment0 329 6.02 
shuttle-c0-vs-c4   123 13.87 ecoli2 52 5.46 
ecoli-0-1-4-6 vs 5   20 13.00 new-thyroid2 35 5.14 
cleveland-0 vs 4   13 12.62 new-thyroid1 35 5.14 
ecoli-0-1-4-7vs5-6   25 12.28 ecoli1 77 3.36 
glass2   17 11.59 vehicle0 199 3.25 
glass-0-1-4-6vs 2   17 11.06 glass-0-1-2-3 vs 4-5-6 51 3.20 
ecoli-0-1 vs 5   20 11.00 vehicle3 212 2.99 
glass-0-6 vs 5   9 11.00 vehicle1 217 2.90 
led7digit-0-2-4-5- vs 1 37 10.97 vehicle2 218 2.88 
ecoli-0-1-4-7vs2-3-   29 10.59 haberman 81 2.78 
glass-0-1-6 vs 2   17 10.29 yeast1 429 2.46 
ecoli-0-6-7 vs 5   20 10.00 glass0 70 2.06 
vowel0   90 9.98 iris0 50 2.00 
yeast-0-5-6-7-9vs 4   51 9.35 pima 268 1.87 
ecoli-0-3-4-7vs5-6   25 9.28 wisconsin 239 1.86 
ecoli-0-3-4-6vs 5   20 9.25 ecoli-0 vs 1 77 1.86 
glass-0-4 vs 5   9 9.22 glass1 76 1.82 
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In this collection, some datasets are different partitions of one multi-class dataset. For 

instance, in “glass0”, class-0 of “glass” dataset is the minority class whereas the 

samples in all other classes form the majority class. The characteristics of these 

datasets, namely the number of samples in the minority class and the imbalance ratio 

that is defined as the ratio of the number of samples in majority class to that of the 

minority are presented in Table 3. As seen in the table, each dataset is highly different 

from many of the others. For instance, imbalance ratios are between 1.82 and 129.44. 

Table 4 presents the distribution of the datasets according to their minority class sizes 

(MS) and imbalance ratios (IR). The datasets having an imbalance ratio above 10.0 

are categorized as high imbalance whereas the low imbalance datasets have ratios 

less than 5.5. The datasets are grouped as small minority if the number of samples in 

the minority class is at most 20 whereas large minority datasets include at least 90 

samples. 

Table 4: Categorization of datasets according to their imbalance ratios and 
size of the minority classes. 

 
Low imbalance 

ratio 
(IR<5.5) 

Moderate 
imbalance ratio 
(5.5<=IR<=10) 

High imbalance 
ratio 

(IR>10) 
Small 

minority 
(MS<=20) 

0 7 14 

Moderate 
minority 

(20<MS<90) 
10 9 12 

Large 
minority 

(MS>=90) 
7 6 1 

Table 5 presents the balancing schemes and prototypes used in this thesis. In 

SMOTE, the number of neighbors used for generating synthetic minority samples is 

set as k = 5 as it generally used in [20]. ADASYN is a variant of SMOTE where 

more minority samples are generated for samples that are harder to classify. ANS is 
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another variant where the number of neighbors, k is not fixed and a different value is 

dynamically assigned to each minority instance.  

 Table 5: The balancing schemes and prototypes used in this study. 
Balancing method Classifier prototype 

r1: Random undersampling t1: RIMARC 
r2: Random oversampling t2: Logistic regression (LR) 
r3: SMOTE t3: SVM with Gaussian kernel 
r4: ADASYN t4: Nearest neighbor classifier 
r5: ANS t5: Decision tree (J48) 

RIMARC is a recently proposed classification scheme that is based on discretizing 

continuous features [37]. The discretization thresholds of each feature are calculated 

in a way that maximizes the AUC that can be achieved by the feature [38]. After 

discretization, the feature values are computed as the percentage of positive samples 

in each interval. The overall score generated by the classifier is calculated as the 

weighted sum of the probabilities obtained from all features. The weight of each 

feature is proportional to its individual AUC score. It is experimentally shown that 

the discretization policy applied helps to achieve higher AUC scores when compared 

to other widely used classifiers [37]. It should be noted that, logistic regression 

classifier is also observed to achieve higher AUC scores when compared to many 

other widely used classifiers [37]. J48 was used since it is one of the most frequently 

used implementation of decision trees [1, 9]. The average AUC scores obtained using 

5 × 2-fold cross validation are employed in comparing different ensembles [39].  

Table 6 presents the average AUC scores obtained using a single balancing scheme 

and a single prototype, namely ri*tk*Simple and ri*tk*Bagging and ri*tk*Boosting, 

respectively in parts (a), (b) and (c). Last rows and columns present the column-wise 

and row-wise averages, respectively. The scores presented in boldface are the highest 
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row or column averages. The average of all 25 AUC scores is presented in underlined 

form. The results show that undersampling provides the highest score when averaged 

over all prototypes in all three types of ensembles. SVM and LR provide the highest 

scores for ri*tk*Simple and ri*tk*Bagging, respectively whereas J48 provides the best 

score when used in ri*tk*Boosting. J48 is the second best in bagging-based 

ensembles whereas LR is the second best in simple ensembles. Although the highest 

AUC score is obtained by a boosting-based ensemble using J48 as the classifier 

prototype (i.e. r3*t5*Boosting or SMOTEBoost), when the col-AVG scores are 

compared, it can be seen that the performance of boosting based ensembles is higher 

than those of both simple and bagging-based ensembles only for J48. Therefore, 

selection of the classifier prototype is more critical in the case of boosting-based 

ensembles. Comparing the overall averages given in underlined form, it can be 

concluded that bagging-based ensembles generally achieve superior scores when 

compared to simple and boosting-based ensembles. Table 7 presents the average 

AUC scores obtained by using (a) ri×T*Simple*P, (b) R×tk*Simple*P and (c) 

R×T*Simple*P  for K = 4, 10 and 20.  For the ensembles in (a) and (b), totally 5×K 

members are utilized, leading to 20, 50 and 100 classifiers for K = 4, 10 and 20, 

respectively.  In the case of R×T*Simple*P, by considering all 25 2-tuples (ri, tk), 

ensemble sizes are 100, 250 and 500, respectively for K = 4, 10 and 20. When 

ri×T*Simple*P and R×tk*Simple*P are compared, it can seen that the scores 

achieved using multiple prototypes given in part (a) are much higher than those 

obtained by using a single prototype that are presented in part (b). The scores are also 

superior to those obtained using individual 2-tuples presented in part (a) of Table 6. It 

can be concluded that it is highly crucial to utilize multiple prototypes in simple 

ensembles, regardless of the balancing scheme employed. R×T*Simple*P surpasses 
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the ensembles corresponding to ri×T*Simple*P and R×tk*Simple*P, which means 

that better ensembles are generated by using multiple balancing techniques and 

classifier prototypes. 

Table 6: Average AUC scores achieved using (a) ri*tk*Simple, (b) ri*tk*Bagging and 
ri*tk*Boosting. 
 t1 t2 t3 t4 t5  row-AVG 

r1 0.8966 0.9075 0.8871 0.8939 0.9083 0.8987 
r2 0.8947 0.8938 0.9065 0.8014 0.8640 0.8736 
r3 0.8950 0.8945 0.9058 0.8386 0.8788 0.8844 
r4 0.8921 0.8929 0.9023 0.8397 0.8753 0.8817 
r5 0.8871 0.8930 0.8993 0.8182 0.8583 0.8728 

        

col-AVG 0.8931 0.8963 0.9002 0.8384 0.8769  0.8810 
(a) 

 t1 t2 t3 t4 t5  row-AVG 
r1 0.8966 0.9151 0.9002 0.9018 0.9104 0.9048 
r2 0.8940 0.9134 0.9085 0.8705 0.9094 0.8992 
r3 0.8948 0.9146 0.9084 0.8870 0.9132 0.9036 
r4 0.8927 0.9132 0.9053 0.8878 0.9123 0.9022 
r5 0.8890 0.9139 0.9054 0.8839 0.9092 0.9003 
        

col-AVG 0.8934 0.9140 0.9055 0.8862 0.9109  0.9020 
(b) 

 t1 t2 t3 t4 t5  row-AVG 
r1 0.8264 0.9020 0.9130 0.8979 0.9131 0.8905 
r2 0.8194 0.9013 0.9006 0.8696 0.9114 0.8805 
r3 0.8176 0.9039 0.9027 0.8893 0.9153 0.8858 
r4 0.8227 0.8990 0.8965 0.8844 0.9148 0.8835 
r5 0.8117 0.9011 0.8947 0.8762 0.9110 0.8784 

 
col-AVG 0.8196 0.9015 0.9015 0.8835 0.9131  0.8837 

(c) 

However, the actual gain due to using multiple resampling schemes can be better 

evaluated when part (b) of Table 7 is compared with part (a) in Table 6. For instance, 

the score achieved using t3 and R (0.9078) in Table 7 part (b) is higher than all the 

scores in the third column in part (a) of Table 6. This shows that, for t3, utilizing 

multiple resampling schemes should be preferred.  
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Table 7: Average AUC scores achieved using (a) ri×T*Simple*P, (b) R×tk*Simple*P 
and (c) R×T*Simple*P. 

 

 ri ×T * Simple * P 
K=4 K=10 K=20 

r1 0.9198 0.9237 0.9242 
r2 0.9277 0.9281 0.9283 
r3 0.9279 0.9284 0.9284 
r4 0.9261 0.9266 0.9268 
r5 0.9264 0.9267 0.9268 

 

 

 R × tk * Simple * P 
K=4 K=10 K=20 

t1 0.8962 0.8963 0.8964 
t2 0.9040 0.9082 0.9097 
t3 0.9079 0.9075 0.9078 
t4 0.8868 0.8917 0.8942 
t5 0.8987 0.9049 0.9072 

 

 

R × T * Simple * P 
K=4 K=10 K=20 

0.9297 0.9301 0.9301 
 

(a) (b) (c) 

In fact, this is also true for t2 and t4. However, the performance gain is not 

significant when compared using only r1. Table 8 presents the average AUC scores 

obtained by using, (a) ri×T*Bagging*P, R×tk*Bagging*P and (c) R×T*Bagging * P 

for K = 4, 10 and 20.  

Table8: Average AUC scores achieved using (a) ri×T*Bagging*P, (b) 
R×tk*Bagging*P and (c) R×T*Bagging*P. 

 

 ri × T * Bagging * P 
K=4 K=10 K=20 

r1 0.9179 0.9225 0.9250 
r2 0.9274 0.9303 0.9310 
r3 0.9281 0.9301 0.9305 
r4 0.9266 0.9288 0.9296 
r5 0.9268 0.9295 0.9300 

 

 

 R × tk * Bagging * P 
K=4 K=10 K=20 

t1 0.8944 0.8954 0.8950 
t2 0.9120 0.9163 0.9176 
t3 0.9089 0.9096 0.9098 
t4 0.8935 0.8990 0.9019 
t5 0.9065 0.9134 0.9174 

 

 

R × T * Bagging * P 
K=4 K=10 K=20 

0.9300 0.9311 0.9314 
 

(a) (b) (c) 

The results are consistent with those obtained in simple ensembles. However, slightly 

better scores can be obtained in general. When the AUC scores presented in parts (a) 

and (c) are compared, it can be seen that using multiple balancing schemes and large 

K (i.e. 10 or 20) leads to better scores than all ensembles presented in part (a) which 

are based on a single balancing scheme. Comparing part (b) of Table 8 with part (b) 

in Table 6, it can be seen that utilizing multiple resampling schemes leads to better 

scores for all classifiers except for t1. Therefore, as in the case of simple ensembles, 

instead of selecting a good balancing strategy or classifier prototype, using multiple 
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schemes and prototypes should be considered. However, as in the case of simple 

ensembles, the gain due to utilizing multiple balancing schemes is not as remarkable 

as employing multiple prototypes. Table 9 presents the average AUC scores obtained 

by using, (a) ri×T*Boosting*P, R×tk*Boosting*P and (c) R×T*Boosting*P for K = 4, 

10 and 20.  

Table 9: Average AUC scores achieved using (a) ri×T*Boosting*P, (b) 
R×tk*Boosting*P and (c) R×T*Boosting*P. 

As in the case of simple and bagging-based ensembles, totally 5×K members are 

utilized in both (a) and (b), leading to 20, 50 and 100 classifiers for K = 4, 10 and 20, 

respectively. Consider part (a) where the scores obtained using multiple prototypes 

and a single balancing scheme are presented. When compared with the scores 

presented in part (c) of Table 6, it can be seen that the performance may degrade 

when multiple prototypes are employed. More specifically, inferior scores than the 

best-fitting prototypes are obtained for r4. When 100 members are employed, the 

AUC score achieved using {r4, t5} is 0.9148 (from Table 6) whereas 0.9035 is 

obtained using r4 and multiple prototypes. On the other hand, the best score achieved 

by using r1 is improved from 0.9131 to 0.9251, which is greater than the scores of all 

tuples. In fact, r4 can be considered as an exception since multiple prototypes lead to 

better scores than the best individual for all other balancing schemes. 

 

 r i× T * Boosting * P 
K=4 K=10 K=20 

r1 0.9160 0.9212 0.9251 
r2 0.9200 0.9186 0.9160 
r3 0.9220 0.9181 0.9172 
r4 0.9188 0.9047 0.9035 
r5 0.9191 0.9063 0.9154 

 

 

 R × tk * Boosting * P 
K=4 K=10 K=20 

t1 0.8053 0.8155 0.8205 
t2 0.9095 0.9090 0.9105 
t3 0.9112 0.9111 0.9095 
t4 0.8947 0.8959 0.8953 
t5 0.9125 0.9170 0.9198 

 

 

R × T * Boosting * P 
K=4 K=10 K=20 

0.9253 0.9229 0.9210 
 

(a) (b) (c) 
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In boosting-based ensembles, the performance gain from multiple balancing schemes 

depends on the classifier prototype. As it can be seen in part (b) of Table 9, the scores 

achieved using t1 are highly poor. These scores are also inferior than the score 

achieved using (r1, t1), 0.8264. This is also the case for t3 and t4. In other words, using 

multiple resampling schemes does not provide better ensembles for these base 

learners. However, using multiple balancing schemes, the highest score obtained 

using a single balancing scheme and prototype (i.e. (r3, t5), in Table 6) is improved 

from 0.9153 to 0.9198. 

The AUC scores obtained by utilizing multiple balancing schemes and multiple 

classifier prototypes are presented in part (c) of Table 9. The scores are higher than 

the best scores achieved using a single prototype given in part (b). This verifies the 

importance of using multiple prototypes in boosting-based ensembles as well. 

However, the difference in the scores is not notable when compared to using only r1 

together with T as presented in the first row of part (a). In summary, as in simple and 

bagging-based ensembles, the highest scores are obtained using multiple prototypes. 

However, when multiple prototypes are used, a notable improvement is not observed 

by utilizing multiple resampling schemes when compared with r1. 

The experimental results presented in Tables 7, 8 and 9 clearly demonstrate the 

importance of using heterogeneous ensembles in imbalance learning. In order to 

investigate the contribution of subsets of T (denoted by Tm when m prototypes are 

used) to the ensemble performance when used together with the whole set of R (i.e. 

all 2-tuples in R×Tm), further experiments are conducted. Similarly, the performances 

of all 2-tuples in Rm×T are evaluated. The average AUC values obtained for m = 1, 2, 

3, 4, 5 are presented in Figure 4. 
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It should be noted that, when m = 1, the average AUCs obtained using five 

ensembles are reported whereas the scores of ten ensembles are averaged when m = 

2. Each ensemble involves m × |T| × K members. For instance, 200 members are 

computed when m = 2 since |T| = 5 and K = 20, in both Rm×T*Simple*P and 

R×Tm*Simple*P. Similarly, the ensemble size is 300 when m = 3. The first row of 

the figures illustrates the gains obtaining by using increasing numbers of balancing 

methods. The figures in the second row show that increasing the number of 

prototypes leads to notable improvements in the performance scores for all three 

types of ensembles. 

 
Figure 4: The average AUC scores achieved using Rm and Tm for m = 1, . . . ,5. 

The figure on the left in Figure 5 presents the average AUC scores obtained using 

R×tk*Simple*S for individual prototypes denoted by tk, k = 1, . . . , 5 and the whole 

set of prototypes, T.  
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Figure 5: The average AUC scores achieved using simple serial ensembles. 

It should be noted that the prototype distribution, prDist is selected as uniform in the 

case of T. The experimental results show that utilizing multiple prototypes is also 

effective in serial ensembles. In Figure 5, the effect of using different distributions is 

presented on the right. The selection of prDist is based on the col-AVG values 

reported in Table 6. The first distribution is set as �� = ( ��� , ��� , ��� , ��� , ���) , aiming at 

using the most successful prototypes determined using Table 6 in vast majority of the 

members. The second distribution �� = ( ��� , ��� , ��� , ��� , ���) is used to select the 

prototypes more uniformly by considering their relative performances into account. 

w3 corresponds to the uniform distribution that is provided as a reference. It can be 

seen that better scores are obtained using w2. The experiments are repeated for 

bagging- and boosting-based serial ensembles as presented in Figures 6 and 7, 

respectively.  
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Figure 6: The average AUC scores achieved using bagging-based serial ensembles. 

Figure 7: The average AUC scores achieved using boosting-based serial ensembles. 

In bagging-based ensembles, the weights are selected as �� = ( ��� , ��� , ��� , ��� , ���), and 

�� = � ��� , ��� , ��� , ��� , ���� using the same logic as in case of simple ensembles. In 

boosting-based ensembles the weights are selected as �� = � ��� , ��� , ��� , ��� , ����� 

and �� = � ��� , ��� , ��� , ��� , ����. The experimental results show that multiple prototypes 
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provides superior scores when compared to individual prototypes for all three type of 

ensembles. The additional improvements that could be achieved by utilizing different 

weights demonstrate that a good ensemble should include a rich set of prototypes, 

where the percentage of each prototype is proportional to its individual performance. 

 
Figure 8: The average AUC scores obtained for different subsets of datasets. 

The first row presents the scores over all datasets. The second row corresponds 
to scores on datasets having high and low imbalance ratios (IR). The last row is 

average scores on datasets having small and large minority classes. 

The average AUC scores obtained using ri*tk*Bagging and ri*tk*Boosting on 

different subsets of datasets are presented in Figure 8. It should be noted that each 

bar corresponds to the average for five balancing schemes. The figures show that the 

highest scores are generally achieved using bagging-based ensembles. When the 
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imbalance ratio (IR) is low or the size of minority class is large, bagging J48 

provides the highest scores whereas bagging LR provides the highest scores in the 

other two cases. For LR, bagging is the best ensembling scheme for all four groups 

of datasets whereas, in the case of J48, the relative performance of bagging and 

boosting depends on the characteristic of the dataset. More specifically, boosting J48 

leads to better scores when the dataset has high imbalance or small minority class. 

Table 10: The average AUC scores and ranks obtained for the ensembles 
implemented in this thesis. Ensembles in first six rows utilize multiple-prototypes. 
The size of all ensembles is 100. 

 

Type Ensemble Avg. AUC score Avg. rank 

 
 

Multiple prototypes 

R × T * Simple * P 0.9297 6.13 
R × T * Bagging * P 0.9300 5.59 
R × T * Boosting * P 0.9253 7.76 
R × T * Simple * S 0.9293 6.83 
R × T * Bagging * S 0.9298 5.83 
R × T * Boosting * S 0.9233 9.09 

 
 
 
 
 
 
 

Single prototype 

r1 * t5 * Simple 0.8871 13.24 
r1 * t2 * Bagging 0.8940 12.14 
R × t2 * Simple * P 0.9097 13.47 
R × t2 * Bagging * P 0.9176 11.61 
R × t5 * Boosting * P 0.9198 9.78 
R × t2 * Simple * S 0.9112 12.48 
R × t2 * Bagging * S 0.9175 11.35 
R × t5 * Boosting * S 0.9175 11.22 
SMOTEBagging 0.9066 13.29 
UnderBagging 0.9093 11.92 
OverBagging 0.8975 15.65 
SMOTEBoost 0.9153 10.73 
RUSBoost 0.9131 10.65 
DataBoost-IM 0.9157 11.22 

Table 10 presents the average AUC scores and average ranks of a selected subset of 

ensembles developed in this study. First six rows are multi-balancing and multi-

prototype simple, bagging- and boosting-based ensembles. Other 14 ensembles are 

based on a single prototype. 
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More specifically, r1*t5*Simple is the best simple ensemble (highest score in part (a) 

of Table 6) and r1*t2*Bagging is the best bagging-based ensemble (highest score in 

part (b) of Table 6), both utilizing a single balancing scheme and prototype. 

Following three ensembles are the best simple, bagging- and boosting-based parallel 

ensembles utilizing a single prototype but multiple balancing schemes. The best 

simple, bagging- and boosting- based serial ensembles employing a single prototype 

but multiple balancing schemes are listed next. SMOTEBagging, UnderBagging, 

OverBagging, SMOTEBoost, RUSBoost and DataBoost-IM are listed in last six 

rows. Wilcoxon signed-rank test [41] is also performed to compare the multi-

prototype ensembles presented in top six rows of Table 10 with the other 14 

ensembles using α = 0.05. The p-values obtained, numbers of wins, losses, ties are 

presented in Table 11.  

Table 11: Statistical evaluation of multi-balancing and multi-prototype systems 
developed. The size of all ensembles is 100. [1]: R×T*Simple*P, [2]: 
R×T*Bagging*P, [3]: R×T*Boosting*P , [4]: R×T*Simple*S, [5]: R×T*Bagging*S, 
[6]: R×T*Boosting*S. 
 

 [1] [2] [3] [4] [5] [6] 
r1 * t5 * Simple 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
r1 * t2 * Bagging 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
R × t2 * Simple * P 0.0000 0.0000 0.0002 0.0000 0.0000 0.0011 
R × t2 * Bagging * P 0.0000 0.0000 0.0119 0.0000 0.0000 0.0744 
R × t5 * Boosting * P 0.0000 0.0000 0.0001 0.0000 0.0000 0.0417 
R × t2 * Simple * S 0.0000 0.0000 0.0009 0.0000 0.0000 0.0059 
R × t2 * Bagging * S 0.0000 0.0000 0.0145 0.0000 0.0000 0.0809 
R × t5 * Boosting * S 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030 
SMOTEBagging 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
UnderBagging 0.0000 0.0000 0.0001 0.0000 0.0000 0.0015 
OverBagging 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
SMOTEeBoost 0.0000 0.0000 0.0004 0.0000 0.0000 0.0486 
RUSBoost 0.0000 0.0000 0.0131 0.0000 0.0000 0.2764 
DataBoost-IM 0.0000 0.0000 0.0001 0.0000 0.0000 0.0042 

Number of wins 14 14 14 14 14 11 
Number of losses 0 0 0 0 0 0 
Number of ties 0 0 0 0 0 3 
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These two tables show that the ensembles constructed using multiple balancing 

schemes and multiple prototypes perform significantly better that the others which 

are based on a single prototype. “Nemenyi” test is used for pair wise comparison of 

all ensembles [41].  

Figure 9: Comparative evaluation of all ensembles using Nemenyi test where 
α=0.05. The R package “scmamp” is used. 

As presented in Figure 9, Ensembles for which the difference in average ranks is 

lower than the critical difference (CD) is connected by a black line. According to this 

test, R×T*Bagging*P and R×T*Bagging*S are significantly better than all 

homogeneous ensembles employing only one type of a classifier. 
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Chapter 5 

5 CONCLUSIONS 

In this thesis, the use of multi-prototype and multi-balancing ensembles for 

imbalance learning is addressed. Simple, bagging- and boosting-based ensembles are 

implemented for this purpose. Experiments conducted on 66 datasets in KEEL 

repository have shown that multiple prototype ensembles provides significantly 

better AUC scores when compared to the ensembles utilizing a single prototype. The 

contribution of employing multiple balancing schemes is also taken into 

consideration. Experimental results have shown that slight improvements can be 

achieved for majority of the classifier prototypes, especially in simple and bagging-

based ensembles. Prototype weighting is also addressed using serial ensembles. 

Additional improvements are achieved by utilizing weights that are proportional to 

the individual performance scores of the classifier prototypes. 

The experimental results have also shown that the highest scores are achieved when 

all five prototypes are used. Since multiple prototypes provide significant 

improvements, further research should be conducted for obtaining an even better 

prototype set. The effect of adding more classifier prototypes should be investigated. 

Also, the characteristics of the classifiers that form the best-fitting set should also be 

explored. The weights selected in serial ensembles were not tuned according to a 

particular objective function. Further research should be conducted to investigate the 

effect of alternative weighting strategies. 
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