Analysis and Experiments on LSB-Based and ATD Steganographic Methods for Gray Scale and Color Images

Hajer Ahmed Alaswed

Submitted to the Institute of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

> Master of Science in Computer Engineering

Eastern Mediterranean University May 2017 Gazimağusa, North Cyprus Approval of the Institute of Graduate Studies and Research

Prof. Dr. Mustafa Tümer Director

I certify that this thesis satisfies the requirements as thesis for the degree of Master of Science in Computer Engineering.

Prof. Dr. Işık Aybay Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in scope and quality as a thesis for the degree of Master of Science in Computer Engineering.

Assoc. Prof. Dr. Alexander Chefranov Co-Supervisor Assoc. Prof. Dr. Gürcü Öz Supervisor

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Assoc. Prof. Dr. Gürcü Öz

3. Asst. Prof. Dr. Adnan Acan

4. Asst. Prof. Dr. Yiltan Bitirim

5. Asst. Prof. Dr. Ahmet Ünveren

ABSTRACT

The aim of this thesis is the analysis and experiments on steganographic methods for gray scale and color images and study of quality measures of the stego-images. For gray images, the Algorithm with Ternary Digits (ATD) and Least Significant Bits with Threshold (LSBT) are explained in detail. In the existing studies, for LSBT algorithm, some information is not provided such as how to set the values of threshold, T, and two moduli, mu, ml. Moreover, our analysis proves that LSBT encounters problems when the value of a pixel is close to the threshold value, T. In the study, LSBT problems are resolved by imposing constraints on the threshold and moduli values. Known results are displayed as Peak Signal to Noise Ratio (PSNR) for different values of embedding capacity, without presenting the formula for threshold; hence, the threshold is formalized herein as a function of embedding capacity.

In ATD, the main idea is embedding a secret message (in each pixel, embedding two ternary digits) as a ternary numbers. In LSBT, the embedding capacity of each pixel is determined by comparing the pixel value versus the threshold, T: if the pixel value is greater than or equal to T, then $floor(log_2mu)$, otherwise $floor(log_2ml)$ is used as embedding capacity. According to our analysis, PSNR of LSBDT is greater than that of ATD when the embedding capacity is less than or equal to 3 BPP.

For color images, LSB and ATD are implemented for different color combinations of 8 BPP embedding capacity. According to our experiments, PSNR of LSB for color images had fluctuations in different combinations with the same embedding capacity 8 BPP while the PSNR of ATD was stable in different combinations. However, the value of WMSNR (1/3, 1/3, 1/3) for LSB with different combinations looked invariant for different combinations when compared with other weights. For LSB algorithm when comparison between different metrics is made by deviation evaluation of the metrics, the best metric for LSB algorithm is found as WMSNR (1/3,1/3,1/3), with the minimal deviation value 0.211. And the maximal deviation is obtained for WPSNR (0.4, 0.243, 0.357) corresponding to the human eye color perception. Thus, human color perception-originated weights are not appropriate for the images assessment.

Keywords: Steganography, Algorithm with Ternary Digits (ATD), Least Significant Bit with Threshold Algorithm (LSBT), Gray Scale Image, Color Image, Embedding Capacity, Image Quality Metrics, Peak Signal-to-Noise Ratio (PSNR). Bu tezin amacı, gri tonlamalı ve renkli görüntüler için stenografik yöntemler kullanarak analiz ve deneyler yapmak ve stego görüntülerinin kalite ölçümlerini incelemektir. Burada gri görüntüler, üç basamaklı algoritma (ATD) ve eşiğe sahip en az anlamlı bitler (LSBT) detaylı olarak açıklanmıştır. LSBT algoritmaları için mevcut araştırmalarda, eşik değeri *T* ve iki modül olan *mu* ve *ml* değerlerinin nasıl ayarlandığı gibi bazı bilgiler verilmemiştir. Ayrıca, analizimiz bir pikselin değeri eşik değerine (*T*) yakın olduğunda, LSBT'nin sorunlarla karşılaştığını kanıtlıyor. Çalışmadaki, LSBT problemleri, eşik ve modül değerlerine kısıtlamalar getirerek çözüldü. Bilinen sonuçlar, gömme kapasitesinin farklı değerleri kullanılarak eşik için formül sunmadan tepe sinyal-gürültü oranı (PSNR) olarak biçimlendirilmiştir. Bu çalışmada eşik, gömme kapasitesinin bir fonksiyonu olarak biçimlendirilir.

ATD'de temel fikir, üç rakamlı olarak gizli bir mesaj gömmektir (her pikselde, iki üçer sayı gömülüdür). LSBT'de her pikselin gömme kapasitesi, piksel değeri eşik (T) ile karşılaştırılarak belirlenir: Eğer piksel değeri T'den fazla veya eşit ise, gömme kapasitesi olarak $floor(log_2mu)$, değilse $floor(log_2ml)$, kullanılır. Bizim analizlerimize göre gömme kapasitesi 3 BPP'den daha az veya eşit ise, LSBDT'nin PSNR değeri ATD'den fazladır.

Renkli görüntülerde LSB ve ATD uygulanırken 8 BPP yerleştirme kapasitesinin farklı renk kombinasyonları kullanıldı. Deneyimlerimize dayanarak, renkli görüntüler için LSB'nin PSNR'si, aynı gömme kapasitesi 8 BPP olan farklı kombinasyonlarda dalgalanma göstermekteyken, ATD'nin PSNR'ı farklı kombinasyonlarda sabit kalmıştır. Bununla birlikte LSB için WMSNR değeri (1/3, 1/3), kombinasyonları ile birlikte farklı kombinasyonlara baktığımızda, diğer ağırlıklara kıyasla farklı kombinasyonlar için değişmez görünüyordu. LSB algoritması için farklı metrikler arasındaki karşılaştırma, metrikler için sapma değerlendirmesiyle yapılması durumunda, LSB algoritması için minimum sapma değeri 0.211 olan en iyi metrik olarak WMSNR (1/3, 1/3, 1/3) elde edildi. Yapılan deney sonuçlarına göre en fazla sapma, insan göz rengi algısına karşılık gelen WPSNR(0.4, 0.243, 0.357) değerlerinde saptandı. Çıkan sonuçlardan, insan renk algılamasına dayalı ağırlıkların görüntü değerlendirmesi için uygun olmadığı saptandı.

Anahtar Kelimeler: Steganografi, Üç Basamaklı Algoritma (ATD), En Az Önemli Bit Eşik Algoritması (LSBT), Gri Ölçekli Görüntü, Renkli Görüntü, Gömme Kapasitesi, Görüntü Kaliteli Metrikleri, Tepe Sinyal –Gürültü Oranı(PSNR).

DEDICATION

To my beloved husband, Ahmed.

ACKNOWLEDGMENT

First of all, I thank Allah so much for giving me the strength and potential to finish my Master. Secondly, I would like to express my special appreciation and thanks to my beloved husband for his love and support throughout my life. Also, I would like to thank my supervisors Assoc. Prof. Dr. Alexander Chefranov, and Assoc. Prof. Dr. Gürcü Öz for their guidance and support throughout this study.

TABLE OF CONTENTS

ABSTRACT	iii
ÖZ	vi
DEDICATION	viii
ACKNOWLEDGMENT	ix
LIST OF TABLES	xiv
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xviii
1 INTRODUCTION	1
2 RELATED WORK AND PROBLEM DEFINITION	5
2.1 Overview of Steganography	5
2.2 Categories of Steganography	5
2.3 Methods of Steganography	6
2.3.1 Survey of Frequency Domain Methods	6
2.3.2 Survey of Spatial Domain Methods	9
2.3.3 LSB Method	13
2.3.4 Algorithm with Ternary Digits (ATD)	16
2.3.5 LSB with Threshold Algorithm (LSBT)	29
2.4 Color Perception	40
2.5 Known Metrics for Evaluating Quality of Stego Images	41
2.6 Known Experiments Setups and Results	42
2.7 Problem Definition	44
2.8 Summary of Chapter 2	46

3 ATD AND LSBT ANALYSIS AND RECOVERED PROBLEMS FIXING47
3.1 Proof of ATD Correctness
3.2 LSBT problems fixing and Proof of fixed LSBT Correctness
3.3 Summary of Chapter 361
4 IMPLEMENTATION OF ATD and LSBT-M ALGORITHMS FOR GRAY
SCALE IMAGES
4.1 ATD Implementation
4.2 LSBT-M Implementation65
4.3 Summary of Chapter 4
5 IMPLEMENTATION OF ATD AND LSB ALGORITHMS FOR COLOR
IMAGES
5.1 LSB Implementation70
5.1.1 Traditional LSB with Different Combinations70
5.1.2 Adaptive LSB (ALSB) Implementation
5.2 ATD Implementation74
5.3 Summary of Chapter 575
6 EXPERIMENTS RESULTS
6.1 Gray Scale Images Results for ATD, LSBCT, and LSBDT76
6.1.1 ATD Results77
6.1.2 LSBCT Results79
6.1.3 LSBDT Results
6.1.4 ATD, LSBDT, and LSBCT Comparison Results84
6.1.5 Comparison Versus Known Experiments Results
6.2 Results for Color Scale Images
6.2.1 LSB and ALSBmax, ALSBmin Results

6.2.2 ATD Results
6.2.3 ATD and LSB Comparison Results91
6.2.4 Comparison Versus Known Experiments Results92
6.3 Study of the Quality Metrics
6.3.1 MSNR and APSNR for Gray Scale Images93
6.3.2 MSNR and APSNR for Color Scale images
6.3.3 Evaluation of Different Metrics105
6.4 Performance of ATD and LSB for Color Scale Images Depending on the
Embedding Capacity108
6.5 Summary of Chapter 6
7 CONCLUSION AND FUTURE WORK111
REFERENCES114
APPENDICES119
Appendix A120
Appendix B133
Appendix C143
Appendix D
Appendix E172
Appendix F183

LIST OF TABLES

Table 2.1: PSNR (dB) of LSBT and ATD [28] for Random Secret Message with
Embedding Capacity 3.1699 BPP for 8 Cover Images Figure 2.1643
Table 2.2: LSB PSNR (dB) and MSE for LSB [24]44
Table 4.1: ATD Results for Lena Image64
Table 4.2: LSBDT Implementation for Baboon Image 68
Table 4.3: LSBCT Implementation for Baboon Image; T=160
Table 6.1: PSNR of ATD 78
Table 6.2: PSNR for LSBCT Algorithm
Table 6.3: PSNR for LSBDT Algorithm
Table 6.4: PSNR (dB) for LSBCT (T=160), LSBDT, and ATD Dependence on EC
(BPP)
Table 6.5: PSNR (dB) for LSB in Different Combinations and ALSBmax, ALSBmin
Table 6.6: PSNR (dB) for ATD for Different Combinations Results
Table 6.7: MSNR (dB) for LSB and ALSB Methods Results100
Table 6.8: MSNR (dB) for ATD for Different Combinations 102
Table 6.9: Deviation of Results in Each Criterion Measure for LSB Algorithm 106
Table 6.10: Deviation of Results in Each Criterion Measure for ATD Algorithm 107

LIST OF FIGURES

Figure 1.1: Flowchart of the Thesis Study
Figure 2.1: Flowchart of the LSB Embedding Algorithm14
Figure 2.2: Flowchart of the LSB Extraction Algorithm15
Figure 2.3: Flowchart of the ATD Embedding Algorithm
Figure 2.4: Flowchart of Check <i>sub1ij</i> Part of the ATD Embedding Algorithm20
Figure 2.5: Flowchart of Check <i>sub2ij</i> Part of the ATD Embedding Algorithm21
Figure 2.6: Flowchart of Embedding Sk in sub1ij` Part of the ATD Embedding
Algorithm
Figure 2.7: Flowchart of Embedding Sk in vij Part of the ATD Embedding
Algorithm
Figure 2.8: Flowchart of ATD Extraction Algorithm23
Figure 2.9: Flowchart for LSBT Embedding Algorithm
Figure 2.10: Flowchart of Embedding Algorithm Below Threshold Part of LSBT32
Figure 2.11: Flowchart of Embedding Algorithm Above Threshold of LSBT33
Figure 2.12: Flowchart of Case.1 in Figures 2.10, 2.11
Figure 2.13: Flowchart of Case.2 in Figures 2.10, 2.11
Figure 2.14: Flowchart for LSBT the Extraction Algorithm
Figure 2.15: The Color Matching Experiment for RGB [20]40
Figure 2.16: Cover Images Used in [28]42
Figure 2.17: PSNR Values (dB) for ATD and LSBT Obtained in [28] for Random
Secret Messages of Different Sizes and Averaged Over 8 Cover Images from Figure
2.16
Figure 2.18: Cover Images Used in [24]44

Figure 4.1: Lena Cover Image and Stego Image for ATD Implementation withSecret
Message Size 644288 bits, Appendix A.6
Figure 4.2: Baboon Cover Image and Stego Image for LSBDT Implementation67
Figure 5.1: Lena Cover Image and Stego Image for LSB with Combination (134)
Implementation Appendix D.972
Figure 5.2: Quality Measures for Lena Image After Secret Message Embedding by
LSB for Combination (134)72
Figure 5.3: Quality Measures for ALSBmin for Lena Image74
Figure 5.4: ATD Quality Measures for Lena Cover Image75
Figure 6.1: Gray Scale Cover Images Used in ATD, LSBCT, and LSBDT Simulation
Figure 6.2: Flowchart for Gray Scale Simulation Steps
Figure 6.3: Average PSNR of ATD78
Figure 6.4: Average PSNR for LSBCT
Figure 6.5: Average PSNR for LSBDT
Figure 6.6: PSNR (dB) for ATD and LSBCT (T=160) and LSBDT Dependence on
EC (BPP)
Figure 6.7: Cover Images Used for Experiments with ATD and LSB
Figure 6.8: Flowchart for Color Scale Simulation Steps
Figure 6.9: PSNR for LSB for Different Combinations and ALSBmax, ALSBmin .88
Figure 6.10: SNR for LSB for Different Combinations and ALSBmax, ALSBmin89
Figure 6.11: PSNR for ATD for Different Combinations90
Figure 6.12: SNR for ATD in Different Combinations
Figure 6.13: PSNR for ATD and LSB91
Figure 6.14: SNR (dB) for ATD and LSB

Figure 6.15: APSNR (dB) of ATD94
Figure 6.16: MSNR (dB) of ATD94
Figure 6.17: APSNR (dB) for LSBCT95
Figure 6.18: MSNR (dB) for LSBCT
Figure 6.19: APSNR (dB) for LSBDT96
Figure 6.20: MSNR (dB) for LSBDT96
Figure 6.21: APSNR (dB) for ATD and LSBCT and LSBDT97
Figure 6.22: MSNR (dB) for ATD and LSBCT and LSBDT97
Figure 6.23: Weighed PSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different
Embedding Combinations
Figure 6.24: Weighed PSNR (dB) by (0.4, 0. 3, 0.3) for LSB for Different
Embedding Combinations
Figure 6.25: Weighed PSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different
Embedding Combinations and ALSBmax, ALSBmin
Figure 6.26: MSNR (dB) for LSB for Different Embedding Combinations and
ALSBmax, ALSBmin
Figure 6.27: Weighed MSNR (dB) by (0.4, 0.3, and 0.3) for LSB for Different
Embedding Combinations and ALSBmax, ALSBmin101
Figure 6.28: Weighed MSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different
Embedding Combinations and ALSBmax, ALSBmin
Figure 6.29: Weighed MSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different
Embedding Combinations and ALSBmax, ALSBmin
Figure 6.30: MSNR (dB) for ATD for Different Embedding Combinations
Figure 6.31: WPSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243,
0.357), (0.4, 0.3, 0.3), and (1/3,1/3,1/3)104

Figure 6.32: MSNR (dB) for ATD and LSB104
Figure 6.33: WMSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243,
0.357), (0.4, 0.3, 0.3), and (1/3,1/3,1/3)105
Figure 6.34: Deviation of Results in Each Criterion Measure for LSB Algorithm106
Figure 6.35: Deviation of Results in Each Criterion Measure for LSB Algorithm108
Figure 3.36: WAPSNR (dB) Dependence on Embedding Capacity for LSB and ATD.
Figure A.1: Cover Images Used in Gray Scale Images120
Figure D.1: Color Cover Images Used

LIST OF ABBREVIATIONS

ATD	Algorithm with Ternary Digits
AC	Average Color
ALSBmax	Adaptive Least Significant Bit max
ALSBmin	Adaptive Least Significant Bit min
APSNR	Actual Peak Signal to Noise Ratio
BPP	Bit Per Pixel
C-TDH	Coded Ternary Data Hiding
DWT	Discrete Wavelet Transform
DCT	Discrete Cosine Transform
ETLSM	Extended Table Lookup Substitution
EC	Embedding Capacity
FFT	Fast Fourier Transform
HSV	(Hue, Saturation, Value)
IRMDR	Improved Rightmost Digit Replacement
IWT	Integer Wavelength Transform
LSB	Least Significant Bit
LSBT	Least Significant Bit with Threshold
LSBT-M	Least Significant Bit with Threshold Modified
LSBCT	Least Significant Bit with Constant Threshold
LSBDT	Least Significant Bit with Dynamic Threshold
MSE	Mean Square Error
MSNR	Mean Signal to Noise Ratio
PSNR	Peak Signal to Noise Ratio

PPM	Pixel Pair Matching
PBPVD	Parity Bit Pixel Value Differencing
RGB	(Red, Green, Blue)
SNR	Signal to Noise Ratio
SMVQ	Side Match Vector Quantization
TLSM	Table Lookup Substitution
TDH	Ternary Data Hiding
WPSNR	Weighted Peak Signal to Noise Ratio
WAPSNR	Weighted Actual Peak Signal to Noise Ratio
WMSNR	Weighted Mean Signal to Noise Ratio

Chapter 1

INTRODUCTION

Steganography is an art of embedding information in other media files for example text, image, etc, where the embedding information will not be discovered [2], There are basically two types of techniques in the Steganography: spatial domain and frequency domain. In the spatial domain, the actual values are impacted to embed the secret information while in frequency domain, the cover object is converted to the frequency domain by Discrete Wavelet Transform (DWT) and then the secret information is embedded [3].

In this thesis, we consider three steganographic schemes in the spatial domain, Algorithm with Ternary Digits (ATD) [28] [18], Least Significant Bit (LSB) [10] [27], and LSB with Threshold (LSBT) [26] [9] in the gray and the color scale images. In [28], in ATD, the secret message is divided to non-overlapping pixel blocks, then that it is converted to the ternary number with digits from {0, 1, 2}. In each pixel of cover image, two ternary digits are embedded by converting the pixel of the cover image to binary (8 bits) and dividing it to two sub-segments and embedding one ternary digit in each sub-segment. In the embedding phase, a secret digit is compared versus (the value of sub segment modulo 3); if the result is equal to the secret ternary digit then sub segment is not modified, otherwise it is increased or decreased by one. LSBT [26], uses the threshold value, T, and two moduli numbers (modulus upper, mu, modulus lower, ml). In the embedding phase, the pixel value of cover image is compared with the threshold value T. If it is larger than or equal to the threshold, mu is used, otherwise ml is used. The number of bits embedded in each pixel is determined according to value, Ec, and the secret message is divided into blocks according to the value, Ec, where $1 \le Ec \le 8$; it gives better results when Ec < 4.

Experiments are conducted on ATD and LSBT with quality metrics Peak Signal to Noise Ratio (PSNR) [28], but they do not provide the proofs for the methods (LSBT and ATD). Also, sufficient information for their implementation in both algorithms (LSBT and ATD) such as how to select the value of the threshold *T* and the values of *mu* and *ml* is not provided. Therefore, in this thesis, we provide the proofs for the methods (LSBT and ATD), and we fix the recovered problem with LSBT when the value of the pixel of cover image is close to the threshold value *T* by imposing constraints on the threshold and moduli values. Also, we propose dynamic threshold modification, LSBDT, where threshold is defined according to the embedding capacity, measured in Bit Per Pixel (BPP), to have results compatible with those presented in [28]. Furthermore, for LSBT we determine the value of two moduli and extend ATD to work on the color scale images. We found that PSNR shows large variance for the same embedding capacity depending on the bits distribution across a pixel. Hence, we propose and implement new quality criteria MSNR and APSNR which show significantly lower variance and find the best of them.

For gray scale images, experiments are conducted with the cover images of the size

512×512 pixels and random secret messages; the size of secret messages starts from (512*512*2) bits and increases by 30000 bits in each iteration. In every iteration, the values of PSNR are recorded. The comparison between three methods were considered: ATD, LSBCT, LSBDT. When embedding up to 3 BPP the LSBDT achieves a high value of PSNR 43 dB whereas ATD achieves 39 dB. However, when increasing the embedding capacity more than 3 BPP the PSNR of LSBDT drops sharply; it was 39 dB in 3 BPP then it slumps to 35 dB in 3.2 BPP while PSNR of ATD decreases slightly until 37 dB.

For color images, experiments are conducted with the cover image of the size 512×512 pixels and the constant size secret message. In this case, we implement LSB with different embedding combinations, (224, 242, 422, 134, 143, 314, 341, 413, 431), each of them representing 8 bits embedding in each pixel, for example, combination 134 means embedding one bit in Red, three bits in Green, and four bits in Blue color component of a pixel. Also, we modify LSB to adaptive LSB (ALSBmax, ALSBmin) and we extend ATD to work with color images which is implemented for different combinations (112, 211, 121) as four ternary digits embedded in each pixel (8 bits in each pixel). For example, combination 112 means embedding one ternary digit in Red, one ternary digit in Green, and two ternary digits in Blue color component of a pixel. According to our results for color images, for the same embedding capacity in the different combinations, we get a fluctuating value of PSNR for LSB, therefore we have studied the quality metrics and improved PSNR by introducing new metrics, MSNR and APSNR. Also, we weighted PSNR, MSNR, and APSNR by three different groups of weighs ($R_w = 0.4$, $G_w = 0.3$, $B_w = 0.3$), $(R_w = 0.4, G_w = 0.243, B_w = 0.357)$, and $(R_w = 1/3, G_w = 1/3, B_w = 1/3)$ where R_w , G_w , and B_w are weights of Red, Green, and Blue, respectively. We have tested new metrics, MSNR, APSNR, on the color and gray scale images.

The thesis research is organized as shown in Figure 1.1. Chapter 2 discusses related work and introduces LSB, ATD, and LSBT methods, and the problem definition. In Chapter 3, ATD and LSBT are analyzed, problems for LSBT are recovered by building counterexamples, and fixed. Design and Implementation of ATD and LSBT-based methods on gray scale images are shown in Chapter 4. Design and implementation of ATD-based and LSB-based methods on color images are shown in Chapter 5. Chapter 6 shows results of experiments on the above methods and compares them with the known experiments results. Chapter 7 concludes the thesis.

Figure 1.1: Flowchart of the Thesis Study

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

2.1 Overview of Steganography

Nowadays, with the recent developments in electronic computer and its intrusion into our daily life, the need for private communication has increased. We use various techniques to provide secrecy in communication. One of such techniques is steganography; steganography is used to protect important data from unauthorized user by hiding secret data into other media files like text, image, etc. Steganography is a combination of two words, the first word "stegano" means the "cover", and the second word "graphic" means "writing", they are both Greek words [1].

2.2 Categories of Steganography

There are different categories of steganography; these categories can be split to five broad categories as the following [16]:

• Text Steganography

This is the most popular technique of steganography, it is done by embedding secret data in text, by modifying the spacing between the words and line [16].

• Image Steganography

In this technique, the secret data is embedded in an image. This image can be a color scale image, gray scale image or binary image. Color scale image has large space for embedding secret data therefore color scale image Steganography is more popular than gray scale image in Steganography. Color scale images can be represented in different formats such as RGB (Red, Green, Blue), HSV (Hue, Saturation, Value)

[3].

• Audio Steganography

Audio Steganography is hiding the secret data in an innocuous cover speech in a secure and robust manner. There are various ways popularly used in audio Steganography such as LSB coding, parity coding, and spread spectrum [16].

• Video Steganography

Video Steganography is a combination of image steganography and audio Steganography as the video consists of a set of images and audio [16].

• Protocol Steganography

In protocol steganography, the secret data is hidden in the header of a TCP/IP [16].

2.3 Methods of Steganography

There are two classes of methods of steganography techniques as that [3]:

- 1) Frequency Domain Methods.
- 2) Spatial Domain Methods.

2.3.1 Survey of Frequency Domain Methods

In transform domain, the cover object is converted to another domain to get the transformed coefficients, these coefficients are changed to hide the secret data. After that, these coefficients are transformed back to the spatial domain to get stego object. The widely used transforms are Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Fast Fourier Transform (FFT)[3].

In DCT is the core of image coding and video compression techniques. Such as for JPEG image format, image is divided into 8x8 pixel blocks then the DCT is applied to each block to get 64 DCT coefficients each [13]. The FFT is popularly used for frequency analysis which is easy to get the phase of a coefficient and change it by

secret data. As in DCT an image is divided into several non-overlapped blocks [12]. There are a number of schemes working in the frequency domain they are as the follows:

In 2002 Chang, Chen, and Chung proposed a scheme for hiding the secret message in the cover image based upon JPEG and quantization table modification [7]. This method uses the JPEG image as a cover image. the cover-image divided into nonoverlapping blocks of 8*8 pixels, and then applies DCT on each block to transform into DCT coefficients, the secret message embedded in the middle frequency part of the quantized DCT coefficients for each block. after embedding, use entropy coding to compress each block to obtain a JPEG file. This scheme achieves the larger capacity and the quality of the stego-images is acceptable

In 2013, Acharya, Hemeletha, Renuka, and Kamath proposed a method for hiding gray scale image in color scale image by utilizing Integer Wavelet Transform (IWT) and Discrete Wavelet Transform (DWT) [4]. In this method, the secret image is not embedding in a cover image, instead, generated the key by using DWT then this key is hiding in color scale image with run length encoded by using IWT. So, this method achieves the improving the security and has a high quality of the stego image compared to other methods.

In 2013 Gupta and Sharma proposed a scheme for hiding gray scale image in audio by utilizing Discrete Wavelet Transform (DWT) and Least Significant Bit (LSB) [14]. In this method embedding secret image bits in the higher frequency component of the audio file after applying the DWT on the audio, for hiding the audio is divided into blocks, the size of each block is 8*8 pixels and then store the image bits into the last 3 bits of the audio file. In 2014 Chen, Zhang, Ma, and Yu proposed a method for reversible data hiding in DCT domain by recursive code construction [8]. In this method, the data is embedded over a special ternary cover that is suitable for any transform domain, for example, DCT domain. The likelihood density function of the transformed coefficients has a Laplacian distribution with a small variation. Thus, this technique has good image quality.

In 2014, Lavania, Matey, and Thanikaiselvan proposed a method for embedding secret data in the medical image (color scale image) for the real-time application by using the Integer Wavelength Transform (IWT) [21]. In this method, the data hiding in the red plane of cover image by dividing the cover image to non-overlapping pixel block the size of block 8*8 pixels and then apply IWT on each block and embedding L random steno bit message in LH, HL and HH coefficient of a block. So, this scheme achieved high capacity and robustness.

In 2014, Garg and Mathur proposed a method for embedding the secret gray image in a gray image by using fractional Fourier transform (FFT) and wavelet coefficients (DWT) [15]. In this method apply FFT on both images (secret image and cover image) which are divided into real and imaginary part then apply DWT on the real part of both images, the embedding process done by add approximation of cover image and secret image by using alpha blending. So, this method achieves both robustness and higher security.

In 2015, Acharya, Hemalatha, and Renuka proposed a method for embedding audio in color scale image by using the wavelet transform [3]. In this method, the cover image is presented in YCbCr format, and then Cb, Cr components and secret audio are transferred to wavelet domain by using IWT. The approximate coefficients of secret audio are embedded in a second and third bit of high-frequency coefficients of Cb and Cr. This method shows a high quality of the stego image.

2.3.2 Survey of Spatial Domain Methods

Spatial domain implies the real location of a pixel in media forms such as text, image, video, sound, etc. While hiding secret data in a pixel, the location of a pixel is considered and then the pixel value is used to hide the data. There are many steganography algorithms working on color or gray scale images; each algorithm has its own protection mechanism and complication techniques since the basic aim for all of these algorithms is encoding a large amount of secret data and little effect on the cover file. It means large value for the Bit Per Pixel (BPP) embedding capacity with high image quality.

Survey of Steganography Methods for the Color Scale Images

There are many techniques of steganography working on color scale images as the follows:

In 2007, Yu, Chang and Lin proposed a scheme for embedding a color or a gray scale image in a true color scale image [29]. This scheme uses three different types of secret image: color scale image, a palette-based 256-color scale image, and a gray scale image. A secret image is converted to a binary representation, and then the secret data are protected by encrypting using DES algorithm. After that, each 8-bit byte of encrypted data is divided into 3 bits, 2 bits, and 3 bits. This method achieves high quality of the image.

In 2013, Kiruba and Karthikeyan proposed a method for detection of adaptive pixel pair matching in color scale images and gray scale images [19]. This technique is based on pixel pair matching (PPM) for data hiding. The basic idea of PPM is to

utilize the values of pixel pairs as a reference assortment and seeking a coordinate in the neighborhood set of this pixel pair according to a given message digit. In this method, the maximum value of the embedding capacity of the payload is 1.161 BPP. So, this method achieves the best quality image with less distortion.

In 2013, Maj, Pal and Roy proposed a method by using Sudoku puzzle for embedding a secret message in the color scale image [22]. In this method, the cover image is divided into equal-sized blocks, the size of a block 64 bits. In every block embedding a character of the secret message in each three pixels. So, this scheme achieved more robustness with less computation.

In 2015, Singh and Singh proposed a method to improve LSB for hiding secret data in color scale image [24]. In this method, the secret message embedding in LSB of color scale image uses 2-2-4 LSB insertion: this technique embeds 2, 2, and 4 bits of secret data into 2 LSB of a red component, 2 LSB of green component, and 4 LSB of blue component, respectively. This method achieved a high quality of the image and high embedding capacity.

Survey of Steganography Methods for Gray Scale Images

There are many techniques of steganography working on gray scale images, one of the easiest, fast and very publicly known technique of steganography is the Least Significant Bit (LSB). In this technique, least significant bit or bits of a pixel are replaced by the bits of the secret data to be hidden. LSB can change up to 4 least significant positions from a byte. Changing four bits of a pixel may cause distortion in an image due to a noticeable change in intensity of a cover object [2].

One of the most common techniques is the LSB substitution method; it is a simple

method [10]. The main idea of LSB substitution is to change the least significant bits of the cover file with the bits of secret data. The secret information is divided into blocks with size M where $1 \le M \le 8$. Overall, this method can realize a good image quality when $M \le 3$, however, for $4 \le M \le 8$, there is a sorely drop in the image quality.

To upgrade LSB substitution, many steganographic techniques were proposed. In 2001, Wang and Lin proposed a method that uses an optimal LSB substitution and genetic algorithm [27], to solve the problem of hiding data in the MLSB of the cover image by using genetic algorithm, when M is large in order to get better image quality and high embedding capacity.

In 2003, Chang, Hsiao and Chan proposed method to find optimal LSB substitution in image hiding by dynamic programming strategy [9], this method, is the same as the previous method [27] but this method uses the dynamic programming instead of the genetic algorithm in finding the optimal value for M. Also, this method consumes less computation time. This method achieves a good quality image and less computational time.

In 2003, Zhang and Ping proposed a scheme for the reliable detection of least significant bit (LSB) basic on statistical observations on difference image histograms [30]. This method uses gray scale images with size 512×512 pixels, the secret messages are embedded by using the random LSB replacement method with embedding ratios varying from 0 to 100% in 10% increments. The algorithm is more accurate than the other techniques when embedding large messages.

In 2006, Chang, Tai and Lin proposed a scheme for digitally compressed images based on side match vector quantization (SMVQ) [6]. In this method, the cover image is encoded using SMVQ; then the compressed image is created. The SMVQ-compressed cover image is divided into non-overlapping blocks then the secret data are embedded in the blocks. This method achieves a large size of secret data, visual quality and compression rate compare with other methods using SMVQ.

In 2012, Taur, Lin, lee and Tao proposed a method for hiding data in DNA sequences based on table lookup substitution (TLSM) [25]. TLSM is to enhance the performance of data embedding technique called the substitution. The Base-t TLSM encodes the secret message with radix t to fully use the substitution table. In extended TLSM (ETLSM) method, the number of elements of selectable substitution table was raised by taking additional letters into account. This method has good capacity and security.

In 2015, Jheng, Chen and Huang proposed a method for data hiding based on histogram medication over ternary computers [18]. They proposed two methods for data hiding Ternary Data Hiding (TDH) and Coded-Ternary Data Hiding (C-TDH). In the both methods, the secret data was ternary (NAF format). TDH method achieves higher peak signal to noise (PSNR) and C-TDH method achieves increased amount of the embedded secret data compared to TDH method.

In 2016, Hussain, Wahab, Ho, Javed and Jung proposed a scheme for data embedding using parity bit pixel value differencing (PBPVD) and improved rightmost digit replacement (IRMDR) [17]. In this method, the cover image divided into non-overlapping pixel blocks, and then calculate the PBPVD and the IRMDR in each block by calculating the difference between pixel values in blocks. If the difference value of the block exists in the L_0 level, then implement iRMDR; otherwise, PBPVD implement.

In this thesis, we investigated LSB, ATD, and LSBT in the spatial domain and detailed explained in the following:

2.3.3 LSB Method

One of simplest and fastest method is LSB. In this method, the binary secret message is divided into blocks with R bits, and in every pixel of the cover image hiding one block [10]. LSB method is shown below.

• LSB Embedding Algorithm

Input: Secret data as binary, *S*; cover image, V[N, M]; where *N* is the number of rows; and *M* is the number of columns; *R* is size of the block.

Output: Stego image, *Y* [*N*, *M*].

Step 1: Binary data *S* divide into blocks S_i of *R* bits where $S_i \in \{0,1\}^R$.

Step 2: Hide S_i in pixel $v_i, i \in \{0, \dots, MN - 1\}$.

$$y_i = v_i - (v_i mod2^R) + S_i \tag{2.1}$$

Where v_i is the *i*th cover pixel of *V*, y_i is the *i*th stego pixel of *Y*, S_i is a decimal value of *R*-bits.

Step 3: End.

Figure 2.1 shows the flowchart of the LSB embedding algorithm.

Figure 2.1: Flowchart of The LSB Embedding Algorithm

• LSB Extraction Algorithm

Input: *Y* is Stego image with size [*N*, *M*]; *R* is block size of the secret message.

Output: Secret data, *S* as binary.

Step 1: Set $S = \{ \}$ empty set.

Step 2: Calculate the value of secret S_i for each pixel of stego image y_i at position i,

 $i \in \{0, \dots, MN - 1\}$ from next formula:

$$S_i = y_i mod2^R \tag{2.2}$$

Where y_i is the stego pixel of *Y*.

Step 3: Transform every S_i into binary and insert S_i into the secret data S.

Step 4: End

Figure 2.2 shows the flowchart of the LSB extraction algorithm.

Figure 2.2: Flowchart of The LSB Extraction Algorithm

• Example 1. LSB Method

Let the pixel values of cover be (160 161 157 156), and the binary message be (11 01

10 01) and the size of block R=2 bits.

In block 1, we have $(11)_2 = (3)_{10} = S_1$ then

$$y_i = v_i - (v_i mod 2^R) + s_i$$

 $y_1 = 160 - (160 mod 4) + 3 = 163$

In block 2, we have $(01)_2 = (1)_{10} = S_2$ then

 $y_2 = 161 - (161 \mod 4) + 1 = 161.$

In block 3, we have $(10)_2 = (2)_{10} = S_3$ then

$$y_3 = 157 - (157 \mod 4) + 2 = 158$$

In block 4, we have $(01)_2 = (1)_{10} = S_4$ then

$$y_4 = 156 - (156 \mod 4) + 1 = 157$$

In the extraction stage, if we have stego pixel values (163 161 158 157). For each stego pixel y_i , we get

$$s_i = y_i \mod 2^R$$

 $s_1 = 163 \mod 4 = 3$
 $s_2 = 161 \mod 4 = 1$
 $s_3 = 158 \mod 4 = 2$
 $s_4 = 157 \mod 4 = 1$

Finally, we get $(3\ 1\ 2\ 1)_{10}$ and the binary secret message $(11\ 01\ 10\ 01)_2$ is restored.

2.3.4 Algorithm with Ternary Digits (ATD)

As proposed in [28], in this method the secret data consist of digits {0, 1, and 2} in the form of a ternary string. Each pixel of a cover image takes two ternary digits from the secret data. The ATD is shown below:

• ATD Embedding Algorithm

Input: Ternary secret message $S = \{S_k | 0 \le k \le |S|, S_k \in \{0,1,2\}\}$; *V* is cover image

with size [N, M], N is the number of rows; M is the number of columns. $V = \{v_{ij} | 0 \le v_{ij} \le 255; v_{ij} \text{ is the } i^{th}, j^{th} \text{cover pixel.}$

Output: Stego image, v^{stego} [N, M].

Step 0. K = 0

Step 1: Convert the pixel value v_{ij} to binary b_7 , b_6 b_0 according to equation

(2.3)

$$v_{ij} = \sum_{r=0}^{7} b_r * 2^r \tag{2.3}$$

Step 2: Divide v_{ij} into two sub-segments $sub1_{ij} = b_7, b_6, b_5, b_4, b_3, b_2$; and $sub2_{ij} = b_1, b_0$.

Step 3: Check overflow/underflow for $sub1_{ij}$, $sub2_{ij}$ according to (2.4), (2.5)

$$sub1_{ij}^{`} = \begin{cases} 000001 & , if sub1_{ij} = 000000 \\ 111110 & , if sub1_{ij} = 111111 \\ sub1_{ij} & Otherwise \end{cases}$$
(2.4)
$$sub2_{ij}^{`} = \begin{cases} 01 & , if sub2_{ij} = 00 \\ 11 & , if sub2_{ij} = 11 \\ sub2_{ij} & Otherwise \end{cases}$$
(2.5)

Step 4: Embed the first ternary secret number S_k in $subl_{ij}$ according to the next cases:

Case 1: $mod(sub1_{ij}, 3) = S_k$

$$sub1_{ij}^{stego} = sub1_{ij}^{`} \tag{2.6}$$

Case 2: $mod(sub1_{ij} + 1,3) = S_k$

$$sub1_{ij}^{stego} = sub1_{ij} + 1 \tag{2.7}$$

Case 3: $mod(sub1_{ij} - 1,3) = S_k$

$$sub1_{ij}^{stego} = sub1_{ij} - 1 \tag{2.8}$$

Step 5: Construct $\hat{v_{ij}}$ by using equation (2.9)

$$\dot{v_{ij}} = sub1_{ij}^{stego} * 2^2 + sub2_{ij}$$
 (2.9)

Step 6: If (k = k + 1) < |S| go to Step 7 else go to Step9.

Step 7: Embed the second ternary secret number S_k into v_{ij} , according to next cases: Case 1: $mod(v_{ij}, 3) = S_k$

$$v_{ij}^{stego} = v_{ij}^{} \tag{2.10}$$

Case 2: $mod(v_{ij} + 1,3) = S_k$

$$v_{ij}^{stego} = v_{ij} + 1 \tag{2.11}$$

Case 3: $mod(v_{ij} - 1,3) = S_k$

$$v_{ij}^{stego} = \dot{v_{ij}} - 1$$
 (2.12)

Step 8: k = k + 1, *if* k < |S|, go to **Step1**

Step 9: End.

Note 1. Note that due to (2.5), embedding of the second digit by (2.10)-(2.12) does not change its *sub1* part, i.e. $sub1(v_{ij}^{stego}) = sub1(v_{ij}) = sub1_{ij}^{stego}$.

Figure 2.3 shows the flowchart of the embedding algorithm.

Figure 2.3: Flowchart of The ATD Embedding Algorithm

Figure 2.4: Flowchart of Check $sub1_{ij}$ Part of The ATD Embedding Algorithm

Figure 2.5: Flowchart of Check $sub2_{ij}$ Part of The ATD Embedding Algorithm

Figure 2.6: Flowchart of Embedding S_k in $sub1_{ij}$ Part of The ATD Embedding Algorithm

Algorithm

• ATD Extraction Algorithm

Input: *V* is stego image with size [*N*, *M*], *N* is the number of rows; *M* is the number of columns. $V = \{v_{ij} | 0 \le v_{ij} \le 255\}; v_{ij}$ is the *i*th, *j*th cover pixel.

Output: Ternary secret message, S.

Step 0. k = 0

Step 1: Convert the pixel value v_{ij} to binary $b_7b_6 \dots \dots b_0$ according to equation

(2.3)

Step 2: Divide v_{ij} into two sub-segments $sub1_{ij} = b_7 b_6 b_5 b_4 b_3 b_2$; and $sub2_{ij} = b_1 b_0$.

Step 3: Extract first ternary number of $sub1_{ij}$, according equation (2.13)

$$S_k = mod\left(subl_{ij}, 3\right) \tag{2.13}$$

Step 4: k = k + 1, if k < |S| go to Step 5 else go to Step 7.

Step 5: Extract second ternary number from v_{ii} , according to equation (2.14)

$$S_k = mod(v_{ij}, 3) \tag{2.14}$$

Step 6: k = k + 1, if k < |S| go to **Step 1**.

Step 7: End.

Figure 2.8 shows flowchart of the extraction algorithm.

Figure 2.8: Flowchart of ATD Extraction Algorithm

• Example 2. Example for ATD Embedding and Extraction

Let the cover pixel values are $(135\ 137\ 138)_{10}$, and the ternary message be $(010212)_3$. We will embed two ternary digits into each cover pixel: 01 into 135, 02 into 157, and 12 into 138.

Embed 01 into cover pixel $v_1 = 135$.

Step 1: Convert cover pixel to binary

$$v_1 = (135)_{10} = (10000111)_2$$

Step 2: Divide binary value of cover pixel into *sub*₁, *sub*₂

$$sub_1 = (100001)_2 = (33)_{10}$$

 $sub_2 = (11)_2 = (3)_{10}$

Step 3: Check overflow/underflow for *sub*₁, *sub*₂; the result after Check

overflow/underflow according to (2.4) and (2.5):

$$sub_1 = (33)_{10}$$

 $sub_2 = (01)_2 = (2)_{10}$

Step 4: Embed the first ternary secret number $S_1 = (0)_3$ to sub_1 according to (2.6), (2.7) and (2.8):

$$sub_1 \mod 3 = 33 \mod 3 = 0 = S_1$$

 $sub_1^{stego} = 33$

Hence, apply (2.6)

Step 5: $v_1 = 33 * 2^2 + 2 = 134$.

Step 6: Read the second ternary number $S_2 = (1)_3$ and embed it in v_1 according to (2.10), (2.11) and (2.12):

$$v_1 \mod 3 = 134 \mod 3 = 2 \neq S_2$$

 $(v_1 + 1) \mod 3 = (134 + 1) \mod 3 = 0 \neq S_2$
 $(v_1 - 1) \mod 3 = (134 - 1) \mod 3 = 133 \mod 3 = 1 = S2$

Hence, v_1 stego=133

Embed (02)₃ into cover pixel v_2 =137.

Step 1: Convert cover pixel to binary

$$v_2 = (137)_{10} = (10001001)_2$$

Step 2: Divide binary value of cover pixel into *sub*₁, *sub*₂

$$sub_1 = (100010)_2 = (34)_{10}$$

 $sub_2 = (01)_2 = (1)_{10}$

Step 3: Check overflow/underflow for sub_1 , sub_2 according to (2.4) and (2.5); no need for change in this step.

Step 4: Embed $S_3 = (0)_3$ into sub_1 according to (2.6), (2.7) and (2.8):

$$sub_1 \mod 3 = 34 \mod 3 = 1 \neq S_3$$

 $sub_1 \mod 3 = (34 + 1) \mod 3 = 2 \neq S_3$
 $sub_1 \mod 3 = (34 - 1) \mod 3 = 33 \mod 3 = 0 = S3$

Hence, apply (2.6): *sub*₁ stego=33

Step 5: $v_2 = 33 * 2^2 + 1 = 133$.

Step 6: Read the next ternary number $S_4 = (2)_3$ and embed it in v_2 according to (2.10), (2.11) and (2.12):

$$v_2 \mod 3 = 133 \mod 3 = 1 \neq S_4$$

$$v_2 \mod 3 = (133 + 1) \mod 3 = 2 = S_4$$

Hence,

 $v_2^{stego} = 134.$

Embed $(12)_3$ into cover pixel $v_3=138$.

Step 1: Convert cover pixel to binary

$$v_3 = (138)_{10} = (10001010)_2$$

.

Step 2: Divide binary value of cover pixel into *sub*₁, *sub*₂

$$sub_1 = (100010)_2 = (34)_{10}$$

 $sub_2 = (10)_2 = (2)_{10}$

Step 3: Check overflow/underflow for sub_1 , sub_2 according to (2.4) and (2.5); no need for changes in this step.

Step 4: Embed $S_5 = (1)_3$ into *sub*₁ according to (2.6), (2.7) and (2.8):

$$sub_1 \mod 3 = 34 \mod 3 = 1 = S_5$$

Hence, apply (2.6):

$$sub_1^{stego} = 34.$$

Step 5: $\dot{v_3} = 34 * 2^2 + 1 = 137$.

Step 6: Read the next ternary number $S_6 = (2)_3$ and embed it in v_3 according to (2.10), (2.11) and (2.12):

$$v_3^{stego} = 137 \mod 3 = 2 = S_6$$

 $v_3^{stego} = 137$

The stego pixels are (133, 134, and 137).

In the extraction, if we have stego pixel value (133, 134, 137)

stego pixel v_1 =133.

Step 1: Convert cover pixel to binary

$$v_1 = (133)_{10} = (10000101)_2$$

Step 2: Divide the binary value of the cover pixel into sub_1 , sub_2

$$sub_1 = (100001)_2 = (33)_{10}$$

 $sub_2 = (01)_2 = (1)_{10}$

Step 3: Extract first ternary number S_1 from sub_1 according to (2.13)

$$S_1 = 33 \mod 3 = 0$$

Step 4: Extract second ternary number S_2 from v_1 , according to (2.14),

 $S_2 = 133 \mod 3 = 1$

The first part of the secret message $(01)_3$ is restored.

Next stego pixel v_2 =134.

Step 1: Convert cover pixel to binary

$$v_2 = (134)_{10} = (10000110)_2$$

Step 2: Divide the binary value of cover pixel into *sub*₁, *sub*₂

$$sub_1 = (100001)_2 = (33)_{10}$$

 $sub_2 = (10)_2 = (2)_{10}$

Step 3: Extract S_3 from sub_1 according to (2.13)

 $S_3 = 33 \mod 3 = 0$

Step 4: Extract S_4 From v_2 according to (2.14)

$$S_4 = 134 \mod 3 = 2$$

The second part of the secret message $(02)_3$ is restored.

Next stego pixel $v_3=137$.

Step 1: Convert cover pixel to binary

$$v_3 = (137)_{10} = (10001001)_2$$

Step 2: Divide the binary value of the cover pixel into sub_1 , sub_2

$$sub_1 = (100010)_2 = (34)_{10}$$

 $sub_2 = (01)_2 = (1)_{10}$

Step 3: Extract S₅ From *sub*₁ according to (2.13)

$$S_5 = 34 \mod 3 = 1$$

Step 4: Extract S_6 From v_3 according to (2.14)

$$S_6 = 137 \mod 3 = 2$$

The third part of the secret message $(12)_3$ is restored.

Finally, we embedded $(010212)_3$ into $(135,137,138)_{10}$ and the ternary secret message $(010212)_3$ is restored from the stego pixels $(133,134,137)_{10}$.

2.3.5 LSB with Threshold Algorithm (LSBT)

As proposed in [26], this method uses a threshold value which indicates the number of bits of the secret data embedded into the cover image. The LSBT algorithm is presented below:

• LSBT Embedding Algorithm

Input: B_s is a secret message as a bit string, two moduli numbers, mu and ml; P as cover image with size [N, M], M is the number of rows; N is the number of columns; k = 0; T is the threshold value; $P = \{p_{ij} | 0 \le p_{ij} \le 255\}$; p_{ij} is the i^{th}, j^{th} cover pixel.

Output: Stego image, P_s.

Step 0: *k*=0

Step 1: *If* $p_{ij} \ge T$

$$EC = \lfloor \log_2 mu \rfloor, \tag{2.15}$$

$$RES = p_{ij} \mod mu, \tag{2.16}$$

Else

$$EC = \lfloor \log_2 ml \rfloor, \tag{2.17}$$

$$RES = p_{ij} \mod ml, \tag{2.18}$$

where [x] is the maximal integer less or equal to x.

Step 2: Compute

$$D = |RES - DEC|, \tag{2.19}$$

where DEC is the decimal value of the next EC bits from B_s . From (2.15), (2.16),

Step 3: Embed DEC into p_{ij} . k = k + EC.

Case 1: $p_{ij} < T$

Case 1.1:
$$p_{ij} < \frac{ml}{2}$$
 (2.20)

$$P_{sij} = DEC \tag{2.21}$$

Case
$$1.2 \frac{ml}{2} \le p_{ij} < T - \frac{ml}{2}$$
 (2.22)

Case 1.2.1
$$D > \frac{ml}{2}$$
 (2.23)

$$AV = ml - D. (2.24)$$

Case 1.2.1.1 $RES \ge DEC$ (2.25)

$$P_{sij} = p_{ij} + AV. (2.26)$$

Case 1.2.1.2 *RES* < *DEC*

$$P_{sij} = p_{ij} - AV. (2.28)$$

(2.27)

(2.29)

(2.33)

Case 1.2.2
$$D \le \frac{ml}{2}$$

$$AV = D. (2.30)$$

Case 1.2.2.1 $RES \ge DEC$ (2.31)

$$P_{sij} = p_{ij} - AV. (2.32)$$

Case 1.2.2.2 RES<DEC

$$P_{sij} = p_{ij} + AV. (2.34)$$

Case 1.3
$$\left(T - \frac{ml}{2}\right) \le p_{ij} < T$$
 (2.35)

$$P_{sij} = p_{ij} - RES + DEC. \tag{2.36}$$

Case $2:p_{ij} \ge T$

k = k + EC.

Case 2.1 $p_{ij} > 255 - mu/2 + 1$ (2.37)

$$P_{sij} = 255 - mu + 1 + \text{DEC.}$$
(2.38)

Case 2.2
$$\left(T + \frac{mu}{2}\right) < p_{ij} \le (255 - \frac{mu}{2} + 1)$$
 (2.39)

Case 2.2.1 $D > \frac{mu}{2}$ (2.40)

$$AV = mu - D \tag{2.41}$$

$$Case 2.2.1.1 RES \ge DEC \tag{2.42}$$

$$P_{sij} = p_{ij} + AV \tag{2.43}$$

Case 2.2.1.2*RES* < *DEC*

$$P_{sij} = p_{ij} - AV \tag{2.45}$$

(2.44)

(2.46)

(2.48)

(2.50)

Case 2.2.2 $D \le \frac{mu}{2}$

$$AV = D \tag{2.47}$$

Case 2.2.2.1 $RES \ge DEC$

$$P_{sij} = p_{ij} - AV \tag{2.49}$$

Case 2.2.2.2. RES<DEC

$$P_{sij} = p_{ij} + AV \tag{2.51}$$

Case 2.3
$$T \le p_{ij} < T + \frac{mu}{2}$$
 (2.52)

$$P_{sij} = p_{ij} - RES + DEC \tag{2.53}$$

Step 4: If $k < |B_s|$ go to **Step 1**.

Step 5: End.

Figure 2.9 shows the flowchart of the LSBT embedding algorithm.

Figure 2.9: Flowchart for LSBT Embedding Algorithm

Figure 2.10: Flowchart of Embedding Algorithm Below Threshold Part of LSBT

Figure 2.11: Flowchart of Embedding Algorithm Above Threshold of LSBT

Figure 2.12: Flowchart of Case.1 in Figures 2.10, 2.11

Figure 2.13: Flowchart of Case.2 in Figures 2.10, 2.11

• LSBT Extraction Algorithm

Input: P_s is stego image with size [N,M], T Threshold value, Two moduli, mu, ml.

Output: B_s is a bit string with extracted secret message

Step 1: *k*=0; Compute *RES* and *EC* as follows:

Case 1: $P_{sij} < T$

$$EC = \lfloor \log_2 ml \rfloor \tag{2.54}$$

$$RES = P_{sij} \mod ml \tag{2.55}$$

k = k + EC

Case 2: $P_{sij} \ge T$

$$EC = \lfloor \log_2 mu \rfloor \tag{2.56}$$

$$RES = P_{sij}modmu \tag{2.57}$$

$$k = k + EC$$

Step 2: Convert RES into the bit string with the EC bits and insert it into the secret data B_s .

Step 3: if $k < |B_s|$ go to **Step 1**. Otherwise, go to **Step 4**.

Step 4: End

Figure 2.14 shows the flowchart of the LSBT extraction algorithm

Figure 2.14: Flowchart for LSBT The Extraction Algorithm

• Example 3. Example of LSBT embedding-extraction

Let the cover pixel values be $(160\ 200\ 255\ 150\)_{10}$ for cover pixel, and B_s be a

secret bit string (01110111101)₂, T=160, mu=8, ml=4.

Embedding into $p_1 = 160$:

Step 1:

Check if $(p_1 \ge T) = (160 \ge 160)$? yes

Hence, calculate EC according to (2.15)

 $EC = [\log_2 8] = 3$.then read 3 bits from B_s , (011)₂,

and convert them to decimal, DEC = 3

Calculate *RES* according to (2.16)

 $RES = 160 \ mod 8 = 0.$

Step 2: Compute *D* according to (2.19)

D = |0 - 3| = 3.

Step 3: Pixel, $p_1 = 160$, meets case 2 condition since $p_1 = 160 \ge T = 160$

And it meets case 2.3 condition since

 $T = 160 \le pij = 160 \le T + \frac{mu}{2} = 164.$

Hence, DEC=3 is embedded according to (2.53):

 $p_s(1) = 160 - 0 + 3 = 163.$

Now, embed into $p_2 = 200$.

Step 1:Since $p_2 = 200 \ge T = 160$

calculate EC according to (2.15)

 $EC = [\log_2 8] = 3.$

EC = 3, then read 3 bits from B_{s} , $(101)_2$, and convert them to decimal, DEC

= 5

Calculate *RES* according to (2.16):

RES = 200mod8 = 0.

Step 2: Compute *D* according to (2.19)

D = |0 - 5| = 5.

Step 3: Embed DEC=5 into $p_2 = 200$

according to case 2.2 since

$$T + \frac{mu}{2} = \left(160 + \frac{8}{2}\right) = 164 < pij = 200 < 255 - \frac{mu}{2} + 1 = \left(255 - \frac{8}{2} + 1\right) =$$

252.

Case 2.2.1 condition holds:

$$D = 5 > \frac{mu}{2} = 4$$

Hence, calculate AV as (2.41):

AV = mu - D = 8 - 5 = 3.

Since case 2.2.1.2 holds, according to (2.45)

 $p_s(2) = pij - AV = 200 - 3 = 197.$

Now, consider embedding into $p_3 = 255$:

Step 1: Since $p_3 = 255 \ge T = 160$

calculate EC according to (2.15)

 $EC = \lfloor \log_2 8 \rfloor = 3.$

EC = 3, read 3 bits from $B_s(111)_2$ convert to decimal DEC = 7

Calculate RES according to (2.16)

RES = 255mod8 = 7.

Step 2: Compute *D* according to (2.19)

D = |7 - 7| = 0.

Step 3: Embed DEC=7 into $p_3 = 255$

according to case 2.1 since according to (2.38)

255 > (255 - 8 + 1),

 $p_s(3) = (255 - 8 + 1) + 7 = 255.$

Embedding $(01)_2$ into $p_4 = 150$:

Step 1:Since p4=150<T=160

calculate EC according to (2.17)

 $EC = \lfloor \log_2 4 \rfloor = 2,$

EC = 2, read 2 bits from $B_s(01)_2$ convert to decimal DEC = 1

Calculate RES according to (2.18)

RES = 150mod4 = 2.

Step 2: Compute *D* according to (2.19)

D = |2 - 1| = 1.

Step 3: Embed DEC=1 into $p_3 = 150$

according to case 1.2 since

$$\frac{4}{2} < 150 < 160 - \frac{4}{2},$$
$$2 < 150 < 158.$$

Case 1.2.2 condition holds:

 $D = 1 \le \frac{mu}{2} = 2.$

Hence, calculate AV as (2.30):

AV = D = 1.

Since Case 1.2.2.1 holds, according to (2.32)

$$p_s(4) = 150 - 1 = 149.$$

The stego pixel are(163 197 255 149)₁₀.

In the extraction, we have stego pixel value $(163\ 197\ 255\ 149)_{10}$, and stego pixel,

 $p_s(1)=163.$

According to **Case 2** $p_s(1) \ge T$

From (2.56) and (2.57)

 $EC = \lfloor \log_2 8 \rfloor = 3,$

$$RES = 163mod8 = 3.$$

Convert RES to binary with EC length: $(011)_2$.

The secret message $(011)_2$ is restored.

The second stego pixel, $p_s(2)=197$.

According to **Case 2** $p_s(2) \ge T$

From (2.56) and (2.57)

 $EC = \lfloor \log_2 8 \rfloor = 3.$

$$RES = 197mod8 = 5.$$

Convert RES to binary with EC length (101)₂

The secret message $(101)_2$ is restored.

The third stego pixel, $p_s(3)=255$.

According to **Case 2** $p_s(i) \ge T$.

From (2.56) and (2.57)

 $EC = \lfloor \log_2 8 \rfloor = 3,$

RES = 255mod8 = 7.

Convert RES to binary with EC length (111)₂

The secret message $(111)_2$ is restored.

And the fourth stego pixel, $p_s(4)=149$.

According to **Case 1**, $p_s(i) < T$.

From (2.54) and (2.55)

 $EC = \lfloor \log_2 4 \rfloor = 2,$

$$RES = 149mod8 = 1.$$

Convert RES to binary with EC length $(01)_2$

The secret message $(01)_2$ is restored.

Finally, we embedded $(01110111101)_2$ into $(160\ 200\ 255\ 150)_{10}$, and the secret message $(01110111101)_2$ is restored from the stego pixels $(163\ 197\ 255\ 149)_{10}$.

2.4 Color Perception

The human eye distinguishes color by hue, saturation, and brightness. As we know, primary colors can be one-to-one correlated with light wavelength. Also, combinations of different light wavelengths can cause the same perception of color [23].

The RGB color model is a convenient means for representing color which was established in Commission Internationale de l'Eclairage (CIE) in 1931. R, G and B are three light waves with three different colors called reference color stimuli and denote wavelengths of monochromatic light of 700.0 nm for R which is selected from a wavelength region where human perception does not change much with changing wavelength 546.1 nm for G, and 435.8 nm for B that correspond to emission lines of Hg lamp. To establish a broad array of colors by an additive color model, Red, Green, and Blue lights are mixed together in various ways. The color matching experiment mixes three primary colors to find a coincidence with the given color by human perception [20]. Figure 2.15 shows the color matching experiment for RGB.

Figure 2.15: The Color Matching Experiment for RGB [20].

2.5 Known Metrics for Evaluating Quality of Stego Images

Several metrics are used usually to measure the quality of the stego-images. In the following, we explain them.

• Mean Square Error (MSE)

MSE is the mean of squares of differences between the cover image and the stego image [28]:

$$Mse = \frac{\sum_{k=1}^{3} \sum_{i=1}^{M} \sum_{j=1}^{N} (X_{ijk}^{c} - X_{ijk}^{s})^{2}}{3 * m * n}$$
(2.58)

where N, M is number of columns and rows, respectively, of cover image, X^c , and the stego image, X^s

• Peak Signal to Noise Ratio (PSNR)

PSNR is calculated as follows:

$$PSNR = 10 \log_{10} \frac{255^2}{MSE} \, \mathrm{dB},\tag{2.59}$$

where 255 is the maximum possible value of gray scale pixel value [28]. PSNR uses potentially maximal pixel value, 255, that actually may not be reached, that may result not in proper quality description by it.

• Signal to Noise Ratio (SNR)

Signal to noise ratio refers to the measurement of the level of an audio signal as compared to the level of noise that is present in that signal. A larger value of SNR implies a better quality [3], it is calculated as follows:

$$SNR = 10 * \log_{10} \frac{\sigma_{\rm Ri}^2 + \sigma_{\rm Gi}^2 + \sigma_{\rm Bi}^2}{\sigma_{\rm Rn}^2 + \sigma_{\rm Gn}^2 + \sigma_{\rm Bn}^2} \, \mathrm{dB}$$
(2.60)

where σ_{Ri}^2 , σ_{Gi}^2 , and σ_{Bi}^2 are color component variances of cover image, and σ_{Rn}^2 , σ_{Gn}^2 , and σ_{Bn}^2 are color component variances of noise-added image[5]. Variance is calculated as follows:

$$\sigma^{2} = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} (\bar{x} - u_{ij})^{2}}{_{MN}},$$
(2.61)

where \overline{x} is mean of the pixel image, u_{ij} is the pixel value of an image, and, NM is the number of pixels of the image, and mean is defined as follows:

$$\overline{x} = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} x_{ij}}{_{MN}},$$
(2.62)

where \overline{x} is mean of the pixel image, x_{ij} is the pixel value of an image, and, NM is the number of pixels of the image.

• Embedding capacity

Embedding capacity is defined as the number of bits of secret data embedded in each pixel of cover image.

$$EC = \frac{Size \ of \ secret \ data \ in \ bits}{Size \ of \ cover \ image \ in \ bytes} \ BPP.$$
(2.63)

2.6 Known Experiments Setups and Results

1) For gray scale images, the eight cover images used in [28], are shown in Figure 2.16, and PSNR for the both schemes(ATD and LSBT), for random secret messages with different size and averaged over 8 cover images Figure 2.16 are shown in Table 2.1, Figure 2.17 shows PSNR for two schemes (ATD and LSBT) [28].

Figure 2.16: Cover Images Used in [28]

Figure 2.17: PSNR Values (dB) for ATD and LSBT Obtained in [28] for Random Secret Messages with Different Sizes and Averaged Over 8 Cover Images Figure 2.16.

Cover image	LSBT	ATD
Airplane	36.11	37.45
Baboon	36.10	37.41
Barb	36.09	37.41
Elain	36.11	37.42
Goldhill	36.21	37.41
Lena	36.04	37.41
Peppers	36.07	37.39
Zelda	36.11	37.40

Table 2.1: PSNR (dB) of LSBT and ATD [28] for Random Secret Message with Embedding Capacity 3.1699 BPP for 8 Cover Images Figure 2.16

From Table 2.1 and Figure 2.17, we see that the ATD has better image quality when the embedding capacity greater is than 3 BPP, while LSBT achieves higher stego image quality when embedding capacity is less than 3 BPP. 2) For color scale images, Table 2.2 shows PSNR and MSE for LSB algorithm [24], and two cover images used in [24] to embed the secret message are shown in Figure 2.18.

Table 2.2. LSD PSINK (uD) and MSE for LSD [24			
Cover image	PSNR(dB)	MSE	
Lena	55.9461	0.1654	
Baboon	55.9238	0.1662	

Table 2.2: LSB PSNR (dB) and MSE for LSB [24]

(a) Lena (b) Baboon Figure 2.18: Cover Images Used in [24].

2.7 Problem Definition

In this thesis, we study ATD and LSBT for gray scale images, and LSB and ATD for color scale images.

• For gray scale images:

1) For LSBT and ATD, the papers [26] [28] do not provide the proofs of the methods, hence, we prove correctness of ATD

2) For LSBT, information is not provided in [26] how to set the threshold *T* and two moduli *mu*, *ml*. We give examples showing that LSBT [26] works incorrectly in some cases, explain them, and fix the problems by proposing modified LSBT, LSBT-M, for which we define parameter values such that the algorithm works correctly.

3) In [28], PSNR of ATD and LSBT is presented without theoretical explanation,

hence, we find a formula for threshold *T* dependence of embedding capacity Bit Per Pixel (BPP).

4) In [28], ATD considers the secret message as the ternary stream, but conventional messages are binary, hence, we need solving the problem of binary-ternary conversions.

5) In [28], only 8 cover images were considered in the experiments, hence, we extend experiments to 15 cover images for the both algorithms (ATD, LSBT).

• For color images:

1) In [28], ATD works on the gray scale images only, hence, we extend ATD to work on the color scale images. and we test it for digit embedding combinations (112, 121, 112), where, for example, combination 112 means that, one ternary digit is embedded into R component, one ternary digit is embedded into G component, and two ternary digits are embedded into B component of RGB pixel.

2) We implement LSB for bit embedding combinations (224, 242, 422, 134, 143, 314, 341, 413, 431), where, for example, combination 143, means that, one bit is embedded into R component, four bits are embedded into G component, and three bits are embedded into B component of RGB pixel.

3) We modify LSB to the adaptive LSB, ALSB, which determines bit embedding combination depending on the color intensity of each component R, G, and B.

4) Study PSNR characteristics to find the most appropriate for color scale images quality description. From our experiments for the color scale images, we propose MSNR (Mean Signal to Noise Ratio), APSNR (Actual PSNR) for color scale image components (each of them is a gray scale image).

In MSNR as in (2.64) we calculate the mean value overall pixel image and change the possible peak signal which is 255 in equation (2.59) to the mean value of pixels.

45

$$MSNR = 10 \log_{10} \frac{\overline{x}}{MSE} dB, \qquad (2.64)$$

Where \overline{x} is the mean value of the pixels of the cover calculated according to (2.62). In APSNR as in (2.64), APSNR considers actual peak signal instead of possible peak signal which is 255 in equation (2.59).

$$APSNR = 10 \log_{10} \frac{X}{MSE} \,\mathrm{dB},\tag{2.65}$$

where *X* is the actual peak value of the pixels of the cover image.

5) Also, we propose weighted PSNR, APSNR, and MSNR for color scale images by three different groups of weights ($R_w = 0.4$, $G_w = 0.3$, $B_w = 0.3$), ($R_w = \frac{1}{3}$, $G_w = \frac{1}{3}$, $B_w = \frac{1}{3}$), and ($R_w = 0.4$, $G_w = 0.243$, $B_w = 0.357$), R_w weights of Red, G_w weights of Green, B_w weights of Blue.

2.8 Summary of Chapter 2

Thus, in this chapter, we have done the following:

1. We have presented the overview of Steganography and methods of

Steganography.

2. We have presented the related work and known experiments on LSB, LSBT, and ATD. Also, we explain three algorithms (LSB, ATD, and LSBT) with numerical examples for each of them.

3. We have presented the color perception, and the known metrics for evaluation performance of Steganographic algorithms (LSB, LSBT, and ATD) and the results of known experiments from [28], [24].

4. Problem definition for the thesis is given.

Chapter 3

ATD AND LSBT ANALYSIS AND RECOVERED PROBLEMS FIXING

In this chapter, analysis of ATD and LSBT is given.

3.1 Proof of ATD Correctness

We embed digits by pairs, and the first digit in a pair, even-numbered secret digit is embedded into $sub1_{ij}$ by (2.6)-(2.8). After that, v_{ij} is defined by (2.9), and the second digit in the pair, odd-numbered digit, is embedded into v_{ij} by (2.10)-(2.12). Consider extraction of the first, even numbered secret digit S_k . It is extracted from $sub1_{ij}$ by (2.13). Consider the following cases:

Case 1: If the secret digit S_k was embedded according to (2.6), then $mod(sub1_{ij}, 3) = S_k$ holds, and due to Note 1,

$$\tilde{S}_{k} = mod\left(sub1_{ij}^{stego}, 3\right) = mod(sub1_{ij}, 3) = S_{k}$$
(3.1)

Hence, extracted digit, $\hat{S_k}$, and embedded digit S_k are the same, $\hat{S_k} = S_k$.

Case 2: If the secret digit, S_k , was embedded according to (2.7), then $mod(sub1_{ij} + 1,3) = S_k$ holds, and due to Note 1,

$$S_k = mod(sub1_{ij}^{stego}, 3) = mod(sub1_{ij}' + 1, 3) = S_k$$
 (3.2)

Hence, extracted digit S_k , and embedded digit S_k are the same, $S_k = S_k$.

Case 3: If the secret digit S_k was embedded according to (2.8), then $mod(sub1_{ij} - 1,3) = S_k$ holds. and due to Note 1,

$$\hat{S}_{k} = mod (sub1_{ij}^{stego}, 3) = mod (sub1_{ij} - 1, 3) = S_{k}$$
 (3.3)

Hence, extracted digit, $\tilde{S_k}$, and embedded digit, S_k , are the same, $\tilde{S_k} = S_k$.

As far as embedding of the first digit is done only by three ways, (2.6)-(2.8), and in each one extraction from $sub1_{ij}^{stego}$ is done correctly, i.e., extracted digit is the same as the embedded one, hence, ATD correctness for the first digit in a pair is proved. Now consider extraction of S_k , an odd numbered secret digit (the second digit in a pair), that is extraction from the pixel value v_{ij}^{stego} .

Embedding into the pixel value the second ternary digit is made by (2.10), (2.11), and (2.12). Consider each of the cases as follows:

Case 1: If the secret digit S_k was embedded according to (2.10), then $mod(v_{ij},3)=S_k$ and

$$S_{k} = mod\left(v_{ij}^{stego}, 3\right) = mod\left(v_{ij}, 3\right) = S_{k}$$
(3.4)

Hence, $S_k = S_k$.

Case 2: If the secret digit S_k was embedded according to (2.11), then $mod(v_{ij}+1,3)=S_k$ and

$$\hat{S}_{k} = mod (v_{ij}^{stego} + 1,3) = mod(vij' + 1,3) = S_{k}$$
 3.5)

Hence, $S_k = S_k$.

Case 3: If the secret digit S_k was embedded according to (2.12), then $mod(v_{ij}^2 - 1,3) = S_k$ and

$$\hat{S}_{k} = mod\left(v_{ij}^{stego} - 1,3\right) = mod(v_{ij} - 1,3) = S_{k}$$
(3.6)

Hence, $S_k = S_k$.

Thus, as far as in all three cases of embedding, extraction returns the same second

digit as embedded, the algorithm correct work is fully proved.

3.2 LSBT Problems Fixing and Proof of Fixed LSBT Correctness

The embedding capacity of a pixel is determined according to the threshold value, T, by (2.15), (2.17). For this algorithm, we prove that, the value of stego pixel still is in the same range as it was in the cover image before embedding, and the algorithm works correctly extracted value is the same as it was embedded.

When the pixel value is less than T, we have three cases for embedding the secret message into a pixel value. We consider each of the cases as follows:

Case 1.1 $p_{ij} < \frac{ml}{2}$

From (2.18)

$$0 \le RES < ml \tag{3.7}$$

From (2.17)

$$0 \le DEC < 2^{EC} \le ml \tag{3.8}$$

From (2.20), (2.21) and (3.8)

$$P_{sij} = DEC < T \tag{3.9}$$

Thus, P_{sij} and p_{ij} are both in the same, less than *T*. In extraction, from (2.55) and (3.9)

RES-E=DEC mod ml

Since by (3.8), DEC < ml, RES-E = DEC, i.e. extracted and embedded values are the same.

Case 1.2
$$\frac{ml}{2} \le p_{ij} < T - \frac{ml}{2}$$

Case 1.2.1.1 $\left(D > \frac{ml}{2}\right)$ and $(RES \ge DEC)$

From (2.19) and (2.23),

$$D = |RES - DEC| > \frac{ml}{2}.$$
(3.10)

From (2.25) and (3.10),

$$DEC < RES - \frac{ml}{2}.$$
(3.11)

From (2.18),

$$DEC < p_{ij} \mod ml - \frac{ml}{2} \tag{3.12}$$

From (2.24), (2.25), and (3.10)

$$AV = ml - RES + DEC. \tag{3.13}$$

From (2.26) and (3.13),

$$P_{sij} = p_{ij} + ml - RES + DEC.$$
(3.14)

From (2.18), (3.12), and (3.14),

$$P_{sij} = p_{ij} + ml - RES + DEC < p_{ij} + ml - p_{ij} \mod ml + p_{ij} \mod ml -$$
(3.15)
$$\frac{ml}{2} = p_{ij} + \frac{ml}{2}$$

Then, from (3.15) and (2.22),

$$P_{sij} < p_{ij} + \frac{ml}{2} < T.$$
(3.16)

Thus, we see that P_{sij} and p_{ij} are both less than T.

In extraction algorithm, from (2.18), (2.55), (2.17), and (3.14),

$$RES-E = (p_{ij} + ml - RES + DEC) mod ml = (p_{ij} + ml - p_{ij} mod ml + ml - p_{ij} m - p_{ij} m$$

$$0 + 0 + DEC \mod ml = DEC$$

Thus, extracted value, RES-E, and embedded value, DEC, are the same.

Case 1.2.1.2 *RES* < *DEC*

From (2.19) and (2.23),

$$D = |RES - DEC| > \frac{ml}{2} \tag{3.17}$$

From (2.27) and (3.17),

$$DEC > RES + \frac{ml}{2} \tag{3.18}$$

From (2.18) and (3.18),

$$DEC > p_{ij} \mod ml + \frac{ml}{2} \tag{3.19}$$

From (2.24), (2.27), and (3.17)

$$AV = ml - DEC + RES. \tag{3.20}$$

From (2.28) and (3.20),

$$P_{sij} = p_{ij} - ml - \text{RES} + \text{DEC}$$
(3.21)

From (2.17), (2.18), (2.22), and (3.21),

$$P_{sij} = p_{ij} - ml - p_{ij} \mod ml + DEC < pij - ml + DEC < pij < T$$
(3.22)

Thus, from (3.22),

$$P_{sij} \le T \tag{3.23}$$

Thus, from (3.23), we have that both P_{sij} and p_{ij} are less than *T*.

In extraction algorithm, from (3.22), (3.23),(2.17), and (2.55),

 $RES-E = (p_{ij} - p_{ij} \mod ml) \mod ml - ml \mod ml + DEC \mod ml$ $= 0 - 0 + DEC \mod ml = DEC$

Thus, extracted *RES-E* value and embedded value, *DEC*, are the same.

Case 1.2.2.1

From (2.19) and (2.29)

$$D = |RES - DEC| \le \frac{ml}{2} \tag{3.24}$$

From (2.31) and (3.24),

$$DEC \ge RES - \frac{ml}{2}$$
 (3.25)

From (2.18),

$$DEC \ge p_{ij} \mod ml - \frac{ml}{2}$$
 (3.26)

From (2.30), (2.31), and (3.24),

$$AV = RES - DEC \tag{3.27}$$

From (2.32) and (3.27),

$$P_{sij} = p_{ij} - RES + DEC \tag{3.28}$$

From (2.18), (2.30), (2.22), (2.31), and (2.32),

$$P_{sij} = p_{ij} - p_{ij} \mod ml + DEC \le p_{ij} < T$$
(3.29)

Thus,

$$P_{sij} \le T. \tag{3.30}$$

Hence, from (2.22) and (3.30), both p_{ij} and P_{sij} are less than T.

In extraction algorithm, from (3.28), (3.29), (2.17), and (2.55)

$$RES - E = (p_{ij} - p_{ij} \mod ml) \mod ml + DEC \mod ml$$

=0+DEC mod ml = DEC

Hence, extracted value, RES-E, and embedded value, DEC, are the same.

Case 1.2.2.2

From (2.19) and (2.29)

$$D = |DEC - RES| \le \frac{ml}{2} \tag{3.31}$$

From (2.33) and (3.31),

$$DEC \le RES + \frac{ml}{2}$$
 (3.32)

From (2.18) and (3.32),

$$DEC \le p_{ij} \mod ml + \frac{ml}{2} \tag{3.33}$$

From (2.30), (2.33), and (3.31),

$$AV = DEC - RES \tag{3.34}$$

From (2.34) and (3.34),

$$P_{sij} = p_{ij} + DEC - RES \tag{3.35}$$

From (2.18), (2.22), (3.33), and (3.35),

 $P_{sij} = p_{ij} - p_{ij} \mod ml + DEC < pij - p_{ij} \mod ml + p_{ij} \mod ml + \frac{ml}{2} = (3.36)$

$$p_{ij} + \frac{ml}{2} < T$$

Then, from (3.36),

$$P_{sij} < T. \tag{3.37}$$

Hence, from (3.37) and (2.22), both pij and P_{sij} are less than T.

In extraction algorithm, from (2.55), (2.17), and (3.35),

$$RES-E=(p_{ij} - p_{ij} \mod ml) \mod ml + DEC \mod ml =$$
$$=0+DEC \mod ml = DEC.$$

Thus, extracted value, *RES-E*, and embedded value, *DEC*, are the same.

Case 1.3 Condition (2.35) holds.

From (2.17),

$$0 \le DEC < 2^{EC} \le ml \tag{3.38}$$

From (2.18), (2.35), and (2.36),

$$P_{sij} = p_{ij} - p_{ij} \mod ml + DEC, \tag{3.39}$$

$$p_{ij} < T, \tag{3.40}$$

$$p_{ij} - p_{ij} \mod ml = k \ ml. \tag{3.41}$$

Using (3.41) in (3.39), we get:

$$P_{sij} = k ml + DEC. aga{3.42}$$

Let us construct a counterexample, showing that P_{sij} (3.42) may be not less than *T* contrary to p_{ij} meeting (2.35).

Counterexample 1. Let the threshold value T=160, cover pixel $p_{ij}=159$, ml = 9, and a secret message is $(111)_2$.

From (2.18),

$$EC = \lfloor \log_2 9 \rfloor = 3.$$

From (2.19),

$$RES = 159 \mod 9 = 6.$$

DEC is the decimal value of EC=3 bit length, and the secret message is $(111)_2$; then, $DEC=(7)_{10}$.

From (2.35) and (2.36),

$$P_{sii} = 159 - 6 + 7 = 160 = T.$$

Thus, Counter example 1 shows that the value of stego pixel, P_{sij} , is 160 that is not less than *T*, whereas original cover pixel value, $p_{ij} = 159$, is less than *T*.

According to the Counter example 1, we suggest the first amendment of LSBT method

LSBT Amendment 1. Let *T* and *ml* in LSBT input satisfy the following condition (3.43):

$$T = k1 * ml, \tag{3.43}$$

where *k1* is an integer.

Proof. Let us prove that in the condition of Counter example 1, when (3.42) holds, LSBT with Amendment 1 works correctly. From (3.40), (3.41),

$$k < k1. \tag{3.44}$$

Hence, from (3.43), (3.44) and (3.42),

$$P_{sii} = kml + DEC < kml + ml = (k+1) ml \le T = k1 * ml.$$
(3.45)

In extraction algorithm, from (3.45), (2.17), and (2.55),

$$RES - E = P_{sii} \mod ml = \tag{3.46}$$

$$=(kml + DEC) \mod ml = kml \mod ml + DEC \mod ml = DEC$$
(3.47)

Thus, extracted value, *RES-E*, and embedded value, *DEC*, are the same, and LSBT with Amendment 1 works correctly in the conditions of the counter example 1 resulting from (3.42). All the proofs, preceding Counter example 1, are valid for LSBT with Amendment 1 since no condition was imposed in LSBT on T and ml.

Now, continue the proof of LSBT with Amendment 1 correctness.

When the pixel value is larger than or equal to T, we have the three cases for embedding the secret message into the pixels. We consider the cases below:

Case 2.1
$$p_{ij} \ge T$$
, $p_{ij} > 255 - \frac{mu}{2} + 1$.

From (2.16),

$$0 \le RES = p_{ij} \mod mu < mu. \tag{3.48}$$

From (2.15),

$$0 \le DEC < 2^{EC} \le mu. \tag{3.49}$$

From (2.37) and (2.38),

$$P_{sii} = 256 - mu + DEC. (3.50)$$

We face difficulty in proving that P_{sij} (3.50) is not less than *T* as pij for the Case 2. We show in Counter example 2 that P_{sij} meeting (3.50), may, contrary to p_{ij} , be less than the threshold, *T*.

Counter example 2. Let T = 252, mu = 18, $p_{ij} = 253 > 256 - \frac{mu}{2} = 256 - 9 = 247$, DEC = 1, then $P_{sij} = 256 - mu + DEC = 256 - 18 + 1 = 237 < T = 252$. Hence, P_{sij} is less than *T*, where as original $p_{ij} > T$.

In Counter example 2, T is an integer multiple of mu, and mu is not a power of 2. Let us consider one more counter example with T not being a multiple of mu, and mu being a power of 2.

Counter example 3. Let T = 252, mu = 16, $p_{ij} = 253 > 256 - mu/2 = 256 - 8 = 248$, DEC = 1, then $P_{sij} = 256 - mu + DEC = 249 < T = 252$.

Hence, P_{sij} is less than *T*, where as $p_{ij} > T$.

To fix the problem seen from Counter examples 2, 3, let us consider the second amendment of LSBT.

LSBT Amendment 2. Let *T* be a multiple of *mu*, that is a power of 2:

$$\Gamma = k1 * mu, \tag{3.51}$$

$$mu = 2^{k2},$$
 (3.52)

where k1, k2 are some positive integers.

Proof of the LSBT Amendment 2 correctness. Let us prove that when (3.50) in the conditions of the Case 2.1, LSBT works correctly if (3.51), (3.52) hold. From (2.37), and assuming that 256 = k3 * mu,

$$p_{ij} > 256 - \frac{mu}{2} = k3 * mu - \frac{mu}{2} = (k3 - \frac{1}{2}) * mu,$$
 (3.53)

$$p_{ij} \ge T = k1 * mu. \tag{3.54}$$

Since *T* < 256,

$$k1 < k3.$$
 (3.55)

According to (3.50), (3.54), (3.55)

$$P_{sij} = 256 - mu + DEC = (k3 - 1) * mu + DEC \ge k1 * mu + DEC$$
(3.56)
= T + DEC \ge T

From (3.56), we see that both, P_{sij} and p_{ij} , are not less than T.

In extraction algorithm, from (2.56), (2.57), (3.50), and (3.51)

$$RES - E = (256 - mu + DEC) \mod mu = (3.57)$$

$$((k3-1)mu + DEC)mod mu = DEC mod mu = DEC.$$

From (3.57), the extracted value, *RES-E*, and embedded value, *DEC*, are the same. Since LSBT Amendment 2 does not affect conditions of LSBT Amendment 1, we can conclude, that LSBT with Amendments 1 and 2 works correctly in the conditions of Cases 1 and 2.1 of LSBT Embedding Algorithm.

Let us continue proving of LSBT with Amendments 1, 2 for the rest cases of LSBT Embedding Algorithm.

Case 2.2.1.1. *RES > DEC*

From (2.19) and (2.40),

$$D = |RES - DEC| > \frac{mu}{2}.$$
(3.58)

From (2.42) and (3.58),

$$DEC < RES - \frac{mu}{2}.$$
(3.59)

From (2.16),

$$DEC < p_{ij} \mod mu - \frac{mu}{2}.$$
(3.60)

From (2.41), (2.42), and (3.58),

$$AV = mu - RES + DEC. \tag{3.61}$$

From (2.43) and (3.61)

$$P_{sij} = p_{ij} + mu - RES + DEC. \tag{3.62}$$

From (2.16), (2.39), and (3.62),

$$P_{sij} = p_{ij} - p_{ij} \mod mu + mu + \text{DEC} > p_{ij} + DEC \ge p_{ij} > T.$$
(3.63)

Then, from (3.63),

$$P_{sij} > T . (3.64)$$

Thus, both P_{sij} and p_{ij} are greater than *T*.

In extraction algorithm, from (2.15), (2.39), (3.63), and (2.57),

 $RES-E=(p_{ij} - p_{ij} \mod mu) \mod mu + mu \mod mu + DEC \mod mu$

$$0 + 0 + DEC \mod mu = DEC.$$

Thus, the extracted value, RES-E, is the same as the embedded value, DEC.

Case 2.2.1.2 *RES* < *DEC*

From (2.19) and (2.40),

$$D = |RES - DEC| > \frac{mu}{2}.$$
(3.65)

From (2.44) and (3.60),

$$DEC > RES + \frac{mu}{2}.$$
 (3.66)

From (2.16) and (3.66),

$$DEC > p_{ij} \mod mu + \frac{mu}{2}.$$
(3.67)

From (2.41), (2.44), and (3.60),

$$AV = mu - DEC + RES. \tag{3.68}$$

From (2.45) and (3.68),

$$P_{sij} = p_{ij} - mu - RES + DEC. \tag{3.69}$$

From (2.16),(3.67), and (3.69),

$$P_{sij} > p_{ij} - p_{ij} \mod mu - mu + p_{ij} \mod mu + \frac{mu}{2}.$$
 (3.70)

Then, from (3.70) and (2.39),

$$P_{sij} > p_{ij} - \frac{mu}{2} > T.$$
 (3.71)

From (3.71) and (2.39), both P_{sij} , p_{ij} are greater than *T*.

In the extraction algorithm, from (2.57), (3.69), (2.15), and (2.16),

$$RES-E = (p_{ij} - p_{ij} \mod mu) \mod mu - mu \mod mu + DEC \mod mu = 0 + DEC \mod mu = DEC.$$

Thus, the embedded value, DEC, is the same as the extracted value, RES-E.

Case 2.2.2.1 $D \leq \frac{mu}{2}$, $RES \geq DEC$

From (2.19) and (2.46),

$$D = |RES - DEC| \le \frac{mu}{2}.$$
(3.72)

From (2.48) and (3.72),

$$DEC \ge RES - \frac{mu}{2}.$$
 (3.73)

From (2.16) and (3.73),

$$DEC \ge p_{ij} \mod mu - \frac{mu}{2}.$$
 (3.74)

From (2.47), (2.48), and (2.19),

$$AV = RES - DEC. \tag{3.75}$$

From (2.49) and (3.75),

$$P_{sij} = p_{ij} - RES + DEC. aga{3.76}$$

From (2.16), (3.72), and (3.74),

$$P_{sij} \ge p_{ij} - p_{ij} \mod mu + p_{ij} \mod mu - \frac{mu}{2} = p_{ij} - \frac{mu}{2}$$
 (3.77)

Then according to (2.39), (3.77),

$$P_{sij} \ge p_{ij} - \frac{mu}{2} > T. \tag{3.78}$$

Thus, from (2.39), (3.78), both P_{sij} and p_{ij} are greater than T.

In the extraction algorithm, from (3.76), (2.15), (2.16), and (2.57),

$$RES-E = (p_{ij} - p_{ij} \mod mu) \mod mu + DEC \mod mu$$
$$= 0 + DEC \mod mu = DEC.$$

Thus, the extracted value, RES-E, is the same as the embedded value, DEC.

Case 2.2.2. *RES* < *DEC*.

From (2.19) and (2.46),

$$D = |DEC - RES| \le \frac{mu}{2}.$$
(3.79)

From (2.50) and (3.79),

$$DEC \le RES + \frac{mu}{2}.$$
(3.80)

From (2.16),

$$DEC \le p_{ij} \mod mu + \frac{mu}{2}.$$
(3.81)

From (2.47), (3.79), and (2.50),

$$AV = D = DEC - RES \ge 0. \tag{3.82}$$

From (2.51), (2.39), and (3.82),

$$P_{sij} = p_{ij} + D = p_{ij} + DEC - RES \ge p_{ij} > T.$$
 (3.83)

Thus, from (2.39), (3.83), both P_{sij} , p_{ij} are greater than T.

In the extraction algorithm, from (3.82), (2.15) and (2.16),

$$RES-E = (p_{ij} - p_{ij} \mod mu) \mod mu + DEC \mod mu = 0 + DEC \mod mu = DEC.$$

Thus, the extracted value, RES-E, is the same as the embedded value, DEC.

Case 2.3 $T \le p_{ij} < T + \frac{mu}{2}$.

From (2.16) and (2.53),

$$P_{sij} = p_{ij} - p_{ij} \mod mu + DEC. \tag{3.84}$$

$$p_{ij} - p_{ij} \mod mu = k * mu \tag{3.85}$$

$$P_{sij} = k * mu + DEC \tag{3.86}$$

Due to LSBT Amendment 2, (3.51) holds. Hence, from (2.16), (3.85), and (2.52),

$$T + \frac{mu}{2} = k1 * mu + \frac{mu}{2} > p_{ij} = k * mu + RES \ge T = k1 * mu.$$
(3.87)

From (3.87),

$$k1 * mu \le k * mu \le k * mu + RES < (k1 + 0.5)mu < (k1 + 1)mu.$$
(3.88)

From (3.88) and (2.16),

$$k1 \le k < k1 + 1. \tag{3.89}$$

From (3.89),

$$k = kl. \tag{3.90}$$

From (3.51), (3.86), and (3.90),

$$P_{sij} = k * mu + DEC = k1 * mu + DEC = T + DEC.$$
(3.91)

From (2.15) and (3.91),

$$P_{sii} = T + DEC \ge T. \tag{3.92}$$

Thus, from (3.92), we have that both stego-pixel value, P_{sij} , and original cover pixel value, p_{ij} , are not less than *T*.

In the extraction algorithm, from (2.52), (3.51), (3.92), and (2.15),

$$RES - E = P_{sij} \mod mu = \tag{3.93}$$

 $=(T + DEC) \mod mu = (k1 * mu + DEC) \mod mu = 0 + DEC \mod mu = DEC.$

Hence, from (3.93), the extracted value, RES-E, is the same as the embedded value,

DEC. Thus, we have proved that:

1. The LSBT algorithm works incorrectly under settings specified in [28]. It is proved by Counter examples 1-3 is showing that stego pixel value and original pixel value may belong to different ranges (not less than T, less than T, where T is the threshold value) that generally leads to the extracted value different from the embedded value.

2. The LSBT has fixed by the proposed LSBT Amendments 1, 2, imposing conditions (3.43), (3.51), and (3.52). Under these conditions, we prove that LSBT with Amendments 1, 2 works correctly. LSBT modified with the Amendments 1, 2 we call LSBT-M.

3. Settings used for the experiments in [28] satisfy the conditions we have established in the LSBT-M (see conditions (3.43), (3.51), and (3.52)).

3.3 Summary of Chapter 3

In this chapter, we have proved correctness of ATD, and shown that LSBT is incorrect for its original settings as well as we solve LSBT problem by conditions (3.43), (3.51), and (3.52) on *T*, *mu*, and *ml*; LSBT settings used in the experiments [28] satisfy the conditions of LSBT-M.

Chapter 4

IMPLEMENTATION OF ATD AND LSBT-M ALGORITHMS FOR GRAY SCALE IMAGES

Now, we will present implementation of ATD and LSBT-M algorithms.

4.1 ATD Implementation

We generate a message randomly as secret data, the size of secret data started with 524288 = 512 * 512 * 2 bits. In every iteration, it increases by 30,000 bits and we record the values of MSE, PSNR, MSNR, and APSNR. The secret message is divided into non-overlapping blocks the size of block 64-bit; blocks that are converted, at first, to the decimal numeral system, and then to base 3. We receive in the result of the conversion a block of 41 ternary digits.

A secret message is generated by the MATLAB function 'randi' as follows:

secret_massege= randi([0 1],1,start_length);

A secret message is converted to ternary by the following function:

ternary_number=convertto__ternary(secret_massege);

In Appendix A.2, lines 1-37, in this function, the secret data are divided into blocks with size 64 bits; then each 64-bit block is converted to 41-ternary-digit block. The first function, in line 11, converts a block to decimal system, and the second function, in line 12, converts the result of the first function, in line 11, to ternary. The full code is displayed in Appendix A.2. After preparing the secret data (by converting it to ternary numbers), we embed two ternary digits in each pixel of a cover image.

Then according to Step 2 in ATD as in Appendix A.3, lines 4-13, in line 7 we convert each pixel of the cover image to the base-2 numeral system (8 bits/pixel) according to (2.3). After that, we divide each pixel into two parts, the first sub segment consisting of the first six bits of the 8 bits (six most significant bits), and the second sub segment consisting of the last two bits (two least significant bits). Then, we modify the pixel according to (2.4), (2.5), as Appendix A.3, lines 14-25.

When embedding the secret message, there is a possibility of overflow/ underflow. An overflow may yield values of some pixel greater than 255 after embedding. The underflow may yield the values of some pixel less than 0. We avoid them by adding one to the sub-segment (for underflow), or subtracting one from the sub-segment (for overflow), as shown in (2.4) and (2.5). For example,

$$v_1 = (11111100)_2$$
, sub₁ = $(111111)_2$, sub₂ = $(00)_2$

Assume the secret digits are (1,2), and to embed this message into the pixel v, we should add 1 to $sub_1 = (111111)_2$ and subtract 1 from $sub_2 = (00)$ for embedding the secret data (1,2) as in (2.7), (2.12), but this operation will cause the overflow. Hence, by preprocessing operators (2.4), (2.5), we get $sub_1 = (111110)_2$ and $sub_2 = (01)_2$. Then, we embed two ternary digits into the pixel as (2.6) to (2.11), the first digit is embedded according to (2.6)- (2.8) as shown in Appendix A.3, lines 27-33, and then the second digit is embedded according to (2.9)-(2.11) as shown in Appendix A.3, lines 35-44.

After embedding all of the secret data into the cover image, we record the values of PSNR, MSNR, APSNR, and BPP as shown in Appendix A.1, lines 20-31, in lines 20, and 21, we calculate the mean value of the cover image for calculating the

MSNR (2.64) line 29. In line 28, we calculate the maximal value of the cover image for calculating the APSNR. In lines 27 and 31, we calculate the PSNR (2.59) and APSNR (2.65), respectively. The full code is given in Appendix A.1 and the results are available in Appendix A.6.

As a sample output of our implementation, and the results for embedding the secret message in the cover image (Lena) are shown in Figures 4.1 and Table 4.2.

Cover image Stego image Figure 4.1: Lena Cover Image and Stego Image for ATD Implementation with Secret Message Size 644288 Bits, Appendix A.6

cover_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
lena.BMP	39.341881	38.994399	33.082488	7.566452	524288	2.000000
lena.BMP	39.093979	38.746497	32.834586	8.010921	554288	2.114441
lena.BMP	38.863923	38.516441	32.604530	8.446720	584288	2.228882
lena.BMP	38.662911	38.315429	32.403518	8.846863	614288	2.343323
lena.BMP	38.435312	38.087830	32.175919	9.322861	644288	2.457764
lena.BMP	38.245145	37.897663	31.985753	9.740154	674288	2.572205
lena.BMP	38.055621	37.708139	31.796228	10.174622	704288	2.686646
lena.BMP	37.874323	37.526841	31.614930	10.608356	734288	2.801086
lena.BMP	37.695110	37.347628	31.435717	11.055271	764288	2.915527
lena.BMP	37.531930	37.184449	31.272538	11.478558	794288	3.029968
lena.BMP	37.396861	37.049379	31.137469	11.841160	824288	3.144409

Table 4.1: ATD Results for Lena Image

For extraction stage, we extract a ternary message by extraction function, Appendix

A.4, lines 1-51. In line 7 is the call the MATLAB function dec2bin to convert the pixel of stego image from decimal to binary, line 8-10, we divide each binary byte (8 bits) into two parts: the first sub-segment consists of the first six bits of the 8 bits, and the second sub-segment consists of the last two bits. And then, we extract the first secret ternary digit from the first sub-segment (2.13), line 12 as well as the second secret ternary digit extract from the stego-pixel (2.14), line 14.

After extracting all the ternary message, we divide the ternary message into blocks with size 41 ternary digits, line 29. After that, we convert each sequence of 41 ternary digits to decimal, line 48, then convert the decimal to binary, line 49. From each pixel, we extract two ternary digits, we continue until all the secret messages are extracted and then convert it to the binary. The text of the code can be viewed in Appendix A.

4.2 LSBT-M Implementation

This algorithm LSBT-M is applied with two different types of threshold:

- Constant threshold (*T*=160) (LSB with Constant Threshold, LSBCT), as in [28], Appendix B.
- 2. Dynamic threshold according to the next formulation (4.1) (LSB with Dynamic Threshold, LSBDT), Appendix C:

$$T = \begin{cases} \lfloor 160 * (\lceil BPP \rceil - x) + 10 \rfloor & when \lceil BPP \rceil \neq x \\ T = 160 & Otherwise \end{cases}, \quad (4.1)$$

where [BPP] is the maximal embedding capacity, [BPP] = 3.14, *x* is the number of secret bits embedded in each pixel of cover image in each loop calculated by using (2.63). The LSBDT works correctly by imposing conditions on LSBT-M regarding

ml and mu (3.43), (3.51), and (3.52); according to these conditions, the value of T is a multiple of ml and mu, while mu is a power of 2. The code to calculate T is in Appendix C.1, lines 17-30, in line 17, Appendix C.1, we calculate the value of BPP according to (2.63), in lines 18-22, calculate the value of T according to (4.1). As well as in line 23, we check that the value of T meets the conditions of LSBDT.

In this algorithm, we use two moduli numbers mu and ml to determine how many bits will be embedded in the pixel of a cover image according to the value of a threshold. If the value of a pixel is larger than or equal to the threshold, we use mu, otherwise ml. From Appendix B.2, line 2-16. we calculate *EC*, *RES*, and *D* according to (2.15) and (2.17) for *EC* in line 4, (2.16) and (2.18), for *RES* line 5, (2.19), for *D* line 16.

In embedding stage, Appendix B.2, lines 11-25, we check the value of pixel of the cover image; if the pixel value is greater than or equal to the threshold, we use mu, otherwise we use the ml. In line 13, compute *EC* detecting how many bits will be embedded in each pixel as in (2.15) and (2.17). And in line 14, we compute the residue *RES* as in (2.16) and (2.18). *DEC* is the decimal value of *EC* bit fetched from the secret message. In line 24, we compute the *DEC* by the MATLAB function bin2dec. Line 25 calculates *D* from *DEC* and *RES* according to (2.19). Then we embed the secret message according to Case 2 in LSBT:

In embedding part, appendix B.2, lines 26-50, we have two cases.

- The pixel of a cover image is greater than or equal to the threshold.

- The pixel of a cover image less than the threshold.

In each case, we have three different situations to compute the value of pixel of stego

image. The three different situations for the first case are presented in Appendix B.2, lines 26, 29, and 47 according to (2.37), (2.39), and (2.52), respectively. Also, three different situations for the second case are presented in the Appendix B.2, lines 66, 69, and 87 as in (2.20), (2.22), and (2.35), respectively.

After embedding all of the secret data into the cover image, the values of PSNR (2.59), MSNR, and APSNR are recorded (see Appendix B.1, lines 5-6 and 22-32). In line 6, we calculate the average value of the cover image to be used in calculating MSNR in line 30, and in line 29, we calculate the maximal value of the cover image for calculating APSNR. In lines 28 and 32, we calculate the PSNR and APSNR respectively. The full code is given in Appendix B.1 and the results are available in Appendices B.4 and C.2.

As a sample output of our implementation, the results of embedding the secret message in the cover image (Baboon) are shown in Figure 4.2 and Table 4.2 for LSBDT, and Table 4.3 show results for LSBCT, with T=160.

Cover imageStego imageFigure 4.2: Baboon Cover Image and Stego Image for LSBDT Implementation

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	T
Baboon.bmp	524288	43.637205	43.037940	37.728041	2.814232	4	8	192
Baboon.bmp	584288	41.491961	40.892697	35.582797	4.611946	4	8	160
Baboon.bmp	644288	39.981432	39.382167	34.072268	6.530361	4	8	128
Baboon.bmp	704288	38.857527	38.258263	32.948363	8.459167	4	8	96
Baboon.bmp	734288	38.378209	37.778944	32.469045	9.446251	4	8	64
Baboon.bmp	764288	38.039312	37.440047	32.130148	10.212902	4	8	32
Baboon.bmp	824288	35,435728	34.836463	29.526564	18,599770	8	16	160

Table 4.2: LSBDT Implementation for Baboon Image

Table 4.3: LSBCT Implementation for Baboon Image; *T*=160

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	T
Baboon.bmp	524288	41.955945	41.356681	36.046782	4.144630	4	8	160
Baboon.bmp	584288	41.486587	40.887323	35.577423	4.617657	4	8	160
Baboon.bmp	644288	36.553475	35.954210	30.644311	14.379139	8	16	160
Baboon.bmp	704288	36.170410	35.571146	30.261246	15.705051	8	16	160
Baboon.bmp	734288	35.985098	35.385834	30.075934	16.389683	8	16	160
Baboon.bmp	764288	35.784355	35.185090	29.875191	17.165043	8	16	160
Baboon.bmp	824288	35.431005	34.831741	29.521841	18.620007	8	16	160

In the extraction part, for extracting the secret message from the stego image, we need the value of threshold, T, and values of two moduli mu and ml.

As mentioned before, in Appendix B.3, lines 8-52, we compare the value of the pixel with the threshold value, if the threshold is greater than or equal to the pixel value, we use mu, else we use ml. In lines 9 and 29, we compute the value of EC by (2.15) and (2.17), and in lines 10 and 30, RES is calculated by (2.16) and (2.18). Then, we convert RES to decimal with EC bits. This is the part of code when the pixel value is greater than the threshold, the all code is in Appendix B.3, and results are in

Appendices B.4 and C.2.

4.3 Summary of Chapter 4

Thus, in this chapter, we have implemented and tested ATD, LSBCT, and LSBDT methods. In the ATD method, we take 'Lena' image as an example, and we take as example 'Baboon' image in LSBDT and LSBCT. The results and all codes of methods for all functions are available in the Appendices A, B, and C.

Chapter 5

IMPLEMENTATION OF ATD AND LSB ALGORITHMS FOR COLOR IMAGES

In this chapter, we present implementation of LSB and ATD for color images. We use 8 color cover images with size 512*512 pixels and one binary message as a secret message. We use MSE (2.58), PSNR (2.59), SNR (2.60), WPSNR, MSNR (2.64), and WMSNR for evaluating the performance of the both algorithms (ATD and LSB).

5.1 LSB Implementation

We have implemented LSB in two different ways. The first way is the traditional LSB with different embedding combinations (224, 242, 422, 134, 143, 314, 341, 413, and 431). It means that, e.g., in combination 143, one-bit is embedded into the Red, four bits into Green, and three bits into the Blue component of the RGB color pixel. The second way is Adaptive LSB (ALSB). In this way, we have two cases:

1) Four bits are embedded into the largest, 3 bits in the middle, and one bit into the lowest color intensity pixel component (ALSBmax).

2) It uses the inverse order of embedding compared to ALSBmin: four bits are embedded into the lowest color intensity pixel component

5.1.1 Traditional LSB with Different Embedding Combinations

In the embedding phase, we create a function for embedding the secret message in the cover image. In this function, we split the cover image into three matrices (planes) R, G, and B. The number of bits embedded in each byte of matrixes (R, G, and B) is determined from the combination that we use. In Appendix D.2, lines 11-22; Line 11 detects how many bits to embed in Blue matrix. Line 21 converts bits of the secret image as binary string to decimal by using the MATLAB function bin2dec. Embedding the secret bits in Blue plane according to (2.1) is made in line 22. In lines 25-34, we embed 4 bits in green as in Blue, and in line 35-46 here embed one bit in Red as in Blue, y, u return the number of pixel touch to embedding the secret message. The full code can be viewed in the Appendix D.2.

The results of traditional LSB with different embedding combinations (224, 242, 422, 134, 143, 314, 341, 413, and 431) are available in Appendix C.9. Then we calculate MSE (2.58), PSNR (2.59), SNR (2.60), WPSNR, MSNR (2.64), and WMSNR as in Appendix D.1, lines 24-44.

In Appendix D.1, line 24, we call a function, MSE, for calculating the MSE as in (2.58). This function receives the number of pixels modified for embedding the secret message cover image, and stego image as input, and calculates the mean square error in Red, Green, and Blue matrixes as in the Appendix D.4, lines 1-16. In Appendix D.1, line 32, we call function to calculate the value of WAPSNR by calculating the actual maximal value in Red, Green, and Blue matrices. Then calculating APSNR (2.65) for each matrix (Red, Green, and Blue) then weigh them by equal weights (1/3, 1/3, 1/3) as in Appendix D.7, line 11.

In Appendix D.1, line 25, we calculate the value of MSE over all the image. In line 26, Appendix D.1, we call function, PSNR, to calculate the PSNR as in (2.59) for the image as a whole and each matrix (R, G, and B). Code of PSNR function is given in Appendix D.5, lines 1-6.

In Appendix D.1, line 29, we call the function MSNR to calculate MSNR. In this function, first we calculate the mean value for each matrix (R, G, and B). Then, MSNR is calculated for each matrix (R, G, and B), Appendix D.6, lines 1-14.

In Appendix D.1, lines 40-43, we calculate value of SNR as in (2.60) by calling the function, SNR, Appendix D.8, lines 1-12, for calculating the variances of the color component (R, G, and B) of the cover image and variances of added noise in color component (R, G, and B).

As a sample output of our implementation, the results for embedding the secret message in the cover image 'Lena', when using combination 134 are shown in Figures 5.1 and 5.2.

Cover image Stego image Figure 5.1: Lena Cover Image and Stego Image for LSB with Combination (134) Implementation. Appendix D.9

Figure 5.2: Quality Measures for Lena Image After Secret Message Embedding by LSB for Combination (134)

In the extraction function, Appendix D.3, we need combination that is used in embedding phase to extract the secret message.

5.1.2 Adaptive LSB (ALSB) Implementation

In Adaptive LSB (see Appendix E) all of the functions are similar to the traditional LSB except for two differences. The first difference is that we calculate the color intensity by calculating the average of each matrix (Red, Green, and Blue matrices) according to the next formula (5.1):

$$ACk = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} CI(i,j,k)}{MN}.$$
(5.1)

Where *CI* is the color matrix (Red, Green, and Blue matrices), k=1, 2, 3, *NM* is the number of pixels of the image, and *ACk* is the average of color for matrix *k*.

As we described before (Section 5.1, beginning), we have ALSBmax and ALSBmin variants of ALSB.

Appendix E.1, in line 9, 11, and 13, we calculate the mean of matrixes (Red, Green, and Blue). In Appendix E.1, lines 33-56, we compare the averages of the matrixes to detect the embedding capacity in each matrix.

In embedding stage, Appendix E.2, lines8-10, we embed the number of bits to be embedded into each matrix (Red, Green, and Blue) in first pixel of cover image for the future use in the extraction stage this the second difference.

The results for embedding the secret message in the cover image 'Lena' are shown in Figures 5.1 and 5.3.

Figure 5.3: Quality Measures for ALSBmin for Lena Image

For extraction, in main program, Appendix E, we call the extraction function. In this function, Appendix E.3, lines 8-10, we extract from the first pixel of the stego-image according (2.2) how many bits are embedded in each matrix (R, G, and B), and then extract the secret message (see Appendix E.3).

5.2 ATD Implementation

We have implemented ATD with combinations (112,121,211) defining number of ternary digits embedded in each component, (R, G, B) of a color pixel. Also in LSB, we have also considered combinations corresponding to 8 BPP. In this algorithm ATD, we calculate the MSE (2.58), PSNR (2.59), WPSNR, SNR (2.60), MSNR (2.64), and WMSNR only for modified pixel.

In the embedding and extraction phases, given in Appendices F.2, F.3, all of the functions are similar to ATD in gray scale image. Just here we have three matrixes (Red, Green, and Blue), and a number of ternary digits embedded in each matrix depend on the combination we use (112, 121, and 211). The all code of ATD is given in Appendix F.

Results of embedding of the secret message in the cover image 'Lena' for the combination (112) are shown in Figures 5.1 and 5.4.

```
_____
                                                                     _____
cover_image
                  Size_secret_data
                                              PSNR
                                                                  MSE
                                                dB
_____

        lena_color.jpg
        1280000
        37.550079
        11.430689

        PSNR_R=37.353306
        PSNR_G=37.651402
        PSNR_B=37.652425

        MSNR_R=34.334176
        MSNR_G=29.438803
        MSNR_B=29.991048

MSNR=31.580308
W_PSNR(0.4_0.243_0.357)=37.532529
W_PSNR(0.4_0.3_0.3)=37.532471
W PSNR (1/3 1/3 1/3)=37.552378
W MSNR(0.4 0.243 0.357)=31.594103
W MSNR(0.4 0.3 0.3)=31.562625
W MSNR(1/3 1/3 1/3)=31.254675
Actual PSNR weight(1/3 1/3 1/3)=36.915868
SNR=16.354770
```

Figure 5.4: ATD Quality Measures for Lena Cover Image

5.3 Summary of Chapter 5

Thus, in this chapter, we have implemented and explained ATD and LSB in two difference ways (Traditional LSB with combinations, ALSB), we have presented 'Lena' image result as an example. All results and full codes and all functions in ATD and LSB are available in the Appendix D, E, and F.

Chapter 6

EXPERIMENTS RESULTS

In this chapter, we discuss the experiments results of the algorithms for the gray scale (Section 6.1) and color scale (Section 6.2).

6.1 Gray Scale Image Results for ATD, LSBCT, and LSBDT

Fifteen gray scale cover images with size 512×512 pixels used in the experiments are shown in Figure 6.1. Secret messages in these experiments are generated randomly with different sizes. First, we start with the size of a secret message equal to 524288 (512 * 512 * 2) bits, and then increase the size by 30,000 bits every iteration, and record the values of quality measures. The simulation steps show in Figure 6.2.

Figure 6.1: Gray Scale Cover Images Used in ATD, LSBCT, and LSBDT Simulation

Figure 6.2: Flowchart for Gray Scale Simulation Steps

6.1.1 ATD Results

Table 6.1 shows the PSNR for 15 cover images in Figure 6.3 and EC in the range [2,

3.14] BPP; raw data are in Appendix A.6.

Course				EC (BPP)			
Cover	2	2.22	2.46	2.69	2.80	2.92	3.14
image				PSNR (dB)			
1	39.86	38.86	38.41	38.02	37.85	37.69	37.39
2	39.32	38.86	38.44	38.04	37.87	37.69	37.41
3	39.34	38.86	38.43	38.04	37.87	37.69	37.38
4	39.33	38.87	38.42	38.05	37.85	37.71	37.40
5	39.35	38.87	38.44	38.06	37.86	37.69	37.38
6	39.33	38.86	38.44	38.06	37.86	37.68	37.41
7	39.32	38.87	38.44	38.05	37.90	37.69	37.41
8	39.34	38.87	38.45	38.05	37.87	37.68	37.41
9	39.35	38.86	38.44	38.06	37.87	37.69	37.40
10	39.25	38.79	38.37	37.99	37.82	37.63	37.35
11	39.33	38.86	38.44	38.04	37.88	37.69	37.40
12	39.33	38.87	38.42	38.05	37.86	38.68	37.39
13	39.33	38.85	38.44	38.05	37.86	37.70	37.41
14	39.25	38.70	38.27	37.81	37.59	37.41	37.12
15	39.29	38.84	38.40	38.01	37.83	37.67	37.36
Average PSNR (dB)	39.35	38.85	38.42	38.03	37.84	37.73	37.57

Table 6.1: PSNR of ATD

For 15 different cover images, we get close results for PSNR. Averaged over 15 images dependence on *EC* is shown in Figure 6.3.

From Table 6.1 and Figure 6.3, we see that PSNR slightly decreases from 39.35 dB

to 37.57 dB when the embedding capacity, EC, increases from 2 BPP to 3.14 BPP.

6.1.2 LSBCT Results

We have implemented this algorithm with constant threshold T=160 as in [26], and we use two different groups of moduli ((ml=4, mu=8) and (ml=8, mu=16)). These moduli values are defined according to the size of the secret message. Under assumption that the cover image pixel values are distributed uniformly in {0,.., 255}, maximal embedding capacity, *MAX-EC*, dependence on threshold ml, and mu, MAX - EC (T, ml, mu), may be defined as follows:

$$MAX - EC(T, ml, mu) = \frac{T}{256} * \log_2 ml + \frac{256 - T}{256} * \log_2 mu.$$
(6.1)

From (6.1),

$$MAX - EC(160, 4, 8) = \frac{160}{256} * 2 + (256 - 160)/256 * 3 = 2.376 BPP.$$
(6.2)

From (6.2), we see that the secret message for EC < 2.376 may be embedded with T = 160, ml = 4, mu = 8 (as in the first two columns of Table 6.2), but for EC>2.376, it is necessary using ml = 8, mu = 16.

Actually, $MAX - EC(160, 8, 16) = \frac{160}{256} * 3 + 96/256 * 4 = 3.375 BPP$

and all the EC in Table 6.2 are less than that value.

		0		EC (BPP)								
	2	2.22	2.46	2.69	2.80	2.92	3.14					
C	ml											
Cover	4	4	8	8	8	8	8					
image	mu											
	8	8	16	16	16	16	16					
				PSNR (dB)								
1	42.18	41.75	36.64	36.28	36.11	35.95	35.65					
2	41.93	41.40	36.38	36.06	35.91	35.75	35.34					
3	42.96	42.70	37.47	37.11	36.96	36.07	36.04					
4	42.60	42.40	37.20	36.83	36.71	36.06	36.37					
5	41.81	41.28	36.54	36.09	35.90	35.67	35.31					
6	41.25	40.90	35.61	35.32	35.20	35.08	34.91					
7	41.97	41.48	36.54	36.16	35.99	35.77	35.49					
8	40.21	39.80	34.54	34.22	34.06	33.93	33.57					
9	40.82	40.41	35.12	34.79	34.65	34.50	34.20					
10	40.75	40.49	34.94	34.67	34.58	34.51	34.31					
11	42.55	42.11	37.31	36.80	36.61	36.39	36.03					
12	41.30	41.03	35.63	35.41	35.35	35.22	35.04					
13	42.79	42.36	37.17	36.89	36.74	36.61	36.23					
14	41.16	40.77	35.44	35.14	34.95	34.80	34.60					
15	43.78	43.73	38.72	38.31	38.12	37.92	37.92					
Average PSNR dB	41.87	41.51	36.35	36.01	35.86	35.70	35.41					

Table 6.2: PSNR for LSBCT Algorithm

Table 6.2 shows PSNR for LSBCT for 15 images and values of ml and mu we use in our experiment and BPP \in [2, 3.14]. To evaluate the performance of LSBCT, we average PSNR overall the stego images, also shown in Figure 6.4. Raw results are given in Appendix B.4.

From Figure 6.4, we see that the maximum value of PSNR is 41.87 dB for embedding capacity 2 BPP. On the other hand, when we increase the embedding capacity, we get the minimal value of PSNR about 35.41 for embedding capacity 3.14 BPP. Also, from the Figure 6.4, we see a sharp drop in the value of PSNR when the embedding capacity is higher than 2.22 BPP, which drops from 41.87 dB for 2.22 BPP to 36.35 dB for 2.46 BPP. To avoid the sharp drop as we mentioned before, we use the ml=8 and mu=16 instead of ml=4, mu=8 according to (6.1)-(6.3). This change leads to a great number of bits embedded and, hence, a great distortion.

6.1.3 LSBDT Results

We have implemented LSB with dynamic threshold. The value of the threshold is calculated according to (4.1). Also, here we use two different groups of moduli ((ml=4, mu=8) and (ml=8, mu=16)). These moduli values are defined according to the size of the secret message as in Section 6.1.2, All results are shown in Appendix C.2.

> Example of the threshold value calculation:

From Table 6.3, if the size of the secret message is 764288 bits, the maximum embedding capacity in our experiment is 3.14 BPP, and the size of the cover image is 512*512, then we first calculate the embedding capacity, x, according to (2.63).

$$\mathbf{x} = \frac{764288}{512*512} = 2.92.$$

Then substitute x in (4.1):

$$T = \lfloor 160 * ([3.14] - 2.92) + 10 \rfloor = 45.$$

Check if value of the threshold, T is a multiple of mu (mu = 16) or not. If it is a multiple of mu, then keep it. Otherwise, choose a small number that is a multiple of mu. In this example, result is 45 that is not a multiple of mu = 16. Hence, we select a small number that is a multiple of mu=16, it is 32. After that, we calculate the maximal embedding capacity, MAX - EC, according to (6.1) as follows:

$$MAX - EC(32,4,8) = \frac{32}{256} * 2 + \frac{256 - 32}{256} * 3 = 2.875$$

Since Max - EC(32,4,8) = 2.875 < x = 2.92 then we can't embed all secret message with this threshold. Thus, again decrease threshold by mu and recheck the actual embedding capacity in our example T = 32 after subtraction T = 32 - 16 = 16 then recheck the as follows:

$$MAX - EC(16,4,8) = \frac{16}{256} * 2 + \frac{256 - 16}{256} * 3 = 2.9375, MAX - EC = 2.9375 > x = 1000$$

2.92, hence we can embed all secret messages with this threshold, T = 16.

			Size of s	secret messa	ge (Bits)							
	524288	584288	644288	704288	734288	764288	824288					
		•	•	EC(BPP)	•	•						
	2	2.22	2.46	2.69	2.80	2.92	3.14					
				ml			-					
Cover	4	4	4	4	4	4	8					
image	mu											
	8	8	8	8	8	8	16					
	T T											
	192	160	128	80	48	16	160					
	PSNR (dB)											
1	43.21	41.76	40.04	39.03	38.55	38.05	35.60					
2	43.42	41.41	40.15	39.29	38.54	38.19	35.36					
3	44.12	42.68	40.59	39.33	38.60	38.08	35.47					
4	43.18	42.41	41.22	39.48	38.55	38.08	35.37					
5	42.94	41.31	39.80	38.34	38.34	38.04	35.33					
6	42	40.90	40.09	38.88	38.88	38.52	34.79					
7	43.67	41.47	40	38.87	38.36	38.07	35.45					
8	40.57	39.79	39.20	38.63	38.31	38.09	35.59					
9	41.82	40.41	39.41	38.79	38.41	38.13	34.21					
10	43.66	40.50	39.46	38.86	38.54	38.15	34.30					
11	43.26	42.11	41.12	39.64	39.05	38.52	35.99					
12	43.02	41.02	39.73	39.01	38.80	38.66	35.02					
13	43.78	43.74	42.90	42.12	40.06	38.60	34.78					
14	42.09	40.78	40.01	39.38	38.97	38.71	34.59					
15	43.76	42.36	40.14	38.95	38.48	38.13	35.23					
Average PSNR dB	42.97	41.51	40.26	39.30	38.70	38.27	35.48					

Table 6.3: PSNR for LSBDT Algorithm

Table 6.3 shows PSNR of LSBDT algorithm for all images, as well as average over all images, and values of T, *ml*, and *mu* that we use in our experiments. As we see from the Table 6.3, the quality of a stego-image drops when the size of the secret message increases; raw results are shown in Appendix C.2.

From Figure 6.5, we can see that the maximum value of PSNR it reaches 42.97 dB when the embedding capacity is equal to 2 BPP. Figure 6.5 illustrates a noticeable drop in the value of PSNR when the embedding capacity is between 2 BPP and 2.92 BPP which drops from 42.97 dB to 38.27 dB. Then we see a sharp drop in the value of PSNR when the embedding capacity is higher than 2.92 BPP. PSNR drops rapidly from 38.27 dB for 2.92 BPP to 35.48 dB for *EC*=3.14 BPP, because the number of distorted bits increases from $\{2, 3\}$ for ml=4, mu=8 to $\{3, 4\}$ for ml=8, mu=16.

6.1.4 ATD, LSBDT, and LSBCT Comparison Results

Comparison results for the both methods obtained for PSNR (2.59) are shown in Table 6.4.

(DFF)			
EC (BPP)	LSBCT (T=160)	LSBDT	ATD
2	41.87	42.97	39.35
2.22	41.51	41.51	38.85
2.46	36.35	40.26	38.42
2.69	36.01	39.30	38.03
2.80	35.70	38.27	37.73
2.92	35.41	35.48	37.57
3.14	41.87	42.97	39.35

Table 6.4: PSNR (dB) for LSBCT (*T*=160), LSBDT, and ATD Dependence on *EC* (BPP)

Figure 6.6: PSNR (dB) for ATD and LSBCT (T=160) and LSBDT Dependence on EC (BPP)

From the Table 6.4 and Figure 6.6, it is evident that the quality of the image for ATD is slightly affected by the increase of the embedding capacity. LSBCT and LSBDT have a high quality for the embedding capacity up to 2.22 BPP. LSBDT PSNR reaches 42.97 dB, while LSBCT reaches 41.87 dB for embedding capacity EC= 2 BPP. For embedding capacity between 2.22 BPP and 2.46 BPP, LSBCT PSNR drops quickly to 36.35 dB. After that, it falls slightly and reaches 35.41 dB at EC=3.14 BPP.

ATD has a higher PSNR than LSBDT when embedding capacity is more than 3 BPP; this is because in LSBDT uses modules with values {8, 16} for the large-size secret messages. It means that in each pixel it embeds 3 or 4 bits according to the threshold, and the maximum possible distortion by embedding is 15, and for ATD, the maximum possible distortion is 10 (e.g., when sub1 and sub2 are increased from 0 to 1, and then sub1 and resulting pixel are again increased by 1; each increase of sub1, gives increase by 4, an increase of sub2 and of the pixel results in increase by 2).

6.1.5 Comparison Versus Known Experiments Results

From the known experiments are shown in section 2.6, Table 2.1, Figure 2.17, and from our results in Table 6.4 and Figure 6.6, when we compare the ATD and LSBCT as in the known experiments we don't get the same result as in the paper [28]. Therefore, we modify the LSBCT to LSBDT to get the same result as in the paper [28].

6.2 Results for Color Images

In this section, we discuss the results of LSB, ALSBmax, ALSBmin, and ATD for different combinations of embedding into color scale images.

6.2.1 LSB and ALSBmax, ALSBmin Results

Cover color scale images with sizes of 512×512 pixels used in the experiments are shown in Figure 6.7. The secret message in this experiment is constant. The raw results are shown in Appendices D.9 and E.3. The simulation steps show in Figure 6.8.

Figure 6.7: Cover Images Used for Experiments with ATD and LSB

Simulation Steps

Table 6.5 shows the PSNR of LSB for combinations (134, 143, 341, 314, 413, 431, 224, 242, and 422); and PSNR of Adaptive LSB in both cases the raw results are in

Appendices D.9 and E.3.

ruere ele	able 0.5.1 STAR (ab) for ESD in Different Combinations and AESD max, AESD min										
	LSB for different combinations							ALSBmax	ALSBmin		
Color Image	4_2_2	2_4_2	2_2_4	4_3_1	3_4_1	4_1_3	1_4_3	3_1_4	1_3_4		
Pepper	36.15	33.9	36.97	35.64	35.68	35.75	35.58	36.35	36.46	35.58	36.46
Lena	35.95	36.15	36.63	35.46	35.68	35.57	34.3	36.05	34.6	36.05	34.6
Baboon	36.17	36.13	35.05	37.01	35.66	35.77	35.62	36.32	36.33	36.62	36.33
Barbra	33.16	36.1	34	36.63	35.66	35.76	35.62	36.3	36.31	35.63	36.31
Balloon	36.18	36.16	37.01	35.64	35.66	35.78	35.63	36.4	36.38	36.38	36.4
Blue	38.28	36.19	37.66	37.44	34.52	35.01	35.66	38.89	34.08	34.08	37.44
Green	34.46	36.39	36.85	34.1	35.58	34.24	33.08	35.99	36.29	34.1	34.1
Red	35.47	36.09	33.51	34.98	35.7	36.5	35.55	35.9	35.91	34.98	35.91

Table 6.5: PSNR (dB) for LSB in Different Combinations and ALSBmax, ALSBmin

Figure 6.9: PSNR for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

As we can see from the Table 6.5 and Figure 6.9, different LSB combinations for various images are in different relations while the embedding capacity is the same. EC=8 BPP. For example, for Lena, PSNR=35.95 dB in 422 combination is less than PSNR=36.15 dB for 242 combination, whereas for Blue, PSNR for 422 combination is greater than PSNR for 242 combination.

Figure 6.10: SNR for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

From the other side, SNR (2.60) for LSB is less than PSNR dependent on the images but still two combinations on different images may be in inverse relationships (e.g., SNR for 431 on Barbara is less than SNR for 431, but on Balloon, SNR for 431 is greater than SNR for 431) as we can see in Figure 6.10.

6.2.2 ATD Results

In this algorithm as in gray scale, we convert the secret message to base 3, and we embed in each pixel 4 ternary digits in different combinations 211, 121, and 112. For example, if we use 211 combination, it means that two ternary digits are embedded in red color component, one ternary digit in Green color component, and one ternary digit into Blue color component. Results are given in Table 6.6 and Figure 6.11; raw results are in Appendix F.3.

Course Issue on	Combinations						
Cover Image	211	121	112				
Peppers	37.41	37.42	37.42				
Lena	37.55	37.55	37.55				
Baboon	37.56	37.56	37.56				
Barbara	37.57	37.56	37.57				
Balloon	37.42	37.43	37.43				
Blue	37.55	37.54	37.54				
Green	34.50	34.50	34.50				
Red	36.77	36.76	36.77				

Table 6.6: PSNR (dB) for ATD for Different Combinations Result

Figure 6.11: PSNR for ATD for Different Embedding Combinations

From Figure 6.11 and Table 6.6, we see that PSNR for ATD is not affected by the combination but it depends on image; PSNR for this algorithm is in range from 34.50 dB to 37.57 dB; we get the minimum value in the Green image for all combinations.

Figure 6.12: SNR for ATD in Different Embedding Combinations

For SNR we get the smallest value for Green image is 7.1 dB, and Lena image has the largest value of SNR, 16.5 dB, as Figure 6.12 shows.

6.2.3 ATD and LSB Comparison Results

Figure 6.13 shows ATD versus LSB comparison results using 512×512 cover images.

Figure 6.13: PSNR for ATD and LSB

As we can see from Figure 6.13, ATD has a large value of PSNR when we compare

it with LSB algorithm, except for the Green image. In this image, the ATD algorithm gets a small value of 34.5 dB. The value of PSNR for LSB algorithm changes between 35.4 dB and 36.7dB.

On the other hand, SNR for ATD and LSB is very close to each other as we see in Figure 6.14 except for the Green image. The quality of ATD is less than LSB as shown in Figure 6.14 which drops to approximately 9 dB for LSB and to 7 dB for ATD.

6.2.4 Comparison Versus Known Experiments Results

From the known experiments are shown in section 2.5, Table 2.2, in [24] they implement LSB with combinations 134 on two cover images (Lena, Baboon), in addition, we implement LSB with 8 different combinations and on 8 cover images shown in figure 6.7. Also, we modify LSB to ALSB (ALSBmax, ALSBmin).

6.3 Study of the Quality Metrics

According to our experiments which we discussed in Section 6.2, when we embed 8

bits in each pixel, we obtain PSNR a different behavior for various combinations and images. We expect that good combinations shall depend on image and shall be little dependent on the combinations since all of them modify the same number of bits (8 bits). To solve this problem, we consider the following measures: MSNR (Mean Signal to Noise Ratio) and APSNR (Actual PSNR). MSNR (2.64) is calculated as the mean value of all image pixels and changing the possible peak signal value, which is 255 in equation (2.59), to the mean value of matrix. And APSNR (2.65) improves PSNR by considering actual peak signal instead of possible peak signal which is 255 in equation (2.59). Then we weigh MSNR and PSNR by three different groups of weights (group1values, (0.4, 0.243, and 0.357)), we get as the follows:

From Figure 2.15, we get $h_R = 0.35$, $h_G = 0.3125$, and $h_B = 0.2125$,

 $H_{sum} = h_R + h_G + h_B = 0.875.$

After normalizing:

$$\dot{h_R} = \frac{h_R}{H_{sum}} = \frac{0.25}{0.875} = 0.4,$$

 $\dot{h_G} = \frac{h_G}{H_{sum}} = \frac{0.2125}{0.875} = 0.243,$
 $\dot{h_B} = \frac{h_B}{H_{sum}} = \frac{0.3125}{0.875} = 0.357.$

We have suggested two other group of weights (group 2 values, (0.4, 0.3, 0.3), and group3 values (1/3, 1/3, 1/3)).

6.3.1 MSNR and APSNR for Gray Scale Images

• ATD Results

APSNR for ATD dependence on embedding capacity is shown in Figure 6.15. APSNR decreases with the increase of the embedding capacity. It arrives at 37.07 dB when embedding capacity is equal to 3.1 BPP.

MSNR for ATD dependence on embedding capacity is shown in Figure 6.16. We see that MSNR has the same form as PSNR and APSNR. It decreases from 32.85 dB when EC=2 BPP to 30.87 when EC=3.1 BPP.

• LSBCT Results

APSNR for LSB with Constant Threshold algorithm reaches the maximum value

41.53 dB for embedding capacity, EC= 2 BPP and minimum value 35.07 dB for 3.1 BPP as shown in Figure 6.17. For MSNR there is a severe decrease in the quality of the stego image when increasing the embedding capacity, it drops to 29.10 dB, shown in Figure 6.18.

• LSBDT Results

APSNR and MSNR for LSBDT in Figures 6.19 and 6.20 reach the maximum value 42.62 dB and 36.58 dB respectively for the embedding capacity, EC= 2 BPP. So these values quickly drop to 34.99 dB and 29.09 dB, respectively.

• ATD, LSBCT and LSBDT Comparison Using MSNR and APSNR

From Figures 6.21 and 6.22, we can see that MSNR and APSNR for the three

algorithms (LSBCT and LSBDT, and ATD), have the same form as of PSNR. LSBDT reaches 42.62 dB for APSNR, and 36.58 dB for MSNR, while LSBCT gets 41.53 dB for APSNR, and 35.52 dB for MSNR when EC=2 BPP. When EC increases from 2.2 BPP to 2.4 BPP, LSBCT quality drops quickly in all metrics it gets 36.01 dB for APSNR, and 30.02 dB for MSNR. After that, it falls slightly to reach 35.07 dB for APSNR, and 29.10 dB for MSNR.

Figure 6.21: APSNR (dB) for ATD and LSBCT and LSBDT

Figure 6.22: MSNR (dB) for ATD and LSBCT and LSBDT

6.3.2 WPSNR, MSNR, and WMSNR for Color Images

• LSB Results

From Figures 6.23-6.24, we see that PSNR after weighing for LSB with embedding capacity 8 BPP and the values of weight (0.4, 0. 243, 0.357) come from human color perception as in Section 6.3 and other weights (0.4, 0. 3, 0.3) and (1/3, 1/3, 1/3) we take values close to that weight calculate from human color perception, for different combinations still fluctuates but as we see from figures 6.23-6.25 the PSNR with weights (1/3, 1/3, 1/3), it has more plateau when we compare it with other weights (0.4, 0. 3, 0.3) and (0.4, 0. 243, 0.357), and PSNR.

Figure 6.23: Weighed PSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different Embedding Combinations

Figure 6.24: Weighed PSNR (dB) by (0.4, 0. 3, 0.3) for LSB for Different Embedding Combinations

Figure 6.25: Weighed PSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

According to our result in PSNR and WPSNR for different weights, we consider MSNR as in Figure 6.26 and Table 6.7 show the value of MSNR for different combinations as we described in Chapter 5. We calculate the mean value of an image (2.64) and this changed the maximum possible value 255 in formula (2.59) by mean value of the image. With MNSR we get improvement in the result obtained by PSNR and WPANR as we show in Figure 6.26, MSNR has nearly one and the same value for different combinations with the same embedding capacity but we see there is

more improvement in the result obtained by considering WMSNR with three groups weights as Section 6.3.

Figure 6.26: MSNR (dB) for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

Tuble 0.7. Mortik (ub) for ESD and TESD Methods Kesuk											
Cover	LSB for different combinations						ALSBmax	ALSBmin			
Image	4_2_2	2_4_2	2_2_4	4_3_1	3_4_1	4_1_3	1_4_3	3_1_4	1_3_4	ALSDIIIdX	ALSDIIIII
Pepper	24.86	24.81	25.66	24.34	24.38	24.46	24.27	25.04	25.05	25.04	25.05
Lena	26.28	26.44	26.98	25.78	25.96	25.89	25.88	26.40	26.41	26.41	25.88
Baboon	25.84	25.79	26.61	25.30	25.32	25.44	25.28	25.99	25.99	25.30	25.99
Barbra	25.16	25.09	25.93	24.62	24.66	24.76	24.60	25.32	25.32	24.63	25.32
Balloon	26.28	26.20	27.12	25.74	25.73	25.89	25.68	26.50	26.49	25.73	25.68
Blue	21.05	18.96	19.5	20.21	18.28	20.38	18.40	18.65	18.92	18.92	20.21
Green	11.04	12.76	13.43	10.66	12.13	10.82	12.34	12.57	12.86	12.34	12.57
Red	27.79	28.60	28.90	27.31	28.20	27.46	28.08	28.28	28.30	27.46	28.30

Table 6.7: MSNR (dB) for LSB and ALSB Methods Result

To improve MSNR, we weigh MSNR similar as we have done for PSNR. Results obtained are shown in Figures 6.26-6.28.

Figure 6.27: Weighed MSNR (dB) by (0.4, 0.3, and 0.3) for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

Figure 6.28: Weighed MSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

Figure 6.29: Weighed MSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different Embedding Combinations and ALSBmax, ALSBmin

As we see from Figures 6.27-6.29, weighed MSNR with weight (1/3, 1/3, 1/3) looks invariant for different combinations when we compare it with other weights (0.4, 0.3, 0.3) and (0.4, 0.243, 0.357). It behaves as we expect because embedding capacity for different combinations is constant where *EC*=8 BPP, with a different number of bits embedded in Red, Blue, and Green components.

• ATD Results

When we calculate MSNR (2.64) and we weigh MSNR with three different group weights (1/3, 1/3, 1/3), (0.4, 0.3, 0.3) and (0.4, 0.243, 0.357). From Figure 6.30 and Table 6.8, we see that, the value of MSNR and WMSNR in different weights for ATD in different combinations has the same value.

(1)						
Cover Image	Combinations					
Cover Image	211	121	112			
Peppers	29.82	29.82	29.82			
Lena	31.58	31.58	31.58			
Baboon	30.93	30.92	30.92			
Barbara	30.27	30.26	30.27			
Balloon	30.22	31.22	31.22			
Blue	24.02	24.01	24.01			
Green	14.74	14.75	14.74			
Red	32.79	32.97	32.97			

Table 6.8: MSNR (dB) for ATD for Different Combinations

• ATD and LSB Comparison Results Using WPSNR, MSNR and WMSNR When we compare LSB and ATD according to WPSNR with different weights, we get that LSB algorithm has the best quality image according to WPSNR. The value of WPSNR for LSB is in between 40.60 dB and 40.20 dB for different weights as shown in Figure 5.31.

Figure 6.31: WPSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243, 0.357), (0.4, 0.3, 0.3), and (1/3, 1/3, 1/3)

Figure 6.32: MSNR (dB) for ATD and LSB

For MSNR, the both algorithms LSB and ATD have the same curve form (see Figure 6.32). When we compare them, ATD has noticeably larger value than LSB for all images except 'green image' for this image; the LSB has a larger value of 16 dB,

while ATD has a value of 14.74 dB. When we compare LSB and ATD for WMSNR, from Figure 6.33, we can see that LSB algorithm has a large value than ATD for all images just if we except Green image; for this image, where ATD has a large value, 15 dB, while LSB has approximately 5 dB.

Figure 6.33: WMSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243, 0.357), (0.4, 0.3, 0.3), and (1/3, 1/3, 1/3)

6.3.3. Evaluation of Different Metrics

• Evaluation of Different Metrics for LSB Algorithm

We measure the quality of the stego images in LSB algorithm by different criterion measure PSNR, and MSNR, WMSNR, and WPSNR with weights (1/3, 1/3, 1/3), (0.4, 0.3, 0.3), and (0.4, 0.243, 0.357). We compare between these metrics by using deviation of the results in each criterion the deviation is calculated according to (6.3):

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{X})^2}$$
(6.3)

Where \overline{X} is the mean value of the pixels of a cover calculated according to (2.62) and N is the number of elements. To compare between these metrics (PSNR, and MSNR, WMSNR, and WPSNR with weights (1/3,1/3,1/3), (0.4, 0.3, 0.3), and (0.4, 0.243, 0.357) we calculate deviation for each cover image in different combinations than average of the deviation over 8 cover images. The results are shown in Table 6.9.

Metric	Deviation
PSNR	0.92
WPSNR (0.4, 0.243, 0.357)	1.07
WPSNR (0.4, 0.3, 0.3)	0.896
WPSNR (1/3,1/3,1/3)	0.768
MSNR	0.663
WPSNR (0.4, 0.243, 0.357)	0.554
WMSNR (0.4, 0.3, 0.3)	0.492
WMSNR (1/3,1/3,1/3)	0.211

Table 6.9: Deviation of Results in Each Metric for LSB Algorithm

Figure 6.34: Deviation of Results in Each Metric for LSB Algorithm

When we compare result of deviation of the criteria as we show in Figure 6.34 and Table 6.8, the minimal deviation of the metrics for LSB algorithm we get in WMSNR with weight (1/3, 1/3, 1/3): the value of deviation is 0.211, and maximum result is in WPSNR with weight (0.4, 0.243, 0.357). These weights we get from human color perception in Figure 2.15 as shown at the beginning of Section 6.3. Overall, the best metric for stego images for LSB algorithm is MSNR with weights (1/3, 1/3, 1/3).

• Evaluation of Different Metrics for ATD Algorithm:

We use different criteria to evaluation the quality of the stego images for ATD algorithm as PSNR, WPSNR with weights (1/3,1/3,1/3), (0.4, 0.3, 0.3), and (0.4, 0.243, 0.357), MSNR, and WMSNR with weights (1/3,1/3,1/3), (0.4, 0.3, 0.3), and (0.4, 0.243, 0.357). Also for this algorithm, we compare between these criteria measures by calculating deviation (6.1) of result in each criterion measure for ATD algorithm.

Metric	Deviation
PSNR	0.0040
WPSNR (0.4, 0.243, 0.357)	0.0039
	0.0025
WPSNR (0.4, 0.3, 0.3)	0.0035
WPSNR (1/3,1/3,1/3)	0.0042
MSNR	0.088
WPSNR (0.4, 0.243, 0.357)	0.086
WMSNR (0.4, 0.3, 0.3)	0.079
	0.079
WMSNR (1/3,1/3,1/3)	0.088

Table 6.10: Deviation of Results with Different Metrics for ATD Algorithm

Figure 6.32: Deviation of Results for ATD

As we see from Figure 6.32 and Table 6.10, the best criterion measure to evaluation the quality of stego image is WPSNR with weight (1/3, 1/3, 1/3) it has the minimal value of deviation.

6.4 Performance of ATD and LSB for Color Images Depending on

the Embedding Capacity

We studied the performance of the both algorithm (ATD and LSB) for color scale images by using WMSNR with weight (1/3, 1/3, 1/3) when changing the embedding capacity to 6 BPP and 10 BPP as shown in Figure 6.36.

Figure 6.36: WMSNR (dB) Dependence on Embedding Capacity for LSB and ATD.

As we can see in Figure 5.36, WMSNR decreases when embedding capacity increases that complies with our expectations.

6.5 Summary of Chapter 6

Thus, in this chapter we have discussed and compared the gray scale images and color scale images results with criteria. We also compared these results with known experiments [28] presented in Section 2.5. Results obtained are as follows:

➤ For gray scale images:

1. We show PSNR for gray images for ATD and LSBCT, LSBDT.

2. We introduced such criteria as MSNR, APSNR, which have similar to PSNR curve shape.

 \succ For color images:

1. We found that PSNR for color scale images behaves not as expected: for the same embedding capacity but for different combinations embedding into the same image we get different PSNR values, and different relations between the combinations.

2. We introduced such criteria as WMSNR, WPSNR which show stable behavior for different combinations. By evaluation of different metrics by LSB the minimal deviation we get in WMSNR with weight (1/3, 1/3, 1/3) the value of deviation is

0.211 and maximum result in WPSNR with weight (0.4, 0.243, 0.357) this weight we get from human color perception in Figure 2.15 as explain in Section 6.3.

3. We showed that stability of WMSNR is preserved when varying embedding capacity, and it decreases with the increase of embedding capacity.

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis, analysis, implementation, and experiments on steganographic methods (ATD, LSB, and LSBT) for the gray scale and color images are conducted. The algorithms are explained in details and analyzed. It was found out that LSBT method may work incorrectly (counter-examples are constructed). The reasons of the problems are understood, and LSBT is modified as LSBT-M imposing certain constraints on the LSBT parameters: threshold, and moduli values. LSBT-M algorithm is considered in static (LSBCT) and dynamic (LSBDT) variants. Dynamic variant is introduced to have experimental results compatible with those published in [28] as for LSBCT. The experiments are conducted on ATD, LSBCT, and LSBDT for gray scale images, and on ATD and LSB-based (LSB, ALSBmin, and ALSBmax) for color images Known quality measures of stego-images (PSNR, SNR) and proposed (MSNR, APSNR WMSNR, and WPSNR) are studied.

For gray scale images, the results are obtained for 15 gray scale cover images and random secret messages. According to our experiments, LSBDT is better than ATD in the quality of stego images, PSNR, when the embedding capacity EC is less than or equal to 3 BPP. In [28], LSBDT performance is shown as the performance of LSBT, but we show that LSBT (or, LSBCT after modification) has worse performance (compare Figures 6.6 and 2.17). Also, when MSNR and APSNR are applied for the both algorithms (LSBT and ATD) the results have the same form as

For color images, the experiments are conducted with eight cover images with size 512*512 pixels, and one binary message as a secrete message. LSB and ATD are implemented for different embedding combinations of 8 bits embedding in each color pixel. According to experiments, PSNR of LSB for color images has fluctuations in different combinations with the same embedding capacity 8 bits in each pixel while the PSNR of ATD is stable in different combinations. When we apply WPSNR and MSNR and weight it by three different groups of weights, the result show that, the value of PSNR with weights (1/3, 1/3, 1/3) for LSB with different combinations is more plateaus than other weights. Also, the value of MSNR with weights (1/3, 1/3, 1/3) for LSB with different combinations looks invariant for different combinations when compared with other weights. MSNR with different weights for ATD is stable in different combinations as PSNR. For LSB algorithm when comparison between different metrics was made by deviation evaluation of the metrics, we got the best metric for LSB algorithm as WMSNR with weights (1/3, 1/3, 1/3) with the minimal deviation values as 0.211, and the maximum deviation was obtained for WPSNR with weights (0.4, 0.243, 0.357) that we got from human color perception. Thus, human color perception-originated weights are not appropriate for the images assessment, so we can conclude that human eyes and SNR-based metric presumably use different ways of image estimation.

Furthermore, when varying embedding capacity for LSB and ATD the results showed stability of WMSNR with weights (1/3, 1/3, 1/3), and it decreases with the increase of embedding capacity (we considered BPP=6, 8, and 10).

In the future work, we want to study LSBDT more in order to improve performance of LSBT for high embedding capacity so that it could beat ATD for all embedding capacity values.

•

REFERENCES

- [1] Ankur, G., Gupta, S., & Bhushan, B. (2012). Information Hiding Using Least Significant Bit Steganography and Cryptography. *International Journal of Modern Education and Computer Science*, pp. 27-34. Vol. 5. No. 2.
- [2] Agrawal, D., & Samidha, D. (2013). Random Image Steganography in Spatial Domain. *IEEE*, *International Conference*. pp. 1-3. Vol. 12. No. 34.
- [3] Acharya, U. D, Hemalatha, S, & Renuka, A. (2015). Wavelet Transform Based Steganography Technique to Hide Audio Signals in Image. *Procedia Computer Science*, pp. 272-281. Vol. 47. No. 4.
- [4] Acharya, U. D, Hemalatha, S, Renuka, A & Kamath, P. R. (2013). A Secure Color Image Steganography in Transform Domain. *International Journal on Cryptography and Information Security (IJCIS)*, pp. 1304-3313. Vol. 3. No. 1.
- [5] Cheng, S. C., & Wu, T. L. (2005). Sub Pixel Edge Detection of Color Images by Principal Axis Analysis and Moment-Preserving Principle. *Pattern Recognition*, pp. 527-537. Vol. 38. No. 4.
- [6] Chang, C. C., Tai, W. L., & Lin, C. C. (2006). A Reversible Data Hiding Scheme Based on Side Match Vector Quantization. *IEEE Transactions on Circuits and Systems for Video Technology*, pp.1301-1308. Vol. 16. No.10.
- [7] Chang, C. C., Chen, T. S., & Chung, L. Z. (2002). A Steganographic Method

Based upon JPEG and Quantization Table Modification. *Information Sciences*, pp. 123-138. Vol. 141. No. 1.

- [8] Chen, B., Zhang, W., Ma, K., & Yu, N. (2014). Recursive Code Construction for Reversible Data Hiding in DCT Domain. *Multimedia Tools and Applications*, pp. 1985-2009. Vol. 72. No. 2.
- [9] Chang, C. C., Hsiao, J. Y., & Chan, C. S. (2003). Finding Optimal Least-Significant-Bit Substitution in Image Hiding by Dynamic Programming Strategy. *Pattern Recognition*, pp. 1583-1595. Vol. 36. No.7.
- [10] Chan, C. K., & Cheng, L. M. (2004). Hiding Data in Images by Simple LSB Substitution. *Pattern recognition*, pp. 469-474. Vol. 37. No.3.
- [11] Cheddad, A., Condell, J., Curran, K., & Kevitt, P. M. (2010). Digital Image Steganography: Survey and Analysis of Current Methods. *Signal Processing*, pp. 727-752. Vol. 90. No.3.
- [12] Chen, W. Y. (2007). Color Image Steganography Scheme Using Set Partitioning in Hierarchical Trees Coding, Digital Fourier Transform and Adaptive Phase Modulation. *Applied Mathematics and Computation*, pp. 432-448. Vol 185. No.
 1.
- [13] El-Kilani, W. S, Haweel, R. T., & Ramadan, H. H. (2014). A Fast Modified Signed Discrete Cosine Transform for Image Compression. *IEEE, International Conference on Computer Engineering & Systems (ICCES)*, pp. 56-61. Vol. 9.

- [14] Gupta, N., & Sharma, N. (2013). Hiding Image in Audio Using DWT and LSB.*International Journal of Computer Applications*, pp. 11-14. Vol. 81. No. 2.
- [15] Garg, S., & Mathur, M. (2014). Chaotic Map Based Steganography of Gray scale Images in Wavelet Domain. *IEEE, In Signal Processing and Integrated Networks (SPIN)*, pp. 689-694. Vol. 10. No. 7.
- [16] Hegde, R &Jagadeesha, S. (2015). Design and Implementation of Image Steganography by Using LSB Replacement Algorithm and Pseudo Random Encoding Technique. *International Journal on Recent and Innovation Trends in Computing and Communication*, pp. 4415 – 4420. Vol. 3. No. 7.
- [17] Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2016). A Data Hiding Scheme Using Parity-Bit Pixel Value Differencing and Improved Rightmost Digit Replacement. *Signal Processing: Image Communication*, pp. 44-57. Vol. 50. No. 12.
- [18] Jheng, Y. Z., Chen, C. Y., & Huang, C. F. (2015) Reversible Data Hiding Based on Histogram Modification over Ternary Computers. *Journal of Information Hiding and Multimedia Signal Processing*, pp .938-955. Vol. 6. No. 4.
- [19] Kiruba, K., &Karthikeyan, S. (2013). Reliable Detection of Adaptive Pixel Pair Matching in Color and Grayscale Images. *IEEE, International Conferenceon Information Communication and Embedded Systems (ICICES).* pp. 943-946.

Vol. 5. No. 9.

- [20] Kinoshita, S. (2013). Bionanophotonics: an Introductory Textbook. CRC Press.
- [21] Lavania, S., Matey, P. S., & Thanikaiselvan, V. (2014). Real-Time Implementation of Steganography in Medical Images Using Integer Wavelet Transform. *IEEE, International Conference on Computational Intelligence and Computing Research (ICCIC)*, pp. 1-5. Vol. 102. No. 77.
- [22] Maji, A. K., Pal, R. K., & Roy, S. (2014). A Novel Steganographic Scheme Using Sudoku. *IEEE, International Conference on Electrical Information and Communication Technology (EICT)*, pp. 1-6. Vol. 14. No. 28.
- [23] RGB color model. (2017, January 12).Retrieved from https://en.wikipedia.org/wiki/RGB_color_model.
- [24] Singh, A., & Singh, H. (2015). An Improved LSB Based Image Steganography Technique for RGB Images. *IEEE, International Conference on Electrical, Computer and Communication Technologies (ICECCT),* pp. 1-4. Vol. 16. No. 20.
- [25] Taur, J. S., Lin, H. Y., Lee, H. L., & Tao, C. W. (2012). Data Hiding in DNA Sequences Based on Table Lookup Substitution. *International Journal of Innovative Computing, Information and Control*, pp. 6585-6598. Vol. 8. No. 10.
- [26] Wang, S. J. (2005). Steganography of Capacity Required Using Modulo

Operator for Embedding Secret Image. *Applied Mathematics and Computation*, pp. 99-116. Vol. 164. No. 11.

- [27] Wang, R. Z., Lin, C. F., & Lin, J. C. (2001). Image Hiding by Optimal LSB Substitution and Genetic Algorithm. *Pattern recognition*, pp. 671-683. Vol. 34. No. 3.
- [28] Xu, W. L., Chang, C. C., Chen, T. S., & Wang, L. M. (2016). An Improved Least-Significant-Bit Substitution Method Using the Modulo Three Strategy. *Displays*, pp.36-42. Vol. 42. No. 17.
- [29] Yu, Y. H., Chang, C. C., & Lin, I. C. (2007). A New Steganographic Method for Color and Grayscale Image Hiding. *Computer Vision and Image Understanding*, pp.183-194. Vol. 107. No. 3.
- [30] Zhang, T., & Ping, X. (2003). A New Approach to Reliable Detection of LSB Steganography in Natural Images. *Signal Processing*, pp.2085-2093. Vol 83. No.10.

APPENDICES

Appendix A: ATD Algorithm for Gray Scale Images

Figure A.1. Cover Images Used in Gray Scale Images

A.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017 for ATD algorithm in gray scale [7] and its functions

- $1. \ clc$
- 2. clear

3. cover_image=imread('C:\Users\hajer\Desktop\thesis\GRAY SCALE\ATD for

text\home.gif');%Read cover image

- 4. [M N L]=size(cover_image);
- 5. S=sum(cover_image(:,:));
- 6. avg=sum(S)/(M*N);% calculate the mean of cover image
- 7. start_length =494288; % start length of secreat message
- 8. disp('==

==')

9. disp('cover_image PSNR Actual_PSNR MSNR MSE size_secret_data Bpp')

10. disp(' dB dB db ')

11. p='home.gif';

12. disp('========')

13. for h=1:11

14. increase_size=30000;

15. start_length=start_length+increase_size;

16. secret_massege= randi([0 1],1,start_length);% generate the secreat message

17. ternary_number=convertto_ternary(secret_massege);% convert the secreat message to ternary

18. [q size_secret_massege]=size(ternary_number);

19. stego_image=Embbedding(cover_image,size_secret_massege,ternary_number);%embedding function

20. MSE=0;

21. for i=1:M

22. for j=1:N

23. MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; %calculate the MSE

24. end

25. end

26. MSE=MSE/(M*N);

27. PSNR=10*log10(255^2/(MSE));% calculate the PSNR

28. max_value=max(max(cover_image(:,:)));% calculate the maximum actual value

29. MSNR=10*log10(avg*avg/MSE);%calculate the MSNR

30. Bpp=(start_length)/(M*N);% calculate the BPP

31. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

32. disp(sprintf('%s %f %f %f %f %d%2f,p,PSNR, Actual_PSNR,MSNR,MSE,start_length,Bpp));

33. end

34. disp('======')

35. % show the cover image and stego image

36. figure

37. subplot(2,2,[1,3]);

38. imshow(cover_image);

39. title('Cover image')

40. subplot(2,2,[2,4]);

41. imshow(stego_image);

42. title('Stego image')

43. output = extraction(stego_image,size_secret_massege);%extraction function

A.2 Convert the secret message to the ternary

- 1. function [output] = convertto__ternary(a)
- 2. [e r]=size(a);
- 3. k=1;
- 4. kk=1;
- 5. b_s=64;
- 6. w=mod(r,b_s);
- 7. if (w==0)
- 8. n=r/b_s;
- 9. else
- 10. n=(r-w)/b_s;
- 11. n=n+1;
- 12. end
- 13. for i=1:n
- 14. if $(k+b_s-1) >= r$
- 15. $q=(k+b_s-1)-r;$
- 16. **for** m=1:q
- 17. block(m)=0;
- 18. end
- 19. for $m=q+1:b_s$
- 20. block(m)=a(k);
- 21. k=k+1;
- 22. end
- 23. else
- 24. for $m=1:b_s$
- 25. block(m)=a(k);
- 26. k=k+1;
- 27. end
- $28. \ \text{end}$
- 29. aa=convert_binary_decmal(block);
- 30. ternary=convert_decmal_ternary(aa);
- 31. [o p]=size(ternary);
- 32. **for** j=1:p
- 33. output(kk)=ternary(j);
- 34. kk=kk+1;
- 35. end
- 36. end

37. end

A.2.1 Convert the binary block to the decimal

- 1. function [output] = convert_binary_decmal(a)
- 2. [q k]=size(a);
- 3. k=k-1;
- 4. output=0;
- 5. for i=1:k+1
- 6. output=output+a(i)*power(2,k);
- 7. k=k-1;
- 8. end
- 9. end

A.2.2 Convert the decimal to the ternary

- 1. function [output] = convert_decmal_ternary(input)
- 2. kk=1;
- 3. k=1;
- 4. while (input~=0)
- 5. output1(kk)=mod(input,3);
- 6. input=fix(input/3);
- 7. kk=kk+1;
- 8. end
- 9. ss=41-(kk-1);
- 10. if (ss~=0)
- 11. for i=1:ss
- 12. output(i)=0;
- 13. end
- 14. for m=ss+1:41
- 15. output(m)=output1(k);
- 16. k=k+1;
- 17. end
- 18. else
- **19. for** m=1:41
- 20. output(m)=output1(k);
- 21. k=k+1;
- 22. end
- 23. end
- 24. end

A.3 Embedding function

1. function [stego_image] = Embbedding(cover_image,size_secret_massege, ternary_number)

- 2. stego_image=cover_image;
- 3. k=1;
- 4. [M N]=size(cover_image);
- 5. for i=1:M
- 6. for j=1:N
- 7. cover_pixel_binary = dec2bin(cover_image(i,j),8);
- 8. for ii=1:6
- 9. sub1(ii)=cover_pixel_binary(ii);

10. end

- 11. sub1_dec=bin2dec(sub1);
- 12. sub2=cover_pixel_binary(7:8);
- 13. sub2_dec=bin2dec(sub2);
- 14. if (sub1_dec==63)
- 15. sub1_dec=62;
- 16. end
- 17. if (sub1_dec==0)
- 18. sub1_dec=1;
- 19. end
- 20. if (sub2_dec==3)
- 21. sub2_dec=2;
- 22. end
- 23. if (sub2_dec==0)
- 24. sub2_dec=1;
- 25. end
- 26. if(k<=size_secret_massege)
- 27. if (mod(sub1_dec,3)==ternary_number(k))
- 28. sub1_stego=sub1_dec;
- 29. elseif(mod(sub1_dec+1,3)==ternary_number(k))
- 30. sub1_stego=sub1_dec+1;
- 31. else
- 32. sub1_stego=sub1_dec-1;
- 33. end
- 34. end
- 35. k=k+1;

- 36. if(k<=size_secret_massege)
- 37. v=sub1_stego*4+sub2_dec;
- 38. if (mod(v,3)==ternary_number(k))
- 39. stego_image(i,j)=v;
- 40. $elseif(mod(v+1,3) = ternary_number(k))$
- 41. stego_image(i,j)=v+1;
- 42. else
- 43. stego_image(i,j)=v-1;
- 44. end
- 45. k=k+1;
- 46. end
- 47. end
- 48. end
- 49. end

A.4 Extraction function

- 1. function [output] = extraction(stego_image)
- 2. k=1;
- 3. q=1;
- 4. for i=1:512
- 5. for j=1:512
- 6. if (q<=size_secret_image)
- 7. cover_pixel_binary = dec2bin(stego_image(i,j),8);
- 8. sub1=cover_pixel_binary(1:6);
- 9. sub1_dec=bin2dec(sub1);
- 10. sub2=cover_pixel_binary(7:8);
- 11. sub2_dec=bin2dec(sub2);
- 12. output1(k)=mod(sub1_dec,3);
- 13. k=k+1;
- 14. output1(k)=mod(stego_image(i,j),3);
- 15. k=k+1;
- 16. q=q+1;
- 17. else
- 18. continue
- 19. end
- 20. end
- 21. end

- 22. [e r]=size(output1);
- 23. k=1;
- 24. b_s=41;
- 25. w=mod(r,b_s);
- 26. if (w==0)
- 27. n=r/b_s;
- 28. else
- 29. $n=(r-w)/b_s;$
- 30. n=n+1;
- 31. end
- 32. **for** i=1:n
- 33. if (k+b_s-1)>=r
- 34. $q=(k+b_s-1)-r;$
- 35. **for** m=1:q
- 36. block(m)=0;
- 37. end
- 38. for $m=q+1:b_s$
- 39. block(m)=output1(k);
- 40. k=k+1;
- 41. end
- 42. else
- 43. for $m=1:b_s$
- 44. block(m)=output1(k);
- 45. k=k+1;
- 46. end
- 47. end
- 48. aa=conver_ternary_decimal(block);
- 49. output=convert_decmal_binary(aa);
- 50. end
- 51. end

A.4.1 Convert_ternary to decimal function

- 1. function [output] = conver_ternary_decimal(a)
- 2. [q k]=size(a);
- 3. k=k-1;
- 4. output=0;
- 5. for i=1:k+1

- 6. output=output+a(i)*power(3,k);
- 7. k=k-1;
- 8. end
- 9. end

A.4.2 Convert decimal to binary function

- 1. function [output] = convert_decmal_binary(input)
- 2. kk=1;
- 3. k=1;
- 4. while (input~=0)
- 5. output1(kk)=mod(input,2);
- 6. input=fix(input/2);
- 7. kk=kk+1;
- 8. end
- 9. ss=64-(kk-1);
- 10. if (ss~=0)
- 11. for i=1:ss
- 12. output(i)=0;
- 13. end
- 14. for m=ss+1:64
- 15. output(m)=output1(k);
- 16. k=k+1;
- 17. end
- 18. else
- 19. for m=1:64
- 20. output(m)=output1(k);
- 21. k=k+1;
- 22. end
- 23. end
- $24. \ \text{end}$

A.5 Draw graph program

- 1. clc
- 2. clear
- 3. pos=[2 2.2 2.4 2.6 2.8 3 3.2];
- 4. PSNR_ATD=[39.32 38.86 38.44 38.04 37.87 37.69 37.41];
- 5. PSNR_T=[42.18 41.75 36.64 36.28 36.11 35.95 35.65];

- 6. PSNR_adapter_T=[43.21 41.76 40.04 39.03 38.55 38.05 35.60];
- 7. MSNR_ATD=[33.06 32.60 32.18 31.78 31.62 31.28 31.15];
- 8. MSNR_T=[35.93 35.49 30.38 30.02 29.85 29.69 29.39];
- 9. MSNR_adapter_T=[36.95 35.50 33.78 32.77 32.29 31.80 29.34];
- 10. A_PSNR_ATD=[39.34 38.86 38.44 38.06 37.87 37.70 37.40];
- 11. A_PSNR_T=[41.86 41.42 36.32 35.93 35.75 35.60 35.30];
- 12. A_PSNR_adapter_T=[42.85 41.43 39.69 38.69 38.21 37.70 35.28];
- 13. figure (1)
- 14. h1 = plot(pos,PSNR_ATD,'g','LineWidth',2,'Marker','*');
- 15. hold on
- 16. h2 = plot(pos,PSNR_T,'b','LineWidth',2,'Marker','*');
- 17. hold on
- 18. h3 = plot(pos,PSNR_adapter_T,'k','LineWidth',2,'Marker','*');
- 19. hold on
- 20. legend([h1,h2,h3],'PSNR ATD','PSNR T=160','PSNR adapter T','Location','southwest');
- 21. axis([1.95 3.3 30 45])
- 22. title('PSNR for Lean image')
- 23. ylabel('PSNR(dB)');
- 24. xlabel('BPP');
- 25. grid
- 26. figure (2)
- 27. h3 = plot(pos,MSNR_ATD,'g','LineWidth',2,'Marker','*');
- $28. \ \text{hold on}$
- 29. h4 = plot(pos,MSNR_T,'b','LineWidth',2,'Marker','*');
- 30. hold on
- 31. h5 = plot(pos,MSNR_adapter_T,'k','LineWidth',2,'Marker','*');
- 32. hold on
- 33. legend([h3,h4,h5],'MSNR ATD','MSNR T=160','MSNR adapter T','Location','southwest');
- 34. title('MSNR for Lean image')
- 35. ylabel('MSNR(dB)');
- 36. xlabel('BPP');
- 37. axis([1.95 3.3 27 40])
- 38. grid on;
- 39. figure (3)
- 40. h1 = plot(pos,A_PSNR_ATD,'g','LineWidth',2,'Marker','*');
- 41. hold on

42. h2 = plot(pos,A_PSNR_T,'b','LineWidth',2,'Marker','*');

- 43. hold on
- 44. h3 = plot(pos,A_PSNR_adapter_T,'k','LineWidth',2,'Marker','*');
- 45. hold on
- 46. legend([h1,h2,h3],'APSNR ATD','APSNR T=160','APSNR adapter T', 'Location','southwest');
- 47. axis([1.95 3.3 30 45])
- 48. title('Actual PSNR for Lean image')
- 49. ylabel('APSNR(dB)');
- 50. xlabel('BPP');

51. grid on

A.6 Screenshots of ATD for gray scale images results for different cover images with size 512×512 Results for Lena image in Figure A.1

ver_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
lena.BMP	39.341881	38.994399	33.082488	7.566452	524288	2.000000
lena.BMP	39.093979	38.746497	32.834586	8.010921	554288	2.114441
lena.BMP	38.863923	38.516441	32.604530	8.446720	584288	2.228882
lena.BMP	38.662911	38.315429	32.403518	8.846863	614288	2.343323
lena.BMP	38.435312	38.087830	32.175919	9.322861	644288	2.457764
lena.BMP	38.245145	37.897663	31.985753	9.740154	674288	2.572205
lena.BMP	38.055621	37.708139	31.796228	10.174622	704288	2.686646
lena.BMP	37.874323	37.526841	31.614930	10.608356	734288	2.801086
lena.BMP	37.695110	37.347628	31.435717	11.055271	764288	2.915527
lena.BMP	37.531930	37.184449	31.272538	11.478558	794288	3.029968
lena.BMP	37.396861	37.049379	31.137469	11.841160	824288	3.144409

Results for Zelda image in Figure A.1

/er_image	PSNR dB	Actual_PSNR dB	MSNR. db	MSE	size_secret_data	Bpp
zelda.BMP	39.337935	38.403841	32.097491	7.573330	524288	2.000000
zelda.BMP	39.099848	38.165754	31.859404	8.000103	554288	2.114441
zelda.BMP	38.864833	37.930739	31.624389	8.444950	584288	2.228882
zelda.BMP	38.628794	37.694700	31.388351	8.916634	614288	2.343323
zelda.BMP	38.431969	37.497875	31.191525	9.330040	644288	2.457764
zelda.BMP	38.242105	37.308011	31.001661	9.746975	674288	2.572205
zelda.BMP	38.060954	37.126860	30.820510	10.162136	704288	2.686646
zelda.BMP	37.853653	36.919559	30.613209	10.658966	734288	2.801086
zelda.BMP	37.697112	36.763018	30.456668	11.050175	764288	2.915527
zelda.BMP	37.518664	36.584570	30.278220	11.513676	794288	3.029968
zelda.BMP	37.396839	36.462745	30.156395	11.841221	824288	3.144409

Results for Airplane image in Figure A.1

over_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
airplane.BMP	39.329231	38.470667	36.264165	7.588524	524288	2.000000
airplane.BMP	39.098864	38.240300	36.033798	8.001915	554288	2.114441
airplane.BMP	38.871755	38.013191	35.806690	8.431499	584288	2.228882
airplane.BMP	38.654412	37.795848	35.589346	8.864193	614288	2.343323
airplane.BMP	38.448387	37.589823	35.383321	9.294834	644288	2.457764
airplane.BMP	38.238610	37.380046	35.173544	9.754822	674288	2.572205
airplane.BMP	38.054823	37.196259	34.989757	10.176491	704288	2.686646
airplane.BMP	37.852156	36.993592	34.787090	10.662640	734288	2.801086
airplane.BMP	37.686961	36.828397	34.621895	11.076035	764288	2.915527
airplane.BMP	37.528986	36.670422	34.463920	11.486343	794288	3.029968
airplane.BMP	37.393042	36.534478	34.327976	11.851578	824288	3.144409

Results for Baboon image in Figure A.1

ver_image	PSNR	Actual_PSNR	MSNR	MSE	size_secret_data	Bpp
dB	dB	db				
Baboon.BMP	39.326553	38.727288	33.417389	7.593204	524288	2.000000
Baboon.BMP	39.072292	38.473027	33.163128	8.051025	554288	2.114441
Baboon.BMP	38.865209	38.265945	32.956046	8.444218	584288	2.228882
Baboon.BMP	38.644590	38.045326	32.735426	8.884262	614288	2.343323
Baboon.BMP	38.449114	37.849850	32.539951	9.293278	644288	2.457764
Baboon.BMP	38.251733	37.652468	32.342569	9.725391	674288	2.572205
Baboon.BMP	38.039026	37.439762	32.129863	10.213573	704288	2.686646
Baboon.BMP	37.871320	37.272056	31.962157	10.615692	734288	2.801086
Baboon.BMP	37.682522	37.083258	31.773358	11.087360	764288	2.915527
Baboon.BMP	37.535643	36.936378	31.626479	11.468750	794288	3.029968
Baboon.BMP	37.400327	36.801062	31.491163	11.831715	824288	3.144409

Results for Barbara image in Figure A.1

over_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
barbara.bmp	39.333619	39.161615	33.250531	7.580860	524288	2.000000
barbara.bmp	39.095762	38.923758	33.012674	8.007633	554288	2.114441
barbara.bmp	38.868607	38.696603	32.785519	8.437614	584288	2.228882
barbara.bmp	38.648457	38.476454	32.565370	8.876354	614288	2.343323
barbara.bmp	38.435383	38.263379	32.352295	9.322708	644288	2.457764
barbara.bmp	38.230151	38.058147	32.147063	9.773842	674288	2.572205
barbara.bmp	38.051762	37.879759	31.968674	10.183666	704288	2.68664
barbara.bmp	37.865821	37.693818	31.782734	10.629143	734288	2.80108
barbara.bmp	37.693234	37.521230	31.610146	11.060047	764288	2.91552
barbara.bmp	37.533033	37.361030	31.449946	11.475643	794288	3.02990
barbara.bmp	37.422892	37.250889	31.339805	11.770397	824288	3.1444

Results for Elain image in Figure A.1

ver_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
elain.BMP	39.341942	39.135125	33,904541	7.566345	524288	2.000000
elain.BMP	39.087558	38.880741	33.650157	8.022774	554288	2.114441
elain.BMP	38.870292	38.663475	33.432890	8.434341	584288	2.228882
elain.BMP	38.637765	38.430948	33.200363	8.898235	614288	2.343323
elain.BMP	38.427322	38.220506	32.989921	9.340027	644288	2.457764
elain.BMP	38.250305	38.043489	32.812904	9.728588	674288	2.572205
elain.BMP	38.053759	37.846942	32.616357	10.178986	704288	2.686646
elain.BMP	37.882564	37.675747	32.445162	10.588245	734288	2.801086
elain.BMP	37.703250	37.496433	32.265848	11.034569	764288	2.915527
elain.BMP	37.523998	37.317181	32.086597	11.499542	794288	3.029968
elain.BMP	37.384919	37.178103	31.947518	11.873764	824288	3.144409

Results for Goldhill image in Figure A.1

over_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
goldhill.BMP	39.342923	38.670360	32.181755	7.564636	524288	2.000000
goldhill.BMP	39.100264	38.427701	31.939095	7.999336	554288	2.114441
goldhill.BMP	38.858217	38.185653	31.697048	8.457825	584288	2.228882
goldhill.BMP	38.644797	37.972233	31.483628	8.883839	614288	2.343323
goldhill.BMP	38.443864	37.771300	31.282695	9.304520	644288	2.457764
goldhill.BMP	38.238009	37.565445	31.076840	9.756172	674288	2.572205
goldhill.BMP	38.038970	37.366406	30.877801	10.213707	704288	2.68664
goldhill.BMP	37.876530	37.203966	30.715361	10.602966	734288	2.80108
goldhill.BMP	37.689127	37.016563	30.527958	11.070511	764288	2.91552
goldhill.BMP	37.533489	36.860926	30.372321	11.474438	794288	3.02996
goldhill.BMP	37.391731	36.719167	30.230562	11.855156	824288	3.14440

Results for Peppers image in Figure A.1

over_image	PSNR	Actual_PSNR	MSNR	MSE	<pre>size_secret_data</pre>	Bpp
	dB	dB	db			
peppers.BMP	39.318747	38.609300	32.793501	7.606865	524288	2.000000
peppers.BMP	39.089925	38.380479	32.564680	8.018402	554288	2.114441
peppers.BMP	38.861487	38.152041	32.336242	8.451458	584288	2.228882
peppers.BMP	38.639752	37.930305	32.114506	8.894165	614288	2.343323
peppers.BMP	38.426159	37.716713	31.900913	9.342529	644288	2.457764
peppers.BMP	38.235772	37.526325	31.710526	9.761200	674288	2.572205
peppers.BMP	38.043687	37.334241	31.518442	10.202618	704288	2.686646
peppers.BMP	37.855876	37.146430	31.330631	10.653511	734288	2.801086
peppers.BMP	37.688403	36.978956	31.163157	11.072357	764288	2.915527
peppers.BMP	37.530633	36.821187	31.005388	11.481987	794288	3.029968
peppers.BMP	37.403005	36.693558	30.877759	11.824421	824288	3.144409

Results for Lady image in Figure A.1

ver_image	PSNR	Actual_PSNR	MSNR	MSE	size_secret_data	Bpp
dB	dB	dB	db			
lady.tif	39.292160	38.656323	32.618740	7.653576	524288	2.000000
lady.tif	39.072905	38.437068	32.399485	8.049889	554288	2.114441
lady.tif	38.839293	38.203456	32.165874	8.494759	584288	2.228882
lady.tif	38.620642	37.984805	31.947222	8.933388	614288	2.343323
lady.tif	38.404545	37.768708	31.731125	9.389141	644288	2.457764
lady.tif	38.209611	37.573775	31.536192	9.820175	674288	2.572205
lady.tif	38.012706	37.376869	31.339286	10.275661	704288	2.686646
lady.tif	37.832198	37.196361	31.158778	10.711754	734288	2.801086
lady.tif	37.665889	37.030052	30.992469	11.129906	764288	2.915527
lady.tif	37.494818	36.858981	30.821398	11.577068	794288	3.029968
lady.tif	37.368823	36.732986	30.695403	11.917854	824288	3.144409

Results for House image in Figure A.1

over_image	dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
house.tif	39.303155	39.234761	32.832395	7.634224	524288	2.000000
house.tif	39.094649	39.026256	32.623890	8.009686	554288	2.114441
house.tif	38.856875	38.788482	32.386116	8.460438	584288	2.228882
house.tif	38.631489	38.563096	32.160730	8.911102	614288	2.343323
house.tif	38.414849	38.346456	31.944090	9.366890	644288	2.457764
house.tif	38.218322	38.149929	31.747563	9.800499	674288	2.572205
house.tif	38.017209	37.948816	31.546450	10.265011	704288	2.68664
house.tif	37.849750	37.781357	31.378991	10.668549	734288	2.80108
house.tif	37.687390	37.618997	31.216631	11.074940	764288	2.91552
house.tif	37.514217	37.445824	31.043458	11.525471	794288	3.02996
house.tif	37.390053	37.321660	30,919294	11.859737	824288	3.14440

Results for Home image in Figure A.1

over_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
home.gif	39.252201	39.149409	27.894122	7.724319	524288	2.000000
home.gif	38.940786	38.837993	27.582707	8.298542	554288	2.114441
home.gif	38.701533	38.598740	27.343454	8.768536	584288	2.228882
home.gif	38.469623	38.366830	27.111544	9.249496	614288	2.343323
home.gif	38.269625	38.166833	26.911547	9.685406	644288	2.457764
home.gif	38.047403	37.944610	26.689324	10.193893	674288	2.57220
home.gif	37.811679	37.708887	26.453600	10.762482	704288	2.68664
home.gif	37.591511	37.488718	26.233432	11.322159	734288	2.80108
home.gif	37.408363	37.305570	26.050284	11.809841	764288	2.91552
home.gif	37.261233	37.158440	25.903154	12.216789	794288	3.02996
home.gif	37.119336	37.016543	25.761257	12.622540	824288	3.14440

Results for Camerman image in Figure A.1

cover_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
camerman.tif	39.330827	39.330827	32.660746	7.585735	524288	2.000000
camerman.tif	39.085099	39.085099	32.415019	8.027317	554288	2.114441
camerman.tif	38.854452	38.854452	32.184371	8.465160	584288	2.228882
camerman.tif	38.631104	38.631104	31.961024	8.911892	614288	2.343323
camerman.tif	38.444119	38.444119	31.774038	9.303974	644288	2.457764
camerman.tif	38.247682	38.247682	31.577601	9.734467	674288	2.572205
camerman.tif	38.046189	38.046189	31.376108	10.196743	704288	2.686646
camerman.tif	37.863604	37.863604	31.193523	10.634571	734288	2.801086
camerman.tif	37.700131	37.700131	31.030051	11.042496	764288	2.915527
camerman.tif	37.514888	37.514888	30.844808	11.523689	794288	3.029968
camerman.tif	37.405411	37.405411	30.735330	11.817871	824288	3.144409

Results for Boy image in Figure A.1

over_image	PSNR	Actual_PSNR	MSNR	MSE	size_secret_data	Bpp
	dB	dB	db			
BOY.tif	39.325992	39.325992	31.506344	7.594185	524288	2.000000
BOY.tif	39.079071	39.079071	31.259423	8.038467	554288	2.114441
BOY.tif	38.869261	38.869261	31.049613	8.436344	584288	2.228882
BOY.tif	38.643311	38.643311	30.823663	8.886879	614288	2.343323
BOY.tif	38.424377	38.424377	30.604729	9.346363	644288	2.457764
BOY.tif	38.235546	38.235546	30.415898	9.761707	674288	2.572205
BOY.tif	38.049001	38.049001	30.229353	10.190144	704288	2.686646
BOY.tif	37.858396	37.858396	30.038748	10.647331	734288	2.801086
BOY.tif	37.681897	37.681897	29.862250	11.088955	764288	2.915527
BOY.tif	37.509734	37.509734	29.690087	11.537373	794288	3.029968
BOY.tif	37.389279	37.389279	29.569631	11.861851	824288	3.144409

>> |

Results for Boat image in Figure A.1

over_image:	PSNR dB	Actual_PSNR dB	MSNR	MSE	size_secret_data	Bpp
boat.gif	39.332039	38.769193	33.880109	7.583618	524288	2.000000
boat.gif	39.088399	38.525553	33.636468	8.021221	554288	2.114441
boat.gif	38.856862	38.294016	33.404931	8.460464	584288	2.228882
boat.gif	38.645383	38.082537	33.193452	8.882641	614288	2.343323
boat.gif	38.438958	37.876112	32.987027	9.315037	644288	2.457764
boat.gif	38.235873	37.673028	32.783943	9.760971	674288	2.572205
boat.gif	38.043126	37.480280	32.591195	10.203938	704288	2.68664
boat.gif	37.875824	37.312978	32.423893	10.604691	734288	2.80108
boat.gif	37.688584	37.125738	32.236653	11.071896	764288	2.91552
boat.gif	37.522932	36.960087	32.071002	11.502365	794288	3.02996
boat.gif	37.397419	36.834574	31.945489	11.839638	824288	3.14440

Results for Baby image in Figure A.1

over_image	PSNR dB	Actual_PSNR dB	MSNR db	MSE	size_secret_data	Bpp
BABY.png	39.251485	39.148692	34.773021	7.725594	524288	2.000000
BABY.png	39.016886	38.914093	34.538422	8.154396	554288	2.114441
BABY.png	38.786774	38.683981	34.308310	8.598110	584288	2.228882
BABY.png	38.580066	38.477273	34.101602	9.017242	614288	2.343323
BABY.png	38.367881	38.265088	33.889417	9.468742	644288	2.457764
BABY.png	38.180176	38.077383	33.701712	9.886959	674288	2.572205
BABY.png	37.989785	37.886992	33.511321	10.330036	704288	2.68664
BABY.png	37.818354	37.715562	33.339890	10.745953	734288	2.80108
BABY.png	37.634706	37.531914	33.156242	11.210106	764288	2.91552
BABY.png	37.463726	37.360933	32.985262	11.660248	794288	3.02996
BABY.png	37.345623	37.242830	32.867159	11.981689	824288	3.14440

Appendix B: LSB with Constant Threshold Algorithm for Gray Scale (LSBCT)

B.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017 for LSB with Constant threshold algorithm in gray scale [8] and its functions

- 1. clc
- 2. clear

3. cover_image=imread('C:\Users\hajer\Desktop\thesis\GRAY SCALE\MA for

text\home.gif');%Read cover image

- 4. [M N L]=size(cover_image);
- 5. S=sum(cover_image(:,:));
- 6. avg=sum(S)/(M*N);% calculate the mean of cover image

8. disp('cover_image Size_secret_data PSNR Actual_PSNR MSNR MSE MI Mu T ')

9. disp(' dB dB db ')

10. p='home.gif';

- 11. disp('==========')
- 12. ml=4;
- 13. mu=8;
- 14. T=160;
- 15. start_length =494288; % start length of secreat message
- 16. increase_size=30000;
- 17. **for** q=1:2
- 18. start_length=start_length+increase_size;
- 19. secret_massege= randi([0 1],1,start_length);% generate the secreat message
- 20. [e r]=size(secret_massege);

21. stego_image=Embedding(ml,mu,T,cover_image,secret_massege); %embedding function

- 22. MSE=0;
- 23. for i=1:M
- 24. for j=1:N

 $MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^{2};\ \% \ calculate \ the \ MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^{2};\ \% \ calculate \ the \ MSE=MSE+(double(cover_image(i,j)))^{2};\ \% \ calculate \ the \ MSE+(double(cover_image(i,j)))^{2};\ \% \ calculate \ calculate \ the \ MSE+(double(cover_image(i,j)))^{2};\ \% \ the \ mSE+(double(cover_image(i,j)))^{2};\ \% \ the \ the \ mSE+(double(cover_image(i,j)))^{2};\ \% \ the \ mSE+(double(cover_image(i,j)))^{2};\ \ the \ the$

25. end

26. end

- 27. MSE=MSE/(M*N);
- 28. PSNR=10*log10(255^2/(MSE));% calculate the PSNR
- 29. max_value=max(max(cover_image(:,:)));% calculate the maximum actual value

30. MSNR=10*log10(avg*avg/MSE);% calculate the MSNR

31. Bpp=(start_length)/(M*N);%calculate the BPP

- 32. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR
- 33. disp(sprintf('%s %d %f %f %f %f %f%d %d %d',p,start_length,PSNR,

Actual_PSNR,MSNR,MSE,ml,mu,T));

- 34. end
- 35. ml=8;
- 36. mu=16;
- 37. for q=1:5
- 38. start_length=start_length+increase_size;
- **39.** secret_massege= randi([0 1],1,start_length);% generate the secreat message
- 40. [e r]=size(secret_massege);

41. stego_image=Embedding(ml,mu,T,cover_image,secret_massege); %embedding function

- 42. MSE=0;
- 43. for i=1:M
- 44. for j=1:N

MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; % calculate the MSE

- 45. end
- 46. end
- 47. MSE=MSE/(M*N);

48. PSNR=10*log10(255^2/(MSE));% calculate the PSNR

49. max_value=max(max(cover_image(:,:)));% calculate the maximum actual value

50. MSNR=10*log10(avg*avg/MSE);% calculate the MSNR

51. Bpp=(start_length)/(M*N);%calculate the BPP

52. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

53. disp(sprintf('%s %d %f %f %f %f %f%d %d %d',p,start_length,PSNR,

Actual_PSNR,MSNR,MSE,ml,mu,T));

54. end

55. disp('======')

- 56. % show the cover image and stego image
- 57. figure
- 58. subplot(2,2,[1,3]);
- 59. imshow(cover_image);
- 60. title('Cover image')
- 61. subplot(2,2,[2,4]);
- 62. imshow(stego_image);
- 63. title('Stego image')

64. output = extraction(stego_image,T,mu,ml);% extraction function

B.2 Embedding function

- 1. function [stego_image] = Embedding(ml,mu,T,cover_image,secret_massege)
- 2. [e r]=size(secret_massege);
- 3. [M N L]=size(cover_image);
- 4. stego_image=cover_image;
- 5. m=0;
- 6. mm=0;
- 7. k=1;
- 8. for i=1:M
- 9. for j=1:N
- 1. if (k<=r)
- 2. if (cover_image(i,j)>=T)
- 3. m=m+1;
- 4. EC=log2(mu); %how many bit will be embedding in the pixel
- 5. RES=mod(cover_image(i,j),mu);
- 6. if (k+EC-1) > = r
- 7. q=(k+EC-1)-r;
- 8. s=secret_massege(k:k+EC-1-q);
- 9. k=k+EC;
- 10. else
- 11. s=secret_massege(k:k+EC-1);
- 12. k=k+EC;
- 13. end
- 14. a = num2str(s);
- 15. DEC= bin2dec(a);
- 16. D=abs(RES-DEC);
- 17. if (cover_image(i,j)>(255-(mu/2)+1))
- 18. stego_image(i,j)=(255-mu+1)+DEC;
- 19. end
- 20. if((T+(mu/2))<cover_image(i,j)<=(255-(mu/2)+1))
- 21. if (D>(mu/2))
- 22. AV=mu-D;
- 23. if (RES>DEC)
- 24. stego_image(i,j)=cover_image(i,j)+AV;
- 25. else

- 26. stego_image(i,j)=cover_image(i,j)-AV;
- 27. end
- 28. end
- 29. if(D<=(mu/2))
- 30. AV=D;
- 31. if (RES>DEC)
- 32. stego_image(i,j)=cover_image(i,j)-AV;
- 33. else
- 34. stego_image(i,j)=cover_image(i,j)+AV;
- 35. end
- 36. end
- 37. end
- 38. if(T<=cover_image(i,j)<=(T+(mu/2)))
- 39. stego_image(i,j)=cover_image(i,j)-RES+DEC;
- 40. end
- 41. end
- 42. if (cover_image(i,j)<T)
- 43. mm=mm+1;
- 44. EC=log2(ml);
- 45. RES=mod(cover_image(i,j),ml);
- 46. if (k+EC-1)>=r
- 47. q=(k+EC-1)-r;
- 48. s=secret_massege(k:k+EC-1-q);
- 49. k=k+EC;
- 50. else
- 51. s=secret_massege(k:k+EC-1);
- 52. k=k+EC;
- 53. end
- 54. a = num2str(s);
- 55. DEC= bin2dec(a);
- 56. D=abs(RES-DEC);
- 57. if (cover_image(i,j)<(ml/2))
- 58. stego_image(i,j)=DEC;
- 59. end
- 60. if((ml/2)<=cover_image(i,j)<(T-(ml/2)))
- 61. if (D>(ml/2))

- 62. AV=ml-D;
- 63. if (RES>DEC)
- 64. stego_image(i,j)=cover_image(i,j)+AV;
- 65. else
- 66. stego_image(i,j)=cover_image(i,j)-AV;
- 67. end
- 68. end
- 69. if(D<=(ml/2))
- 70. AV=D;
- 71. if (RES>DEC)
- 72. stego_image(i,j)=cover_image(i,j)-AV;
- 73. else
- 74. stego_image(i,j)=cover_image(i,j)+AV;
- 75. end
- 76. end
- 77. end
- 78. if((T-(ml/2))<=cover_image(i,j)<T)
- 79. stego_image(i,j)=cover_image(i,j)-RES+DEC;
- 80. end
- 81. end
- 82. end
- 10. end
- 11. end
- 12. end

B.3 Extraction function

- 1. function [output] = extraction(stego_image,T,mu,ml)
- 2. [M N]=size(stego_image);
- 3. kk=1;
- 4. k=1;
- 5. **for** i=1:M
- 6. **for** j=1:N
- 7. **if** (kk<=r)
- 8. if (stego_image(i,j)>=T)
- 9. EC=log2(mu);
- 10. RES=mod(stego_image(i,j),mu);
- 11. if (k+EC-1)>=r

- 12. q=(k+EC-1)-r;
- 13. s=dec2bin(RES,EC-q);
- 14. **for** g=1:EC-q
- 15. a=str2num(s(g));
- 16. output(kk)=a;
- 17. kk=kk+1;
- 18. end
- 19. else
- 20. s=dec2bin(RES,EC);
- 21. for g=1:EC
- 22. a=str2num(s(g));
- 23. output(kk)=a;
- 24. kk=kk+1;
- 25. end
- 26. k=k+EC;
- 27. end
- 28. else
- 29. EC=log2(ml);
- 30. RES=mod(stego_image(i,j),ml);
- 31. if (k+EC-1)>=r
- 32. q=(k+EC-1)-r;
- 33. s=dec2bin(RES,EC-q);
- 34. for g=1:EC-q
- 35. a=str2num(s(g));
- 36. output(kk)=a;
- 37. kk=kk+1;
- 38. end
- 39. else
- 40. s=dec2bin(RES,EC);
- 41. for g=1:EC
- 42. a=str2num(s(g));
- 43. output(kk)=a;
- 44. kk=kk+1;
- 45. end
- 46. k=k+EC;
- 47. end

48. end 49. end 50. end 51. end

- J1. chu
- 52. end

B.4 Screenshots of LSBCT Algorithm, T=160, for gray scale results for different

cover images with size 512×512

Results for Lena image in Figure A.1

over_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Ми	T
enaBMP.bnp	524288	42.203832	41.856350	35.944439	3.914688	4	8	160
enaBMP.bnp	584288	41.771417	41.423935	35.512024	4.324528	4	8	160
enaBMP.bnp	644288	36.664771	36.317289	30.405378	14.015327	8	16	160
lenaBMP.bnp	704288	36.279082	35.931600	30.019690	15.316944	8	16	160
enaBMP.bnp	734288	36.106057	35.758575	29.846664	15.939499	8	16	160
enaBMP.bnp	764288	35.947297	35.599815	29.687904	16.532963	8	16	160
enaBMP.bnp	824288	35.648520	35.301038	29.389127	17.710400	8	16	160

Results for Zelda image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
zelda.bmp	524288	42.939214	42.005120	35.698770	3.304905	4	8	160
zelda.bmp	584288	42.681026	41.746932	35.440582	3.507339	4	8	160
zelda.bmp	644288	37.428747	36.494653	30.188304	11.754539	8	16	160
zelda.bmp	704288	37.096911	36.162817	29.856467	12.687885	8	16	160
zelda.bmp	734288	36.964019	36.029925	29.723575	13.082130	8	16	160
zelda.bmp	764288	36.748948	35.814854	29.508504	13.746292	8	16	160
zelda.bmp	824288	36,441192	35,507098	29,200748	14.755745	8	16	160

Results for Airplane image in Figure A.1

cover_image	Size_secret_data	DSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
airplane.bmp	524288	40.217775	39.359211	37.152709	6.184475	4	8	160
airplane.bmp	584288	39.785172	38.926608	36.720106	6.832241	4	8	160
airplane.bmp	644288	34.543641	33.685077	31.478575	22.841061	8	16	16
airplane.bmp	704288	34.220821	33.362257	31.155755	24.603577	8	16	16
airplane.bmp	734288	34.060481	33.201917	30.995415	25.528912	8	16	16
airplane.bmp	764288	33.912036	33.053472	30.846970	26.416592	8	16	16
airplane.bmp	824288	33.587272	32.728707	30.522206	28.467754	8	16	16

Results for Baboon image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
Baboon.bmp	524288	41.955945	41.356681	36.046782	4.144630	4	8	160
Baboon.bmp	584288	41.486587	40.887323	35.577423	4.617657	4	8	160
Baboon.bmp	644288	36.553475	35.954210	30.644311	14.379139	8	16	160
Baboon.bmp	704288	36.170410	35.571146	30.261246	15.705051	8	16	160
Baboon.bmp	734288	35.985098	35.385834	30.075934	16.389683	8	16	160
Baboon.bmp	764288	35.784355	35.185090	29.875191	17.165043	8	16	160
Baboon.bmp	824288	35.431005	34.831741	29.521841	18.620007	8	16	160

Results for Barbara image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
barbara.png	524288	41.268970	41.096966	35.185882	4.854935	4	8	160
barbara.png	584288	40.890622	40.718619	34.807534	5.296856	4	8	160
barbara.png	644288	35.606039	35.434035	29.522951	17.884487	8	16	160
barbara.png	704288	35.307640	35.135636	29.224552	19.156509	8	16	160
barbara.png	734288	35.190916	35.018913	29.107829	19.678352	8	16	160
barbara.png	764288	35.067682	34.895678	28.984594	20.244740	8	16	160
barbara.png	824288	34.822927	34.650924	28.739840	21.418430	8	16	160

Results for Elain image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
elain.bmp	524288	41.833421	41.626604	36.396019	4.263226	4	8	160
elain.bmp	584288	41.289746	41.082930	35.852345	4.831764	4	8	160
elain.bmp	644288	36.548855	36.342038	31.111453	14.394444	8	16	160
elain.bmp	704288	36.121415	35.914598	30.684013	15.883232	8	16	160
elain.bmp	734288	35.904040	35.697224	30.466639	16.698456	8	16	160
elain.bmp	764288	35.669586	35.462769	30.232184	17.624702	8	16	160
elain.bmp	824288	35.289679	35.082862	29.852278	19.235897	8	16	160

Results for Goldhill image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	T
goldhill.bmp	524288	42.626505	41.953942	35.465337	3.551647	4	8	160
goldhill.bmp	584288	42.368497	41.695934	35.207328	3.769039	4	8	160
goldhill.bmp	644288	37.180639	36.508076	30.019470	12.445618	8	16	160
goldhill.bmp	704288	36.863338	36.190775	29.702170	13.388950	8	16	160
goldhill.bmp	734288	36.717844	36.045280	29.556675	13.845097	8	16	160
goldhill.bmp	764288	36.610808	35.938245	29.449640	14.190559	8	16	160
goldhill.bmp	824288	36.363859	35,691296	29,202691	15.020847	8	16	160

Results for Peppers image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
peppers.bmp	524288	41.931976	41.222530	35.406731	4.167568	4	8	160
peppers.bmp	584288	41.409715	40.700269	34.884470	4.700119	4	8	160
peppers.bmp	644288	36.395454	35.686008	29.870208	14.911968	8	16	160
peppers.bmp	704288	36.065148	35.355702	29.539903	16.090351	8	16	160
peppers.bmp	734288	35,902141	35.192695	29.376896	16.705761	8	16	160
peppers.bmp	764288	35.760191	35.050744	29.234945	17.260815	8	16	160
peppers.bmp	824288	35.348516	34.639069	28.823270	18.977055	8	16	160

Results for Lady image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Ми	Т
lady.tif	524288	41.160990	40.525153	34.487570	4.977158	4	8	160
lady.tif	584288	40.771567	40.135731	34.098148	5.444069	4	8	160
lady.tif	644288	35.443139	34.807302	28.769719	18.568058	8	16	160
lady.tif	704288	35.136196	34.500359	28.462777	19.927864	8	16	160
lady.tif	734288	34.953111	34.317275	28.279692	20.785919	8	16	160
lady.tif	764288	34.798643	34.162807	28.125224	21.538528	8	16	160
lady.tif	824288	34.598726	33,962889	27,925306	22,553181	8	16	160

Results for House image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
house.tif	524288	42.789644	42.721251	36.318885	3.420708	4	8	160
house.tif	584288	42.363169	42.294775	35.892409	3.773666	4	8	160
house.tif	644288	37.169895	37.101502	30.699136	12.476444	8	16	160
house.tif	704288	36.889674	36.821280	30.418914	13.308006	8	16	160
house.tif	734288	36.742684	36.674291	30.271925	13.766132	8	16	160
house.tif	764288	36.613554	36.545161	30.142795	14.181591	8	16	160
house.tif	824288	36.217127	36.148734	29.746368	15.537018	8	16	160

Results for Home image in Figure A.1

cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	Ml	Mu	Т
		dB	dB	dB				
home.gif	524288	43.779233	43.676440	32.421154	2.723686	4	8	160
home.gif	584288	43.739767	43.636974	32.381688	2.748550	4	8	160
home.gif	644288	38.723742	38.620950	27.365664	8.723808	8	16	160
home.gif	704288	38.308204	38.205411	26.950125	9.599751	8	16	160
home.gif	734288	38.123626	38.020833	26.765547	10.016541	8	16	160
home.gif	764288	37.919640	37.816847	26.561561	10.498238	8	16	160
home.gif	824288	37.780066	37.677273	26,421987	10.841110	8	16	160

Results for Camerman image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Τ
amerman.tif	524288	41.300901	41.300901	34.630820	4.819370	4	8	160
amerman.tif	584288	41.025578	41.025578	34.355497	5.134789	4	8	160
amerman.tif	644288	35.626847	35.626847	28.956766	17.799004	8	16	16
amerman.tif	704288	35.409521	35.409521	28.739440	18.712349	8	16	16
amerman.tif	734288	35.350584	35.350584	28.680504	18.968018	8	16	16
amerman.tif	764288	35.223804	35.223804	28.553724	19.529896	8	16	16
amerman.tif	824288	35.036920	35.036920	28.366839	20.388645	8	16	16

Results for Boy image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR	MSE	Ml	Mu	Т
BOY.tif	524288	42.552515	42.552515	34.732867	3.612675	4	8	160
BOY.tif	584288	42.110142	42.110142	34.290494	4.000057	4	8	160
BOY.tif	644288	37.309155	37.309155	29.489507	12.082726	8	16	160
BOY.tif	704288	36.808396	36.808396	28.988748	13.559410	8	16	160
BOY.tif	734288	36.613498	36.613498	28.793850	14.181774	8	16	160
BOY.tif	764288	36.386613	36.386613	28.566965	14.942356	8	16	160
BOY.tif	824288	36.025221	36.025221	28,205574	16.238960	8	16	160

Results for Boat image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
boat.gif	524288	40.747378	40.184533	35.295448	5.474476	4	8	160
boat.gif	584288	40.488976	39.926130	35.037045	5.810089	4	8	160
boat.gif	644288	34.937442	34.374596	29.485512	20.861050	8	16	160
boat.gif	704288	34.672112	34.109267	29.220182	22.175282	8	16	160
boat.gif	734288	34.578281	34.015435	29.126350	22.659603	8	16	160
boat.gif	764288	34.513507	33.950662	29.061577	23.000095	8	16	160
boat.gif	824288	34.310001	33.747155	28.858071	24.103508	8	16	160

Results for Baby image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	T
BABY.png	524288	40.818714	40.715921	36.340250	5.385288	4	8	160
BABY.png	584288	40.410863	40.308071	35.932399	5.915535	4	8	160
BABY.png	644288	35.109098	35.006305	30.630634	20.052593	8	16	160
BABY.png	704288	34.793511	34.690718	30.315047	21.563999	8	16	160
BABY.png	734288	34.653730	34.550937	30.175266	22.269341	8	16	160
BABY.png	764288	34.499533	34.396740	30.021069	23.074223	8	16	160
BABY.png	824288	34.198964	34.096171	29.720500	24.727715	8	16	160
xx								

Appendix C: LSB with Dynamic Threshold Algorithm for Gray Scale (LSBDT)

C.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017 for LSB with Constant threshold algorithm in gray scale [8] and its functions

- 1. clc
- 2. clear

3. cover_image=imread('C:\Users\hajer\Desktop\thesis\GRAY SCALE\MA for

text\home.gif');%Read cover image

4. [M N L]=size(cover_image);

5. S=sum(cover_image(:,:));

6. avg=sum(S)/(M*N);% calculate the mean of cover image

- 7. ml=4;
- 8. mu=8;

10. disp('cover_image_Size_secret_data PSNR_Actual_PSNR_MSNR MSE MI Mu T ')

11. disp(' dB dB db ')

12. p='home.gif';

13. disp('======')

14. start_length =494288; % start length of secret message

15. increase_size=30000;

16. start_length=start_length+increase_size;

- 17. Bpp= start_length/M*N;
- 18. if (Bpp~=3.14)
- 19. T=160*(3.14-Bpp)+10;
- 20. else
- 21. T=160;
- 22. end
- 23. **if** $(mod(T, 16) \sim = 0)$
- 24. T=T-mod(T,16);

```
25. end
```

26. Bpp_actual=((T/256)*(log2(ml)))+(((256-T)/256)*(log2(mu)));

- 27. while (Bpp_actual<Bpp)
- 28. T=T-mu;
- 29. Bpp_actual=((T/256)*(log2(ml)))+(((256-T)/256)*(log2(mu)));

30. end

- 31. secret_massege= randi([0 1],1,start_length);% generate the secreat message
- 32. [e r]=size(secret_massege);

33. stego_image=Embedding(ml,mu,T,cover_image,secret_massege); %embedding function

34. MSE=0;

35. **for** i=1:M

36. for j=1:N

MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; % calculate the MSE

37. end

- 38. end
- 39. MSE=MSE/(M*N);

40. PSNR=10*log10(255^2/(MSE));% calculate the PSNR

41. max_value=max(max(cover_image(:,:)));% calculate the maximum actual value

42. MSNR=10*log10(avg*avg/MSE);%calculate the MSNR

43. Bpp=(start_length)/(M*N);%calculate the BPP

44. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

45. disp(sprintf('%s %d %f %f %f %f %d %d %d',p,start_length,PSNR,

Actual_PSNR,MSNR,MSE,ml,mu,T));

46. end

47. disp('======')

48. % show the cover image and stego image

49. figure

50. subplot(2,2,[1,3]);

51. imshow(cover_image);

52. title('Cover image')

53. subplot(2,2,[2,4]);

54. imshow(stego_image);

55. title('Stego image')

56. output = extraction(stego_image,T,mu,ml);%extraction function

Other functions are the same as shown in Appendices B.2, B.3 for LSBCT

C.2 Screenshots of LSBDT Algorithm for gray scale result for different cover

images with size 512×512

Results for Lena image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
======================================	524288	43.203327	42.855845	36.943934	3.109909	<u></u> 4		192
lena.BMP	584288	41.739591	41.392109	35.480199	4.356335	4	8	160
lena.BMP	644288	40.031265	39.683783	33.771872	6.455856	4	8	128
lena.BMP	704288	38.852524	38.505042	32.593132	8.468918	4	8	80
lena.BMP	734288	38.336860	37.989378	32.077467	9.536617	4	8	48
lena.BMP	764288	38.042626	37.695144	31.783233	10.205112	4	8	16
lena.BMP	824288	35.636526	35.289045	29.377134	17.759377	8	16	160

Results for Zelda image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
zeldaBMP.bmp	524288	44.133917	43.199824	36.893474	2.510086	4	8	192
zeldaBMP.bmp	584288	42.676404	41.742310	35.435960	3.511074	4	8	160
zeldaBMP.bmp	644288	40.587183	39.653089	33.346739	5.680180	4	8	128
zeldaBMP.bmp	704288	38.972098	38.038004	31.731654	8.238926	4	8	80
zeldaBMP.bmp	734288	38.372418	37.438324	31.131974	9.458855	4	8	48
zeldaBMP.bmp	764288	38.060738	37.126644	30.820294	10.162640	4	8	16
zeldaBMP.bmp	824288	36,424963	35,490869	29,184519	14.810989	8	16	16

Results for Airplane image in Figure A.1

cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	Ml	Mu	Т
		dB	dB	dB				
irplane.BMP	524288	40.569041	39.710477	37.503976	5.703957	4	8	19
irplane.BMP	584288	39.791197	38,932633	36.726131	6.822769	4	8	10
irplane.BMP	644288	39.231077	38.372513	36.166011	7.761982	4	8	12
irplane.BMP	704288	38.529906	37.671342	35.464840	9.121994	4	8	80
irplane.BMP	734288	38.284258	37.425694	35.219192	9.652828	4	8	48
irplane.BMP	764288	38.095727	37.237163	35.030662	10.081093	4	8	1
irplane.BMP	824288	33.566819	32.708255	30.501753	28,602139	8	16	1

Results for Baboon image in Figure A.1

		2012				M		-
cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	Ml	Mu	Т
		dB	dB	dB				
Baboon.BMP	524288	43.632592	43.033328	37.723428	2.817223	4	8	192
Baboon.BMP	584288	41.475393	40.876129	35.566230	4.629574	4	8	160
Baboon.BMP	644288	40.001092	39.401827	34.091928	6.500866	4	8	128
Baboon.BMP	704288	38.708346	38.109081	32.799182	8.754791	4	8	80
Baboon.BMP	734288	38.290367	37.691102	32.381203	9.639259	4	8	48
Baboon.BMP	764288	38.038973	37.439708	32.129809	10.213699	4	8	16
Baboon.BMP	824288	35,444204	34.844940	29.535040	18,563503	8	16	16

Results for Barbara image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE		Mu	Т
oarbaraBMP.bmp	524288	42.017444	41.845441	35.934357	4.086353	4	8	1
arbaraBMP.bmp	584288	40.901915	40.729912	34.818828	5.283100	4	8	1
arbaraBMP.bmp	644288	40.067491	39.895488	33.984404	6.402229	4	8	1
arbaraBMP.bmp	704288	39.056830	38.884827	32.973743	8.079739	4	8	8
arbaraBMP.bmp	734288	38.705408	38.533404	32.622320	8.760715	4	8	4
arbaraBMP.bmp	764288	38.108629	37.936626	32.025541	10.051189	4	8	
arbaraBMP.bmp	824288	34.832107	34.660104	28.749020	21.373203	8	16	

Results for Elain image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
======================================	524288	42.935040	42.728224	37,497639	3.308083	4	8	 192
lainBMP.bmp	584288	41.301537	41.094720	35.864135	4.818665	4	8	160
lainBMP.bmp	644288	39.797366	39.590550	34.359965	6.813084	4	8	128
lainBMP.bmp	704288	38.634517	38.427700	33.197116	8.904892	4	8	80
lainBMP.bmp	734288	38.227739	38.020922	32.790338	9.779270	4	8	48
lainBMP.bmp	764288	38.018896	37.812080	32.581495	10.261024	4	8	16
lainBMP.bmp	824288	35.307156	35,100339	29.869754	19.158646	8	16	1

Results for Goldhill image in Figure A.1

over_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	M1 Mu	т	
		dB	dB	dB				
oldhillBMP.bmp	524288	43.168716	42.496152	36.007547	3.134792	4	8	192
oldhillBMP.bmp	584288	42.387492	41.714929	35.226324	3.752590	4	8	160
oldhillBMP.bmp	644288	41.206547	40.533983	34.045378	4.925220	4	8	128
oldhillBMP.bmp	704288	38.992834	38.320271	31.831666	8.199680	4	8	80
oldhillBMP.bmp	734288	38.315076	37.642513	31.153908	9.584572	4	8	48
oldhillBMP.bmp	764288	38.027305	37.354742	30.866136	10.241177	4	8	16
oldhillBMP.bmp	824288	36.355033	35.682469	29.193864	15.051407	8	16	16

Results for Pepper image in Figure A.1

cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	M1 M	iu T	
		dB	dB	dB				
peppersBMP.bmp	524288	43.408087	42.698641	36.882842	2.966686	4	8	192
peppersBMP.bmp	584288	41.417886	40.708440	34.892641	4.691284	4	8	160
eppersBMP.bmp	644288	40.164630	39.455184	33.639385	6.260620	4	8	128
peppersBMP.bmp	704288	38.857559	38.148112	32.332313	8.459106	4	8	80
peppersBMP.bmp	734288	38.427963	37.718516	31.902717	9.338650	4	8	48
eppersBMP.bmp	764288	38.094355	37.384909	31.569110	10.084278	4	8	16
peppersBMP.bmp	824288	35.358311	34.648865	28.833066	18,934299	8	16	1

Results for Lady image in Figure A.1

cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	Ml	Mu	Т
		dB	dB	dB				
lady.bmp	524288	42.084938	41.449101	35.411519	4.023338	4	8	192
lady.bmp	584288	40.773181	40.137344	34.099761	5.442047	4	8	160
lady.bmp	644288	40.028353	39.392517	33.354934	6.460186	4	8	128
lady.bmp	704288	39.158543	38.522707	32.485124	7.892708	4	8	80
lady.bmp	734288	38.842559	38.206722	32.169140	8.488373	4	8	48
lady.bmp	764288	38.434155	37.798318	31.760735	9.325344	4	8	16
lady.bmp	824288	34.576679	33.940842	27.903260	22.667961	8	16	160

Results for House image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
house.bmp	524288	43.789080	43.720686	37.318320	2.717518	4	8	192
house.bmp	584288	42.345827	42.277434	35.875068	3.788765	4	8	160
house.bmp	644288	40.160803	40.092409	33.690043	6.266140	4	8	128
house.bmp	704288	38.754594	38.686201	32.283835	8.662056	4	8	80
house.bmp	734288	38.358616	38.290222	31.887856	9.488964	4	8	48
house.bmp	764288	38.077619	38.009226	31.606860	10.123215	4	8	16
house.bmp	824288	36.220871	36.152478	29.750112	15.523628	8	16	160

Results for Home image in Figure A.1

cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	Ml	Mu	Т
		dB dB		dB				
10me.bmp	524288	43.787976	43.685183	32.429897	2.718208	4	8	192
10me.bmp	584288	43.730398	43.627605	32.372319	2.754486	4	8	160
home.bmp	644288	42.884860	42.782067	31.526781	3.346527	4	8	128
home.bmp	704288	41.044050	40.941257	29.685971	5.112995	4	8	80
lome.bmp	734288	39.219629	39.116836	27.861550	7.782471	4	8	48
lome.bmp	764288	38.388757	38.285964	27.030678	9.423336	4	8	16
nome.bmp	824288	37,776159	37.673366	26,418080	10.850868	8	16	16

Results for Camerman image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
camerman.bmp	524288	43.982946	43.982946	37.312866	2.598877	4	8	192
camerman.bmp	584288	41.026481	41.026481	34.356401	5.133720	4	8	160
camerman.bmp	644288	39.733727	39.733727	33.063646	6.913654	4	8	128
camerman.bmp	704288	38.963994	38.963994	32.293913	8.254314	4	8	80
camerman.bmp	734288	38.758218	38.758218	32.088137	8.654831	4	8	48
camerman.bmp	764288	38.480821	38.480821	31.810740	9.225677	4	8	16
camerman.bmp	824288	35.035104	35.035104	28.365024	20.397171	8	16	16

Results for Boy image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Mu	Т
BOY.bmp	524288	43.269329	43.269329	35.449681	3.063004	4	8	192
BOY.bmp	584288	42.119935	42.119935	34.300287	3.991047	4	8	160
BOY.bmp	644288	41.086417	41.086417	33.266769	5.063358	4	8	128
BOY.bmp	704288	39.289935	39.289935	31.470287	7.657497	4	8	80
BOY.bmp	734288	38.899713	38.899713	31.080066	8.377396	4	8	48
BOY.bmp	764288	38.068592	38.068592	30.248944	10.144279	4	8	16
BOY.bmp	824288	36.035591	36.035591	28.215943	16.200233	8	16	160

Results for Boat image in Figure A.1

cover_image	Size_secret_data	PSNR dB	Actual_PSNR dB	MSNR dB	MSE	Ml	Ми	Т
boat.bmp	524288	43.652195	43.089350	38.200265	2.804535	4	8	192
boat.bmp	584288	40.515495	39.952649	35.063564	5.774719	4	8	160
boat.bmp	644288	39.476645	38.913799	34.024714	7.335266	4	8	128
boat.bmp	704288	38.823799	38.260953	33.371868	8.525120	4	8	80
boat.bmp	734288	38.481351	37.918505	33.029420	9.224552	4	8	48
boat.bmp	764288	38.041905	37.479059	32.589975	10.206806	4	8	16
boat.bmp	824288	34.321530	33.758685	28.869600	24.039604	8	16	160

Results for Baby image in Figure A.1

cover_image	Size_secret_data	PSNR	Actual_PSNR	MSNR	MSE	Ml	Mu	Т
		dB	dB	dB				
BABY.png	524288	41.819360	41.716568	37.340896	4.277050	4	8	192
BABY.png	584288	40.394614	40.291821	35.916150	5.937710	4	8	160
BABY.png	644288	39.411874	39.309081	34.933410	7.445484	4	8	128
BABY.png	704288	38.680160	38.577367	34.201696	8.811794	4	8	80
BABY.png	734288	38.349848	38.247055	33.871384	9.508141	4	8	48
BABY.png	764288	38.087992	37.985200	33.609528	10.099064	4	8	16
BABY.png	824288	34.217682	34.114890	29.739218	24.621365	8	16	160

Appendix D: LSB Algorithm for Color Images

Figure D.1. Color Cover Images Used

D.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017 for LSB with algorithm in color scale and its functions 1.clc

2.clear

3.cover_image=imread('C:\Users\hajer\Desktop\thesis\COLOR SCALE\LSB_color\Balloon (512 x

512).jpg');

4.disp('=======')

5.disp('cover_image Size_secret_data PSNR MSE ')

6.disp(' dB

7.disp('======')

')

8.p='Balloon_color';

9.secrt_image=imread('C:\Users\hajer\Desktop\thesis\1.jpg');

10. [m n l]=size(secrt_image);

- 11. k=1;
- 12. **for** i=1:m
- 13. for j=1:n

14. str = dec2bin(secrt_image(i,j),8);

15. **for** q=1:8

16. aa=str2num(str(q));

17. secret_massege(k)=aa;

18. k=k+1;

19. end

20. end

21. end

22. [e r]=size(secret_massege);

23. [stego_image,y,u]=Embedding(cover_image,secret_massege);

24. [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image);

25. mse = $(MSE_R + MSE_B + MSE_G)/3$;

26. [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B);

27. disp(sprintf('%s %d %f %f ',p,r,PSNR,mse));

28. disp(sprintf('PSNR_R=%f PSNR_G=%f PSNR_B=%f ',PSNR_R,PSNR_G,PSNR_B));

29. [MSNR,MSNR_R,MSNR_G,MSNR_B] = MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse);

30. disp(sprintf('MSNR_R=%f MSNR_G=%f MSNR_B=%f ',MSNR_R,MSNR_G,MSNR_B));

31. disp(sprintf('MSNR=%f',MSNR));

32. Actual_PSNR_weight = A_PSNR(cover_image,MSE_R,MSE_G,MSE_B);

33. disp(sprintf('Actual_PSNR_weight(1/3_1/3_1/3)=%f',Actual_PSNR_weight));

34. disp(sprintf('W_PSNR(0.4_0.243_0.357)=%f',(0.4*PSNR_R+0.243*PSNR_G+0.357*PSNR_B)));

35. disp(sprintf('W_PSNR(0.4_0.3_0.3)=%f',(0.4*PSNR_R+0.3*PSNR_G+0.3*PSNR_B)));

36. disp(sprintf('W_PSNR(1/3_1/3_1/3)=%f,(1/3*PSNR_R+1/3*PSNR_G+1/3*PSNR_B)));

37. disp(sprintf('W_MSNR(0.4_0.243_0.357)=%f,(0.4*MSNR_R+0.243*MSNR_G+0.357*MSNR_B)));

- 38. disp(sprintf('W_MSNR(0.4_0.3_0.3)=%f',(0.4*MSNR_R+0.3*MSNR_G+0.3*MSNR_B)));
- 39. disp(sprintf('W_MSNR(1/3_1/3_1/3)=%f',(1/3*MSNR_R+1/3*MSNR_G+1/3*MSNR_B)));

40. [var_orgR, var_noiseR] = snr(stego_image(:,:,1),cover_image(:,:,1));

41. [var_orgG, var_noiseG] = snr(stego_image(:,:,2),cover_image(:,:,2));

42. [var_orgB, var_noiseB] = snr(stego_image(:,:,3),cover_image(:,:,3));

43. SNR= 10*log10((var_orgR + var_orgG + var_orgB)/(var_noiseR + var_noiseG + var_noiseB));

44. disp(sprintf('SNR=%f',SNR));

45. disp('=======')

46. figure

47. subplot(2,2,[1,3]);

48. imshow(cover_image);

49. title('Cover image')

50. subplot(2,2,[2,4]);

51. imshow(stego_image);

52. title('Stego image')

53. output=extraction(stego_image);

D.2 Embedding function

- 1. function [stego_image,y,u] = Embedding(cover_image,secret_massege)
- 2. u=0;
- 3. y=0;
- 4. [e r]=size(secret_massege);
- 5. [M N L]=size(cover_image);
- 6. stego_image=cover_image;
- 7. k=1;
- 8. for i=1:M
- 9. for j=1:N
- 10. if (k<=r)
- 11. EC=3;
- 12. if (k+EC-1)>=r
- 13. q=(k+EC-1)-r;
- 14. s=secret_massege(k:k+EC-1-q);
- 15. k=k+EC;
- 16. else
- 17. s=secret_massege(k:k+EC-1);
- 18. k=k+EC;
- 19. end
- 20. a = num2str(s);
- 21. DEC= bin2dec(a);
- 22. stego_image(i,j,3)=cover_image(i,j,3)-
- 23. EC=4;
- 24. if (k+EC-1)>=r
- 25. q=(k+EC-1)-r;
- 26. s=secret_massege(k:k+EC-1-q);
- 27. k=k+EC;
- 28. else
- 29. s=secret_massege(k:k+EC-1);
- 30. k=k+EC;
- 31. end
- 32. a = num2str(s);
- 33. DEC= bin2dec(a);
- 34. stego_image(i,j,2)=cover_image(i,j,2)-

35. EC=1;

(mod(cover_image(i,j,3),2^EC))+DEC;

(mod(cover_image(i,j,2),2^EC))+DEC;

- 36. if (k+EC-1)>=r
- 37. q=(k+EC-1)-r;
- 38. s=secret_massege(k:k+EC-1-q);
- 39. k=k+EC;
- 40. else
- 41. s=secret_massege(k:k+EC-1);
- 42. k=k+EC;
- 43. end
- 44. a = num2str(s);
- 45. DEC= bin2dec(a);
- 46. stego_image(i,j,1)=cover_image(i,j,1)-

(mod(cover_image(i,j,1),2^EC))+DEC;

- 47. y= i;
- 48. u=j;
- 49. end
- 50. end
- 51. end
- 52. end

D.3 Extraction function

- 1. function [output] = extraction(stego_image)
- 2. [M N L]=size(stego_image);
- 3. k=1;
- 4. kk=1;
- 5. **for** i=1:M
- 6. **for** j=1:N
- 7. **if** (k<=r)
- 8. EC=4;
- 9. RES=mod(stego_image(i,j,3),2^EC);
- 10. if (k+EC-1)>=r
- 11. q=(k+EC-1)-r;
- 12. s=dec2bin(RES,EC-q);
- 13. **for** g=1:EC-q
- 14. a=str2num(s(g));
- 15. output(kk)=a;
- 16. kk=kk+1;
- 17. end
- 18. else

- 19. s=dec2bin(RES,EC);
- 20. for g=1:EC
- 21. a=str2num(s(g));
- 22. output(kk)=a;
- 23. kk=kk+1;
- 24. end
- 25. k=k+EC;
- $26. \ \underline{\mathsf{end}}$
- 27. end
- 28. if $(k \le r)$
- 29. EC=2;
- 30. RES=mod(stego_image(i,j,2),2^EC);
- 31. if (k+EC-1)>=r
- 32. q=(k+EC-1)-r;
- 33. s=dec2bin(RES,EC-q);
- 34. for g=1:EC-q
- 35. a=str2num(s(g));
- 36. output(kk)=a;
- 37. kk=kk+1;
- 38. end
- 39. else
- 40. s=dec2bin(RES,EC);
- 41. for g=1:EC
- 42. a=str2num(s(g));
- 43. output(kk)=a;
- 44. kk=kk+1;
- 45. end
- 46. k=k+EC;
- 47. end
- 48. end
- 49. if (k<=r)
- 50. EC=2;
- 51. RES=mod(stego_image(i,j,1),2^EC);
- 52. if (k+EC-1)>=r
- 53. q=(k+EC-1)-r;
- 54. s=dec2bin(RES,EC-q);

- 55. for g=1:EC-q
- 56. a=str2num(s(g));
- 57. output(kk)=a;
- 58. kk=kk+1;
- 59. end
- 60. else
- 61. s=dec2bin(RES,EC);
- 62. for g=1:EC
- 63. a=str2num(s(g));
- 64. output(kk)=a;
- 65. kk=kk+1;
- 66. end
- 67. k=k+EC;
- 68. end
- 69. end
- 70. end
- 71. end
- 72. end

D.4 MSE function

1.function [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image)

- 2.[M N L]=size(cover_image);
- $3.MSE_R=0;$
- 4.MSE_G=0;
- 5.MSE_B=0;
- 6.for i=1:M
- 7.for j=1:N

 $8.MSE_R = MSE_R + (double(cover_image(i,j,1)) - double(stego_image(i,j,1)))^{2};$

```
9.MSE\_G=MSE\_G+(double(cover\_image(i,j,2))-double(stego\_image(i,j,2)))^{2};
```

10. MSE_B=MSE_B+(double(cover_image(i,j,3))-double(stego_image(i,j,3)))^2;

- 11. end
- 12. end
- 13. MSE_R=MSE_R/(((y-1)*512)+u);
- 14. MSE_G=MSE_G/(((y-1)*512)+u);
- 15. MSE_B=MSE_B/(((y-1)*512)+u);
- 16. end

D.5 PSNR function

- 1. function [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B)
- 2. PSNR=10*log10(255*255/mse);
- 3. PSNR_R=10*log10(255*255/MSE_R);
- 4. PSNR_G=10*log10(255*255/MSE_G);
- 5. PSNR_B=10*log10(255*255/MSE_B);
- 6. end

D.6 MSNR function

1. function [MSNR,MSNR_R,MSNR_G,MSNR_B] = MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse)

- 2. [M N L]=size(cover_image);
- 3. S=sum(cover_image(:,:,1));
- 4. avg_R=sum(S)/(M*N);
- 5. S2=sum(cover_image(:,:,2));
- 6. avg_G=sum(S2)/(M*N);
- 7. S3=sum(cover_image(:,:,3));
- 8. avg_B=sum(S3)/(M*N);
- 9. MSNR_R=10*log10(avg_R*avg_R/MSE_R);
- 10. MSNR_G=10*log10(avg_G*avg_G/MSE_G);
- 11. MSNR_B=10*log10(avg_B*avg_B/MSE_B);
- 12. mean_image=(sum(S2)+sum(S3)+sum(S))/(M*N*L);
- 13. MSNR=10*log10(mean_image*mean_image/mse);
- 14. end

D.7 WAPSNR function

- 1. function [Actual_PSNR_weight]= A_PSNR(cover_image,MSE_R,MSE_G,MSE_B)
- 2. max_col_R= max(cover_image(:,:,1));
- 3. max_col_G= max(cover_image(:,:,2));
- 4. max_col_B= max(cover_image(:,:,3));
- 5. $max_R = max(max_col_R);$
- 6. $\max_G = \max(\max_{col}G);$
- 7. $max_B = max(max_col_B);$
- 8. Actual_PSNR_R=10*log10(double(max_R)*double(max_R)/MSE_R);
- 9. Actual_PSNR_G=10*log10(double(max_G)*double(max_G)/MSE_G);
- 10. Actual_PSNR_B=10*log10(double(max_B)*double(max_B)/MSE_B);
- 11. Actual_PSNR_weight=1/3*Actual_PSNR_R+1/3*Actual_PSNR_G+1/3*Actual_PSNR_B;
- 12. end

D.8 SNR function

- 1. function [var_cover_image, var_noise] = snr(stego_image, cover_image)
- 2. [m n l]=size(cover_image);
- 3. mean_original = mean(cover_image(:));
- 4. tmp= cover_image mean_original;
- 5. var_cover_image = sum(tmp(:).^2);
- 6. var_cover_image =var_cover_image/(m*n);
- 7. noise= stego_image cover_image;
- 8. mean_noise = mean(noise(:));
- 9. tmp= noise mean_noise;
- 10. var_noise = sum(tmp(:).^2);
- 11. var_noise =var_noise/(m*n);
- 12. end

D.9 Screenshots for LSB for color imges results for different embedding

combinations with 8 BPP for cover images with size 512×512

Embedding combination 4_3_1

cover_image	Size_secret_data	PSNR	MSE
		dB	
peppers_color	1280000	35.635195	17.764823
PSNR_R=31.829641	PSNR_G=38.07499	9	PSNR_B=51.178012
MSNR_R=26.823674	MSNR_G=30.93184	7	MSNR_B=39.118446
MSNR=28.036591			
W_PSNR(0.4_0.243_	0.357)=40.254631		
W_PSNR(0.4_0.3_0.	3)=39.507760		
W_PSNR(1/3_1/3_1/	3)=40.360884		
W_MSNR(0.4_0.243_	0.357)=32.211194		
W_MSNR(0.4_0.3_0.	3)=31.744557		
W_MSNR(1/3_1/3_1/	3)=32.291322		
cover_image	Size_secret_data	PSNR	MSE
		dB	
lena color	1280000	35.455989	18.513200
PSNR R=31.609777			PSNR B=51.148438
MSNR R=28.590647	MSNR G=29.85127		MSNR B=43.487061
MSNR=29.486217	115AK_0 2510012		10.10/001
W PSNR(0.4 0.243	(0.357) = 40.153426		
W PSNR (0.4 0.3 0.			
W PSNR (1/3 1/3 1/	(3)=40.274031		
W_MSNR(0.4_0.243_	0.357)=34.215000		
W_MSNR(0.4_0.3_0.	3)=33.437761		
W_MSNR(1/3_1/3_1/	(3)=33.976329		

cover_image	Size_secret_data	PSNR dB	MSE
baboon_color PSNR_R=31.852268 MSNR_R=25.978631 MSNR=28.994603	1280000 PSNR_G=37.97684 MSNR_G=31.50233		17.768890 PSNR_B=51.15714 MSNR_B=43.49189
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=39.481104 (3)=40.328752 [0.357)=33.573124 (3)=32.889719		
cover_image	Size_secret_data	PSNR dB	MSE
======================================	1280000 PSNR_G=37.99938 MSNR_G=30.05127		17.789465 PSNR_B=51.153226 MSNR_B=42.437818
MSNR=28.332144 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W PSNR(1/3 1/3 1/	3)=39.481993		
W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=32.263192		
cover_image	Size_secret_data	PSNR dB	MSE
Balloon_color PSNR_R=31.860033	1280000 PSNR_G=37.96338	35.637901 7	17.753756 PSNR_B=51.172212
MSNR_R=24.409883 MSNR=29.433037 W_PSNR(0.4_0.243_		6	MSNR_B=46.074971
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	3)=40.331877		
W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/			
cover_image	Size_secret_data	PSNR dB	MSE
======================================	1280000 PSNR_G=38.00365 MSNR_G=25.739273	37.438532 7	11.728085 PSNR_B=51.085706 MSNR_B=42.214812

 PSNR_R=34.260334
 PSNR_G=38.003657
 PSNR_B=51.08570

 MSNR_R=3.226578
 MSNR_G=25.739273
 MSNR_B=42.214812

 MSNR=23.908515
 MSNR_G=25.739273
 MSNR_B=42.214812

 MSNR=0.4_0.243_0.357)=41.176619
 MPSNR (0.4_0.3_0.3)=40.430942
 MPSNR (1.3_1/3_1/3)=41.116566

 W_PSNR (0.4_0.243_0.357)=22.615963
 M_MSNR (0.4_0.3_0.3)=21.676857
 M_MSNR (1/3_1/3_1/3)=23.726888

cover image	Size secret data	PSNR	MSE
_		dB	
green_color	1280000	34.097726	25.310910
PSNR_R=29.949828	PSNR_G=38.20	61771	PSNR_B=51.606104
MSNR_R=-15.897324	MSNR_G=27.7	750596	MSNR_B=6.221717
MSNR=14.344211			
W PSNR(0.4 0.243	0.357)=39.700921		
PSNR (0.4_0.3_0.	3)=38.940294		
W PSNR (1/3 1/3 1/	3)=39.939234		
MSNR (0.4 0.243	0.357)=2.605618		
W MSNR (0.4 0.3 0.	3)=3.832764		
W MSNR (1/3 1/3 1/			
	,		
cover image	Size secret data	PSNR	MSE
_		dB	
red color	1280000	34.981288	20.651498
	PSNR_G=37	.771933	PSNR_B=51.032
MSNR_R=29.951912	MSNR_G=32	.786249	MSNR_B=44.970
MSNR=31.185747			
	0.357)=39.833720		
W_PSNR(0.4_0.3_0 W PSNR(1/3 1/3 1			
	0.357)=36.002256		
W_MSNR (0.4_0.3_0	_		
W_MSNR (1/3_1/3_1	/3)=35.902853		

Embedding combination 4_1_3

 Cover_image
 Size_secret_data
 PSNR dB
 MSE dB

 peppers_color
 1280000
 35.754077
 17.285131

 PSNR_R=31.829641
 PSNR_G=51.139150
 PSNR_B=38.742708

 MSNR=26.823674
 MSNR_G=43.995998
 MSNR_B=26.683142

 MSNR=28.155473
 MSNR_G=43.995998
 MSNR_B=26.683142

 W_PSNR(0.4_0.243_0.357)=38.989817
 W_PSNR(0.4_0.3_0.3)=39.696414
 W_PSNR(1/3_1/3_1/3)=40.570500

 W_MSNR(0.4_0.243_0.357)=30.946379
 W_MSNR(0.4_0.3_0.3)=31.933212
 W_MSNR(0.4_0.3_0.3)=31.933212

 W_MSNR(1/3_1/3_1/3)=32.500938
 W_MSNR(1/3_1/3_1/3)=32.500938
 State of the second sec

cover_image	Size_secret_data	PSNR dB	MSE
lena_color PSNR_R=31.609777 MSNR_R=28.590647 MSNR=29.595333 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	3)=39.600102 3)=40.487916 0.357)=32.951426		18.053854 PSNR_B=38.696715 MSNR_B=31.035337
W_MSNR(1/3_1/3_1/	(3)=34.190214		

COVER IMAGE		0.0110	
cover_image	Size_secret_data	PSNR dB	MSE
baboon_color	1280000	35.770332	17.220556
PSNR R=31.852268	PSNR G=51.14	47895	PSNR B=38.728226
MSNR R=25.978631	MSNR G=44.67		MSNR B=31.062970
MSNR=29.130734			
W PSNR(0.4 0.243	0 357)=38 995822		
	-		
W_PSNR(0.4_0.3_0.			
W_PSNR(1/3_1/3_1/			
W_MSNR(0.4_0.243_			
W_MSNR(0.4_0.3_0.			
W_MSNR(1/3_1/3_1/	3)=33.904995		
cover image	Size secret data	PSNR	MSE
		dB	
	122222		17.050020
barbra_color	1280000	35.760553	17.259373
PSNR_R=31.840527	PSNR_G=51.13		PSNR_B=38.727965
MSNR_R=26.291158	MSNR_G=43.19	90940	MSNR_B=30.012556
ISNR=28.463523			
<pre>N_PSNR(0.4_0.243_</pre>	0.357)=38.988881		
<pre>M_PSNR(0.4_0.3_0.</pre>	3)=39.696313		
<pre>N_PSNR(1/3_1/3_1/</pre>	3)=40.569178		
MSNR(0.4_0.243_	0.357)=31.726344		
MSNR (0.4_0.3_0.			
MSNR (1/3_1/3_1/			
cover_image	Size_secret_data	PSNR	MSE
		dB	
Blue_color	1280000	37.615874	11.258823
PSNR_R=34.260334	PSNR_G=51.17	71884	PSNR_B=38.637266
ISNR_R=3.226578	MSNR_G=38.907	7500	MSNR_B=29.766373
ISNR=24.085856			
V PSNR(0.4 0.243	0.357)=39.932406		
V PSNR (0.4 0.3 0.			
V PSNR(1/3 1/3 1/			
MSNR(0.4 0.243			
<pre>MSNR(0.4_0.3_0.</pre>			
<pre>MSNR(1/3_1/3_1/</pre>	3)=23.966817		
	-		
cover_image	Size_secret_data	PSNR	MSE
cover_image		PSNR dB	MSE
			MSE 24.519023
green_color	Size_secret_data 1280000	dB 34.235772	24.519023
green_color PSNR_R=29.949828	Size_secret_data 1280000 PSNR_G=51.10	dB 34.235772 3376	24.519023 PSNR_B=39.514179
cover_image green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR_14.482257	Size_secret_data 1280000 PSNR_G=51.10	dB 34.235772 3376	24.519023
green_color PSNR_R=29.949828 MSNR_R=-15.897324	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. N_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_PSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668	dB 34.235772 3376	24.519023 PSNR_B=39.514179
green_color pSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890	dB 34.235772 3376 92200	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. N_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ M_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668	dB 34.235772 3376 92200 PSNR	24.519023 PSNR_B=39.514179
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890	dB 34.235772 3376 92200	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208
green_color pSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890	dB 34.235772 3376 92200 PSNR	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000	dB 34.235772 92200 PSNR dB 35.129184	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065 PSNR_B=38.68574
green_color pSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065 PSNR_B=38.68574
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image red_color PSNR_R=31.090977 MSNR_R=29.951912 MSNR=31.333643	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065 PSNR_B=38.68574
green_color PSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image red_color PSNR_R=31.090977 MSNR_R=29.951912 MSNR=31.333643	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51 MSNR_G=46 3_0.357)=38.676009	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065 PSNR_B=38.68574
green_color pSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image red_color PSNR_R=31.090977 MSNR_R=29.951912 MSNR=31.333643 W_PSNR(0.4_0.3_0 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1)	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51 MSNR_G=46 5_0.357)=38.676009 0.3)=39.386321 (3)=40.308025	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065 PSNR_B=38.68574
green_color pSNR_R=29.949828 MSNR_R=-15.897324 MSNR=14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51 MSNR_G=46 3.0.357)=38.676009 0.3)=39.386321 ./3)=40.308025 3.0.357)=34.844545	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208
green_color PSNR_R=29.949828 dSNR_R=-15.897324 dSNR_14.482257 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image red_color PSNR_R=31.090977 MSNR_R=29.951912 MSNR=31.333643 W_PSNR(0.4_0.3_0 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1)	Size_secret_data 1280000 PSNR_G=51.10 MSNR_G=40.5 0.357)=38.504613 3)=39.165198 3)=40.189128 0.357)=1.409311 3)=4.057668 3)=6.274890 Size_secret_data 1280000 PSNR_G=51 MSNR_G=46 5_0.357)=38.676009 0.3)=39.386321 /3)=40.308025 5_0.357)=34.844545 0.3)=35.616236	dB 34.235772 3376 92200 PSNR dB 35.129184 .147351	24.519023 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 19.960065 PSNR_B=38.68574

Embedding combination 3_4_1

cover_image	Size_secret_data	PSNR dB	MSE
peppers_color	1280000	35.675737	17.599756 PSNR B=51.178012
PSNR_R=37.902943	PSNR_G=31.92269 MSNR G=24.77954		_
MSNR_R=32.896977 MSNR=28.077134	MSNR_G-24.77954	10	MSNR_B=39.118446
	0 257) -41 199942		
W_PSNR(0.4_0.243_ W PSNR(0.4 0.3 0.			
W PSNR(0.4_0.3_0. W PSNR(1/3 1/3 1/			
W MSNR(0.4 0.243			
W MSNR(0.4 0.3 0.			
W MSNR (1/3 1/3 1/			
	-,		
cover image	Size secret data	PSNR	MSE
cover_image	Size_Secret_data	dB	HOL
lena color	1280000	35.679372	17.585033
_			
PSNR_R=37.902253	_		PSNR_B=51.148438
MSNR_R=34.883123	MSNR_G=23.7152	20	MSNR_B=43.487061
MSNR=29.709600			
W_PSNR(0.4_0.243	0.357)=41.179354		
W_PSNR(0.4_0.3_0	.3)=40.083779		
W_PSNR(1/3_1/3_1/	/3)=40.326170		
W_MSNR(0.4_0.243	0.357)=35.240928		
W MSNR(0.4 0.3 0	.3)=34.113933		
W MSNR (1/3 1/3 1/			
		DOND	MCE
cover_image	Size_secret_data	PSNR	MSE
 cover_image	Size_secret_data	PSNR dB	MSE
		dB	
 baboon_color	1280000	dB 35.655562	17.681706
	1280000 PSNR_G=31.8999	dB 35.655562 33	17.681706 PSNR_B=51.157148
 baboon_color	1280000	dB 35.655562 33	17.681706
	1280000 PSNR_G=31.8999	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441	1280000 PSNR_G=31.8999 MSNR_G=25.4254	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016 .3)=40.074355	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016 .3)=40.074355 /3)=40.316719	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016 .3)=40.074355 /3)=40.316719 _0.357)=34.512759	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970	dB 35.655562 33	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016 .3)=40.074355 /3)=40.316719 _0.357)=34.512759 .3)=33.482970 /3)=33.645585	dB 35.655562 33 22	17.681706 PSNR_B=51.157148 MSNR_B=43.491891
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016 .3)=40.074355 /3)=40.316719 _0.357)=34.512759 .3)=33.482970 /3)=33.645585	dB 35.655562 33 22	17.681706 PSNR_B=51.157148
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 _0.357)=41.172016 .3)=40.074355 /3)=40.316719 _0.357)=34.512759 .3)=33.482970 /3)=33.645585	dB 35.655562 33 22	17.681706 PSNR_B=51.157148 MSNR_B=43.491891
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 _0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data	dB 35.655562 33 22	17.681706 PSNR_B=51.157148 MSNR_B=43.491891
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data 1280000	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data 1280000 PSNR_G=31.910177	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785 PSNR_B=51.153226
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243] W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243] W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data 1280000	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data 1280000 PSNR_G=31.910177 MSNR_G=23.962075	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785 PSNR_B=51.153226
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.243 W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(1/3_1/3_1/ Cover_image 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data 1280000 PSNR_G=31.910177 MSNR_G=23.962075 0.357)=41.173648	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785 PSNR_B=51.153226
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243] W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243] W_MSNR(0.4_0.243] W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 () 357)=41.172016 3)=40.074355 () =40.316719 0.357)=34.512759 3)=33.482970 () =33.645585 Size_secret_data 1280000 PSNR_G=31.910177 MSNR_G=23.962075 0.357)=41.173648 3)=40.076794 3)=40.319278	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785 PSNR_B=51.153226
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243 W_PSNR(0.4_0.243] W_PSNR(0.4_0.243] W_MSNR(0.4_0.243] W_MSNR(0.4_0.3_0] W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 (3)=40.316719 [0.357)=34.512759 .3)=33.482970 (3)=33.645585 Size_secret_data 1280000 PSNR_G=31.910177 MSNR_G=23.962075 0.357)=41.173648 3)=40.319278 0.357)=33.911110	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785 PSNR_B=51.153226
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.015964 W_PSNR(0.4_0.243] W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243] W_MSNR(0.4_0.243] W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	1280000 PSNR_G=31.89993 MSNR_G=25.42543 [0.357)=41.172016 .3)=40.074355 /3)=40.316719 [0.357)=34.512759 .3)=33.482970 /3)=33.645585 Size_secret_data 1280000 PSNR_G=31.910177 MSNR_G=23.962075 0.357)=41.173648 3)=40.076794 3)=40.319278 0.357)=33.91110 3)=32.857993	dB 35.655562 33 22 PSNR dB 35.663901	17.681706 PSNR_B=51.157148 MSNR_B=43.491891 MSE 17.647785 PSNR_B=51.153226

cover_image	Size_secret_data	PSNR dB	MSE
Balloon_color	1280000	35.663392	
PSNR_R=37.946121	PSNR_G=31.89	6376	PSNR_B=51.172212
MSNR_R=30.495971	MSNR_G=25.67	0275	MSNR_B=46.074971
MSNR=29.458527			
W PSNR(0.4 0.243	0.357)=41.197748		
W PSNR (0.4 0.3 0	_		
W PSNR (1/3 1/3 1			
	0.357)=34.885030		
W_MSNR(0.4_0.3_0			
W_MSNR(1/3_1/3_1	/3)=34.080406		
cover image	Size_secret_data	PSNR	MSE
		dB	
Blue color	1280000	35.519825	18.243069
PSNR R=36.779781			PSNR B=51.085706
MSNR_R=5.746025	MSNR_G=19.7839		MSNR_B=42.214812
	-		—
	0.357)=40.737259		
W_PSNR (0.4_0.3_0			
W_PSNR (1/3_1/3_1			
	0.357)=22.176603		
MSNR (0.4_0.3_0			
W MSNR (1/3 1/3 1			
	/ 3/ 22.301002		
	, 5, 22.551662		
	Size secret data	PSNR	MSE
cover_image		PSNR dB	MSE
_	Size_secret_data	dB	
_ green_color	Size_secret_data 1280000	dB 35.583683	17.976785
green_color PSNR_R=36.849506	Size_secret_data 1280000 PSNR_G=32.1048	dB 35.583683 37	17.976785 PSNR_B=51.606104
_ green_color PSNR_R=36.849506 4SNR_R=-8.997645	Size_secret_data 1280000	dB 35.583683 37	17.976785
_ green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936	dB 35.583683 37	17.976785 PSNR_B=51.606104
 green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR_R=15.830168 M_PSNR(0.4_0.243_	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657	dB 35.583683 37	17.976785 PSNR_B=51.606104
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085	dB 35.583683 37	17.976785 PSNR_B=51.606104
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816	dB 35.583683 37	17.976785 PSNR_B=51.606104
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354	dB 35.583683 37	17.976785 PSNR_B=51.606104
green_color PSNR_R=36.849506 dSNR_R=-8.997645 dSNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ M_MSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555	dB 35.583683 37	17.976785 PSNR_B=51.606104
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555	dB 35.583683 37	17.976785 PSNR_B=51.606104
<pre>green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ M_MSNR(0.4_0.3_0. M_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/</pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578	dB 35.583683 37	17.976785 PSNR_B=51.606104
green_color PSNR_R=36.849506 dSNR_R=-8.997645 dSNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ M_MSNR(0.4_0.3_0.	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555	dB 35.583683 37 61	17.976785 PSNR_B=51.606104 MSNR_B=6.221717
<pre>green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ M_MSNR(0.4_0.3_0. M_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/</pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578	dB 35.583683 37 61	17.976785 PSNR_B=51.606104 MSNR_B=6.221717
<pre>green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ M_MSNR(0.4_0.3_0. M_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/</pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578	dB 35.583683 37 61	17.976785 PSNR_B=51.606104 MSNR_B=6.221717
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ M_MSNR(0.4_0.3_0. M_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/ 	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000	dB 35.583683 37 61 PSNR dB 35.701765	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE
<pre>green_color PSNR_R=36.849506 dSNR_R=-8.997645 dSNR=15.830168 w_PSNR(0.4_0.243_ w_PSNR(0.4_0.3_0. w_PSNR(1/3_1/3_1/ w_MSNR(0.4_0.243_ w_MSNR(0.4_0.3_0. w_MSNR(0.4_0.3_0. w_MSNR(1/3_1/3_1/ </pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 80 PSNR_G=32	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE 17.494594 PSNR_B=51.03
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 V_PSNR(0.4_0.243_ V_PSNR(0.4_0.3_0. V_PSNR(1/3_1/3_1/ V_MSNR(0.4_0.3_0. V_MSNR(0.4_0.3_0. V_MSNR(1/3_1/3_1/ cover_image red_color PSNR_R=37.61328 MSNR_R=36.47421	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 80 PSNR_G=32	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE 17.494594 PSNR_B=51.03
<pre>green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=15.830168 PSNR(0.4_0.243_ PSNR(0.4_0.3_0. PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ N_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/ MSNR(1/3_1/3_1/ Cover_image red_color PSNR_R=37.61328 MSNR_R=36.47421 MSNR=31.906224</pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 80 PSNR_G=32	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE 17.494594 PSNR_B=51.03
<pre>green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=15.830168 PSNR(0.4_0.243_ PSNR(0.4_0.3_0. PSNR(1/3_1/3_1/ M_MSNR(0.4_0.243_ N_MSNR(0.4_0.3_0. M_MSNR(1/3_1/3_1/ MSNR(1/3_1/3_1/ Cover_image red_color PSNR_R=37.61328 MSNR_R=36.47421 MSNR=31.906224</pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 30 PSNR_G=32 MSNR_G=27 13_0.357)=41.048386	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE 17.494594 PSNR_B=51.03
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 M_PSNR(0.4_0.243_ M_PSNR(0.4_0.3_0. M_PSNR(0.4_0.3_0. M_SNR(0.4_0.3_0. M_SNR(0.4_0.3_0. M_SNR(0.4_0.3_0. M_SNR(0.4_0.3_0. M_SNR(1/3_1/3_1/ 	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 80 PSNR_G=32 15 MSNR_G=27 13_0.357)=41.048386 0.3)=39.965463	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE 17.494594 PSNR_B=51.03
<pre>green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=15.830168 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. MMSNR(1/3_1/3_1/ Cover_image red_color PSNR_R=36.47421 MSNR=31.906224 W_PSNR(0.4_0.24 W_PSNR(0.4_0.3_W W_PSNR(1/3_1/3_W_MSNR(0.4_0.24)</pre>	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 80 PSNR_G=32 MSNR_G=27 13_0.357)=41.048386 0.3)=39.965463 1/3)=40.226817 13_0.357)=37.216922	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717
green_color PSNR_R=36.849506 4SNR_R=-8.997645 4SNR=15.830168 N_PSNR(0.4_0.243_ N_PSNR(0.4_0.243_ N_MSNR(0.4_0.3_0. N_MSNR(0.4_0.3_0. N_MSNR(1/3_1/3_1/ 	Size_secret_data 1280000 PSNR_G=32.1048 MSNR_G=21.5936 0.357)=40.964657 3)=39.853085 3)=40.186816 0.357)=3.869354 3)=4.745555 3)=6.272578 Size_secret_data 1280000 30 PSNR_G=32 MSNR_G=27 43_0.357)=41.048386 0.3)=39.965463 1/3)=40.226817 43_0.357)=37.216922 0.3)=36.195378	dB 35.583683 37 61 PSNR dB 35.701765 .034260	17.976785 PSNR_B=51.606104 MSNR_B=6.221717 MSE 17.494594 PSNR_B=51.03

Embedding combination 3_1_4

cover_image	Size_secret_data	PSNR	MSE	
		dB		
peppers_color	1280000	36.349222	15.071558	
PSNR_R=37.902943	PSNR_G=51	.120740	PSNR_B=32.793890	
MSNR_R=32.896977	MSNR_G=43	.977588	MSNR_B=20.734324	
MSNR=28.750619				
W_PSNR(0.4_0.243	0.357)=39.290936			
W_PSNR(0.4_0.3_0	.3)=40.335566			
W_PSNR(1/3_1/3_1/	/3)=40.605858			
W_MSNR(0.4_0.243	0.357)=31.247498			
W_MSNR(0.4_0.3_0	.3)=32.572364			
W_MSNR(1/3_1/3_1/	/3)=32.536296			

cover_image	Size_secret_data	PSNR dB	MSE
lena_color PSNR_R=37.902253 MSNR_R=34.883123 MSNR=30.078747 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=40.222614 '3)=40.480432 0.357)=33.216095 .3)=34.252769		16.152081 PSNR_B=32.400274 MSNR_B=24.738896
cover_image	Size_secret_data	PSNR dB	MSE
baboon_color PSNR_R=37.893077 MSNR_R=32.019441 MSNR=29.684568 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=40.329141 3)=40.599815 0.357)=32.622257 3)=33.737756		15.158763 PSNR_B=32.763471 MSNR_B=25.098215
cover_image	Size_secret_data	PSNR dB	MSE
barbra_color PSNR_R=37.894432 MSNR=29.004924 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=40.319846 3)=40.589336 0.357)=32.008165 3)=33.101045		15.236488 PSNR_B=32.733776 MSNR_B=24.018367
cover_image	Size_secret_data	PSNR dB	MSE
Balloon_color PSNR_R=37.946121 MSNR_R=30.495971 MSNR=30.192844 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(1/3_1/3_1/	3)=40.373868 3)=40.643617 0.357)=33.018287 3)=33.996805		14.904229 PSNR_B=32.844442 MSNR_B=27.747200
cover_image	Size_secret_data	PSNR dB	MSE
Blue_color PSNR_R=36.779781 MSNR_R=5.746025 MSNR=22.278307 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	MSNR_G=38.9 0.357)=38.726513 3)=39.793781 3)=40.128669 0.357)=20.165856 3)=21.039695		17.070563 PSNR_B=32.441117 MSNR_B=23.570223

cover_image	Size_secret_data	PSNR dB	MSE
green_color PSNR_R=36.849506 MSNR_R=-8.997645 MSNR=16.236861 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=39.874667 3)=40.210796 0.357)=1.727951 3)=4.767138		16.369775 PSNR_B=32.668515 MSNR_B=-12.715872

cover_image	Size_secret_data	PSNR	MSE
		dB	
red_color	1280000	35.901220	16.709304
PSNR_R=37.613280	PSNR_G=51	1.137902	PSNR_B=32.291792
MSNR_R=36.474215	MSNR_G=46	5.152217	MSNR_B=26.229280
MSNR=32.105679			
W_PSNR(0.4_0.243	0.357)=38.999992		
W_PSNR(0.4_0.3_0	.3)=40.074220		
W_PSNR(1/3_1/3_1/	/3)=40.347658		
W_MSNR(0.4_0.243	0.357)=35.168528		
W_MSNR(0.4_0.3_0	.3)=36.304135		
W_MSNR(1/3_1/3_1/	(3)=36.285237		

Embedding combination 1_3_4

cover_image	Size_secret_data	PSNR	MSE
		dB	
peppers_color	1280000	36.358849	15.038188
PSNR_R=51.140669	PSNR_G=3	7.943440	PSNR_B=32.793890
MSNR_R=46.134703	MSNR_G=3	0.800288	MSNR_B=20.734324
MSNR=28.760245			
W_PSNR(0.4_0.243_	0.357)=41.383942		
W_PSNR(0.4_0.3_0.	3)=41.677467		
W_PSNR(1/3_1/3_1/	3)=40.626000		
W_MSNR(0.4_0.243_	0.357)=33.340505		
W_MSNR(0.4_0.3_0.	3)=33.914265		
W_MSNR(1/3_1/3_1/	3)=32.556438		

cover_image	Size_secret_data	PSNR	MSE
		dB	
lena color	1280000	36.058180	16.116190
PSNR_R=51.141538	PSNR_G=37	.946714	PSNR_B=32.400274
MSNR_R=48.122408	MSNR_G=29	.734115	MSNR_B=24.738896
MSNR=30.088409			
W_PSNR(0.4_0.243	0.357)=41.244564		
W_PSNR(0.4_0.3_0	.3)=41.560711		
W_PSNR(1/3_1/3_1/	/3)=40.496175		
W_MSNR(0.4_0.243	0.357)=35.306139		
W_MSNR(0.4_0.3_0	.3)=35.590866		
W_MSNR(1/3_1/3_1/	/3)=34.198473		

cover image	Size secret data	PSNR	MSE
—		dB	
baboon color	1280000	36.327248	15.148008
_			
PSNR_R=51.127499	PSNR_G=37.90		PSNR_B=32.763471
MSNR_R=45.253863	MSNR_G=31.43	2584	MSNR_B=25.098215
MSNR=29.687650			
W PSNR(0.4 0.243	0.357)=41.358983		
W PSNR (0.4 0.3 0.			
W_PSNR(1/3_1/3_1/			
W_MSNR(0.4_0.243_	0.357)=34.699726		
W_MSNR(0.4_0.3_0.	3)=35.060785		
W_MSNR(1/3_1/3_1/	3)=33.928220		
cover_image	Size_secret_data	PSNR	MSE
		dB	
barbra_color	1280000	36.309763	15.209121
PSNR_R=51.133944	PSNR_G=37.92	8610	PSNR_B=32.733776
MSNR_R=45.584575	MSNR_G=29.98	0509	MSNR_B=24.018367
MSNR=29.012732	_		
W PSNR(0.4 0.243	0.357)=41.356188		
W PSNR (0.4 0.3 0.	_		
W PSNR (1/3 1/3 1/			
	_0.357)=34.093651		
	_		
W_MSNR(0.4_0.3_0			
W_MSNR(1/3_1/3_1/	(3)=33.194484		
cover_image	Size_secret_data	PSNR	MSE
		dB	
Balloon color	1280000	36.381057	14.961483
PSNR R=51.149635			PSNR B=32.844442
_	_		_
MSNR_R=43.699485	MSNR_G=31.64	8673	MSNR_B=27.747200
MSNR=30.176193			
W_PSNR(0.4_0.243	_0.357)=41.388890		
W PSNR(0.4 0.3 0.	.3)=41.675618		
W_PSNR (1/3_1/3_1/	(3)=40.622950		
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	/3)=40.622950 _0.357)=35.076172		
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0	/3)=40.622950 _0.357)=35.076172 .3)=35.298556		
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	/3)=40.622950 _0.357)=35.076172 .3)=35.298556		
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0)	/3)=40.622950 _0.357)=35.076172 .3)=35.298556		
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0)	/3)=40.622950 _0.357)=35.076172 .3)=35.298556		
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0)	/3)=40.622950 _0.357)=35.076172 .3)=35.298556	PSNR	MSE
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/	/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119	PSNR dB	MSE
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/	/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119		MSE
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000</pre>	dB 36.084681	16.018146
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119</pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ 	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119</pre>	dB 36.084681 2813	16.018146
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65</pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357)=41.258492</pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243] W_PSNR(0.4_0.3_0)	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000</pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243] W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357)=41.258492 .3)=41.570949 /3)=40.506118</pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243)	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357)=41.258492 .3)=41.570949 /3)=40.506118 _0.357)=22.697835</pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_MSNR(0.4_0.3_0)	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 </pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243)	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 </pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(0.4_0.3_0) W_MSNR(0.4_0.3_0)	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 </pre>	dB 36.084681 2813	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/)	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440</pre>	dB 36.084681 2813 8429	16.018146 PSNR_B=32.441117 MSNR_B=23.570223
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(0.4_0.3_0) W_MSNR(0.4_0.3_0)	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 </pre>	dB 36.084681 2813 8429 PSNR	16.018146 PSNR_B=32.441117
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/)	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440</pre>	dB 36.084681 2813 8429	16.018146 PSNR_B=32.441117 MSNR_B=23.570223
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.243 W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image	<pre>/3)=40.622950 _0.357)=35.076172 .3)=35.298556 /3)=34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357)=41.258492 .3)=41.570949 /3)=40.506118 _0.357)=22.697835 .3)=22.816863 /3)=23.116440 Size_secret_data</pre>	dB 36.084681 2813 8429 PSNR dB	16.018146 PSNR_B=32.441117 MSNR_B=23.570223
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.243 W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image green_color	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSNR_B=23.570223
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(1/3_1/3_1/) cover_image green_color PSNR_R=51.137305	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243] W_MSNR (0.4_0.3_0) W_MSNR (1/3_1/3_1/ Cover_image Blue_color PSNR_R=51.154424 MSNR =20.120668 MSNR=22.554663 W_PSNR (0.4_0.243] W_PSNR (0.4_0.243] W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.3_0) W_MSNR (0.4_0.3_0) W_MSNR (1/3_1/3_1/ Cover_image green_color PSNR_R=51.137305 MSNR_R=5.290154	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE
<pre>W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243] W_MSNR (0.4_0.3_0) W_MSNR (1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR (0.4_0.243] W_PSNR (0.4_0.243] W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.3_0) W_MSNR (0.4_0.3_0) W_MSNR (1/3_1/3_1/ Cover_image green_color PSNR_R=51.137305 MSNR_R=5.290154 MSNR=16.536709</pre>	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062 MSNR_G=27.5515</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_8=51.154424 MSNR_8=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_0) W_PSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ MSNR(1/3_1/3_1/ W_MSNR(1/3_1/3_1/) cover_image cover_image green_color PSNR_8=51.137305 MSNR_8=5.290154 MSNR=16.536709 W_PSNR(0.4_0.243_	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 </pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243] W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_R=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243] W_PSNR(0.4_0.243] W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ m_MSNR(1/3_1/3_1/ m_MSNR(1/3_1/3_1/) cover_image green_color PSNR_R=51.137305 MSNR_R=5.290154 MSNR=6.536709 W_PSNR(0.4_0.243] W_PSNR(0.4_0.243] W_PSNR(0.4_0.3_0.	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 _0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062 MSNR_G=27.5515 0.357) =41.366814 3) =41.674282</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR=22.554663 W_PSNR(0.4_0.243 W_PSNR(0.4_0.243) W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ MSNR (1/3_1/3_1/ MSNR (1/3_1/3_1/ cover_image green_color PSNR_R=51.137305 MSNR_R=5.290154 MSNR=16.536709 W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 0.357) =41.258492 .3) =41.570949 /3) =40.506118 0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062 MSNR_G=27.5515 0.357) =41.366814 3) =41.674282 3) =40.622835</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
<pre>W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0, W_MSNR(1/3_1/3_1/ cover_image </pre>	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062 MSNR_G=27.5515 0.357) =41.366814 3) =41.674282 3) =40.622835 0.357) =4.271512</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243 W_MSNR (0.4_0.3_0) W_MSNR (1/3_1/3_1/ cover_image Blue_color PSNR_R=51.154424 MSNR_22.554663 W_PSNR (0.4_0.243 W_PSNR (0.4_0.243) W_PSNR (1/3_1/3_1/ W_MSNR (1/3_1/3_1/ m_MSNR (1/3_1/3_1/ cover_image green_color PSNR_R=51.137305 MSNR_R=5.290154 MSNR=16.536709 W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062 MSNR_G=27.5515 0.357) =41.366814 3) =40.622835 0.357) =4.271512 3) =6.566753</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515
<pre>W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0, W_MSNR(1/3_1/3_1/ cover_image Blue_color PSNR_=51.154424 MSNR_=20.120668 MSNR=22.554663 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0, W_MSNR(0.4_0.3_0, W_MSNR(1/3_1/3_1/ m_SNR_=51.137305 MSNR_=16.536709 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0, W_PSNR(0.4_0.3_1/ M_SNR(0.4_0.243_ W_PSNR(0.4_0.3_1/ M_SNR(0.4_0.243_ W_PSNR(0.4_0.3_0, W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_0.3_0,\\W_MSNR(0.4_</pre>	<pre>/3) =40.622950 _0.357) =35.076172 .3) =35.298556 /3) =34.365119 Size_secret_data 1280000 PSNR_G=37.92 MSNR_G=25.65 0.357) =41.258492 .3) =41.570949 /3) =40.506118 _0.357) =22.697835 .3) =22.816863 /3) =23.116440 Size_secret_data 1280000 PSNR_G=38.062 MSNR_G=27.5515 0.357) =41.366814 3) =40.622835 0.357) =4.271512 3) =6.566753</pre>	dB 36.084681 2813 8429 PSNR dB 36.290224 684	16.018146 PSNR_B=32.441117 MSNR_B=23.570223 MSE 15.277700 PSNR_B=32.668515

cover_image	Size_secret_data	PSNR	MSE
		dB	
red_color	1280000	35.913842	16.660813
PSNR_R=51.141321	PSNR_G=37.	669573	PSNR_B=32.291792
MSNR_R=50.002256	MSNR_G=32.	683888	MSNR_B=26.229280
MSNR=32.118301			
W_PSNR(0.4_0.243	0.357)=41.138404		
W_PSNR(0.4_0.3_0	.3)=41.444938		
W_PSNR(1/3_1/3_1	/3)=40.367562		
W_MSNR(0.4_0.243	0.357)=37.306940		
W_MSNR(0.4_0.3_0	.3)=37.674853		
W_MSNR(1/3_1/3_1	/3)=36.305141		

Embedding combination 1_4_3

cover_image	Size_secret_data	PSNR dB	MSE
peppers_color PSNR_R=51.140669 MSNR_R=46.134703	1280000 PSNR_G=31.0 MSNR_G=24.0		17.978802 PSNR_B=38.742703 MSNR_B=26.683143
MSNR=27.984593 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=41.565926 3)=40.502065 0.357)=33.928322 3)=33.802724		
cover_image	Size_secret_data	PSNR dB	MSE
lena_color PSNR_R=51.141538 MSNR_R=48.122408 MSNR=29.624583 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.			17.932671 PSNR_B=38.69671 MSNR_B=31.03533
W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	0.357)=36.022718 3)=35.589366		
cover_image	Size_secret_data	PSNR dB	MSE
baboon_color PSNR_R=51.127499 MSNR_R=45.253863 MSNR=28.982089 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	3)=41.571142 3)=40.509325		17.820160 PSNR_B=38.728220 MSNR_B=31.062970
W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=34.979758		

cover_image	Size_secret_data	PSNR	MSE
		dB	
barbra_color	1280000	35.615546	17.845377
PSNR_R=51.133944	PSNR_G=31.6		PSNR_B=38.727965
MSNR_R=45.584575	MSNR_G=23.7	/16707	MSNR_B=30.012556
MSNR=28.318516			
	_0.357)=41.974009		
W_PSNR(0.4_0.3_0			
W_PSNR(1/3_1/3_1/			
W_MSNR(0.4_0.243 W MSNR(0.4_0.3_0	_0.357)=34.711472		
	-		
W_MSNR(1/3_1/3_1/	(3)=33.104613		
cover image	Size secret data	PSNR	MSE
oover_image	bille_bebieb_daba	dB	1102
Balloon_color	1280000	35.627387	17.796790
PSNR R=51.149635	PSNR G=31.0	571862	PSNR B=38.764011
MSNR_R=43.699485	MSNR_G=25.4		MSNR_B=33.666769
MSNR=29.422522	_		
W_PSNR(0.4_0.243	0.357)=41.994868		
W_PSNR (0.4_0.3_0	-		
W_PSNR (1/3_1/3_1/			
W_MSNR (0.4_0.243			
W_MSNR (0.4_0.3_0			
W_MSNR (1/3_1/3_1/	(3)=34.270672		
cover_image	Size_secret_data	PSNR	MSE
		dB	
			17.649665
Blue_color PSNR R=51.154424	1280000 PSNR G=31.	35.663439	PSNR B=38.637266
MSNR R=20.120668	_		MSNR B=29.766373
_	HONK G-19.	1/0111	M3NK_D=23.700373
MGND=22 133421			
MSNR=22.133421 W PSNR(0.4.0.243	0.357)=41.968287		
W_PSNR(0.4_0.243	(0.357) = 41.968287 (3) = 41.575188		
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0	3)=41.575188		
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1/	3)=41.575188 /3)=40.510829		
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243			
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0	.3)=41.575188 /3)=40.510829 _0.357)=23.407630 .3)=22.821103		
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243	.3)=41.575188 /3)=40.510829 _0.357)=23.407630 .3)=22.821103		
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0	.3)=41.575188 /3)=40.510829 _0.357)=23.407630 .3)=22.821103		
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0	.3)=41.575188 /3)=40.510829 _0.357)=23.407630 .3)=22.821103	PSNR	MSE
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0 W_MSNR(1/3_1/3_1,	.3)=41.575188 /3)=40.510829 _0.357)=23.407630 .3)=22.821103 /3)=23.121151	PSNR dB	MSE
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0 W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 _0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data	dB	
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 _0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 	dB 35.821866	17.017423
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0 W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 _0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31.	dB 35.821866 767962	17.017423
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, </pre>	.3)=41.575188 (3)=40.510829 _0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 	dB 35.821866 767962	17.017423 PSNR_B=39.514179
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, </pre>	.3)=41.575188 (3)=40.510829 _0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23	dB 35.821866 767962	17.017423 PSNR_B=39.514179
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ </pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31.0 MSNR_G=21.25 [0.357)=42.281099	dB 35.821866 767962	17.017423 PSNR_B=39.514179
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ </pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31.4 MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565	dB 35.821866 767962	17.017423 PSNR_B=39.514179
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ 	.3)=41.575188 (3)=40.510829 _0.357)=23.407630 .3)=22.821103 (3)=23.121151 	dB 35.821866 767962	17.017423 PSNR_B=39.514179
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035	dB 35.821866 767962	17.017423 PSNR_B=39.514179
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035	dB 35.821866 767962	17.017423 PSNR_B=39.514179
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035	dB 35.821866 767962	17.017423 PSNR_B=39.514179
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357]=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31.7 MSNR_G=21.23 [0.357]=42.281099 .3)=41.839565 (3)=40.806482 [0.357]=5.185796 .3)=6.732035 (3)=6.892244	dB 35.821866 767962 56787	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035	dB 35.821866 767962 56787 PSNR	17.017423 PSNR_B=39.514179
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357]=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31.7 MSNR_G=21.23 [0.357]=42.281099 .3)=41.839565 (3)=40.806482 [0.357]=5.185796 .3)=6.732035 (3)=6.892244	dB 35.821866 767962 56787	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357]=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31.7 MSNR_G=21.23 [0.357]=42.281099 .3)=41.839565 (3)=40.806482 [0.357]=5.185796 .3)=6.732035 (3)=6.892244	dB 35.821866 767962 56787 PSNR	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, 	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000	dB 35.821866 767962 56787 PSNR dB 35.552818	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ </pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31.	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ </pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31.	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749
<pre>W_PSNR(0.4_0.243) W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1,</pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31. MSNR_G=26. [0.357)=41.945478	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, </pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31. MSNR_G=26. [0.357)=41.945478 .3)=41.541435	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243) W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1/ </pre>	.3)=41.575188 (3)=40.510829 [0.357)=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357)=42.281099 .3)=41.839565 (3)=40.806482 [0.357)=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31. MSNR_G=26. [0.357)=41.945478 .3)=41.541435 (3)=40.474781	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, </pre>	.3)=41.575188 (3)=40.510829 [0.357]=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357]=42.281099 .3)=41.839565 (3)=40.806482 [0.357]=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31. MSNR_G=26.7 [0.357]=41.945478 .3)=41.541435 (3)=40.474781 [0.357]=38.114014	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, </pre>	.3)=41.575188 (3)=40.510829 [0.357]=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357]=42.281099 .3)=41.839565 (3)=40.806482 [0.357]=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31. MSNR_G=26.1 [0.357]=41.945478 .3)=41.541435 (3)=40.474781 [0.357]=38.114014 .3)=37.771350	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749
<pre>W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1, W_MSNR(0.4_0.243) W_MSNR(0.4_0.243) W_MSNR(0.4_0.3_0) W_MSNR(1/3_1/3_1, </pre>	.3)=41.575188 (3)=40.510829 [0.357]=23.407630 .3)=22.821103 (3)=23.121151 Size_secret_data 1280000 PSNR_G=31. MSNR_G=21.23 [0.357]=42.281099 .3)=41.839565 (3)=40.806482 [0.357]=5.185796 .3)=6.732035 (3)=6.892244 Size_secret_data 1280000 PSNR_G=31. MSNR_G=26.1 [0.357]=41.945478 .3)=41.541435 (3)=40.474781 [0.357]=38.114014 .3)=37.771350	dB 35.821866 767962 56787 9587 dB 35.552818 597273	17.017423 PSNR_B=39.514179 MSNR_B=-5.870208 MSE 18.105002 PSNR_B=38.685749

Embedding combination 2_2_4

cover_image	Size_secret_data	PSNR dB	MSE
	1280000 PSNR_G=44 MSNR_G=36.		13.060298 PSNR_B=32.79389 MSNR_B=20.73432
	-		_
V_PSNR(0.4_0.3_0 V PSNR(1/3 1/3 1/			
	_0.357)=32.050561 .3)=32.977358		
cover_image	Size_secret_data	PSNR dB	MSE
lena_color PSNR_R=44.138741 MSNR_R=41.119610 MSNR=30.656513	1280000 PSNR_G=44. MSNR_G=35.		14.140083 PSNR_B=32.40027 MSNR_B=24.73889
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0 W PSNR(1/3 1/3 1/			
	_0.357)=34.013889 .3)=34.652549		
	-		
cover_image	Size_secret_data	PSNR dB	MSE
Darbra_color PSNR_R=44.137269 ISNR_R=38.587899 ISNR=29.621864	1280000 PSNR_G=44.1 MSNR_G=36.2		13.218765 PSNR_B=32.73377 MSNR_B=24.01836
<pre>N_PSNR(0.4_0.243_ N_PSNR(0.4_0.3_0. N_PSNR(1/3_1/3_1/</pre>	(3)=40.341870 _0.357)=32.807887		
M_MSNR (1/3_1/3_1/			
cover_image	Size_secret_data	PSNR dB	MSE
lena_color PSNR_R=44.138741	1280000 PSNR_G=44.3	36.626284 156053	14.140083 PSNR_B=32.40027
4SNR_R=41.119610 4SNR=30.656513	MSNR_G=35.	943453	MSNR_B=24.73889
V_PSNR(0.4_0.243 V PSNR(0.4 0.3 0	_0.357)=39.952315		
PSNR (1/3_1/3_1	(3)=40.231689		
N_MSNR(0.4_0.243 N_MSNR(0.4_0.3_0 N_MSNR(1/3_1/3_1			
cover_image	Size_secret_data	PSNR dB	MSE
Salloon_color PSNR_R=44.150850 ISNR_R=36.700700	1280000 P5NR_G=44.1 MSNR_G=37.8		12.931923 PSNR_B=32.84444 MSNR_B=27.74720
ISNR=30.809308			

cover image Size_secret_data PSNR MSE dB
 36.658028
 14.037105

 9
 PSNR_B=32.441117

 5
 MSNR_B=23.570223
 1280000 Blue_color PSNR_R=44.008057 MSNR_R=12.974301 PSNR_G=44.217879 MSNR G=31.953495 MSNR=23.128010 W PSNR(0.4 0.243 0.357)=39.929646 W_PSNR(0.4_0.3_0.3)=40.600922 W_PSNR(1/3_1/3_1/3)=40.222351 W_MSNR(0.4_0.243_0.357)=21.368989 W_MSNR(0.4_0.3_0.3)=21.846836 W MSNR (1/3 1/3 1/3) =22.832673 cover_image PSNR Size_secret_data MSE dB

 green_color
 1280000

 PSNR_R=43.997031
 PSNR_G=44.092170

 MSNR_R=-1.850121
 MSNR_G=33.5055

 MSNR=17.095519
 MSNR_G=33.5055

 _____ 36.849034 13.433125 D PSNR_B=32.668515 MSNR_B=-12.715872 W_PSNR(0.4_0.243_0.357)=39.975869 W_PSNR(0.4_0.3_0.3)=40.627018 W_PSNR(1/3_1/3_1/3)=40.252572 W_MSNR(0.4_0.243_0.357)=2.880567 W MSNR(0.4 0.3 0.3)=5.519488 W_MSNR(1/3_1/3_1/3)=6.338334 _____ ----cover_image PSNR Size_secret_data MSE dB ___0010r 1280000 PSNR_R=44.036207 MSND_R=4
 36.514872
 14.507519

 71
 PSNR_B=32.291792

 87
 MSNR_B=26.229280
 PSNR_G=43.992171 MSNR_R=42.897142 MSNR_G=39.006487 W_PSNR(0.4_0.243_0.357)=39.832750 W_PSNR(0.4_0.3_0.3)=40.499672 W_PSNR(1/3_1/3_1/3)=40.106723 W_MSNR(0.4_0.243_0.357)=36.001286 W_MSNR(0.4_0.3_0.3)=36.729587 W_MSNR(1/3_1/3_1/3)=36.044303

Embedding combination 2_4_2

cover_image	Size_secret_data	PSNR	MSE
_		dB	
peppers_color	1280000	36.104337	15.945815
PSNR_R=44.153184	PSNR_G=31.77600	4	PSNR_B=44.829000
MSNR_R=39.147218	MSNR_G=24.63285	3	MSNR_B=32.769434
MSNR=28.505733			
W_PSNR(0.4_0.243_	0.357)=41.386796		
W_PSNR(0.4_0.3_0.			
W_PSNR(1/3_1/3_1/	3)=40.252730		
W_MSNR(0.4_0.243_			
W_MSNR(0.4_0.3_0.	-		
W_MSNR(1/3_1/3_1/	3)=32.183168		
cover_image	Size_secret_data	PSNR	MSE
		dB	
lena_color	1280000	36.152823	
PSNR_R=44.138741	PSNR_G=31.83184		PSNR_B=44.803769
MSNR R=41.119610	MSNR G=23.61924	5	MSNR B=37.142391
_	_		_
MSNR=30.183052	_		
W_PSNR(0.4_0.243_	-		
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.	3)=40.646180		
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	3)=40.646180 (3)=40.258118		
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	3)=40.646180 (3)=40.258118 [0.357)=35.447154		
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	3)=40.646180 (3)=40.258118 (0.357)=35.447154 (3)=34.676335		
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	3)=40.646180 (3)=40.258118 (0.357)=35.447154 (3)=34.676335		

cover_image	Size_secret_data	PSNR dB	MSE
	1280000	36.132448	15.842931
baboon_color PSNR R=44.147507	PSNR G=31.80		PSNR B=44.830803
MSNR R=38.273871	MSNR G=25.33		MSNR B=37.165546
MSNR=29.492850	H5NK_0-25.50	2070	MBNK_B-37.103340
W PSNR(0.4 0.243	0 357)=41 392794		
W PSNR (0.4 0.3 0.			
W PSNR (1/3 1/3 1/			
W MSNR (0.4 0.243			
W MSNR (0.4 0.3 0.			
W MSNR (1/3 1/3 1/			
"	0, 00.000,01		
cover_image	Size_secret_data	PSNR dB	MSE
barbra color	1280000	36.098486	15.967310
PSNR R=44.137269	PSNR G=31.76		PSNR B=44.840488
MSNR_R=38.587899	MSNR_G=23.82	1779	MSNR_B=36.125079
MSNR=28.801455			
W_PSNR(0.4_0.243_			
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/			
W_PSNR(1/3_1/3_1/ W MSNR(0.4 0.243			
W MSNR(0.4 0.3 0.			
W_MSNR (1/3_1/3_1/			
cover image	Size secret data	PSNR	 MSE
cover_image	Size_secret_data	dB	HOL
Balloon_color	1280000	36.161301	15.738027
PSNR_R=44.150850	PSNR_G=31.83	37414	PSNR_B=44.866037
MSNR_R=36.700700	MSNR_G=25.63	11313	MSNR_B=39.768795
MSNR=29.956436			
W_PSNR(0.4_0.243_	0.357)=41.414007		
W_PSNR(0.4_0.3_0.			
W_PSNR(1/3_1/3_1/			
W_MSNR(0.4_0.243_	-		
W_MSNR(0.4_0.3_0.			
W_MSNR(1/3_1/3_1/	3)-34.026936		
cover_image	Size_secret_data	PSNR	MSE
		dB	
	120222		45.604.005
Blue_color	1280000	36.193658	15.621206
PSNR_R=44.008057	PSNR_G=31.89		PSNR_B=44.695241
MSNR_R=12.974301	MSNR_G=19.62	26284	MSNR_B=35.824347
MSNR=22.663640			
W PSNR(0.4 0.243	0.357)=41.308856		
W_PSNR(0.4_0.3_0.			
W PSNR(1/3 1/3 1/			
W MSNR (0.4 0.243			
W_MSNR(0.4_0.3_0.			
W_MSNR(1/3_1/3_1/	3)=22.808311		
cover image	Size segnet data	DSND	MSE
cover image	Size_secret_data	DSNR dB	MSE
green_color	1280000	36.286560	15.290594
 green_color	PSNR_G=31.93	35933	
green_color PSNR_R=43.997031	PSNR_G=31.93	35933	PSNR_B=45.972875
green_color PSNR_R=43.997031 MSNR_R=-1.850121	PSNR_G=31.93 MSNR_G=21.42	35933	PSNR_B=45.972875
green_color PSNR_R=43.997031 MSNR_R=-1.850121 MSNR=16.533045	PSNR_G=31.93 MSNR_G=21.42 _0.357)=41.771560	35933	PSNR_B=45.972875
green_color PSNR_R=43.997031 MSNR_R=-1.850121 MSNR=16.533045 W_PSNR(0.4_0.243_	PSNR_G=31.93 MSNR_G=21.42 _0.357)=41.771560 .3)=40.971455	35933	PSNR_B=45.972875
green_color PSNR_R=43.997031 MSNR_R=-1.850121 MSNR=16.533045 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/	PSNR_G=31.93 MSNR_G=21.42 0.357)=41.771560 3)=40.971455 (3)=40.635280	35933	PSNR_B=45.972875
green_color PSNR_R=43.997031 MSNR_R=-1.850121 MSNR=16.533045 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243	PSNR_G=31.93 MSNR_G=21.42 0.357)=41.771560 3)=40.971455 (3)=40.635280 _0.357)=4.676258	35933	PSNR_B=45.972875
green_color PSNR_R=43.997031 MSNR_R=-1.850121 MSNR=16.533045 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0) W_PSNR(1/3_1/3_1/	PSNR_G=31.93 MSNR_G=21.42 0.357)=41.771560 3)=40.971455 (3)=40.635280 0.357)=4.676258 3)=5.863925	35933	PSNR_B=45.972875

cover_image	Size_secret_data	PSNR	MSE	
		dB		
red_color	1280000	36.092366	15.989827	
PSNR_R=44.036207	PSNR_G=31	1.777991	PSNR_B=44.662545	
MSNR_R=42.897142	MSNR_G=26	6.792307	MSNR_B=38.600032	
MSNR=32.296825				
W PSNR(0.4 0.243 0.357)=41.281063				
W_PSNR(0.4_0.3_0	.3)=40.546643			
W_PSNR(1/3_1/3_1/	/3)=40.158914			
W_MSNR(0.4_0.243	0.357)=37.449599			
W_MSNR(0.4_0.3_0	.3)=36.776558			
W_MSNR(1/3_1/3_1/	/3)=36.096494			

Embedding combination 4_2_2

cover_image	Size_secret_data	PSNR dB	MSE
peppers_color	1280000	36.151642	15.773067
PSNR_R=31.829641	PSNR_G=44.13238	0	PSNR_B=44.829000
MSNR_R=26.823674	MSNR_G=36.98922	8	MSNR_B=32.769434
MSNR=28.553039			
W_PSNR(0.4_0.243	0.357)=39.459978		
W PSNR (0.4 0.3 0.	.3)=39.420270		
W PSNR (1/3 1/3 1/	(3)=40.263674		
	0.357)=31.416540		
W MSNR (0.4 0.3 0.			
W MSNR (1/3 1/3 1/	-		
"	0, 02.101112		
cover_image	Size_secret_data	PSNR dB	MSE
lena_color	1280000	35.954113	16.507035
PSNR_R=31.609777 MSNR R=28.590647	PSNR_G=44.17816 MSNR G=35.96556		PSNR_B=44.803769 MSNR B=37.142391
MSNR=29.984342	IDAK_0-00.90000	5	MBMR_D-37.112351
W_PSNR(0.4_0.243	0.357)=39.374150		
W_PSNR(0.4_0.3_0.	3)=39.338490		
W_PSNR(1/3_1/3_1/			
W_MSNR(0.4_0.243_			
W_MSNR(0.4_0.3_0. W MSNR(1/3 1/3 1/			
W_HONK(1/3_1/3_1/	3)-33.833334		
cover_image	Size_secret_data	PSNR dB	MSE
baboon_color	1280000	36.173160	15.695108
PSNR_R=31.852268	PSNR_G=44.15189		PSNR_B=44.830803
MSNR_R=25.978631 MSNR=29.533562	MSNR_G=37.67738	2	MSNR_B=37.165546
	0.357)=39.474413		
W_PSNR(0.4_0.3_0.			
W_PSNR (1/3_1/3_1/			
	_0.357)=32.815156		
W_MSNR(0.4_0.3_0.			
W_MSNR (1/3_1/3_1/	/3)=33.607186		

cover image	Size secret data	PSNR	MSE
oorer_image	bine_beoico_daba	dB	1101
hawkwa seler	1280000	36.163352	15.730596
barbra_color			
PSNR_R=31.840527	PSNR_G=44.15		PSNR_B=44.840488
MSNR_R=26.291158	MSNR_G=36.21	0191	MSNR_B=36.125079
MSNR=28.866321			
W_PSNR(0.4_0.243_	0.357)=39.474730		
W_PSNR(0.4_0.3_0.	3)=39.435845		
W_PSNR(1/3_1/3_1/	3)=40.279769		
W MSNR(0.4 0.243	0.357)=32.212193		
W MSNR (0.4 0.3 0.	3)=32.217044		
W MSNR (1/3 1/3 1/			
cover_image	Size_secret_data	PSNR	MSE
		dB	
Balloon color	1280000	36.182630	15.660925
PSNR R=31.860033	PSNR G=44.16		PSNR B=44.866037
MSNR R=24.409883	MSNR G=37.94		MSNR B=39.768795
MSNR=29.977765			
W PSNR(0.4 0.243	0.357)=39.494095		
W PSNR (0.4 0.3 0.			
W PSNR (1/3 1/3 1/	(3)=40.298137		
W_MSNR(0.4_0.243_	0.357)=33.181378		
W_MSNR(0.4_0.3_0.	3)=33.077264		
W_MSNR(1/3_1/3_1/	(3)=34.040306		
cover_image	Size_secret_data	PSNR	MSE
		dB	
Blue_color	1280000	38.275298	9.672763
PSNR_R=34.260334	PSNR_G=44.27		PSNR_B=44.695241
MSNR_R=3.226578	MSNR G=32.007		MSNR B=35.824347
		152	
MSNR=24.745281	—	152	
W_PSNR(0.4_0.243_	_ 0.357)=40.418318	152	
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.	 0.357)=40.418318 3)=40.394167	152	
W_PSNR(0.4_0.243_	 0.357)=40.418318 3)=40.394167	152	
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661	152	
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081	152	
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081	152	
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081	152	
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081 (3)=23.686026		_
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081	PSNR	MSE
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081 (3)=23.686026		_
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081 (3)=23.686026	PSNR	_
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563	 MSE 23.294696 PSNR_B=45.972875
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563	 MSE 23.294696
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563	 MSE 23.294696 PSNR_B=45.972875
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563	 MSE 23.294696 PSNR_B=45.972875
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563	 MSE 23.294696 PSNR_B=45.972875
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081 (3)=23.686026 Size_secret_data 1280000 PSNR_G=44.22 MSNR_G=33.7 0.357)=39.138087 3)=39.038263 (3)=40.048089 0.357)=2.042785 3)=3.930733 (3)=6.133851	PSNR dB 34.458233 1563 10387	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563 10387 PSNR	 MSE 23.294696 PSNR_B=45.972875
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081 (3)=23.686026 Size_secret_data 1280000 PSNR_G=44.22 MSNR_G=33.7 0.357)=39.138087 3)=39.038263 (3)=40.048089 0.357)=2.042785 3)=3.930733 (3)=6.133851	PSNR dB 34.458233 1563 10387	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>	- 0.357)=40.418318 3)=40.394167 3)=41.075704 0.357)=21.857661 3)=21.640081 3)=23.686026 Size_secret_data 1280000 PSNR_G=44.22 MSNR_G=33.7 0.357)=39.138087 3)=39.038263 (3)=40.048089 0.357)=2.042785 3)=3.930733 (3)=6.133851 Size_secret_data	PSNR dB 34.458233 1563 10387 PSNR dB	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>	- 0.357)=40.418318 3)=40.394167 (3)=41.075704 0.357)=21.857661 3)=21.640081 (3)=23.686026 Size_secret_data 1280000 PSNR_G=44.22 MSNR_G=33.7 0.357)=39.138087 3)=39.038263 (3)=40.048089 0.357)=2.042785 3)=3.930733 (3)=6.133851	PSNR dB 34.458233 1563 10387 PSNR	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>	- 0.357)=40.418318 3)=40.394167 3)=41.075704 0.357)=21.857661 3)=21.640081 3)=23.686026 Size_secret_data 1280000 PSNR_G=44.22 MSNR_G=33.7 0.357)=39.138087 3)=39.038263 (3)=40.048089 0.357)=2.042785 3)=3.930733 (3)=6.133851 Size_secret_data	PSNR dB 34.458233 1563 10387 PSNR dB 35.467981	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image green_color PSNR_R=-15.897324 MSNR=14.704718 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/) W_MSNR(1/3_1/3_1/) M_MSNR(1/3_1/3_1/) m_SNR(1/3_1/) m_SNR(1/3_1/3_1/) m_SNR(1</pre>		PSNR dB 34.458233 1563 10387 PSNR dB 35.467981 8582	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488 MSNR_B=0.588488
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image green_color PSNR_R=29.949828 MSNR=14.704718 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_00. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/) W_MSNR(1/3_1/3_1/ W_MSNR(1/3_1/3_1/) W_MSNR(1/3_1/3_1/ W_MSNR(1/3_1/3_1/) W_MSNR(1/3_1/) W_MSNR(1/3_1/) W_MSNR(1/3_1/)) W_MSNR(1/3_1/) W_MSNR(1/3_1/)) W_MSNR(1/3</pre>		PSNR dB 34.458233 1563 10387 PSNR dB 35.467981 8582	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488 MSE 18.462150 PSNR_B=44.662545
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ cover_image green_color PSNR_R=29.949828 MSNR=14.704718 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0.) W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSNR(0.4_0.3_0.)\\W_MSN</pre>	- 0.357)=40.418318 3)=40.394167 3)=41.075704 0.357)=21.857661 3)=21.640081 3)=23.686026 	PSNR dB 34.458233 1563 10387 PSNR dB 35.467981 8582	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488 MSE 18.462150 PSNR_B=44.662545
<pre>W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ </pre>		PSNR dB 34.458233 1563 10387 PSNR dB 35.467981 8582	MSE 23.294696 PSNR_B=45.972875 MSNR_B=0.588488 MSE 18.462150 PSNR_B=44.662545

Appendix E: Adaptive LSB Algorithm (ALSB) for Color Images

E.1 The main program

1.	clc
2.	clear
3.	cover_image=imread('C:\Users\hajer\Desktop\thesis\COLOR SCALE\LSB_color\red.jpg');
4.	$Red = cover_image(:,:,1);$
5.	Green = cover_image(:,:,2);
6.	Blue = cover_image(:,:,3);
7.	[M N L]=size(cover_image);
8.	S=sum(cover_image(:,:,1));
9.	avg_R=sum(S)/(M*N*L);
10.	S2=sum(cover_image(:,:,2));
11.	avg_G=sum(S2)/(M*N*L);
12.	S3=sum(cover_image(:,:,3));
13.	avg_B=sum(S3)/(M*N*L);
14.	disp('=========')
15.	disp('cover_image Size_secret_data PSNR MSE ')
16.	disp(' dB ')
17.	1 – /
18.	
19.	
20.	[m n l]=size(secrt_image);
21.	k=1;
22.	
23.	5
24.	<pre>str = dec2bin(secrt_image(i,j),8);</pre>
	for q=1:8
	aa=str2num(str(q));
	secret_massege(k)=aa;
	k=k+1;
	end
30.	
31.	
32.	
33.	if (avg_B>=avg_R)&&(avg_B>=avg_G)&&(avg_R>=avg_G)%b=4 r=3 g=1
34. 25	%blue=4; red=3; green=1;
35.	
36.	
37.	
38.	%blue=4; red=1; green=3;
39. 40	
40.	
41.	if (avg_G>=avg_R)&&(avg_G>=avg_B)&&(avg_B>=avg_R)%b=3 r=1 g=4
42.	%blue=3; red=1; green=4;
43.	
44. 45	
45. 46	if (avg_G>=avg_R)&&(avg_G>=avg_B)&&(avg_R>=avg_B)%b=1 r=3 g=4
46.	% blue=1; red=3; green=4;
47. 10	blue=4; red=3; green=1;
48.	end

- 49. if (avg_R>=avg_B)&&(avg_R>=avg_G)&&(avg_G>=avg_B)%b=1 r=4 g=3
- **50.** % blue=1; red=4;green=3;
- 51. blue=4; red=1;green=3;
- 52. end
- 53. if (avg_R>=avg_B)&&(avg_R>=avg_G)&&(avg_B>=avg_G)%b=3 r=4 g=1
- 54. %blue=3;red=4;green=1;
- 55. blue=3;red=1;green=4;
- 56. end
- 57. [stego_image,y,u]=embedding(red,green,blue,cover_image,secret_massege);
- 58. [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image);
- 59. $mse = (MSE_R + MSE_B + MSE_G)/3;$
- 60. [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B);
- 61. disp(sprintf('%s %d %f %f ',p,r,PSNR,mse));
- 62. disp(sprintf('avg_R=%f avg_G=%f avg_B=%f',avg_R,avg_G,avg_B));
- 63. disp(sprintf('PSNR_R=%f PSNR_G=%f PSNR_B=%f',PSNR_R,PSNR_G,PSNR_B));
- 64. [MSNR,MSNR_R,MSNR_G,MSNR_B] =
- MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse);
- 65. disp(sprintf('MSNR_R=%f MSNR_G=%f
- MSNR_B=%f',MSNR_R,MSNR_G,MSNR_B));
- 66. disp(sprintf('MSNR=%f',MSNR));
- 67. Actual_PSNR_weight = A_PSNR(cover_image,MSE_R,MSE_G,MSE_B);
- 68. disp(sprintf('Actual_PSNR_weight(1/3_1/3_1/3)=%f',Actual_PSNR_weight));
- 69. disp(sprintf('W_PSNR(0.4_0.243_0.357)=%f',(0.4*PSNR_R+0.243*PSNR_G+0.357*PSNR _B)));
- 70. disp(sprintf('W_PSNR(0.4_0.3_0.3)=%f',(0.4*PSNR_R+0.3*PSNR_G+0.3*PSNR_B)));
- 71. disp(sprintf('W_PSNR(1/3_1/3_1/3)=%f',(1/3*PSNR_R+1/3*PSNR_G+1/3*PSNR_B)));
- 72. disp(sprintf('W_MSNR(0.4_0.243_0.357)=%f',(0.4*MSNR_R+0.243*MSNR_G+0.357*MS NR_B)));
- 73. disp(sprintf('W_MSNR(0.4_0.3_0.3)=%f',(0.4*MSNR_R+0.3*MSNR_G+0.3*MSNR_B)));
- 74. disp(sprintf('W_MSNR(1/3_1/3)=%f',(1/3*MSNR_R+1/3*MSNR_G+1/3*MSNR_B)));

=')

- 75. [var_orgR, var_noiseR] = snr(stego_image(:,:,1),cover_image(:,:,1));
- 76. [var_orgG, var_noiseG] = snr(stego_image(:,:,2),cover_image(:,:,2));
- 77. [var_orgB, var_noiseB] = snr(stego_image(:,:,3),cover_image(:,:,3));
- 78. SNR= 10*log10((var_orgR + var_orgG + var_orgB)/(var_noiseR + var_noiseG +

var_noiseB));

- 79. disp(sprintf('SNR=%f',SNR));
- 80. disp('==
- 81. figure
- 82. subplot(2,2,[1,3]);
- 83. imshow(cover_image);
- 84. title('Cover image')
- 85. subplot(2,2,[2,4]);
- 86. imshow(stego_image);
- 87. title('Stego image')

E.2 Embedding function

- 1. function [stego_image,y,u]=embedding(red,green,blue,cover_image,secret_massege)
- 2. u=0;
- 3. y=0;
- 4. [e r]=size(secret_massege);
- 5. [M N L]=size(cover_image);
- 6. stego_image=cover_image;
- 7. k=1;

- 8. stego_image(1,1,3)=cover_image(1,1,3)-(mod(cover_image(1,1,3),2^3))+blue;
- 9. stego_image(1,1,2)=cover_image(1,1,2)-(mod(cover_image(1,1,2),2^3))+green;
- $10. \ stego_image(1,1,1)=cover_image(1,1,1)-(mod(cover_image(1,1,1),2^{A}))+red;$
- 11. for j=2:N
- 12. if (k<=r)
- 13. EC=blue;
- 14. if (k+EC-1)>=r
- 15. q=(k+EC-1)-r;
- 16. s=secret_massege(k:k+EC-1-q);
- 17. k=k+EC;
- 18. else
- 19. s=secret_massege(k:k+EC-1);
- 20. k=k+EC;
- $21. \ \text{end}$
- 22. a = num2str(s);
- 23. DEC= bin2dec(a);
- $24. \quad stego_image(1,j,3)=cover_image(1,j,3)-(mod(cover_image(1,j,3),2^{EC}))+DEC;$
- 25. EC=green;
- 26. if (k+EC-1)>=r
- 27. q=(k+EC-1)-r;
- 28. $s=secret_massege(k:k+EC-1-q);$
- 29. k=k+EC;
- 30. else
- 31. $s=secret_massege(k:k+EC-1);$
- 32. k=k+EC;
- 33. end
- 34. a = num2str(s);
- 35. DEC= bin2dec(a);
- $36. \quad stego_image(1,j,2)=cover_image(1,j,2)-(mod(cover_image(1,j,2),2^{EC}))+DEC;\\$
- 37. EC=red;
- 38. if (k+EC-1) >= r
- 39. q=(k+EC-1)-r;
- $40. \hspace{0.1in} s{=}s{=}secret_massege(k:k{+}EC{-}1{-}q);$
- 41. k=k+EC;
- 42. else
- 43. $s=secret_massege(k:k+EC-1);$
- 44. k=k+EC;
- 45. end
- 46. a = num2str(s);
- 47. DEC= bin2dec(a);
- $48. \quad stego_image(1,j,1)=cover_image(1,j,1)-(mod(cover_image(1,j,1),2^{EC}))+DEC;$
- 49. end
- 50. end
- 51. for i=2:M
- 52. for j=1:N
- 53. if (k<=r)
- 54. EC=blue;
- 55. if (k+EC-1)>=r
- 56. q=(k+EC-1)-r;
- 57. $s=secret_massege(k:k+EC-1-q);$
- 58. k=k+EC;
- 59. else
- 60. s=secret_massege(k:k+EC-1);

- 61. k=k+EC;
- 62. end
- 63. a = num2str(s);
- 64. DEC= bin2dec(a);
- $65. \quad stego_image(i,j,3)=cover_image(i,j,3)-(mod(cover_image(i,j,3),2^{EC}))+DEC;$
- 66. EC=green;
- 67. if (k+EC-1)>=r
- 68. q=(k+EC-1)-r;
- 69. s=secret_massege(k:k+EC-1-q);
- 70. k=k+EC;
- 71. else
- 72. s=secret_massege(k:k+EC-1);
- 73. k=k+EC;
- 74. end
- 75. a = num2str(s);
- 76. DEC= bin2dec(a);
- 77. $stego_image(i,j,2)=cover_image(i,j,2)-(mod(cover_image(i,j,2),2^EC))+DEC;$
- 78. EC=red;
- 79. if (k+EC-1)>=r
- 80. q=(k+EC-1)-r;
- 81. s=secret_massege(k:k+EC-1-q);
- 82. k=k+EC;
- 83. else
- 84. s=secret_massege(k:k+EC-1);
- 85. k=k+EC;
- 86. end
- 87. a = num2str(s);
- 88. DEC= bin2dec(a);
- $89. \quad stego_image(i,j,1)=cover_image(i,j,1)-(mod(cover_image(i,j,1),2^{EC}))+DEC;$
- 90. y= i;
- 91. u=j;
- 92. end
 - 93. end
 - 94. end
 - 95. end

E3 Extraction function

- 1. function [output] = extraction(r,stego_image)
- 2. [M N L]=size(stego_image);
- 3. k=1;
- 4. kk=1;
- 5. blue=mod(stego_image(1,1,3),2^3);
- 6. green=mod(stego_image(1,1,2),2^3);
- 7. red=mod(stego_image(1,1,1),2^3);
- 8. for j=2:N
- 9. **if** (kk<=r)
- 10. EC=blue;
- 11. RES=mod(stego_image(1,j,3),2^EC);
- 12. if (k+EC-1)>=r
- 13. q=(k+EC-1)-r;
- 14. s=dec2bin(RES,EC-q);
- 15. **for** g=1:EC-q

- 16. a=str2num(s(g));
- 17. output(kk)=a;
- 18. kk=kk+1;
- 19. end
- 20. else
- 21. s=dec2bin(RES,EC);
- 22. for g=1:EC
- 23. a=str2num(s(g));
- 24. output(kk)=a;
- 25. kk=kk+1;
- 26. end
- 27. k=k+EC;
- 28. end
- 29. EC=green;
- 30. RES=mod(stego_image(1,j,2),2^EC);
- 31. if (k+EC-1)>=r
- 32. q=(k+EC-1)-r;
- 33. s=dec2bin(RES,EC-q);
- 34. for g=1:EC-q
- 35. a=str2num(s(g));
- 36. output(kk)=a;
- 37. kk=kk+1;
- 38. end
- 39. else
- 40. s=dec2bin(RES,EC);
- 41. for g=1:EC
- 42. a=str2num(s(g));
- 43. output(kk)=a;
- 44. kk=kk+1;
- 45. end
- 46. k=k+EC;
- 47. end
- 48. EC=red;
- 49. RES=mod(stego_image(1,j,1),2^EC);
- 50. if (k+EC-1) > = r
- 51. q=(k+EC-1)-r;
- 52. s=dec2bin(RES,EC-q);
- 53. for g=1:EC-q
- 54. a=str2num(s(g));
- 55. output(kk)=a;
- 56. kk=kk+1;
- 57. end
- 58. else
- 59. s=dec2bin(RES,EC);
- 60. for g=1:EC
- 61. a=str2num(s(g));
- 62. output(kk)=a;
- 63. kk=kk+1;
- 64. end
- 65. k=k+EC;
- 66. end
- 67. end

68. end 69. for i=2:M 70. for j=1:N 71. if (kk<=r) 72. EC=blue; 73. RES=mod(stego_image(i,j,3),2^EC); 74. if (k+EC-1)>=r 75. q=(k+EC-1)-r;76. s=dec2bin(RES,EC-q); 77. for g=1:EC-q 78. a=str2num(s(g)); 79. output(kk)=a; 80. kk=kk+1; 81. end 82. else 83. s=dec2bin(RES,EC); 84. for g=1:EC 85. a=str2num(s(g)); 86. output(kk)=a; 87. kk=kk+1; 88. end 89. k=k+EC; 90. end 91. EC=green; 92. RES=mod(stego_image(i,j,2),2^EC); 93. if (k+EC-1) > = r94. q=(k+EC-1)-r;95. s=dec2bin(RES,EC-q); 96. for g=1:EC-q 97. a=str2num(s(g)); 98. output(kk)=a; 99. kk=kk+1; 100. end 101. else 102. s=dec2bin(RES,EC); 103. for g=1:EC 104. a=str2num(s(g)); 105. output(kk)=a; 106. kk = kk + 1;107. end 108. k = k + EC;109. end 110. EC=red; 111. RES=mod(stego_image(i,j,1),2^EC); 112. if (k+EC-1)>=r 113.q=(k+EC-1)-r; 114. s=dec2bin(RES,EC-q); 115. for g=1:EC-q 116. a=str2num(s(g)); 117. output(kk)=a; 118. kk=kk+1;

119. end

120. else 121. s=dec2bin(RES,EC); 122. for g=1:EC 123. a=str2num(s(g)); 124. output(kk)=a; 125. kk=kk+1; 126. end 127. k=k+EC; 128. end 129. end 130. end 131. end 132. end

Other functions are the same as shown in Appendices D.4, D.5, D.6, D.7 and D.8.

E. 4 Screenshots of Adaptive LSB for color images results for different

embedding combinations for cover images with size 512×512

Results for ALSBmin

cover_image	Size_secret_data	PSNR	MSE
		dB	
peppers_color avg R=47.766188	1280000 avg G=37.347483	36.355709	15.049064 avg B=21.205114
PSNR R=51.132833	PSNR G=37.93271	0	PSNR B=32.793140
MSNR R=46.126866	MSNR G=30.78955		MSNR B=20.733574
MSNR=28.757105			
W_PSNR(0.4_0.243_	0.357)=41.377933		
W_PSNR(0.4_0.3_0.	3)=41.670888		
W_PSNR(1/3_1/3_1/			
W_MSNR(0.4_0.243_			
W_MSNR(0.4_0.3_0.			
W_MSNR(1/3_1/3_1/	3)=32.549999		
cover_image	Size_secret_data	PSNR	MSE
		170	
		dB	
		ав ======	
 lena_color	1280000	ав 35.599405	17.911826
 lena_color avg R=60.043004	1280000 avg G=33.020903	35.599405	17.911826 avg B=35.184392
avg_R=60.043004	avg_G=33.020903	35.599405	avg_B=35.184392
avg_R=60.043004 PSNR_R=51.143248	avg_G=33.020903 PSNR_G=31.65116	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
	avg_G=33.020903	35.599405 4	avg_B=35.184392
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634 W_PSNR(0.4_0.243_0	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856 0.357)=41.963610	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634 W_PSNR(0.4_0.243_) W_PSNR(0.4_0.3_0.3	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856 0.357)=41.963610 3)=41.561958	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634 W_PSNR(0.4_0.243_) W_PSNR(0.4_0.3_0.3) W_PSNR(1/3_1/3_1/3)	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856 0.357)=41.963610 3)=41.561958 3)=40.497370	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634 W_PSNR(0.4_0.243_) W_PSNR(0.4_0.3_0.3) W_PSNR(1/3_1/3_1/3) W_MSNR(0.4_0.243_)	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856 0.357)=41.963610 3)=41.561958 3)=40.497370 0.357)=36.025185	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634 W_PSNR(0.4_0.243_) W_PSNR(0.4_0.3_0.3) W_PSNR(1/3_1/3_1/3) W_MSNR(0.4_0.243_) W_MSNR(0.4_0.3_0.3)	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856 0.357)=41.963610 3)=41.561958 3)=40.497370 0.357)=36.025185 3)=35.592113	35.599405 4	avg_B=35.184392 PSNR_B=38.697698
avg_R=60.043004 PSNR_R=51.143248 MSNR_R=48.124118 MSNR=29.629634 W_PSNR(0.4_0.243_) W_PSNR(0.4_0.3_0.3) W_PSNR(1/3_1/3_1/3) W_MSNR(0.4_0.243_)	avg_G=33.020903 PSNR_G=31.65116 MSNR_G=23.43856 0.357)=41.963610 3)=41.561958 3)=40.497370 0.357)=36.025185 3)=35.592113	35.599405 4	avg_B=35.184392 PSNR_B=38.697698

cover_image baboon_color			
======================================	Size_secret_data	PSNR dB	MSE
baboon_color			
	1280000	36.326615	
avg_R=43.225210	avg_G=40.336053	-	avg_B=35.168683
PSNR_R=51.135977	PSNR_G=37.90488		PSNR_B=32.763187
4SNR_R=45.262340	MSNR_G=31.43037	//	MSNR_B=25.097931
4SNR=29.687017			
V_PSNR(0.4_0.243_0			
<pre>N_PSNR(0.4_0.3_0.3 PSNR(1/2_1/2_1/2_1/2_1/2_1/2_1/2_1/2_1/2_1/2_</pre>			
W_PSNR(1/3_1/3_1/3			
W_MSNR(0.4_0.243_0			
W_MSNR(0.4_0.3_0.3 W MSNR(1/3 1/3 1/3			
II	-33.930210		
cover image	Size secret data	PSNR	MSE
,over_image	Jize_secret_data	dB	HOL
oarbra_color	1280000	36.307405	15.217378
vg_R=44.869422	avg_G=34.041904		avg_B=31.163663
SNR_R=51.137549	PSNR_G=37.91526	6	PSNR_B=32.734660
ISNR_R=45.588180	MSNR_G=29.96716	4	MSNR_B=24.019252
ISNR=29.010375	_		_
FSNR(0.4 0.243 0	.357)=41.354703		
PSNR (0.4 0.3 0.3			
PSNR (1/3 1/3 1/3			
MSNR (0.4 0.243 0			
MSNR (0.4 0.3 0.3			
MSNR (1/3_1/3_1/3			
1			
cover image	Size secret data	PSNR	MSE
		dB	
Balloon_color	1280000	35.629944	17.786314
	avg_G=41.506289		avg_B=47.266870
avg_R=36.050513	DEND C-27 OCALL	-	
	PSNR_G=37.96455	5	PSNR_B=51.172896
PSNR_R=31.849739	MSNR G=31.738455		PSNR_B=51.172896 MSNR B=46.075654
PSNR_R=31.849739 ISNR_R=24.399590	_		-
PSNR_R=31.849739 MSNR_R=24.399590 MSNR=29.425080	MSNR_G=31.73845		-
PSNR_R=31.849739 MSNR_R=24.399590 MSNR=29.425080 M_PSNR(0.4_0.243_0	MSNR_G=31.73845		-
PSNR_R=31.849739 ISNR_R=24.399590 ISNR=29.425080 PSNR(0.4_0.243_0 PSNR(0.4_0.3_0.3	MSNR_G=31.73845 .357)=40.234006)=39.481131		-
PSNR_R=31.849739 ISNR_R=24.399590 ISNR=29.425080 PSNR(0.4_0.243_0 PSNR(0.4_0.3_0.3 PSNR(1/3_1/3_1/3	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063		-
PSNR_R=31.849739 4SNR_R=24.399590 4SNR=29.425080 V_PSNR(0.4_0.243_0 V_PSNR(0.4_0.3_0.3 V_PSNR(1/3_1/3_1/3 V_MSNR(0.4_0.243_0	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063 .357)=33.921289		-
PSNR_R=31.849739 4SNR_R=24.399590 4SNR=29.425080 V_PSNR(0.4_0.243_0 V_PSNR(0.4_0.3_0.3 V_PSNR(1/3_1/3_1/3 V_MSNR(0.4_0.243_0 V_MSNR(0.4_0.3_0.3	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063 .357)=33.921289)=33.104068		-
PSNR_R=31.849739 ISNR_R=24.399590 ISNR=29.425080 PSNR(0.4_0.243_0 PSNR(0.4_0.3_0.3 PSNR(1/3_1/3_1/3 MSNR(0.4_0.243_0 MSNR(0.4_0.3_0.3	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063 .357)=33.921289)=33.104068		-
avg_R=36.050513 PSNR_R=31.849739 MSNR_R=24.399590 MSNR=29.425080 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063 .357)=33.921289)=33.104068		-
PSNR_R=31.849739 ISNR_R=24.399590 ISNR=29.425080 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3 I_PSNR(1/3_1/3_1/3 I_MSNR(0.4_0.243_0) I_MSNR(0.4_0.3_0.3	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063 .357)=33.921289)=33.104068		-
SNR_R=31.849739 ISNR_R=24.399590 ISNR=29.425080 PSNR (0.4_0.243_0 PSNR (0.4_0.3_0.3 PSNR (1/3_1/3_1/3 MSNR (0.4_0.243_0 MSNR (0.4_0.3_0.3 MSNR (1/3_1/3_1/3 MSNR (1/3_1/3_1/3_1/3	MSNR_G=31.73845 .357)=40.234006)=39.481131)=40.329063 .357)=33.921289)=33.104068)=34.071233	5	MSNR_B=46.075654

		dB	
Blue color	1280000	37.441416	11.720300
avg_R=2.386333	avg_G=20.71	0935	avg_B=30.610770
PSNR_R=34.264084	PSNR_G=38	.004599	PSNR_B=51.086430
MSNR_R=3.230328	MSNR_G=25.	740214	MSNR_B=42.215536
MSNR=23.911399			
W_PSNR(0.4_0.243_0.	357)=41.178606		
W_PSNR(0.4_0.3_0.3)=40.432942			
W PSNR(1/3 1/3 1/3)=41.118371			
W_MSNR(0.4_0.243_0.357)=22.617950			
W MSNR(0.4 0.3 0.3)=21.678856			
W_MSNR(1/3_1/3_1/3)	=23.728693		

cover_image	Size_secret_data	PSNR dB	MSE
green_color	1280000	34.235510	24.520503
avg R=0.433572	avg_G=25.3431	124	avg_B=0.457298
PSNR R=29.949523	PSNR G=51.1	100713	
MSNR R=-15.897628	MSNR G=40.	.589537	MSNR B=-5.869920
MSNR=14.481995	_		_
W PSNR(0.4 0.243	0.357)=38.503947		
W PSNR (0.4 0.3 0.	3)=39.164363		
W PSNR (1/3 1/3 1/	(3)=40.188234		
W MSNR (0.4 0.243	0.357)=1.408645		
W MSNR (0.4 0.3 0.	3)=4.056834		
W MSNR (1/3 1/3 1/	(3)=6.273997		
	-		
cover image	Size secret data	PSNR	MSE
cover_image	Dire_beated_data	dB	11012
red_color	1280000	35.911542	16.669640
avg_R=74.553097	avg_G=47.877	7857	avg_B=42.295417
PSNR_R=51.149553	PSNR_G=37.6	561906	PSNR_B=32.290911
MSNR_R=50.010489	MSNR_G=32.0	576221	MSNR_B=26.228399
MSNR=32.116000			
W PSNR(0.4 0.243	(0.357) = 41.139520		

MSNR=32.116000 W_PSNR(0.4_0.243_0.357)=41.139520 W_PSNR(0.4_0.3_0.3)=41.445666 W_PSNR(1/3_1/3_1/3)=40.367457 W_MSNR(0.4_0.243_0.357)=37.308056 W_MSNR(0.4_0.3_0.3)=37.675582 W_MSNR(1/3_1/3_1/3)=36.305036

Results of ALSBMax

cover_image	Size_secret_data	PSNR dB	MSE
peppers_color avg_R=47.766188 PSNR_R=31.808135 MSNR_R=26.802168 MSNR=28.019995 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=39.499961 3)=40.354609 0.357)=32.203164 3)=31.736759	63	17.832841 avg_B=21.205114 PSNR_B=51.177328 MSNR_B=39.117761

cover_image	Size_secret_data	PSNR dB	MSE
lena_color	1280000	35.558127	18.082883
avg_R=60.043004	avg_G=33.02	0903	avg_B=35.184392
PSNR_R=31.601155	PSNR_G=51.3	158319	PSNR_B=38.697698
MSNR_R=28.582025	MSNR_G=42.	945720	MSNR_B=31.036320
MSNR=29.588356			
W_PSNR(0.4_0.243_0.357)=38.887012			
W_PSNR(0.4_0.3_0.3)=39.597267			
W_PSNR(1/3_1/3_1/3)=40.485724			
W_MSNR(0.4_0.243_0.357)=32.948586			
W_MSNR(0.4_0.3_0	.3)=33.627422		
W_MSNR (1/3_1/3_1/	/3)=34.188022		

cover_image	Size_secret_data	PSNR	MSE
		dB	
baboon color	1280000	35.632098	17.777493
avg R=43.225210	avg G=40.336053	00.002000	avg B=35.168683
PSNR R=31.847124	PSNR G=37.98739	5	PSNR B=51.151457
MSNR R=25.973488	MSNR G=31.51288		MSNR B=43.486201
MSNR=28.992500		-	
W PSNR(0.4 0.243	(0.357) = 40.230857		
W PSNR (0.4 0.3 0.	-		
W PSNR(1/3 1/3 1/			
W MSNR (0.4 0.243			
W MSNR(0.4 0.3 0.			
W MSNR(1/3 1/3 1/			
	.,		
cover image	Size secret data	PSNR	MSE
		dB	
barbra_color	1280000	35.640277	17.744047
avg_R=44.869422	avg_G=34.041904		avg_B=31.163663
PSNR_R=31.852410	PSNR_G=38.00797	8	PSNR_B=51.149499
MSNR_R=26.303041	MSNR_G=30.05987	6	MSNR_B=42.434090
	_		_
W PSNR(0.4 0.243	0.357)=40.237274		
W PSNR(0.4 0.3 0.			
W PSNR(1/3 1/3 1/			
W MSNR(0.4 0.243			
	-		
W_MSNR(0.4_0.3_0.			
W_MSNR(1/3_1/3_1/	3)=32.932336		
cover_image	Size_secret_data	PSNR	MSE
		dB	
Balloon color	1280000	36.383310	14.953725
avg R=36.050513	avg G=41.506289	36.363310	avg B=47.266870
PSNR R=51.158755	PSNR G=37.87991	8	PSNR B=32.845685
MSNR R=43.708606	MSNR G=31.65381		MSNR B=27.748443
MSNR=30.178445	—		-
W_PSNR(0.4_0.243_	0.357)=41.394232		
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.			
	3)=41.681183		
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	3)=41.681183 (3)=40.628120 [0.357)=35.081514		
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	3)=41.681183 (3)=40.628120 [0.357)=35.081514 [3)=35.304121		
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	3)=41.681183 (3)=40.628120 [0.357)=35.081514 [3)=35.304121		
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	3)=41.681183 (3)=40.628120 [0.357)=35.081514 [3)=35.304121		
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	3)=41.681183 (3)=40.628120 [0.357)=35.081514 [3)=35.304121	PSNR	MSE
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289	PSNR dB	MSE
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data	dB	
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289	dB 36.084702	16.018071
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000	dB 36.084702	
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935	dB 36.084702 2	16.018071 avg_B=30.610770
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.659021 0.357) =41.245969 3) =41.558443	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =40.495771 0.357) =22.685312	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.659021 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.659021 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.659021 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358 3) =23.106093	dB 36.084702 2	16.018071 avg_B=30.610770 PSNR_B=32.441405
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.659021 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358	dB 36.084702 2 8	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358 3) =23.106093	dB 36.084702 2 8 PSNR	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358 3) =23.106093	dB 36.084702 2 8 PSNR	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358 3) =23.106093 Size_secret_data	dB 36.084702 2 8 PSNR dB	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =40.495771 0.357) =22.685312 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124	dB 36.084702 2 8 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =40.495771 0.357) =22.685312 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243 W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.51446
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ W_MSNR (1/3_1/3_1/ cover_image blue_color avg_R=2.386333 PSNR R=51.122496 MSNR=20.088740 MSNR=22.554684 W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_PSNR (0.4_0.3_0. W_MSNR (0.4_0.3_0. W_MSNR (0.4_0.3_0. W_MSNR (0.4_0.3_0. W_MSNR (0.4_0.3_0. W_MSNR (0.4_0.3_0. W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ cover_image green_color avg_R=0.433572 PSNR_R=51.1403165 MSNR=16.065261 W_PSNR (0.4_0.243	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =22.804358 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060 0.357) =42.281501	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.514467
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =40.495771 0.357) =22.685312 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060 0.357) =42.281501 .3) =41.839737	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.51446
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =40.495771 0.357) =22.685312 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060 0.357) =42.281501 .3) =41.839737 (3) =40.806340	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.51446
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243 W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 Size_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =40.495771 0.357) =22.685312 3) =22.804358 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060 0.357) =42.281501 .3) =41.839737 /3) =40.806340 0.357) =5.186198	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.51446
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 51ze_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060 0.357) =42.281501 .3) =41.839737 (3) =40.806340 0.357) =5.186198 .3) =6.732208	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.51446
W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243 W_MSNR (0.4_0.3_0. W_MSNR (1/3_1/3_1/ 	3) =41.681183 3) =40.628120 0.357) =35.081514 3) =35.304121 3) =34.370289 51ze_secret_data 1280000 avg_G=20.710935 PSNR_G=37.92341 MSNR_G=25.65902 0.357) =41.245969 3) =41.558443 3) =40.495771 0.357) =22.685312 3) =23.106093 Size_secret_data 1280000 avg_G=25.343124 PSNR_G=31.76423 MSNR_G=21.253060 0.357) =42.281501 .3) =41.839737 (3) =40.806340 0.357) =5.186198 .3) =6.732208	dB 36.084702 28 PSNR dB 35.818776	16.018071 avg_B=30.610770 PSNR_B=32.441405 MSNR_B=23.570511 MSNR_B=23.570511 MSE 17.029533 avg_B=0.457298 PSNR_B=39.51446

cover_image	Size_secret_data	PSNR dB	MSE
red_color	1280000	34.976671	20.673467
avg_R=74.553097	avg_G=47.8	77857	avg_B=42.295417
PSNR_R=31.085299	PSNR_G=37	.772163	PSNR_B=51.030292
MSNR_R=29.946234	MSNR_G=32	.786478	MSNR_B=44.967780
MSNR=31.181130			
W_PSNR(0.4_0.243_0.357)=39.830569			
W_PSNR(0.4_0.3_0.3)=39.074856			
W_PSNR(1/3_1/3_1/3)=39.962585			
W_MSNR(0.4_0.243_0.357)=35.999105			
W_MSNR(0.4_0.3_0.	3)=35.304771		
W_MSNR(1/3_1/3_1/	(3)=35.900164		

Appendix F: ATD Algorithm for Color Images

F.1 The main program

1.	clc
. .	CIC

- 2. clear
- cover_image=imread('C:\Users\hajer\Desktop\thesis\COLOR SCALE\ATD color\peppers_color (512 x 512).jpg');

')

====')

=')

- 4. disp('==
- 5. disp('cover_image Size_secret_data PSNR MSE ')

dB

- 6. disp('
- 7. disp('
- 8. p='peppers_color.jpg';
- 9. secrt_image=imread('C:\Users\hajer\Desktop\thesis\1.jpg');
- 10. [m n l]=size(secrt_image);
- 11. k=1;
- 12. for i=1:m
- 13. for j=1:n
- 14. str = dec2bin(secrt_image(i,j),8);
- 15. **for** q=1:8
- 16. aa=str2num(str(q));
- 17. secret_massege(k)=aa;
- 18. k=k+1;
- 19. end
- 20. end
- 21. end
- 22. k=k-1;
- 23. ternary_number=convertto_ternary(secret_massege);
- 24. [q size_secret_massege]=size(ternary_number);
- 25. [stego_image,y,u]=Embbedding(cover_image,size_secret_massege,ternary_number);
- 26. [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image);
- 27. mse = $(MSE_R + MSE_B + MSE_G)/3$;
- 28. [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B);
- 29. disp(sprintf('%s %d %f %2f',p,k,PSNR,mse));
- 30. disp(sprintf('PSNR_R=%f PSNR_G=%f PSNR_B=%f ',PSNR_R,PSNR_G,PSNR_B));
- 31. [MSNR,MSNR_R,MSNR_G,MSNR_B] =
 MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse);
- 32. disp(sprintf('MSNR_R=%f MSNR_G=%f MSNR_B=%f
 - ',MSNR_R,MSNR_G,MSNR_B));
- 33. disp(sprintf('MSNR=%f',MSNR));
- 34. disp(sprintf('W_PSNR(0.4_0.243_0.357)=%f',(0.4*PSNR_R+0.243*PSNR_G+0.357*PSNR_B)));
- $35. \ disp(sprintf(`W_PSNR(0.4_0.3_0.3)=\%f', (0.4*PSNR_R+0.3*PSNR_G+0.3*PSNR_B)));$
- 36. disp(sprintf('W_PSNR(1/3_1/3_1/3)=%f',(1/3*PSNR_R+1/3*PSNR_G+1/3*PSNR_B)));
- 37. disp(sprintf('W_MSNR(0.4_0.243_0.357)=%f',(0.4*MSNR_R+0.243*MSNR_G+0.357*MSNR_B)));
- 38. disp(sprintf('W_MSNR(0.4_0.3_0.3)=%f',(0.4*MSNR_R+0.3*MSNR_G+0.3*MSNR_B)));
- 39. disp(sprintf('W_MSNR(1/3_1/3_1/3)=%f',(1/3*MSNR_R+1/3*MSNR_G+1/3*MSNR_B)));
- 40. Actual_PSNR_weight = A_PSNR(cover_image,MSE_R,MSE_G,MSE_B);
- 41. disp(sprintf('Actual_PSNR_weight(1/3_1/3_1/3)=%f',Actual_PSNR_weight));
- 42. [var_orgR, var_noiseR] = snr(stego_image(:,:,1),cover_image(:,:,1));
- 43. [var_orgG, var_noiseG] = snr(stego_image(:,:,2),cover_image(:,:,2));
- 44. [var_orgB, var_noiseB] = snr(stego_image(:,:,3),cover_image(:,:,3));
- 45. SNR= 10*log10((var_orgR + var_orgG + var_orgB)/(var_noiseR + var_noiseG + var_noiseB));

- 46. disp(sprintf('SNR=%f',SNR));
- 47. disp('=
- 48. figure
- 49. subplot(2,2,[1,3]);
- 50. imshow(cover_image);
- 51. title('Cover image')
- 52. subplot(2,2,[2,4]);
- 53. imshow(stego_image);
- 54. title('Stego image')
- 55. output = extraction(stego_image,size_secret_massege);

------')

- 56. [nn mm]=size(output);
- 57. for i=1:mm
- 58. e(i)=output(i)-ternary_number(i);
- 59. end
- 60. output2=convert_to_Binary(output);
- 61. [nn mm]=size(secret_massege);

F.2 Embedding function

- 1. function [stego_image,y,u] = Embbedding(
 cover_image,size_secret_massege,ternary_number)
- 2. stego_image=cover_image;
- 3. k=1;
- 4. [M N L]=size(cover_image);
- 5. y=0;
- 6. u=0;
- 7. for i=1:M
- 8. for j=1:N
- 9. cover_pixel_binary = dec2bin(cover_image(i,j,3),8);
- 10. **for** ii=1:6
- 11. sub1(ii)=cover_pixel_binary(ii);
- 12. end
- 13. sub1_dec=bin2dec(sub1);
- 14. sub2=cover_pixel_binary(7:8);
- 15. sub2_dec=bin2dec(sub2);
- 16. if (sub1_dec==63)
- 17. sub1_dec=62;
- 18. end
- 19. if (sub1_dec==0)
- 20. sub1_dec=1;
- 21. end
- 22. if (sub2_dec==3)
- 23. sub2_dec=2;
- 24. end
- 25. if (sub2_dec==0)
- 26. sub2_dec=1;
- 27. end
- 28. if(k<=size_secret_massege)
- 29. if (mod(sub1_dec,3)==ternary_number(k))
- 30. sub1_stego=sub1_dec;
- 31. elseif(mod(sub1_dec+1,3)==ternary_number(k))
- 32. sub1_stego=sub1_dec+1;

```
33. else
34. sub1_stego=sub1_dec-1;
35. end
36. end
37. k=k+1;
38. if(k<=size_secret_massege)
39. v=sub1_stego*4+sub2_dec;
40. if (mod(v,3)==ternary_number(k))
41. stego_image(i,j,3)=v;
42. elseif(mod(v+1,3)==ternary_number(k))
43. stego_image(i,j,3)=v+1;
44. else
45. stego_image(i,j,3)=v-1;
46. end
47. k=k+1;
48. y= i;
49. u=i ;
50. end
51. cover_pixel_binary = dec2bin(cover_image(i,j,2),8);
52. for ii=1:6
53. sub1(ii)=cover_pixel_binary(ii);
54. end
55. sub1_dec=bin2dec(sub1);
56. sub2=cover_pixel_binary(7:8);
57. sub2_dec=bin2dec(sub2);
58. if (sub1 dec==63)
59. sub1_dec=62;
60. end
61. if (sub1_dec==0)
62. sub1 dec=1;
63. end
64. if (sub2_dec==3)
65. sub2_dec=2;
66. end
67. if (sub2 dec==0)
68. sub2_dec=1;
69. end
70. if(k<=size_secret_massege)
71. if (mod(sub1 dec,3)==ternary number(k))
72. sub1_stego=sub1_dec;
73. elseif(mod(sub1_dec+1,3)==ternary_number(k))
74. sub1_stego=sub1_dec+1;
75. else
76. sub1_stego=sub1_dec-1;
77. end
78. end
79. k=k+1;
80. if(k<=size secret massege)
81. v=sub1_stego*4+sub2_dec;
82. if (mod(v,3)==ternary_number(k))
83. stego_image(i,j,2)=v;
84. elseif(mod(v+1,3)==ternary_number(k))
```

```
85. stego_image(i,j,2)=v+1;
86. else
87. stego_image(i,j,2)=v-1;
88. end
89. k=k+1;
90. y= i;
91. u=j;
92. end
93. if(k<=size_secret_massege)
94. cover_pixel_binary = dec2bin(cover_image(i,j,1),8);
95. for ii=1:6
96. sub1(ii)=cover_pixel_binary(ii);
97. end
98. sub1_dec=bin2dec(sub1);
99. sub2=cover_pixel_binary(7:8);
100. sub2_dec=bin2dec(sub2);
101. if (sub1_dec==63)
102. sub1 dec=62;
103. end
104. if (sub1_dec==0)
105. sub1 dec=1;
106. end
107. if (sub2_dec==3)
108. sub2_dec=2;
109. end
110. if (sub2 dec==0)
111. sub2_dec=1;
112. end
113. if(k<=size_secret_massege)
114. if (mod(sub1_dec,3)==ternary_number(k))
115. sub1_stego=sub1_dec;
116. elseif(mod(sub1_dec+1,3)==ternary_number(k))
117. sub1_stego=sub1_dec+1;
118. else
119. sub1_stego=sub1_dec-1;
120. end
121. end
122. k=k+1;
123. stego_image(i,j,1)=sub1_stego*4+sub2_dec;
124. y= i;
125. u=j;
126. else
127. stego_image(i,j,1) = cover_image(i,j,1);
128. end
129. end
130. end
```

F.3 Extraction function

- 1. function [output] = extraction(stego_image,size_secret_image)
- 2. k=1;
- 3. q=1;

- 4. for i=1:512
- 5. **for** j=1:512
- 6. if (k<=size_secret_image)
- 7. cover_pixel_binary = dec2bin(stego_image(i,j,3),8);
- 8. sub1=cover_pixel_binary(1:6);
- 9. sub1_dec=bin2dec(sub1);
- 10. sub2=cover_pixel_binary(7:8);
- 11. sub2_dec=bin2dec(sub2);
- 12. output(k)=mod(sub1_dec,3);
- 13. k=k+1;
- 14. q=q+1;
- 15. output(k)=mod(stego_image(i,j,3),3);
- 16. k=k+1;
- 17. q=q+1;
- 18. else
- 19. continue
- $20. \ \text{end}$
- 21. if (k<=size_secret_image)
- 22. cover_pixel_binary = dec2bin(stego_image(i,j,2),8);
- 23. sub1=cover_pixel_binary(1:6);
- 24. sub1_dec=bin2dec(sub1);
- 25. sub2=cover_pixel_binary(7:8);
- 26. sub2_dec=bin2dec(sub2);
- 27. output(k)=mod(sub1_dec,3);
- 28. k=k+1;
- 29. q=q+1;
- 30. else
- 31. continue
- 32. end
- 33. if (k<=size_secret_image)
- 34. cover_pixel_binary = dec2bin(stego_image(i,j,1),8);
- 35. sub1=cover_pixel_binary(1:6);
- 36. sub1_dec=bin2dec(sub1);
- 37. sub2=cover_pixel_binary(7:8);
- 38. sub2_dec=bin2dec(sub2);
- 39. output(k)=mod(sub1_dec,3);
- 40. k=k+1;
- 41. q=q+1;
- 42. else
- 43. continue
- 44. end
- 45. end
- 46. end
- 47. end

Other functions are the same as for ATD for gray scale images given in

Appendix A.

F.4 Screenshots of ATD for color images results for different embedding

ternary digits combinations with 8 BPP for cover images with size 512×512

Embedding combination 1_1_2

cover_image	Size_secret_data	PSNR dB	MSE
	1280000	27 447420	11 705040
peppers_color.jpg		37.417430	11.785210
PSNR_R=37.653454	PSNR_G=37.4	495215	PSNR_B=37.12096
MSNR R=32.647487	MSNR G=30.3	352063	MSNR B=25.06140
	_		-
	0 2571-27 424004		
W_PSNR(0.4_0.243_			
W_PSNR(0.4_0.3_0.	3)=37.446236		
W_PSNR(1/3_1/3_1/	3)=37.423212		
W MSNR(0.4 0.243	(0.357) = 29.381466		
W MSNR (0.4 0.3 0.			
W_MSNR(1/3_1/3_1/			
Actual_PSNR_weigh	t(1/3_1/3_1/3)=36.7308	876	
cover_image	Size_secret_data	PSNR	MSE
		dB	
lena color.jpg	1280000	37.548064	11.435995
PSNR R=37.610816	PSNR G=37.0		PSNR B=37.39404
4SNR R=34.591686	MSNR G=29.4		MSNR B=29.73266
ISNR_R-31.591000	MSNK_G=29.	130331	MSNK_B-29.75266
N_PSNR(0.4_0.243_			
N_PSNR(0.4_0.3_0.			
PSNR(1/3_1/3_1/			
M_MSNR(0.4_0.243_			
W MSNR(0.4 0.3 0.3	3)=31.585771		
	-,		
	3)=31.251781		
		974	
Actual_PSNR_weigh	3)=31.251781	974 PSNR dB	MSE
cover_image	3)=31.251781 t(1/3_1/3_1/3)=36.9129 	PSNR dB	
Actual_PSNR_weigh	3)=31.251781 t(1/3_1/3_1/3)=36.9129	PSNR	MSE 11.389301
Actual_PSNR_weigh cover_image barbra_color.jpg	3)=31.251781 t(1/3_1/3_1/3)=36.9129 	PSNR dB 37.565833	11.389301
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37.	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29.	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR_830.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0.	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429	PSNR dB 37.565833 662399	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.57547 0.357)=30.297500 3)=30.356429 3)=30.163254	PSNR dB 37.565833 662399 714297	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429	PSNR dB 37.565833 662399 714297	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.57547 0.357)=30.297500 3)=30.356429 3)=30.163254	PSNR dB 37.565833 662399 714297	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429 3)=30.163254 t(1/3_1/3_1/3)=37.007	PSNR dB 37.565833 662399 714297 569	11.389301 PSNR_B=37.39586 MSNR_B=28.68045
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.57547 0.357)=30.297500 3)=30.356429 3)=30.163254	PSNR dB 37.565833 662399 714297	11.389301 PSNR_B=37.39586
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429 3)=30.163254 t(1/3_1/3_1/3)=37.007	PSNR dB 37.565833 662399 714297 569 	11.389301 PSNR_B=37.39586 MSNR_B=28.68045
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh cover_image	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000	PSNR dB 37.565833 662399 714297 569 	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSR_B=28.68045
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh cover_image baboon_color.jpg PSNR_R=37.655576	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=37.	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh cover_image baboon_color.jpg PSNR_R=37.655576 MSNR_R=31.781940	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_8=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh 	3)=31.251781 t (1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.163254 t (1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=37. MSNR_G=31.	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh Cover_image baboon_color.jpg PSNR_R=37.655576 MSNR_R=31.781940 MSNR=30.920405 W_PSNR(0.4_0.243_	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=37. MSNR_G=31. 0.357)=37.555090	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh cover_image baboon_color.jpg PSNR_R=37.655576 MSNR_R=31.781940 MSNR=30.920405 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.57547 0.357)=30.297500 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=37. MSNR_G=31. 0.357)=37.555090 3)=37.571449	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_MSNR(0.4_0.3_1/3_1/ MMSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh cover_image baboon_color.jpg PSNR_R=31.781940 MSNR=30.920405 W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.356429 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=31. MSNR_G=31. 0.357)=37.555090 3)=37.571449 3)=37.562101	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_PSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh 	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=31. 0.357)=37.555090 3)=37.571449 3)=37.57149 3)=37.562101 0.357)=30.895833	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR (0.4_0.243_ W_PSNR (0.4_0.3_0. W_PSNR (1/3_1/3_1/ W_MSNR (0.4_0.243_ W_MSNR (1/3_1/3_1/ Actual_PSNR_weigh cover_image baboon_color.jpg PSNR_R=37.65576 MSNR_R=31.781940 MSNR=30.920405 W_PSNR (0.4_0.243_0) W_PSNR (0.4_0.243_0) W_PSNR (0.4_0.243_0) W_MSNR (0.4_0.243_0) W_MSN	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=31. 0.357)=37.555090 3)=37.571449 3)=37.562101 0.357)=30.895833 3)=30.980064	PSNR dB 37.565833 662399 714297 569 569 PSNR dB 37.560003 658859	11.389301 PSNR_B=37.39586 MSNR_B=28.68045 MSNR_B=28.68045 MSE 11.404600 PSNR_B=37.37186
Actual_PSNR_weigh cover_image barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.268802 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_MSNR(0.4_0.3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/3_1/ Actual_PSNR_weigh cover_image baboon_color.jpg PSNR_R=31.781940 MSNR=30.920405 W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_PSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_	3)=31.251781 t(1/3_1/3_1/3)=36.9129 Size_secret_data 1280000 PSNR_G=37. MSNR_G=29. 0.357)=37.560037 3)=37.575230 3)=37.567547 0.357)=30.297500 3)=30.163254 t(1/3_1/3_1/3)=37.007 Size_secret_data 1280000 PSNR_G=31. 0.357)=37.555090 3)=37.571449 3)=37.562101 0.357)=30.895833 3)=30.980064	PSNR dB 37.565833 662399 714297 569 569 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11.389301 PSNR_B=37.39586 MSNR_B=28.68045

cover_image	Size_secret_data	PSNR dB	MSE
Balloon_color.jpg		37.425772	11.762595
PSNR_R=37.530423	PSNR_G=37.0		PSNR_B=37.153696
MSNR_R=30.080274	MSNR_G=31.3	380775	MSNR_B=32.056454
MSNR=31.220908			
W_PSNR(0.4_0.243_	0.357)=37.414510		
W_PSNR(0.4_0.3_0.	3)=37.440341		
W_PSNR(1/3_1/3_1/	3)=37.430332		
W_MSNR(0.4_0.243_	0.357)=31.101792		
W_MSNR(0.4_0.3_0.	3)=31.063278		
W_MSNR(1/3_1/3_1/			
	t(1/3 1/3 1/3)=37.4303	332	
cover image	Size secret data	PSNR	MSE
		dB	
Blue_color.jpg	1280000	37.537336	11.464280
PSNR R=37.556763	PSNR G=37.	662996	PSNR B=37.396405
MSNR R=6.523007	MSNR G=25.3		MSNR B=28.525511
	10HR_G-25.5		
MSNR=24.007318			
W_PSNR(0.4_0.243_			
W_PSNR(0.4_0.3_0.	3)=37.540525		
W PSNR(1/3 1/3 1/	3)=37.538721		
W_MSNR(0.4_0.243	(0.357) = 18.964673		
W_MSNR(0.4_0.3_0.			
W MSNR (1/3 1/3 1/			
Actual_PSNR_Weigh	t(1/3_1/3_1/3)=28.499	363	
		PSNR	MSE
cover_image	Size_secret_data		PIDE
		dB	
green_color.jpg	1280000	34.497700	23.083964
	1280000 PSNR_G=37.64	34.497700	23.083964 PSNR_B=33.464399
green_color.jpg		34.497700 9599	
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591	PSNR_G=37.64	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185	PSNR_G=37.64 MSNR_G=27.1	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 8)=34.749223	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 3)=34.749223 3)=34.883853	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(0.4_0.243_0 W_MSNR(0.4_0.243_0.3) W_MSNR(0.4_0.3_0.3)	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306	34.497700 9599	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3)	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 .357)=-2.584635 3)=-0.358306 3)=0.969615	34.497700 9599 38423	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3)	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306	34.497700 9599 38423	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3)	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 .357)=-2.584635 3)=-0.358306 3)=0.969615	34.497700 9599 38423	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3)	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 .357)=-2.584635 3)=-0.358306 3)=0.969615	34.497700 9599 38423	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 5)=0.969615 c(1/3_1/3_1/3)=22.43966	34.497700 9599 38423	PSNR_B=33.464399 MSNR_B=-11.919988
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3)	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 .357)=-2.584635 3)=-0.358306 3)=0.969615	34.497700 9599 38423 5 PSNR	PSNR_B=33.464399
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 5)=0.969615 c(1/3_1/3_1/3)=22.43966	34.497700 9599 38423	PSNR_B=33.464399 MSNR_B=-11.919988
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_ Actual_PSNR_weight cover_image	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667))=34.749223))=34.883853).357)=-2.584635 3)=-0.358306 3)=-0.358306 3)=-0.969615 :(1/3_1/3_1/3)=22.43966 Size_secret_data	34.497700 9599 38423 55 PSNR dB	PSNR_B=33.464399 MSNR_B=-11.919988
green_color.jpg PSNR_R=33.537560 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.243_0 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight 	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 5)=0.969615 c(1/3_1/3_1/3)=22.43966	34.497700 9599 38423 5 PSNR	PSNR_B=33.464399 MSNR_B=-11.919988
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_ Actual_PSNR_weight cover_image	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 3)=-0.969615 c(1/3_1/3_1/3)=22.43966 512e_secret_data 1280000	34.497700 9599 38423 35 5 PSNR dB 36.767455	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_1/3 Actual_PSNR_weight 	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 0)=34.749223 0)=34.883853 0)=34.883853 0)=0.969615 c(1/3_1/3_1/3)=22.43966 common common comm	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_3 M_MSNR(1/3_1/3_1/3_3_1/3 M_MSNR(1/3_1/3_1/3_1/3_3_1/3 M_MSNR(1/3_1/3_1/3_1/3_3_1/3) M_MSNR(1/3_1/3_1/3_1/3_3_1/3) M_MSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 3)=-0.969615 c(1/3_1/3_1/3)=22.43966 512e_secret_data 1280000	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight 	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667))=34.749223))=34.883853).357)=-2.584635))=-0.358306))=0.969615 :(1/3_1/3_1/3)=22.43966 Size_secret_data 1280000 PSNR_G=37.0 MSNR_G=32.0	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_ Actual_PSNR_weight 	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667 3)=34.749223)]=34.883853).357)=-2.584635 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3]=-0.358	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight red_color.jpg PSNR_R=36.336424 MSNR_R=35.197359 MSNR=32.971914 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 0)=34.749223 0)=34.883853 0)=358306 0)=0.969615 (1/3_1/3_1/3)=22.43966 0.357)=36.727414 3)=36.734964	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight red_color.jpg PSNR_R=36.336424 MSNR_R=35.197359 MSNR=32.971914 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 0)=34.749223 0)=34.883853 0)=358306 0)=0.969615 (1/3_1/3_1/3)=22.43966 0.357)=36.727414 3)=36.734964	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.243_0 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight 	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 0)=34.749223 0)=34.883853 0)=0.358306 0)=0.969615 (1/3_1/3_1/3)=22.43966 Size_secret_data 1280000 PSNR_G=37.00 MSNR_G=32.00 0.357)=36.727414 3)=36.734964 3)=36.779246	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 M_MSNR(1/3_1/3_1/3 M_MSNR(1/3_1/3_1/3 Cover_image red_color.jpg PSNR_R=36.336424 MSNR=32.971914 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.4 W_PSNR(1/3_1/3_1/3) W_MSNR(0.4_0.243_	PSNR_G=37.64 MSNR_G=27.1).357)=34.510667))=34.749223))=34.883853).357)=-2.584635))=-0.358306))=0.969615 :(1/3_1/3_1/3)=22.43966 :(1/3_1/3_1/3)=22.43966 :(1/3_1/3_1/3)=22.43966 :(1/3_1/3_1/3)=22.43966 :(1/3_1/3_1/3)=22.43966 	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3 Actual_PSNR_weight 	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 MSNR_G=37.0 MSNR_G=37.0 MSNR_G=37.0 MSNR_G=32.0 0.357)=36.727414 3)=36.734964 3)=36.779246 0.357)=32.895950 3)=32.964879	34.497700 9599 38423 5 PSNR dB 36.767455 066879	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_1/3 Actual_PSNR_weight cover_image red_color.jpg PSNR_R=36.336424 MSNR_R=35.197359 MSNR=32.971914 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.969615 (1/3_1/3_1/3)=22.43966 	34.497700 9599 38423 35 PSNR dB 36.767455 066879 081195	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_1/3 Actual_PSNR_weight cover_image red_color.jpg PSNR_R=36.336424 MSNR_R=35.197359 MSNR=32.971914 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 3)=-0.358306 MSNR_G=37.0 MSNR_G=37.0 MSNR_G=37.0 MSNR_G=32.0 0.357)=36.727414 3)=36.734964 3)=36.779246 0.357)=32.895950 3)=32.964879	34.497700 9599 38423 35 PSNR dB 36.767455 066879 081195	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434
green_color.jpg PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.744185 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_1/3 Actual_PSNR_weight cover_image red_color.jpg PSNR_R=36.336424 MSNR_R=35.197359 MSNR=32.971914 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_	PSNR_G=37.64 MSNR_G=27.1 0.357)=34.510667 3)=34.749223 3)=34.883853 0.357)=-2.584635 3)=-0.358306 3)=-0.969615 (1/3_1/3_1/3)=22.43966 	34.497700 9599 38423 35 PSNR dB 36.767455 066879 081195	PSNR_B=33.464399 MSNR_B=-11.919988 MSNR_B=-11.919988 MSE 13.687839 PSNR_B=36.934434

Embedding combination 1_2_1

cover_image	Size_secret_	data	dB	MSE
peppers_color.jpg PSNR R=37.653454		======================================	37.415784	11.78968 PSNR B=37.3641
MSNR_R=32.647487 MSNR=29.817180		NR_G=30.096907		MSNR_B=25.3045
W PSNR(0.4 0.243	0.357)=37.449	712		
W PSNR(0.4 0.3 0.				
W_PSNR (1/3_1/3_1/	3)=37.419216			
W_MSNR(0.4_0.243_	0.357)=29.406	275		
W_MSNR(0.4_0.3_0.				
W_MSNR (1/3_1/3_1/		-26 726991		
Actual_PSNR_weigh				
cover image	Size secret (data	PSNR	MSE
			dB	
lena_color.jpg PSNR_R=37.610816 MSNR_R=34.591686 MSNR=31.583327 W_PSNR(0.4_0.243_	MS1 0.357)=37.574	NR_G=37.400283 NR_G=29.187683	7.553098	11.422746 PSNR_B=37.65242 MSNR_B=29.99104
W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=37.554508 0.357)=31.636 3)=31.590294 3)=31.256806			
cover_image	Size_secret_	data	PSNR dB	MSE
barbra_color.jpg PSNR_R=37.644377 MSNR_R=32.095008 MSNR=30.262017	PS	0000 NR_G=37.385857 NR_G=29.437756		11.407109 PSNR_B=37.6522 MSNR_B=28.9368
W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243 W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weight	3)=37.569178 3)=37.560823 0.357)=30.321 3)=30.350378 3)=30.156530	825		
cover_image	Size_secret_	 data	PSNR dB	MSE
baboon_color.jpg		0000	37.563321	11.395891
PSNR_R=37.655576 MSNR_R=31.781940 MSNR=30.923723		NR_G=37.405493 NR_G=30.930982		PSNR_B=37.63333 MSNR_B=29.96807
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W PSNR(1/3 1/3 1/	3)=37.573877	864		
W_MSNR(0.4_0.243_ W MSNR(0.4_0.3_0.		607		
W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=30.893665)=36.922071		
cover_image	Size_secret_	data	PSNR dB	MSE
Balloon_color.jpg PSNR_R=37.530423 MSNR_R=30.080274 MSNR=31.224335	PS	80000 NR_G=37.361126 NR_G=31.135025		11.753317 PSNR_B=37.39786 MSNR_B=32.30062
W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0.		962		
W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	0.357)=31.129 3)=31.062805	244		

cover_image Size_secret_data PSNR dB MSE Blue_color.jpg 1280000 37.538776 11.460478 PSNR_R=37.556763 PSNR_G=37.415684 PSNR_B=37.647019 MSNR=6.523007 MSNR_G=25.151299 MSNR_B=28.776125 MSNR=74.008758 W_PSNR(0.4_0.243_0.357)=37.554702 W_PSNR(1/3_1/3_1/3)=37.539822 W_PSNR(0.4_0.243_0.357)=18.994045 W_MSNR(1/3_1/3)=70.150144 Actual_PSNR_weight(1/3_1/3_1/3)=28.500469 Cover_image Size_secret_data PSNR MSE green_color.jpg 1280000 34.503834 23.051382 PSNR_R=-12.309591 MSNR_G=26.895562 MSNR_B=-11.808793 MSNR=14.750319 W_PSNR(0.4_0.243_0.357)=34.491348 MSNR_B=-11.808793 W_PSNR(0.4_0.243_0.357)=34.603964 W_MSNR_11/3_1/3_1/3]=22.395777 MSNR_B=-11.808793				
PSNR_R=37.556763 PSNR_G=37.415684 PSNR_B=37.647019 MSNR_R=6.523007 MSNR_G=25.151299 MSNR_B=28.776125 MSNR=24.008758 W_PSNR(0.4_0.243_0.357)=37.554702 MSNR_PSNR(0.4_0.243_0.357)=37.554702 W_PSNR(0.4_0.243_0.357)=37.554702 W_PSNR(0.4_0.243_0.357)=18.994045 WMSNR(0.4_0.243_0.357)=18.994045 W_MSNR(0.4_0.3_0.3)=18.787430 W_MSNR(1/3_1/3_1/3)=20.150144 Actual_PSNR_weight(1/3_1/3_1/3)=28.500469	cover_image	Size_secret_data		MSE
PSNR_R=37.556763 PSNR_G=37.415684 PSNR_B=37.647019 MSNR_R=6.523007 MSNR_G=25.151299 MSNR_B=28.776125 MSNR=24.008758 W_PSNR(0.4_0.243_0.357)=37.554702 MSNR_PSNR(0.4_0.243_0.357)=37.554702 W_PSNR(0.4_0.243_0.357)=37.554702 W_PSNR(0.4_0.243_0.357)=18.994045 WMSNR(0.4_0.243_0.357)=18.994045 W_MSNR(0.4_0.3_0.3)=18.787430 W_MSNR(1/3_1/3_1/3)=20.150144 Actual_PSNR_weight(1/3_1/3_1/3)=28.500469				
dB green_color.jpg 1280000 34.503834 23.051382 PSNR_R=33.537560 PSNR_G=37.406737 PSNR_B=33.575594 MSNR_R=-12.309591 MSNR_G=26.895562 MSNR_B=-11.808793 MSNR=14.750319 W_PSNR (0.4_0.243_0.357)=34.491348 MSNR_B=-11.808793 W_PSNR (0.4_0.3_0.3)=34.709723 W_PSNR (1/3_1/3_1/3)=34.839964 MSNR (0.4_0.243_0.357)=-2.603954 W_MSNR (0.4_0.3_0.3)=-0.397806 W_MSNR (1/3_1/3_1/3)=0.925726 MSNR (1/3_1/3_1/3)=0.925726	PSNR_R=37.556763 MSNR_R=6.523007 MSNR=24.008758 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.243_ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/	PSNR_G=37.4 MSNR_G=25.15 0.357)=37.554702 3)=37.541516 3)=37.539822 0.357)=18.994045 3)=18.787430 3)=20.150144	15684 51299	PSNR_B=37.647019
dB green_color.jpg 1280000 34.503834 23.051382 PSNR_R=33.537560 PSNR_G=37.406737 PSNR_B=33.575594 MSNR_R=-12.309591 MSNR_G=26.895562 MSNR_B=-11.808793 MSNR=14.750319 W_PSNR (0.4_0.243_0.357)=34.491348 MSNR_B=-11.808793 W_PSNR (0.4_0.3_0.3)=34.709723 W_PSNR (1/3_1/3_1/3)=34.839964 MSNR (0.4_0.243_0.357)=-2.603954 W_MSNR (0.4_0.3_0.3)=-0.397806 W_MSNR (1/3_1/3_1/3)=0.925726 MSNR (1/3_1/3_1/3)=0.925726				
PSNR_R=33.537560 PSNR_G=37.406737 PSNR_B=33.575594 MSNR_R=-12.309591 MSNR_G=26.895562 MSNR_B=-11.808793 MSNR=14.750319 W_PSNR(0.4_0.243_0.357)=34.491348 MSNR_B=-11.808793 W_PSNR(0.4_0.3_0.3)=34.709723 W_PSNR(1/3_1/3)=34.839964 MSNR(1/3_1/3)=34.839964 W_MSNR(0.4_0.243_0.357)=-2.603954 W_MSNR(0.4_0.3_0.3)=-0.397806 MSNR(1/3_1/3_1/3)=0.925726	cover_image	Size_secret_data		MSE
	PSNR_R=33.537560 MSNR_R=-12.309591 MSNR=14.750319 W_PSNR(0.4_0.243_0 W_PSNR(0.4_0.3_0.3 W_PSNR(1/3_1/3_1/3 W_MSNR(0.4_0.243_0 W_MSNR(0.4_0.3_0.3 W_MSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_	PSNR_G=37.40 MSNR_G=26.8 0.357)=34.491348 3)=34.709723 3)=34.839964 0.357)=-2.603954 3)=-0.397806 3)=0.925726	6737 95562	PSNR_B=33.575594

cover_image	Size_secret_data	PSNR dB	MSE
red_color.jpg PSNR_R=36.336424 MSNR_R=35.197359 MSNR=32.967158 W_PSNR(0.4_0.243 W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=36.732305 (3)=36.776291 0.357)=32.920996 3)=32.962220 (3)=32.713871 ut(1/3_1/3_1/3)=36.77	.833742	13.702837 PSNR_B=37.173024 MSNR_B=31.110512

Embedding combination 2_1_1

cover_image	Size_secret_data	PSNR dB	MSE
peppers_color.jpg PSNR_R=37.410364 MSNR_R=32.404398 MSNR=29.820578 W_PSNR(0.4_0.243_ W_PSNR(0.4_0.3_0. W_PSNR(1/3_1/3_1/ W_MSNR(0.4_0.3_0. W_MSNR(0.4_0.3_0. W_MSNR(1/3_1/3_1/ Actual_PSNR_weigh	3)=37.418552 3)=37.419461 0.357)=29.368288 3)=29.655349	340731	11.780459 PSNR_B=37.364136 MSNR_B=25.304570

cover_image	Size_secret_	data 1	PSNR dB	MSE
lena color.jpg	12800	00 3'	 7.550079	11.430689
PSNR R=37.353306		NR G=37.651402		PSNR B=37.652425
MSNR R=34.334176		NR G=29.438803		MSNR B=29.991048
MSNR=31.580308		<u></u>		mann_b 20.001010
	0 2571-27 522	E 2 0		
W_PSNR(0.4_0.243	-	525		
W_PSNR(0.4_0.3_0				
W_PSNR(1/3_1/3_1				
W_MSNR(0.4_0.243	-	103		
W_MSNR(0.4_0.3_0				
W_MSNR(1/3_1/3_1	1/3)=31.254675			
Actual_PSNR_weig	pht (1/3_1/3_1/3)=36.915868		
cover_image	Size_secret_	data	PSNR	MSE
_			dB	
oarbra color.jpg	128	0000	37.562702	11.397515
SNR R=37.400195		NR G=37.640362		PSNR B=37.65223
ISNR_R=31.850826		NR G=29.692260		MSNR B=28.93682
ISNR_R-31.850826 ISNR=30.265671	, M5	0		HONR_D-20.93002
ISNR-30.2858/1 I PSNR(0.4 0.243	0 3571=27 540	533		
PSNR(0.4_0.243				
/_PSNR(0.4_0.3_0				
	-	996		
MSNR(0.4_0.243		550		
_MSNR(0.4_0.3_0				
I_MSNR(1/3_1/3_1 Actual PSNR weig		-27 004286		
CCCUAI_PSNK_weig	Int (1/3_1/3_1/3)-37.004288		
over image	Size secret data	PSNR	MSE	
		dB		
aboon (512 x 512)	color.jpg	1280000		
SNR R=37.405435		1200000	37.56575	11.389517
	PSNR_G=	37.663087		51 11.389517 3=37.633330
ISNR_R=31.531799			PSNR_F	
ISNR_R=31.531799 ISNR=30.926152	MSNR_G=	37.663087	PSNR_F	3=37.633330
	MSNR_G=	37.663087	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 V_PSNR(0.4_0.243_0 V_PSNR(0.4_0.3_0.3)	MSNR_G= .357)=37.549403)=37.551099	37.663087	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 V_PSNR(0.4_0.243_0 V_PSNR(0.4_0.3_0.3 V_PSNR(1/3_1/3_1/3)	MSNR_G= .357)=37.549403)=37.551099)=37.567284	37.663087	PSNR_F	3=37.633330
ASNR_R=31.531799 ASNR=30.926152 ¶_PSNR(0.4_0.243_0 ¶_PSNR(0.4_0.3_0.3] ¶_PSNR(1/3_1/3_1/3] ¶_MSNR(0.4_0.243_0	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146	37.663087	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3 I_PSNR(1/3_1/3_1/3_ MSNR(0.4_0.243_0 I_MSNR(0.4_0.3_0.3_300.33_0.300000000	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715	37.663087	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.243_0] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3]	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150	-37.663087 -31.188577	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.243_0] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3]	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150	-37.663087 -31.188577	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.243_0	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150	-37.663087 -31.188577	PSNR_F	3=37.633330
ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.243_0] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3]	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150	924555	PSNR_E MSNR_E PSNR	3=37.633330
<pre>ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.243_0] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_Gtual_PSNR_weight</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36.	924555	PSNR_E MSNR_E	3=37.633330 3=29.968074
ISNR_R=31.531799 ISNR=30.926152 J_PSNR(0.4_0.243_0 J_PSNR(0.4_0.3_0.3 J_PSNR(1/3_1/3_1/3_1 J_MSNR(0.4_0.243_0 J_MSNR(0.4_0.243_0 J_MSNR(0.4_0.3_0.3) J_MSNR(1/3_1/3_1/3_1/3_1/3_1) I_MSNR(1/3_1/3_1/3_1) Cctual_PSNR_weight	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. Size_secret_	-37.663087 -31.188577 924555 data 80000	PSNR_E MSNR_E PSNR	MSE 11.769602
<pre>ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] _PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.243_0MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR_MARR_Weight</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.896150 (1/3_1/3_1/3)=36. Size_secret_ Size_secret_ og 12) PS	-37.663087 -31.188577 924555 data 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 _PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.896150 (1/3_1/3_1/3)=36. Size_secret_ Size_secret_ og 12) PS	-37.663087 -31.188577 924555 data 80000	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 _PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.896150 (1/3_1/3_1/3)=36. Size_secret_ Size_secret_ og 12) PS	-37.663087 -31.188577 924555 data 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
ISNR_R=31.531799 ISNR=30.926152 J_PSNR(0.4_0.243_0 J_PSNR(0.4_0.3_0.3) J_PSNR(1/3_1/3_1/3_ J_MSNR(0.4_0.243_0 J_MSNR(0.4_0.3_0.3) J_MSNR(1/3_1/3_1/3_ Ctual_PSNR_weight Cover_image Balloon_color.jp PSNR_R=37.268900 ISNR_R=29.818751 ISNR=31.218321	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
ISNR_R=31.531799 ISNR=30.926152 J_PSNR(0.4_0.243_0 J_PSNR(0.4_0.3_0.3 J_PSNR(1/3_1/3_1/3_1 J_MSNR(0.4_0.243_0 J_MSNR(0.4_0.243_0 J_MSNR(0.4_0.3_0.3) J_MSNR(1/3_1/3_1/3_1/3_1/3_1) I_MSNR_U1/3_1/3_1/3_1	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. Size_secret_ Size_secret_ Dg 12 D PS . MS B_0.357)=37.397	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
ISNR_R=31.531799 ISNR=30.926152 J_PSNR(0.4_0.3_0.3] J_PSNR(0.4_0.3_0.3] J_PSNR(0.4_0.243_0 J_MSNR(0.4_0.243_0 J_MSNR(0.4_0.3_0.3] J_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_00 I_MSNR=29.818751 I_SNR=31.218321 I_PSNR(0.4_0.3_0 I_PSNR(0.4_0.3_0 I_PSNR(0.4_0.3_0) I_SNR(MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 [_PSNR(0.4_0.243_0 [_PSNR(0.4_0.3_0.3] _PSNR(1/3_1/3_1/3] [_MSNR(0.4_0.3_0.3] [_MSNR(0.4_0.3_0.3] [_MSNR(1/3_1/3_1/3] Idots [_MSNR(1/3_1/3] Idots [_MSNR(1/3_1/3] Idots [_MSNR(1/3_1/3] Idots [_MSNR(1/3_1/3] Idots [_MSNR(1/3_1/3] Idots [_MSNR(1/3_1/3] [_PSNR(1/3_1/3_1] [_MSNR(1/3_1/3] [_PSNR(1/3_1/3] [_MSNR(1/3_1/3] [_MSNR(0.4_0.243] [_MSNR(1/3_1/3] [_MSNR(0.4_0.243] [_MSNR(1/3_1/3] [_MSNR[1/3_1/3] [_MSNR[1/3_1/3] [_MSNR[1/3_1/3] [_MSNR[1/</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -924555 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
ISNR_R=31.531799 ISNR=30.926152 [PSNR(0.4_0.243_0 [PSNR(0.4_0.3_0.3] [MSNR(0.4_0.243_0 [MSNR(0.4_0.3_0.3] [MSNR(1/3_1/3_1/3] [Gtual_PSNR_weight Cover_image Cover_ima	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -924555 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
ISNR_R=31.531799 ISNR=30.926152 [PSNR(0.4_0.243_0 [PSNR(0.4_0.3_0.3] [MSNR(0.4_0.243_0 [MSNR(0.4_0.3_0.3] [MSNR(1/3_1/3_1/3] [Gtual_PSNR_weight Cover_image Cover_ima	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -924555 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
SNR_R=31.531799 SNR=30.926152 _PSNR(0.4_0.243_0 _PSNR(0.4_0.3_0.3 _PSNR(1/3_1/3_1/3 _MSNR(0.4_0.243_0 _MSNR(0.4_0.3_0.3 _MSNR(1/3_1/3_1/3 _ctual_PSNR_weight 	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -31.188577 -31.188577 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 [_PSNR(0.4_0.243_0PSNR(0.4_0.3_0.3] [_PSNR(1/3_1/3_1/3] [_MSNR(0.4_0.3_0.3] [_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_0 I_MSNR(0.4_0.3_0] I_MSNR(0.4_</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -31.188577 -31.188577 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 [_PSNR(0.4_0.243_0PSNR(0.4_0.3_0.3] [_PSNR(1/3_1/3_1/3] [_MSNR(0.4_0.3_0.3] [_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_0 I_MSNR(0.4_0.3_0] I_MSNR(0.4_</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -31.188577 -31.188577 	PSNR_E MSNR_E PSNR dB	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 /_PSNR(0.4_0.243_0 /_PSNR(0.4_0.3_0.3, /_PSNR(0.4_0.243_0, /_MSNR(0.4_0.3_0.3, /_MSNR(1/3_1/3_1/3_1/3, /_MSNR(1/3_1/3_1/3_1/3, /_MSNR(1/3_1/3_1/3_1/3, /_MSNR=37.268900 ISNR_R=29.818751 ISNR=31.218321 ISNR=31.218321 ISNR=31.218321 V_PSNR(0.4_0.3_0, V_PSNR(0.4_0.3_0, V_PSNR(1/3_1/3_1, V_MSNR(0.4_0.3_0, V_MSNR(1/3_1/3_1, V_MSNR(0.4_0.3_0, V_MSNR(1/3_1/3_1, V_MSNR(1/3_1, V_MSN</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449	PSNR_E MSNR_E dB 37.423186	MSE 11.769602 PSNR_B=37.39786
<pre>ISNR_R=31.531799 ISNR=30.926152 /_PSNR(0.4_0.243_0 /_PSNR(0.4_0.3_0.3) /_PSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449	PSNR_E MSNR_E dB 37.423186	MSE 11.769602 PSNR_B=37.397861 MSNR_B=32.300620
ISNR_R=31.531799 ISNR=30.926152 [PSNR(0.4_0.243_0 [PSNR(0.4_0.243_0 [PSNR(0.4_0.243_0 [MSNR(0.4_0.3_0.3] [MSNR(1/3_1/3_1/3] [Gtual_PSNR_weight Gover_image 3alloon_color.jp PSNR_R=37.268900 ISNR_R=29.818751 ISNR=31.218321 V_PSNR(0.4_0.3_0 V_PSNR(0.4_0.3_0 V_PSNR(0.4_0.3_0 V_PSNR(0.4_0.3_0 V_MSNR(0.4_0.3_0 V_MSNR(0.4_0.3_0 V_MSNR(0.4_0.3_0 V_MSNR(1/3_1/3_1 Actual_PSNR_weig Cover_image	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 _data	PSNR_E MSNR_E dB 37.423186	MSE 11.769602 PSNR_B=37.397861 MSNR_B=32.300620
ISNR_R=31.531799 ISNR=30.926152 J_PSNR(0.4_0.243_0 J_PSNR(0.4_0.3_0.3] J_PSNR(0.4_0.243_0] J_MSNR(0.4_0.243_0] J_MSNR(0.4_0.3_0.3] J_MSNR(1/3_1/3_1/3] Idtual_PSNR_weight Cover_image Balloon_color.jp PSNR_R=37.268900 ISNR=R=29.818751 ISNR=31.218321 M_PSNR(0.4_0.243 M_PSNR(0.4_0.3_00 M_PSNR(1/3_1/3_1 M_MSNR(0.4_0.3_00 M_MSNR(1/3_1/3_1 M_MSNR(0.4_0.3_00 M_MSNR(1/3_1/3_1 Actual_PSNR_weight Cover_image Cover_image Balue_color.jpg	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 _data	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.397861 MSNR_B=32.300620
<pre>ISNR_R=31.531799 ISNR=30.926152 J_PSNR(0.4_0.243_0 J_PSNR(0.4_0.3_0.3] J_PSNR(1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_1/3_</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data data	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.40000 MSE 11.440010 PSNR_B=37.64700
ISNR_R=31.531799 ISNR=30.926152 / PSNR(0.4_0.243_0 / PSNR(0.4_0.3_0.3 / PSNR(0.4_0.243_0 / MSNR(0.4_0.243_0 / MSNR(0.4_0.3_0.3 / MSNR(1/3_1/3_1/3_1 Getual_PSNR_weight Cover_image Balloon_color.jp PSNR_R=37.268900 ASNR=31.218321 ASNR=31.218321 M_PSNR(0.4_0.243 M_PSNR(0.4_0.3_0 M_PSNR(1/3_1/3_1 M_MSNR(0.4_0.3_0 M_MSNR(1/3_1/3_1 Actual_PSNR_weight Actual_PSNR_weight Actual_PSNR_weight Astual_PSNR_weight Astual_PSNR_weight Astual_PSNR_weight Actual_PSNR_weight Astual_PSNR_Weight Astual_PSNR_Weight	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 -924555 data 800000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 _data _data _data	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.10062
<pre>ISNR_R=31.531799 ISNR=30.926152 [_PSNR(0.4_0.243_0 [_PSNR(0.4_0.3_0.3] [_PSNR(1/3_1/3_1/3] [_MSNR(0.4_0.3_0.3] [_MSNR(1/3_1/3_1/3] Idual_PSNR_weight Idual_PSNR_weight Idual_PSNR_weight Idual_PSNR_Veight Idual_PSNR(0.4_0.243] Idual_PSNR(0.4_0.243] Idual_PSNR(0.4_0.243] Idual_PSNR(0.4_0.3_0] Idual_PSNR(1/3_1/3_1) Idual_PSNR(0.4_0.3_0] Idual_PSNR(1/3_1/3_1) Idual_PSNR_weight Idual_PSNR_PSNR_IDUal_PSNR_VEIght Idual_PSNR_IDUal_PSNR_VEIght Idual_PSNR_IDUal_P</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data data data gata MR_G=37.67311 IR_G=25.408728	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.30062
<pre>ISNR_R=31.531799 ISNR=30.926152 [PSNR(0.4_0.243_0</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data data data gata MR_G=37.67311 IR_G=25.408728	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.30062
<pre>ISNR_R=31.531799 ISNR=30.926152 I_PSNR(0.4_0.243_0 I_PSNR(0.4_0.3_0.3] I_PSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_0.3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(1/3_1/3_1/3] I_MSNR(0.4_0.3_03] I_MSNR(0.4_0.3_03] I_MSNR(0.4_0.3_03] I_MSNR(0.4_0.3_03] I_SNR(0.4_0.3_03] I_PSNR(0.4_0.3_03] I_PSNR(0.4_0.3_03] I_PSNR(0.4_0.3_03] I_MSNR(1/3_1/3_1] I_MSNR(0.4_0.3_03] I_MSNR(1/3_1/3_1] I_MSNR(0.4_0.3_03] I_MSNR(1/3_1/3_1] I_MSNR(0.4_0.3_03] I_MSNR(0.4_0.3_03] I_MSNR(1/3_1/3_1] I_MSNR(0.4_0.3_03] I_MSNR(0.4_0.</pre>	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. Size_secret_ 	-37.663087 -31.188577 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data data data gata MR_G=37.67311 IR_G=25.408728	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.30062
SNR_R=31.531799 (SNR=30.926152 (PSNR(0.4_0.243_0) (PSNR(0.4_0.3_0.3) (PSNR(1/3_1/3_1/3) (MSNR(0.4_0.3_0.3) (MSNR(1/3_1/3_1/3) (otual_PSNR_weight (otual_PSNR_weight (SNR_R=37.268900 (SNR_R=29.818751 (SNR=31.218321 (PSNR(0.4_0.3_0) (PSNR(0.4_0.3_0) (PSNR(0.4_0.243) (PSNR(0.4_0.3_0) (PSNR(0.4_0.3_0) (PSNR(1/3_1/3_1) (MSNR(0.4_0.3_0) (MSNR(1/3_1/3_1) (MSNR(0.4_0.3_0) (MSNR(1/3_1/3_1) (MSNR(0.4_0.3_0) (MSNR(1/3_1/3_1) (SSNR_R=37.328056 (SNR_R=37.328056 (SNR_R=37.328056 (SNR_R=4.016522 (PSNR(0.4_0.243) (MSNR(0.4_0.243) (SSNR_24.016522 (PSNR(0.4_0.243) (PSNR(0.4_0.243) (SSNR_24.016522 (PSNR(0.4_0.243) (PSNR(0.4_0.243) (SSNR_24.016522 (PSNR(0.4_0.243) (PSNR(0.4_0.243) (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522 (SSNR_24.016522	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	924555 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data 010)=37.425449 gata SNR_G=37.67311 IR_G=25.408728 5775	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.30062
SNR_R=31.531799 (SNR=30.926152 (PSNR(0.4_0.243_0) (PSNR(0.4_0.3_0.3) (PSNR(1/3_1/3_1/3) (MSNR(0.4_0.3_0.3) (MSNR(0.4_0.3_0.3) (MSNR(1/3_1/3_1/3) (Ctual_PSNR_weight (Ctual_PSNR_weight (Ctual_PSNR_29.818751 (SNR_R=29.81	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	924555 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data 010)=37.425449 gata SNR_G=37.67311 IR_G=25.408728 5775	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.30062
SNR_R=31.531799 SNR=30.926152 _PSNR(0.4_0.243_0 _PSNR(0.4_0.3_0.3 _PSNR(1/3_1/3_1/3 _MSNR(0.4_0.3_0.3 _MSNR(1/3_1/3_1/3_ _Gtual_PSNR_weight 	MSNR_G= .357)=37.549403)=37.551099)=37.567284 .357)=30.890146)=30.959715)=30.896150 (1/3_1/3_1/3)=36. 	924555 924555 data 80000 NR_G=37.609580 NR_G=31.383479 727 010)=37.425449 data 010)=37.425449 gata SNR_G=37.67311 IR_G=25.408728 5775	PSNR_E MSNR_E dB 37.423186 PSNR dB 37.546540	MSE 11.769602 PSNR_B=37.39786 MSNR_B=32.30062 MSNR_B=32.30062 MSNR_B=32.30062

cover_image	Size_secret_data	PSNR dB	MSE
green_color.jpg	1280000	34.498175	23.081436
PSNR_R=33.425356	PSNR_G=37	.657753	PSNR_B=33.575594
MSNR_R=-12.421795	MSNR_G=2	7.146577	MSNR_B=-11.808793
MSNR=14.744660			
W_PSNR(0.4_0.243_	0.357)=34.507464		
W_PSNR(0.4_0.3_0.	3)=34.740147		
W_PSNR(1/3_1/3_1/	3)=34.886235		
W_MSNR(0.4_0.243_	0.357)=-2.587839		
W_MSNR(0.4_0.3_0.	3)=-0.367383		
W_MSNR(1/3_1/3_1/	3)=0.971997		
Actual_PSNR_weigh	t(1/3_1/3_1/3)=22.44	2047	

cover_image	Size_secret_data	PSNR	MSE
		dB	
red_color.jpg	1280000	36.766376	13.691241
PSNR_R=36.152324	PSNR_G=37	.046617	PSNR_B=37.173024
MSNR_R=35.013259	MSNR_G=32	.060933	MSNR_B=31.110512
MSNR=32.970835			
W_PSNR(0.4_0.243_	0.357)=36.734027		
W_PSNR(0.4_0.3_0.	3)=36.726822		
W_PSNR(1/3_1/3_1/	3)=36.790655		
W_MSNR(0.4_0.243	0.357)=32.902563		
W_MSNR(0.4_0.3_0.	3)=32.956737		
W_MSNR(1/3_1/3_1/	3)=32.728235		
Actual_PSNR_weigh	t(1/3_1/3_1/3)=36.790	0655	