

Analysis and Experiments on LSB-Based and ATD

Steganographic Methods for Gray Scale and Color

Images

Hajer Ahmed Alaswed

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Eastern Mediterranean University

May 2017

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

 Prof. Dr. Mustafa Tümer

 Director

I certify that this thesis satisfies the requirements as thesis for the degree of Master of

Science in Computer Engineering.

 Prof. Dr. Işık Aybay

 Chair, Department of Computer Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

_________________________________ ________________________

 Assoc. Prof. Dr. Alexander Chefranov Assoc. Prof. Dr. Gürcü Öz

 Co-Supervisor Supervisor

 Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Assoc. Prof. Dr. Gürcü Öz

3. Asst. Prof. Dr. Adnan Acan

4. Asst. Prof. Dr. Yiltan Bitirim

5. Asst. Prof. Dr. Ahmet Ünveren

iii

ABSTRACT

The aim of this thesis is the analysis and experiments on steganographic methods for

gray scale and color images and study of quality measures of the stego-images. For

gray images, the Algorithm with Ternary Digits (ATD) and Least Significant Bits

with Threshold (LSBT) are explained in detail. In the existing studies, for LSBT

algorithm, some information is not provided such as how to set the values of

threshold, , and two moduli, , . Moreover, our analysis proves that LSBT

encounters problems when the value of a pixel is close to the threshold value, . In

the study, LSBT problems are resolved by imposing constraints on the threshold and

moduli values. Known results are displayed as Peak Signal to Noise Ratio (PSNR)

for different values of embedding capacity, without presenting the formula for

threshold; hence, the threshold is formalized herein as a function of embedding

capacity.

In ATD, the main idea is embedding a secret message (in each pixel, embedding two

ternary digits) as a ternary numbers. In LSBT, the embedding capacity of each pixel

is determined by comparing the pixel value versus the threshold, : if the pixel value

is greater than or equal to T, then , otherwise is used

as embedding capacity. According to our analysis, PSNR of LSBDT is greater than

that of ATD when the embedding capacity is less than or equal to 3 BPP.

For color images, LSB and ATD are implemented for different color combinations of

8 BPP embedding capacity. According to our experiments, PSNR of LSB for color

images had fluctuations in different combinations with the same embedding capacity

iv

8 BPP while the PSNR of ATD was stable in different combinations. However, the

value of WMSNR (1/3, 1/3, 1/3) for LSB with different combinations looked

invariant for different combinations when compared with other weights. For LSB

algorithm when comparison between different metrics is made by deviation

evaluation of the metrics, the best metric for LSB algorithm is found as WMSNR

(1/3,1/3,1/3), with the minimal deviation value 0.211. And the maximal deviation is

obtained for WPSNR (0.4, 0.243, 0.357) corresponding to the human eye color

perception. Thus, human color perception-originated weights are not appropriate for

the images assessment.

Keywords: Steganography, Algorithm with Ternary Digits (ATD), Least Significant

Bit with Threshold Algorithm (LSBT), Gray Scale Image, Color Image, Embedding

Capacity, Image Quality Metrics, Peak Signal-to-Noise Ratio (PSNR).

v

ÖZ

Bu tezin amacı, gri tonlamalı ve renkli görüntüler için stenografik yöntemler

kullanarak analiz ve deneyler yapmak ve stego görüntülerinin kalite ölçümlerini

incelemektir. Burada gri görüntüler, üç basamaklı algoritma (ATD) ve eşiğe sahip

en az anlamlı bitler (LSBT) detaylı olarak açıklanmıştır. LSBT algoritmaları için

mevcut araştırmalarda, eşik değeri T ve iki modül olan mu ve ml değerlerinin nasıl

ayarlandığı gibi bazı bilgiler verilmemiştir. Ayrıca, analizimiz bir pikselin değeri

eşik değerine (T) yakın olduğunda, LSBT'nin sorunlarla karşılaştığını kanıtlıyor.

Çalışmadaki, LSBT problemleri, eşik ve modül değerlerine kısıtlamalar getirerek

çözüldü. Bilinen sonuçlar, gömme kapasitesinin farklı değerleri kullanılarak eşik için

formül sunmadan tepe sinyal-gürültü oranı (PSNR) olarak biçimlendirilmiştir. Bu

çalışmada eşik, gömme kapasitesinin bir fonksiyonu olarak biçimlendirilir.

ATD'de temel fikir, üç rakamlı olarak gizli bir mesaj gömmektir (her pikselde, iki

üçer sayı gömülüdür). LSBT’de her pikselin gömme kapasitesi, piksel değeri eşik (T)

ile karşılaştırılarak belirlenir: Eğer piksel değeri T’den fazla veya eşit ise, gömme

kapasitesi olarak , değilse , kullanılır. Bizim

analizlerimize göre gömme kapasitesi 3 BPP’den daha az veya eşit ise, LSBDT’nin

PSNR değeri ATD’den fazladır.

Renkli görüntülerde LSB ve ATD uygulanırken 8 BPP yerleştirme kapasitesinin

farklı renk kombinasyonları kullanıldı. Deneyimlerimize dayanarak, renkli

görüntüler için LSB'nin PSNR'si, aynı gömme kapasitesi 8 BPP olan farklı

kombinasyonlarda dalgalanma göstermekteyken, ATD'nin PSNR'ı farklı

vi

kombinasyonlarda sabit kalmıştır. Bununla birlikte LSB için WMSNR değeri (1/3,

1/3, 1/3), kombinasyonları ile birlikte farklı kombinasyonlara baktığımızda, diğer

ağırlıklara kıyasla farklı kombinasyonlar için değişmez görünüyordu. LSB

algoritması için farklı metrikler arasındaki karşılaştırma, metrikler için sapma

değerlendirmesiyle yapılması durumunda, LSB algoritması için minimum sapma

değeri 0.211 olan en iyi metrik olarak WMSNR (1/3, 1/3, 1/3) elde edildi. Yapılan

deney sonuçlarına göre en fazla sapma, insan göz rengi algısına karşılık gelen

WPSNR(0.4, 0.243, 0.357) değerlerinde saptandı. Çıkan sonuçlardan, insan renk

algılamasına dayalı ağırlıkların görüntü değerlendirmesi için uygun olmadığı

saptandı.

Anahtar Kelimeler: Steganografi, Üç Basamaklı Algoritma (ATD), En Az Önemli

Bit Eşik Algoritması (LSBT), Gri Ölçekli Görüntü, Renkli Görüntü, Gömme

Kapasitesi, Görüntü Kaliteli Metrikleri, Tepe Sinyal –Gürültü Oranı(PSNR).

vii

DEDICATION

To my beloved husband, Ahmed.

viii

ACKNOWLEDGMENT

First of all, I thank Allah so much for giving me the strength and potential to finish

my Master. Secondly, I would like to express my special appreciation and thanks to

my beloved husband for his love and support throughout my life. Also, I would like

to thank my supervisors Assoc. Prof. Dr. Alexander Chefranov, and Assoc. Prof. Dr.

Gürcü Öz for their guidance and support throughout this study.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ .. vi

DEDICATION ... viii

ACKNOWLEDGMENT ... ix

LIST OF TABLES ..xiv

LIST OF FIGURES ..…..xiii

LIST OF ABBREVIATIONS……………………………………….……........…xviii

1 INTRODUCTION………………………………………………………………….1

2 RELATED WORK AND PROBLEM DEFINITION……………………………...5

 2.1 Overview of Steganography ... 5

 2.2 Categories of Steganography .. 5

 2.3 Methods of Steganography ... 6

 2.3.1 Survey of Frequency Domain Methods .. 6

 2.3.2 Survey of Spatial Domain Methods ... 9

 2.3.3 LSB Method .. 13

 2.3.4 Algorithm with Ternary Digits (ATD) ... 16

 2.3.5 LSB with Threshold Algorithm (LSBT) .. 29

 2.4 Color Perception .. 40

 2.5 Known Metrics for Evaluating Quality of Stego Images 41

 2.6 Known Experiments Setups and Results ... 42

 2.7 Problem Definition ... 44

 2.8 Summary of Chapter 2 ... 46

x

3 ATD AND LSBT ANALYSIS AND RECOVERED PROBLEMS FIXING…...47

 1.3 Proof of ATD Correctness .. 47

 3.2 LSBT problems fixing and Proof of fixed LSBT Correctness 49

 3.3 Summary of Chapter 3 ... 61

4 IMPLEMENTATION OF ATD and LSBT-M ALGORITHMS FOR GRAY

SCALE IMAGES ... 62

 4.1 ATD Implementation ... 62

 4.2 LSBT-M Implementation ... 65

 3.1 Summary of Chapter 4 ... 69

5 IMPLEMENTATION OF ATD AND LSB ALGORITHMS FOR COLOR

IMAGES .. 70

 5.1 LSB Implementation .. 70

 5.1.1 Traditional LSB with Different Combinations 70

 5.1.2 Adaptive LSB (ALSB) Implementation ... 73

 5.2 ATD Implementation ... 74

 3.1 Summary of Chapter 5 ... 75

6 EXPERIMENTS RESULTS .. 76

 6.1 Gray Scale Images Results for ATD, LSBCT, and LSBDT 76

 6.1.1 ATD Results .. 77

 2.3.6 LSBCT Results.. 79

 2.3.1 LSBDT Results ... 81

 6.1.4 ATD, LSBDT, and LSBCT Comparison Results 84

 6.1.5 Comparison Versus Known Experiments Results 86

 6.2 Results for Color Scale Images ... 86

 6.2.1 LSB and ALSBmax, ALSBmin Results ... 86

xi

 6.2.2 ATD Results .. 89

 6.2.3 ATD and LSB Comparison Results ... 91

 6.2.4 Comparison Versus Known Experiments Results 92

 6.3 Study of the Quality Metrics .. 92

 6.3.1 MSNR and APSNR for Gray Scale Images.. 93

 6.3.2 MSNR and APSNR for Color Scale images ... 98

 6.3.3 Evaluation of Different Metrics ... 105

 6.4 Performance of ATD and LSB for Color Scale Images Depending on the

Embedding Capacity ... 108

 6.5 Summary of Chapter 6 ... 109

7 CONCLUSION AND FUTURE WORK ... 111

REFERENCES ... 114

APPENDICES .. 119

 Appendix A ………...120

 Appendix B.. 133

 Appendix C.. 143

 Appendix D ... 149

 Appendix E .. 172

 Appendix F .. 183

xii

LIST OF TABLES

Table 2.1: PSNR (dB) of LSBT and ATD [28] for Random Secret Message with

Embedding Capacity 3.1699 BPP for 8 Cover Images Figure 2.16 43

Table 2.2: LSB PSNR (dB) and MSE for LSB [24] ... 44

Table 4.1: ATD Results for Lena Image .. 64

Table 4.2: LSBDT Implementation for Baboon Image .. 68

Table 4.3: LSBCT Implementation for Baboon Image; T=160 68

Table 6.1: PSNR of ATD .. 78

Table 6.2: PSNR for LSBCT Algorithm.. 80

Table 6.3: PSNR for LSBDT Algorithm ... 83

Table 6.4: PSNR (dB) for LSBCT (T=160), LSBDT, and ATD Dependence on EC

(BPP) .. 85

Table 6.5: PSNR (dB) for LSB in Different Combinations and ALSBmax, ALSBmin

 ... 88

Table 6.6: PSNR (dB) for ATD for Different Combinations Results 90

Table 6.7: MSNR (dB) for LSB and ALSB Methods Results 100

Table 6.8: MSNR (dB) for ATD for Different Combinations 102

Table 6.9: Deviation of Results in Each Criterion Measure for LSB Algorithm 106

Table 6.10: Deviation of Results in Each Criterion Measure for ATD Algorithm .. 107

xiii

LIST OF FIGURES

Figure 1.1: Flowchart of the Thesis Study ... 4

Figure 2.1: Flowchart of the LSB Embedding Algorithm .. 14

Figure 2.2: Flowchart of the LSB Extraction Algorithm .. 15

Figure 2.3: Flowchart of the ATD Embedding Algorithm 19

Figure 2.4: Flowchart of Check Part of the ATD Embedding Algorithm 20

Figure 2.5: Flowchart of Check Part of the ATD Embedding Algorithm 21

Figure 2.6: Flowchart of Embedding in Part of the ATD Embedding

Algorithm ... 21

Figure 2.7: Flowchart of Embedding in Part of the ATD Embedding

Algorithm ... 22

Figure 2.8: Flowchart of ATD Extraction Algorithm. .. 23

Figure 2.9: Flowchart for LSBT Embedding Algorithm .. 31

Figure 2.10: Flowchart of Embedding Algorithm Below Threshold Part of LSBT ... 32

Figure 2.11: Flowchart of Embedding Algorithm Above Threshold of LSBT 33

Figure 2.12: Flowchart of Case.1 in Figures 2.10, 2.11 ... 33

Figure 2.13: Flowchart of Case.2 in Figures 2.10, 2.11 ... 34

Figure 2.14: Flowchart for LSBT the Extraction Algorithm 35

Figure 2.15: The Color Matching Experiment for RGB [20]. 40

Figure 2.16: Cover Images Used in [28] .. 42

Figure 2.17: PSNR Values (dB) for ATD and LSBT Obtained in [28] for Random

Secret Messages of Different Sizes and Averaged Over 8 Cover Images from Figure

2.16 .. 43

Figure 2.18: Cover Images Used in [24]. ... 44

xiv

Figure 4.1: Lena Cover Image and Stego Image for ATD Implementation withSecret

Message Size 644288 bits, Appendix A.6 ... 64

Figure 4.2: Baboon Cover Image and Stego Image for LSBDT Implementation 67

Figure 5.1: Lena Cover Image and Stego Image for LSB with Combination (134)

Implementation Appendix D.9 .. 72

Figure 5.2: Quality Measures for Lena Image After Secret Message Embedding by

LSB for Combination (134) .. 72

Figure 5.3: Quality Measures for ALSBmin for Lena Image 74

Figure 5.4: ATD Quality Measures for Lena Cover Image 75

Figure 6.1: Gray Scale Cover Images Used in ATD, LSBCT, and LSBDT Simulation

 ... 76

Figure 6.2: Flowchart for Gray Scale Simulation Steps ... 77

Figure 6.3: Average PSNR of ATD ... 78

Figure 6.4: Average PSNR for LSBCT ... 81

Figure 6.5: Average PSNR for LSBDT ... 84

Figure 6.6: PSNR (dB) for ATD and LSBCT (T=160) and LSBDT Dependence on

EC (BPP) .. 85

Figure 6.7: Cover Images Used for Experiments with ATD and LSB 87

Figure 6.8: Flowchart for Color Scale Simulation Steps .. 87

Figure 6.9: PSNR for LSB for Different Combinations and ALSBmax, ALSBmin . 88

Figure 6.10: SNR for LSB for Different Combinations and ALSBmax, ALSBmin .. 89

Figure 6.11: PSNR for ATD for Different Combinations .. 90

Figure 6.12: SNR for ATD in Different Combinations .. 91

Figure 6.13: PSNR for ATD and LSB ... 91

Figure 6.14: SNR (dB) for ATD and LSB ... 92

xv

Figure 6.15: APSNR (dB) of ATD .. 94

Figure 6.16: MSNR (dB) of ATD ... 94

Figure 6.17: APSNR (dB) for LSBCT... 95

Figure 6.18: MSNR (dB) for LSBCT .. 95

Figure 6.19: APSNR (dB) for LSBDT .. 96

Figure 6.20: MSNR (dB) for LSBDT .. 96

Figure 6.21: APSNR (dB) for ATD and LSBCT and LSBDT 97

Figure 6.22: MSNR (dB) for ATD and LSBCT and LSBDT 97

Figure 6.23: Weighed PSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different

Embedding Combinations ... 98

Figure 6.24: Weighed PSNR (dB) by (0.4, 0. 3, 0.3) for LSB for Different

Embedding Combinations ... 99

Figure 5.25: Weighed PSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin ... 99

Figure 6.26: MSNR (dB) for LSB for Different Embedding Combinations and

ALSBmax, ALSBmin ... 100

Figure 6.27: Weighed MSNR (dB) by (0.4, 0.3, and 0.3) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin ... 101

Figure 6.28: Weighed MSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin ... 101

Figure 6.29: Weighed MSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin ... 101

Figure 6.30: MSNR (dB) for ATD for Different Embedding Combinations 103

Figure 6.31: WPSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243,

0.357), (0.4, 0.3, 0.3), and (1/3,1/3,1/3) ... 104

xvi

Figure 6.32: MSNR (dB) for ATD and LSB.. 104

Figure 6.33: WMSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243,

0.357), (0.4, 0.3, 0.3), and (1/3,1/3,1/3) ... 105

Figure 6.34: Deviation of Results in Each Criterion Measure for LSB Algorithm .. 106

Figure 6.35: Deviation of Results in Each Criterion Measure for LSB Algorithm .. 108

Figure 3.36: WAPSNR (dB) Dependence on Embedding Capacity for LSB and ATD.

 ... 109

Figure A.1: Cover Images Used in Gray Scale Images. ... 120

Figure D.1: Color Cover Images Used. ... 149

xvii

LIST OF ABBREVIATIONS

ATD Algorithm with Ternary Digits

AC Average Color

ALSBmax Adaptive Least Significant Bit max

ALSBmin Adaptive Least Significant Bit min

APSNR Actual Peak Signal to Noise Ratio

BPP Bit Per Pixel

C-TDH Coded Ternary Data Hiding

DWT Discrete Wavelet Transform

DCT Discrete Cosine Transform

ETLSM Extended Table Lookup Substitution

EC Embedding Capacity

FFT Fast Fourier Transform

HSV (Hue, Saturation, Value)

IRMDR Improved Rightmost Digit Replacement

IWT Integer Wavelength Transform

LSB Least Significant Bit

LSBT Least Significant Bit with Threshold

LSBT-M Least Significant Bit with Threshold Modified

LSBCT Least Significant Bit with Constant Threshold

LSBDT Least Significant Bit with Dynamic Threshold

MSE Mean Square Error

MSNR Mean Signal to Noise Ratio

PSNR Peak Signal to Noise Ratio

xviii

PPM Pixel Pair Matching

PBPVD Parity Bit Pixel Value Differencing

RGB (Red, Green, Blue)

SNR Signal to Noise Ratio

SMVQ Side Match Vector Quantization

TLSM Table Lookup Substitution

TDH Ternary Data Hiding

WPSNR Weighted Peak Signal to Noise Ratio

WAPSNR Weighted Actual Peak Signal to Noise Ratio

WMSNR Weighted Mean Signal to Noise Ratio

1

Chapter 1

INTRODUCTION

1 Steganography is an art of embedding information in other media files for example

text, image, etc, where the embedding information will not be discovered [2], There

are basically two types of techniques in the Steganography: spatial domain and

frequency domain. In the spatial domain, the actual values are impacted to embed the

secret information while in frequency domain, the cover object is converted to the

frequency domain by Discrete Wavelet Transform (DWT) and then the secret

information is embedded [3].

In this thesis, we consider three steganographic schemes in the spatial domain,

Algorithm with Ternary Digits (ATD) [28] [18], Least Significant Bit (LSB) [10]

[27], and LSB with Threshold (LSBT) [26] [9] in the gray and the color scale

images. In [28], in ATD, the secret message is divided to non-overlapping pixel

blocks, then that it is converted to the ternary number with digits from {0, 1, 2}. In

each pixel of cover image, two ternary digits are embedded by converting the pixel

of the cover image to binary (8 bits) and dividing it to two sub-segments and

embedding one ternary digit in each sub-segment. In the embedding phase, a secret

digit is compared versus (the value of sub segment modulo 3); if the result is equal to

the secret ternary digit then sub segment is not modified, otherwise it is increased or

decreased by one.

2

LSBT [26], uses the threshold value, T, and two moduli numbers (modulus

upper, , modulus lower,). In the embedding phase, the pixel value of cover

image is compared with the threshold value . If it is larger than or equal to the

threshold, is used, otherwise is used. The number of bits embedded in each

pixel is determined according to value, , and the secret message is divided into

blocks according to the value, , where ; it gives better results when

 .

Experiments are conducted on ATD and LSBT with quality metrics Peak Signal to

Noise Ratio (PSNR) [28], but they do not provide the proofs for the methods (LSBT

and ATD). Also, sufficient information for their implementation in both algorithms

(LSBT and ATD) such as how to select the value of the threshold T and the values of

 and is not provided. Therefore, in this thesis, we provide the proofs for the

methods (LSBT and ATD), and we fix the recovered problem with LSBT when the

value of the pixel of cover image is close to the threshold value T by imposing

constraints on the threshold and moduli values. Also, we propose dynamic threshold

modification, LSBDT, where threshold is defined according to the embedding

capacity, measured in Bit Per Pixel (BPP), to have results compatible with those

presented in [28]. Furthermore, for LSBT we determine the value of two moduli and

extend ATD to work on the color scale images. We found that PSNR shows large

variance for the same embedding capacity depending on the bits distribution across a

pixel. Hence, we propose and implement new quality criteria MSNR and APSNR

which show significantly lower variance and find the best of them.

For gray scale images, experiments are conducted with the cover images of the size

3

512×512 pixels and random secret messages; the size of secret messages starts from

(512*512*2) bits and increases by 30000 bits in each iteration. In every iteration, the

values of PSNR are recorded. The comparison between three methods were

considered: ATD, LSBCT, LSBDT. When embedding up to 3 BPP the LSBDT

achieves a high value of PSNR 43 dB whereas ATD achieves 39 dB. However, when

increasing the embedding capacity more than 3 BPP the PSNR of LSBDT drops

sharply; it was 39 dB in 3 BPP then it slumps to 35 dB in 3.2 BPP while PSNR of

ATD decreases slightly until 37 dB.

For color images, experiments are conducted with the cover image of the size

512×512 pixels and the constant size secret message. In this case, we implement LSB

with different embedding combinations, (224, 242, 422, 134, 143, 314, 341, 413,

431), each of them representing 8 bits embedding in each pixel, for example,

combination 134 means embedding one bit in Red, three bits in Green, and four bits

in Blue color component of a pixel. Also, we modify LSB to adaptive LSB

(ALSBmax, ALSBmin) and we extend ATD to work with color images which is

implemented for different combinations (112, 211, 121) as four ternary digits

embedded in each pixel (8 bits in each pixel). For example, combination 112 means

embedding one ternary digit in Red, one ternary digit in Green, and two ternary

digits in Blue color component of a pixel. According to our results for color images,

for the same embedding capacity in the different combinations, we get a fluctuating

value of PSNR for LSB, therefore we have studied the quality metrics and improved

PSNR by introducing new metrics, MSNR and APSNR. Also, we weighted PSNR,

MSNR, and APSNR by three different groups of weighs (0.4, 0.3,

 0.3), (0.4, 0.243, 0.357), and (1/3, 1/3, 1/3)

4

where , , and are weights of Red, Green, and Blue, respectively. We have

tested new metrics, MSNR, APSNR, on the color and gray scale images.

The thesis research is organized as shown in Figure 1.1. Chapter 2 discusses related

work and introduces LSB, ATD, and LSBT methods, and the problem definition. In

Chapter 3, ATD and LSBT are analyzed, problems for LSBT are recovered by

building counterexamples, and fixed. Design and Implementation of ATD and

LSBT-based methods on gray scale images are shown in Chapter 4. Design and

implementation of ATD-based and LSB-based methods on color images are shown

in Chapter 5. Chapter 6 shows results of experiments on the above methods and

compares them with the known experiments results. Chapter 7 concludes the thesis.

Figure 1.1: Flowchart of the Thesis Study

Analysis of LSBT and ATD, and recovered for LSBT problems

fixing

Review Steganography Methods for Gray Scale and Color

Images (LSB, LSBT, ATD)

Implementation of ATD and LSBT-based Algorithms for Gray

Scale Images

Implementation of ATD and LSB-based Algorithms for Color

Images

Experiments results for LSB-based and ATD-based algorithms

and quality metrics and comparison with known results

END

Start

5

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

2.1 Overview of Steganography

2 Nowadays, with the recent developments in electronic computer and its intrusion into

our daily life, the need for private communication has increased. We use various

techniques to provide secrecy in communication. One of such techniques is

steganography; steganography is used to protect important data from unauthorized

user by hiding secret data into other media files like text, image, etc. Steganography

is a combination of two words, the first word “stegano” means the “cover”, and the

second word “graphic” means “writing”, they are both Greek words [1].

2.2 Categories of Steganography

There are different categories of steganography; these categories can be split to five

broad categories as the following [16]:

 Text Steganography

This is the most popular technique of steganography, it is done by embedding secret

data in text, by modifying the spacing between the words and line [16].

 Image Steganography

In this technique, the secret data is embedded in an image. This image can be a color

scale image, gray scale image or binary image. Color scale image has large space for

embedding secret data therefore color scale image Steganography is more popular

than gray scale image in Steganography. Color scale images can be represented in

different formats such as RGB (Red, Green, Blue), HSV (Hue, Saturation, Value)

6

[3].

 Audio Steganography

Audio Steganography is hiding the secret data in an innocuous cover speech in a

secure and robust manner. There are various ways popularly used in audio

Steganography such as LSB coding, parity coding, and spread spectrum [16].

 Video Steganography

Video Steganography is a combination of image steganography and audio

Steganography as the video consists of a set of images and audio [16].

 Protocol Steganography

In protocol steganography, the secret data is hidden in the header of a TCP/IP [16].

2.3 Methods of Steganography

There are two classes of methods of steganography techniques as that [3]:

1) Frequency Domain Methods.

2) Spatial Domain Methods.

2.3.1 Survey of Frequency Domain Methods

In transform domain, the cover object is converted to another domain to get the

transformed coefficients, these coefficients are changed to hide the secret data. After

that, these coefficients are transformed back to the spatial domain to get stego object.

The widely used transforms are Discrete Wavelet Transform (DWT), Discrete

Cosine Transform (DCT) and Fast Fourier Transform (FFT)[3].

In DCT is the core of image coding and video compression techniques. Such as for

JPEG image format, image is divided into 8x8 pixel blocks then the DCT is applied

to each block to get 64 DCT coefficients each [13]. The FFT is popularly used for

frequency analysis which is easy to get the phase of a coefficient and change it by

7

secret data. As in DCT an image is divided into several non-overlapped blocks [12].

There are a number of schemes working in the frequency domain they are as the

follows:

In 2002 Chang, Chen, and Chung proposed a scheme for hiding the secret message in

the cover image based upon JPEG and quantization table modification [7]. This

method uses the JPEG image as a cover image. the cover-image divided into non-

overlapping blocks of 8*8 pixels, and then applies DCT on each block to transform

into DCT coefficients, the secret message embedded in the middle frequency part of

the quantized DCT coefficients for each block. after embedding, use entropy coding

to compress each block to obtain a JPEG file. This scheme achieves the larger

capacity and the quality of the stego-images is acceptable

In 2013, Acharya, Hemeletha, Renuka, and Kamath proposed a method for hiding

gray scale image in color scale image by utilizing Integer Wavelet Transform (IWT)

and Discrete Wavelet Transform (DWT) [4]. In this method, the secret image is not

embedding in a cover image, instead, generated the key by using DWT then this key

is hiding in color scale image with run length encoded by using IWT. So, this method

achieves the improving the security and has a high quality of the stego image

compared to other methods.

In 2013 Gupta and Sharma proposed a scheme for hiding gray scale image in audio

by utilizing Discrete Wavelet Transform (DWT) and Least Significant Bit (LSB)

[14]. In this method embedding secret image bits in the higher frequency component

of the audio file after applying the DWT on the audio, for hiding the audio is divided

into blocks, the size of each block is 8*8 pixels and then store the image bits into the

last 3 bits of the audio file.

8

In 2014 Chen, Zhang, Ma, and Yu proposed a method for reversible data hiding in

DCT domain by recursive code construction [8]. In this method, the data is

embedded over a special ternary cover that is suitable for any transform domain, for

example, DCT domain. The likelihood density function of the transformed

coefficients has a Laplacian distribution with a small variation. Thus, this technique

has good image quality.

In 2014, Lavania, Matey, and Thanikaiselvan proposed a method for embedding

secret data in the medical image (color scale image) for the real-time application by

using the Integer Wavelength Transform (IWT) [21]. In this method, the data hiding

in the red plane of cover image by dividing the cover image to non-overlapping pixel

block the size of block 8*8 pixels and then apply IWT on each block and embedding

L random steno bit message in LH, HL and HH coefficient of a block. So, this

scheme achieved high capacity and robustness.

In 2014, Garg and Mathur proposed a method for embedding the secret gray image in

a gray image by using fractional Fourier transform (FFT) and wavelet coefficients

(DWT) [15]. In this method apply FFT on both images (secret image and cover

image) which are divided into real and imaginary part then apply DWT on the real

part of both images, the embedding process done by add approximation of cover

image and secret image by using alpha blending. So, this method achieves both

robustness and higher security.

In 2015, Acharya, Hemalatha, and Renuka proposed a method for embedding audio

in color scale image by using the wavelet transform [3]. In this method, the cover

image is presented in YCbCr format, and then Cb, Cr components and secret audio

9

are transferred to wavelet domain by using IWT. The approximate coefficients of

secret audio are embedded in a second and third bit of high-frequency coefficients of

Cb and Cr. This method shows a high quality of the stego image.

2.3.2 Survey of Spatial Domain Methods

Spatial domain implies the real location of a pixel in media forms such as text,

image, video, sound, etc. While hiding secret data in a pixel, the location of a pixel is

considered and then the pixel value is used to hide the data. There are many

steganography algorithms working on color or gray scale images; each algorithm has

its own protection mechanism and complication techniques since the basic aim for all

of these algorithms is encoding a large amount of secret data and little effect on the

cover file. It means large value for the Bit Per Pixel (BPP) embedding capacity with

high image quality.

 Survey of Steganography Methods for the Color Scale Images

There are many techniques of steganography working on color scale images as the

follows:

In 2007, Yu, Chang and Lin proposed a scheme for embedding a color or a gray

scale image in a true color scale image [29]. This scheme uses three different types

of secret image: color scale image, a palette-based 256-color scale image, and a gray

scale image. A secret image is converted to a binary representation, and then the

secret data are protected by encrypting using DES algorithm. After that, each 8-bit

byte of encrypted data is divided into 3 bits, 2 bits, and 3 bits. This method achieves

high quality of the image.

In 2013, Kiruba and Karthikeyan proposed a method for detection of adaptive pixel

pair matching in color scale images and gray scale images [19]. This technique is

based on pixel pair matching (PPM) for data hiding. The basic idea of PPM is to

10

utilize the values of pixel pairs as a reference assortment and seeking a coordinate in

the neighborhood set of this pixel pair according to a given message digit. In this

method, the maximum value of the embedding capacity of the payload is 1.161 BPP.

So, this method achieves the best quality image with less distortion.

In 2013, Maj, Pal and Roy proposed a method by using Sudoku puzzle for

embedding a secret message in the color scale image [22]. In this method, the cover

image is divided into equal-sized blocks, the size of a block 64 bits. In every block

embedding a character of the secret message in each three pixels. So, this scheme

achieved more robustness with less computation.

In 2015, Singh and Singh proposed a method to improve LSB for hiding secret data

in color scale image [24]. In this method, the secret message embedding in LSB of

color scale image uses 2-2-4 LSB insertion: this technique embeds 2, 2, and 4 bits of

secret data into 2 LSB of a red component, 2 LSB of green component, and 4 LSB of

blue component, respectively. This method achieved a high quality of the image and

high embedding capacity.

 Survey of Steganography Methods for Gray Scale Images

There are many techniques of steganography working on gray scale images, one of

the easiest, fast and very publicly known technique of steganography is the Least

Significant Bit (LSB). In this technique, least significant bit or bits of a pixel are

replaced by the bits of the secret data to be hidden. LSB can change up to 4 least

significant positions from a byte. Changing four bits of a pixel may cause distortion

in an image due to a noticeable change in intensity of a cover object [2].

One of the most common techniques is the LSB substitution method; it is a simple

11

method [10]. The main idea of LSB substitution is to change the least significant bits

of the cover file with the bits of secret data. The secret information is divided into

blocks with size M where . Overall, this method can realize a good

image quality when , however, for , there is a sorely drop in the

image quality.

To upgrade LSB substitution, many steganographic techniques were proposed. In

2001, Wang and Lin proposed a method that uses an optimal LSB substitution and

genetic algorithm [27], to solve the problem of hiding data in the MLSB of the cover

image by using genetic algorithm, when M is large in order to get better image

quality and high embedding capacity.

In 2003, Chang, Hsiao and Chan proposed method to find optimal LSB substitution

in image hiding by dynamic programming strategy [9], this method, is the same as

the previous method [27] but this method uses the dynamic programming instead of

the genetic algorithm in finding the optimal value for M. Also, this method consumes

less computation time. This method achieves a good quality image and less

computational time.

In 2003, Zhang and Ping proposed a scheme for the reliable detection of least

significant bit (LSB) basic on statistical observations on difference image histograms

[30]. This method uses gray scale images with size 512×512 pixels, the secret

messages are embedded by using the random LSB replacement method with

embedding ratios varying from 0 to 100% in 10% increments. The algorithm is more

accurate than the other techniques when embedding large messages.

12

In 2006, Chang, Tai and Lin proposed a scheme for digitally compressed images

based on side match vector quantization (SMVQ) [6]. In this method, the cover

image is encoded using SMVQ; then the compressed image is created. The SMVQ-

compressed cover image is divided into non-overlapping blocks then the secret data

are embedded in the blocks. This method achieves a large size of secret data, visual

quality and compression rate compare with other methods using SMVQ.

In 2012, Taur, Lin, lee and Tao proposed a method for hiding data in DNA

sequences based on table lookup substitution (TLSM) [25]. TLSM is to enhance the

performance of data embedding technique called the substitution. The Base-t TLSM

encodes the secret message with radix t to fully use the substitution table. In

extended TLSM (ETLSM) method, the number of elements of selectable substitution

table was raised by taking additional letters into account. This method has good

capacity and security.

In 2015, Jheng, Chen and Huang proposed a method for data hiding based on

histogram medication over ternary computers [18]. They proposed two methods for

data hiding Ternary Data Hiding (TDH) and Coded-Ternary Data Hiding (C-TDH).

In the both methods, the secret data was ternary (NAF format). TDH method

achieves higher peak signal to noise (PSNR) and C-TDH method achieves increased

amount of the embedded secret data compared to TDH method.

In 2016, Hussain, Wahab, Ho, Javed and Jung proposed a scheme for data

embedding using parity bit pixel value differencing (PBPVD) and improved

rightmost digit replacement (IRMDR) [17]. In this method, the cover image divided

into non-overlapping pixel blocks, and then calculate the PBPVD and the IRMDR in

13

each block by calculating the difference between pixel values in blocks. If the

difference value of the block exists in the level, then implement iRMDR;

otherwise, PBPVD implement.

In this thesis, we investigated LSB, ATD, and LSBT in the spatial domain and

detailed explained in the following:

2.3.3 LSB Method

One of simplest and fastest method is LSB. In this method, the binary secret message

is divided into blocks with R bits, and in every pixel of the cover image hiding one

block [10]. LSB method is shown below.

 LSB Embedding Algorithm

Input: Secret data as binary, S; cover image, where N is the number of

rows; and M is the number of columns; R is size of the block.

Output: Stego image, .

Step 1: Binary data divide into blocks of R bits where

Step 2: Hide in pixel .

 (2.1)

Where is the cover pixel of V, is the stego pixel of Y, is a decimal value

of R-bits.

Step 3: End.

Figure 2.1 shows the flowchart of the LSB embedding algorithm.

14

Figure 2.1: Flowchart of The LSB Embedding Algorithm

 LSB Extraction Algorithm

Input: Y is Stego image with size [N, M]; R is block size of the secret message.

Output: Secret data, S as binary.

Step 1: Set empty set.

Step 2: Calculate the value of secret for each pixel of stego image at position ,

 from next formula:

Start

Binary secret message S; cover

image V; R is the block size

End

No

Yes

Read

15

 (2.2)

Where is the stego pixel of Y.

Step 3: Transform every into binary and insert into the secret data S.

Step 4: End

Figure 2.2 shows the flowchart of the LSB extraction algorithm.

Figure 2.2: Flowchart of The LSB Extraction Algorithm

 Example 1. LSB Method

Let the pixel values of cover be (160 161 157 156), and the binary message be (11 01

Start

Stego image Y; R is the block size, Q

is size secret message

 ,

End

Transform each into binary

Read

No

Yes

16

10 01) and the size of block R=2 bits.

In block 1, we have then

In block 2, we have then

 .

In block 3, we have then

In block 4, we have then

In the extraction stage, if we have stego pixel values (163 161 158 157). For each

stego pixel , we get

Finally, we get and the binary secret message is restored.

2.3.4 Algorithm with Ternary Digits (ATD)

As proposed in [28], in this method the secret data consist of digits {0, 1, and 2} in

the form of a ternary string. Each pixel of a cover image takes two ternary digits

from the secret data. The ATD is shown below:

 ATD Embedding Algorithm

Input: Ternary secret message ; V is cover image

17

with size [N, M], N is the number of rows; M is the number of columns.

 ; is the cover pixel.

Output: Stego image,

Step 0.

Step 1: Convert the pixel value to binary according to equation

(2.3)

(2.3)

Step 2: Divide into two sub-segments ; and

 .

Step 3: Check overflow/underflow for according to (2.4), (2.5)

 (2.4)

(2.5)

Step 4: Embed the first ternary secret number in
 according to the next

cases:

Case 1:

 (2.6)

Case 2:

 (2.7)

Case 3:

18

 (2.8)

Step 5: Construct
 by using equation (2.9)

 (2.9)

Step 6: go to Step 7 else go to Step9.

Step 7: Embed the second ternary secret number into
 , according to next cases:

Case 1:

 (2.10)

Case 2:

 (2.11)

Case 3:

 (2.12)

Step 8: , go to Step1

Step 9: End.

Note 1. Note that due to (2.5), embedding of the second digit by (2.10)-(2.12) does

not change its sub1 part, i.e.

.

Figure 2.3 shows the flowchart of the embedding algorithm.

19

Figure 2.3: Flowchart of The ATD Embedding Algorithm

Start

Ternary secret message

S; cover image V

convert the pixel value to binary,divide

into two sub-segments , , read

check

 ,

 Embedding in

according (2.6), (2.9), and (2.8)

 Embedding in
 according (2.10), (2.11), and (2.12)

Yes

End

No

check

No

Yes

20

Figure 2.4: Flowchart of Check Part of The ATD Embedding Algorithm

Yes

No

Yes

No

End

Start

21

Figure 2.5: Flowchart of Check Part of The ATD Embedding Algorithm

Figure 2.6: Flowchart of Embedding in

 Part of The ATD Embedding

Algorithm

Yes

No

No

Yes

Start

End

Yes

No

Yes

No

Start

End

22

Figure 2.7: Flowchart of Embedding in

 Part of The ATD Embedding

 Algorithm

 ATD Extraction Algorithm

Input: V is stego image with size [N, M], N is the number of rows; M is the number

of columns. ; is the cover pixel.

Output: Ternary secret message .

Step 0.

Step 1: Convert the pixel value to binary according to equation

(2.3)

Step 2: Divide into two sub-segments ; and

 .

Step 3: Extract first ternary number of , according equation (2.13)

 (2.13)

Step 4: , if go to Step 5 else go to Step 7.

Step 5: Extract second ternary number from , according toequation (2.14)

Yes

No

No

Yes

Start

End

23

 (2.14)

Step 6: , if go to Step 1.

Step 7: End.

Figure 2.8 shows flowchart of the extraction algorithm.

Figure 2.8: Flowchart of ATD Extraction Algorithm

Start

Stego image V

convert the pixel value to binary,divided

 into two sub-segments ,

Extract first ternary number from

Extract second ternary number from ,

Yes

End

No

 No

Yes

24

 Example 2. Example for ATD Embedding and Extraction

Let the cover pixel values are , and the ternary message

be .We will embed two ternary digits into each cover pixel: 01 into 135,

02 into 157, and 12 into 138.

Embed 01 into cover pixel .

Step 1: Convert cover pixel to binary

Step 2: Divide binary value of cover pixel into

Step 3: Check overflow/underflow for ; the result after Check

overflow/underflow according to (2.4) and (2.5):

Step 4: Embed the first ternary secret number to according to (2.6),

(2.7) and (2.8):

 mod3=33 mod 3=0 =

Hence, apply (2.6)

Step 5:

Step 6: Read the second ternary number and embed it in
 according to

(2.10), (2.11) and (2.12):

25

Hence, stego=133

Embed into cover pixel =137.

Step 1: Convert cover pixel to binary

Step 2: Divide binary value of cover pixel into

Step 3: Check overflow/underflow for according to (2.4) and (2.5); no

need for change in this step.

Step 4: Embed into according to (2.6), (2.7) and (2.8):

Hence, apply (2.6): stego=33

Step 5:

Step 6: Read the next ternary number and embed it in
 according to

(2.10), (2.11) and (2.12):

Hence,

 .

Embed into cover pixel =138.

Step 1: Convert cover pixel to binary

26

Step 2: Divide binary value of cover pixel into

Step 3: Check overflow/underflow for , according to (2.4) and (2.5); no

need for changes in this step.

Step 4: Embed into according to (2.6), (2.7) and (2.8):

Hence, apply (2.6):

Step 5:

Step 6: Read the next ternary number and embed it in
 according to

(2.10), (2.11) and (2.12):

The stego pixels are (133, 134, and 137).

In the extraction, if we have stego pixel value (133, 134, 137)

stego pixel =133.

Step 1: Convert cover pixel to binary

Step 2: Divide the binary value of the cover pixel into

Step 3: Extract first ternary number from according to (2.13)

27

Step 4: Extract second ternary number from , according to (2.14),

The first part of the secret message is restored.

Next stego pixel =134.

Step 1: Convert cover pixel to binary

Step 2: Divide the binary value of cover pixel into

Step 3: Extract from according to (2.13)

Step 4: Extract From according to (2.14)

The second part of the secret message is restored.

Next stego pixel =137.

Step 1: Convert cover pixel to binary

Step 2: Divide the binary value of the cover pixel into

Step 3: Extract From according to (2.13)

Step 4: Extract From according to (2.14)

The third part of the secret message is restored.

28

Finally, we embedded into and the ternary secret

message is restored from the stego pixels .

2.3.5 LSB with Threshold Algorithm (LSBT)

As proposed in [26], this method uses a threshold value which indicates the number

of bits of the secret data embedded into the cover image. The LSBT algorithm is

presented below:

 LSBT Embedding Algorithm

Input: is a secret message as a bit string, two moduli numbers, and ; as

cover image with size [N, M], M is the number of rows; N is the number of

columns ; T is the threshold value ; is the

 cover pixel.

Output: Stego image, .

Step 0: k=0

Step 1:

 , (2.15)

 , (2.16)

 Else

 , (2.17)

 , (2.18)

where is the maximal integer less or equal to x.

Step 2: Compute

 , (2.19)

where DEC is the decimal value of the next EC bits from . From (2.15), (2.16),

Step 3: Embed DEC into . .

Case 1:

29

Case 1.1:

 (2.20)

 (2.21)

Case 1.2

 (2.22)

Case 1.2.1

 (2.23)

 . (2.24)

Case 1.2.1.1 (2.25)

 . (2.26)

Case 1.2.1.2 (2.27)

 . (2.28)

Case 1.2.2

 (2.29)

 (2.30)

Case 1.2.2.1 (2.31)

 . (2.32)

Case 1.2.2.2 RES<DEC (2.33)

 . (2.34)

Case 1.3

 (2.35)

 . (2.36)

Case 2:

 .

Case 2.1 (2.37)

 DEC. (2.38)

Case 2.2

 (2.39)

Case 2.2.1

 (2.40)

 (2.41)

30

Case 2.2.1.1 (2.42)

 (2.43)

Case 2.2.1.2 (2.44)

 (2.45)

Case 2.2.2

 (2.46)

 (2.47)

Case 2.2.2.1 (2.48)

 (2.49)

Case 2.2.2.2. RES<DEC (2.50)

 (2.51)

Case 2.3

 (2.52)

 (2.53)

Step 4: If go to Step 1.

Step 5: End.

Figure 2.9 shows the flowchart of the LSBT embedding algorithm.

31

Figure 2.9: Flowchart for LSBT Embedding Algorithm

Start

No Yes

 is secret message, , ,
cover image P,T is threshold, k=0

Embedding algorithm below threshold Embedding algorithm above threshold

No

End

Yes

32

Figure 2.10: Flowchart of Embedding Algorithm Below Threshold Part of LSBT

Yes

No

Yes

No

No
Yes

End

Case.2
Case.1

Start

33

Figure 2.11: Flowchart of Embedding Algorithm Above Threshold of LSBT

Figure 2.12: Flowchart of Case.1 in Figures 2.10, 2.11

Yes

End

No

Start

Yes

No

Yes

No

End

No
Yes

Case.2 Case.1

Start

34

Figure 2.13: Flowchart of Case.2 in Figures 2.10, 2.11

 LSBT Extraction Algorithm

Input: is stego image with size [N,M], T Threshold value, Two moduli, , .

Output: is a bit string with extracted secret message

Step 1: k=0; Compute RES and EC as follows:

Case 1:

 (2.54)

 (2.55)

Case 2:

 (2.56)

 (2.57)

Step 2: Convert RES into the bit string with the EC bits and insert it into the secret

data .

No Yes

End

Start

35

Step 3: if go to Step 1. Otherwise, go to Step 4.

Step 4: End

Figure 2.14 shows the flowchart of the LSBT extraction algorithm

Figure 2.14: Flowchart for LSBT The Extraction Algorithm

 Example 3. Example of LSBT embedding-extraction

Let the cover pixel values be for cover pixel, and be a

secret bit string , T=160, =8, =4.

Embedding into :

Step 1:

Start

No Yes

Convert RES into bit string with EC bit length, then insert it into .

Yes

No

 , , stego image ,T, k =0

END

36

Check if

Hence, calculate according to (2.15)

 .

Calculate according to (2.16)

 .

Step 2: Compute D according to (2.19)

 .

Step 3: Pixel, , meets case 2 condition since

And it meets case 2.3 condition since

 .

Hence, DEC=3 is embedded according to (2.53):

 .

Now, embed into .

Step 1:Since

calculate according to (2.15)

 .

Calculate according to (2.16):

 .

Step 2: Compute D according to (2.19)

 .

Step 3: Embed DEC=5 into

according to case 2.2 since

37

 .

Case 2.2.1 condition holds:

 .

Hence, calculate AV as (2.41):

 .

Since case 2.2.1.2 holds, according to (2.45)

 .

Now, consider embedding into :

Step 1: Since

calculate according to (2.15)

 .

Calculate according to (2.16)

 .

Step 2: Compute D according to (2.19)

 .

Step 3: Embed DEC=7 into

according to case 2.1 since according to (2.38)

 ,

 .

Embedding into :

Step 1:Since p4=150<T=160

calculate according to (2.17)

 ,

38

Calculate according to (2.18)

 .

Step 2: Compute D according to (2.19)

 .

Step 3: Embed DEC=1 into

according to case 1.2 since

,

 .

Case 1.2.2 condition holds:

 .

Hence, calculate AV as (2.30):

 .

Since Case 1.2.2.1 holds, according to (2.32)

 .

The stego pixel are .

In the extraction, we have stego pixel value , and stego pixel,

 =163.

According to Case 2

From (2.56) and (2.57)

 ,

 =3.

Convert RES to binary with EC length: .

The secret message is restored.

39

The second stego pixel, =197.

According to Case 2

From (2.56) and (2.57)

 .

 =5.

Convert RES to binary with EC length

The secret message is restored.

The third stego pixel, =255.

According to Case 2 .

From (2.56) and (2.57)

 ,

 =7.

Convert RES to binary with EC length

The secret message is restored.

And the fourth stego pixel, =149.

According to Case 1, .

From (2.54) and (2.55)

 ,

 =1.

Convert RES to binary with EC length

The secret message is restored.

Finally, we embedded into , and the secret

message is restored from the stego pixels .

40

2.4 Color Perception

The human eye distinguishes color by hue, saturation, and brightness. As we know,

primary colors can be one-to-one correlated with light wavelength. Also,

combinations of different light wavelengths can cause the same perception of color

[23].

The RGB color model is a convenient means for representing color which was

established in Commission Internationale de l`Eclairage (CIE) in 1931. R, G and B

are three light waves with three different colors called reference color stimuli and

denote wavelengths of monochromatic light of 700.0 nm for R which is selected

from a wavelength region where human perception does not change much with

changing wavelength 546.1 nm for G, and 435.8 nm for B that correspond to

emission lines of Hg lamp. To establish a broad array of colors by an additive color

model, Red, Green, and Blue lights are mixed together in various ways. The color

matching experiment mixes three primary colors to find a coincidence with the given

color by human perception [20]. Figure 2.15 shows the color matching experiment

for RGB.

Figure 2.15: The Color Matching Experiment for RGB [20].

41

2.5 Known Metrics for Evaluating Quality of Stego Images

Several metrics are used usually to measure the quality of the stego-images. In the

following, we explain them.

 Mean Square Error (MSE)

MSE is the mean of squares of differences between the cover image and the stego

image [28]:

(2.58)

where N, M is number of columns and rows, respectively, of cover image, , and

the stego image,

 Peak Signal to Noise Ratio (PSNR)

PSNR is calculated as follows:

 dB, (2.59)

where 255 is the maximum possible value of gray scale pixel value [28]. PSNR uses

potentially maximal pixel value, 255, that actually may not be reached, that may

result not in proper quality description by it.

 Signal to Noise Ratio (SNR)

Signal to noise ratio refers to the measurement of the level of an audio signal as

compared to the level of noise that is present in that signal. A larger value of SNR

implies a better quality [3], it is calculated as follows:

 dB (2.60)

where

 , and
 are color component variances of cover image,

and

 and
 are color component variances of noise-added image[5].

Variance is calculated as follows:

42

,

(2.61)

where is mean of the pixel image, is the pixel value of an image, and, is the

number of pixels of the image, and mean is defined as follows:

,

(2.62)

where is mean of the pixel image, is the pixel value of an image, and, is

the number of pixels of the image.

 Embedding capacity

Embedding capacity is defined as the number of bits of secret data embedded in each

pixel of cover image.

 . (2.63)

2.6 Known Experiments Setups and Results

1) For gray scale images, the eight cover images used in [28], are shown in Figure

2.16, and PSNR for the both schemes(ATD and LSBT), for random secret messages

with different size and averaged over 8 cover images Figure 2.16 are shown in Table

2.1, Figure 2.17 shows PSNR for two schemes (ATD and LSBT) [28].

Figure 2.16: Cover Images Used in [28]

43

Figure 2.17: PSNR Values (dB) for ATD and LSBT Obtained in [28] for Random

Secret Messages with Different Sizes and Averaged Over 8 Cover Images

Figure 2.16.

 Table 2.1: PSNR (dB) of LSBT and ATD [28] for Random Secret Message

 with Embedding Capacity 3.1699 BPP for 8 Cover Images Figure 2.16

From Table 2.1 and Figure 2.17, we see that the ATD has better image quality when

the embedding capacity greater is than 3 BPP, while LSBT achieves higher stego

image quality when embedding capacity is less than 3 BPP.

Cover image LSBT ATD

Airplane 36.11 37.45

Baboon 36.10 37.41

Barb 36.09 37.41

Elain 36.11 37.42

Goldhill 36.21 37.41

Lena 36.04 37.41

Peppers 36.07 37.39

Zelda 36.11 37.40

44

2) For color scale images, Table 2.2 shows PSNR and MSE for LSB algorithm [24],

and two cover images used in [24] to embed the secret message are shown in Figure

2.18.

 Table 2.2: LSB PSNR (dB) and MSE for LSB [24]
Cover image PSNR(dB) MSE

Lena 55.9461 0.1654

Baboon 55.9238 0.1662

Figure 2.18: Cover Images Used in [24].

2.7 Problem Definition

In this thesis, we study ATD and LSBT for gray scale images, and LSB and ATD for

color scale images.

 For gray scale images:

1) For LSBT and ATD, the papers [26] [28] do not provide the proofs of the

methods, hence, we prove correctness of ATD

2) For LSBT, information is not provided in [26] how to set the threshold T and two

moduli , . We give examples showing that LSBT [26] works incorrectly in

some cases, explain them, and fix the problems by proposing modified LSBT, LSBT-

M, for which we define parameter values such that the algorithm works correctly.

3) In [28], PSNR of ATD and LSBT is presented without theoretical explanation,

45

hence, we find a formula for threshold dependence of embedding capacity Bit Per

Pixel (BPP).

4) In [28], ATD considers the secret message as the ternary stream, but conventional

messages are binary, hence, we need solving the problem of binary-ternary

conversions.

5) In [28], only 8 cover images were considered in the experiments, hence, we

extend experiments to 15 cover images for the both algorithms (ATD, LSBT).

 For color images:

1) In [28], ATD works on the gray scale images only, hence, we extend ATD to

work on the color scale images. and we test it for digit embedding combinations

(112, 121, 112), where, for example, combination 112 means that, one ternary digit is

embedded into R component, one ternary digit is embedded into G component, and

two ternary digits are embedded into B component of RGB pixel.

2) We implement LSB for bit embedding combinations (224, 242, 422, 134, 143,

314, 341, 413, 431), where, for example, combination 143, means that, one bit is

embedded into R component, four bits are embedded into G component, and three

bits are embedded into B component of RGB pixel.

3) We modify LSB to the adaptive LSB, ALSB, which determines bit embedding

combination depending on the color intensity of each component R, G, and B.

4) Study PSNR characteristics to find the most appropriate for color scale images

quality description. From our experiments for the color scale images, we propose

MSNR (Mean Signal to Noise Ratio), APSNR (Actual PSNR) for color scale image

components (each of them is a gray scale image).

In MSNR as in (2.64) we calculate the mean value overall pixel image and change

the possible peak signal which is 255 in equation (2.59) to the mean value of pixels.

46

dB, (2.64)

Where is the mean value of the pixels of the cover calculated according to (2.62).

In APSNR as in (2.64), APSNR considers actual peak signal instead of possible peak

signal which is 255 in equation (2.59).

 dB, (2.65)

where is the actual peak value of the pixels of the cover image.

5) Also, we propose weighted PSNR, APSNR, and MSNR for color scale images by

three different groups of weights ,

 , and weights of Red,

 weights of Green, weights of Blue.

2.8 Summary of Chapter 2

Thus, in this chapter, we have done the following:

1. We have presented the overview of Steganography and methods of

Steganography.

2. We have presented the related work and known experiments on LSB, LSBT, and

ATD. Also, we explain three algorithms (LSB, ATD, and LSBT) with numerical

examples for each of them.

3. We have presented the color perception, and the known metrics for evaluation

performance of Steganographic algorithms (LSB, LSBT, and ATD) and the results of

known experiments from [28], [24].

4. Problem definition for the thesis is given.

47

Chapter 3

ATD AND LSBT ANALYSIS AND RECOVERED

PROBLEMS FIXING

3 In this chapter, analysis of ATD and LSBT is given.

3.1 Proof of ATD Correctness

We embed digits by pairs, and the first digit in a pair, even-numbered secret digit is

embedded into
 by (2.6)-(2.8). After that,

 is defined by (2.9), and the

second digit in the pair, odd-numbered digit, is embedded into
 by (2.10)-(2.12).

Consider extraction of the first, even numbered secret digit
 . It is extracted from

 by (2.13). Consider the following cases:

Case 1: If the secret digit was embedded according to (2.6), then

 holds, and due to Note 1,

 (3.1)

Hence, extracted digit,
 , and embedded digit are the same,

 .

Case 2: If the secret digit, , was embedded according to (2.7), then

 holds, and due to Note 1,

 (3.2)

Hence, extracted digit
 , and embedded digit are the same,

 .

Case 3: If the secret digit was embedded according to (2.8), then

 holds. and due to Note 1,

48

 (3.3)

Hence, extracted digit,
 , and embedded digit, , are the same,

 .

As far as embedding of the first digit is done only by three ways, (2.6)-(2.8), and in

each one extraction from

is done correctly, i.e., extracted digit is the same

as the embedded one, hence, ATD correctness for the first digit in a pair is proved.

Now consider extraction of
 , an odd numbered secret digit (the second digit in a

pair), that is extraction from the pixel value

.

Embedding into the pixel value the second ternary digit is made by (2.10), (2.11),

and (2.12). Consider each of the cases as follows:

Case 1: If the secret digit was embedded according to (2.10), then
 ,3)=

and

 (3.4)

Hence,
 .

Case 2: If the secret digit was embedded according to (2.11), then

 +1,3)= and

 3.5)

Hence,
 .

Case 3: If the secret digit was embedded according to (2.12), then
 -

1,3)= and

 (3.6)

Hence,
 .

Thus, as far as in all three cases of embedding, extraction returns the same second

49

digit as embedded, the algorithm correct work is fully proved.

3.2 LSBT Problems Fixing and Proof of Fixed LSBT Correctness

The embedding capacity of a pixel is determined according to the threshold value, ,

by (2.15), (2.17). For this algorithm, we prove that, the value of stego pixel still is in

the same range as it was in the cover image before embedding, and the algorithm

works correctly extracted value is the same as it was embedded.

When the pixel value is less than , we have three cases for embedding the secret

message into a pixel value. We consider each of the cases as follows:

Case 1.1

From (2.18)

 (3.7)

From (2.17)

 (3.8)

From (2.20), (2.21) and (3.8)

 <T (3.9)

Thus, and are both in the same, less than T. In extraction, from (2.55) and

(3.9)

 RES-E=DEC

Since by (3.8), DEC , RES-E = DEC, i.e. extracted and embedded values are the

same.

Case 1.2

Case 1.2.1.1

From (2.19) and (2.23),

50

. (3.10)

From (2.25) and (3.10),

. (3.11)

From (2.18),

(3.12)

From (2.24), (2.25), and (3.10)

 . (3.13)

From (2.26) and (3.13),

 . (3.14)

From (2.18), (3.12), and (3.14),

.

(3.15)

Then, from (3.15) and (2.22),

 . (3.16)

Thus, we see that and are both less than T.

In extraction algorithm, from (2.18), (2.55), (2.17), and (3.14),

 RES-E=

 mod) + mod +DEC

Thus, extracted value, RES-E, and embedded value, DEC, are the same.

Case 1.2.1.2

From (2.19) and (2.23),

. (3.17)

From (2.27) and (3.17),

51

. (3.18)

From (2.18) and (3.18),

. (3.19)

From (2.24), (2.27), and (3.17)

 . (3.20)

From (2.28) and (3.20),

 . (3.21)

From (2.17), (2.18), (2.22), and (3.21),

 . (3.22)

Thus, from (3.22),

 . (3.23)

Thus, from (3.23), we have that both and are less than T.

In extraction algorithm, from (3.22), (3.23),(2.17), and (2.55),

 RES-E= mod) mod mod +DEC

= +DEC =DEC.

Thus, extracted RES-E value and embedded value, DEC, are the same.

Case 1.2.2.1

From (2.19) and (2.29)

(3.24)

From (2.31) and (3.24),

. (3.25)

From (2.18),

. (3.26)

From (2.30), (2.31), and (3.24),

52

 . (3.27)

From (2.32) and (3.27),

 . (3.28)

From (2.18), (2.30), (2.22), (2.31), and (2.32),

 mod . (3.29)

Thus,

 . (3.30)

Hence, from (2.22) and (3.30), both and are less than T.

In extraction algorithm, from (3.28), (3.29), (2.17), and (2.55)

) +

= +

Hence, extracted value, RES-E, and embedded value, DEC, are the same.

Case 1.2.2.2

From (2.19) and (2.29)

(3.31)

From (2.33) and (3.31),

. (3.32)

From (2.18) and (3.32),

. (3.33)

From (2.30), (2.33), and (3.31),

 . (3.34)

From (2.34) and (3.34),

 . (3.35)

From (2.18), (2.22), (3.33), and (3.35),

53

 mod

 .

(3.36)

Then, from (3.36),

 . (3.37)

Hence, from (3.37) and (2.22), both are less than T.

In extraction algorithm, from (2.55), (2.17), and (3.35),

 RES-E= mod) mod +DEC

= +DEC =DEC.

Thus, extracted value, RES-E, and embedded value, DEC, are the same.

Case 1.3 Condition (2.35) holds.

From (2.17),

 (3.38)

From (2.18), (2.35), and (2.36),

 , (3.39)

 , (3.40)

 . (3.41)

Using (3.41) in (3.39), we get:

 . (3.42)

Let us construct a counterexample, showing that (3.42) may be not less than T

contrary to meeting (2.35).

Counterexample 1. Let the threshold value T=160, cover pixel =159, =9, and

a secret message is .

From (2.18),

 .

From (2.19),

54

 .

DEC is the decimal value of EC=3 bit length, and the secret message is ;

then, DEC= .

From (2.35) and (2.36),

 =T.

Thus, Counter example 1 shows that the value of stego pixel, , is 160 that is not

less than T, whereas original cover pixel value, , is less than T.

According to the Counter example 1, we suggest the first amendment of LSBT

method

LSBT Amendment 1. Let T and in LSBT input satisfy the following condition

(3.43):

 , (3.43)

where k1 is an integer.

Proof. Let us prove that in the condition of Counter example 1, when (3.42) holds,

LSBT with Amendment 1 works correctly. From (3.40), (3.41),

 . (3.44)

Hence, from (3.43), (3.44) and (3.42),

 . (3.45)

In extraction algorithm, from (3.45), (2.17), and (2.55),

 (3.46)

 = = (3.47)

Thus, extracted value, RES-E, and embedded value, DEC, are the same, and LSBT

with Amendment 1 works correctly in the conditions of the counter example 1

resulting from (3.42). All the proofs, preceding Counter example 1, are valid for

LSBT with Amendment 1 since no condition was imposed in LSBT on T and .

55

Now, continue the proof of LSBT with Amendment 1 correctness.

When the pixel value is larger than or equal to , we have the three cases for

embedding the secret message into the pixels. We consider the cases below:

Case 2.1 ,

 .

From (2.16),

 . (3.48)

From (2.15),

 . (3.49)

From (2.37) and (2.38),

 (3.50)

We face difficulty in proving that (3.50) is not less than T as pij for the Case 2.

We show in Counter example 2 that meeting (3.50), may, contrary to , be less

than the threshold, T.

Counter example 2. Let , ,

 then

Hence, is less than T, where as original >T.

In Counter example 2, T is an integer multiple of , and is not a power of 2.

Let us consider one more counter example with T not being a multiple of , and

 being a power of 2.

Counter example 3. Let ,

 then =256- .

Hence, is less than T, where as >T.

To fix the problem seen from Counter examples 2, 3, let us consider the second

amendment of LSBT.

56

LSBT Amendment 2. Let T be a multiple of , that is a power of 2:

 , (3.51)

 , (3.52)

where , are some positive integers.

Proof of the LSBT Amendment 2 correctness. Let us prove that when (3.50) in the

conditions of the Case 2.1, LSBT works correctly if (3.51), (3.52) hold. From (2.37),

and assuming that 256= * ,

 , (3.53)

 . (3.54)

Since ,

 . (3.55)

According to (3.50), (3.54), (3.55)

(3.56)

From (3.56), we see that both, and , are not less than T.

In extraction algorithm, from (2.56), (2.57), (3.50), and (3.51)

 .

(3.57)

From (3.57), the extracted value, RES-E, and embedded value, DEC, are the same.

Since LSBT Amendment 2 does not affect conditions of LSBT Amendment 1, we

can conclude, that LSBT with Amendments 1 and 2 works correctly in the conditions

of Cases 1 and 2.1 of LSBT Embedding Algorithm.

Let us continue proving of LSBT with Amendments 1, 2 for the rest cases of LSBT

Embedding Algorithm.

Case 2.2.1.1

57

From (2.19) and (2.40),

. (3.58)

From (2.42) and (3.58),

. (3.59)

From (2.16),

. (3.60)

From (2.41), (2.42), and (3.58),

 . (3.61)

From (2.43) and (3.61)

 . (3.62)

From (2.16), (2.39), and (3.62),

 mod . (3.63)

Then, from (3.63),

 . (3.64)

Thus, both and are greater than T.

In extraction algorithm, from (2.15), (2.39), (3.63), and (2.57),

 RES-E= mod) mod + mod +DEC

 +DEC =DEC.

Thus, the extracted value, RES-E, is the same as the embedded value, DEC.

Case 2.2.1.2

From (2.19) and (2.40),

. (3.65)

From (2.44) and (3.60),

. (3.66)

From (2.16) and (3.66),

58

. (3.67)

From (2.41), (2.44), and (3.60),

 . (3.68)

From (2.45) and (3.68),

 . (3.69)

From (2.16),(3.67), and (3.69),

 mod

. (3.70)

Then, from (3.70) and (2.39),

 . (3.71)

From (3.71) and (2.39), both , are greater than T.

In the extraction algorithm, from (2.57), (3.69), (2.15), and (2.16),

 RES-E= mod) mod mod +DEC =

 +DEC .

Thus, the embedded value, DEC, is the same as the extracted value, RES-E.

Case 2.2.2.1

From (2.19) and (2.46),

. (3.72)

From (2.48) and (3.72),

. (3.73)

From (2.16) and (3.73),

. (3.74)

From (2.47), (2.48), and (2.19),

 . (3.75)

From (2.49) and (3.75),

59

 . (3.76)

From (2.16), (3.72), and (3.74),

 mod

 (3.77)

Then according to (2.39), (3.77),

 . (3.78)

Thus, from (2.39), (3.78), both and are greater than T.

In the extraction algorithm, from (3.76), (2.15), (2.16), and (2.57),

 RES-E= mod) mod +DEC

= +DEC =DEC.

Thus, the extracted value, RES-E, is the same as the embedded value, DEC.

Case 2.2.2.2

From (2.19) and (2.46),

. (3.79)

From (2.50) and (3.79),

. (3.80)

From (2.16),

. (3.81)

From (2.47), (3.79),and (2.50),

 . (3.82)

From (2.51), (2.39), and (3.82),

 . (3.83)

Thus, from (2.39), (3.83), both , are greater than T.

In the extraction algorithm, from (3.82), (2.15) and (2.16),

 RES-E= mod) mod +DEC =

 +DEC =DEC.

60

Thus, the extracted value, RES-E, is the same as the embedded value, DEC.

Case 2.3

.

From (2.16) and (2.53),

 . (3.84)

 (3.85)

 (3.86)

Due to LSBT Amendment 2, (3.51) holds. Hence, from (2.16), (3.85), and (2.52),

 . (3.87)

From (3.87),

 . (3.88)

From (3.88) and (2.16),

 . (3.89)

From (3.89),

 k1. (3.90)

From (3.51), (3.86), and (3.90),

 . (3.91)

From (2.15) and (3.91),

 . (3.92)

Thus, from (3.92), we have that both stego-pixel value, , and original cover pixel

value, , are not less than T.

In the extraction algorithm, from (2.52), (3.51), (3.92), and (2.15),

 (3.93)

= .

Hence, from (3.93), the extracted value, RES-E, is the same as the embedded value,

61

DEC. Thus, we have proved that:

1. The LSBT algorithm works incorrectly under settings specified in [28]. It is

proved by Counter examples 1-3 is showing that stego pixel value and original pixel

value may belong to different ranges (not less than T, less than T, where T is the

threshold value) that generally leads to the extracted value different from the

embedded value.

2. The LSBT has fixed by the proposed LSBT Amendments 1, 2, imposing

conditions (3.43), (3.51), and (3.52). Under these conditions, we prove that LSBT

with Amendments 1, 2 works correctly. LSBT modified with the Amendments 1, 2

we call LSBT-M.

3. Settings used for the experiments in [28] satisfy the conditions we have

established in the LSBT-M (see conditions (3.43), (3.51), and (3.52)).

3.3 Summary of Chapter 3

In this chapter, we have proved correctness of ATD, and shown that LSBT is

incorrect for its original settings as well as we solve LSBT problem by conditions

(3.43), (3.51), and (3.52) on T, , and ; LSBT settings used in the experiments

[28] satisfy the conditions of LSBT-M.

62

Chapter 4

IMPLEMENTATION OF ATD AND LSBT-M

ALGORITHMS FOR GRAY SCALE IMAGES

4 Now, we will present implementation of ATD and LSBT-M algorithms.

4.1 ATD Implementation

We generate a message randomly as secret data, the size of secret data started with

524288 =512 * 512 * 2 bits. In every iteration, it increases by 30,000 bits and we

record the values of MSE, PSNR, MSNR, and APSNR. The secret message is

divided into non-overlapping blocks the size of block 64-bit; blocks that are

converted, at first, to the decimal numeral system, and then to base 3. We receive in

the result of the conversion a block of 41 ternary digits.

A secret message is generated by the MATLAB function ‘randi’ as follows:

secret_massege= randi([0 1],1,start_length);

A secret message is converted to ternary by the following function:

ternary_number=convertto__ternary(secret_massege);

In Appendix A 6. , lines 1-13, in this function, the secret data are divided into blocks

with size 64 bits; then each 64-bit block is converted to 41-ternary-digit block. The

first function, in line 11, converts a block to decimal system, and the second

function, in line 12, converts the result of the first function, in line 11, to ternary. The

full code is displayed in Appendix A.2. After preparing the secret data (by converting

it to ternary numbers), we embed two ternary digits in each pixel of a cover image.

63

Then according to Step 2 in ATD as in Appendix A.3, lines 4-13, in line 7 we

convert each pixel of the cover image to the base-2 numeral system (8 bits/pixel)

according to (2.3). After that, we divide each pixel into two parts, the first sub

segment consisting of the first six bits of the 8 bits (six most significant bits), and the

second sub segment consisting of the last two bits (two least significant bits). Then,

we modify the pixel according to (2.4), (2.5), as Appendix A.3, lines 14-25.

When embedding the secret message, there is a possibility of overflow/ underflow.

An overflow may yield values of some pixel greater than 255 after embedding. The

underflow may yield the values of some pixel less than 0. We avoid them by adding

one to the sub-segment (for underflow), or subtracting one from the sub-segment (for

overflow), as shown in (2.4) and (2.5). For example,

Assume the secret digits are (1,2), and to embed this message into the pixel , we

should add 1 to and subtract 1 from for embedding

the secret data (1,2) as in (2.7), (2.12), but this operation will cause the overflow.

Hence, by preprocessing operators (2.4), (2.5), we get
 and

 . Then, we embed two ternary digits into the pixel as (2.6) to (2.11),

the first digit is embedded according to (2.6)- (2.8) as shown in Appendix A.3, lines

27-31, and then the second digit is embedded according to (2.9)-(2.11) as shown in

Appendix A.3, lines 35-44.

After embedding all of the secret data into the cover image, we record the values of

PSNR, MSNR, APSNR, and BPP as shown in Appendix A.1, lines 20-31, in lines

20, and 21, we calculate the mean value of the cover image for calculating the

64

MSNR (2.64) line 29. In line 28, we calculate the maximal value of the cover image

for calculating the APSNR. In lines 27 and 31, we calculate the PSNR (2.59) and

APSNR (2.65), respectively. The full code is given in Appendix A.1 and the results

are available in Appendix A.6.

As a sample output of our implementation, and the results for embedding the secret

message in the cover image (Lena) are shown in Figures 4.1 and Table 4.2.

Figure 4.1: Lena Cover Image and Stego Image for ATD Implementation with Secret

Message Size 644288 Bits, Appendix A.6

Table 4.1: ATD Results for Lena Image

For extraction stage, we extract a ternary message by extraction function, Appendix

Cover image Stego image

65

A.4, lines 1-51. In line 7 is the call the MATLAB function dec2bin to convert the

pixel of stego image from decimal to binary, line 8-10, we divide each binary byte (8

bits) into two parts: the first sub-segment consists of the first six bits of the 8 bits,

and the second sub-segment consists of the last two bits. And then, we extract the

first secret ternary digit from the first sub-segment (2.13), line 12 as well as the

second secret ternary digit extract from the stego-pixel (2.14), line 14.

After extracting all the ternary message, we divide the ternary message into blocks

with size 41 ternary digits, line 29. After that, we convert each sequence of 41

ternary digits to decimal, line 48, then convert the decimal to binary, line 49. From

each pixel, we extract two ternary digits, we continue until all the secret messages

are extracted and then convert it to the binary. The text of the code can be viewed in

Appendix A.

4.2 LSBT-M Implementation

This algorithm LSBT-M is applied with two different types of threshold:

1. Constant threshold (T=160) (LSB with Constant Threshold, LSBCT), as in

[28], Appendix B.

2. Dynamic threshold according to the next formulation (4.1) (LSB with

Dynamic Threshold, LSBDT), Appendix C:

where is the maximal embedding capacity, , is the number of

secret bits embedded in each pixel of cover image in each loop calculated by using

(2.63). The LSBDT works correctly by imposing conditions on LSBT-M regarding

66

 and (3.43), (3.51), and (3.52); according to these conditions, the value of T is

a multiple of and , while is a power of 2. The code to calculate T is in

Appendix C.1, lines 17-30, in line 17, Appendix C.1, we calculate the value of BPP

according to (2.63), in lines 18-22, calculate the value of T according to (4.1). As

well as in line 23, we check that the value of T meets the conditions of LSBDT.

In this algorithm, we use two moduli numbers and to determine how many

bits will be embedded in the pixel of a cover image according to the value of a

threshold. If the value of a pixel is larger than or equal to the threshold, we use ,

otherwise . From Appendix B.2, line 2-16. we calculate , , and

 according to (2.15) and (2.17) for in line 4, (2.16) and (2.18), for line 5,

(2.19), for line 16.

In embedding stage, Appendix B.2, lines 11-25, we check the value of pixel of the

cover image; if the pixel value is greater than or equal to the threshold, we use ,

otherwise we use the . In line 13, compute EC detecting how many bits will be

embedded in each pixel as in (2.15) and (2.17). And in line 14, we compute the

residue RES as in (2.16) and (2.18). DEC is the decimal value of EC bit fetched from

the secret message. In line 24, we compute the DEC by the MATLAB function

bin2dec. Line 25 calculates D from DEC and RES according to (2.19). Then we

embed the secret message according to Case 2 in LSBT:

In embedding part, appendix B.2, lines 26-50, we have two cases.

- The pixel of a cover image is greater than or equal to the threshold.

- The pixel of a cover image less than the threshold.

In each case, we have three different situations to compute the value of pixel of stego

67

image. The three different situations for the first case are presented in Appendix B.2,

lines 26, 29, and 47 according to (6.13), (2 13.), and (2.36), respectively. Also, three

different situations for the second case are presented in the Appendix B.2, lines 66,

69, and 87 as in (2.20), (2.26), and (2.13), respectively.

After embedding all of the secret data into the cover image, the values of PSNR

(2.59), MSNR, and APSNR are recorded (see Appendix B.1, lines 5-6 and 22-32). In

line 6, we calculate the average value of the cover image to be used in calculating

MSNR in line 30, and in line 29, we calculate the maximal value of the cover image

for calculating APSNR. In lines 28 and 32, we calculate the PSNR and APSNR

respectively. The full code is given in Appendix B.1 and the results are available in

Appendices B.4 and C.2.

As a sample output of our implementation, the results of embedding the secret

message in the cover image (Baboon) are shown in Figure 4.2 and Table 4.2 for

LSBDT, and Table 4.3 show results for LSBCT, with T=160.

Figure 4.2: Baboon Cover Image and Stego Image for LSBDT Implementation

Stego image

Cover image

68

Table 4.2: LSBDT Implementation for Baboon Image

Table 4.3: LSBCT Implementation for Baboon Image; T=160

In the extraction part, for extracting the secret message from the stego image, we

need the value of threshold, T, and values of two moduli and .

As mentioned before, in Appendix B.3, lines 8-52, we compare the value of the pixel

with the threshold value, if the threshold is greater than or equal to the pixel value,

we use , else we use . In lines 9 and 29, we compute the value of EC by (2.15)

and (2.17), and in lines 10 and 30, RES is calculated by (2.32) and (2.18). Then, we

convert RES to decimal with EC bits. This is the part of code when the pixel value is

greater than the threshold, the all code is in Appendix B.3, and results are in

69

Appendices B.4 and C.2.

4.3 Summary of Chapter 4

Thus, in this chapter, we have implemented and tested ATD, LSBCT, and LSBDT

methods. In the ATD method, we take ‘Lena’ image as an example, and we take as

example ‘Baboon’ image in LSBDT and LSBCT. The results and all codes of

methods for all functions are available in the Appendices A, B, and C.

70

Chapter 5

IMPLEMENTATION OF ATD AND LSB ALGORITHMS

FOR COLOR IMAGES

5 In this chapter, we present implementation of LSB and ATD for color images. We

use 8 color cover images with size 512*512 pixels and one binary message as a

secret message. We use MSE (2.58), PSNR (2.59), SNR (2.60), WPSNR, MSNR

(2.64), and WMSNR for evaluating the performance of the both algorithms (ATD

and LSB).

5.1 LSB Implementation

We have implemented LSB in two different ways. The first way is the traditional

LSB with different embedding combinations (224, 242, 422, 134, 143, 314, 341, 413,

and 431). It means that, e.g., in combination 143, one-bit is embedded into the Red,

four bits into Green, and three bits into the Blue component of the RGB color pixel.

The second way is Adaptive LSB (ALSB). In this way, we have two cases:

1) Four bits are embedded into the largest, 3 bits in the middle, and one bit into the

lowest color intensity pixel component (ALSBmax).

2) It uses the inverse order of embedding compared to ALSBmin: four bits are

embedded into the lowest color intensity pixel component

5.1.1 Traditional LSB with Different Embedding Combinations

In the embedding phase, we create a function for embedding the secret message in

the cover image. In this function, we split the cover image into three matrices

(planes) R, G, and B. The number of bits embedded in each byte of matrixes (R, G,

71

and B) is determined from the combination that we use. In Appendix D.2, lines 11-

22; Line 11 detects how many bits to embed in Blue matrix. Line 21 converts bits of

the secret image as binary string to decimal by using the MATLAB function bin2dec.

Embedding the secret bits in Blue plane according to (2.1) is made in line 22. In lines

25-34, we embed 4 bits in green as in Blue, and in line 35-46 here embed one bit in

Red as in Blue, y, u return the number of pixel touch to embedding the secret

message. The full code can be viewed in the Appendix D.2.

The results of traditional LSB with different embedding combinations (224, 242,

422, 134, 143, 314, 341, 413, and 431) are available in Appendix C.9. Then we

calculate MSE (2.58), PSNR (2.59), SNR (2.60), WPSNR, MSNR (2.64), and

WMSNR as in Appendix D.1, lines 24-44.

In Appendix D.1, line 24, we call a function, MSE, for calculating the MSE as in

(2.58). This function receives the number of pixels modified for embedding the

secret message cover image, and stego image as input, and calculates the mean

square error in Red, Green, and Blue matrixes as in the Appendix D.4, lines 1-16.

In Appendix D.1, line 32, we call function to calculate the value of WAPSNR by

calculating the actual maximal value in Red, Green, and Blue matrices. Then

calculating APSNR (2.65) for each matrix (Red, Green, and Blue) then weigh them

by equal weights (1/3, 1/3, 1/3)) as in Appendix D.7, line 11.

In Appendix D.1, line 25, we calculate the value of MSE over all the image. In line

26, Appendix D.1, we call function, PSNR, to calculate the PSNR as in (2.59) for the

image as a whole and each matrix (R, G, and B). Code of PSNR function is given in

Appendix D.5, lines 1-6.

72

In Appendix D.1, line 29, we call the function MSNR to calculate MSNR. In this

function, first we calculate the mean value for each matrix (R, G, and B). Then,

MSNR is calculated for each matrix (R, G, and B), Appendix D.6, lines 1-14.

In Appendix D.1, lines 40-43, we calculate value of SNR as in (2.60) by calling the

function, SNR, Appendix D.8, lines 1-12, for calculating the variances of the color

component (R, G, and B) of the cover image and variances of added noise in color

component (R, G, and B).

As a sample output of our implementation, the results for embedding the secret

message in the cover image ‘Lena’, when using combination 134 are shown in

Figures 5.1 and 5.2.

Cover image Stego image

Figure 5.1: Lena Cover Image and Stego Image for LSB with Combination (134)

Implementation. Appendix D.9

Figure 5.2: Quality Measures for Lena Image After Secret Message Embedding by

LSB for Combination (134)

73

In the extraction function, Appendix D.3, we need combination that is used in

embedding phase to extract the secret message.

5.1.2 Adaptive LSB (ALSB) Implementation

In Adaptive LSB (see Appendix E) all of the functions are similar to the traditional

LSB except for two differences. The first difference is that we calculate the color

intensity by calculating the average of each matrix (Red, Green, and Blue matrices)

according to the next formula (5.1):

.

(5.1)

Where is the color matrix (Red, Green, and Blue matrices), k=1, 2, 3 , is the

number of pixels of the image, and is the average of color for matrix .

As we described before (Section 5.1, beginning), we have ALSBmax and ALSBmin

variants of ALSB.

Appendix E.1, in line 9, 11, and 13, we calculate the mean of matrixes (Red, Green,

and Blue). In Appendix E.1, lines 33-56, we compare the averages of the matrixes to

detect the embedding capacity in each matrix.

In embedding stage, Appendix E.2, lines8-10, we embed the number of bits to be

embedded into each matrix (Red, Green, and Blue) in first pixel of cover image for

the future use in the extraction stage this the second difference.

The results for embedding the secret message in the cover image ‘Lena’ are shown in

Figures 5.1 and 5.3.

74

Figure 5.3: Quality Measures for ALSBmin for Lena Image

For extraction, in main program, Appendix E, we call the extraction function. In this

function, Appendix E.3, lines 8-10, we extract from the first pixel of the stego-image

according (2.2) how many bits are embedded in each matrix (R, G, and B), and then

extract the secret message (see Appendix E.3).

5.2 ATD Implementation

We have implemented ATD with combinations (336,363,633) defining number of

ternary digits embedded in each component, (R, G, B) of a color pixel. Also in LSB,

we have also considered combinations corresponding to 8 BPP. In this algorithm

ATD, we calculate the MSE (2.58), PSNR (2.59), WPSNR, SNR (2.60), MSNR

(2.64), and WMSNR only for modified pixel.

In the embedding and extraction phases, given in Appendices F.2, F.3, all of the

functions are similar to ATD in gray scale image. Just here we have three matrixes

(Red, Green, and Blue), and a number of ternary digits embedded in each matrix

depend on the combination we use (336, 363, and 633). The all code of ATD is given

in Appendix F.

75

Results of embedding of the secret message in the cover image ‘Lena’ for the

combination (112) are shown in Figures 5.1 and 5.4.

Figure 5.4: ATD Quality Measures for Lena Cover Image

5.3 Summary of Chapter 5

Thus, in this chapter, we have implemented and explained ATD and LSB in two

difference ways (Traditional LSB with combinations, ALSB), we have presented

‘Lena’ image result as an example. All results and full codes and all functions in

ATD and LSB are available in the Appendix D, E, and F.

76

Chapter 6

EXPERIMENTS RESULTS

6 In this chapter, we discuss the experiments results of the algorithms for the gray scale

(Section 6.1) and color scale (Section 6.2).

6.1 Gray Scale Image Results for ATD, LSBCT, and LSBDT

Fifteen gray scale cover images with size 512×512 pixels used in the experiments are

shown in Figure 6.1. Secret messages in these experiments are generated randomly

with different sizes. First, we start with the size of a secret message equal to 524288

(512 * 512 * 2) bits, and then increase the size by 30,000 bits every iteration, and

record the values of quality measures. The simulation steps show in Figure 6.2.

Figure 6.1: Gray Scale Cover Images Used in ATD, LSBCT, and LSBDT Simulation

77

Figure 6.2: Flowchart for Gray Scale Simulation Steps

6.1.1 ATD Results

Table 6.1 shows the PSNR for 15 cover images in Figure 6.3 and EC in the range [2,

3.14] BPP; raw data are in Appendix A.6.

Get Cover Image with

512*512 Pixels

Generate Secret Message with Size

524288 Bits

Embedding Secret Massage by use of ATD

or LSBCT or LSBDT Algorithms to get

Stego Image

Increase Size of

Secret Massage

by 30000 Bits

Calculate PSNR, MSNR, and

APSNR

Size of Secret Massage < Maxsize

End

Generate Secret

Message with New

Size

Start

No

Yes

78

Table 6.1: PSNR of ATD

For 15 different cover images, we get close results for PSNR. Averaged over 15

images dependence on EC is shown in Figure 6.3.

Figure 6.3: Average PSNR of ATD

From Table 6.1 and Figure 6.3, we see that PSNR slightly decreases from 39.35 dB

Cover

image

EC (BPP)

2 2.22 2.46 2.69 2.80 2.92 3.14

PSNR (dB)

1 39.86 38.86 38.41 38.02 37.85 37.69 37.39

2 39.32 38.86 38.44 38.04 37.87 37.69 37.41

3 39.34 38.86 38.43 38.04 37.87 37.69 37.38

4 39.33 38.87 38.42 38.05 37.85 37.71 37.40

5 39.35 38.87 38.44 38.06 37.86 37.69 37.38

6 39.33 38.86 38.44 38.06 37.86 37.68 37.41

7 39.32 38.87 38.44 38.05 37.90 37.69 37.41

8 39.34 38.87 38.45 38.05 37.87 37.68 37.41

9 39.35 38.86 38.44 38.06 37.87 37.69 37.40

10 39.25 38.79 38.37 37.99 37.82 37.63 37.35

11 39.33 38.86 38.44 38.04 37.88 37.69 37.40

12 39.33 38.87 38.42 38.05 37.86 38.68 37.39

13 39.33 38.85 38.44 38.05 37.86 37.70 37.41

14 39.25 38.70 38.27 37.81 37.59 37.41 37.12

15 39.29 38.84 38.40 38.01 37.83 37.67 37.36

Average

PSNR
(dB)

39.35 38.85 38.42 38.03 37.84 37.73 37.57

79

to 37.57 dB when the embedding capacity, EC, increases from 2 BPP to 3.14 BPP.

6.1.2 LSBCT Results

We have implemented this algorithm with constant threshold T=160 as in [26], and

we use two different groups of moduli ((=4, =8) and (=8, =16)). These

moduli values are defined according to the size of the secret message. Under

assumption that the cover image pixel values are distributed uniformly in {0,.., 255},

maximal embedding capacity, MAX-EC, dependence on threshold , and ,

 , , may be defined as follows:

 . (6.1)

From (6.1),

 . (6.2)

From (6.2), we see that the secret message for may be embedded with

 , (as in the first two columns of Table 6.2), but for

EC>2.376, it is necessary using , .

Actually,

and all the EC in Table 6.2 are less than that value.

80

Table 6.2: PSNR for LSBCT Algorithm

Cover
image

EC (BPP)

2 2.22 2.46 2.69 2.80 2.92 3.14

4 4 8 8 8 8 8

8 8 16 16 16 16 16

PSNR (dB)

1 42.18 41.75 36.64 36.28 36.11 35.95 35.65

2 41.93 41.40 36.38 36.06 35.91 35.75 35.34

3 42.96 42.70 37.47 37.11 36.96 36.07 36.04

4 42.60 42.40 37.20 36.83 36.71 36.06 36.37

5 41.81 41.28 36.54 36.09 35.90 35.67 35.31

6 41.25 40.90 35.61 35.32 35.20 35.08 34.91

7 41.97 41.48 36.54 36.16 35.99 35.77 35.49

8 40.21 39.80 34.54 34.22 34.06 33.93 33.57

9 40.82 40.41 35.12 34.79 34.65 34.50 34.20

10 40.75 40.49 34.94 34.67 34.58 34.51 34.31

11 42.55 42.11 37.31 36.80 36.61 36.39 36.03

12 41.30 41.03 35.63 35.41 35.35 35.22 35.04

13 42.79 42.36 37.17 36.89 36.74 36.61 36.23

14 41.16 40.77 35.44 35.14 34.95 34.80 34.60

15 43.78 43.73 38.72 38.31 38.12 37.92 37.92

Average

PSNR

dB
41.87 41.51 36.35 36.01 35.86 35.70 35.41

Table 6.2 shows PSNR for LSBCT for 15 images and values of and we use in

our experiment and BPP]. To evaluate the performance of LSBCT, we

average PSNR overall the stego images, also shown in Figure 6.4. Raw results are

given in Appendix B.4.

81

Figure 6.4: Average PSNR for LSBCT

From Figure 6.4, we see that the maximum value of PSNR is 41.87 dB for

embedding capacity 2 BPP. On the other hand, when we increase the embedding

capacity, we get the minimal value of PSNR about 35.41 for embedding capacity

3.14 BPP. Also, from the Figure 6.4, we see a sharp drop in the value of PSNR when

the embedding capacity is higher than 2.22 BPP, which drops from 41.87 dB for 2.22

BPP to 36.35 dB for 2.46 BPP. To avoid the sharp drop as we mentioned before, we

use the =8 and =16 instead of =4, =8 according to (6.1)-(6.3). This

change leads to a great number of bits embedded and, hence, a great distortion.

6.1.3 LSBDT Results

We have implemented LSB with dynamic threshold. The value of the threshold is

calculated according to (4.1). Also, here we use two different groups of moduli

((=4, =8) and (=8, =16)). These moduli values are defined according to

the size of the secret message as in Section 6.1.2, All results are shown in Appendix

C.2.

82

 Example of the threshold value calculation:

From Table 6.3, if the size of the secret message is bits, the maximum

embedding capacity in our experiment is 3.14 BPP, and the size of the cover image is

512*512, then we first calculate the embedding capacity, x, according to (2.63).

 .

Then substitute x in (4.1):

 .

Check if value of the threshold, is a multiple of () or not. If it is a

multiple of , then keep it. Otherwise, choose a small number that is a multiple of

 . In this example, result is 45 that is not a multiple of . Hence, we select

a small number that is a multiple of =16, it is 32. After that, we calculate the

maximal embedding capacity, according to (6.1) as follows:

Since then we can’t embed all secret

message with this threshold. Thus, again decrease threshold by and recheck the

actual embedding capacity in our example after subtraction

 then recheck the as follows:

 ,

 , hence we can embed all secret messages with this threshold, .

83

Table 6.3: PSNR for LSBDT Algorithm

Table 6.3 shows PSNR of LSBDT algorithm for all images, as well as average over

all images, and values of T, , and that we use in our experiments. As we see

from the Table 6.3, the quality of a stego-image drops when the size of the secret

message increases; raw results are shown in Appendix C.2.

Cover

image

Size of secret message (Bits)

524288 584288 644288 704288 734288 764288 824288
EC(BPP)

2 2.22 2.46 2.69 2.80 2.92 3.14

4 4 4 4 4 4 8

8 8 8 8 8 8 16

192 160 128 80 48 16 160

PSNR (dB)

1 43.21 41.76 40.04 39.03 38.55 38.05 35.60

2 43.42 41.41 40.15 39.29 38.54 38.19 35.36

3 44.12 42.68 40.59 39.33 38.60 38.08 35.47

4 43.18 42.41 41.22 39.48 38.55 38.08 35.37

5 42.94 41.31 39.80 38.34 38.34 38.04 35.33

6 42 40.90 40.09 38.88 38.88 38.52 34.79

7 43.67 41.47 40 38.87 38.36 38.07 35.45

8 40.57 39.79 39.20 38.63 38.31 38.09 35.59

9 41.82 40.41 39.41 38.79 38.41 38.13 34.21

10 43.66 40.50 39.46 38.86 38.54 38.15 34.30

11 43.26 42.11 41.12 39.64 39.05 38.52 35.99

12 43.02 41.02 39.73 39.01 38.80 38.66 35.02

13 43.78 43.74 42.90 42.12 40.06 38.60 34.78

14 42.09 40.78 40.01 39.38 38.97 38.71 34.59

15 43.76 42.36 40.14 38.95 38.48 38.13 35.23
Average

PSNR

dB
42.97 41.51 40.26 39.30 38.70 38.27 35.48

84

Figure 6.5: Average PSNR for LSBDT

From Figure 6.5, we can see that the maximum value of PSNR it reaches 36.33 dB

when the embedding capacity is equal to 2 BPP. Figure 6.5 illustrates a noticeable

drop in the value of PSNR when the embedding capacity is between 2 BPP and 2.92

BPP which drops from 42.97 dB to 38.27 dB. Then we see a sharp drop in the value

of PSNR when the embedding capacity is higher than 2.92 BPP. PSNR drops rapidly

from 38.27 dB for 2.92 BPP to 35.48 dB for EC=3.14 BPP, because the number of

distorted bits increases from {2, 3} for =4, =8 to {3, 4} for =8, =16.

6.1.4 ATD, LSBDT, and LSBCT Comparison Results

Comparison results for the both methods obtained for PSNR (2.59) are shown in

Table 6.4.

85

Table 6.4: PSNR (dB) for LSBCT (T=160), LSBDT, and ATD Dependence on EC

(BPP)

EC (BPP) LSBCT (T=160) LSBDT ATD

2 41.87 42.97 39.35

2.22 41.51 41.51 38.85

2.46 36.35 40.26 38.42

2.69 36.01 39.30 38.03

2.80 35.70 38.27 37.73

2.92 35.41 35.48 37.57

3.14 41.87 42.97 39.35

Figure 6.6: PSNR (dB) for ATD and LSBCT (T=160) and LSBDT Dependence on

EC (BPP)

From the Table 6.4 and Figure 6.6, it is evident that the quality of the image for ATD

is slightly affected by the increase of the embedding capacity. LSBCT and LSBDT

have a high quality for the embedding capacity up to 2.22 BPP. LSBDT PSNR

reaches 42.97 dB, while LSBCT reaches 41.87 dB for embedding capacity EC= 2

BPP. For embedding capacity between 2.22 BPP and 2.46 BPP, LSBCT PSNR drops

quickly to 36.35 dB. After that, it falls slightly and reaches 35.41 dB at EC=3.14

BPP.

86

ATD has a higher PSNR than LSBDT when embedding capacity is more than 3 BPP;

this is because in LSBDT uses modules with values {8, 16} for the large-size secret

messages. It means that in each pixel it embeds 3 or 4 bits according to the threshold,

and the maximum possible distortion by embedding is 15, and for ATD, the

maximum possible distortion is 10 (e.g., when sub1 and sub2 are increased from 0 to

1, and then sub1 and resulting pixel are again increased by 1; each increase of sub1,

gives increase by 4, an increase of sub2 and of the pixel results in increase by 2).

6.1.5 Comparison Versus Known Experiments Results

From the known experiments are shown in section 2.6, Table 2.1, Figure 2.17, and

from our results in Table 6.4 and Figure 6.6, when we compare the ATD and LSBCT

as in the known experiments we don’t get the same result as in the paper [28].

Therefore, we modify the LSBCT to LSBDT to get the same result as in the paper

[28].

6.2 Results for Color Images

In this section, we discuss the results of LSB, ALSBmax, ALSBmin, and ATD for

different combinations of embedding into color scale images.

6.2.1 LSB and ALSBmax, ALSBmin Results

Cover color scale images with sizes of 512×512 pixels used in the experiments are

shown in Figure 6.7. The secret message in this experiment is constant. The raw

results are shown in Appendices D.9 and E.3. The simulation steps show in Figure

6.8.

87

Figure 6.7: Cover Images Used for Experiments with ATD and LSB

Figure 6.8: Flowchart for Color Image Embedding by ATD, LSB, and ALSB

Simulation Steps

Table 6.5 shows the PSNR of LSB for combinations (134, 143, 341, 314, 413, 431,

224, 242, and 422); and PSNR of Adaptive LSB in both cases the raw results are in

Cover Image

512*512

Generate Secret Message

Embedding Secret Massage by use of ATD

or LSB or ALSB Algorithms to get Stego

Image

Calculate PSNR, MSNR,

WPSNR and WMSNR

End

Start

Select RGB Combination

88

Appendices D.9 and E.3.

Table 6.5: PSNR (dB) for LSB in Different Combinations and ALSBmax, ALSBmin

LSB for different combinations
ALSBmax

ALSBmin

Color

Image

4_2_2

2_4_2

2_2_4

4_3_1

3_4_1

4_1_3

1_4_3

3_1_4

1_3_4

Pepper 36.15 33.9 36.97 35.64 35.68 35.75 35.58 36.35 36.46 35.58 36.46

Lena 35.95 36.15 36.63 35.46 35.68 35.57 34.3 36.05 34.6 36.05 34.6

Baboon 36.17 36.13 35.05 37.01 35.66 35.77 35.62 36.32 36.33 36.62 36.33

Barbra 33.16 36.1 34 36.63 35.66 35.76 35.62 36.3 36.31 35.63 36.31

Balloon 36.18 36.16 37.01 35.64 35.66 35.78 35.63 36.4 36.38 36.38 36.4

Blue 38.28 36.19 37.66 37.44 34.52 35.01 35.66 38.89 34.08 34.08 37.44

Green 34.46 36.39 36.85 34.1 35.58 34.24 33.08 35.99 36.29 34.1 34.1

Red 35.47 36.09 33.51 34.98 35.7 36.5 35.55 35.9 35.91 34.98 35.91

Figure 6.9: PSNR for LSB for Different Embedding Combinations and ALSBmax,

 ALSBmin

As we can see from the Table 6.5 and Figure 6.9, different LSB combinations for

various images are in different relations while the embedding capacity is the same.

EC=8 BPP. For example, for Lena, PSNR=35.95 dB in 422 combination is less than

PSNR=36.15 dB for 242 combination, whereas for Blue, PSNR for 422 combination

is greater than PSNR for 242 combination.

89

Figure 6.10: SNR for LSB for Different Embedding Combinations and ALSBmax,

ALSBmin

From the other side, SNR (2.60) for LSB is less than PSNR dependent on the images

but still two combinations on different images may be in inverse relationships (e.g.,

SNR for 431 on Barbara is less than SNR for 431, but on Balloon, SNR for 431 is

greater than SNR for 431) as we can see in Figure 6.10.

6.2.2 ATD Results

In this algorithm as in gray scale, we convert the secret message to base 3, and we

embed in each pixel 4 ternary digits in different combinations 211, 121, and 112. For

example, if we use 211 combination, it means that two ternary digits are embedded

in red color component, one ternary digit in Green color component, and one ternary

digit into Blue color component. Results are given in Table 6.6 and Figure 6.11; raw

results are in Appendix F.3.

90

Table 6.6: PSNR (dB) for ATD for Different Combinations Result

Cover Image
Combinations

633 363 336

Peppers 37.41 37.42 37.42

Lena 37.55 37.55 37.55

Baboon 37.56 37.56 37.56

Barbara 37.57 37.56 37.57

Balloon 37.42 37.43 37.43

Blue 37.55 37.54 37.54

Green 34.50 34.50 34.50

Red 36.77 36.76 36.77

Figure 6.11: PSNR for ATD for Different Embedding Combinations

From Figure 6.11 and Table 6.6, we see that PSNR for ATD is not affected by the

combination but it depends on image; PSNR for this algorithm is in range from 34.50

dB to 37.57 dB; we get the minimum value in the Green image for all combinations.

91

Figure 6.12: SNR for ATD in Different Embedding Combinations

For SNR we get the smallest value for Green image is 7.1 dB, and Lena image has

the largest value of SNR, 16.5 dB, as Figure 6.12 shows.

6.2.3 ATD and LSB Comparison Results

Figure 6.13 shows ATD versus LSB comparison results using 512×512 cover

images.

Figure 6.13: PSNR for ATD and LSB

As we can see from Figure 6.13, ATD has a large value of PSNR when we compare

92

it with LSB algorithm, except for the Green image. In this image, the ATD algorithm

gets a small value of 34.5 dB. The value of PSNR for LSB algorithm changes

between 35.4 dB and 36.7dB.

On the other hand, SNR for ATD and LSB is very close to each other as we see in

Figure 6.14 except for the Green image. The quality of ATD is less than LSB as

shown in Figure 6.14 which drops to approximately 9 dB for LSB and to 7 dB for

ATD.

Figure 6.14: SNR (dB) for ATD and LSB

6.2.4 Comparison Versus Known Experiments Results

From the known experiments are shown in section 2.5, Table 2.2, in [24] they

implement LSB with combinations 134 on two cover images (Lena, Baboon), in

addition, we implement LSB with 8 different combinations and on 8 cover images

shown in figure 6.7. Also, we modify LSB to ALSB (ALSBmax, ALSBmin).

6.3 Study of the Quality Metrics

According to our experiments which we discussed in Section 6.2, when we embed 8

93

bits in each pixel, we obtain PSNR a different behavior for various combinations and

images. We expect that good combinations shall depend on image and shall be little

dependent on the combinations since all of them modify the same number of bits (8

bits).To solve this problem, we consider the following measures: MSNR (Mean

Signal to Noise Ratio) and APSNR (Actual PSNR). MSNR (2.64) is calculated as the

mean value of all image pixels and changing the possible peak signal value, which is

255 in equation (2.59), to the mean value of matrix. And APSNR (2.65) improves

PSNR by considering actual peak signal instead of possible peak signal which is 255

in equation (2.59). Then we weigh MSNR and PSNR by three different groups of

weights (group1values, (0.4, 0.243, and 0.357)), we get as the follows:

From Figure 2.15, we get , and ,

 .

After normalizing:

 ,

 ,

 .

We have suggested two other group of weights (group 2 values, (0.4, 0.3, 0.3), and

group3 values (1/3, 1/3, 1/3)).

6.3.1 MSNR and APSNR for Gray Scale Images

 ATD Results

APSNR for ATD dependence on embedding capacity is shown in Figure 6.15.

APSNR decreases with the increase of the embedding capacity. It arrives at 37.07 dB

when embedding capacity is equal to 3.1 BPP.

94

Figure 6.15: APSNR (dB) of ATD

MSNR for ATD dependence on embedding capacity is shown in Figure 6.16. We see

that MSNR has the same form as PSNR and APSNR. It decreases from 32.85 dB

when EC=2 BPP to 30.87 when EC=3.1 BPP.

Figure 6.16: MSNR (dB) of ATD

 LSBCT Results

APSNR for LSB with Constant Threshold algorithm reaches the maximum value

95

41.53 dB for embedding capacity, EC= 2 BPP and minimum value 35.07 dB for 3.1

BPP as shown in Figure 6.17. For MSNR there is a severe decrease in the quality of

the stego image when increasing the embedding capacity, it drops to 29.10 dB,

shown in Figure 6.18.

Figure 6.17: APSNR (dB) for LSBCT

Figure 6.18: MSNR (dB) for LSBCT

96

 LSBDT Results

APSNR and MSNR for LSBDT in Figures 6.19 and 6.20 reach the maximum value

42.62 dB and 36.58 dB respectively for the embedding capacity, EC= 2 BPP. So

these values quickly drop to 34.99 dB and 29.09 dB, respectively.

Figure 6.19: APSNR (dB) for LSBDT

Figure 6.20: MSNR (dB) for LSBDT

 ATD, LSBCT and LSBDT Comparison Using MSNR and APSNR

From Figures 6.21 and 6.22, we can see that MSNR and APSNR for the three

97

algorithms (LSBCT and LSBDT, and ATD), have the same form as of PSNR.

LSBDT reaches 42.62 dB for APSNR, and 36.58 dB for MSNR, while LSBCT gets

41.53 dB for APSNR, and 35.52 dB for MSNR when EC=2 BPP. When EC

increases from 2.2 BPP to 2.4 BPP, LSBCT quality drops quickly in all metrics it

gets 36.01 dB for APSNR, and 30.02 dB for MSNR. After that, it falls slightly to

reach 35.07 dB for APSNR, and 29.10 dB for MSNR.

Figure 6.21: APSNR (dB) for ATD and LSBCT and LSBDT

Figure 6.22: MSNR (dB) for ATD and LSBCT and LSBDT

98

6.3.2 WPSNR, MSNR, and WMSNR for Color Images

 LSB Results

From Figures 6.23-6.24, we see that PSNR after weighing for LSB with embedding

capacity 8 BPP and the values of weight (0.4, 0. 243, 0.357) come from human color

perception as in Section 6.3 and other weights (0.4, 0. 3, 0.3) and (1/3,1/3,1/3) we

take values close to that weight calculate from human color perception, for different

combinations still fluctuates but as we see from figures 6.23-6.25 the PSNR with

weights (1/3,1/3,1/3), it has more plateau when we compare it with other weights

(0.4, 0. 3, 0.3) and (0.4, 0. 243, 0.357), and PSNR.

Figure 6.23: Weighed PSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different

Embedding Combinations

99

Figure 5.26: Weighed PSNR (dB) by (0.4, 0. 3, 0.3) for LSB for Different

Embedding Combinations

Figure 5.25: Weighed PSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin

According to our result in PSNR and WPSNR for different weights, we consider

MSNR as in Figure 6.26 and Table 6.7 show the value of MSNR for different

combinations as we described in Chapter 5. We calculate the mean value of an image

(2.64) and this changed the maximum possible value 255 in formula (2.59) by mean

value of the image. With MNSR we get improvement in the result obtained by PSNR

and WPANR as we show in Figure 6.26, MSNR has nearly one and the same value

for different combinations with the same embedding capacity but we see there is

100

more improvement in the result obtained by considering WMSNR with three groups

weights as Section 6.3.

Figure 5.25: MSNR (dB) for LSB for Different Embedding Combinations and

ALSBmax, ALSBmin

Table 6.7: MSNR (dB) for LSB and ALSB Methods Result
Cover

Image
LSB for different combinations

ALSBmax ALSBmin
4_2_2 2_4_2 2_2_4 4_3_1 3_4_1 4_1_3 1_4_3 3_1_4 1_3_4

Pepper 24.86 24.81 25.66 24.34 24.38 24.46 24.27 25.04 25.05 25.04 25.05

Lena 26.28 26.44 26.98 25.78 25.96 25.89 25.88 26.40 26.41 26.41 25.88

Baboon 25.84 25.79 26.61 25.30 25.32 25.44 25.28 25.99 25.99 25.30 25.99

Barbra 25.16 25.09 25.93 24.62 24.66 24.76 24.60 25.32 25.32 24.63 25.32

Balloon 26.28 26.20 27.12 25.74 25.73 25.89 25.68 26.50 26.49 25.73 25.68

Blue 21.05 18.96 19.5 20.21 18.28 20.38 18.40 18.65 18.92 18.92 20.21

Green 11.04 12.76 13.43 10.66 12.13 10.82 12.34 12.57 12.86 12.34 12.57

Red 27.79 28.60 28.90 27.31 28.20 27.46 28.08 28.28 28.30 27.46 28.30

To improve MSNR, we weigh MSNR similar as we have done for PSNR. Results

obtained are shown in Figures 6.26-6.28.

101

Figure 5.27: Weighed MSNR (dB) by (0.4, 0.3, and 0.3) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin

Figure 5.28: Weighed MSNR (dB) by (0.4, 0.243, and 0.357) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin

Figure 5.26: Weighed MSNR (dB) by (1/3, 1/3, 1/3) for LSB for Different

Embedding Combinations and ALSBmax, ALSBmin

102

As we see from Figures 6.27-6.29, weighed MSNR with weight (1/3, 1/3, 1/3) looks

invariant for different combinations when we compare it with other weights (0.4, 0.3,

0.3) and (0.4, 0.243, 0.357). It behaves as we expect because embedding capacity for

different combinations is constant where EC=8 BPP, with a different number of bits

embedded in Red, Blue, and Green components.

 ATD Results

When we calculate MSNR (2.64) and we weigh MSNR with three different group

weights (1/3,1/3,1/3), (0.4, 0. 3, 0.3) and (0.4, 0. 243, 0.357). From Figure 6.30 and

Table 6.8, we see that, the value of MSNR and WMSNR in different weights for

ATD in different combinations has the same value.

Table 6.8: MSNR (dB) for ATD for Different Combinations

Cover Image
Combinations

211 121 112

Peppers 29.82 29.82 29.82

Lena 31.58 31.58 31.58

Baboon 30.93 30.92 30.92

Barbara 30.27 30.26 30.27

Balloon 30.22 31.22 31.22

Blue 24.02 24.01 24.01

Green 14.74 14.75 14.74

Red 32.79 32.97 32.97

103

Figure 5.30: MSNR (dB) for ATD for Different Combinations

 ATD and LSB Comparison Results Using WPSNR, MSNR and WMSNR

When we compare LSB and ATD according to WPSNR with different weights, we

get that LSB algorithm has the best quality image according to WPSNR. The value

of WPSNR for LSB is in between 40.60 dB and 40.20 dB for different weights as

shown in Figure 5.31.

104

Figure 5.31: WPSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243,

0.357), (0.4, 0.3, 0.3), and (1/3, 1/3, 1/3)

Figure 5.32: MSNR (dB) for ATD and LSB

For MSNR, the both algorithms LSB and ATD have the same curve form (see Figure

6.32). When we compare them, ATD has noticeably larger value than LSB for all

images except ’green image’ for this image; the LSB has a larger value of 16 dB,

105

while ATD has a value of 14.74 dB. When we compare LSB and ATD for WMSNR,

from Figure 6.33, we can see that LSB algorithm has a large value than ATD for all

images just if we except Green image; for this image, where ATD has a large value,

15 dB, while LSB has approximately 5 dB.

Figure 5.33: WMSNR (dB) for ATD and LSB with Different Weights (0.4, 0.243,

0.357), (0.4, 0.3, 0.3), and (1/3, 1/3, 1/3)

6.3.3. Evaluation of Different Metrics

 Evaluation of Different Metrics for LSB Algorithm

We measure the quality of the stego images in LSB algorithm by different criterion

measure PSNR, and MSNR, WMSNR, and WPSNR with weights (1/3,1/3,1/3), (0.4,

0.3, 0.3), and (0.4, 0.243, 0.357). We compare between these metrics by using

deviation of the results in each criterion the deviation is calculated according to (6.3):

 (6.3)

106

Where is the mean value of the pixels of a cover calculated according to (2.62) and

N is the number of elements. To compare between these metrics (PSNR, and MSNR,

WMSNR, and WPSNR with weights (1/3,1/3,1/3), (0.4, 0.3, 0.3), and (0.4, 0.243,

0.357) we calculate deviation for each cover image in different combinations than

average of the deviation over 8 cover images. The results are shown in Table 6.9.

Table 6.9: Deviation of Results in Each Metric for LSB Algorithm
Metric Deviation

PSNR 0.92

WPSNR (0.4, 0.243, 0.357) 1.07

WPSNR (0.4, 0.3, 0.3) 0.896

WPSNR (1/3,1/3,1/3) 0.768

MSNR 0.663

WPSNR (0.4, 0.243, 0.357) 0.554

WMSNR (0.4, 0.3, 0.3) 0.492

WMSNR (1/3,1/3,1/3) 0.211

Figure 5.36: Deviation of Results in Each Metric for LSB Algorithm

107

When we compare result of deviation of the criteria as we show in Figure 6.34 and

Table 6.8, the minimal deviation of the metrics for LSB algorithm we get in WMSNR

with weight (1/3,1/3,1/3): the value of deviation is 0.211, and maximum result is in WPSNR

with weight (0.4, 0.243, 0.357). These weights we get from human color perception in

Figure 2.15 as shown at the beginning of Section 6.3. Overall, the best metric for stego

images for LSB algorithm is MSNR with weights (1/3, 1/3, 1/3).

 Evaluation of Different Metrics for ATD Algorithm:

We use different criteria to evaluation the quality of the stego images for ATD

algorithm as PSNR, WPSNR with weights (1/3,1/3,1/3), (0.4, 0.3, 0.3), and (0.4,

0.243, 0.357), MSNR, and WMSNR with weights (1/3,1/3,1/3), (0.4, 0.3, 0.3), and

(0.4, 0.243, 0.357). Also for this algorithm, we compare between these criteria

measures by calculating deviation (6.1) of result in each criterion measure for ATD

algorithm.

 Table 6.10: Deviation of Results with Different Metrics for ATD Algorithm
Metric Deviation

PSNR 0.0040

WPSNR (0.4, 0.243, 0.357) 0.0039

WPSNR (0.4, 0.3, 0.3) 0.0035

WPSNR (1/3,1/3,1/3) 0.0042

MSNR 0.088

WPSNR (0.4, 0.243, 0.357) 0.086

WMSNR (0.4, 0.3, 0.3) 0.079

WMSNR (1/3,1/3,1/3) 0.088

108

Figure 5.32: Deviation of Results for ATD

As we see from Figure 6.32 and Table 6.10, the best criterion measure to evaluation

the quality of stego image is WPSNR with weight (1/3,1/3,1/3) it has the minimal

value of deviation.

6.4 Performance of ATD and LSB for Color Images Depending on

the Embedding Capacity

We studied the performance of the both algorithm (ATD and LSB) for color scale

images by using WMSNR with weight (1/3, 1/3, 1/3) when changing the embedding

capacity to 6 BPP and 10 BPP as shown in Figure 6.36.

109

Figure 5.35: WMSNR (dB) Dependence on Embedding Capacity for LSB and ATD.

As we can see in Figure 5.36, WMSNR decreases when embedding capacity

increases that complies with our expectations.

6.5 Summary of Chapter 6

Thus, in this chapter we have discussed and compared the gray scale images and

color scale images results with criteria. We also compared these results with known

experiments [28] presented in Section 2.5. Results obtained are as follows:

 For gray scale images:

1. We show PSNR for gray images for ATD and LSBCT, LSBDT.

2. We introduced such criteria as MSNR, APSNR, which have similar to PSNR

curve shape.

 For color images:

1. We found that PSNR for color scale images behaves not as expected: for the same

embedding capacity but for different combinations embedding into the same image

we get different PSNR values, and different relations between the combinations.

2. We introduced such criteria as WMSNR, WPSNR which show stable behavior for

different combinations. By evaluation of different metrics by LSB the minimal

deviation we get in WMSNR with weight (1/3,1/3,1/3) the value of deviation is

110

0.211 and maximum result in WPSNR with weight (0.4, 0.243, 0.357) this weight we

get from human color perception in Figure 2.15 as explain in Section 6.3.

3. We showed that stability of WMSNR is preserved when varying embedding

capacity, and it decreases with the increase of embedding capacity.

111

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis, analysis, implementation, and experiments on steganographic methods

(ATD, LSB, and LSBT) for the gray scale and color images are conducted. The

algorithms are explained in details and analyzed. It was found out that LSBT method

may work incorrectly (counter-examples are constructed). The reasons of the

problems are understood, and LSBT is modified as LSBT-M imposing certain

constraints on the LSBT parameters: threshold, and moduli values. LSBT-M

algorithm is considered in static (LSBCT) and dynamic (LSBDT) variants. Dynamic

variant is introduced to have experimental results compatible with those published in

[28] as for LSBCT. The experiments are conducted on ATD, LSBCT, and LSBDT

for gray scale images, and on ATD and LSB-based (LSB, ALSBmin, and ALSBmax)

for color images Known quality measures of stego-images (PSNR, SNR) and

proposed (MSNR, APSNR WMSNR, and WPSNR) are studied.

For gray scale images, the results are obtained for 15 gray scale cover images and

random secret messages. According to our experiments, LSBDT is better than ATD

in the quality of stego images, PSNR, when the embedding capacity EC is less than

or equal to 3 BPP. In [28], LSBDT performance is shown as the performance of

LSBT, but we show that LSBT (or, LSBCT after modification) has worse

performance (compare Figures 6.6 and 2.17). Also, when MSNR and APSNR are

applied for the both algorithms (LSBT and ATD) the results have the same form as

112

that of PSNR.

For color images, the experiments are conducted with eight cover images with size

512*512 pixels, and one binary message as a secrete message. LSB and ATD are

implemented for different embedding combinations of 8 bits embedding in each

color pixel. According to experiments, PSNR of LSB for color images has

fluctuations in different combinations with the same embedding capacity 8 bits in

each pixel while the PSNR of ATD is stable in different combinations. When we

apply WPSNR and MSNR and weight it by three different groups of weights, the

result show that, the value of PSNR with weights (1/3, 1/3, 1/3) for LSB with

different combinations is more plateaus than other weights. Also, the value of MSNR

with weights (1/3, 1/3, 1/3) for LSB with different combinations looks invariant for

different combinations when compared with other weights. MSNR with different

weights for ATD is stable in different combinations as PSNR. For LSB algorithm

when comparison between different metrics was made by deviation evaluation of the

metrics, we got the best metric for LSB algorithm as WMSNR with weights

(1/3,1/3,1/3) with the minimal deviation values as 0.211, and the maximum deviation

was obtained for WPSNR with weights (0.4, 0.243, 0.357) that we got from human

color perception. Thus, human color perception-originated weights are not

appropriate for the images assessment, so we can conclude that human eyes and

SNR-based metric presumably use different ways of image estimation.

Furthermore, when varying embedding capacity for LSB and ATD the results

showed stability of WMSNR with weights (1/3, 1/3, 1/3), and it decreases with the

increase of embedding capacity (we considered BPP=6, 8, and 10).

113

In the future work, we want to study LSBDT more in order to improve performance

of LSBT for high embedding capacity so that it could beat ATD for all embedding

capacity values.

.

114

REFERENCES

[1] Ankur, G., Gupta, S., & Bhushan, B. (2012). Information Hiding Using Least

Significant Bit Steganography and Cryptography. International Journal of

Modern Education and Computer Science, pp. 27-34. Vol. 5. No. 2.

[2] Agrawal, D ., & Samidha, D. (2013). Random Image Steganography in Spatial

Domain. IEEE, International Conference. pp. 1-3. Vol. 12. No. 34.

[3] Acharya, U. D, Hemalatha, S, & Renuka, A. (2015). Wavelet Transform Based

Steganography Technique to Hide Audio Signals in Image. Procedia Computer

Science, pp. 272-281. Vol. 47. No. 4.

[4] Acharya, U. D, Hemalatha, S, Renuka, A & Kamath, P. R. (2013). A Secure

Color Image Steganography in Transform Domain. International Journal on

Cryptography and Information Security (IJCIS), pp. 1304-3313. Vol. 3. No. 1.

[5] Cheng, S. C., & Wu, T. L. (2005). Sub Pixel Edge Detection of Color Images by

Principal Axis Analysis and Moment-Preserving Principle. Pattern Recognition,

pp. 527-537. Vol. 38. No. 4.

[6] Chang, C. C., Tai, W. L., & Lin, C. C. (2006). A Reversible Data Hiding Scheme

Based on Side Match Vector Quantization. IEEE Transactions on Circuits and

Systems for Video Technology, pp.1301-1308. Vol. 16. No.10.

[7] Chang, C. C., Chen, T. S., & Chung, L. Z. (2002). A Steganographic Method

115

Based upon JPEG and Quantization Table Modification. Information Sciences,

pp. 123-138. Vol. 141. No. 1.

[8] Chen, B., Zhang, W., Ma, K., & Yu, N. (2014). Recursive Code Construction for

Reversible Data Hiding in DCT Domain. Multimedia Tools and Applications,

pp. 1985-2009. Vol. 72. No. 2.

[9] Chang, C. C., Hsiao, J. Y., & Chan, C. S. (2003). Finding Optimal Least-

Significant-Bit Substitution in Image Hiding by Dynamic Programming

Strategy. Pattern Recognition, pp. 1583-1595. Vol. 36. No.7.

[10] Chan, C. K., & Cheng, L. M. (2004). Hiding Data in Images by Simple LSB

Substitution. Pattern recognition, pp. 469-474. Vol. 37. No.3.

[11] Cheddad, A., Condell, J., Curran, K., & Kevitt, P. M. (2010). Digital

Image Steganography: Survey and Analysis of Current Methods. Signal

Processing, pp. 727-752. Vol. 90. No.3.

[12] Chen, W. Y. (2007). Color Image Steganography Scheme Using Set Partitioning

in Hierarchical Trees Coding, Digital Fourier Transform and Adaptive Phase

Modulation. Applied Mathematics and Computation, pp. 432-448. Vol 185. No.

1.

[13] El-Kilani, W. S, Haweel, R. T., & Ramadan, H. H. (2014). A Fast Modified

Signed Discrete Cosine Transform for Image Compression. IEEE, International

Conference on Computer Engineering & Systems (ICCES), pp. 56-61. Vol. 9.

116

No. 22.

[14] Gupta, N., & Sharma, N. (2013). Hiding Image in Audio Using DWT and LSB.

International Journal of Computer Applications, pp. 11-14. Vol. 81. No. 2.

[15] Garg, S., & Mathur, M. (2014). Chaotic Map Based Steganography of Gray

scale Images in Wavelet Domain. IEEE, In Signal Processing and Integrated

Networks (SPIN), pp. 689-694. Vol. 10. No. 7.

[16] Hegde, R &Jagadeesha, S. (2015). Design and Implementation of Image

Steganography by Using LSB Replacement Algorithm and Pseudo Random

Encoding Technique. International Journal on Recent and Innovation Trends in

Computing and Communication, pp. 4415 – 4420. Vol. 3. No. 7.

[17] Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2016). A

Data Hiding Scheme Using Parity-Bit Pixel Value Differencing and Improved

Rightmost Digit Replacement. Signal Processing: Image Communication, pp.

44-57. Vol. 50. No. 12.

[18] Jheng, Y. Z., Chen, C. Y., & Huang, C. F. (2015) Reversible Data Hiding Based

on Histogram Modification over Ternary Computers. Journal of Information

Hiding and Multimedia Signal Processing, pp .319-955. Vol. 6. No. 4.

[19] Kiruba, K., &Karthikeyan, S. (2013). Reliable Detection of Adaptive Pixel Pair

Matching in Color and Grayscale Images. IEEE, International Conferenceon

Information Communication and Embedded Systems (ICICES). pp. 943-946.

117

Vol. 5. No. 9.

[20] Kinoshita, S. (2013).Bionanophotonics: an Introductory Textbook. CRC Press.

[21] Lavania, S., Matey, P. S., & Thanikaiselvan, V. (2014). Real-Time

Implementation of Steganography in Medical Images Using Integer Wavelet

Transform. IEEE, International Conference on Computational Intelligence and

Computing Research (ICCIC), pp. 1-5. Vol. 102. No. 77.

[22] Maji, A. K., Pal, R. K., & Roy, S. (2014). A Novel Steganographic Scheme

Using Sudoku. IEEE, International Conference on Electrical Information and

Communication Technology (EICT), pp. 1-6. Vol. 14. No. 28.

[23] RGB color model. (2017, January 12).Retrieved from

https://en.wikipedia.org/wiki/RGB_color_model.

[24] Singh, A., & Singh, H. (2015). An Improved LSB Based Image Steganography

Technique for RGB Images. IEEE, International Conference on Electrical,

Computer and Communication Technologies (ICECCT), pp. 1-4. Vol. 16. No.

20.

[25] Taur, J. S., Lin, H. Y., Lee, H. L., & Tao, C. W. (2012). Data Hiding in DNA

Sequences Based on Table Lookup Substitution. International Journal of

Innovative Computing, Information and Control, pp. 6585-6598. Vol. 8. No. 10.

[26] Wang, S. J. (2005). Steganography of Capacity Required Using Modulo

https://en.wikipedia.org/wiki/RGB_color_model

118

Operator for Embedding Secret Image. Applied Mathematics and Computation,

pp. 99-116. Vol. 164. No. 11.

[27] Wang, R. Z., Lin, C. F., & Lin, J. C. (2001). Image Hiding by Optimal LSB

Substitution and Genetic Algorithm. Pattern recognition, pp. 671-683. Vol. 34.

No. 3.

[28] Xu, W. L., Chang, C. C., Chen, T. S., & Wang, L. M. (2016). An Improved

Least-Significant-Bit Substitution Method Using the Modulo Three Strategy.

Displays, pp.36-42. Vol. 42. No. 17.

 [29] Yu, Y. H., Chang, C. C., & Lin, I. C. (2007). A New Steganographic Method

for Color and Grayscale Image Hiding. Computer Vision and Image

Understanding, pp.183-194. Vol. 107. No. 3.

[30] Zhang, T., & Ping, X. (2003). A New Approach to Reliable Detection of LSB

Steganography in Natural Images. Signal Processing, pp.2085-2093. Vol 83.

No.10.

119

APPENDICES

120

Appendix A: ATD Algorithm for Gray Scale Images

Figure A.1. Cover Images Used in Gray Scale Images

A.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017 for ATD algorithm

in gray scale [7] and its functions

1. clc

2. clear

3. cover_image=imread('C:\Users\hajer\Desktop\thesis\GRAY SCALE\ATD for

text\home.gif');%Read cover image

4. [M N L]=size(cover_image);

5. S=sum(cover_image(:,:));

6. avg=sum(S)/(M*N);% calculate the mean of cover image

7. start_length =494288; %start length of secreat message

8. disp('===')

121

9. disp('cover_image PSNR Actual_PSNR MSNR MSE size_secret_data Bpp')

10. disp(' dB dB db ')

11. p='home.gif';

12. disp('==')

13. for h=1:11

14. increase_size=30000;

15. start_length=start_length+increase_size;

16. secret_massege= randi([0 1],1,start_length);%generate the secreat message

17. ternary_number=convertto__ternary(secret_massege);%convert the secreat message to ternary

18. [q size_secret_massege]=size(ternary_number);

19. stego_image=Embbedding(cover_image,size_secret_massege,ternary_number);%embedding

function

20. MSE=0;

21. for i=1:M

22. for j=1:N

23. MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; %calculate the MSE

24. end

25. end

26. MSE=MSE/(M*N);

27. PSNR=10*log10(255^2/(MSE));%calculate the PSNR

28. max_value=max(max(cover_image(:,:)));%calculate the maximum actual value

29. MSNR=10*log10(avg*avg/MSE);%calculate the MSNR

30. Bpp=(start_length)/(M*N);%calculate the BPP

31. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

32. disp(sprintf('%s %f %f %f %f %d%2f',p,PSNR, Actual_PSNR,MSNR ,MSE,start_length,Bpp));

33. end

34. disp('==')

35. %show the cover image and stego image

36. figure

37. subplot(2,2,[1,3]);

38. imshow(cover_image);

39. title('Cover image')

40. subplot(2,2,[2,4]);

41. imshow(stego_image);

42. title('Stego image')

43. output = extraction(stego_image,size_secret_massege);%extraction function

A.2 Convert the secret message to the ternary

122

1. function [output] = convertto__ternary(a)

2. [e r]=size(a);

3. k=1;

4. kk=1;

5. b_s=64;

6. w=mod(r,b_s);

7. if (w==0)

8. n=r/b_s;

9. else

10. n=(r-w)/b_s;

11. n=n+1;

12. end

13. for i=1:n

14. if (k+b_s-1)>=r

15. q=(k+b_s-1)-r;

16. for m=1:q

17. block(m)=0;

18. end

19. for m=q+1:b_s

20. block(m)=a(k);

21. k=k+1;

22. end

23. else

24. for m=1:b_s

25. block(m)=a(k);

26. k=k+1;

27. end

28. end

29. aa=convert_binary_decmal(block);

30. ternary=convert_decmal_ternary(aa);

31. [o p]=size(ternary);

32. for j=1:p

33. output(kk)=ternary(j);

34. kk=kk+1;

35. end

36. end

123

37. end

A.2.1 Convert the binary block to the decimal

1. function [output] = convert_binary_decmal(a)

2. [q k]=size(a);

3. k=k-1;

4. output=0;

5. for i=1:k+1

6. output=output+a(i)*power(2,k);

7. k=k-1;

8. end

9. end

A.2.2 Convert the decimal to the ternary

1. function [output] = convert_decmal_ternary(input)

2. kk=1;

3. k=1;

4. while (input~=0)

5. output1(kk)=mod(input,3);

6. input=fix(input/3);

7. kk=kk+1;

8. end

9. ss=41-(kk-1);

10. if (ss~=0)

11. for i=1:ss

12. output(i)=0;

13. end

14. for m=ss+1:41

15. output(m)=output1(k);

16. k=k+1;

17. end

18. else

19. for m=1:41

20. output(m)=output1(k);

21. k=k+1;

22. end

23. end

24. end

124

A.3 Embedding function

1. function [stego_image] = Embbedding(cover_image,size_secret_massege, ternary_number)

2. stego_image=cover_image;

3. k=1;

4. [M N]=size(cover_image);

5. for i=1:M

6. for j=1:N

7. cover_pixel_binary = dec2bin(cover_image(i,j),8);

8. for ii=1:6

9. sub1(ii)=cover_pixel_binary(ii);

10. end

11. sub1_dec=bin2dec(sub1);

12. sub2=cover_pixel_binary(7:8);

13. sub2_dec=bin2dec(sub2);

14. if (sub1_dec==63)

15. sub1_dec=62;

16. end

17. if (sub1_dec==0)

18. sub1_dec=1;

19. end

20. if (sub2_dec==3)

21. sub2_dec=2;

22. end

23. if (sub2_dec==0)

24. sub2_dec=1;

25. end

26. if(k<=size_secret_massege)

27. if (mod(sub1_dec,3)==ternary_number(k))

28. sub1_stego=sub1_dec;

29. elseif(mod(sub1_dec+1,3)==ternary_number(k))

30. sub1_stego=sub1_dec+1;

31. else

32. sub1_stego=sub1_dec-1;

33. end

34. end

35. k=k+1;

125

36. if(k<=size_secret_massege)

37. v=sub1_stego*4+sub2_dec;

38. if (mod(v,3)==ternary_number(k))

39. stego_image(i,j)=v;

40. elseif(mod(v+1,3)==ternary_number(k))

41. stego_image(i,j)=v+1;

42. else

43. stego_image(i,j)=v-1;

44. end

45. k=k+1;

46. end

47. end

48. end

49. end

A.4 Extraction function

1. function [output] = extraction(stego_image)

2. k=1;

3. q=1;

4. for i=1:512

5. for j=1:512

6. if (q<=size_secret_image)

7. cover_pixel_binary = dec2bin(stego_image(i,j),8);

8. sub1=cover_pixel_binary(1:6);

9. sub1_dec=bin2dec(sub1);

10. sub2=cover_pixel_binary(7:8);

11. sub2_dec=bin2dec(sub2);

12. output1(k)=mod(sub1_dec,3);

13. k=k+1;

14. output1(k)=mod(stego_image(i,j),3);

15. k=k+1;

16. q=q+1;

17. else

18. continue

19. end

20. end

21. end

126

22. [e r]=size(output1);

23. k=1;

24. b_s=41;

25. w=mod(r,b_s);

26. if (w==0)

27. n=r/b_s;

28. else

29. n=(r-w)/b_s;

30. n=n+1;

31. end

32. for i=1:n

33. if (k+b_s-1)>=r

34. q=(k+b_s-1)-r;

35. for m=1:q

36. block(m)=0;

37. end

38. for m=q+1:b_s

39. block(m)=output1(k);

40. k=k+1;

41. end

42. else

43. for m=1:b_s

44. block(m)=output1(k);

45. k=k+1;

46. end

47. end

48. aa=conver_ternary_decimal(block);

49. output=convert_decmal_binary(aa);

50. end

51. end

A.4.1 Convert_ternary to decimal function

1. function [output] = conver_ternary_decimal(a)

2. [q k]=size(a);

3. k=k-1;

4. output=0;

5. for i=1:k+1

127

6. output=output+a(i)*power(3,k);

7. k=k-1;

8. end

9. end

A.4.2 Convert decimal to binary function

1. function [output] = convert_decmal_binary(input)

2. kk=1;

3. k=1;

4. while (input~=0)

5. output1(kk)=mod(input,2);

6. input=fix(input/2);

7. kk=kk+1;

8. end

9. ss=64-(kk-1);

10. if (ss~=0)

11. for i=1:ss

12. output(i)=0;

13. end

14. for m=ss+1:64

15. output(m)=output1(k);

16. k=k+1;

17. end

18. else

19. for m=1:64

20. output(m)=output1(k);

21. k=k+1;

22. end

23. end

24. end

A.5 Draw graph program

1. clc

2. clear

3. pos=[2 2.2 2.4 2.6 2.8 3 3.2];

4. PSNR_ATD=[39.32 38.86 38.44 38.04 37.87 37.69 37.41];

5. PSNR_T=[42.18 41.75 36.64 36.28 36.11 35.95 35.65];

128

6. PSNR_adapter_T=[43.21 41.76 40.04 39.03 38.55 38.05 35.60];

7. MSNR_ATD=[33.06 32.60 32.18 31.78 31.62 31.28 31.15];

8. MSNR_T=[35.93 35.49 30.38 30.02 29.85 29.69 29.39];

9. MSNR_adapter_T=[36.95 35.50 33.78 32.77 32.29 31.80 29.34];

10. A_PSNR_ATD=[39.34 38.86 38.44 38.06 37.87 37.70 37.40];

11. A_PSNR_T=[41.86 41.42 36.32 35.93 35.75 35.60 35.30];

12. A_PSNR_adapter_T=[42.85 41.43 39.69 38.69 38.21 37.70 35.28];

13. figure (1)

14. h1 = plot(pos,PSNR_ATD,'g','LineWidth',2,'Marker','*');

15. hold on

16. h2 = plot(pos,PSNR_T,'b','LineWidth',2,'Marker','*');

17. hold on

18. h3 = plot(pos,PSNR_adapter_T,'k','LineWidth',2,'Marker','*');

19. hold on

20. legend([h1,h2,h3],'PSNR ATD','PSNR T=160','PSNR adapter T','Location' ,'southwest');

21. axis([1.95 3.3 30 45])

22. title('PSNR for Lean image')

23. ylabel('PSNR(dB)');

24. xlabel('BPP');

25. grid

26. figure (2)

27. h3 = plot(pos,MSNR_ATD,'g','LineWidth',2,'Marker','*');

28. hold on

29. h4 = plot(pos,MSNR_T,'b','LineWidth',2,'Marker','*');

30. hold on

31. h5 = plot(pos,MSNR_adapter_T,'k','LineWidth',2,'Marker','*');

32. hold on

33. legend([h3,h4,h5],'MSNR ATD','MSNR T=160','MSNR adapter T','Location' ,'southwest');

34. title('MSNR for Lean image')

35. ylabel('MSNR(dB)');

36. xlabel('BPP');

37. axis([1.95 3.3 27 40])

38. grid on;

39. figure (3)

40. h1 = plot(pos,A_PSNR_ATD,'g','LineWidth',2,'Marker','*');

41. hold on

129

42. h2 = plot(pos,A_PSNR_T,'b','LineWidth',2,'Marker','*');

43. hold on

44. h3 = plot(pos,A_PSNR_adapter_T,'k','LineWidth',2,'Marker','*');

45. hold on

46. legend([h1,h2,h3],'APSNR ATD','APSNR T=160','APSNR adapter T', 'Location','southwest');

47. axis([1.95 3.3 30 45])

48. title('Actual PSNR for Lean image')

49. ylabel('APSNR(dB)');

50. xlabel('BPP');

51. grid on

A.6 Screenshots of ATD for gray scale images results for different cover images

with size 512×512

Results for Lena image in Figure A.1

Results for Zelda image in Figure A.1

Results for Airplane image in Figure A.1

130

Results for Baboon image in Figure A.1

Results for Barbara image in Figure A.1

Results for Elain image in Figure A.1

Results for Goldhill image in Figure A.1

131

Results for Peppers image in Figure A.1

Results for Lady image in Figure A.1

Results for House image in Figure A.1

Results for Home image in Figure A.1

132

Results for Camerman image in Figure A.1

Results for Boy image in Figure A.1

Results for Boat image in Figure A.1

Results for Baby image in Figure A.1

133

Appendix B: LSB with Constant Threshold Algorithm for Gray

Scale (LSBCT)

B.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017

for LSB with Constant threshold algorithm in gray scale [8] and its functions

1. clc

2. clear

3. cover_image=imread('C:\Users\hajer\Desktop\thesis\GRAY SCALE\MA for

text\home.gif');%Read cover image

4. [M N L]=size(cover_image);

5. S=sum(cover_image(:,:));

6. avg=sum(S)/(M*N);% calculate the mean of cover image

7. disp('===')

8. disp('cover_image Size_secret_data PSNR Actual_PSNR MSNR MSE Ml Mu T ')

9. disp(' dB dB db ')

10. p='home.gif';

11. disp('==')

12. ml=4;

13. mu=8;

14. T=160;

15. start_length =494288; %start length of secreat message

16. increase_size=30000;

17. for q=1:2

18. start_length=start_length+increase_size;

19. secret_massege= randi([0 1],1,start_length);%generate the secreat message

20. [e r]=size(secret_massege);

21. stego_image=Embedding(ml,mu,T,cover_image,secret_massege); %embedding function

22. MSE=0;

23. for i=1:M

24. for j=1:N

MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; %calculate the MSE

25. end

26. end

27. MSE=MSE/(M*N);

28. PSNR=10*log10(255^2/(MSE));%calculate the PSNR

29. max_value=max(max(cover_image(:,:)));%calculate the maximum actual value

134

30. MSNR=10*log10(avg*avg/MSE);%calculate the MSNR

31. Bpp=(start_length)/(M*N);%calculate the BPP

32. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

33. disp(sprintf('%s %d %f %f %f %f%d %d %d' ,p,start_length,PSNR,

Actual_PSNR,MSNR,MSE,ml,mu,T));

34. end

35. ml=8;

36. mu=16;

37. for q=1:5

38. start_length=start_length+increase_size;

39. secret_massege= randi([0 1],1,start_length);%generate the secreat message

40. [e r]=size(secret_massege);

41. stego_image=Embedding(ml,mu,T,cover_image,secret_massege); %embedding function

42. MSE=0;

43. for i=1:M

44. for j=1:N

MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; %calculate the MSE

45. end

46. end

47. MSE=MSE/(M*N);

48. PSNR=10*log10(255^2/(MSE));%calculate the PSNR

49. max_value=max(max(cover_image(:,:)));%calculate the maximum actual value

50. MSNR=10*log10(avg*avg/MSE);%calculate the MSNR

51. Bpp=(start_length)/(M*N);%calculate the BPP

52. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

53. disp(sprintf('%s %d %f %f %f %f%d %d %d' ,p,start_length,PSNR,

Actual_PSNR,MSNR,MSE,ml,mu,T));

54. end

55. disp('==')

56. %show the cover image and stego image

57. figure

58. subplot(2,2,[1,3]);

59. imshow(cover_image);

60. title('Cover image')

61. subplot(2,2,[2,4]);

62. imshow(stego_image);

63. title('Stego image')

135

64. output = extraction(stego_image,T,mu,ml);%extraction function

B.2 Embedding function

1. function [stego_image] = Embedding(ml,mu,T,cover_image,secret_massege)

2. [e r]=size(secret_massege);

3. [M N L]=size(cover_image);

4. stego_image=cover_image;

5. m=0;

6. mm=0;

7. k=1;

8. for i=1:M

9. for j=1:N

1. if (k<=r)

2. if (cover_image(i,j)>=T)

3. m=m+1;

4. EC=log2(mu); %how many bit will be embedding in the pixel

5. RES=mod(cover_image(i,j),mu);

6. if (k+EC-1)>=r

7. q=(k+EC-1)-r;

8. s=secret_massege(k:k+EC-1-q);

9. k=k+EC;

10. else

11. s=secret_massege(k:k+EC-1);

12. k=k+EC;

13. end

14. a = num2str(s);

15. DEC= bin2dec(a);

16. D=abs(RES-DEC);

17. if (cover_image(i,j)>(255-(mu/2)+1))

18. stego_image(i,j)=(255-mu+1)+DEC;

19. end

20. if((T+(mu/2))<cover_image(i,j)<=(255-(mu/2)+1))

21. if (D>(mu/2))

22. AV=mu-D;

23. if (RES>DEC)

24. stego_image(i,j)=cover_image(i,j)+AV;

25. else

136

26. stego_image(i,j)=cover_image(i,j)-AV;

27. end

28. end

29. if(D<=(mu/2))

30. AV=D;

31. if (RES>DEC)

32. stego_image(i,j)=cover_image(i,j)-AV;

33. else

34. stego_image(i,j)=cover_image(i,j)+AV;

35. end

36. end

37. end

38. if(T<=cover_image(i,j)<=(T+(mu/2)))

39. stego_image(i,j)=cover_image(i,j)-RES+DEC;

40. end

41. end

42. if (cover_image(i,j)<T)

43. mm=mm+1;

44. EC=log2(ml);

45. RES=mod(cover_image(i,j),ml);

46. if (k+EC-1)>=r

47. q=(k+EC-1)-r;

48. s=secret_massege(k:k+EC-1-q);

49. k=k+EC;

50. else

51. s=secret_massege(k:k+EC-1);

52. k=k+EC;

53. end

54. a = num2str(s);

55. DEC= bin2dec(a);

56. D=abs(RES-DEC);

57. if (cover_image(i,j)<(ml/2))

58. stego_image(i,j)=DEC;

59. end

60. if((ml/2)<=cover_image(i,j)<(T-(ml/2)))

61. if (D>(ml/2))

137

62. AV=ml-D;

63. if (RES>DEC)

64. stego_image(i,j)=cover_image(i,j)+AV;

65. else

66. stego_image(i,j)=cover_image(i,j)-AV;

67. end

68. end

69. if(D<=(ml/2))

70. AV=D;

71. if (RES>DEC)

72. stego_image(i,j)=cover_image(i,j)-AV;

73. else

74. stego_image(i,j)=cover_image(i,j)+AV;

75. end

76. end

77. end

78. if((T-(ml/2))<=cover_image(i,j)<T)

79. stego_image(i,j)=cover_image(i,j)-RES+DEC;

80. end

81. end

82. end

10. end

11. end

12. end

B.3 Extraction function
1. function [output] = extraction(stego_image,T,mu,ml)

2. [M N]=size(stego_image);

3. kk=1;

4. k=1;

5. for i=1:M

6. for j=1:N

7. if (kk<=r)

8. if (stego_image(i,j)>=T)

9. EC=log2(mu);

10. RES=mod(stego_image(i,j),mu);

11. if (k+EC-1)>=r

138

12. q=(k+EC-1)-r;

13. s=dec2bin(RES,EC-q);

14. for g=1:EC-q

15. a=str2num(s(g));

16. output(kk)=a;

17. kk=kk+1;

18. end

19. else

20. s=dec2bin(RES,EC);

21. for g=1:EC

22. a=str2num(s(g));

23. output(kk)=a;

24. kk=kk+1;

25. end

26. k=k+EC;

27. end

28. else

29. EC=log2(ml);

30. RES=mod(stego_image(i,j),ml);

31. if (k+EC-1)>=r

32. q=(k+EC-1)-r;

33. s=dec2bin(RES,EC-q);

34. for g=1:EC-q

35. a=str2num(s(g));

36. output(kk)=a;

37. kk=kk+1;

38. end

39. else

40. s=dec2bin(RES,EC);

41. for g=1:EC

42. a=str2num(s(g));

43. output(kk)=a;

44. kk=kk+1;

45. end

46. k=k+EC;

47. end

139

48. end

49. end

50. end

51. end

52. end

B.4 Screenshots of LSBCT Algorithm, T=160, for gray scale results for different

cover images with size 512×512

Results for Lena image in Figure A.1

Results for Zelda image in Figure A.1

Results for Airplane image in Figure A.1

Results for Baboon image in Figure A.1

Results for Barbara image in Figure A.1

140

Results for Elain image in Figure A.1

Results for Goldhill image in Figure A.1

Results for Peppers image in Figure A.1

Results for Lady image in Figure A.1

141

Results for House image in Figure A.1

Results for Home image in Figure A.1

Results for Camerman image in Figure A.1

142

Results for Boy image in Figure A.1

Results for Boat image in Figure A.1

Results for Baby image in Figure A.1

143

Appendix C: LSB with Dynamic Threshold Algorithm for Gray

Scale (LSBDT)

C.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017

for LSB with Constant threshold algorithm in gray scale [8] and its functions

1. clc

2. clear

3. cover_image=imread('C:\Users\hajer\Desktop\thesis\GRAY SCALE\MA for

text\home.gif');%Read cover image

4. [M N L]=size(cover_image);

5. S=sum(cover_image(:,:));

6. avg=sum(S)/(M*N);% calculate the mean of cover image

7. ml=4;

8. mu=8;

9. disp('===')

10. disp('cover_image Size_secret_data PSNR Actual_PSNR MSNR MSE Ml Mu T ')

11. disp(' dB dB db ')

12. p='home.gif';

13. disp('==')

14. start_length =494288; %start length of secret message

15. increase_size=30000;

16. start_length=start_length+increase_size;

17. Bpp= start_length/M*N;
18. if (Bpp~=3.14)
19. T=160*(3.14-Bpp)+10;
20. else
21. T=160;
22. end
23. if (mod(T,16)~=0)
24. T=T-mod(T,16);
25. end
26. Bpp_actual=((T/256)*(log2(ml)))+(((256-T)/256)*(log2(mu)));
27. while (Bpp_actual<Bpp)
28. T=T-mu;
29. Bpp_actual=((T/256)*(log2(ml)))+(((256-T)/256)*(log2(mu)));
30. end
31. secret_massege= randi([0 1],1,start_length);%generate the secreat message

32. [e r]=size(secret_massege);

33. stego_image=Embedding(ml,mu,T,cover_image,secret_massege); %embedding function

34. MSE=0;

144

35. for i=1:M

36. for j=1:N

MSE=MSE+(double(cover_image(i,j))-double(stego_image(i,j)))^2; %calculate the MSE

37. end

38. end

39. MSE=MSE/(M*N);

40. PSNR=10*log10(255^2/(MSE));%calculate the PSNR

41. max_value=max(max(cover_image(:,:)));%calculate the maximum actual value

42. MSNR=10*log10(avg*avg/MSE);%calculate the MSNR

43. Bpp=(start_length)/(M*N);%calculate the BPP

44. Actual_PSNR=10*log10(double(max_value)*double(max_value)/MSE);%calculate the APSNR

45. disp(sprintf('%s %d %f %f %f %f %d %d %d' ,p,start_length,PSNR,

Actual_PSNR,MSNR,MSE,ml,mu,T));

46. end

47. disp('==')

48. %show the cover image and stego image

49. figure

50. subplot(2,2,[1,3]);

51. imshow(cover_image);

52. title('Cover image')

53. subplot(2,2,[2,4]);

54. imshow(stego_image);

55. title('Stego image')

56. output = extraction(stego_image,T,mu,ml);%extraction function

Other functions are the same as shown in Appendices B.2, B.3 for LSBCT

C.2 Screenshots of LSBDT Algorithm for gray scale result for different cover

images with size 512×512

Results for Lena image in Figure A.1

145

Results for Zelda image in Figure A.1

Results for Airplane image in Figure A.1

Results for Baboon image in Figure A.1

Results for Barbara image in Figure A.1

146

Results for Elain image in Figure A.1

Results for Goldhill image in Figure A.1

Results for Pepper image in Figure A.1

Results for Lady image in Figure A.1

Results for House image in Figure A.1

147

Results for Home image in Figure A.1

Results for Camerman image in Figure A.1

Results for Boy image in Figure A.1

Results for Boat image in Figure A.1

148

Results for Baby image in Figure A.1

149

Appendix D: LSB Algorithm for Color Images

Figure D.1. Color Cover Images Used

D.1 The main program

% this program was written by Hajer A Al_aswed in 2016-2017 for LSB with

algorithm in color scale and its functions

1.clc

2.clear

3.cover_image=imread('C:\Users\hajer\Desktop\thesis\COLOR SCALE\LSB_color\Balloon (512 x

512).jpg');

4.disp('===')

5.disp('cover_image Size_secret_data PSNR MSE ')

6.disp(' dB ')

7.disp('===')

8.p='Balloon_color';

9.secrt_image=imread('C:\Users\hajer\Desktop\thesis\1.jpg');

10. [m n l]=size(secrt_image);

11. k=1;

12. for i=1:m

13. for j=1:n

14. str = dec2bin(secrt_image(i,j),8);

15. for q=1:8

16. aa=str2num(str(q));

17. secret_massege(k)=aa;

18. k=k+1;

19. end

150

20. end

21. end

22. [e r]=size(secret_massege);

23. [stego_image,y,u]=Embedding(cover_image,secret_massege);

24. [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image);

25. mse = (MSE_R + MSE_B + MSE_G)/3;

26. [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B);

27. disp(sprintf('%s %d %f %f ' ,p,r,PSNR,mse));

28. disp(sprintf('PSNR_R=%f PSNR_G=%f PSNR_B=%f ',PSNR_R,PSNR_G,PSNR_B));

29. [MSNR,MSNR_R,MSNR_G,MSNR_B] = MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse);

30. disp(sprintf('MSNR_R=%f MSNR_G=%f MSNR_B=%f ',MSNR_R,MSNR_G,MSNR_B));

31. disp(sprintf('MSNR=%f',MSNR));

32. Actual_PSNR_weight = A_PSNR(cover_image,MSE_R,MSE_G,MSE_B);

33. disp(sprintf('Actual_PSNR_weight(1/3_1/3_1/3)=%f ',Actual_PSNR_weight));

34. disp(sprintf('W_PSNR(0.4_0.243_0.357)=%f',(0.4*PSNR_R+0.243*PSNR_G+0.357*PSNR_B))

);

35. disp(sprintf('W_PSNR(0.4_0.3_0.3)=%f',(0.4*PSNR_R+0.3*PSNR_G+0.3*PSNR_B)));

36. disp(sprintf('W_PSNR(1/3_1/3_1/3)=%f',(1/3*PSNR_R+1/3*PSNR_G+1/3*PSNR_B)));

37. disp(sprintf('W_MSNR(0.4_0.243_0.357)=%f',(0.4*MSNR_R+0.243*MSNR_G+0.357*MSNR_

B)));

38. disp(sprintf('W_MSNR(0.4_0.3_0.3)=%f',(0.4*MSNR_R+0.3*MSNR_G+0.3*MSNR_B)));

39. disp(sprintf('W_MSNR(1/3_1/3_1/3)=%f',(1/3*MSNR_R+1/3*MSNR_G+1/3*MSNR_B)));

40. [var_orgR, var_noiseR] = snr(stego_image(:,:,1),cover_image(:,:,1));

41. [var_orgG, var_noiseG] = snr(stego_image(:,:,2),cover_image(:,:,2));

42. [var_orgB, var_noiseB] = snr(stego_image(:,:,3),cover_image(:,:,3));

43. SNR= 10*log10((var_orgR + var_orgG + var_orgB)/(var_noiseR + var_noiseG + var_noiseB));

44. disp(sprintf('SNR=%f',SNR));

45. disp('==')

46. figure

47. subplot(2,2,[1,3]);

48. imshow(cover_image);

49. title('Cover image')

50. subplot(2,2,[2,4]);

51. imshow(stego_image);

52. title('Stego image')

53. output=extraction(stego_image);

D.2 Embedding function

151

1. function [stego_image,y,u] = Embedding(cover_image,secret_massege)

2. u=0;

3. y=0;

4. [e r]=size(secret_massege);

5. [M N L]=size(cover_image);

6. stego_image=cover_image;

7. k=1;

8. for i=1:M

9. for j=1:N

10. if (k<=r)

11. EC=3;

12. if (k+EC-1)>=r

13. q=(k+EC-1)-r;

14. s=secret_massege(k:k+EC-1-q);

15. k=k+EC;

16. else

17. s=secret_massege(k:k+EC-1);

18. k=k+EC;

19. end

20. a = num2str(s);

21. DEC= bin2dec(a);

22. stego_image(i,j,3)=cover_image(i,j,3)-

(mod(cover_image(i,j,3),2^EC))+DEC;

23. EC=4;

24. if (k+EC-1)>=r

25. q=(k+EC-1)-r;

26. s=secret_massege(k:k+EC-1-q);

27. k=k+EC;

28. else

29. s=secret_massege(k:k+EC-1);

30. k=k+EC;

31. end

32. a = num2str(s);

33. DEC= bin2dec(a);

34. stego_image(i,j,2)=cover_image(i,j,2)-

(mod(cover_image(i,j,2),2^EC))+DEC;

35. EC=1;

152

36. if (k+EC-1)>=r

37. q=(k+EC-1)-r;

38. s=secret_massege(k:k+EC-1-q);

39. k=k+EC;

40. else

41. s=secret_massege(k:k+EC-1);

42. k=k+EC;

43. end

44. a = num2str(s);

45. DEC= bin2dec(a);

46. stego_image(i,j,1)=cover_image(i,j,1)-

(mod(cover_image(i,j,1),2^EC))+DEC;

47. y= i;

48. u=j;

49. end

50. end

51. end

52. end

D.3 Extraction function

1. function [output] = extraction(stego_image)

2. [M N L]=size(stego_image);

3. k=1;

4. kk=1;

5. for i=1:M

6. for j=1:N

7. if (k<=r)

8. EC=4;

9. RES=mod(stego_image(i,j,3),2^EC);

10. if (k+EC-1)>=r

11. q=(k+EC-1)-r;

12. s=dec2bin(RES,EC-q);

13. for g=1:EC-q

14. a=str2num(s(g));

15. output(kk)=a;

16. kk=kk+1;

17. end

18. else

153

19. s=dec2bin(RES,EC);

20. for g=1:EC

21. a=str2num(s(g));

22. output(kk)=a;

23. kk=kk+1;

24. end

25. k=k+EC;

26. end

27. end

28. if (k<=r)

29. EC=2;

30. RES=mod(stego_image(i,j,2),2^EC);

31. if (k+EC-1)>=r

32. q=(k+EC-1)-r;

33. s=dec2bin(RES,EC-q);

34. for g=1:EC-q

35. a=str2num(s(g));

36. output(kk)=a;

37. kk=kk+1;

38. end

39. else

40. s=dec2bin(RES,EC);

41. for g=1:EC

42. a=str2num(s(g));

43. output(kk)=a;

44. kk=kk+1;

45. end

46. k=k+EC;

47. end

48. end

49. if (k<=r)

50. EC=2;

51. RES=mod(stego_image(i,j,1),2^EC);

52. if (k+EC-1)>=r

53. q=(k+EC-1)-r;

54. s=dec2bin(RES,EC-q);

154

55. for g=1:EC-q

56. a=str2num(s(g));

57. output(kk)=a;

58. kk=kk+1;

59. end

60. else

61. s=dec2bin(RES,EC);

62. for g=1:EC

63. a=str2num(s(g));

64. output(kk)=a;

65. kk=kk+1;

66. end

67. k=k+EC;

68. end

69. end

70. end

71. end

72. end

D.4 MSE function

1.function [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image)

2.[M N L]=size(cover_image);

3.MSE_R=0;

4.MSE_G=0;

5.MSE_B=0;

6.for i=1:M

7.for j=1:N

8.MSE_R=MSE_R+(double(cover_image(i,j,1))-double(stego_image(i,j,1)))^2;

9.MSE_G=MSE_G+(double(cover_image(i,j,2))-double(stego_image(i,j,2)))^2;

10. MSE_B=MSE_B+(double(cover_image(i,j,3))-double(stego_image(i,j,3)))^2;

11. end

12. end

13. MSE_R=MSE_R/(((y-1)*512)+u);

14. MSE_G=MSE_G/(((y-1)*512)+u);

15. MSE_B=MSE_B/(((y-1)*512)+u);

16. end

D.5 PSNR function

155

1. function [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B)

2. PSNR=10*log10(255*255/mse);

3. PSNR_R=10*log10(255*255/MSE_R);

4. PSNR_G=10*log10(255*255/MSE_G);

5. PSNR_B=10*log10(255*255/MSE_B);

6. end

D.6 MSNR function

1. function [MSNR,MSNR_R,MSNR_G,MSNR_B] =

MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse)

2. [M N L]=size(cover_image);

3. S=sum(cover_image(:,:,1));

4. avg_R=sum(S)/(M*N);

5. S2=sum(cover_image(:,:,2));

6. avg_G=sum(S2)/(M*N);

7. S3=sum(cover_image(:,:,3));

8. avg_B=sum(S3)/(M*N);

9. MSNR_R=10*log10(avg_R*avg_R/MSE_R);

10. MSNR_G=10*log10(avg_G*avg_G/MSE_G);

11. MSNR_B=10*log10(avg_B*avg_B/MSE_B);

12. mean_image=(sum(S2)+sum(S3)+sum(S))/(M*N*L);

13. MSNR=10*log10(mean_image*mean_image/mse);

14. end

D.7 WAPSNR function

1. function [Actual_PSNR_weight]= A_PSNR(cover_image,MSE_R,MSE_G,MSE_B)

2. max_col_R= max(cover_image(:,:,1));

3. max_col_G= max(cover_image(:,:,2));

4. max_col_B= max(cover_image(:,:,3));

5. max_R= max(max_col_R);

6. max_G= max(max_col_G);

7. max_B= max(max_col_B);

8. Actual_PSNR_R=10*log10(double(max_R)*double(max_R)/MSE_R);

9. Actual_PSNR_G=10*log10(double(max_G)*double(max_G)/MSE_G);

10. Actual_PSNR_B=10*log10(double(max_B)*double(max_B)/MSE_B);

11. Actual_PSNR_weight=1/3*Actual_PSNR_R+1/3*Actual_PSNR_G+1/3*Actual_PSNR_B;

12. end

D.8 SNR function

156

1. function [var_cover_image, var_noise] = snr(stego_image, cover_image)

2. [m n l]=size(cover_image);

3. mean_original = mean(cover_image(:));

4. tmp= cover_image - mean_original;

5. var_cover_image = sum(tmp(:).^2);

6. var_cover_image =var_cover_image/(m*n);

7. noise= stego_image - cover_image;

8. mean_noise = mean(noise(:));

9. tmp= noise - mean_noise;

10. var_noise = sum(tmp(:).^2);

11. var_noise =var_noise/(m*n);

12. end

D.9 Screenshots for LSB for color imges results for different embedding

combinations with 8 BPP for cover images with size 512×512

Embedding combination 4_3_1

157

158

Embedding combination 4_1_3

159

160

Embedding combination 3_4_1

161

Embedding combination 3_1_4

162

163

Embedding combination 1_3_4

164

165

Embedding combination 1_4_3

166

167

Embedding combination 2_2_4

168

Embedding combination 2_4_2

169

170

Embedding combination 4_2_2

171

172

Appendix E: Adaptive LSB Algorithm (ALSB) for Color Images

E.1 The main program

1. clc
2. clear
3. cover_image=imread('C:\Users\hajer\Desktop\thesis\COLOR SCALE\LSB_color\red.jpg');
4. Red = cover_image(:,:,1);
5. Green = cover_image(:,:,2);
6. Blue = cover_image(:,:,3);
7. [M N L]=size(cover_image);
8. S=sum(cover_image(:,:,1));
9. avg_R=sum(S)/(M*N*L);
10. S2=sum(cover_image(:,:,2));
11. avg_G=sum(S2)/(M*N*L);
12. S3=sum(cover_image(:,:,3));
13. avg_B=sum(S3)/(M*N*L);
14. disp('==')
15. disp('cover_image Size_secret_data PSNR MSE ')
16. disp(' dB ')
17. p='red_color';
18. disp('==')
19. secrt_image=imread('C:\Users\hajer\Desktop\thesis\1.jpg');
20. [m n l]=size(secrt_image);
21. k=1;
22. for i=1:m
23. for j=1:n
24. str = dec2bin(secrt_image(i,j),8);
25. for q=1:8
26. aa=str2num(str(q));
27. secret_massege(k)=aa;
28. k=k+1;
29. end
30. end
31. end
32. [e r]=size(secret_massege);
33. if (avg_B>=avg_R)&&(avg_B>=avg_G)&&(avg_R>=avg_G)%b=4 r=3 g=1
34. %blue=4; red=3; green=1;
35. blue=1; red=3; green=4;
36. end
37. if (avg_B>=avg_R)&&(avg_B>=avg_G)&&(avg_G>=avg_R)%b=4 r=1 g=3
38. %blue=4; red=1; green=3;
39. blue=1; red=4; green=3;
40. end
41. if (avg_G>=avg_R)&&(avg_G>=avg_B)&&(avg_B>=avg_R)%b=3 r=1 g=4
42. %blue=3; red=1; green=4;
43. blue=3; red=4; green=1;
44. end
45. if (avg_G>=avg_R)&&(avg_G>=avg_B)&&(avg_R>=avg_B)%b=1 r=3 g=4
46. % blue=1; red=3; green=4;
47. blue=4; red=3; green=1;
48. end

173

49. if (avg_R>=avg_B)&&(avg_R>=avg_G)&&(avg_G>=avg_B)%b=1 r=4 g=3
50. % blue=1; red=4;green=3;
51. blue=4; red=1;green=3;
52. end
53. if (avg_R>=avg_B)&&(avg_R>=avg_G)&&(avg_B>=avg_G)%b=3 r=4 g=1
54. %blue=3;red=4;green=1;
55. blue=3;red=1;green=4;
56. end
57. [stego_image,y,u]=embedding(red,green,blue,cover_image,secret_massege);
58. [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image);
59. mse = (MSE_R + MSE_B + MSE_G)/3;
60. [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B);
61. disp(sprintf('%s %d %f %f ' ,p,r,PSNR,mse));
62. disp(sprintf('avg_R=%f avg_G=%f avg_B=%f ',avg_R,avg_G,avg_B));
63. disp(sprintf('PSNR_R=%f PSNR_G=%f PSNR_B=%f ',PSNR_R,PSNR_G,PSNR_B));
64. [MSNR,MSNR_R,MSNR_G,MSNR_B] =
MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse);
65. disp(sprintf('MSNR_R=%f MSNR_G=%f

MSNR_B=%f',MSNR_R,MSNR_G,MSNR_B));
66. disp(sprintf('MSNR=%f',MSNR));
67. Actual_PSNR_weight = A_PSNR(cover_image,MSE_R,MSE_G,MSE_B);
68. disp(sprintf('Actual_PSNR_weight(1/3_1/3_1/3)=%f',Actual_PSNR_weight));
69. disp(sprintf('W_PSNR(0.4_0.243_0.357)=%f',(0.4*PSNR_R+0.243*PSNR_G+0.357*PSNR

_B)));
70. disp(sprintf('W_PSNR(0.4_0.3_0.3)=%f',(0.4*PSNR_R+0.3*PSNR_G+0.3*PSNR_B)));
71. disp(sprintf('W_PSNR(1/3_1/3_1/3)=%f',(1/3*PSNR_R+1/3*PSNR_G+1/3*PSNR_B)));
72. disp(sprintf('W_MSNR(0.4_0.243_0.357)=%f',(0.4*MSNR_R+0.243*MSNR_G+0.357*MS

NR_B)));
73. disp(sprintf('W_MSNR(0.4_0.3_0.3)=%f',(0.4*MSNR_R+0.3*MSNR_G+0.3*MSNR_B)));
74. disp(sprintf('W_MSNR(1/3_1/3_1/3)=%f',(1/3*MSNR_R+1/3*MSNR_G+1/3*MSNR_B)));
75. [var_orgR, var_noiseR] = snr(stego_image(:,:,1),cover_image(:,:,1));
76. [var_orgG, var_noiseG] = snr(stego_image(:,:,2),cover_image(:,:,2));
77. [var_orgB, var_noiseB] = snr(stego_image(:,:,3),cover_image(:,:,3));
78. SNR= 10*log10((var_orgR + var_orgG + var_orgB)/(var_noiseR + var_noiseG +

var_noiseB));
79. disp(sprintf('SNR=%f',SNR));
80. disp('==')
81. figure
82. subplot(2,2,[1,3]);
83. imshow(cover_image);
84. title('Cover image')
85. subplot(2,2,[2,4]);
86. imshow(stego_image);
87. title('Stego image')

E.2 Embedding function

1. function [stego_image,y,u]=embedding(red,green,blue,cover_image,secret_massege)

2. u=0;
3. y=0;
4. [e r]=size(secret_massege);
5. [M N L]=size(cover_image);
6. stego_image=cover_image;
7. k=1;

174

8. stego_image(1,1,3)=cover_image(1,1,3)-(mod(cover_image(1,1,3),2^3))+blue;
9. stego_image(1,1,2)=cover_image(1,1,2)-(mod(cover_image(1,1,2),2^3))+green;
10. stego_image(1,1,1)=cover_image(1,1,1)-(mod(cover_image(1,1,1),2^3))+red;

11. for j=2:N
12. if (k<=r)
13. EC=blue;
14. if (k+EC-1)>=r
15. q=(k+EC-1)-r;
16. s=secret_massege(k:k+EC-1-q);
17. k=k+EC;
18. else
19. s=secret_massege(k:k+EC-1);
20. k=k+EC;
21. end
22. a = num2str(s);
23. DEC= bin2dec(a);
24. stego_image(1,j,3)=cover_image(1,j,3)-(mod(cover_image(1,j,3),2^EC))+DEC;

25. EC=green;
26. if (k+EC-1)>=r
27. q=(k+EC-1)-r;
28. s=secret_massege(k:k+EC-1-q);
29. k=k+EC;
30. else
31. s=secret_massege(k:k+EC-1);
32. k=k+EC;
33. end
34. a = num2str(s);
35. DEC= bin2dec(a);
36. stego_image(1,j,2)=cover_image(1,j,2)-(mod(cover_image(1,j,2),2^EC))+DEC;

37. EC=red;
38. if (k+EC-1)>=r
39. q=(k+EC-1)-r;
40. s=secret_massege(k:k+EC-1-q);
41. k=k+EC;
42. else
43. s=secret_massege(k:k+EC-1);
44. k=k+EC;
45. end
46. a = num2str(s);
47. DEC= bin2dec(a);
48. stego_image(1,j,1)=cover_image(1,j,1)-(mod(cover_image(1,j,1),2^EC))+DEC;

49. end

50. end
51. for i=2:M
52. for j=1:N
53. if (k<=r)
54. EC=blue;
55. if (k+EC-1)>=r
56. q=(k+EC-1)-r;
57. s=secret_massege(k:k+EC-1-q);
58. k=k+EC;
59. else
60. s=secret_massege(k:k+EC-1);

175

61. k=k+EC;
62. end
63. a = num2str(s);
64. DEC= bin2dec(a);
65. stego_image(i,j,3)=cover_image(i,j,3)-(mod(cover_image(i,j,3),2^EC))+DEC;

66. EC=green;
67. if (k+EC-1)>=r
68. q=(k+EC-1)-r;
69. s=secret_massege(k:k+EC-1-q);
70. k=k+EC;
71. else
72. s=secret_massege(k:k+EC-1);
73. k=k+EC;
74. end
75. a = num2str(s);
76. DEC= bin2dec(a);
77. stego_image(i,j,2)=cover_image(i,j,2)-(mod(cover_image(i,j,2),2^EC))+DEC;

78. EC=red;
79. if (k+EC-1)>=r
80. q=(k+EC-1)-r;
81. s=secret_massege(k:k+EC-1-q);
82. k=k+EC;
83. else
84. s=secret_massege(k:k+EC-1);
85. k=k+EC;
86. end
87. a = num2str(s);
88. DEC= bin2dec(a);
89. stego_image(i,j,1)=cover_image(i,j,1)-(mod(cover_image(i,j,1),2^EC))+DEC;

90. y= i;
91. u=j;
92. end

93. end
94. end
95. end

 E3 Extraction function

1. function [output] = extraction(r,stego_image)
2. [M N L]=size(stego_image);
3. k=1;
4. kk=1;
5. blue=mod(stego_image(1,1,3),2^3);
6. green=mod(stego_image(1,1,2),2^3);
7. red=mod(stego_image(1,1,1),2^3);
8. for j=2:N
9. if (kk<=r)
10. EC=blue;
11. RES=mod(stego_image(1,j,3),2^EC);
12. if (k+EC-1)>=r
13. q=(k+EC-1)-r;
14. s=dec2bin(RES,EC-q);
15. for g=1:EC-q

176

16. a=str2num(s(g));
17. output(kk)=a;
18. kk=kk+1;
19. end
20. else
21. s=dec2bin(RES,EC);
22. for g=1:EC
23. a=str2num(s(g));
24. output(kk)=a;
25. kk=kk+1;
26. end
27. k=k+EC;
28. end
29. EC=green;
30. RES=mod(stego_image(1,j,2),2^EC);
31. if (k+EC-1)>=r
32. q=(k+EC-1)-r;
33. s=dec2bin(RES,EC-q);
34. for g=1:EC-q
35. a=str2num(s(g));
36. output(kk)=a;
37. kk=kk+1;
38. end
39. else
40. s=dec2bin(RES,EC);
41. for g=1:EC
42. a=str2num(s(g));
43. output(kk)=a;
44. kk=kk+1;
45. end
46. k=k+EC;
47. end
48. EC=red;
49. RES=mod(stego_image(1,j,1),2^EC);
50. if (k+EC-1)>=r
51. q=(k+EC-1)-r;
52. s=dec2bin(RES,EC-q);
53. for g=1:EC-q
54. a=str2num(s(g));
55. output(kk)=a;
56. kk=kk+1;
57. end
58. else
59. s=dec2bin(RES,EC);
60. for g=1:EC
61. a=str2num(s(g));
62. output(kk)=a;
63. kk=kk+1;
64. end
65. k=k+EC;
66. end
67. end

177

68. end
69. for i=2:M
70. for j=1:N
71. if (kk<=r)
72. EC=blue;
73. RES=mod(stego_image(i,j,3),2^EC);
74. if (k+EC-1)>=r
75. q=(k+EC-1)-r;
76. s=dec2bin(RES,EC-q);
77. for g=1:EC-q
78. a=str2num(s(g));
79. output(kk)=a;
80. kk=kk+1;
81. end
82. else
83. s=dec2bin(RES,EC);
84. for g=1:EC
85. a=str2num(s(g));
86. output(kk)=a;
87. kk=kk+1;
88. end
89. k=k+EC;
90. end
91. EC=green;
92. RES=mod(stego_image(i,j,2),2^EC);
93. if (k+EC-1)>=r
94. q=(k+EC-1)-r;
95. s=dec2bin(RES,EC-q);
96. for g=1:EC-q
97. a=str2num(s(g));
98. output(kk)=a;
99. kk=kk+1;
100. end
101. else
102. s=dec2bin(RES,EC);
103. for g=1:EC
104. a=str2num(s(g));
105. output(kk)=a;
106. kk=kk+1;
107. end
108. k=k+EC;
109. end
110. EC=red;
111. RES=mod(stego_image(i,j,1),2^EC);
112. if (k+EC-1)>=r
113. q=(k+EC-1)-r;
114. s=dec2bin(RES,EC-q);
115. for g=1:EC-q
116. a=str2num(s(g));
117. output(kk)=a;
118. kk=kk+1;
119. end

178

120. else
121. s=dec2bin(RES,EC);
122. for g=1:EC
123. a=str2num(s(g));
124. output(kk)=a;
125. kk=kk+1;
126. end
127. k=k+EC;
128. end
129. end
130. end
131. end
132. end

Other functions are the same as shown in Appendices D.4, D.5, D.6, D.7 and D.8.

E. 4 Screenshots of Adaptive LSB for color images results for different

embedding combinations for cover images with size 512×512

Results for ALSBmin

179

180

Results of ALSBMax

181

182

183

Appendix F: ATD Algorithm for Color Images

F.1 The main program

1. clc
2. clear
3. cover_image=imread('C:\Users\hajer\Desktop\thesis\COLOR SCALE\ATD

color\peppers_color (512 x 512).jpg');
4. disp('==')
5. disp('cover_image Size_secret_data PSNR MSE ')
6. disp(' dB ')
7. disp('==')
8. p='peppers_color.jpg';
9. secrt_image=imread('C:\Users\hajer\Desktop\thesis\1.jpg');
10. [m n l]=size(secrt_image);
11. k=1;
12. for i=1:m
13. for j=1:n
14. str = dec2bin(secrt_image(i,j),8);
15. for q=1:8
16. aa=str2num(str(q));
17. secret_massege(k)=aa;
18. k=k+1;
19. end
20. end
21. end
22. k=k-1;
23. ternary_number=convertto__ternary(secret_massege);
24. [q size_secret_massege]=size(ternary_number);
25. [stego_image,y,u]=Embbedding(cover_image,size_secret_massege,ternary_number);
26. [MSE_R,MSE_G,MSE_B] = MSE(y,u,cover_image,stego_image);
27. mse = (MSE_R + MSE_B + MSE_G)/3;
28. [PSNR,PSNR_R,PSNR_G,PSNR_B] = PSNR(mse,MSE_R,MSE_G,MSE_B);
29. disp(sprintf('%s %d %f %2f' ,p,k,PSNR,mse));
30. disp(sprintf('PSNR_R=%f PSNR_G=%f PSNR_B=%f ',PSNR_R,PSNR_G,PSNR_B));
31. [MSNR,MSNR_R,MSNR_G,MSNR_B] =

MSNR(cover_image,MSE_R,MSE_G,MSE_B,mse);
32. disp(sprintf('MSNR_R=%f MSNR_G=%f MSNR_B=%f

',MSNR_R,MSNR_G,MSNR_B));
33. disp(sprintf('MSNR=%f',MSNR));
34. disp(sprintf('W_PSNR(0.4_0.243_0.357)=%f',(0.4*PSNR_R+0.243*PSNR_G+0.357*PSNR_B)));
35. disp(sprintf('W_PSNR(0.4_0.3_0.3)=%f',(0.4*PSNR_R+0.3*PSNR_G+0.3*PSNR_B)));
36. disp(sprintf('W_PSNR(1/3_1/3_1/3)=%f ',(1/3*PSNR_R+1/3*PSNR_G+1/3*PSNR_B)));
37. disp(sprintf('W_MSNR(0.4_0.243_0.357)=%f',(0.4*MSNR_R+0.243*MSNR_G+0.357*MSNR_B)));
38. disp(sprintf('W_MSNR(0.4_0.3_0.3)=%f',(0.4*MSNR_R+0.3*MSNR_G+0.3*MSNR_B)));
39. disp(sprintf('W_MSNR(1/3_1/3_1/3)=%f ',(1/3*MSNR_R+1/3*MSNR_G+1/3*MSNR_B)));

40. Actual_PSNR_weight = A_PSNR(cover_image,MSE_R,MSE_G,MSE_B);
41. disp(sprintf('Actual_PSNR_weight(1/3_1/3_1/3)=%f ',Actual_PSNR_weight));

42. [var_orgR, var_noiseR] = snr(stego_image(:,:,1),cover_image(:,:,1));
43. [var_orgG, var_noiseG] = snr(stego_image(:,:,2),cover_image(:,:,2));
44. [var_orgB, var_noiseB] = snr(stego_image(:,:,3),cover_image(:,:,3));
45. SNR= 10*log10((var_orgR + var_orgG + var_orgB)/(var_noiseR + var_noiseG +

var_noiseB));

184

46. disp(sprintf('SNR=%f',SNR));
47. disp('===')
48. figure
49. subplot(2,2,[1,3]);
50. imshow(cover_image);
51. title('Cover image')
52. subplot(2,2,[2,4]);
53. imshow(stego_image);
54. title('Stego image')
55. output = extraction(stego_image,size_secret_massege);
56. [nn mm]=size(output);
57. for i=1:mm
58. e(i)=output(i)-ternary_number(i);
59. end
60. output2=convert_to_Binary(output);
61. [nn mm]=size(secret_massege);

F.2 Embedding function

1. function [stego_image,y,u] = Embbedding(

cover_image,size_secret_massege,ternary_number)
2. stego_image=cover_image;
3. k=1;
4. [M N L]=size(cover_image);
5. y=0;
6. u=0;
7. for i=1:M
8. for j=1:N
9. cover_pixel_binary = dec2bin(cover_image(i,j,3),8);
10. for ii=1:6
11. sub1(ii)=cover_pixel_binary(ii);
12. end
13. sub1_dec=bin2dec(sub1);
14. sub2=cover_pixel_binary(7:8);
15. sub2_dec=bin2dec(sub2);
16. if (sub1_dec==63)
17. sub1_dec=62;
18. end
19. if (sub1_dec==0)
20. sub1_dec=1;
21. end
22. if (sub2_dec==3)
23. sub2_dec=2;
24. end
25. if (sub2_dec==0)
26. sub2_dec=1;
27. end
28. if(k<=size_secret_massege)
29. if (mod(sub1_dec,3)==ternary_number(k))
30. sub1_stego=sub1_dec;
31. elseif(mod(sub1_dec+1,3)==ternary_number(k))
32. sub1_stego=sub1_dec+1;

185

33. else
34. sub1_stego=sub1_dec-1;
35. end
36. end
37. k=k+1;
38. if(k<=size_secret_massege)
39. v=sub1_stego*4+sub2_dec;
40. if (mod(v,3)==ternary_number(k))
41. stego_image(i,j,3)=v;
42. elseif(mod(v+1,3)==ternary_number(k))
43. stego_image(i,j,3)=v+1;
44. else
45. stego_image(i,j,3)=v-1;
46. end
47. k=k+1;
48. y= i;
49. u=j ;
50. end
51. cover_pixel_binary = dec2bin(cover_image(i,j,2),8);
52. for ii=1:6
53. sub1(ii)=cover_pixel_binary(ii);
54. end
55. sub1_dec=bin2dec(sub1);
56. sub2=cover_pixel_binary(7:8);
57. sub2_dec=bin2dec(sub2);
58. if (sub1_dec==63)
59. sub1_dec=62;
60. end
61. if (sub1_dec==0)
62. sub1_dec=1;
63. end
64. if (sub2_dec==3)
65. sub2_dec=2;
66. end
67. if (sub2_dec==0)
68. sub2_dec=1;
69. end
70. if(k<=size_secret_massege)
71. if (mod(sub1_dec,3)==ternary_number(k))
72. sub1_stego=sub1_dec;
73. elseif(mod(sub1_dec+1,3)==ternary_number(k))
74. sub1_stego=sub1_dec+1;
75. else
76. sub1_stego=sub1_dec-1;
77. end
78. end
79. k=k+1;
80. if(k<=size_secret_massege)
81. v=sub1_stego*4+sub2_dec;
82. if (mod(v,3)==ternary_number(k))
83. stego_image(i,j,2)=v;
84. elseif(mod(v+1,3)==ternary_number(k))

186

85. stego_image(i,j,2)=v+1;
86. else
87. stego_image(i,j,2)=v-1;
88. end
89. k=k+1;
90. y= i;
91. u=j ;
92. end
93. if(k<=size_secret_massege)
94. cover_pixel_binary = dec2bin(cover_image(i,j,1),8);
95. for ii=1:6
96. sub1(ii)=cover_pixel_binary(ii);
97. end
98. sub1_dec=bin2dec(sub1);
99. sub2=cover_pixel_binary(7:8);
100. sub2_dec=bin2dec(sub2);
101. if (sub1_dec==63)
102. sub1_dec=62;
103. end
104. if (sub1_dec==0)
105. sub1_dec=1;
106. end
107. if (sub2_dec==3)
108. sub2_dec=2;
109. end
110. if (sub2_dec==0)
111. sub2_dec=1;
112. end
113. if(k<=size_secret_massege)
114. if (mod(sub1_dec,3)==ternary_number(k))
115. sub1_stego=sub1_dec;
116. elseif(mod(sub1_dec+1,3)==ternary_number(k))
117. sub1_stego=sub1_dec+1;
118. else
119. sub1_stego=sub1_dec-1;
120. end
121. end
122. k=k+1;
123. stego_image(i,j,1)=sub1_stego*4+sub2_dec;
124. y= i;
125. u=j ;
126. else
127. stego_image(i,j,1)= cover_image(i,j,1);
128. end
129. end
130. end

F.3 Extraction function

1. function [output] = extraction(stego_image,size_secret_image)
2. k=1;
3. q=1;

187

4. for i=1:512
5. for j=1:512
6. if (k<=size_secret_image)
7. cover_pixel_binary = dec2bin(stego_image(i,j,3),8);
8. sub1=cover_pixel_binary(1:6);
9. sub1_dec=bin2dec(sub1);
10. sub2=cover_pixel_binary(7:8);
11. sub2_dec=bin2dec(sub2);
12. output(k)=mod(sub1_dec,3);
13. k=k+1;
14. q=q+1;
15. output(k)=mod(stego_image(i,j,3),3);
16. k=k+1;
17. q=q+1;
18. else
19. continue
20. end
21. if (k<=size_secret_image)
22. cover_pixel_binary = dec2bin(stego_image(i,j,2),8);
23. sub1=cover_pixel_binary(1:6);
24. sub1_dec=bin2dec(sub1);
25. sub2=cover_pixel_binary(7:8);
26. sub2_dec=bin2dec(sub2);
27. output(k)=mod(sub1_dec,3);
28. k=k+1;
29. q=q+1;
30. else
31. continue
32. end
33. if (k<=size_secret_image)
34. cover_pixel_binary = dec2bin(stego_image(i,j,1),8);
35. sub1=cover_pixel_binary(1:6);
36. sub1_dec=bin2dec(sub1);
37. sub2=cover_pixel_binary(7:8);
38. sub2_dec=bin2dec(sub2);
39. output(k)=mod(sub1_dec,3);
40. k=k+1;
41. q=q+1;
42. else
43. continue
44. end
45. end
46. end
47. end

Other functions are the same as for ATD for gray scale images given in

Appendix A.

F.4 Screenshots of ATD for color images results for different embedding

ternary digits combinations with 8 BPP for cover images with size 512×512

188

Embedding combination 1_1_2

189

Embedding combination 1_2_1

190

191

Embedding combination 2_1_1

192

193

