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ABSTRACT 

In any process that produces useful output, more than one and in many cases tens or 

hundreds of variables are involved. With the advancement of technology the number 

of observations has also dramatically increased, to the point that without using a 

computer software it is impossible to process such data. For processing multivariate 

big data sets, there are many different techniques available. 

In this thesis Kernel Regression which is a non-parametric regression method is used 

for estimating various dependent variables. In chapter 3 basic theory related with 

kernel regression is given, supported by the proof of various theorems and application 

data. 

For large number of variables the Principal Component Analysis (PCA) technique is 

used to reduce the number of variables to manageable level. Basic theory related with 

PCA is given under chapter 4. In this thesis a logical link between kernel regression 

and PCA is established for the estimation of the variables governing a process. The 

variables governing the process are taken as dependent iX , and Principal Components 

(PC) as independent variables, using kernel regression. 

In chapter 5, a data set consisting of 14 variables was used to determine the necessary 

number of PCs, using both covariance and correlation matrices separately. Then, 

variables that exhibited high correlation with PCs, and variables with high contribution 

to a PC were taken as dependent variables, while PCs were used as independent 

variables in kernel regression. 
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For obtaining optimal bandwidth simulations were carried out. Mean Squared Error 

(MSE) and the ratio of MSE to the average of the variance of estimated values (AVE) 

were used as criteria, in obtaining the optimal bandwidth. It is determined that the 

linear correlation between the PC and the variable, and the contribution of a variable 

to the PC has significant effect on the error levels. 

Keywords: Kernel Regression, Bandwidth, Principal Component Analysis (PCA), 

Principal Components (PCs), Mean Squared Error (MSE), Covariance, Correlation. 
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ÖZ 

Kullanışlı çıktı üreten herhangi bir işlemde, birden fazla ve çoğu zaman onlarca veya 

yüzlerce değişken söz konusudur. Teknolojinin gelişmesiyle birlikte elde edilebilen 

gözlem sayısı ciddi şekilde artarken, bilgisayar yazılımlarını kullanmadan bunların 

analiz edilmesi imkansızdır.  Çok değişkenli büyük verilerin işlenmesi için, birçok 

farklı teknik mevcuttur. Bu tezde parametrik olmayan bir regresyon yöntemi olan 

Kernel Regresyonu, çeşitli bağımlı değişkenleri tahmin etmek için kullanılmıştır. 

Bölüm 3'te kernel regresyonu ile ilgili temel teori, çeşitli teoremlerin ispatı ve bir 

uygulama örneği ile desteklenerek verilmiştir. 

Çok sayıda değişken için, değişken sayısını yönetilebilir seviyeye düşürmek için 

Temel Bileşen Analizi (TBA) tekniği kullanılır. TBA ile ilgili temel teori bölüm 4'te 

verilmiştir. Bu tezde, süreçte geçerli olan değişkenlerin tahmini için kernel regresyonu 

ile TBA arasında mantıksal bağlantı kurulmuştur. Bu mantıkta değişkenler ( iX ) 

bağımlı olarak, Temel Bileşenler (TB) bağımsız değişkenler olarak alınarak kernel 

regresyonu uygulanmıştır. 

Beşinci bölümde 14 değişkenden oluşan bir veri setinin kovaryans ve korelasyon 

matrisleri ayrı ayrı kullanılarak gerekli TB sayısı belirlemiştir. Daha sonra, TB'lerle 

yüksek korelasyon gösteren değişkenler ve TB'ne yüksek katkısı olan değişkenler, 

bağımlı TB'ler ise bağımsız değişkenler olarak alınarak kernel regresyonu 

uygulanmıştır. 
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Optimal bant genişliği elde etmek için simülasyonlar yapıldı. Hata Karelerinin 

Ortalaması (HKO) ve HKO'nin tahmin edilen değerlerin varyans ortalamasına oranı, 

optimal bant genişliğinin elde edilmesinde ölçüt olarak kullanılmıştır. TB ile değişken 

arasındaki doğrusal korelasyonun ve bir değişkenin TB'ye katkısının hata seviyeleri 

üzerinde önemli bir etkiye sahip olduğu tespit edilmiştir. 

Anahtar Kelimeler: Kernel Regresyonu, Bant Genişliği, Temel Bileşenler Analizi 

(TBA), Temel Bileşenler (TB), Hata Karelerinin Ortalaması (HKO), Kovaryans,  

Korelasyon. 
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Chapter 1 

INTRODUCTION 

All natural processes are governed by many different variables interacting with each 

other in highly complicated ways. Modelling such variables by means of some 

function based on parameters is a very demanding task or in many cases almost 

impossible. This is primarily due to the fact that for any random variable, the exact 

distribution function and its parameter values are unknown. Recent developments in 

modelling a process without the need of the population parameters, and techniques that 

enable the reduction in the number of variables without a big loss of the true nature of 

the process has become possible. Kernel regression is a well-known nonparametric 

method that enables the estimation of a variable without the need for the population 

parameters. Principal Component Analysis (PCA) is the technique that enables the 

reduction of the number of variables, in a multivariate process without the loss of main 

variation inherent to the process. Recent advancements in science and technology 

resulted in a dramatic increase in the volume of data generated, to the point that without 

using a computer software it is impossible to process such data. For processing of 

multivariate and big data sets, there are many different techniques available. 

In this thesis in addition to the explanation and application of Kernel regression and 

PCA technique, a relationship between the two methods is proposed. In this proposal, 

the principal components (PC) were taken as the independent (predictor) variables to 
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estimate some variables from the process that satisfy high correlation and high 

contribution to the PCs.  

Following literature review in Chapter 2, theoretical background regarding the kernel 

regression, and some important theorems with their proofs are given in Chapter 3. 

Nadaraya Watson kernel estimator is explained together with associated theoretical 

background. Bandwidth to be used in kernel regression is explained in fair detail, since 

it is the most important variable that determines the amount of smoothing, and hence 

the bias - error variance balance relationship. A data set using 63 observations on 

temperature – humidity taken from a meteorological database was used to highlight 

the important points explained theoretically in the chapter.     

In Chapter 4 the basic concepts of dimension reduction technique, as part of the 

principal components analysis is explained. Theoretical background behind the PCA 

that leads to the formation of the PCs as a linear combination of the variables governing 

the process under study is explained. Situations under which the covariance or 

correlation matrices to be used in the formation of PCs are also given.  Various criteria 

in determining the number of PCs to represent the process under study are studied. 

Kernel regression and PCA theory explained in Chapter 3 and Chapter 4 respectively 

are applied to a data set consisting of 14 variables representing various properties of 

leaf shapes.   Emphasis was given to the correlation between the optimum number of 

PCs and 14 independent variables, and the variables with high contribution to the PCs. 

Some of the variables governing the process were selected as dependent variables, to 

be estimated using a PC as independent variable. Selection criteria for these variables 

were high correlation with the PC, and/or high contribution of a variable to the PC. 
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Obtained results are summarized using tables and graphs, and interpreted. In all 

computations Matlab and Microsoft Excel were used. 
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Chapter 2 

LITERATURE REVIEW  

Principal Component Analysis (PCA) is a dimension reduction process. When the 

number of variables governing a process is very large, statistical manipulation of such 

data is difficult. Using PCA the number of variables can be reduced to manageable 

level, without loss of information carried by the original variables. An English 

mathematician, Karl Pearson introduced the first ideas on how to reduce the number 

of variables in a multivariate problem [3]. 

In 1931, Hotelling H. contributed by focusing on confidence intervals and regression 

slopes and the issue of from univariate to multivariate distributions [2].  

Girschick A. M. (1939) worked on the topic of PCA, and produced useful results 

regarding the distribution of the roots and characteristic vectors associated with certain 

determinantal equations [15]. 

Anderson T. W. worked on the characteristics of multivariate distributions, principal 

components, canonical correlation and asymptotic properties of the characteristic roots 

[1].   
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Rao C. R. (1964) contributed about theories in multivariate data analysis, and 

characteristics of probability distributions. He also proposed graphical representation 

of multi-dimensional data in reduced dimensions which is closely related with PCA 

[20]. 

Jeffers J. (1967) proposed new methods of enhancing PCA using graphical approach 

to facilitate the clear understanding of the role of PCA in application [13].   

In 1982, the regression method was introduced by Jolliffe in the field of main 

components analysis with principal component analysis [16]. 

In 2002, Fotheringham and his colleagues introduced the concept of local weighted 

principal components and the concept of geographic weighted components [27]. 

A review of developments in Kernel regression is as follows.  

Fix E., Joe L. & Hodges J. L. (1951) in a technical report presented at the USAF Texas 

Base mainly focused on the discrimination problem of two populations, ways of 

freeing discriminant analysis from rigid distributional assumptions [8]. 

Rosenblatt M. (1956) discussed some aspects of the estimation of a univariate density 

function, where he classified his arguments under three headings [22]. 

 1. Estimation of a density function,  

2. The difference quotient of the sample distribution function 

3. A class of estimates of the density function. 
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An important contribution was made by Farrell in 1972 on lower limits on the 

convergence rates of core estimators [7]. 

In 1979, the first MISE analysis of the histogram was performed by Scott [24]. 

Cline (1988) defined the notion of admissibility for kernels and showed that 

asymmetric and multimodal kernels are inadmissible [5]. 

Morron J.S. & Hall P. (1994) studied the aspect of determining the band width to be 

used in a Kernel Density Estimation process [23]. 
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Chapter 3 

KERNEL REGRESSION 

3.1 Introduction 

Kernel smoothing or kernel regression is a statistical technique that uses the local 

weights of a real-valued function to predict the weighted average of neighboring data. 

There are two main reasons for using kernel smoothing in the univariate density 

estimator. The first of which is an effective way to show that estimating non-

parametric density in analytical data is important. The second reason is that the kernel 

estimators are simple in terms of mathematical traceability. Kernel smoothing provides 

simple, reliable and useful answers to major problems, which enables drilling down 

into the data features. 

3.2 Estimation of Density and Histogram 

The estimation of the probability density of random variables in the absence of 

population parameters, becomes a challenging problem. Let 𝑋1, … , 𝑋𝑛 be continuous 

random variables with common density f. Parametric regression does not provide any 

flexibility in modelling due to the rigidity of the parametrs. A non-parametric density 

estimator does not depend on predetermined parameters of functional form of f. The 

oldest and most widely used nonparametric density estimator is the histogram. The 

histogram is constructed by dividing the actual line representing the range of the data 

into equally spaced intervals, called bins. The histogram is a step function where the 

height of each rectangle  or the value of the smooth function f is a ratio of the number 

of samples in the bin in which x lies, to the product of  b and size of sample data n.  
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Assume that, b is bin width, for predicting the histogram at point x [25]. Then the 

histogram value at point x is given by  

 
number of observation in bin contaning 

;H

x
f x b

nb
  

Two things must be considered when creating a histogram: bin width and positioning 

of the dividing edges. Binwidth b is also called the smoothing parameter which 

controls the amount of smoothing. One of the main problems of the histograms is the 

bin edge. One way of solving this problem is the average shifted histogram 

(Scott,1985). That is the average of several histograms obtained by shifting the bin 

edges. This method has some similarities with the kernel density estimator [27]. 

3.3 Kernel Theory 

Parametric estimators are not necessarily ideal tools for identifying the true 

characteristic of a process. On the other hand a nonparametric model such as kernel 

estimators can give more accurate estimation of the true trend exhibited by the process 

under study. This is possible by obtaining a density estimator that does not assume that 

the density has a particular functional form. In this thesis a univariate kernel density 

estimator is studied due to its simplicity and its concepts being readily amenable for 

extension into upper dimensional cases.  Regression estimators based on the kernel 

functions are often referred to as kernel smoothers [9]. 

The basic idea behind kernel estimation in the univariate case is the assumption that 

there is a random sample 1 2,  ,   nX X X of independent and identically distributed 

(i.i.d) observations from a continuous univariate distribution having probability 

density function (p.d.f) f that is to be estimated. Let f̂  be the kernel estimator of the 

unknown (p.d.f) f. The estimator f̂  is obviously depending on available data and the 
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kernel function K to be used. ˆ ( )f x  is considered as a random variable, due to its 

dependence on the sample  1 2,  ,   nX X X . Discrepancy of  f̂  from f can be 

measured via the Mean Squared Error (MSE) or the Mean Integrated Squared Error 

(MISE).  Here 

2ˆ ˆMSE( ) {[ ( ) ( )] }f E f x f x   

This can be decomposed into Bias and Variance components. This decomposition is 

important since in an estimation process a delicate balance between bias and variance 

needs to be maintained. This balance is a function of the bandwidth used in the 

computation of kernel values. The decomposition can be performed as follows. 

Suppose that a data set 1 2,  ,   nx x x  is given. Using this data the function ( )y f x  

;   being the random error component or noise with ( ) 0E    and 2Var( )=   to be 

estimated using the ˆ ( )f x . There is no doubt, the closer the ˆ ( )f x  is to ( )f x , the better 

the estimation will be. That is to obtain the minimum MSE by employing the sample

1 2,  ,   nx x x , which will also be valid for points not included in the sample. Then the 

expected error can be decomposed into 3 components as follows. 

 
2 2

2ˆ ˆ ˆ( ) Bias ( ) Var ( )E y f x f x f x         
                      (3.1) 

Where ˆ ˆBias ( ) ( ) ( )f x E f x f x    
    , and  

22ˆ ˆVar ( ) ( )f x E f x f x             

Square of the bias is a function of the assumption made in approximating the unknown 

( )f x by the estimator ˆ ( )f x . Variance of ˆ ( )f x  is a measure of how much it varies 
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around its mean. Therefore, the more sophistication put into ˆ ( )f x  towards reducing 

the bias, will lead to higher ˆVar ( )f x 
  .  

Decomposition given in equation (3.1) can be obtained as follows  

Note the following. The variance of a random variable is.  

1.  
22 2 2 2 2Var( )= ( ) ( ) ( ) Var( ) ( )E X X E X E X E X X E X        

 
. 

Then 

2.     ( ) ( ) ( )E f x E f x f x   as ( )f x  is deterministic and ( ) 0E   . 

3.      
2 2 2

Var( )= ( ) ( ) ( ) ( )y E y E y E y f x E f x f x          
     

 

 2 2 2Var( ) ( )E E      
 

Since ˆ and ( )f x  are independent 

 
2

2 2ˆ ˆ ˆ( ) ( ) 2 ( )E y f x E y f x yf x      
   

 

     
2

2 ˆ ˆ ˆVar( ) ( ) Var ( ) 2 ( ) ( )y E y f x E f f x E f x      

      2 2ˆ ˆ ˆVar( ) Var( ( )) ( ( ) 2 ( ) ( ( )) ( ( )) )y f x f x f x E f x E f x      

2ˆ ˆVar( ) Var( ( )) ( ( ) ( ( )))y f x f x E f x     

2 2ˆ ˆVar( ( )) Bias( ( ))f x f x    Q.E.D. 
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3.4 Kernel Density Estimator  

The kernel density estimator based on a random sample 
1 2{ , , , }nX X X is given as 

1

( )1
( )

n
i

i

x X
f̂ x K

nh h

 
  

 
                            (3.2) 

where K is a function satisfying ( ) 1K x dx  ,  
2 ( )x K x dx   , and 

2 ( ) .K x dx  

K is called the kernel, and h>0, called the bandwidth which is the smoothing parameter.  

Let 
1( )h

u
K u h K

h

  
  

 
. Then equation (3.2) becomes 

1

1
( ) ( )

n

h i

i

f̂ x K x X
n 

   

The weight is defined by the Kernel ix x
K

h

   
  

  
 , such that closer points are given 

higher weights. Since K is non negative, so is ˆ ( )f x . Then 

1

1ˆ( )
n

i

i

x X
f x dx K dx

nh h

 

 

 
  

 
   

1

1 n
i

i

x X
K dx

nh h



 

 
  

 
   

1

1
( ) 1

n

i

K u du
n



 

   . 

Hence ˆ ( )f x is a probability density. 

Lemma 3.1 [12]: Assume w(y) is bounded and integrable function satisfying 

lim (y) 0
y

yw


 , and  g be an integrable function. Also  0nh  as n, 

1
lim ( ) ( ) ( ) ,
n

n n

u x
w g u du g x w u du

h h

 
 

 
   

for every continutiy point x of y. 
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Theorem 3.1: The estimator ˆ ( )f x  of the kernel probability density converges ( )f x  

in probability ( ˆ ( ) ( )Pf x f x ).  

Proof: The Markov’s inequality states that if X is a nonnegative random variable and 

a > 0, then the probability that X is at least a, is at most ( ) ( ) /P X a E X a  . Based 

on this inequality it is sufficient to show 
2ˆ( ( ) ( )) 0E f x f x  . Starting with,  

 
1 1

1 1ˆ( )
n n

i i

i i

x X x X
E f x E K E K

nh h nh h 

        
       

      
   

1 ix X
E K

h h

   
   

  
 

1 1
1 1 1 1

1 1
( ) ( )

x x x x
K f x dx K f x dx

h h h h

    
    

   
   

( ) ( )f x K u du     (by Lemma 3.1) 

( )f x  

Then the bias term  

 ˆ ( ) ( ) 0E f x f x  .                   (3.3) 

This is followed by 

 
1

1ˆVar ( ) Var
n

i

i

x X
f x K

nh h

   
   

  
  

2 2
1

1
Var

n
i

i

x X
K

n h h

   
   

  
   ( 'iX s are independent) 

1

2

1
Var

x X
K

nh h

   
   

  
 

2

2 1 1

2

1 x X x X
E K E K

nh h h

          
                  
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2

2 1 1
1 1

1 1 1 1
( )

x x x X
K f x dx E K

nh h h n h h

       
        

     
  

1 2

1 1
I I

nh n
  . 

By Lemma 3.1 
2

1 ( ) ( )I f x K u du  . From the computation for  ˆ ( )E f x , 

2

2 ( )I f x . Therefore as n.  

 ˆVar ( ) 0f x                                (3.4) 

From (3.3) and (3.4)  
2

ˆ( ) ( ) 0E f x f x   is obtained. 

It is preferred to set K as a unimodal probability density function and symmetric about 

zero. This results in ˆ ( )f x also being a density. A kernel density estimate constructed 

where 5 observations were used is shown in Figure 3.1. Kernel has (0,1)N  with 

density, ( ) ( ).K x g x  Five observations were used to highlight the concept, where as 

in a real world problem number of observations tend to be much larger.   
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Figure 3.1: A kernel density estimate to highlight the effect of the density of 

observations 

 

To start with at each point a scaled kernel is computed. The estimated value of the 

kernel at point x is obtained by averaging the n kernel estimates at that point.   

Since a kernel estimate is the average of the contributions of observations in close 

proximity, a fairly large estimate is obtained where observations are dense, and kernel 

estimates will be relatively low where data values are sparse.   

Bandwidth h has a significant effect on the level of smoothing achieved in kernel 

estimation. Figure 3.2 shows the density estimates where a sample of size 1000 is used, 

with different bandwidths. The density used for this purpose is 

1 1/3

3 1
( ) ( ) ( 3 / 2)

4 4
f x g x g x    
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1( )f x  is a combination of  standard normal observations with probability ¾, and 

normally distributed observations with probability ¼. As seen in Figure 3.2 amount of 

kernel smoothing  

 
Figure 3.2: Amount of smoothing as a function of bandwidth.  

is a function of bandwidth. Larger bandwidth results an increase in smoothing. This is 

clearly visible in Figure 3.2.  

Computation of kernel values can be undertaken by various kernel functions.  

Two most commonly used Kernel function are the Gaussian and Epanechnikov kernel 

functions. 

The Epanechnikov’s formula is,      23
1 1

4
u I u   

Gaussian’s formula is,    
21

2
1

2

u

e




                                    [10] 

where,  ix x
u

h


  
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3.5 Selection of Bandwidth 

The bandwidth h, that is known as Kernel smoothers, is called the smoothing parameter 

to regulate the degree of smoothness. There are different ways of determining h, but 

most of these formulae do not give the desired result in practice. The main problem in 

estimating the Kernel density is the choice of h. The Gaussian Kernel is 

   
2 21

2

uK u u e


  . The reference density is normal density of 

   2 1
,

x
N f x

 
   

 


  

 
. To obtain the estimator of the optimum bandwidth 

oh , let  

 
2 22 21 1 1 1

.
2 2 2 2

u uK x dz e du e du
   

      ; 

2 is the second moment of  0,1N . So, 2 1  .   3

1 x
f x




 

 
   

 
. Hence,  

     
2

2 2

6 5 5

1 1 3

8

x
f x dx dx y dy


 

   

   
      

  
    

Hence, 

                                  

1/5

1/5

0

ˆ4
1.06

3
ˆh n

n


  

  
 

                  (3.5) 

Equation (3.5) tends to detected outliers easily, which is not desired. The interquartile 

range of the data can be considered in place of 2̂ , which is defined as 

0.75 0.25
ˆ X XR    

Then equation (3.5) is modified into, 

         
1/5

0
ˆ 0.79R̂nh                                (3.6) 

Combining equation (3.5) and (3.6) gives a better estimate for band width 



17 

 

1/5

0 1.06 min ,  
1

ˆ
ˆ

.34

R
h n 

 
  

 
  

Theoretically computed h value may not give the desired smoothing. In application 

choosing a very small h value will reduce the bias, while a large h value will result in 

an increase of the variance. Ballancing between bias – variance relation becomes a 

matter of trial and error. Therefore, finding the optimum h value by simulation, and 

checking for the minimization of  mean square error (MSE) or average of the sum 

squared error (ASSE) can be one way of tackling this problem [11]. 

3.6 Kernel Regression Smoothing with Nadaraya–Watson Estimator 

In any nonparametric regression smoothing process the smooth or average function 

( )hm x  is estimated by the estimator ˆ ( )hm x  given by  

1

1

ˆ ( ) ( ) y
n

h hi i

i

m x n w x



   

where y is the response variable and hw  is the weight function depending on the 

distance between x and iX  the thi  observed value of X and on the bandwidth h. 

Nadaraya – Watson estimator is also using a weighting system as explained below. 

Given n observations of i.i.d. random variables 1{( , )}n

i i iX Y  , ,  i iX Y  , the 

conditional expectation 

( ) ( ) ( , ) / ( )m x E Y X x yf x y dy f x                  (3.7) 

can be written. 

( )f x can be estimated using a kernel density estimator. The joint density ( , )f x y  in 

the numerator of equation (3.7) can be estimated using the multiplicative kernel 

1 2 1 2

1

,

1

ˆ ( , ) ( ) ( )
n

h h h i h i

i

f x y n K x X K y Y



    
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Then an estimator for the expression in the numerator of equation (3.7) is obtained as 

follows, 

1 2 1 2

1

,

1

ˆ ( , ) ( ) ( )
n

h h h i h i

i

yf x y dy n K x X yK y Y dy



     

1 2

1

1 2 2

( )
n

i
h i h

i

y Yy
n K x X K dy

h h





 
   

 
   

1

1

2

1

( ) ( ) ( )
n

h i i

i

n K x X sh Y K s ds



     

        
1

1

1

( )
n

h i i

i

n K x X Y



                                                (3.8) 

The estimate of the conditional expectation ( )m x given in equation (3.7) can be 

expressed as the ratio of the result obtained in equation (3.8) and the kernel estimate 

of f(x). This ratio is the Nadaraya-Watson estimator expressed as; 

                         
 

 

1 1

1

1

n

h i i

i
h n

h j

j

K x X Y

m x n

n K x X

 














                          (3.9) 

In general the non-parametric regression smoother can be written as

1

1

ˆ ( ) ( )
n

h hi i

i

m x n W x Y



  . The weights ( )hiW x can be expressed as  

                          

1

( )
ˆ ( )

i

hi

h

x X
h K

h
W x

f x

  
 
                                     (3.10) 

The weights in equation (3.10) depends on the whole sample  
1

n

j j
X


via ˆ ( )hf x .  

Higher weights are assigned to iY  where iX  is sparse.  

For situations where denominator is zero, the numerator is also zero. Meaning the 

estimate is zero.  
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When 0h , ( )hiW x n  if
ix X . It means the estimate in 

iX  converges to
iY . 

When h, ( )hiW x converges to 1 x . Therefore, the estimate of ( )m x converges to

Y . 

Bandwidth h determines the level of smoothness of the estimate.  

3.7 Mean and Variance of the Nadaraya – Watson Estimator 

Since the numerator and denominator of this statistic are both random variables, they 

can be dealt with separately. Starting with the numerator, let us define  

1

1

ˆ( ) ( , ) ( ) ( ) and ( ) ( )
n

h h i i

i

r x yf x y dy m x f x r x n K x X Y



    . 

Then the regression curve estimate becomes 

ˆ ( )
ˆ ( )

ˆ ( )

h
h

h

r x
m x

f x
  

Theorem 3.2: The numerator ˆ ( )hr x of the Nadaraya-Watson smother is asymtotically 

unbiased. 

Proof: Expectation of ĥr  is 

1

1

ˆ[ ( )] [ ( ) ] [ ( )]Y
n

h h i i h

i

E r X E n K x X Y E K x X



     

 ( ) ( ) ( ) ( ) ( ) ( )h hyK x u f y u f u dydu K x u f u yf y u dy du        

( ) ( )( [ ]) ( ) ( ) ( ) ( ) r( )    (3.11)h h hK x u f u E Y X u du K x u f u m u du K x u u du           

Similar to density estimation with kernels, if
2r C , then 

2
2

2
ˆ[ ( )] ( ) ( ) ( ) ( )

2
h

h
E r x r x r x YK o h     

indicating ( )hr x  is asymptotically unbiased as 0h . 
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Theorem 3.3: Using the variance of the denominator ˆ ( )hr x  of the Nadaraya-Watson 

smother, it can be shown that ˆ ( )hr x  is asymptotically consistent. 

Proof: To find the variance of ˆ ( )hr x  let
2 2( )s x E Y X x    , then 

  1

1

ˆ ( ) ( )
n

h h i i

i

Var r x Var n K x X Y



 
  

 
  

 1 ( )hn Var K x X Y   

  
2

1 2 2( ) ( ) ( ) ( ) ( )h hn K x u s u f u du K x u r u du      

1 1 2 2 1( ) ( ) (( ) )hn h K s x uh f x uh du o nh       

21 1 2 1

2
( ) ( ) (( ) )      ( )n h f x s x K o nh nh                              (3.12) 

Combining equations (3.11), (3.12) when 0,h nh   the mean square error of 

ˆ ( )hr x becomes 

     
4

2 22 4 1

22

1
ˆ ( ) ( ) ( ) ''( ) ( ) ( ) ( )

4
h

h
MSE r x f x s x K r x K o h o nh

nh
     . 

If nh,  ˆMSE ( ) 0hr x  . This means  ˆ ( )hr x  is a consistent estimator of ( )r x . That 

is for any 0c  and 0c , 
0

ˆlim ( ) ( ) 1h
h
nh

P r x r x c



      . Shortly, ˆ ( ) ( )P

hr x r x . 

Theorem 3.4: The denominator ˆ ( )hf x  of the Nadaraya-Watson smother is 

asymtotically unbiased. 

Proof: Since ;  1, ,iX i n are i.i.d. we have 

 
1

1ˆ ( ) ( )
n

h h i

i

E f x E K x X
n 

   
    

 ( )hE K x X   

( ) ( )hK x u f u du   
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( ) ( )K s f x sh ds   

Letting 0h results in  

ˆ ( ) ( ) ( ) ( ) hE f x f x K s ds f x   
   . 

When bandwidth h convergence to 0 the ˆ ( )hE f x 
 

is asymptotically unbiased Q.E.D. 

In general bias can be analyzed using the Taylor expansion of ( )f x sh in x assuming 

f is twice continuously differentiable ( 2f C ). 

ˆBias ( ) ( ) ( ) ( )hf x K s f x sh ds f x    
    

2 2
2( ) ( ) ( ) ( ) ( ) ( )

2

h s
K s f x shf x f x o h ds f x

 
      

 
  

2
2

2( ) ( ) ( ) ( ) ( )
2

h
f x f x K o h f x                                  (3.13) 

Proof of equation (3.13) see [14]. 

Due to symmetric property of K around 0, the term ( ) ( ) 0sK s hf x ds  . Then the bias 

of kernel density becomes 

2
2

2
ˆBias ( ) ( ) ( ) ( ) , 0

2
h

h
f x f x K o h h    

 
                  (3.14) 

Since equation (3.14) contains 2h , it means the bandwidth should not be very big to 

avoid large bias values. Also, the bias is proportional to f   in x. It means ˆ ( )hE f 
 

 

will be greater than the true value ( )f x  when estimating points around a local 

minimum ( ( ) 0)f x  , and it will be greater than  ( )f x  when estimating points around 

a local maximum ( ( ) 0)f x  .  
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Theorem 3.5: Using the variance of the denominator ˆ ( )hf x  of the Nadaraya-Watson 

smother, it can be shown that ˆ ( )hf x  is asymptotically consistent.  

Proof: Since ;  1, ,iX i n are i.i.d. 

2

1

ˆVar ( ) Var ( )
n

h h i

i

f x n K x X



 
       

  

 2

1

Var ( )
n

h i

i

n K x X



   

 1Var ( )hn K x X   

   21 2 ( ) ( )h hn E K x X E K x X        

 
21 2 2 ( ) ( ) ( )

x u
n h K f u du f x o h

h

    
    

  
  

  21 1 2( ) ( ) ( ) ( )n h K s f x sh ds f x o h      

    2 21 1

2
( ) ( ) ( ) ( )n h K f x o h f x o h     . 

From equation (3.13) we have  ( ) ( ) ( )hE K x X f x o h   and 

   
22 2

2
( ) ( ) ( ) ( ) ( ) ( ) ( )K s f x sh ds K s ds f x o h K f x o h       

From here 

   
21 1

2

ˆVar ( ) ( ) ( )  , .hf x nh K f x o nh nh
     

 
                          (3.15) 

It is obvious that 1( )nh  has a strong influence on variance, leading to larger values of 

h to reduce the variance. On the other hand, small h value is desired for decrease in 

bias. If we consider the MSE combining the variance and square bias of ˆ ( )hf x , as 

0 and h nh we have  

   
4

2 2 1 4

22

1ˆMSE ( ) ( ) ( ) ( ) ( ) ( )
4

h

h
f x f x K f x K o nh o h

nh
      

 
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Then the kernel density estimate is consistent satisfying ˆ ( ) ( )P

hf x f x  Q.E.D. 

MSE establishes balance between variance and bias such that  

i. Decreasing variance results in under smoothing. 

ii. Decreasing bias results in over smoothing. 

Note that based on MSE the optimal bandwidth kernel density can be determined as  

   

1/5
2

2
0 2 2

2

( )

( ) ( )

f x K
h

f x K n

 
 
  

. 

See reference [10], page 59. 

3.8 Scatter Plots 

Usually, called scatter diagram, but which have many names, such as scatter plot, 

scatter graph and correlation chart etc., are important steps in the study of the bivariate 

data set. In this diagram the independent variable is shown on the x-axis while the 

dependent one goes on the y-axis. A scatter plot is a good tool that visualy shows the 

relationship between the dependent and independent variables. For the airquality data 

the scatter diagram is given in Figure 3.3 [26]. A visiaul inspection of scatter plot 

shows some kind of linear relation between the two variables. The linear correlation 

coefficient r   -0.6469 confirm this. 
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Figure 3.3: Scatter diagram where temparature is independent, humidty is dependent 

variable 

3.9 Application of Kernel Smoothing 

In the previous section some of the important aspects of kernel smoothing are given. 

Application of kernel smoothing nececiates the use of computer support in order to 

handle the huge amount of number crunching to reach at the required results. 

Especially the theoretically proposed band width h may not always produce the desired 

results, in terms of minimizing the error term involved in the smoothing process. A 

simulation approach based on the use of different band width values and comparing 

associated errors tends to be more productive in determining the value of  h. 

A data set consisting of 63 observations with 2 variables, where air temperature in 
0C  

taken as the independent variable X, and relative humidity is the dependent variable Y. 

A scatter diagram of the data given in Figure 3.3 indicated some kind of linear relation 

between the two variables. The degree of the relationship is computed as a linear 
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correlation coefficient value of 0.65. This was considered a reasonable degree of 

correlation between the two variables to continue for further analysis of the data.  

For kernel regression the Gaussian kernel 

2
1

2

ix x

h
e

  
       was used to compute the kernel 

values. min max9.9000001 5, 18.27X X  , giving a range of 8.3749999
0C . Following 

the careful examination of the data values for the variable X, it was considered 

adequate to use an increment value dx=0.03 to be used in the computation of the kernel 

values. Computations were carried out using a set of 5 different band widths

(0.05, 0.1,  0.3,  0.5,  2.3)h  . For each band width the estimated values Ŷ were 

computed using the Nadaraya – Watson estimator given in equation (3.9). 

For different bandwidths the computed kernel smoothers are given in Figures 3.4 to 

3.8. It is clearly visible that the smaller band width h=0.05 produced very little 

smoothing, the kernel graph producing wild fluctuations, and increasing band width 

reduced the fluctuations resulting in smoother curves as h approaches 0.5 as seen 

Figure 3.7. Band width computed using equation (3.5) h=2.3, is also used for 

comparison and as seen in Figure 3.8 has produced very smooth curve almost 

equivalent to linear regression line. This emphasizes our argument that the 

determination of the optimal band width can be obtained through simulation and 

checking for resulting MSE, bias and variance values. Statistically
 

2

MSE
Y Y

n





. From table 3.1 an examination of MSE, bias and variance values suggests h=0.1 can 

be good candidate for optimal band width.  
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This was followed by the comparison of Mean Square Error (MSE), bias, and variance 

values. It can easily be observed that an increase in the band width results in an increase 

in MSE (Figure 3.9), while a decrease is observed in the variance of estimates (Figure 

3.10). Behavior of the bias in relation to band widh is shown in Figure 3.11. Bias is 

computed as given below 

ˆBias E Y Y  
 

. 

A clear increases as h increase.  

The results we obtained from these calculations are as follows; 

Table 3.1: MSE, Bias and Variance values obtained from the kernel analysis of the 

data 

 MSE Bias ˆVar( )Y  

h=0.05 8.258801 2.0428818 27.71789 

h=0.1 10.221633 2.4617001 24.13091 

h=0.3 14.56699 3.1498393 18.705991 

h=0.5 15.42330 3.2387629 17.137332 

h=2.3 20.97414 3.8808349 3.9560030 

 

 

 

 

 



27 

 

 
Figure 3.4: Kernel estimator for band width h=0.05 

 
Figure 3.5: Kernel estimator for band width h=0.1 
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Figure 3.6: Kernel estimator for band width h=0.3 

 
Figure 3.7: Kernel estimator for band width h=0.5 
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Figure 3.8: Kernel estimator for band width h=2.3 

We repeated process for 5 different band widths in order to see the relationship 

between h, error, variance and bias. The graphics we obtained from these operations 

are as follows; 

 
Figure 3.9: MSE as a function of a band width 

40

45

50

55

60

65

70

75

8 10 12 14 16 18 20

H
u

m
id

ty

Temparature

h=2.3

Estimated True Values

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5

M
SE

h

h vs MSE



30 

 

 
Figure 3.10: Variance as a function of a band width 

 
Figure 3.11: Bias as a function of a band width 
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Chapter 4 

PRINCIPAL COMPONENT ANALYSIS 

4.1 What is Principal Component Analysis 

Multivariate statistics deals with situations where there are more than one variables. 

When the number of variables (p) is too large, the analysis of multivariate data 

becomes difficult as p becomes larger. For this reason, a method was developed to 

reduce the number of variables. This method, derives linear combinations of actual 

variables, which are called principal components (PC) [14,28]. The number of 

variables and the number of principal component is the same. Nevertheless, we can 

represent more than %90 of the total variation in the data with only the first few 

principal components. The systematic reduction of a large number of independent 

variables to smaller dimension is done by the principal component analysis (PCA).  

Principal component analysis, is a statistical technique that transforms data represented 

by a large number of variables into a smaller number of uncorelated variables or PCs. 

It requires a lot more effort to interpreat the uncorrelated PCs than to understand a 

large set of correlated variables [6,21]. 

4.2 Concept of PCA  

Algebraically, the PCs are certain linear combinations of p random variables. The 

principal components are only dependent on the covariance Σ or correlation ρ

matrices of the data matrix X . The eigenvalues obtained fromΣ  or ρ are listed as, 

1 2 ... 0p      . The corresponding eigenvectors are 1 2, ,..., pe e e . Then the PCs 



32 

 

are written as linear combinations of the p variables where the coefficients are the 

elements of the eigenvectors as given below. 

 

1 1 11 1 12 2 1

1 1 2 2

...

...

p p

p p p p pp p

Y e X e X e X

Y e X e X e X

    

    

e X

e X

                            (4.1) 

Understanding the theory of PCA requires a clear understanding of the covariance and 

correlation concepts. Hence, before whenturing further into PCA analysis, it is 

consider necessary to explain the covarince, correlation concepts in detail [17]. 

4.2.1 Abstract Definition of Covariance and Correlation 

Definition 4.1: Let random variable X with probability density function  f x  and 

mean  , then the variance of X is given by  

         
2 22

x

E X x f x      
             [18] 

When p random variables with joint probability density 1 2 pf ( x ,x , ,x )  is given, then 

the covariance matrix becomes   E   Σ X μ X μ  

 

1 1

2 2

1 1 2 2  , , ,
     

p p

p p

X

X
E X X X

X




  



  
  

          
  
    

 

 

       

       

       

2

1 1 1 1 2 2 1 1

2

2 2 1 1 2 2 2 2
=

2

1 1 2 2

X X X X X p p

X X X X X p p

X X X X Xp p p p p p

E

    

    

    

    

    

    

 
 
 
 
 
 
 
 
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or  

                          

11 12 1

21 22 2

1 2

Cov

p

p

p p pp

  

  

  

 
 
  
 
 
  

Σ X                                     (4.2) 

μ is the population mean vector and Σ is the population variance-covariance matrix.  

However, when the p variables have different units or the magnitute of data values are 

significantly different, then it is wise to standardize the data and use the correlation 

matrix for the computation of PCs.   

Theorem 4.1: Given random variables iX and with joint probability density 

function i jf ( x ,x )  and if i j i jf ( x ,x ) f ( x ) f ( x )  indicating the independence of the  

random variables iX and , then the covariance .  

Proof: For the discrete case we have,  

  ( , )
i j

i j i j i j

x x

E X X x x f x x   

Since iX  and are independent, we can write ( , ) ( ) ( )
i ji j x i x jf x x f x f x  , where 

( )
ix if x and ( )

jx jf x are the marginal distributions of iX  and , then  

  ( ) ( )
i j

i j i j i j

x x

E X X x x f x f x   

( ) ( )
i j

i i j j

x x

x f x x f x
  

    
    

   

jX

jX 0
i jX X 

jX

jX

      
       

       

2
( )1 1 1 1 2 2 1 1

2

2 2 1 1 2 2 2 2
   =

2

1 1 2 2

E X E X X E X X p p

E X X E X E X X p p

E X X E X X E Xp p p p p p

    

    

    

    

    

    

 
 
 
 
 
 
  
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   i jE X E X   

Hence, 

( ) ( ) ( )
i jX X i j i jE X X E X E X     

                 ( ) ( ) ( ) ( )i j i jE X E X E X E X     

                                                              

Example: Let 1X and 2X be two random variables, with joint distrubition; 

1 2

1 2

1 2

 for x 0,  x >0
( , )

0       elsewhere

x xe
f x x

  
 


 

 1 2 1 2 1

1 1 2
1 1

00 0

1
( )

x x x x x

x x x
f x e dx e e

e

 

    



 
      

 
  

 

Random variables 1X , 2X  are independent iff 
1 21 2 1 2( , ) ( ) ( )x xf x x f x f x  . Applying 

this condition to the example 

1 2 1 2

?

 
x x x x

e e e
   

   

it is seen that the independence condition is satisfied, leading to 
1 2

0X X  , as shown  

  1

1

1
1 1 1

0 0

1
1

x

x

x
E X x e dx

e



   
   

 
  

  2

2

2
2 2 2

0 0

1
1

x

x

x
E X x e dx

e



   
   

 
  

    1 2 1 2 1 2 1

1 2 1 2 2 1 1 2 2 1 1 2 1 1 1
0

0 0 0 0 0 0

1x x x x x x xE X X x x e dx dx x e x e dx dx x e x e dx x e dx

     


      
 

      
 

       

Hence,  

0

 1 2 1 2 2

2 1 2
2 1

00 0

1
( )

x x x x x

x x x
f x e dx e e

e

 

    



 
      

 

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     1 2 1 2 1 2( , ) 1 1 1 0Cov X X E X X E X E X       

Theorem 4.2: When 0
i jX X   does not always indicate the independence of iX and 

jX .  

Example: As an example, take ( , )i j i jf x x x x  for discreate random variables iX and 

jX  with the joint probability distribution given in the table.  

( , )i jf x x      ix  

        0                     1                   2                                       

 

       jx  

0 

1 

2 

0 0.25 0 

0.25 0 0.25 

0 0.25 0 

The expectation of iX jX  is computed as follows: 

 
1 1 1

0 1 2 1
4 2 4

iE X         

1 1 1
0 1 2 1

4 2 4
jE X           

1 1 1 1
(0 0) 0 (1 0) (2 0) 0 (0 1) (1 1) 0 (2 1) (0 2) 0 (1 2) (2 2) 0 1

4 4 4 4
i jE X X                              

Hence,  

 ( , ) 1 1 1 0i j i j i jCov X X E X X E X E X             

?

( , ) ( ) ( )i j i jf x x f x f x   

For example 
? 1 1 1

(1,0) (1) (0)
4 4 2

f f f     

Hence, while 0
i jX X  , the random variables iX  and jX   are not indepedent. 
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Definition 4.2: Correlation coefficient is the covariance of the two variables divided 

by the product of their standard deviations. The population correlation coefficient for 

any two variables ,   ; , 1, ,i jX X i j p  is denoted by  , and defined by 

,

cov( , )

i j

i j

i j

X X

X X

X X


 


 

To express ρ in terms of expectations, the covariance between the variables ,  i jX X , 

and standard deviations of the variables ,  i jX X  have to be expressed in terms of 

expectations.  

Note:  

First moment about the origin:  
iX iE X   

Second moment about the mean:  

    
222 2

iX i i i iE X E X E X E X               

        
i ji x j X i i j j i j i jE X X E X E X X E X E X X E X E X                        

    cov ,
i j i ji j X X i x j XX X E X X      

 
 

the formula for ρ becomes 

  
,

i j

i j

i j

i x j X

X X

X X

E X X 


 

  
   

Expressing the covariance in terms of moments about the origin, yields  

 

 
,

222 2
i j

i j i j

X X

i i j j

E X X E X E X

E X E X E X E X


      

                

 

Considering the fact that, ;   ik ii when i k   , the correlation coefficient can be 

written as 

  
2 2

2 ( ) ( )E X E X x f x dx 


    
  
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1ik ii
ik

iiii kk

 


 
    

To show that 1 1    we utilize the Cauchy – Schwarz Inequality 

2

( , ) ( ) ( )i j i jCov X X Var X Var X  

 ( , ) ( ) ( )i j i jCov X X Var X Var X   

substitute this from Cauchy-Schwarz inequality into the equation formul 

              
( ) ( )( , )

1   -1 1
( ) ( ) ( ) ( )

i ji j

i j i j

Var X Var XCov X X

Var X Var X Var X Var X
                [11]   

ρ is a measure of a linear correlation coefficient between the random variables iX  and 

jX . 

Given p random variables the correlation matrix can be written as

111 12

11 11 11 22 11

212 22

11 22 22 22 22

1 1

11 22

12 1

12 2

1 2

1

1
 =

1

p

pp

p

pp

p p pp

pp pp pp pp

p

p

p p

 

     

 

     

  

     

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  

ρ

 

Let the p p standard deviation matrix be  
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11

221 2

0 0

0 0

0 0 pp







 
 
 
 
 
 
 
 

V                             (4.3) 

Then it can easily be verified that 

   
1 1

1 2 1 2
 

ρ V Σ V  

Theorem 4.3: Consider the following q  linear combinations of p random variables  

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

p p

p p

q q q qp p

Z c X c X c X

Z c X c X c X

Z c X c X c X

   

   

   

 

The above equation can be written in matrix format as follows. 

1 11 12 1 1

2 21 22 2 2

1 2

p

p

q q q qp p

Z c c c X

Z c c c X

Z c c c X

     
     
       
     
     
          

Z CX . 

It follows that; 

   a) Z xE E   μ Z CX C  

    Xb) Cov CovZ    '
Σ Z CX CΣ C  

Proof for part a :  For a simple random variable 1X and constant c; 

1 1 1( ) ( )E cX cE X c   

2 2

1 1 1 1Var( ) ( ) Var( )cX E cX c c X     

can be computed. 

For two random variables 1X and 2X  and constants a, b, the covariance matrix can be 

computed as follows 
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1 2 1 1 2 2Cov( , ) ( ) ( )aX bX E aX a E bX b     

                     

                    1 2 12Cov( , )=ab X X ab  

If we have combination of two variables 
1 2aX bX , then 

1 2 1 2 1 2( ) ( ) ( )Z E aX bX aE X bE X a b        

 
2

1 2 1 2 1 2Var( ) ( ) ( )aX bX E aX bX a b       

                           
2

1 1 2 2( ) ( )E a X b X      

                           
2 2 2 2

1 1 2 2 1 1 2 2( ) ( ) 2 ( )( )E a X b X ab X X             

                           
2 2

1 2 1 2Var( ) Var( ) 2 Cov( , )a X b X ab X X    

                            
2 2

11 22 122a b ab      

with 1 2[ , ],  and a b aX bX  c can be written as 

  1

2

X
a b

X

 
 

 
c X . 

Also, 1 2 1 2( )E aX bX a b     in matrix format will be  

  1

2

a b




 
 

 
c μ  

If is expressed as in equation 4.2 for bivariate case we have 

11 12

12 22

 

 

 
  
 

Σ  

then the variance-covariance matrix of X ,can be written as, 

1 2Var( ) Var( )aX bX    c X c Σc  

since, 

1 1 2 2( )( )abE X X   

Σ
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11 12 2 2

11 12 22

12 22

[ ] 2
a

a b a ab b
b

 
  

 

   
       

  
c Σc  

In the case of a linear combination with p random variables: has 

mean ( )E  c X c μ , where ( )Eμ X . 

Proof for part b can similarly be done. 

4.2.2 Statistical Definition of Covariance and Correlation 

In order to understand and compute the covariance, the sample mean and sample 

variance concepts has to be understood. 

4.2.2.1 Sample Mean  

Sample mean is the arithmetic average of n observations  1, , nx x  taken at random 

from the population represented by the random variable X. Computing the mean of p 

variables involved in a process will obviously result in a vector of average values 

 1 2, , , px x x x   

Definition 4.3: If X represents a set of  n observations,  1, , nx x , then the mean of 

data is the scaler 
1

1 n

i

i

x x
n 

  . 

Definition 4.4: Consider the n× p  data matrix X=

11 12 1 1

21 22 2 2

1 2

1 2

j p

j p

i i ij ip

n n nj np

x x x x

x x x x

x x x x

x x x x

 
 
 
 
 
 
 
 
 
 

  

where p variables involved with n observations in each variable.  

 The sample vector mean is then defined as  
1

n
n

 x 1 X . 

1 1 p pc X c X   c X
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Let n1  be the column vector of 1s. The column vector representing  p sample averages 

is denoted 

1

2

p

x

x

x

 
 
 
 
  
 

x . 

 The expectation of the sample mean vector is given by   

 

 

 

 

1
1 1

22 2

p p

p

E x
x

E xx
E E

x
E x







 
    
    
       
    
       
    

 

x μ  

Definition 4.5: Given random variable 1X  with mean 1  the    1 1 1.E cX cE X c   

Definition 4.6: X is the random variable consisting of n observations  1, , nx x  , with 

mean . Then the variance is 

2

2 1

( )

1

n

i

i

x x

s
n









. 

The nature of the binary linear relationship between the variables needs to be 

determined. The covariance and linear correlation coefficients are used this purpose. 

The strength of the linear relationship between the variables becomes evident in the 

correlation coefficient.  

When there are two random variables, 1X  and 2X the relationship between them can 

be determined by the covariance given in definition 4.7. 

Definition 4.7: Given random variables iX  and jX  with joint probability ( , )i jf x x  

then the covariance between iX  and jX  is given by (4.4). 

x
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  
1

1i j

n

i i j j

i
X X

x x x x

S
n



 





                            (4.4) 

When the number of variables is more than 2, then each element of the covariance 

matrix (S) can be computed using equation (4.4).  Diagonal elements of  S matrix will 

be the variance of individual variables, off diagonal elements will be the covariances 

between the variables iX , jX  ; , 1, ,i j p . Covariance matrix is symmetric. 

Definition 4.8: Consider two random variables iX and jX  with n observations then 

the correlation coefficient between iX , jX  is given by 
 

   

Cov ,

Var Var
i j

i j

X X

i j

X X
r

X X
  

Note that 1 1r   . 

4.3 Theory of PCA  

In order to understanding the theory of PCA the following theorems are given. 

Theorem 4.4: Let Σ be the covariance matrix associated with the random vector 

1 2, , , pX X X    X . Let Σ  have the eigenvalue-eigenvector pairs 

   1, , ,p 1 pe e where 1 2 ... 0p      . Then the thi principal component is 

given by  

1 1 2 2i i i i ip pY e X e X e X    e X ,   1,2, ,i p  

it can be shown that, 

 Var i i i iY  = e Σe ,  1,2, ,i p     

 Cov , 0i k i iY Y  e Σe ,   i k  
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Proof: Algebraically it can be shown that the first eienvalue of a square symmetric 

matrix is  

1
0

max  
a









a Σa

a a
  (4.5) 

when 1a e . However 1 1 1 e e as the eigenvectors are normalized. Then, 

1 1
1 1 1 1

0
1 1

max  Var( )
a

Y



 

 

e Σea Σa
= = e Σe

a a e e
 

In a similar fashion  

1 2

1
, , ,

max  
k

k
a e e e

 







a Σa

a a
      can be written. 

If we chose 1ka e , with 1 0,    for 1,2, ,  and 1,2, , 1k i i k k p
    e e , 

1 1 1 1 1 1 1/ Var( )k k k k k k kY      
  e Σe e e = e Σe =  

On the other hand 

 1 1 k+1 1 1 k+1λ λk k k k   
 e Σe = e e = so  1 k+1Var λkY   .  

That is ie  and ke are perpendicular (orthogonal) which means 0,  ,i k i k  e e  resulting 

in  

Cov( , ) 0i kY Y  . Then, 

1. If all the eigenvalues 1 2 , , , p   are distinct, the eigenvectors of Σ will be 

orthogonal. 

2. If the eigenvalues are not all distinct, the eigenvectors corresponding to 

common eigenvalues may be selected to be orthogonal. So, for any two 

eigenvectors i ke ,e where 0,  .i k i k  e e  

k k kΣe λ e  Multiplying by 
i

e gives 

Cov( , ) 0i k i k k k k kY Y      e Σe e λ e λ e e   

1,2, , 1k p 
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For any .i k  

Note: It must be stressed that some of the coefficient vectors
ie and corresponding 

iY  

will not be unique, if some eigenvalues  i are equal. Q.E.D. 

Theorem 4.5: Consider a vector of p random variables 
1, , pX X   X  with its 

associated covariance matrix Σ , computed from n observations of p random variables. 

Then the eigenvalue – eigenvector pairs    1 1, , ,p pe e  of the covariance matrix 

,Σ  such that 1 2 ... 0p      and the PCs are  

1 1 11 1 12 2 1

1 1 2 2

...

...

p p

p p p p pp p

Y e X e X e X

Y e X e X e X

    

    

e X

e X

. 

It can be shown that the following relationship holds 

        
1 1 2 2 1 2

1 1

var var
P P

p p

X X X X X X i p i

i i

X Y     
 

                   [16] 

Proof: It is known that 
1

( )
k

ii

i

tr a


A where { }ijaA indicates a k k square matrix. 

Applying this to the covariance matrix Σ  yields  

11 22 pp     = ( ),tr Σ  then by using 
( 1) (1 ) ( ) ( ) ( )

1
k k

k

i i i k k k k k k

i


    



  A e e P Λ P with 

A Σ  

Σ PΛP  where Λ is a diagonal matrix of the eigenvalues and, 1 2[ , , , ]pP e e e   

Then  . P P = PP = I  

( ) ( ) ( )tr tr tr  Σ PΛP ΛPP , Since ( ) ( ).tr trAB BA  

Then, ( )tr ΛPP 1 2( ) .ptr       Λ  

Then, 
1 1

Var( ) ( ) ( ) Var( ).
p p

i i

i i

tr tr
 

   X Σ Λ Y Q.E.D. 
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It is worth noting total population variance = 11 22 1 2pp p             

Proportion of total population variance due to thk principal component =
1

 ;k

p



  

1,2, ,k p  .    (4.6) 

 

The number of PCs to be used in the analysis of data (k) is determined by the ratio  

                            1

1

k

i

i

p

jj














                                      (4.7) 

In general 0.9   is preferred. 

Another method that helps determine the most suitable number of component is the 

scree plot method.  

Scree Plot, a simple line segment graph, represents the fraction of the total variance in 

the data described or represented by each PC. The y axis contains the eigenvalues 

sorted by decreasing order of total variance explained. The point of separation is often 

called the 'elbow', that location might indicate a good number of principal components 

(PCs) to retain. 

Theorem 4.6: Consider the PCs 

1 1 11 1 12 2 1

1 1 2 2

...

...

p p

p p p p pp p

Y e X e X e X

Y e X e X e X

    

    

e X

e X

 

computed from the covariance matrix Σ , with the associated eigenvalue - eigenvector 

tuples    1 1, , ,p p e e . The correlation coefficient between the thi  PC iY  and the 

thk  variable kX is given by 
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,i k

k k

ik i

Y X

X X

e 



 , where 1 ,i k p                             [22] 

Proof: Consider the vector [0, ,0,1,0, ,0]k
 a  such that 

k kX  a X and 

Cov(X , ) Cov( , )k i k iY   a X e X . Also Cov( , )k i k i
  a X e X a Σe  based on the maximization 

of quadratic forms on the unit sphere concept and remembering that 

Cov( , )k i k i i ikX Y e a λe , 
i i iΣe e , then Var( )i i k iY  e Σe  yields Var( )i iY   

and Var( )k kkX which gives  

,

Cov( , )
 , 1,2, ,

Var( ) Var( )i k

ik ii k i ik
Y X

i k i kk kk

eY X e
i k p

Y X




  
     Q.E.D. 

4.3.1 Standardized Variables 

Generally standardzation is necessary when the units of data for different variables is 

variable, or there is significant difference between the magnituteds of data values for 

different variables. Then PCs may also be obtained from the standardized variables 

 1 2, Z , , pZ Z , where 

 i i

i

ii

X
Z






  

In matrix notation 

   
1

1 2


 Z V X μ  

here 1 2
V  is the diagonal standard deviation matrix as given in 4.3. Since Z is the vector 

of standardized random variables 1 2, Z , , pZ Z , then  E Z 0 and     

     
1 1

1 2 1 2Cov
 

 Z V Σ V ρ . 

The PCs of Z are obtainable from the eigenvectors of the correlation matrix ρ . Results 

pertaining to PCA mentioned so far are valid for the case of standardized data.  
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An important point is that PCs obtained from Σ  matrix and from the ρ  matrix will 

not in general be the same [4]. 

Theorem 4.7: The standardized variables 
1 2, , , pZ Z Z    Z with  Cov Z ρ  

yields PCs as given by 

   
1

1 2

i i iY e e


   Z V X μ ,    1,2, ,i p  

Furhter,  

   
1 1

Var Var
p p

i i

i i

Y Z p
 

              (4.8) 

and 

,i kY Z ik ie        , 1, 2, ,i k p  

Then    1, , ,p 1 pe e are the eigenvalue - eigenvector pairs for ρ with 

1 2 ... 0p      . 

Proof: Theorem 4.7, is proven using 4.4, 4.5 and 4.6. Instead of 1, , pX X , 1, , pZ Z

comes and ρ instead of Σ . 

We see from 4.8, the sum of the diagonal elements of matrix ρ is equal to the total 

population variance p.  

Proportion of standardized population variance due to thk  principal component = 

  ; k

p


k=1,2, ,p  where the 'k s are the eigenvalues ofρ . 
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Chapter 5 

APPLICATIONS 

5.1 Application for PCA 

A data set consisting of 30 different plants and a total of 340 data observations is 

considered. Plant type Primula Vulgaris had 16 observations with no missing values, 

the largest number of observations out of the 30 plant types, therefore choosen for the 

study. See Table 5.1. Although 16 observations may not be a large data set, but it was 

not possible to mix the data from diffrent plant types, as it would result in incosistent 

reults in subsequent computations. The data set consists of 14 attributes based on the 

analysis of leaf shapes [19]. Attributes are; X1: Eccentricity, X2: Aspect Ratio, X3: 

Elongation, X4: Solidity , X5: Stochastic Convexity, X6: Isoperimetric Factor, X7: 

Maximal Indentation Depth, X8: Lobedness, X9: Average Intensity, X10: Average 

Contrast, X11: Smoothness, X12: Third moment, X13: Uniformity, X14: Entropy. 

The mean vector of the data is computed as  

 0.417701 1.087388 0.661612 0.529682 0.652521 0.158526 0.128979 3.04685 0.025704 0.08644 0.007714 0.002377 0.000144 0.808387x  

This gives a preliminary idea about the magnitude of the values for each variable. 

Highest values observed in 8X , and lowest ones in 13X . 
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Table 5.1: Leaf data with 14 variables 

 
  

The covariance (S) and correlation (R) matrices were computed from the data set, and 

both used for the computation of the principal components. Since the eigenvectors are 

used in the formation of the PCs, then the set of PCs obtained from the covariance 

matrix will be different to those obtained from the correlation matrix. 

The computed covariance matrix using raw data from Table 5.1 is given below.  

0.0094 0.0009 0.0013 0.0008 0.0025 0.0008 0.0002 0.0099 0.0003 0.0008 0.0001 0.0001 0.0000 0.0014

0.0009 0.0011 0.0002 0.0000 0.0005 0.0001 0.0002 0.0102 0.0001 0.0004 0.0001 0.0000 0.0000 0.0018

0.0013 0.0002 0

         

      

S =

.0010 0.0006 0.0017 0.0006 0.0000 0.0009 0.0000 0.0001 0.0000 0.0000 0.0000 0.0005

0.0008 0.0000 0.0006 0.0009 0.0009 0.0005 0.0000 0.0020 0.0001 0.0001 0.0000 0.0000 0.0000 0.0013

0.0025 0.0005 0.0017 0.0009

        

        

   0.0089 0.0015 0.0000 0.0011 0.0001 0.0005 0.0001 0.0001 0.0000 0.0005

0.0008 0.0001 0.0006 0.0005 0.0015 0.0006 0.0001 0.0033 0.0000 0.0001 0.0000 0.0000 0.0000 0.0011

0.0002 0.0002 0.0000 0.0000 0.0000 0.0001 0.0001 0.

  

    

    0053 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

0.0099 0.0102 0.0009 0.0020 0.0011 0.0033 0.0053 0.2550 0.0008 0.0018 0.0004 0.0001 0.0000 0.0127

0.0003 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 0.0008 0.0000

     

        

       12 0.0001 0.0000 0.0000 0.0000 0.0006

0.0008 0.0004 0.0001 0.0001 0.0005 0.0001 0.0000 0.0018 0.0001 0.0003 0.0001 0.0000 0.0000 0.0013

0.0001 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0004 0.0000 0.0001 0.000016 0.00

     

      00 0.0000 0.0002

0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.000021 0.0000 0.0001

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00001 0.0000

0.

     

     

 0014 0.0018 0.0005 0.0013 0.0005 0.0011 0.0002 0.0127 0.0006 0.0013 0.0002 0.0001 0.0000 0.0107     

 
 
 
 
 
 
 
 
 
 
 
  
 

 

 

S is a symmetric matrix, its diagonal elements being the variances of each variable. 

Off diagonal elements are the covariance values for all possible pairs of variables, 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

0.51247 1.1116 0.65626 0.57724 0.59298 0.16867 0.11187 2.2776 0.016001 0.061238 0.003736 0.000879 0.000103 0.6508

0.54893 1.1111 0.63983 0.56623 0.6 0.15743 0.13081 3.1143 0.021231 0.079722 0.006316 0.001912 7.39E-05 0.71949

0.43425 1.095 0.68828 0.52398 0.54211 0.15396 0.13761 3.4462 0.021147 0.073202 0.00533 0.00134 0.000164 0.75496

0.38501 1.0656 0.63042 0.51223 0.59123 0.13705 0.12292 2.7498 0.033373 0.098907 0.009688 0.002787 0.000214 1.0015

0.26758 1.1316 0.60128 0.54301 0.77368 0.20311 0.15354 4.2904 0.017945 0.07145 0.005079 0.001465 7.25E-05 0.63273

0.24465 1.047 0.60511 0.56524 0.79474 0.21788 0.12522 2.854 0.037595 0.127 0.015874 0.006587 0.000108 0.8331

0.39092 1.087 0.68174 0.50961 0.6614 0.15361 0.14082 3.6093 0.028638 0.089135 0.007882 0.002118 0.00021 0.90082

0.4042 1.0965 0.65899 0.52833 0.68421 0.1771 0.13017 3.0837 0.029057 0.096836 0.00929 0.002893 0.000127 0.82383

0.50692 1.127 0.67203 0.53024 0.75263 0.16792 0.13006 3.0788 0.015279 0.057592 0.003306 0.000728 0.00011 0.67289

0.47565 1.0656 0.69172 0.5233 0.49649 0.14133 0.12987 3.0697 0.023977 0.0842 0.00704 0.002085 0.000113 0.77399

0.52382 1.1117 0.67175 0.54701 0.62982 0.15157 0.13674 3.4028 0.026434 0.085792 0.007306 0.002137 0.000166 0.90513

0.36462 1.0811 0.67755 0.49042 0.68772 0.14118 0.1243 2.8118 0.037866 0.11692 0.013485 0.004648 0.000177 0.9229

0.52212 1.1191 0.70988 0.50678 0.64912 0.1412 0.13192 3.1674 0.025478 0.085964 0.007336 0.002179 0.000149 0.82809

0.38203 1.0405 0.6901 0.48549 0.63684 0.13165 0.11852 2.5565 0.027997 0.093312 0.008632 0.002659 0.000125 0.84994

0.27123 1.096 0.68075 0.49446 0.53684 0.13088 0.12815 2.9887 0.021943 0.072882 0.005284 0.001339 0.000221 0.80402

0.44882 1.0118 0.6301 0.57134 0.81053 0.16187 0.11115 2.2486 0.027309 0.088889 0.007839 0.002273 0.000175 0.86
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indicating whether the relation is positive or negative between the pairs. However, the 

absolute value of the covariance is not an indication of the strength of the relation 

between the variables in each pair.  

Another drawback of the use of covariance matrix becomes evident when there is 

significant difference between the observations belonging to different variables, or 

units of variables are not consistent. Under such circumstances, the use of the 

correlation matrix for the determination of the PCs becomes more desirable.  

Eigenvalues ( sΛ ) vector obtained from the covariance matrix is 

 0.000002, 0.000001, 0.00008, 0.00004, 0.00002, 0.00001, 0.0001, 0.0002, 0.0004, 0.0010, 0.0058, 0.0109, 0.0130, 0.2566 
S

The corresponding eigenvectors matrix SE  is 

0.0002 0.0008 0.0027 0.0007 0.0026 0.0772 0.1428 0.0065 0.0789 0.0531 0.6975 0.1046 0.6823 0.0396

0.00002 0.0001 0.0026 0.0115 0.0007 0.1065 0.0532 0.0984 0.9611 0.1594 0.0040 0.0443 0.1528 0.0400

0.0003 0.0016 0

        

    



SE

.0019 0.0047 0.0049 0.1227 0.5069 0.4886 0.2090 0.6331 0.0034 0.1692 0.1269 0.0038

0.0007 0.0026 0.0090 0.0120 0.0015 0.4578 0.5735 0.1493 0.0097 0.6303 0.0931 0.1731 0.0540 0.0076

0.0001 0.0001 0.0017 0.0015 0.0024

    

       

  0.0576 0.0279 0.0536 0.0020 0.2655 0.5825 0.6014 0.4707 0.0050

0.0008 0.0011 0.0005 0.0237 0.0064 0.7398 0.0838 0.5704 0.0667 0.2819 0.0160 0.1773 0.0634 0.0134

0.0111 0.0170 0.4973 0.5563 0.6646 0.0116 0.0092 0.0191

    

     

   0.0035 0.0026 0.0013 0.0044 0.0006 0.0209

0.0002 0.0003 0.0107 0.0107 0.0142 0.0067 0.0008 0.0050 0.0369 0.0155 0.0462 0.0488 0.0019 0.9967

0.0876 0.1582 0.2430 0.6036 0.6897 0.1046 0.1597 0.1685 0.0008 0.0222 0

 

        

        .0156 0.0271 0.0446 0.0033

0.0047 0.0109 0.0832 0.2727 0.1493 0.4311 0.5732 0.5957 0.0448 0.0890 0.0330 0.0467 0.1178 0.0073

0.2339 0.6178 0.5870 0.4306 0.0635 0.0698 0.1020 0.1165 0.0011 0.0153 0.0048 0.0060 0.0215 0.

      

      0014

0.2478 0.6856 0.5843 0.2544 0.2360 0.0346 0.0436 0.0583 0.00001 0.0081 0.0013 0.0008 0.0091 0.0006

0.9360 0.3505 0.0202 0.0243 0.0108 0.0003 0.0023 0.0009 0.0003 0.0002 0.00004 0.0003 0.0002 0.00003

0.0009 0.002

     

      

 4 0.0077 0.0128 0.0139 0.0672 0.1295 0.0218 0.1360 0.1214 0.4022 0.7280 0.5001 0.0517  

 
 
 
 
 
 
 
 
 
 
 
  
 

 

Clearly, 14 PCs can be written using the  SE  matrix. However, according to equation 

(4.7) the first 3 eigenvalues represents 97.39% of total variation in the data, computed 

as 3 (0.2566 0.0130 0.0109) / 0.288 0.9739    . It is also observed from Figure 5.1 

that the elbow point is occurring around the third eigenvalue suggesting three PC will 

be adequate. 
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Figure 5.1: The scree plot of the eigenvalues computed from the covariance matrix 

The first 3 PCs obtained from the data are given in Appendix C, Table C1.  

Coefficients used in each variable making up a PC indicates the contribution of each 

variable to the formation of a PC. This is an important point as variables with high 

coefficients will carry more importance in the analysis of multivariate data. For 

example in the first PC ( 1Y ) which represents 1( / )100 (0.2566 / 0.288)100 89.1%     

of total variation in the data, 8X  has the highest influence in absolute terms its 

coefficient provides 81 8( / )100 (0.9967 /1.1916)100 83.6%ie e    of the contribution 

in the formation of PC1. Therefore 8X  can be considered as the most important 

variable in the whole data set. 

Another important factor is the correlation coefficient between each PC and the 

random variables. Correlation coefficients ,i jY Xr , and eigenvectors ;  1,2,3ie i   for this 

example are given in Table 5.2. 
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Table 5.2: Correlation coefficient between variables 
iX  and each PC, and contribution 

values 
ie and each PC 

 

According to given in table 5.2 the variable 
7X has the highest correlation (-0.9999) 

with the first PC, 1Y . In other word there is almost perfect negative correlation between 

7X  and 1Y . On the other hand contribution of 7X  in determining the value of  1Y  is 

only 1.75%. It means a high correlation between a variable and the PC does not 

necessarily mean it will have a high influence on the computation of the PC value. 

This is due to the coefficient of that variable representing its contribution to the value 

of the PC may be very low. In this data set the highest contribution comes from 8X , 

while the remaining variables contribution does not exceed 4.3% (Figure 5.2). As the 

contribution of 8X  is much higher than other variables, it was excluded from the graph 

in Figure 5.2 to avoid distortion in the graph. 
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Figure 5.2: Contribution of each variable to the value of PC1 

Similar interpretations can be made for 2Y and 3Y  that are seen in Figure 5.3 and 5.4.  

 
Figure 5.3: Contribution of each variable to the value of PC2 
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Figure 5.4: Contribution of each variable to the value of PC3 

The relationship between the random variable’s contributions to a PC  

( ;  , 1,2, ,14ije i j  ), and the correlation ,i jY Xr  between random variables and the PC 

are given in Figure 5.5.   

 
Figure 5.5: Relationship between the random variables iX  and the PC1 
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The dotted line shows the contribution values for the variables
iX . The solid line shows 

the PC values for each variable.   

 
Figure 5.6: Relationship between the random variables iX  and PC2 

 
Figure 5.7: Relationship between the random variables iX  and the PC3 

The same interpretations given for PC1 in Figure 5.5 are valid for PC2 and PC3 shown 

in Figures 5.6 and 5.7 respectively. 
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One other important point in estimation problems is the error committed. For the data 

used taking into account the level of linear correlation on one hand and the amount of 

contribution of each variable to each PC on the other, obtained bandwidth, MSE and 

the ratio of MSE to the average variance of estimated values (AVE), are summarized 

in Tables B1, B2, B3, B4, B5, B6 and B7 in Appendix B. These tables are the summary 

of output obtained from kernel regression, using different band widths and different dx 

increments to adjust the number of iterations of computing the kernel values. An easy 

tool for the assessment of error levels is the ratio of MSE to the average variance of 

estimated values, MSE/AVE.  In general the following points are observed, 

i. An increase in the linear correlation between the PC and the variable tends 

to reduce the error level. 

ii. A decrease in the contribution of a variable in determining the value of a PC, 

results in larger error levels. 

5.2 A Summary of PCs Using the Correlation Matrix 

Use of the correlation matrix is more appropriate when the variables are 

inhomogeneous or have very high range of variation. The correlation coefficient R 

matrix obtained from data given in Table 5.1 is given below 

1.0000 0.2663 0.4214 0.2657 0.2787 0.3458 0.1909 0.2022 0.3987 0.4333 0.4583 0.4804 0.1879 0.1430

0.2663 1.0000 0.1527 0.0152 0.1685 0.1054 0.6041 0.5995 0.5920 0.5735 0.5477 0.5019 0.2890 0.5261

0.4214 0.1527 1

         

      

R =

.0000 0.6253 0.5752 0.7394 0.0258 0.0561 0.1201 0.2142 0.2510 0.3182 0.3247 0.1442

0.2657 0.0152 0.6253 1.0000 0.3377 0.6438 0.1576 0.1333 0.2755 0.1648 0.1259 0.0240 0.5100 0.4324

0.2787 0.1685 0.5752 0.3377

        

        

   1.0000 0.6661 0.0009 0.0237 0.2098 0.2814 0.3236 0.3749 0.2320 0.0464

0.3458 0.1054 0.7394 0.6438 0.6661 1.0000 0.2481 0.2703 0.0249 0.1362 0.2039 0.3315 0.5714 0.4334

0.1909 0.6041 0.0258 0.1576 0.0009 0.2481 1.0000 0.

  

    

    9983 0.2201 0.1838 0.1999 0.1842 0.1310 0.2221

0.2022 0.5995 0.0561 0.1333 0.0237 0.2703 0.9983 1.0000 0.2380 0.1995 0.2151 0.1981 0.1459 0.2438

0.3987 0.5920 0.1201 0.2755 0.2098 0.0249 0.2201 0.2380 1.0000

     

        

       0.9734 0.9551 0.8872 0.4041 0.8291

0.4333 0.5735 0.2142 0.1648 0.2814 0.1362 0.1838 0.1995 0.9734 1.0000 0.9924 0.9583 0.2054 0.6932

0.4583 0.5447 0.2510 0.1259 0.3236 0.2039 0.1999 0.2151 0.9551 0.9924 1.0000 0.9829 0.

     

      1621 0.6360

0.4804 0.5019 0.3182 0.0240 0.3749 0.3315 0.1842 0.1981 0.8872 0.9583 0.9829 1.0000 0.0343 0.5043

0.1879 0.2890 0.3247 0.5100 0.2320 0.5714 0.1310 0.1459 0.4041 0.2054 0.1621 0.0343 1.0000 0.7447

0.1430 0

     

      

  .5261 0.1442 0.4324 0.0464 0.4334 0.2221 0.2438 0.8291 0.6932 0.6360 0.5043 0.7447 1.0000    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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The eigenvalues and eigenvectors obtained from R 

0.2027 0.1676 0.3000 0.5668 0.4948 0.1068 0.1580 0.0844 0.0650 0.4470 0.1180 0.0690 0.0909 0.0145

0.3099 0.0616 0.2672 0.2809 0.1064 0.0635 0.8209 0.1785 0.0263 0.1466 0.0805 0.0091 0.0021 0.0014

0.0926 0

R

          

        

 

E

.4318 0.0815 0.3313 0.1850 0.3637 0.0744 0.6315 0.0275 0.3130 0.1090 0.0662 0.0509 0.0087

0.0814 0.3533 0.3633 0.0704 0.3975 0.3806 0.0057 0.3462 0.3269 0.4007 0.1494 0.0941 0.0999 0.0181

0.1262 0.3639 0.0440 0.1804

    

       

 0.2768 0.8261 0.0481 0.0821 0.1926 0.1021 0.0253 0.0035 0.0287 0.0077

0.0172 0.5114 0.0140 0.0024 0.0004 0.0128 0.1214 0.4475 0.6861 0.2098 0.0186 0.0640 0.0581 0.0166

0.1562 0.1387 0.5701 0.0907 0.1664 0.0844 0.2749

     

   

    0.0513 0.0887 0.0578 0.1288 0.3039 0.6155 0.1055

0.1610 0.1528 0.5616 0.0601 0.1686 0.0781 0.2928 0.0332 0.1035 0.0163 0.0802 0.3459 0.6025 0.1017

0.4135 0.0355 0.1010 0.1540 0.1028 0.0343 0.0416 0.0657 0.0801 0.17

   

      

     50 0.4471 0.4350 0.1959 0.5581

0.4075 0.0558 0.0891 0.2463 0.0200 0.0541 0.0270 0.0288 0.0865 0.0617 0.4426 0.6834 0.2782 0.0761

0.4048 0.0880 0.0741 0.2449 0.0662 0.0259 0.0869 0.0335 0.1304 0.1678 0.0105 0.3114 0.2707

 

      

   0.7305

0.3840 0.1551 0.0533 0.2705 0.1471 0.0326 0.1344 0.1472 0.2732 0.0002 0.6784 0.0221 0.1945 0.3417

0.1598 0.3478 0.1438 0.4719 0.4195 0.0463 0.2965 0.4045 0.1906 0.3517 0.0257 0.1095 0.0787 0.0403

0.3274 0.2512 0.

    

     

 1013 0.0203 0.4539 0.0597 0.0349 0.2002 0.4682 0.5252 0.2541 0.0136 0.0049 0.0907  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and 

 5.4893,3.5707, 2.2866, 0.8872, 0.6728, 0.5147, 0.3110, 0.2006, 0.0391, 0.0155, 0.0114, 0.0011, 0.0003, 0.00001 
S

From the RE matrix similar to SE , it is possible to write p different PCs. However, for 

dimension reduction it is desired to reduce the number of PCs such that they will still 

represent a high percentage of variation in the data (preferably more that 80% of the 

variation). In this data it is observed that the first 4 PCs represents 87.38% of total 

variation in the data.  

Once the representative number of PCs are determined, all steps followed for the PCs 

obtained from the covariance matrix, can be repeated. Results to be obtained can 

similarly be interpreted.  

The PCs computed from the correlation coefficient matrix. See in appendix C, table 

C2. 

 

 



58 

 

The correlation coefficients between the first PC and X variables are 

1 1
0.4749Y Zr   , 

1 2
0.7261Y Zr   , 

1 3
0.2169Y Zr   , 

1 4
0.1907Y Zr   , 

1 5
0.2957Y Zr  , 

1 6
0.0403Y Zr  , 

1 7
0.3659Y Zr   , 

1 8
0.3772Y Zr   , 

1 9
0.9688Y Zr  , 

1 10
0.9547Y Zr  , 

1 11
0.9484Y Zr  , 

1 12
0.8997Y Zr  , 

1 13
0.3744Y Zr  , 

1 14
0.7671Y Zr  . 

Based on all the computation done so far, the PCs computed from the covariance 

matrix are different from the PCs computed from the correlation matrix. The relation 

or the significance of variables in PCs computed using covariance or correlation matrix 

is different from one case to another. Furthermore, there is no linear relation between 

the PCs computed using one or another matrix. This leads to the conclusion that the 

standardizing of variables is usually required for inhomogeneous variables or for 

variables which have very high range of variation.   

The PCs computed from this correlation matrix are given in Table 5.3. 
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Table 5.3: PCs computed using eigenvectors obtained from correlation matrix 

 

The first 2 PCs that represents 65% of total variation, can be used to diagnose any 

extreme values that may exist in the data set. For this purpose, the scatter diagram of 

estimated PCs 1 2
ˆ ˆ and Y Y is drawn. Then, the axes of ellipsoid are computed using the 

following formula  21 2
2

1 2

ˆ ˆ
0.05

Y Y


 
   where 1 0.2566  , 2 0.0130  and

 2

2 0.005 5.99  . The major and minor semi-axes of the ellipsoid are therefore 

2

2 1M (0.05) 1.2398   and
2

2 2m (0.05) 0.2791   . Then the control ellipsoid 

is drawn on the scatter diagram of the first two estimated PCs 1 2
ˆ ˆ and Y Y .   

-2.2608 -0.0063 0.2177 1.131 0.1917 0.8974 0.5936 0.7238 -0.3314 0.0452 -0.0126 -0.0415 0.0033 0.001

-3.09 0.0125 0.3103 1.2264 0.1682 0.8746 0.5838 0.6995 -0.3396 0.0465 -0.013 -0.0419 0.0033 0.001

-3.4228 0.0795 0.3917 1.1378 0.2058 0.8512 0.5951 0.7216 -0.3294 0.0456 -0.0133 -0.0416 0.0033 0.001

-2.7166 0.2732 0.5006 1.1988 0.1705 0.8958 0.566 0.7063 -0.3247 0.0459 -0.013 -0.0415 0.0033 0.001

-4.281 0.2499 0.1588 1.1492 0.203 0.8728 0.5729 0.7096 -0.3338 0.0456 -0.0124 -0.0415 0.0033 0.001

-2.8356 0.3928 0.2205 1.1638 0.1729 0.8708 0.6174 0.7159 -0.3317 0.0465 -0.0131 -0.0414 0.0033 0.001

-3.5799 0.2435 0.4324 1.2426 0.2216 0.8613 0.5898 0.7272 -0.3308 0.0455 -0.0131 -0.0417 0.0033 0.001

-3.06 0.2086 0.327 1.2124 0.2124 0.884 0.6035 0.7135 -0.3258 0.0459 -0.0124 -0.0422 0.0033 0.001

-3.0605 0.0828 0.1864 1.2615 0.2619 0.8832 0.5804 0.7151 -0.3256 0.0465 -0.0136 -0.0415 0.0033 0.001

-3.0431 0.0433 0.4238 1.1304 0.1954 0.8342 0.5973 0.709 -0.3314 0.0459 -0.013 -0.0416 0.0033 0.001

-3.3691 0.1346 0.4492 1.3125 0.1838 0.8846 0.5911 0.7279 -0.3354 0.0464 -0.0126 -0.0413 0.0033 0.001

-2.7843 0.2889 0.3976 1.2107 0.2489 0.889 0.5981 0.7027 -0.3404 0.0452 -0.0133 -0.0416 0.0033 0.001

-3.1389 0.1014 0.3847 1.2767 0.2556 0.8817 0.6002 0.7148 -0.335 0.0461 -0.0123 -0.0416 0.0032 0.001

-2.531 0.217 0.3694 1.1503 0.2569 0.846 0.583 0.7059 -0.3298 0.0463 -0.0122 -0.0414 0.0033 0.001

-2.9705 0.2128 0.3991 1.0165 0.2346 0.8889 0.5762 0.7289 -0.3382 0.0466 -0.0129 -0.0418 0.0033 0.001

-2.2205 0.2664 0.2349 1.2962 0.1982 0.8394 0.5695 0.7254 -0.3365 0.0458 -0.0129 -0.0418 0.0033 0.001

 1                          1   11  1   1   1  
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Figure 5.8: Control Ellipsoid 

Any point from the scatter diagram that falls outside the ellipsoid is considered as an 

outlier or extreme value. From the Figure 5.8 one outlier is detected. It is on the left 

hand side has a PC1 value 1
ˆ 4.281y     PC2 value around 2

ˆ 0.2499y  . An inspection 

of 1ŷ  and 2ŷ values of this point identifies it as the 5th  value in Table 5.1. These PCs 

were computed using the 5th raw data values from Table 5.1. A quick inspection of the 

data in raw 5 indicates that 5,8 4.2904x   and 5,13 0.0000725x   are standing out. 

Looking at the percentiles of these, we obtain the percentile for 5,8 4.2904x   as 0.012, 

and the percentile for 5,8 4.2904x   as 0.08. Clearly 5,8x  can be considered as an outlier 

due to its very low percentile value. 5,13x  may or may not be considered as an outlier, 

since its percentile value is above 5%. 
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Chapter 6 

CONCLUSION 

Dimension reduction in large data sets where the number of variables are expressed 

with tens or hundreds is an essential issue. PCA is the technique that does this very 

efficiently. Estimation of the value of a variable in the absence of population 

parameters is best done by kernel regression. In this thesis both methods are initially 

explained in detail. Subsequently an attempt is made towards the integration of the 

results of two methods to obtain better estimates via kernel regression by the use of a 

pilot data set. 

In Chapter 3 where the kernel regression is explained, special emphasis is put on 

highlighting important points to be observed while applying this technique. Bandwidth 

is the most important parameter in kernel regression as it determines the amount of 

smoothing, as well as influencing the variance - bias balance. In the application 

example parallel to the increase of the bandwidth, the following became evident. 

i. MSE increase. 

ii. Variance of estimates decrease. 

iii. Bias increase. 

Decision whether to use the covariance or correlation matrix in the computation of PCs 

is a very important issue. This is highlighted in Chapter 4 and also in Chapter 5 while 

applying the PCA theory.  
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The proposed idea of estimating independent variables used in kernel regression by 

assuming them as dependent variables on the PCs has produced satisfactory results. 

Points taken into account in this application are 

i. Linear correlation between a PC ˆ
jY and each variable iX . 

ii. Contribution of each variable iX  to the computation of each ˆ
jY . 

Level of correlation and amount of contribution are found not to be correlated with 

each other. But their influence on the MSE values while estimating iX  using ˆ
jY  has 

been recorded. It is generally observed that an increase in correlation and/or 

contribution values parallels a decrease in MSE levels.  
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Appendix A: Matlab Code for Computing PCs from Leaf Data 

FD='c:\PcaAnalysis\LeafData\leaf11.txt' 
H=importdata(FD) 
S=cov(H) 
R=corr(H) 
%E1 vector of eigenvector and L1 is matrix of eigenvalues 
[E1,L1]=eig(S) 
[E2,L2]=eig(R) 
TotEval=sum(diag(L1)); 
TotVar=sum(diag(S)); 
Y1=H*E1(:,14); %PC1 
Y2=H*E1(:,13); %PC2 
Y3=H*E1(:,12); %PC3 
Y4=H*E1(:,11); %PC4 
Y5=H*E1(:,10); %PC5 
Y6=H*E1(:,9); %PC6 
Y7=H*E1(:,8); %PC7 
Y8=H*E1(:,7); %PC8 
Y9=H*E1(:,6); %PC9 
Y10=H*E1(:,5); %PC10 
Y11=H*E1(:,4); %PC11 
Y12=H*E1(:,3); %PC12 
Y13=H*E1(:,2); %PC13 
Y14=H*E1(:,1); %PC14 
Y=[Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14] 
plot(Y1,Y2,'o'); 
xlabel('PC1') 
ylabel('PC2') 
title('Leaf Data') 
text(-3.02279,0.175056,'(-3.00279,0.17056)') 
evec1=E1(:,14) 
coY1X1=[0.2069 -0.6109 0.0609 0.1283 -0.0268 -0.2771 -0.9999 -0.9998 

0.4826 0.2135 0.1773 0.0663 0.0481 0.2532]   
coY1X1trans=coY1X1' 
xaxes=[1 2 3 4 5 6 7 8 9 10 11 12 13 14] 
plot(xaxes,evec1,xaxes,coY1X1trans) 
evec2=E1(:,13) 
coY2X2=[-0.8024 -0.5253 -0.4575 -0.2052 0.5689 0.2951 0.0068 0.000004 

0.9999 0.7755 0.6128 0.2264 0.0072 0.5512]   
coY2X2trans=coY2X2' 
xaxes1=[1 2 3 4 5 6 7 8 9 10 11 12 13 14] 
plot(xaxes1,evec2,xaxes1,coY2X2trans) 
evec3=E1(:,12) 
coY3X3=[0.1126 -0.1395 0.5586 -0.6024 -0.6656 -0.7557 0.0459 0.0101 

0.8168 0.2815 0.1566 0.0182 0.0099 0.7348]   
coY3X3trans=coY3X3' 
xaxes2=[1 2 3 4 5 6 7 8 9 10 11 12 13 14] 
plot(xaxes2,evec3,xaxes2,coY3X3trans) 
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Appendix B: Contribution of each variable to each PC 

Table B1: Contribution of each variable to PC1  

 r e dx h MSE MSE/VarEstX 

Cov(Y1,X2)= -0.602 
 

-0.611 0.033576 0.05 0.1 0.000478 
 

0.620486 
 

Cov(Y1,X7)= -0.997 
 

-0.999 0.017543 0.05 0.1 3.14E-07 
 

0.001636 
 

Cov(Y1,X8)= -0.999 
 

-0.999 0.00277 0.05 0.1 0.00071 
 

0.001578 
 

 

Table B2: Contribution of each variable to PC2 when dx=0.05 

 r e dx h MSE MSE/VarEstX 

Cov(Y2,X1)= -0.801 
 

-0.802 0.303798 0.05 0.02 0.001874 
 

0.215931 
 

Cov(Y2,X9)= 0.7438 
 

0.999 0.019858 0.05 0.02 1.21505E-05 
 

0.322477 
 

Cov(Y2,X10)= 0.734 
 

0.775 0.052451 0.05 0.02 7.73E-05 
 

0.239633 
 

Cov(Y2,X14)=0.5511 
 

0.551 0.22672 0.05 0.01 0.004359 
 

0.439803 
 

 

 

Table B3: Contribution of each variable to PC2 when dx=0.005 

 r e dx h MSE MSE/VarEstX 

Cov(Y2,X1)= -0.801 
 

-0.802 0.303798 0.005 0.02 0.001874 
 

0.193821 
 

Cov(Y2,X9)= 0.7438 0.999 0.019858 0.005 0.02 1.21505E-05 
 

0.285928 
 

Cov(Y2,X10)= 0.734 
 

0.775 0.052451 0.005 0.02 7.73E-05 
 

0.201439 
 

Cov(Y2,X14)= 0.551 
 

0.551 0.22672 0.005 0.008 0.004863 
 

0.519498 
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Table B4: Contribution of each variable to PC2 when dx=0.002 

 r e dx h MSE MSE/VarEstX 

Cov(Y2,X1)= -0.801 
 

-0.802 0.303798 0.002 0.02 0.001937 
 

0.197733 
 

Cov(Y2,X9)= 0.7438 
 

0.999 0.019858 0.002 0.02 1.21505E-05 
 

0.282999 
 

Cov(Y2,X10)= 0.734 
 

0.775 0.052451 0.002 0.02 7.73E-05 
 

0.198103 
 

Cov(Y2,X14)= 0.551 
 

0.551 0.22672 0.002 0.008 0.003746 
 

0.448267 
 

 

Table B5: Contribution of each variable to PC3 when dx=0.05 

 r e dx h MSE MSE/VarEstX 

Cov(Y3,X5)=-0.66 
 

-0.665 0.282083 0.05 0.02 0.003755 
 

0.769589 
 

Cov(Y3,X6)=-0.75 
 

-0.755 0.083161 0.05 0.02 0.000165 
 

0.360047 
 

Cov(Y3,X9)= 0.415 
 

0.816 0.012711 0.05 0.008 2.84E-05 
 

1.081868 
 

Cov(Y3,X14)= 0.73 
 

0.734 0.34146 0.05 0.02 0.003023 
 

0.311415 
 

 

Table B6: Contribution of each variable to PC3 when dx=0.005 

 r e dx h MSE MSE/VarEstX 

Cov(Y3,X5)= -0.66 
 

-0.665 0.28208
3 

0.005 0.015 0.003437 
 

0.633569 
 

Cov(Y3,X6)= -0.75 
 

-0.755 0.08316
1 

0.005 0.015 0.000139 
 

0.282799 
 

Cov(Y3,X9)= 0.415 
 

0.816 0.01271
1 

0.005 0.008 2.72E-05 
 

0.890691 
 

Cov(Y3,X14)= 0.73 
 

0.734 0.34146 0.005 0.015 0.002783 
 

0.21955 
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Table B7: Contribution of each variable to PC3 when dx=0.002 

 r e dx h MSE MSE/VarEstX 

Cov(Y3,X5)= -0.66 
 

-0.665 0.28208
3 

0.002 0.02 0.003755 
 

0.750868 
 

Cov(Y3,X6)= -0.75 
 

-0.755 0.08316
1 

0.002 0.02 0.000165 
 

0.350661 
 

Cov(Y3,X9)= 0.415 
 

0.816 0.01271
1 

0.002 0.008 2.84E-05 
 

0.868739 
 

Cov(Y3,X14)= 0.73 
 

0.734 0.34146 0.002 0.02 0.003023 
 

0.246745 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix C: PC Tables from Covariance and Correlation Matrix 

Table C1: First three PCs from covariance matrix 

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 1 2 3 4 5 6 7

0.0396 0.0400 0.0038 0.0076 0.0050 0.0134 0.0209 0.9967 0.0033 0.0073 0.0014 0.0006 0.00003 0.0517

0.6823 0.1528 0.1269 0.0540 0.4707 0.0634 0.0006

Y X X X X X X X X X X X X X X

Y X X X X X X X

             

        8 9 10 11 12 13 14

3 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.0019 0.0446 0.1178 0.0215 0.0091 0.0002 0.5001

0.1046 0.0443 0.1692 0.1731 0.6014 0.1773 0.0044 0.0488 0.0271 0.0467 0.0060 0.0008 0.0003 0.5001

X X X X X X X

Y X X X X X X X X X X X X X X

     

             

 

Table C2: First four standardized PCs from correlation matrix  

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 1 2 3 4 5 6 7

0.2027 0.3099 0.0926 0.0814 0.1262 0.0172 0.1562 0.1610 0.4135 0.4075 0.4048 0.3840 0.1598 0.3274

0.1676 0.0616 0.4318 0.3533 0.3639 0.5114 0.1387

Y X X X X X X X X X X X X X X

Y X X X X X X X

              

        8 9 10 11 12 13 14

3 1 2 3 4 5 6 7 8 9 10 11 12 13

0.1528 0.0355 0.0558 0.0880 0.1551 0.3478 0.2512

0.3000 0.2672 0.0815 0.3633 0.0440 0.0140 0.5701 0.5616 0.1010 0.0891 0.0741 0.0533 0.1438 0.1013

X X X X X X X

Y X X X X X X X X X X X X X X

      

               14

4 1 2 3 4 5 6 7 8 9 10 11 12 13 140.5668 0.2809 0.3313 0.0704 0.1804 0.0024 0.0907 0.0601 0.1540 0.2463 0.2449 0.2705 0.4719 0.0203Y X X X X X X X X X X X X X X              
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Appendix D: Temperature and Relative Humidity Data  

  Temperature 
Relative 
Humidity 

1 9.900000095 65.19999981 

2 10.57500005 63.25 

3 10.7750001 62.54999924 

4 10.94999981 62.07499981 

5 10.97500014 66.5 

6 11.00000024 61.44999981 

7 11.07500005 62.22499943 

8 11.125 60.20000076 

9 11.17499995 68.47500038 

10 11.32499981 70.20000076 

11 11.375 70.52499962 

12 11.4749999 58.17499924 

13 11.47500014 60.02500057 

14 11.5999999 61.92499924 

15 11.67499995 57.09999943 

16 11.67499995 63.65000057 

17 11.82499981 58.02500057 

18 11.89999986 67.44999886 

19 11.9000001 57.39999962 

20 11.96666686 54.90000025 

21 11.9749999 61.12500095 

22 12 58.85000038 

23 12 62.92499924 

24 12.32499981 66.15000057 

25 12.3499999 65.35000038 

26 12.4000001 63.87500095 

27 12.5999999 63.47499943 

28 12.60000014 54.20000076 

29 12.65000033 57.90000057 

30 12.75 63.22500038 

31 12.77500033 55.82499981 
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Kernel data continued  

 
  Temperature 

Relative 
Humidity 

32 13.05000019 57.90000057 

33 13.125 54.75 

34 13.35000014 61.34999943 

35 13.5999999 54.59999943 

36 13.62499976 62.05000019 

37 13.625 56.29999924 

38 13.6500001 49.47500134 

39 13.75 53.35000134 

40 13.875 53.875 

41 14.04999995 57 

42 14.0666666 65.69999949 

43 14.0999999 49.80000019 

44 14.12499976 50.02499866 

45 14.125 55.57500076 

46 14.27499986 55.44999981 

47 14.27500033 50.57500076 

48 14.72500014 55.92500019 

49 14.75 52.07499981 

50 14.75 59.22499943 

51 14.77499986 54.32499981 

52 14.79999995 53.92499924 

53 14.82500005 54.67500114 

54 14.82500005 60.55000114 

55 15.25000024 61.44999886 

56 15.47500014 51.875 

57 15.52499986 52.92500019 

58 15.69999981 60.15000057 

59 16.0250001 50.92499924 

60 16.25 50.95000076 

61 16.6500001 57.375 

62 16.70000029 48.92500019 

63 18.2750001 52.62500095 
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