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ABSTRACT

In any process that produces useful output, more than one and in many cases tens or
hundreds of variables are involved. With the advancement of technology the number
of observations has also dramatically increased, to the point that without using a
computer software it is impossible to process such data. For processing multivariate

big data sets, there are many different techniques available.

In this thesis Kernel Regression which is a non-parametric regression method is used
for estimating various dependent variables. In chapter 3 basic theory related with
kernel regression is given, supported by the proof of various theorems and application

data.

For large number of variables the Principal Component Analysis (PCA) technique is
used to reduce the number of variables to manageable level. Basic theory related with
PCA is given under chapter 4. In this thesis a logical link between kernel regression
and PCA is established for the estimation of the variables governing a process. The

variables governing the process are taken as dependent X, and Principal Components

(PC) as independent variables, using kernel regression.

In chapter 5, a data set consisting of 14 variables was used to determine the necessary
number of PCs, using both covariance and correlation matrices separately. Then,
variables that exhibited high correlation with PCs, and variables with high contribution
to a PC were taken as dependent variables, while PCs were used as independent

variables in kernel regression.



For obtaining optimal bandwidth simulations were carried out. Mean Squared Error
(MSE) and the ratio of MSE to the average of the variance of estimated values (AVE)
were used as criteria, in obtaining the optimal bandwidth. It is determined that the
linear correlation between the PC and the variable, and the contribution of a variable

to the PC has significant effect on the error levels.

Keywords: Kernel Regression, Bandwidth, Principal Component Analysis (PCA),

Principal Components (PCs), Mean Squared Error (MSE), Covariance, Correlation.
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Kullaniglt ¢ikt1 iireten herhangi bir islemde, birden fazla ve ¢ogu zaman onlarca veya
yiizlerce degisken s6z konusudur. Teknolojinin gelismesiyle birlikte elde edilebilen
gozlem sayist ciddi sekilde artarken, bilgisayar yazilimlarini kullanmadan bunlarin
analiz edilmesi imkansizdir. Cok degiskenli biiyiik verilerin islenmesi i¢in, birgok
farkli teknik mevcuttur. Bu tezde parametrik olmayan bir regresyon yontemi olan
Kernel Regresyonu, ¢esitli bagimli degiskenleri tahmin etmek igin kullanilmistir.
Bolim 3'te kernel regresyonu ile ilgili temel teori, gesitli teoremlerin ispati ve bir

uygulama 6rnegi ile desteklenerek verilmistir.

Cok sayida degisken i¢in, degisken sayisini1 yOnetilebilir seviyeye diisiirmek i¢in
Temel Bilesen Analizi (TBA) teknigi kullanilir. TBA ile ilgili temel teori bolim 4'te
verilmistir. Bu tezde, siirecte gegerli olan degiskenlerin tahmini i¢in kernel regresyonu

ile TBA arasmda mantiksal baglanti kurulmustur. Bu mantikta degiskenler (X,)

bagimli olarak, Temel Bilesenler (TB) bagimsiz degiskenler olarak alinarak kernel

regresyonu uygulanmistir.

Besinci boliimde 14 degiskenden olusan bir veri setinin kovaryans ve korelasyon
matrisleri ayr1 ayr1 kullanilarak gerekli TB sayisi belirlemistir. Daha sonra, TB'lerle
yiksek korelasyon gosteren degiskenler ve TB'ne yiksek Kkatkisi olan degiskenler,
bagimli TB'ler ise bagimsiz degiskenler olarak alinarak kernel regresyonu

uygulanmigtir.



Optimal bant genigligi elde etmek i¢in simiilasyonlar yapildi. Hata Karelerinin
Ortalamas1 (HKO) ve HKO'nin tahmin edilen degerlerin varyans ortalamasina orani,
optimal bant genisliginin elde edilmesinde 6l¢iit olarak kullanilmistir. TB ile degisken
arasindaki dogrusal korelasyonun ve bir degiskenin TB'ye katkisinin hata seviyeleri

uzerinde 6nemli bir etkiye sahip oldugu tespit edilmistir.

Anahtar Kelimeler: Kernel Regresyonu, Bant Genisligi, Temel Bilesenler Analizi
(TBA), Temel Bilesenler (TB), Hata Karelerinin Ortalamasi (HKO), Kovaryans,

Korelasyon.
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Chapter 1

INTRODUCTION

All natural processes are governed by many different variables interacting with each
other in highly complicated ways. Modelling such variables by means of some
function based on parameters is a very demanding task or in many cases almost
impossible. This is primarily due to the fact that for any random variable, the exact
distribution function and its parameter values are unknown. Recent developments in
modelling a process without the need of the population parameters, and techniques that
enable the reduction in the number of variables without a big loss of the true nature of
the process has become possible. Kernel regression is a well-known nonparametric
method that enables the estimation of a variable without the need for the population
parameters. Principal Component Analysis (PCA) is the technique that enables the
reduction of the number of variables, in a multivariate process without the loss of main
variation inherent to the process. Recent advancements in science and technology
resulted in a dramatic increase in the volume of data generated, to the point that without
using a computer software it is impossible to process such data. For processing of

multivariate and big data sets, there are many different techniques available.

In this thesis in addition to the explanation and application of Kernel regression and
PCA technique, a relationship between the two methods is proposed. In this proposal,

the principal components (PC) were taken as the independent (predictor) variables to



estimate some variables from the process that satisfy high correlation and high

contribution to the PCs.

Following literature review in Chapter 2, theoretical background regarding the kernel
regression, and some important theorems with their proofs are given in Chapter 3.
Nadaraya Watson kernel estimator is explained together with associated theoretical
background. Bandwidth to be used in kernel regression is explained in fair detail, since
it is the most important variable that determines the amount of smoothing, and hence
the bias - error variance balance relationship. A data set using 63 observations on
temperature — humidity taken from a meteorological database was used to highlight

the important points explained theoretically in the chapter.

In Chapter 4 the basic concepts of dimension reduction technique, as part of the
principal components analysis is explained. Theoretical background behind the PCA
that leads to the formation of the PCs as a linear combination of the variables governing
the process under study is explained. Situations under which the covariance or
correlation matrices to be used in the formation of PCs are also given. Various criteria

in determining the number of PCs to represent the process under study are studied.

Kernel regression and PCA theory explained in Chapter 3 and Chapter 4 respectively
are applied to a data set consisting of 14 variables representing various properties of
leaf shapes. Emphasis was given to the correlation between the optimum number of
PCs and 14 independent variables, and the variables with high contribution to the PCs.
Some of the variables governing the process were selected as dependent variables, to
be estimated using a PC as independent variable. Selection criteria for these variables

were high correlation with the PC, and/or high contribution of a variable to the PC.

2



Obtained results are summarized using tables and graphs, and interpreted. In all

computations Matlab and Microsoft Excel were used.



Chapter 2

LITERATURE REVIEW

Principal Component Analysis (PCA) is a dimension reduction process. When the
number of variables governing a process is very large, statistical manipulation of such
data is difficult. Using PCA the number of variables can be reduced to manageable
level, without loss of information carried by the original variables. An English
mathematician, Karl Pearson introduced the first ideas on how to reduce the number

of variables in a multivariate problem [3].

In 1931, Hotelling H. contributed by focusing on confidence intervals and regression

slopes and the issue of from univariate to multivariate distributions [2].

Girschick A. M. (1939) worked on the topic of PCA, and produced useful results
regarding the distribution of the roots and characteristic vectors associated with certain

determinantal equations [15].

Anderson T. W. worked on the characteristics of multivariate distributions, principal

components, canonical correlation and asymptotic properties of the characteristic roots

[1].



Rao C. R. (1964) contributed about theories in multivariate data analysis, and
characteristics of probability distributions. He also proposed graphical representation
of multi-dimensional data in reduced dimensions which is closely related with PCA

[20].

Jeffers J. (1967) proposed new methods of enhancing PCA using graphical approach

to facilitate the clear understanding of the role of PCA in application [13].

In 1982, the regression method was introduced by Jolliffe in the field of main

components analysis with principal component analysis [16].

In 2002, Fotheringham and his colleagues introduced the concept of local weighted

principal components and the concept of geographic weighted components [27].

A review of developments in Kernel regression is as follows.

Fix E., Joe L. & Hodges J. L. (1951) in a technical report presented at the USAF Texas
Base mainly focused on the discrimination problem of two populations, ways of

freeing discriminant analysis from rigid distributional assumptions [8].

Rosenblatt M. (1956) discussed some aspects of the estimation of a univariate density
function, where he classified his arguments under three headings [22].

1. Estimation of a density function,

2. The difference quotient of the sample distribution function

3. A class of estimates of the density function.



An important contribution was made by Farrell in 1972 on lower limits on the

convergence rates of core estimators [7].

In 1979, the first MISE analysis of the histogram was performed by Scott [24].

Cline (1988) defined the notion of admissibility for kernels and showed that

asymmetric and multimodal kernels are inadmissible [5].

Morron J.S. & Hall P. (1994) studied the aspect of determining the band width to be

used in a Kernel Density Estimation process [23].



Chapter 3

KERNEL REGRESSION

3.1 Introduction

Kernel smoothing or kernel regression is a statistical technique that uses the local
weights of a real-valued function to predict the weighted average of neighboring data.
There are two main reasons for using kernel smoothing in the univariate density
estimator. The first of which is an effective way to show that estimating non-
parametric density in analytical data is important. The second reason is that the kernel
estimators are simple in terms of mathematical traceability. Kernel smoothing provides
simple, reliable and useful answers to major problems, which enables drilling down

into the data features.

3.2 Estimation of Density and Histogram

The estimation of the probability density of random variables in the absence of
population parameters, becomes a challenging problem. Let X;, ..., X,, be continuous
random variables with common density f. Parametric regression does not provide any
flexibility in modelling due to the rigidity of the parametrs. A non-parametric density
estimator does not depend on predetermined parameters of functional form of f. The
oldest and most widely used nonparametric density estimator is the histogram. The
histogram is constructed by dividing the actual line representing the range of the data
into equally spaced intervals, called bins. The histogram is a step function where the
height of each rectangle or the value of the smooth function f is a ratio of the number

of samples in the bin in which x lies, to the product of b and size of sample data n.
7



Assume that, b is bin width, for predicting the histogram at point x [25]. Then the
histogram value at point x is given by

number of observation in bin contaning x
fH (X’b) = nb g

Two things must be considered when creating a histogram: bin width and positioning
of the dividing edges. Binwidth b is also called the smoothing parameter which
controls the amount of smoothing. One of the main problems of the histograms is the
bin edge. One way of solving this problem is the average shifted histogram
(Scott,1985). That is the average of several histograms obtained by shifting the bin

edges. This method has some similarities with the kernel density estimator [27].
3.3 Kernel Theory

Parametric estimators are not necessarily ideal tools for identifying the true
characteristic of a process. On the other hand a nonparametric model such as kernel
estimators can give more accurate estimation of the true trend exhibited by the process
under study. This is possible by obtaining a density estimator that does not assume that
the density has a particular functional form. In this thesis a univariate kernel density
estimator is studied due to its simplicity and its concepts being readily amenable for
extension into upper dimensional cases. Regression estimators based on the kernel

functions are often referred to as kernel smoothers [9].

The basic idea behind kernel estimation in the univariate case is the assumption that
there is a random sample X;, X,, ... X of independent and identically distributed

(i.i.d) observations from a continuous univariate distribution having probability

~

density function (p.d.f) f that is to be estimated. Let f be the kernel estimator of the

unknown (p.d.f) f. The estimator f is obviously depending on available data and the

8



kernel function K to be used. f(X) is considered as a random variable, due to its

~

dependence on the sample X, X,, ... X,. Discrepancy of f from f can be

measured via the Mean Squared Error (MSE) or the Mean Integrated Squared Error

(MISE). Here

MSE(f) = E{[f (x) - f (01}
This can be decomposed into Bias and Variance components. This decomposition is
important since in an estimation process a delicate balance between bias and variance

needs to be maintained. This balance is a function of the bandwidth used in the

computation of kernel values. The decomposition can be performed as follows.

Suppose that a data set X, X,, ... X, isgiven. Using this data the functiony = f (x) + &

; ¢ being the random error component or noise with E(¢)=0 and Var(s)=c” to be

estimated using the f(X) . There is no doubt, the closer the f(X) is to f (x) , the better

the estimation will be. That is to obtain the minimum MSE by employing the sample
X, Xy, ... X, , which will also be valid for points not included in the sample. Then the

expected error can be decomposed into 3 components as follows.
Y. AT .
E{[y— f(x)} }: Bias[f(x)} +Var[f(x)}+a2 (3.1)

. A n A » 2
Where B.as[ f (x)} - E[ f(x)- f(x)] and Var[ f (x)} - E[ f (x)z]— f[(%)]
Square of the bias is a function of the assumption made in approximating the unknown

f (x) by the estimator f (X) . Variance of f(X) is a measure of how much it varies



around its mean. Therefore, the more sophistication put into f(X) towards reducing

the bias, will lead to higher Var| f(x) .

Decomposition given in equation (3.1) can be obtained as follows

Note the following. The variance of a random variable is.
1. &%= E[(x —y)z] = Var(X)=E(X?)— E(X)? = E(X?) = Var(X) + E(X)?.
Then
2. E[f()+&]=E[f(X)]=f(X)as f(x) is deterministic and E(s)=0.
3. Vary)=E[ (y-E())’ |=E[ (y- f(0)"|=E[(F(0+&= ()]
=E(&*)=Var(e) +E(¢)* = 0°
since & and f (X) are independent

E[(y— f(x))z}z E[y2 + f(x)? +2yf(x)]

= Var(y) + E(y)* + Var (%)) + E( f) ~2f(E(f()
= Var(y) + Var(f (X)) + (f (x)2 =2 f (X)E(f (x)) + E(f (x))?)
=Var(y) + Var(f (x)) + (f (x) = E(f (x)))?

= o + Var(f (x)) + Bias( f (x))? Q.E.D.

10



3.4 Kernel Density Estimator

The kernel density estimator based on a random sample {X,, X,,..., X }is given as

f(x)_nh 7 K{

where K is a function satisfying I K(x)dx =1, IXZK(x)dx <o, and J K2 (x)dx < 0.

(x=X, )} (3.2)

K is called the kernel, and h>0, called the bandwidth which is the smoothing parameter.

o (u
Let K,(u)=h"K [H) Then equation (3.2) becomes

f(x)=%gl<h(x—xi)
X

The weight is defined by the Kernel (K (%D , such that closer points are given

higher weights. Since K is non negative, so is f (x). Then

[@f(x)dXan_lth(x_hXi]dx
1 .
EILIE

nTK(u)du:l.

Hence f(x)isa probability density.
Lemma 3.1 [12]: Assume w(y) is bounded and integrable function satisfying

lim|yw(y)|=0, and g be an integrable function. Also h, —0as n— oo,
y—

lim -+ w( jg(u)du - 900 [ w(u)du,

N—o0 h

for every continutiy point x of y.

11



Theorem 3.1: The estimator f (x) of the kernel probability density converges f (x)
in probability ( f (xX)—F— f (x)).
Proof: The Markov’s inequality states that if X is a nonnegative random variable and

a > 0, then the probability that X is at least a, is at most P(X >a)<E(X)/a. Based

on this inequality it is sufficient to show E(f(x) — f(x))*> > 0. Starting with,

(3855
e (e5)

1 X=X 1 X —X
:HIK( - jf(xﬂd)& =EIK[ij(X1)dX1

— f(x) j K(u)du (by Lemma 3.1)
= f(x)
Then the bias term
E(f(0-f(9)—>0. (33)

This is followed by

Var( fA(x)):Var(ni :1 K(X—hXi j]

21hZZVar[K(X_hX‘ J ( X, 's are independent)
n i=1

- Lva{ k(12
_%[E(KZ[XT&B—(E(K(Xthm

12




By Lemma 3.1 Il—>f(x)_|.K2(u)du. From the computation for E(f(x)),

I, - f?(x). Therefore as n — oo.

Var( f (x)) -0 (3.4)

From (3.3) and (3.4) E( f(x)- f(x))2 50 is obtained.

It is preferred to set K as a unimodal probability density function and symmetric about
zero. This results in f (x) also being a density. A kernel density estimate constructed
where 5 observations were used is shown in Figure 3.1. Kernel has N(0,1) with
density, K(x)=g(x). Five observations were used to highlight the concept, where as

in a real world problem number of observations tend to be much larger.

13
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Figure 3.1: A kernel density estimate to highlight the effect of the density of
observations

To start with at each point a scaled kernel is computed. The estimated value of the

kernel at point x is obtained by averaging the n kernel estimates at that point.

Since a kernel estimate is the average of the contributions of observations in close

proximity, a fairly large estimate is obtained where observations are dense, and kernel

estimates will be relatively low where data values are sparse.

Bandwidth h has a significant effect on the level of smoothing achieved in kernel

estimation. Figure 3.2 shows the density estimates where a sample of size 1000 is used,

with different bandwidths. The density used for this purpose is

3 1
fl(X) :Zg(X)+Zgl/3(X_3/2)

14



f,(x) is a combination of standard normal observations with probability %, and

normally distributed observations with probability ¥%. As seen in Figure 3.2 amount of

kernel smoothing

t <, =
o [=] =]
e o m
(=] o o
o | o o
= | o ] o
I
- - -
(] (=] o
= o =]
(=] =] =]

3 2 10 1 23 3-2-101 23 -3-2-101 2 3
(a) (b} (c)

Figure 3.2: Amount of smoothing as a function of bandwidth.

is a function of bandwidth. Larger bandwidth results an increase in smoothing. This is

clearly visible in Figure 3.2.

Computation of kernel values can be undertaken by various kernel functions.

Two most commonly used Kernel function are the Gaussian and Epanechnikov kernel

functions.

o . 3 2
The Epanechnikov’s formula is, Z(l_ u ) I (jul<1)

1
Gaussian’s formula is, ——e?2 [10]
N
where, y=X=%
h

15



3.5 Selection of Bandwidth

The bandwidth h, that is known as Kernel smoothers, is called the smoothing parameter
to regulate the degree of smoothness. There are different ways of determining h, but
most of these formulae do not give the desired result in practice. The main problem in

estimating the Kernel density is the choice of h. The Gaussian Kernel is

1 . ) . .
K(U)=¢(U)=Ee - The reference density is normal density of

1 (x-
N(u,0%)> f(x)= gw(—ﬂj. To obtain the estimator of the optimum bandwidth

IKQ (x)dz :j%e‘uzdu = jie‘“z/zdu.L L

Jor 2Nz Nr

" 1 " -
z?is the second moment of N(0,1). So, 72 =1. f"(X)=—=5¢ (—] Hence,
o

I( f ”(X))de = %I[(D"(X?Tﬂjjzdx = %J.(¢"(y))2 dy = 8\/_%

Hence,

46’ 1/5
h, = ( j =1.066n""® (3.5)
3n

Equation (3.5) tends to detected outliers easily, which is not desired. The interquartile

range of the data can be considered in place of 67, which is defined as
R =Xy — X0
Then equation (3.5) is modified into,
h, =0.79Rn™"® (3.6)

Combining equation (3.5) and (3.6) gives a better estimate for band width

16



h, =1.06 min &,i n°
1.34

Theoretically computed h value may not give the desired smoothing. In application
choosing a very small h value will reduce the bias, while a large h value will result in
an increase of the variance. Ballancing between bias — variance relation becomes a
matter of trial and error. Therefore, finding the optimum h value by simulation, and
checking for the minimization of mean square error (MSE) or average of the sum

squared error (ASSE) can be one way of tackling this problem [11].
3.6 Kernel Regression Smoothing with Nadaraya—Watson Estimator

In any nonparametric regression smoothing process the smooth or average function

m, (X) is estimated by the estimator M, (x) given by

M, (x) = nl_zn:Whi (X)Y;

where Y is the response variable and w, is the weight function depending on the
distance between x and X; the i" observed value of X and on the bandwidth h.
Nadaraya — Watson estimator is also using a weighting system as explained below.
Given n observations of i.i.d. random variables{(X;,Y;)}.,, X, €R, Y, eR, the
conditional expectation

m(x) = E(Y| X =X)= j yf (X, y)dy/ f(x) (3.7)

can be written.

f (x) can be estimated using a kernel density estimator. The joint density f(x,y) in

the numerator of equation (3.7) can be estimated using the multiplicative kernel

fon 0609) =1 K (X XK, (Y-Y)
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Then an estimator for the expression in the numerator of equation (3.7) is obtained as

follows,

[ i, (6 y)dy = nli K, (x=X)[ YK, (y=Y,)dy

0y -Y,
=n 12Kh1(x—xi)fhl|<hz(yh de
i=1 2 2

= nli Ky, (x— xi)j(sh2 +Y,)K (s)ds

- nl_zn: K, (x= X,)Y, (3.8)

The estimate of the conditional expectation m(x)given in equation (3.7) can be

expressed as the ratio of the result obtained in equation (3.8) and the kernel estimate
of f(x). This ratio is the Nadaraya-Watson estimator expressed as;
DK, (x=X)Y,

My (x)=n"—= (3.9)
Ny K, (x=X;)

=1

In general the non-parametric regression smoother can be written as

M, (X) = n’lz:Whi (X)Y; . The weights W, (x) can be expressed as

th(X_Xij
W, () = ———

The weights in equation (3.10) depends on the whole sample {Xj}?:lvia fh(x).

(3.10)

Higher weights are assigned to Y, where X, is sparse.

For situations where denominator is zero, the numerator is also zero. Meaning the

estimate is zero.

18



When h—0, W,;(x) > n if x= X, . It means the estimate in X, convergestoY,.
Whenh — o0, W, (x) converges to 1 ¥x. Therefore, the estimate of m(x) converges to
Y.

Bandwidth h determines the level of smoothness of the estimate.

3.7 Mean and Variance of the Nadaraya — Watson Estimator

Since the numerator and denominator of this statistic are both random variables, they

can be dealt with separately. Starting with the numerator, let us define

r(x)= I yf (X, y)dy =m(x) f (x) and f, (X) = n’lzn: K, (x=X,)Y, .

i=1

Then the regression curve estimate becomes

A

I

(%)
f,(x)

mh (X) =

Theorem 3.2: The numerator f, (x) of the Nadaraya-Watson smother is asymtotically

unbiased.

Proof: Expectation of f, is

L, ()] = EIN™ Y. K, (x= X,)¥,1 = E[K, (x= X)] Y

i=1

= [ [ YK, (x=u) f (yJu) f )dydu = [ K, (x—u) f W) ([ ¥ (y|u)ey )
= [ Ky (x=u) F)(EDY[X =ul)du = [ K, (x—u) f ()m(u)du = [ K, (x~u) ru)du (3.10)
Similar to density estimation with kernels, if r e C?, then
E[F, ()]=r(x) +“—22r"(x>uz(YK>+o(h2>

indicating r,(x) is asymptotically unbiased ash —0.
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Theorem 3.3: Using the variance of the denominator f,(x) of the Nadaraya-Watson

smother, it can be shown that f, (x) is asymptotically consistent.

Proof: To find the variance of f, (x) lets’(x)=E [YZ X = x} , then

Var([f, (x)] =Var [n‘lzn: K, (x=X,)Y, }

=n"Var[K,(x-X)Y]
- TG-S @) @~ ([, (c-upr(uyd) |
=n~h [KES? (x+uh) f (x+uh)du +0((nh) ™)
=n"h f (x)s*(X)[|K]; +o((nh)™)  (nh —oo) (3.12)

Combining equations (3.11), (3.12) when h — 0,nh — o« the mean square error of

fi, (X) becomes

N 1 h* . ,
MSE[rh(x)]:m f(x)sz(x)||K||§+?(r (), (K))” +0(h*)+o((nh) ™).
Ifnh — oo, I\/ISE[fh(x)]—>O.This means f, () isa consistent estimator of r(x) . That

is for any ¢>0andc —0, lim P[|f,(x)—r(x)|<c]=1. Shortly, f,(x)——r(x).

nh—oo

Theorem 3.4: The denominator fh(x) of the Nadaraya-Watson smother is

asymtotically unbiased.

Proof: Since X;; i=1,...,nare i.i.d. we have
. 1Q
E| f ==> E[K,(x=X,
|:h(x):| nizzl: [K, (x=X})]

= E[K,(x=X)]

:IKh(x—u)f(u)du

20



= j K (s) f (x+sh)ds
Letting h — Oresults in
E[fh(x)J—> F ([ K(s)ds = f(x) .
When bandwidth h convergence to 0 the E [ fh(x)} is asymptotically unbiased Q.E.D.

In general bias can be analyzed using the Taylor expansion of f (x + sh) in x assuming

f is twice continuously differentiable ( f € C?).
Bias[ fh(x)] = [K(s)f (x+sh)ds - f (x)

2a2

= J' K(s){ f (X) +shf '(x) +hTS f"(x) +o(h2)}ds - f(x)

2

= f(X)+h? F7(x) 1, (K) +0(h*) = f (x) (3.13)

Proof of equation (3.13) see [14].

Due to symmetric property of K around 0, the termIsK(s)hf '(x)ds = 0. Then the bias

of kernel density becomes
. h?
Bias[ fh(x)] == f"(X) 4, (K) +0(h?) , h —0 (3.14)
Since equation (3.14) contains h?, it means the bandwidth should not be very big to
avoid large bias values. Also, the bias is proportional to f” in x. It means E[ fh (o)}

will be greater than the true value f(x) when estimating points around a local
minimum (f”(x) >0), and it will be greater than f (x) when estimating points around

a local maximum (f"(x) <0).
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Theorem 3.5: Using the variance of the denominator fh(x) of the Nadaraya-Watson

smother, it can be shown that fh(x) Is asymptotically consistent.

Proof: Since X;; i=1...,narei.id.

Var[ f, (x)] = n‘ZVar[Zn: K (X— Xi):|

i=1

= n’zzn:Var[Kh(x— X)]

i=1

=n"Var[K, (x—X)]

= E[KE(x-3)]~(E[K, (= X))’}
oo oo (52 - 1000
_ n—l{h—leZ(s) f (x+shyds—( f (x)+0(h))2}

= K (£ 00 +0(m)—( f )+ ()’
From equation (3.13) we have E[Kh(x— X)] = f(x)+o(h) and
sz(s)f(x+sh)ds:jK2(s)ds(f(x)+o(h)):||K||§(f(x)+o(h))
From here
Var[ f. (x)} =(nh) K] £ (x)+o((nh)™) , nh— oo, (3.15)
It is obvious that (nh)™*has a strong influence on variance, leading to larger values of
h to reduce the variance. On the other hand, small h value is desired for decrease in
bias. If we consider the MSE combining the variance and square bias of fh(x), as
h — 0 and nh —cowe have

MSE| f,(0] :n—lh fOO[K? +h7( £"(X)1,(K))” +0((nh) ) +o(h*)
22



Then the kernel density estimate is consistent satisfying fh (x)—-— f(x) Q.E.D.

MSE establishes balance between variance and bias such that
I Decreasing variance results in under smoothing.
ii. Decreasing bias results in over smoothing.

Note that based on MSE the optimal bandwidth kernel density can be determined as

[ oIk
ho - n 2 2
(F00) ((K))'n
See reference [10], page 59.
3.8 Scatter Plots

Usually, called scatter diagram, but which have many names, such as scatter plot,
scatter graph and correlation chart etc., are important steps in the study of the bivariate
data set. In this diagram the independent variable is shown on the x-axis while the
dependent one goes on the y-axis. A scatter plot is a good tool that visualy shows the
relationship between the dependent and independent variables. For the airquality data
the scatter diagram is given in Figure 3.3 [26]. A visiaul inspection of scatter plot
shows some kind of linear relation between the two variables. The linear correlation

coefficient r = -0.6469 confirm this.
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Figure 3.3: Scatter diagram where temparature is independent, humidty is dependent
variable

3.9 Application of Kernel Smoothing

In the previous section some of the important aspects of kernel smoothing are given.
Application of kernel smoothing nececiates the use of computer support in order to
handle the huge amount of number crunching to reach at the required results.
Especially the theoretically proposed band width h may not always produce the desired
results, in terms of minimizing the error term involved in the smoothing process. A
simulation approach based on the use of different band width values and comparing

associated errors tends to be more productive in determining the value of h.

A data set consisting of 63 observations with 2 variables, where air temperature in °C

taken as the independent variable X, and relative humidity is the dependent variable Y.

A scatter diagram of the data given in Figure 3.3 indicated some kind of linear relation

between the two variables. The degree of the relationship is computed as a linear
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correlation coefficient value of 0.65. This was considered a reasonable degree of

correlation between the two variables to continue for further analysis of the data.

ix—xi2
20 h

For kernel regression the Gaussian kernel e[ ) ]was used to compute the kernel

values. X =9.9000001, X, =18.275, giving a range of 8.3749999°C . Following

the careful examination of the data values for the variable X, it was considered
adequate to use an increment value dx=0.03 to be used in the computation of the kernel

values. Computations were carried out using a set of 5 different band widths
h=(0.05, 0.1, 0.3, 0.5, 2.3). For each band width the estimated values Y were

computed using the Nadaraya — Watson estimator given in equation (3.9).

For different bandwidths the computed kernel smoothers are given in Figures 3.4 to
3.8. It is clearly visible that the smaller band width h=0.05 produced very little
smoothing, the kernel graph producing wild fluctuations, and increasing band width
reduced the fluctuations resulting in smoother curves as h approaches 0.5 as seen
Figure 3.7. Band width computed using equation (3.5) h=2.3, is also used for
comparison and as seen in Figure 3.8 has produced very smooth curve almost
equivalent to linear regression line. This emphasizes our argument that the
determination of the optimal band width can be obtained through simulation and

Z(Y —Y)2

checking for resulting MSE, bias and variance values. Statistically MSE = -

. From table 3.1 an examination of MSE, bias and variance values suggests h=0.1 can

be good candidate for optimal band width.
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This was followed by the comparison of Mean Square Error (MSE), bias, and variance
values. It can easily be observed that an increase in the band width results in an increase
in MSE (Figure 3.9), while a decrease is observed in the variance of estimates (Figure
3.10). Behavior of the bias in relation to band widh is shown in Figure 3.11. Bias is

computed as given below
Bias = EUY —YH .

A clear increases as h increase.

The results we obtained from these calculations are as follows;

Table 3.1: MSE, Bias and Variance values obtained from the kernel analysis of the

data
MSE Bias VaI’(YA)
h=0.05 8.258801 2.0428818 27.71789
h=0.1 10.221633 2.4617001 24.13091
h=0.3 14.56699 3.1498393 18.705991
h=0.5 15.42330 3.2387629 17.137332
h=2.3 20.97414 3.8808349 3.9560030
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Figure 3.4: Kernel estimator for band width h=0.05
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Figure 3.5: Kernel estimator for band width h=0.1
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Figure 3.6: Kernel estimator for band width h=0.3
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Figure 3.7: Kernel estimator for band width h=0.5
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Figure 3.8: Kernel estimator for band width h=2.3

We repeated process for 5 different band widths in order to see the relationship
between h, error, variance and bias. The graphics we obtained from these operations

are as follows;

h vs MSE

25
20

15

MSE

10

h

Figure 3.9: MSE as a function of a band width
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Chapter 4

PRINCIPAL COMPONENT ANALYSIS

4.1 What is Principal Component Analysis

Multivariate statistics deals with situations where there are more than one variables.
When the number of variables (p) is too large, the analysis of multivariate data
becomes difficult as p becomes larger. For this reason, a method was developed to
reduce the number of variables. This method, derives linear combinations of actual
variables, which are called principal components (PC) [14,28]. The number of
variables and the number of principal component is the same. Nevertheless, we can
represent more than %90 of the total variation in the data with only the first few
principal components. The systematic reduction of a large number of independent
variables to smaller dimension is done by the principal component analysis (PCA).
Principal component analysis, is a statistical technique that transforms data represented
by a large number of variables into a smaller number of uncorelated variables or PCs.
It requires a lot more effort to interpreat the uncorrelated PCs than to understand a

large set of correlated variables [6,21].
4.2 Concept of PCA

Algebraically, the PCs are certain linear combinations of p random variables. The

principal components are only dependent on the covariance X or correlation p

matrices of the data matrix X . The eigenvalues obtained fromX or p are listed as,

A4=24,2..21,20. The corresponding eigenvectors are €,,€,,....e,. Then the PCs
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are written as linear combinations of the p variables where the coefficients are the
elements of the eigenvectors as given below.

Y =eX=¢e, X, +e,X, +..+¢,X,
: 4.1)
Y,=e' X=e, X, +e,X,+..+e X,

Understanding the theory of PCA requires a clear understanding of the covariance and
correlation concepts. Hence, before whenturing further into PCA analysis, it is
consider necessary to explain the covarince, correlation concepts in detail [17].

4.2.1 Abstract Definition of Covariance and Correlation

Definition 4.1: Let random variable X with probability density function f(x) and

mean u , then the variance of X is given by

o? =E|(X—p) |= X (x=u)" (x) [18]

X

When p random variables with joint probability density f(x,,X,,...,X,) is given, then

the covariance matrix becomes X =E (X—u)(X—p)'

Xi—H
=E Xzs_luz [Xl—lu,l,xz—,uz,...,xp—,up]
Xp = Hy
_ (Xl—ﬂi)z (%~ 1) (X5 - 12 (Xl‘%ﬁ)(xp‘”p)_
-E (%2 -u2) (%, - 14) (Xz—ﬂz)2 (Xz—ﬂz)(xp—#p)
_(prﬂp)(xlfﬂi) (Xp’”p)(xrﬂz) (prﬂp)z |
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_ E(Xl—ﬂi)z £ (Xy 1) (X -~ 119) € (xq 1) (% ~up)
i} E(Xp—ty) (X - 1) E(XZ‘”z)Z E(Xz—#z)(xp‘ﬂp)
_E(Xp*“p)(xlfﬂl) E(Xp*“p)(xfﬂz) E(Xp*”p)z

or
0, Oyp O1p
O. O. O.
T=Cov(X)=| [ 7 P (4.2)
Op Op2 O pp

pis the population mean vector and X is the population variance-covariance matrix.

However, when the p variables have different units or the magnitute of data values are
significantly different, then it is wise to standardize the data and use the correlation

matrix for the computation of PCs.

Theorem 4.1: Given random variables X;and X, with joint probability density

function f(x,x;) and if f(x;,X;)=f(x)f(x;) indicating the independence of the

random variables X;and X ;» then the covariance o, , =0.
i

Proof: For the discrete case we have,
E(XX;)=2> %% - f(x.X)
Since X, and X;are independent, we can write f(x,x;)= f (6)- £, (X)), where

f, (%) and f,, (x;)are the marginal distributions of X; and X, then

E(XX;)=2 %% F(x)F(x)

S

33




:E(Xi)-E(Xj)
Hence,
oyx, = E(XX;)—E(X)-E(X;)
= E(X,)-E(X;) - E(X,)-E(X))
=0
Example: Let X,and X, be two random variables, with joint distrubition;

e "™ for x, >0, x,>0
f(xl’ Xz) :{ ! ?

0 elsewhere

0

L= fes mag (o) (-h) e
0

X1+ X,
0 €

fXZ(xz):Te’xi’Xdelz(—e’xl’XZ) :(— L j =g
0 0

e)(1+>(2

Random variables X,, X, are independent iff f(x,x,)=f (x)-f, (x,). Applying

this condition to the example

2

e_xl_xz : e_xl .e_xz

it is seen that the independence condition is satisfied, leading to o, =0, as shown

) N _ _1 ©
E[X,]=[xe 1d><1=( )fj ] =1
0 0

E[X.X,]= TT X X,e " edx,dx, = T xe™ [T X,e72dx, jdx1 = T xe™ ((—xzexz ): ) dx, :T xedx, =1
00 0 0 0 0

Hence,
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Cov(X,, X,)=E[X,X,]-E[X,]E[X,]=1-11=0
Theorem 4.2: When o, , =0 does not always indicate the independence of X;and

X

it

Example: As an example, take f (X, x;)=xXx; for discreate random variables X;and

X; with the joint probability distribution given in the table.

f (%, X X
0 1 2
0 0 0.25 0
X, 1 0.25 0 0.25
2 0 0.25 0

The expectation of X; X ; is computed as follows:

E[Xi]:O-%+1-%+2-%:1

1 .1 .1
E[xj]:o-z+1-§+2-2=1

E[Xixj]:(0-0).0+(1-0).E+(2.0)-0+(o-1)-E+(1.1)‘0+(2.1).E+(0.2).0+(1.2)-E+(2.2).o=1
4 4 4 4
Hence,
Cov(X;, X ;) =E[ X;X; |-E[X,]E[ X, |=1-1-1=0

F(xx) = (%) F(x)

Sl
Sl
N =

For example f(1,0) =f @Of@O)—>

Hence, while Ox.x, =0, the random variables X; and X ; are not indepedent.
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Definition 4.2: Correlation coefficient is the covariance of the two variables divided

by the product of their standard deviations. The population correlation coefficient for

any two variables X;, X, ;i, j=1..., p is denoted by o, and defined by

cov(X;, X;)
Px.x;, =
Oy, 0,

To express p in terms of expectations, the covariance between the variables X;, X,

and standard deviations of the variables X;, X; have to be expressed in terms of

expectations.

Note:

First moment about the origin: u, =E[X;]
Second moment about the mean:  z, = E[(X - E[X])Z} =I(x—;¢)2 f (x)dx

of =E| (X, ~E[X]) |-E[x*]-[E[X.]T
E[(xi—yxi)(xj—uxjﬂ:E[(xi—E[xi])(xj—E[xjm:E[xixj]—E[xi]E[xj]

cov(X;, X;) =0y x, = E[(Xi A )(Xi ~ )}

the formula for p becomes

Py x, = E[(Xi — )(XJ’ ~Hy, )J

b GXiO'XJ_
Expressing the covariance in terms of moments about the origin, yields

E[ X.X; |-E[X,]E[ X|]

Prx, =\/E[Xizj_[E[xinJE[X,-Z]—[E[XJ]]Z

Considering the fact that, o, =o,; wheni=Kk, the correlation coefficient can be

written as
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UII _1

\/ O i

To show that —1< p <1 we utilize the Cauchy — Schwarz Inequality

[Cov(X,, X )| <Var(X,Var(X))

oo, X)) = [ AR

substitute this from Cauchy-Schwarz inequality into the equation formul

Cov(X;,X,) \ Mar(X;Var(x))

IPl= \/\/ar(x WVar(X . )‘ \/\/ar(x )Var(X)

- -1<p<l (1]

p is a measure of a linear correlation coefficient between the random variables X; and

X

i

Given p random variables the correlation matrix can be written as

Oy O O1p
\VO1uNO1 0102 \NO114/O pp
O, Oy O2p
VO1uNO2» 0202 O A0
p =
O1p O1p Opp
VOO 0224/ O pp \|Fpp
1 pp o Py
P 1 o opy
Pip Pap .- 1

Let the px pstandard deviation matrix be
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_4/611 0 0 |
, 0 Cp - 0
V= (4.3)
i 0 0 Tpp |

Then it can easily be verified that
_(v¥2)"! AN
p=(V¥) 2(V¥)
Theorem 4.3: Consider the following g linear combinations of p random variables

Z =C X +C, X, +.. 40 X

Z, =CuX;+CpXy+...+Cy X,

Z,=Cy X +Cpu Xy +...+C, X

The above equation can be written in matrix format as follows.

Z Cy Cyp o Cpll X
z Cy Cp ... C X

z=| F|=| T T | |=ex
Z, Ca Co2 - Cy || X,

It follows that;

ap, = E(Z) = E(CX) =Cu,

b) X, =Cov(Z)=Cov(CX)=Cx,C

Proof for part a : For a simple random variable X, and constant c;
E(cX,)=cE(X,)=cy

Var(cX,) = E(cX, —cu)? =c*Var(X,)

can be computed.

For two random variables X, and X, and constants a, b, the covariance matrix can be

computed as follows
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Cov(aX,,bX,) = E(aX, —az)E(bX, —bu,)
= abE (X, —14)(X; — 1)
=abCov(X,, X,)=abo,,
If we have combination of two variables aX, +bX, , then
Z = E(aX, +bX,) =aE(X,) +bE(X,) = az + by,
Var(aX, +bX,) = E[(aX, +bX,) - (a —bu,)]|
= E[a(X, - ) +b(X, - 15)]
= E[a*(X, — )” +b*(X, = 11,)* + 2ab(X, = 1)(X, — 11,) |
= a’Var(X,) +b*Var(X,) + 2abCov(X,, X,)
=a’oc, +b’c,, +2abo,,

with ¢’ =[a,b], and aX, +bX, can be written as

(a b]Kj:c'x.

Also, E(aX,+bX,)=az, +bg, in matrix format will be

[a b]{ﬂl} =c'p

H

If X is expressed as in equation 4.2 for bivariate case we have

O O,
Z — |: 11 12 :|
O, Oyp
then the variance-covariance matrix of X ,can be written as,

Var(aX, +bX,) = Var(c'X) =c'Ze¢

since,
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Oy Op

a
c'Xe=[a b]{ }{b} =a’c,, +2abo,, +b’c,,

01, Op
In the case of a linear combination with p random variables: ¢’ X=¢, X, +...+¢,X  has
mean E(c'X) =c'n, where p=E(X).

Proof for part b can similarly be done.

4.2.2 Statistical Definition of Covariance and Correlation

In order to understand and compute the covariance, the sample mean and sample

variance concepts has to be understood.

4.2.2.1 Sample Mean
Sample mean is the arithmetic average of n observations (X1 Xn) taken at random

from the population represented by the random variable X. Computing the mean of p

variables involved in a process will obviously result in a vector of average values
o e o o
X :(xl,xz,...,xp)

Definition 4.3: If X represents a set of n observations, (X1 Xn) , then the mean of

. R
data is the scaler X==>"x, .
i=1

X X X X1p

X1 Xy ij sz
Definition 4.4: Consider the nx p data matrix X=

Xll Xi2 XIJ Xip

Xg  Xog o oo Xy X

where p variables involved with n observations in each variable.

: : o 1.,
The sample vector mean is then defined as X' = Hl” X.

40



Let 1, be the column vector of 1s. The column vector representing p sample averages

X

is denoted X =

Xl ...

p

The expectation of the sample mean vector is given by

X E(fl) Hy
E(Y)=E X2 _ E(ZXZ) _ :uz —n
v E(x))

Definition 4.5: Given random variable X, with mean 4 the E(cX,)=CcE(X,)=cp.

Definition 4.6: X is the random variable consisting of n observations (X,....,X, ) , with
(Xi - 7)2
l .

mean X . Then the variance is s = = 1
n —_

The nature of the binary linear relationship between the variables needs to be
determined. The covariance and linear correlation coefficients are used this purpose.
The strength of the linear relationship between the variables becomes evident in the

correlation coefficient.

When there are two random variables, X, and X, the relationship between them can

be determined by the covariance given in definition 4.7.

Definition 4.7: Given random variables X; and X with joint probability f(x;, ;)

then the covariance between X; and X, is given by (4.4).
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S,y = (4.4

When the number of variables is more than 2, then each element of the covariance
matrix (S) can be computed using equation (4.4). Diagonal elements of S matrix will

be the variance of individual variables, off diagonal elements will be the covariances

between the variables X, X ; i, j=1,..., p. Covariance matrix is symmetric.
Definition 4.8: Consider two random variables X;and X ; with n observations then

Cov(X,,X;)

the correlation coefficient between X;, X is given by r , =
\/Var )Var(X;)

Note that—1<r <1.

4.3 Theory of PCA

In order to understanding the theory of PCA the following theorems are given.

Theorem 4.4: Let X be the covariance matrix associated with the random vector
=[X1,X2,...,Xp] Let X have the eigenvalue-eigenvector pairs
(ﬂl,el),...(ip,e )where A 24, >..>24,>0. Then the i principal component is
given by
Y, =eiX=e X, +€,X,+...+e, X, i=12..,p
it can be shown that,
Var(Y,)=eXe =4, i=12...,p

Cov(Y,Y,)=eZe =0, i=k
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Proof: Algebraically it can be shown that the first eienvalue of a square symmetric

matrix is

a'Xa
max =
a=0  g'a

A (4.5)

when a =e,. However eje, =1as the eigenvectors are normalized. Then,

a'Xa eYe
max ——=4 =-+—L =g Xe =Var(Y,)
a=0 aa el 1
In a similar fashion
a'Xa )
max ——=4, k=12,..,p-1can be written.

alee,.e  a'a

If we chose a=e, ,, with e, ,e,=0, fori=12,...,kandk=12,...,p-1,
e . xe..le. e =e  Xe =Var(Y,,,)
On the other hand
€ (Z‘ek+1) = Mess€hi1€i1 = My SO Var (Yk+1) = Mesq
Thatis e; and e, are perpendicular (orthogonal) which means efe, =0, i =Kk, resulting
in
Cov(Y,,Y,)=0. Then,

1. If all the eigenvalues 4, 4,,...,4,are distinct, the eigenvectors of X will be

orthogonal.

2. If the eigenvalues are not all distinct, the eigenvectors corresponding to
common eigenvalues may be selected to be orthogonal. So, for any two
eigenvectors e;,e, where eie, =0, i =K.

Xe, =Ae, Multiplying by e, gives

Cov(Y,,Y,)=eXe, =e'L e, =he'e, =0
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For any i =K.

Note: It must be stressed that some of the coefficient vectorse, and corresponding Y,
will not be unique, if some eigenvalues A are equal. Q.E.D.
Theorem 4.5: Consider a vector of prandom variables X = X,,..., X, | with its
associated covariance matrix X, computed from n observations of p random variables.
Then the eigenvalue — eigenvector pairs (4.e,),...(4,.e, ) of the covariance matrix
X, suchthat 4, >4, >...>2 4, > 0and the PCs are

Y =eX=¢e, X, +e,X, +..+¢,X,

Y, =e' X=e,X, +.ep2X2 +o.te, X,

It can be shown that the following relationship holds

i=1

p p
Oy, +Oxx, +ort Oxx, = D NVAN(X) =4+ A, +...+ 4, = D var(Y,) [16]
i=1

k
Proof: It is known that tr(A) =Zaii where A ={a;}indicates a K xK square matrix.
i=1

Applying this to the covariance matrix X yields

K
- . _ ' _ ' .
0y, +0, +...+0,=tr(X), then by using A= 1 A4, €t = Pliodoy Ao Pty With

A=X
Y. =PAP’ where A is a diagonal matrix of the eigenvalues and, P =[e,,e,,...,e ]
Then P'P=PP'=I.
tr(X) =tr(PAP’) =tr(APP’) , Since tr(AB) =tr(BA).

Then, tr(APP) =tr(A)=4+4,+...+4,.

Then, Zp:Var(Xi) =tr(X) =tr(A) = Zp:Var(Yi).Q.E.D.

i=1 i=1
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It is worth noting total population variance = o, + 05, +...+ 0, =4+ A4, +...+ 4,

A

Proportion of total population variance due to k™ principal component = ) i
4.+

p

k=12,...,p. (4.6

The number of PCs to be used in the analysis of data (k) is determined by the ratio

4

[
i=1

Z ?:1 ﬂ“i

4.7

T =

In general 7>0.9 is preferred.

Another method that helps determine the most suitable number of component is the

scree plot method.

Scree Plot, a simple line segment graph, represents the fraction of the total variance in
the data described or represented by each PC. The y axis contains the eigenvalues
sorted by decreasing order of total variance explained. The point of separation is often
called the 'elbow’, that location might indicate a good number of principal components
(PCs) to retain.

Theorem 4.6: Consider the PCs

’
Yi=eX=e, X, +e,X, +...+¢,X,
— ’ j—
Y, =e,X=e, X +e,X,+..+€, X,
computed from the covariance matrix X, with the associated eigenvalue - eigenvector

tuples (ﬂl,el),...(}tp,ep). The correlation coefficient between the i PC Y, and the

k™ variable X, is given by
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€ /A
Py x, = 'k\/_' , Where 1<i,k <p [22]

Oy, X,
Proof: Consider the vector a, =[0,...,0,10,...,0] such that X, =a,Xand
Cov(X,,Y;) =Cov(a, X,e!X) . Also Cov(a, X,e/X) =a, Xe, based on the maximization
of quadratic forms on the unit sphere concept and remembering that
Cov(X,.,Y;)=a,re, = 4e,, Xe, = Ae,, then Var(Y,)=e;Xe, =4 yields Var(Y;) =

and Var(X,) = o,, which gives

Cov(Y, X,) Ay _e.k

Phx, ,/Var(Y JVar(X,) \/_\/a

4.3.1 Standardized Variables

" i,k=12,...,p QE.D.

Generally standardzation is necessary when the units of data for different variables is
variable, or there is significant difference between the magnituteds of data values for

different variables. Then PCs may also be obtained from the standardized variables

(Zl,Zz,...,Zp), where

(Xi_:ui)

Oiji

Z =

In matrix notation
Z=(V¥2)" (X—p)
here V¥? is the diagonal standard deviation matrix as given in 4.3. Since Z is the vector

of standardized random variables Z,,Z,,...,Z ;, then E (Z) =0and
Cov(Z)=(V¥) "E(V¥) =p.

The PCs of Z are obtainable from the eigenvectors of the correlation matrix p . Results

pertaining to PCA mentioned so far are valid for the case of standardized data.
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An important point is that PCs obtained from X matrix and from the p matrix will
not in general be the same [4].

Theorem 4.7: The standardized variables Z'=[Z,,Z,,...,Z, |with Cov(Z)=p

yields PCs as given by
-1

Y, =eZ=¢/(V¥?) (X-p), i=12...p
Furhter,

p p

D Var(Y,)=> Var(Z,)=p (4.8)

i=1 i=1
and

Pz =&h  Lk=12..,p

Then (ﬂl,el),...(;tp,ep)are the eigenvalue - eigenvector pairs for p with
A2 2..2 14,20,

Proof: Theorem 4.7, is proven using 4.4, 4.5 and 4.6. Instead of X,,..., X , Z,,...,Z

! p? p
comes and p instead of X.
We see from 4.8, the sum of the diagonal elements of matrix p is equal to the total

population variance p.

Proportion of standardized population variance due to k™ principal component =

A

F ; k=1,2,...,p where the 4, 's are the eigenvalues ofp .
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Chapter 5

APPLICATIONS

5.1 Application for PCA

A data set consisting of 30 different plants and a total of 340 data observations is
considered. Plant type Primula Vulgaris had 16 observations with no missing values,
the largest number of observations out of the 30 plant types, therefore choosen for the
study. See Table 5.1. Although 16 observations may not be a large data set, but it was
not possible to mix the data from diffrent plant types, as it would result in incosistent
reults in subsequent computations. The data set consists of 14 attributes based on the
analysis of leaf shapes [19]. Attributes are; X1: Eccentricity, X2: Aspect Ratio, X3:
Elongation, X4: Solidity , X5: Stochastic Convexity, X6: Isoperimetric Factor, X7:
Maximal Indentation Depth, X8: Lobedness, X9: Average Intensity, X10: Average

Contrast, X11: Smoothness, X12: Third moment, X13: Uniformity, X14: Entropy.

The mean vector of the data is computed as

)_(:<OA417701 1.087388 0.661612 0.529682 0.652521 0.158526 0.128979 3.04685 0.025704 0.08644 0.007714 0.002377 0.000144 0808387)

This gives a preliminary idea about the magnitude of the values for each variable.

Highest values observed in X, and lowest ones in X,.
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Table 5.1: Leaf data with 14 variables

X1
0.51247
0.54893
0.43425
0.38501
0.26758
0.24465
0.39092

0.4042
0.50692
0.47565
0.52382
0.36462
0.52212
0.38203
0.27123
0.44882

X2
1.1116
11111
1.095
1.0656
1.1316
1.047
1.087
1.0965
1.127
1.0656
1.1117
1.0811
1.1191
1.0405
1.09%
1.0118

X3
0.65626
0.63983
0.68828
0.63042
0.60128
0.60511
0.68174
0.65899
0.67203
0.69172
0.67175
0.67755
0.70988

0.6901
0.68075

0.6301

X4
0.57724
0.56623
0.52398
0.51223
0.54301
0.56524
0.50961
0.52833
0.53024

0.5233
0.54701
0.49042
0.50678
0.48549
0.49446
0.57134

X5
0.59298
0.6
0.54211
0.59123
0.77368
0.79474
0.6614
0.68421
0.75263
0.49649
0.62982
0.68772
0.64912
0.63684
0.53684
0.81053

X6
0.16867
0.15743
0.15396
0.13705
0.20311
0.21788
0.15361

017711
0.16792
0.14133
0.15157
0.14118

0.1412
0.13165
0.13088
0.16187

X7
0.11187
0.13081
0.13761
0.12292
0.15354
0.12522
0.14082
0.13017
0.13006
0.12987
0.13674

0.1243
0.13192
0.11852
0.12815
0.11115

X8
2.2776
3.1143
3.4462
2.7498
4.2904
2.854
3.6093
3.0837
3.0788
3.0697
3.4028
2.8118
3.1674
2.5565
2.9887
2.2486

X9
0.016001
0.021231
0.021147
0.033373
0.017945
0.037595
0.028638
0.029057
0.015279
0.023977
0.026434
0.037866
0.025478
0.027997
0.021943
0.027309

X10
0.061238
0.079722
0.073202
0.098907

0.07145
0.127
0.089135
0.096836
0.057592

0.0842

0.085792

0.11692
0.085964
0.093312
0.072882
0.088889

X11
0.003736
0.006316

0.00533
0.009688
0.005079
0.015874
0.007882

0.00929
0.003306

0.00704
0.007306
0.013485
0.007336
0.008632
0.005284
0.007839

X12
0.000879
0.001912

0.00134
0.002787
0.001465
0.006587
0.002118
0.002893
0.000728
0.002085
0.002137
0.004648
0.002179
0.002659
0.001339
0.002273

X13
0.000103
7.39E-05
0.000164
0.000214
7.25E-05
0.000108

0.00021
0.000127

0.00011
0.000113
0.000166
0.000177
0.000149
0.000125
0.000221
0.000175

X14
0.6508
0.71949
0.75496
1.0015
0.63273
0.8331
0.90082
0.82383
0.67289
0.77399
0.90513
0.9229
0.82809
0.8499%4
0.80402
0.86

The covariance (S) and correlation (R) matrices were computed from the data set, and

both used for the computation of the principal components. Since the eigenvectors are

used in the formation of the PCs, then the set of PCs obtained from the covariance

matrix will be different to those obtained from the correlation matrix.

The computed covariance matrix using raw data from Table 5.1 is given below.

0.0094
0.0009
0.0013
0.0008
-0.0025
-0.0008
S — | -0.0002
-0.0099
-0.0003
-0.0008
-0.0001
-0.0001
-0.0000
-0.0014

0.0009
0.0011
0.0002
0.0000
-0.0005
0.0001
0.0002
0.0102
-0.0001
-0.0004
-0.0001
-0.0000
-0.0000
-0.0018

0.0013  0.0008  -0.0025
0.0002  0.0000 -0.0005
0.0010  -0.0006 -0.0017
-0.0006  0.0009  0.0009
-0.0017  0.0009  0.0089
-0.0006  0.0005  0.0015
-0.0000 -0.0000 -0.0000
-0.0009 -0.0020  0.0011
-0.0000 -0.0001  0.0001
-0.0001 -0.0001  0.0005
-0.0000 -0.0000  0.0001
-0.0000 -0.0000  0.0001
0.0000  -0.0000 -0.0000
0.0005  -0.0013  -0.0005

-0.0008
0.0001
-0.0006
0.0005
0.0015
0.0006
0.0001
0.0033
-0.0000
0.0001
0.0000
0.0000
-0.0000
-0.0011

-0.0002
0.0002
-0.0000
-0.0000
-0.0000
0.0001
0.0001
0.0053
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0002

-0.0099
0.0102
-0.0009
-0.0020
0.0011
0.0033
0.0053
0.2550
-0.0008
-0.0018
-0.0004
-0.0001
0.0000
-0.0127

-0.0003
-0.0001
-0.0000
-0.0001
0.0001
-0.0000
-0.0000
-0.0008
0.000012
0.0001
0.0000
0.0000
0.0000
0.0006

-0.0008
-0.0004
-0.0001
-0.0001
0.0005
0.0001
-0.0000
-0.0018
0.0001
0.0003
0.0001
0.0000
0.0000
0.0013

-0.0001
-0.0001
-0.0000
-0.0000
0.0001
0.0000
-0.0000
-0.0004
0.0000
0.0001
0.000016
0.0000
0.0000
0.0002

-0.0001
-0.0000
-0.0000
-0.0000
0.0001
0.0000
-0.0000
-0.0001
0.0000
0.0000
0.0000
0.000021
0.0000
0.0001

-0.0000
-0.0000
0.0000
-0.0000
-0.0000
-0.0000
-0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.00001
0.0000

-0.0014
-0.0018
0.0005
-0.0013
-0.0005
-0.0011
-0.0002
-0.0127
0.0006
0.0013
0.0002
0.0001
0.0000
0.0107

S is a symmetric matrix, its diagonal elements being the variances of each variable.

Off diagonal elements are the covariance values for all possible pairs of variables,

49




indicating whether the relation is positive or negative between the pairs. However, the

absolute value of the covariance is not an indication of the strength of the relation

between the variables in each pair.

Another drawback of the use of covariance matrix becomes evident when there is

significant difference between the observations belonging to different variables, or

units of variables are not consistent. Under such circumstances, the use of the

correlation matrix for the determination of the PCs becomes more desirable.

Eigenvalues ( A,) vector obtained from the covariance matrix is

Ag= {0.000002, 0.000001, 0.00008, 0.00004,0.00002, 0.00001, 0.0001, 0.0002, 0.0004, 0.0010, 0.0058, 0.0109, 0.0130, 0.2566}

The corresponding eigenvectors matrix Eg is

~0.0002
0.00002
0.0003
0.0007
0.0001
-0.0008

0.0111
ES ~0.0002
0.0876
-0.0047
-0.2339
0.2478
-0.9360
~0.0009

-0.0008
0.0001
0.0016
0.0026
0.0001

-0.0011
0.0170

-0.0003

-0.1582

-0.0109
0.6178

-0.6856

-0.3505
0.0024

0.0027
-0.0026
-0.0019
-0.0090
-0.0017

0.0005
-0.4973

0.0107
-0.2430
-0.0832

0.5870

0.5843
-0.0202

0.0077

-0.0007
0.0115
0.0047

-0.0120

-0.0015
0.0237

-0.5563
0.0107

-0.6036
0.2727

-0.4306

-0.2544

-0.0243
0.0128

-0.0026
0.0007
-0.0049
-0.0015
0.0024
-0.0064
0.6646
-0.0142
-0.6897
0.1493
0.0635
0.2360
-0.0108
0.0139

0.0772
-0.1065
-0.1227
-0.4578
-0.0576

0.7398

0.0116
-0.0067
-0.1046
-0.4311
-0.0698
-0.0346
-0.0003

0.0672

-0.1428
0.0532
0.5069
0.5735
0.0279
0.0838

-0.0092

-0.0008

-0.1597

-0.5732

-0.1020

-0.0436
0.0023
0.1295

-0.0065
0.0984
0.4886
0.1493

-0.0536
0.5704
0.0191

-0.0050
0.1685
0.5957
0.1165
0.0583

-0.0009

-0.0218

-0.0789
0.9611
-0.2090
-0.0097
-0.0020
0.0667
0.0035
-0.0369
-0.0008
-0.0448
-0.0011
-0.00001
0.0003
-0.1360

-0.0531
0.1594
0.6331

-0.6303
0.2655

-0.2819
0.0026

-0.0155

-0.0222

-0.0890

-0.0153

-0.0081
0.0002

-0.1214

0.6975
0.0040
-0.0034
0.0931
0.5825
0.0160
0.0013
0.0462
0.0156
0.0330
0.0048
0.0013
0.00004
0.4022

0.1046
-0.0443
0.1692
-0.1731
-0.6014
-0.1773
0.0044
0.0488
0.0271
0.0467
0.0060
0.0008
0.0003
0.7280

-0.6823
-0.1528
-0.1269
-0.0540
0.4707
0.0634
-0.0006
0.0019
0.0446
0.1178
0.0215
0.0091
0.0002
0.5001

0.0396
-0.0400
0.0038
0.0076
-0.0050
-0.0134
-0.0209
-0.9967
0.0033
0.0073
0.0014
0.0006
0.00003
0.0517

Clearly, 14 PCs can be written using the Eg matrix. However, according to equation

(4.7) the first 3 eigenvalues represents 97.39% of total variation in the data, computed

as 7, = (0.2566 + 0.0130+0.0109) / 0.288 =0.9739. It is also observed from Figure 5.1

that the elbow point is occurring around the third eigenvalue suggesting three PC will

be adequate.
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Scree Plot

0.3
0.25
0.2
< 0.15
0.1
0.05

0
0 2 4 6 8 10 12 14 16

Figure 5.1: The scree plot of the eigenvalues computed from the covariance matrix

The first 3 PCs obtained from the data are given in Appendix C, Table C1.

Coefficients used in each variable making up a PC indicates the contribution of each
variable to the formation of a PC. This is an important point as variables with high
coefficients will carry more importance in the analysis of multivariate data. For

example in the first PC (Y,) which represents (A, / £1)100 = (0.2566/0.288)100 = 89.1%
of total variation in the data, X, has the highest influence in absolute terms its
coefficient provides (&, / Xe,;)100 = (0.9967/1.1916)100 =83.6% of the contribution
in the formation of PC1. Therefore X, can be considered as the most important

variable in the whole data set.

Another important factor is the correlation coefficient between each PC and the

random variables. Correlation coefficients Kx; o and eigenvectors e;; i =1,2,3 for this

example are given in Table 5.2.
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Table 5.2: Correlation coefficient between variables X, and each PC, and contribution
values e, and each PC

L2 X2 X3 XS X6 X7 X X9 X0 Xt X XB o Xu
02069 -0.610% 00605 01283 -0.0268 -02771 -09%99 -0.998 0486 0213 00773 00663 00481 0253
003% -004 00038 00076 -0.005 -00134 -00209 -09%7 0003 0007 00014 00006 000003 00517
0800 05253 0475 02052 05689 02951 0.0068 0000004 09998 07755 06128 024 00072 (05512
0683 01528 0129 -0054 04707 00634 -0.0006 00019 00446 0178 00215 00091 00002 0.5001
01126 -0.13% 05586 -06024 -0.66% -07557 Q0459 00101 08168 02815 0.566 00182 000% 07348
01046 -0.0443 016%2 0171 -0.604 -01773 0.0044 00488 00271 (00467 0006 00008 00003 0728

LR L

According to given in table 5.2 the variable X, has the highest correlation (-0.9999)
with the first PC, Y, . In other word there is almost perfect negative correlation between
X, andY,. On the other hand contribution of X, in determining the value of Y, is

only 1.75%. It means a high correlation between a variable and the PC does not
necessarily mean it will have a high influence on the computation of the PC value.

This is due to the coefficient of that variable representing its contribution to the value

of the PC may be very low. In this data set the highest contribution comes from X, ,

while the remaining variables contribution does not exceed 4.3% (Figure 5.2). As the

contribution of X, is much higher than other variables, it was excluded from the graph

in Figure 5.2 to avoid distortion in the graph.
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Figure 5.2: Contribution of each variable to the value of PC1

Similar interpretations can be made for Y,andY, that are seen in Figure 5.3 and 5.4.

0.35

0.25

0.2

0.15

0.1

0.05 . .
2 * V'S

0 o o * o+ 0
0 2 4 6 8 10 12 14 16

Figure 5.3: Contribution of each variable to the value of PC2
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Figure 5.4: Contribution of each variable to the value of PC3

The relationship between the random variable’s contributions to a PC

(& 1,]=12,...,14), and the correlation Kx, between random variables and the PC

are given in Figure 5.5.

16

PCland el

Variable number

——— (] =@mecl

Figure 5.5: Relationship between the random variables X. and the PC1
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The dotted line shows the contribution values for the variables X, . The solid line shows

the PC values for each variable.

PC2 and e2

16

Variable number

—— () =@m-c2

Figure 5.6: Relationship between the random variables X; and PC2

0.8
0.6
0.4
0.2
0.2 16
0.4
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0.8

PC3 and e3
o

Variable number

——— (3 =@=-c3

Figure 5.7: Relationship between the random variables X. and the PC3

The same interpretations given for PC1 in Figure 5.5 are valid for PC2 and PC3 shown
in Figures 5.6 and 5.7 respectively.
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One other important point in estimation problems is the error committed. For the data
used taking into account the level of linear correlation on one hand and the amount of
contribution of each variable to each PC on the other, obtained bandwidth, MSE and
the ratio of MSE to the average variance of estimated values (AVE), are summarized
in Tables B1, B2, B3, B4, B5, B6 and B7 in Appendix B. These tables are the summary
of output obtained from kernel regression, using different band widths and different dx
increments to adjust the number of iterations of computing the kernel values. An easy
tool for the assessment of error levels is the ratio of MSE to the average variance of
estimated values, MSE/AVE. In general the following points are observed,

I. An increase in the linear correlation between the PC and the variable tends

to reduce the error level.
ii.  Adecrease in the contribution of a variable in determining the value of a PC,

results in larger error levels.
5.2 A Summary of PCs Using the Correlation Matrix

Use of the correlation matrix is more appropriate when the variables are
inhomogeneous or have very high range of variation. The correlation coefficient R

matrix obtained from data given in Table 5.1 is given below

1.0000 0.2663 04214 0.2657 -0.2787 -0.3458 -0.1909 -0.2022 -0.3987 -0.4333 -0.4583 -0.4804 -0.1879 -0.1430
0.2663 1.0000 0.1527 0.0152 -0.1685 0.1054 0.6041 05995 -0.5920 -0.5735 -0.5477 -0.5019 -0.2890 -0.5261
0.4214 01527 1.0000 -0.6253 -0.5752 -0.7394 -0.0258 -0.0561 -0.1201 -0.2142 -0.2510 -0.3182 0.3247 0.1442
0.2657 0.0152 -0.6253 1.0000 0.3377 0.6438 -0.1576 -0.1333 -0.2755 -0.1648 -0.1259 -0.0240 -0.5100 -0.4324
-0.2787 -0.1685 -0.5752 0.3377 1.0000 0.6661 -0.0009 0.0237 02098 0.2814 03236 0.3749 -0.2320 -0.0464
-0.3458 0.1054 -0.7394 0.6438 0.6661 1.0000 0.2481 0.2703 -0.0249 0.1362 0.2039 0.3315 -0.5714 -0.4334
R = -0.1909 0.6041 -0.0258 -0.1576 -0.0009 0.2481 1.0000 0.9983 -0.2201 -0.1838 -0.1999 -0.1842 -0.1310 -0.2221
-0.2022 05995 -0.0561 -0.1333 0.0237 0.2703 09983 1.0000 -0.2380 -0.1995 -0.2151 -0.1981 -0.1459 -0.2438
-0.3987 -0.5920 -0.1201 -0.2755 0.2098 -0.0249 -0.2201 -0.2380 1.0000 0.9734 0.9551 0.8872 0.4041 0.8291
-0.4333 -0.5735 -0.2142 -0.1648 02814 0.1362 -0.1838 -0.1995 09734 10000 0.9924 009583 0.2054 0.6932
-0.4583 -0.5447 -0.2510 -0.1259 0.3236 0.2039 -0.1999 -0.2151 0.9551 0.9924 1.0000 0.9829 0.1621 0.6360
-0.4804 -0.5019 -0.3182 -0.0240 0.3749 0.3315 -0.1842 -0.1981 0.8872 0.9583 0.9829 1.0000 0.0343  0.5043
-0.1879 -0.2890 0.3247 -0.5100 -0.2320 -0.5714 -0.1310 -0.1459 0.4041 0.2054 0.1621 0.0343 1.0000  0.7447
-0.1430 -0.5261 0.1442 -0.4324 -0.0464 -0.4334 -0.2221 -0.2438 0.8291 0.6932 0.6360 0.5043 0.7447  1.0000
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The eigenvalues and eigenvectors obtained from R

-0.2027 -0.1676 -0.3000 -0.5668 -0.4948 -0.1068 -0.1580 -0.0844 0.0650 -0.4470 0.1180 -0.0690 -0.0909 0.0145
-0.3099 0.0616 0.2672 -0.2809 -0.1064 -0.0635 0.8209 -0.1785 -0.0263 0.1466 -0.0805 -0.0091 0.0021 -0.0014
-0.0926 -0.4318 0.0815 -0.3313 0.1850 -0.3637 -0.0744 0.6315 0.0275 03130 -0.1090 0.0662 0.0509 -0.0087
-0.0814 0.3533 -0.3633 -0.0704 -0.3975 0.3806 -0.0057 0.3462 -0.3269 0.4007 -0.1494 0.0941 0.0999 -0.0181
01262 03639 -0.0440 0.1804 -0.2768 -0.8261 -0.0481 -0.0821 -0.1926 0.1021 -0.0253 0.0035 0.0287 -0.0077
00172 05114 0.0140 0.0024 0.0004 -0.0128 0.1214 0.4475 0.6861 -0.2098 0.0186 -0.0640 -0.0581 0.0166
E = -0.1562 0.1387 05701 -0.0907 -0.1664 0.0844 -0.2749 0.0513 -0.0887 -0.0578 0.1288 -0.3039 0.6155 -0.1055
R -0.1610 0.1528 05616 -0.0601 -0.1686 0.0781 -0.2928 0.0332 -0.1035 0.0163 -0.0802 0.3459 -0.6025 0.1017
04135 -0.0355 0.1010 -0.1540 -0.1028 0.0343 0.0416 -0.0657 0.0801 -0.1750 -0.4471 0.4350 0.1959 -0.5581
0.4075 0.0558 0.0891 -0.2463 0.0200 0.0541 -0.0270 -0.0288 -0.0865 0.0617 -0.4426 -0.6834 -0.2782 0.0761
0.4048 0.0880 0.0741 -0.2449 0.0662 0.0259 0.0869 0.0335 -0.1304 -0.1678 0.0105 0.3114 0.2707 0.7305
03840 0.1551 0.0533 -0.2705 0.1471 0.0326 0.1344 0.1472 -0.2732 0.0002 0.6784 -0.0221 -0.1945 -0.3417
0.1598 -0.3478 0.1438 04719 -0.4195 0.0463 0.2965 04045 -0.1906 -0.3517 0.0257 -0.1095 -0.0787 0.0403
03274 -0.2512 0.1013 0.0203 -0.4539 0.0597 -0.0349 -0.2002 04682 0.5252 0.2541 0.0136 0.0049  0.0907

and

A ={5.4893,3.5707, 2.2866,0.8872, 0.6728,0.5147,0.3110, 0.2006, 0.0391,0.0155, 0.0114, 0.0011, 0.0003, 0.00001}
From the E, matrix similar toE, it is possible to write p different PCs. However, for

dimension reduction it is desired to reduce the number of PCs such that they will still
represent a high percentage of variation in the data (preferably more that 80% of the
variation). In this data it is observed that the first 4 PCs represents 87.38% of total
variation in the data.

Once the representative number of PCs are determined, all steps followed for the PCs
obtained from the covariance matrix, can be repeated. Results to be obtained can

similarly be interpreted.

The PCs computed from the correlation coefficient matrix. See in appendix C, table

C2.
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The correlation coefficients between the first PC and X variables are

r, =-04749, r, =-07261, r, =-02169, r, =-0.1907, r, =0.2957,
I’lee =0.0403, rle7 =-0.3659, rles =-0.3772, I"leg =0.9688, rlelo =0.9547,
r, =09484,r, =08997,r, =03744,r, =0.7671.

Based on all the computation done so far, the PCs computed from the covariance
matrix are different from the PCs computed from the correlation matrix. The relation
or the significance of variables in PCs computed using covariance or correlation matrix
is different from one case to another. Furthermore, there is no linear relation between
the PCs computed using one or another matrix. This leads to the conclusion that the
standardizing of variables is usually required for inhomogeneous variables or for

variables which have very high range of variation.

The PCs computed from this correlation matrix are given in Table 5.3.
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Table 5.3: PCs computed using eigenvectors obtained from correlation matrix

1 1 12 7, N 7 7 Ty B Yy TSR RS SRR O
-2.2608 -0.0063  0.2177 1131 01917 0.8974 05936 07238 -0.3314 0.0452 -0.0126 -0.0415 0.0033  0.001
-3.09 00125 03103 12264 0.1682 0.8746 0.5838 0.6995 -0.3396 0.0465 -0.013 -0.0419 0.0033  0.001
-3.4228 0.0795 03917 11378 0.2058 = 0.8512 0.5951 0.7216 -0.3294 0.0456 -0.0133 -0.0416 0.0033  0.001
-2.7166  0.2732 05006 11988 0.1705 0.8958  0.566  0.7063 -0.3247 0.0459 -0.013 -0.0415 0.0033  0.001
-4.281 02499 01588 11492 0203 08728 05729 0.7096 -0.3338 0.0456 -0.0124 -0.0415 0.0033  0.001
-2.8356  0.3928 02205 11638 0.1729 08708 0.6174 0.7159 -0.3317 0.0465 -0.0131 -0.0414 0.0033  0.001
-3.5799 02435 04324 12426 02216 0.8613 0.5898 @ 0.7272 -0.3308 0.0455 -0.0131 -0.0417 0.0033  0.001
-3.06 02086 0327 12124 02124 0.884  0.6035 0.7135 -0.3258 0.0459 -0.0124 -0.0422 0.0033  0.001
-3.0605 0.0828 0.1864 1.2615 0.2619 0.8832 0.5804 0.7151 -0.3256 0.0465 -0.0136 -0.0415 0.0033  0.001
-3.0431 0.0433 04238 11304 0.1954 08342 05973 0709 -0.3314 0.0459 -0.013 -0.0416 0.0033  0.001
-3.3691 01346 04492 13125 0.1838 0.8846 05911 07279 -0.3354 0.0464 -0.0126 -0.0413 0.0033 0.001
-2.7843  0.2889 03976  1.2107 0.2489  0.889  0.5981 0.7027 -0.3404 0.0452 -0.0133 -0.0416 0.0033  0.001
-3.1389 0.1014 03847 1.2767 0.2556 = 0.8817 0.6002 0.7148 -0.335 0.0461 -0.0123 -0.0416 0.0032  0.001
-2.531 0217 03694 11503 0.2569  0.846 0.583  0.7059 -0.3298 0.0463 -0.0122 -0.0414 0.0033  0.001
-2.9705 02128 03991 1.0165 0.2346 0.8889 0.5762 0.7289 -0.3382 0.0466 -0.0129 -0.0418 0.0033  0.001
-2.2205 0.2664 02349 1.2962 01982 0.8394 0.5695 07254 -0.3365 0.0458 -0.0129 -0.0418 0.0033  0.001

The first 2 PCs that represents 65% of total variation, can be used to diagnose any

extreme values that may exist in the data set. For this purpose, the scatter diagram of

estimated PCs \fl and \?2 is drawn. Then, the axes of ellipsoid are computed using the

<

following formula —X+-2< 47(0.05) where4 =0.2566, 4, =0.0130and

e
<

1 (0.005):5.99. The major and minor semi-axes of the ellipsoid are therefore

M =/ 72(0.05)4, =1.2398and m = | #(0.05)4, =0.2791. Then the control ellipsoid

is drawn on the scatter diagram of the first two estimated PCs \fl and \?2 :
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Figure 5.8: Control Ellipsoid

Any point from the scatter diagram that falls outside the ellipsoid is considered as an
outlier or extreme value. From the Figure 5.8 one outlier is detected. It is on the left

hand side has a PC1 value §, =—4.281 PC2 value around y, = 0.2499. An inspection

of y, and ¥, values of this point identifies it as the 5™ value in Table 5.1. These PCs
were computed using the 5" raw data values from Table 5.1. A quick inspection of the

data in raw 5 indicates that X, =4.2904 and X;,; =0.0000725 are standing out.
Looking at the percentiles of these, we obtain the percentile for x;, =4.2904 as 0.012,
and the percentile for X, ; =4.2904 as 0.08. Clearly X;4 can be considered as an outlier

due to its very low percentile value. X;,; may or may not be considered as an outlier,

since its percentile value is above 5%.
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Chapter 6

CONCLUSION

Dimension reduction in large data sets where the number of variables are expressed
with tens or hundreds is an essential issue. PCA is the technique that does this very
efficiently. Estimation of the value of a variable in the absence of population
parameters is best done by kernel regression. In this thesis both methods are initially
explained in detail. Subsequently an attempt is made towards the integration of the
results of two methods to obtain better estimates via kernel regression by the use of a

pilot data set.

In Chapter 3 where the kernel regression is explained, special emphasis is put on
highlighting important points to be observed while applying this technique. Bandwidth
is the most important parameter in kernel regression as it determines the amount of
smoothing, as well as influencing the variance - bias balance. In the application
example parallel to the increase of the bandwidth, the following became evident.

I. MSE increase.

ii. Variance of estimates decrease.

iii. Bias increase.
Decision whether to use the covariance or correlation matrix in the computation of PCs
is a very important issue. This is highlighted in Chapter 4 and also in Chapter 5 while

applying the PCA theory.
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The proposed idea of estimating independent variables used in kernel regression by
assuming them as dependent variables on the PCs has produced satisfactory results.

Points taken into account in this application are

I Linear correlation between a PC \fj and each variable X, .

ii. Contribution of each variable X, to the computation of each \fj :

Level of correlation and amount of contribution are found not to be correlated with
each other. But their influence on the MSE values while estimating X, using \fj has

been recorded. It is generally observed that an increase in correlation and/or

contribution values parallels a decrease in MSE levels.
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Appendix A: Matlab Code for Computing PCs from Leaf Data

FD='c:\PcaAnalysis\LeafData\leafll.txt'

H=importdata (FD)

S=cov (H)

R=corr (H)

$El vector of eigenvector and Ll is matrix of eigenvalues

[E1l,L1l]=eig (S)

[E2,L2]=eig(R)

TotEval=sum(diag(L1l));

TotVar=sum (diag(S)) ;

Y1=H*E1l(:,14); %PC1l

Y2=H*E1 (: ); SPC2

Y3=H*E1l(:,12); S%PC3

Y4=H*E1 (: ); SPC4

Y5=H*E1l(:,10); S$PC5

Y6=H*E1 (: PC6

Y7=H*E1 (:

Y8=H*E1 (:

YO=H*E1 (:

Y10=H*E1l (:

Y11=H*E1 (:

Y12=H*E1l (:
(:
(:

~
O
~.
o°

PC7
PC8
; $PC9O
)y; SPC10
)y; SPC1l1
)
)

~ ~
~J oo
~e N
o° o°

; SPC12

Y13=H*E1l ; SPC13

Y14=H*E1l(:,1); %PCl4

Y=[Y1l Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14]

plot(Y1l,Y2,'0o");

xlabel ("PC1l")

ylabel ("PC2")

title('Leaf Data')

text (-3.02279,0.175056, " (-3.00279,0.17056) ")

evecl=El (:,14)

coY1X1=[0.2069 -0.6109 0.0609 0.1283 -0.0268 -0.2771 -0.9999 -0.9998
0.4826 0.2135 0.1773 0.0663 0.0481 0.2532]

coYlXltrans=coY1X1l'

xaxes=[1 2 345 6 7 8 9 10 11 12 13 14]

plot (xaxes,evecl, xaxes,coY1lXltrans)

evec2=El(:,13)

coY2X2=[-0.8024 -0.5253 -0.4575 -0.2052 0.5689 0.2951 0.0068 0.000004
0.9999 0.7755 0.6128 0.2264 0.0072 0.5512]

coY2X2trans=coY2X2'

xaxesl=[1 2 34 5 6 7 8 9 10 11 12 13 14]

plot (xaxesl,evec2,xaxesl,coY¥2X2trans)

evec3=El(:,12)

coY3X3=[0.1126 -0.1395 0.5586 -0.06024 -0.6656 -0.7557 0.0459 0.0101
0.8168 0.2815 0.1566 0.0182 0.0099 0.7348]

coY3X3trans=coY3X3"'

xaxes2=[1 2 3 45 6 7 8 9 10 11 12 13 14]

plot (xaxes2,evec3, xaxes2,coY¥3X3trans)
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Appendix B: Contribution of each variable to each PC

Table B1: Contribution of each variable to PC1

r e dx h MSE MSE/VarEstX
Cov(Y1,X2)=-0.602 | -0.611 | 0.033576 0.05 0.1 0.000478 0.620486
Cov(Y1,X7)=-0.997 | -0.999 | 0.017543 0.05 0.1 3.14E-07 0.001636
Cov(Y1,X8)=-0.999 | -0.999 | 0.00277 0.05 0.1 0.00071 0.001578
Table B2: Contribution of each variable to PC2 when dx=0.05
r e dx h MSE MSE/VarEstX
Cov(Y2,X1)=-0.801 | -0.802 | 0.303798 0.05 0.02 0.001874 0.215931
Cov(Y2,X9)=0.7438 | 0.999 | 0.019858 0.05 0.02 | 1.21505E-05 0.322477
Cov(Y2,X10)=0.734 | 0.775 | 0.052451 0.05 0.02 7.73E-05 0.239633
Cov(Y2,X14)=0.5511 | 0.551 | 0.22672 0.05 0.01 0.004359 0.439803
Table B3: Contribution of each variable to PC2 when dx=0.005
r e dx h MSE MSE/VarEstX
Cov(Y2,X1)=-0.801 | -0.802 | 0.303798 | 0.005 0.02 0.001874 0.193821
Cov(Y2,X9)=0.7438 | 0.999 | 0.019858 | 0.005 0.02 | 1.21505E-05 0.285928
Cov(Y2,X10)=0.734 | 0.775 | 0.052451 | 0.005 0.02 7.73E-05 0.201439
Cov(Y2,X14)=0.551 | 0.551 | 0.22672 0.005 | 0.008 0.004863 0.519498
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Table B4: Contribution of each variable to PC2 when dx=0.002

r e dx h MSE MSE/VarEstX
Cov(Y2,X1)=-0.801 | -0.802 | 0.303798 | 0.002 0.02 0.001937 0.197733
Cov(Y2,X9)=0.7438 | 0.999 | 0.019858 | 0.002 0.02 | 1.21505E-05 0.282999
Cov(Y2,X10)=0.734 | 0.775 | 0.052451 | 0.002 0.02 7.73E-05 0.198103
Cov(Y2,X14)=0.551 | 0.551 | 0.22672 0.002 | 0.008 0.003746 0.448267
Table B5: Contribution of each variable to PC3 when dx=0.05
r e dx h MSE MSE/VarEstX
Cov(Y3,X5)=-0.66 -0.665 | 0.282083 | 0.05 0.02 0.003755 0.769589
Cov(Y3,X6)=-0.75 -0.755 | 0.083161 | 0.05 0.02 0.000165 0.360047
Cov(Y3,X9)=0.415 0.816 | 0.012711 | 0.05 0.008 2.84E-05 1.081868
Cov(Y3,X14)=0.73 0.734 | 0.34146 0.05 0.02 0.003023 0.311415
Table B6: Contribution of each variable to PC3 when dx=0.005
r e dx h MSE MSE/VarEstX
Cov(Y3,X5)=-0.66 -0.665 | 0.28208 | 0.005 | 0.015 0.003437 0.633569
3
Cov(Y3,X6)=-0.75 -0.755 | 0.08316 | 0.005 | 0.015 0.000139 0.282799
1
Cov(Y3,X9)= 0.415 0.816 | 0.01271 | 0.005 | 0.008 2.72E-05 0.890691
1
Cov(Y3,X14)=0.73 0.734 | 0.34146 | 0.005 | 0.015 0.002783 0.21955
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Table B7: Contribution of each variable to PC3 when dx=0.002

r e dx h MSE MSE/VarEstX

Cov(Y3,X5)=-0.66 -0.665 0.28208 0.002 0.02 0.003755 0.750868

3
Cov(Y3,X6)=-0.75 -0.755 0.08316 0.002 0.02 0.000165 0.350661

1
Cov(Y3,X9)=0.415 0.816 0.01271 0.002 0.008 2.84E-05 0.868739

1
Cov(Y3,X14)=0.73 0.734 0.34146 0.002 0.02 0.003023 0.246745
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Appendix C: PC Tables from Covariance and Correlation Matrix

Table C1: First three PCs from covariance matrix

Y, = 0.0396X, —0.0400X , +0.0038X 5 + 0.0076X , — 0.0050X ;s — 0.0134X; — 0.0209X, — 0.9967 X +0.0033X + 0.0073X, + 0.0014X, + 0.0006X , +0.00003X, 5 + 0.0517X,,
Y, = 0.6823X, —0.1528X,, —0.1269X ; —0.0540X, + 0.4707 X + 0.0634X 5 — 0.0006X , + 0.0019X + 0.0446Xq +0.1178X +0.0215X,, +0.0091X,, + 0.0002X 15 + 0.5001X,,
Y, = 0.1046X, —0.0443X,, +0.1692X , —0.1731X, — 0.6014X; — 0.1773X + 0.0044X , +0.0488X, + 0.0271X g +0.0467 X, + 0.0060X ; + 0.0008X,, + 0.0003X 15 + 0.5001X,

Table C2: First four standardized PCs from correlation matrix
Y, = -0.2027X, — 0.3099X, - 0.0926 X, — 0.0814X , + 0.1262X5 +0.0172X ; — 0.1562X; —0.1610Xq + 0.4135X g + 0.4075X, +0.4048X ; +0.3840X, + 0.1598X 15 + 0.3274X,,

Y, = -0.1676X, +0.0616X , ~ 0.4318X,, +0.3533X , + 0.3639X + 0.5114X ; + 0.1387X , +0.1528X — 0.0355Xq +0.0558X , + 0.0880X,, + 0.1551X  , ~ 0.3478X,, — 0.2512X,
Y, = -0.3000X, +0.2672X,, + 0.0815X, ~ 0.3633X , — 0.0440X,; + 0.0140X 5 + 0.5701X ; + 0.5616X + 0.1010X 4 + 0.0891X  + 0.0741X,; +0.0533X,, + 0.1438X,, +0.1013X,,
Y, = -05668X, - 0.2800X,, - 0.3313X — 0.0704X,, + 0.1804X , + 0.0024X ; — 0.0907X, — 0.0601X ; — 0.1540X 4 — 0.2463X  — 0.2449X, , — 0.2705X , + 0.4719X, , + 0.0203X,



Appendix D: Temperature and Relative Humidity Data

Relative
Temperature Humidity

1 9.900000095 65.19999981
2 10.57500005 63.25

3 10.7750001 62.54999924
4 10.94999981 62.07499981
5 10.97500014 66.5

6 11.00000024 61.44999981
7 11.07500005 62.22499943
8 11.125 60.20000076
9 11.17499995 68.47500038
10 11.32499981 70.20000076
11 11.375 70.52499962
12 11.4749999 58.17499924
13 11.47500014 60.02500057
14 11.5999999 61.92499924
15 11.67499995 57.09999943
16 11.67499995 63.65000057
17 11.82499981 58.02500057
18 11.89999986 67.44999886
19 11.9000001 57.39999962
20 11.96666686 54.90000025
21 11.9749999 61.12500095
22 12 58.85000038
23 12 62.92499924
24 12.32499981 66.15000057
25 12.3499999 65.35000038
26 12.4000001 63.87500095
27 12.5999999 63.47499943
28 12.60000014 54.20000076
29 12.65000033 57.90000057
30 12.75 63.22500038
31 12.77500033 55.82499981
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Kernel data continued

Relative
Temperature Humidity
32 13.05000019 57.90000057
33 13.125 54.75
34 13.35000014 61.34999943
35 13.5999999 54.59999943
36 13.62499976 62.05000019
37 13.625 56.29999924
38 13.6500001 49.47500134
39 13.75 53.35000134
40 13.875 53.875
41 14.04999995 57
42 14.0666666 65.69999949
43 14.0999999 49.80000019
44 14.12499976 50.02499866
45 14.125 55.57500076
46 14.27499986 55.44999981
47 14.27500033 50.57500076
48 14.72500014 55.92500019
49 14.75 52.07499981
50 14.75 59.22499943
51 14.77499986 54.32499981
52 14.79999995 53.92499924
53 14.82500005 54.67500114
54 14.82500005 60.55000114
55 15.25000024 61.44999886
56 15.47500014 51.875
57 15.52499986 52.92500019
58 15.69999981 60.15000057
59 16.0250001 50.92499924
60 16.25 50.95000076
61 16.6500001 57.375
62 16.70000029 48.92500019
63 18.2750001 52.62500095
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