

Submitted to the

Institute of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

 Analysis, Design and Implementation of a Voting

System Using a Novel Oblivious and Proxy Signature

Olalekan Ihinkalu Ebenezer

Eastern Mediterranean University

June 2019

Gazimağusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy

Acting Director

Prof. Dr. Işık Aybay

 Chair, Department of Computer

Engineering

Assoc. Prof. Dr. Alexander

Chefranov

Supervisor

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science in Computer Engineering.

We certify that we have read this thesis and that in our opinion it is fully adequate in

scope and quality as a thesis for the degree of Master of Science in Computer

Engineering.

Examining Committee

1. Assoc. Prof. Dr. Alexander Chefranov

2. Assoc. Prof. Dr. Huseyin Öztoprak

3. Assoc. Prof. Dr. Önsen Toygar

iii

ABSTRACT

Electronic Voting System (EVS) makes voting process convenient and more secure.

In this thesis, we analyzed and implemented an existing EVS. We used the proxy and

oblivious signature for our security. The proxy signature helps curb the aspect of

impersonation in the EVS which is a part of the signature that allows A as an original

signer to assign her/his signing privilege to someone else called B as a

proxy signer. This is very useful since that a scheme will allow an assigned person B

(proxy signer) to produce proxy signatures on behalf of the original signer A.

Additionally, B (proxy signer) can check the identity of a person R (voter). If the

person is eligible to vote, he is given the privilege to exercise her/his franchise,

otherwise he or she is denied access from voting. This enables curbing impersonation

during the electoral process.

The oblivious signature in the EVS scheme is to help R‟s (the voter‟s) choice not to

be known by anyone including the proxy signature. This has to do with having n

messages as a signature in which R (the voter) could choose 1 -of- n messages to

get his message signed while the proxy signer will not be able to find out on which

message the voter R has got the signature. The oblivious and proxy signature is

efficient in communication, computation and security.

We studied and provided proofs for the Electronic Voting System, made design,

implemented and tested the EVS. We also conducted experiments with the EVS. We

carried out the experiments based on six phases of the existing EVS time in,

compared the existing and the implemented systems. We conclude that the

iv

implemented system has a better computation time (in milliseconds) than that of the

existing system.

Keywords: Electronic Voting System (EVS); oblivious and proxy signature; security

and privacy.

v

ÖZ

Elektronik oylama sistemi (EVS) oylama sürecini uygun ve güvenli hale getirir. Bu

tezde, mevcut bir elektronik oylama sistemi analiz edilip hayata geçirilmiştir.

Güvenlik için vekil ve habersiz imza kullanılmıştır. Vekil (proxy) imza, EVS‟de

başkasının kimliğine bürünme yönünü engellemeye yardımcı olur. Bu imza, A olarak

tanımlanan asıl imzalayıcının imza yetkisini, B olarak tanımlanan ve vekil imzalayıcı

olan başka bir kişiye vermesini sağlar. Bu, EVS sistemi için çok faydalıdır, çünkü

vekil imzalayıcısı olarak atanan B kişisinin, asıl imzalayıcı A kişisi adına vekil

imzalar üretmesini sağlayacaktır. Ek olarak, B olarak tanımlanan vekil imzalayıcı, R

olarak tanımlanan seçmenin geçerliği kontrol edebilecektir. Bir kişinin oy kullanma

hakkı varsa, kendisine yetkilerini kullanma ayrıcalığı verilir; Aksi takdirde kendisine

oy kullanma hakkı verilmez. Bu, seçim sürecinde başkasının kimliğine

bürünülmesinin engellenmesini sağlar.

EVS sistemindeki kayıtsız imza, R olarak tanımlanan seçmenlerin seçiminin vekil

imzası da dahil hiç kimse tarafından bilinmemesine yardımcı olmaktadır. R seçmeni,

n tane mesajdan sadece 1 tanesini seçip imzalayacak ve vekil imzalayıcı hangisini

seçip imzaladığını bilemeyecektir. Bu kayıtsız ve vekil imzası, tüm katılımcılar

arasında iletişim, hesaplama ve güvenlik açısından etkilidir.

Bu tezde Elektronik Oylama Sistemi üzerinde çalışılmış ve kanıtlar sunulmuştur.

EVS sistemi tasarlanmış, uygulanmış ve test edilmştir. Ayrıca EVS sistemi üzerinde

deneyler yapılmıştır. Mevcut EVS sisteminin altı aşamasına dayanarak deneyler,

yapılmıştır. Mevcut ve uygulanan sonuçlar karşılaştırılmıştır. Elde edilen sonuçların

vi

sistemden daha iyi bir hesaplama süresine (milisaniyede varolan) sahip olduğu

sonucuna varılmış.

Anahtar Kelimeler: Elektronik Oylama Sistemi (EVS); kayıtsız ve vekil imza;

güvenlik ve mahremiyet

vii

DEDICATED TO GOD AND MY FAMILY FOR THEIR LOVE AND SUPPORT.

viii

ACKNOWLEDGEMENT

First, I want to thank God for His loving kindness, tender mercies and faithfulness

for guiding me through this great moment of life.

I will love to extend my gratitude to my supervisor Assoc. Prof. Alexander

Chefranov for his fatherly and warm way of supervising me and giving me adequate

knowledge to guide me through my thesis.

I would love to thank my parents Mrs. Alice Ihinkalu and my late father Sunday

Ihinkalu, my lovely wife, Feyi Ihinkalu and baby boy (Worship); for understanding

with me through my program and especially this thesis, I love you all, my siblings,

for being there for me. I want to thank Federal University Lokoja, Nigeria in general

for making this an historic reality in my life time; I don‟t take this privilege likely, I

also want to thank FUL Computer Science department for their encouragement to

undertake this task. I want to appreciate my senior friend John Olaifa and his family

for been there for me all through my program, to all my friends Joshua, Bayo, Salwa,

Flavien, Jesse Chinda, Psalm and my colleagues in EMU Computer Engineering

Department for their contributions to this work. I can‟t leave out my mentors: Pst.

Ola Solomon, Prof. Eric Adewumi, Pst. A. Owolabi. I will love to thank my pastors,

Pst. Abiola Abiodun, Pst. Andrew Alola, The music department, Word-Miners unit

and family of RCCG Shekinah Parish family in Famagusta. The Joshua‟s family,

Emmanuel‟s family, John Olododo, Emeka Onwuka, MAV TEAM will not be left

out, you guys are the best, finally on this note I also thank everyone who have

supported in one way or the other, God bless you greatly, I appreciate you all.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZ ... iv

DEDICATION………………………………………………………………………vii

ACKNOWLEDGEMENT……………………..…………………………………..viii

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS ... xvi

1 INTRODUCTION .. 1

1.1 General Overview .. 1

1.2 Initiative of Mechanical Voting ... 3

1.3 Electronic Voting Systems, Their Merits and Limitations 4

2 LITERATURE REVIEW AND PROBLEM DEFINITION 6

2.1 Brief History of Paper-Ballot Voting .. 6

2.2 Vulnerabilities and Failures Associated with EVS .. 7

2.3 Cryptographic Techniques Used by EVS .. 8

2.3.1 Symmetric Key Cryptography ... 8

2.3.2 Asymmetric Key Cryptography .. 10

2.4 Novel Voting Protocol .. 11

2.4.1 Proxy-Unprotected Type Scheme ... 12

2.4.2 Proxy-Protected Type Scheme .. 19

2.4.3 Voting Protocol Design and Implementation .. 20

2.4.4 Processes Involved in the Voting System, Experimental Settings and

Results .. 22

x

2.4.4.1 System Setup Design……………………………...………………...22

2.4.4.2 Proxy Phase Design………………………………………………....24

2.4.4.3 Register Phase Design………………………………………………26

2.4.4.4 Circling Phase……………………………………………………….28

2.4.4.5 Voting Phase……………………………………………………...…31

2.4.4.6 Counting Phase……………………………………………………...32

2.4.4.7 Experimental Settings and Results………………………………......34

 2.5 Problem Definition ... 34

3 ANALYSIS AND PROOF OF THE VOTING SYSTEM 36

3.1 Proof of the Novel Oblivious Scheme .. 36

3.1.1 Proof of (2.8) ... 36

3.1.2 Proof of (2.14) ... 37

3.1.3 Proof of (2.18) ... 37

3.2 Adjustment of the Novel Oblivious Signature .. 38

3.3 Proof of the Voting System Correctness ... 38

3.3.1 Proof of (2.34) ... 38

3.3.2 Proof of (2.39) ... 39

3.3.3 Proof of (2.42) ... 39

3.4 Modification of the Voting System ... 39

3.5 Summary .. 39

4 VOTING SYSTEM DESIGN, IMPLEMENTATION AND TESTING 40

 4.1 Voting System Design…………………………………………………………40

 4.2 Tools used for Voting System Implementation……….…..…………………...43

4.3 Voting System Implementation………………………………………………..45

4.3.1 Implementation of System Setup Phase for A and B Use-Case…………46

xi

4.3.2 Implementation of Proxy Phase Use-Case .. 47

4.3.3 Implementation of Register Phase Use-Case .. 48

4.3.4 Implementation of Circling Phase Use-Case .. 49

4.3.5 Implementation of Voting Phase Use-Case .. 50

4.3.6 Implementation of Counting Phase Use-Case .. 51

4.3.7 Database Implementation .. 52

4.4 Voting System Testing .. 54

4.4.1. Testing of Setup Phase Use-Case ... 55

4.4.2. Testing of Proxy Phase Use-Case ... 56

4.4.3 Testing of Register Phase Use-Case ... 57

4.4.4 Testing of Circling Phase Use-Case .. 59

4.4.5. Testing of Voting Phase Use-Case ... 61

4.4.6 Testing of Counting Phase Use-Case ... 62

 4.5 Summary……………………………………………………………………….63

5 COMPARISON OF COMPUTATION TIME FOR THE KNOWN AND

IMPLEMENTED VOTING SYSTEMS..……………………………………...……64

6 CONCLUSION AND FUTURE WORK.. 68

REFERENCES ... 69

APPENDICES ... 77

Appendix A. Voting System Source Codes. .. 78

 Appendix A.1. Setup Phase Source Code………...……………………...….78

 Appendix A.2. Proxy Phase Source Code…………………...………..……81

Appendix A.3. Registration Phase Source Code………………..…...……..82

Appendix A.4. Circling Phase Source Code …..…………………..……….84

Appendix A.5. Voting Phase Source Code……………...………..…..…….87

xii

Appendix A.6. Counting Phase Source Code……………..…………..……88

 Appendix B. Experimental Results .. …92

xiii

 LIST OF TABLES

Table 1: Element h of
 of Order 𝑞 .. 13

Table 2: Element g of
 of Order 𝑞 .. 13

Table 3: Characters Coding Table ... 27

Table 4: Computation Time of the Voting Protocol (milliseconds) [19] 34

Table 5: Average Computation Time (milliseconds) ... 65

xiv

 LIST OF FIGURES

Figure 1: Voters on Queue in Australia [5] ... 2

Figure 2: Voters on Queue in Uganda [6] ... 2

Figure 3: An Example of Symmetric Key Encryption [32] ... 9

Figure 4: RSA - An Example of Asymmetric Key Cryptography [33] 10

Figure 5: Proxy Phase [19] ... 14

Figure 6: Signing Phase [19] .. 16

 Figure 7: Verification Phase [19] .. 17

Figure 8: Proxy Protected [19] ... 19

Figure 9: System Actors and Phases [19] .. 21

Figure 10: Proxy Phase Design [19] .. 24

Figure 11: Registration Phase Design [19] .. 26

Figure 12: Circling Phase Design [19] ... 28

Figure 13: Voting Phase Design [19] ... 32

Figure 14: Counting Phase Design [19] ... 33

Figure 15: Context diagram for EVS ... 41

Figure 16: Use-case Diagram for EVS…………...………………………………....42

Figure 17: WD Full Application Install.exe………………………...……..………43

Figure 18: Installation Phase for French Language……………...……………...…..44

Figure 19: Setup Directory for Windev Application………………..………………44

Figure 20: Windev Work Environment……………………………..………………45

Figure 21: Login Screenshot………………………………………..………………45

Figure 22: Menu Screenshot………………………...………………………..…….46

Figure 23: System Setup Phase for A and B .. 47

xv

Figure 24: Proxy Phase .. 48

Figure 25: Registration Phase .. 49

Figure 26: Circling Phase ... 50

Figure 27: Voting Phase ... 51

Figure 28: Counting Phase ... 52

Figure 29: Database View .. 53

Figure 30: Table for Express_flag.. 53

Figure 31: Table for Fich_login ... 53

Figure 32: Table for Express Alphabeth .. 54

Figure 33: Contestant and Result….. ………………………..……………………...54

Figure 34: Testing for System Setup ……………………… ……………………...55

Figure 35: Testing for Proxy Phase………………………..………………………..56

Figure 36: Testing for Registration Phase……………………………..……………57

Figure 37: Testing for Circling Phase…………………………...…………………..59

Figure 38: Testing for Voting Phase………………………...………………………61

Figure 39: Testing for Counting Phase………………………...……………………62

xvi

LIST OF ABBREVIATIONS

ASCII American Standard Code for Information Interchange

BB Bulletin Board

DRE Direct Recording Electronics

ElVS Electrical Voting System

EVS Electronic Voting System

IV Internet Voting

RSA Rivest–Shamir–Adleman algorithm

VS Voting System

1

Chapter 1

1 INTRODUCTION

1.1 General Overview

Today, computer technology has been of tremendous help to humanity. Technology

has made electronic voting system much more interesting since it offers more

transparency, participation, reduced cost, and quick delivery of results [1].

Almost everything in the world is built on technology; from radio program to

advancement in TV programs to satellite launching [2]. One of the major areas that

pertain to life globally is leadership, and this is why the issue of election is a major

key in making decision to bring in the people‟s choice [3]. Most voting is done by

traditional based voting. Many have lost interest in the traditional way of voting,

because of injustice [4, 10].

The manual way of voting which has to do with balloting, has a lot of issues

associated with it, e.g., the ballots may be hijacked [1]. Voting can be done twice by

an individual if the ballot system of voting cannot detect whether the person is voting

for the second time. A research was conducted some time ago on why voters do not

come out to vote, and one major challenge common to them for not going to vote is

because they will have to stay in the scorching sun or rain a times [5, 6] to be

accredited as a valid voter and after which they will have to still queue after

accreditation to vote. Figure 1 shows voters in queue in Australia and Figure 2 shows

2

cross section of voters in queue in Uganda, Africa, and most times it is not

convenient.

Figure 1: Voters in Queue in Australia [5]

Figure 2: Voters in Queue in Uganda [6]

With the use of Electronic Voting System (EVS) it becomes easier to vote once you

are eligible to vote and the system could take care of other activities done during and

after the voting process [7, 8].

3

Another area of challenge with the manual process of election is the result counting

stage. After voters are done with casting their votes, the election officials will open

us the ballot box and begin to count the result, one after the other. This process takes

much time for the results to be counted. The time varies based on population size and

its accuracy may not be guaranteed, and manipulation can easily take place [9] with

this kind of manual counting method, especially when it has to do with large number

of voters in a polling unit, region, province, state or country. This also delays the

result that should have been announced [10]. But, with the advent of EVS, all of

these issues will be solved. There is a lot of issues associated with the manual way

of voting even though many people still use it because they are not willing to make

voting system void of rigging, double voting, ballot snatching, double count of

results, than working with a system accuracy, efficiency, and security [11].

EVS have been practiced for the last three decades. In 1849, De Brettes initialized

the first idea of electrical voting system (ElVS) based on decision making kind of

telegraphs. In 1869, the first inventor of electrographic recorder was Thomas Edison

[12]. In the ElVS which was introduced in1886 [13], the central recorder receives

signals, and lists all the names of candidates in a matrix form using two columns

with headings “YES” or “NO”.

1.2 The Initiative of Mechanical Voting

At the state of Victoria, Australia, election conducted manually using ballot first

began in 1856, listing the names of candidates [14]. The first state who adopted this

method in USA was Massachusetts (1888). As of 1889, January, punched card

method was introduced to collect all data for the United States census by Herman

Hollerith [13]. Later that same year, November 1889, New York patent on a

4

machine called Myers Automation booth, mechanical lever voting machine was

issued. This machine helps preventing over-voting and also helps to speed- up the

process of counting the votes. It was first used in 1892 in Lockport, New York [14].

Lever voting machine was also implemented in 1892 and was first used in New York

[14].

Optical scan and Direct Recording Electronics (DRE) were introduced in early 1930-

1985. In 1974, DRE was introduced; they are hardened physical machines which

prevent access to connectors of PC like Universal Serial Bus. In Georgia, United

States, as at early 1962, Punch Card Voting system was introduced using optical

scanning voting system to read marked ballot and tally their corresponding results.

In 1990 – 2000, Internet voting (IV) was introduced and EVS became matured.

Many developed countries are actually using EVS and IV method of voting ever

since then till date, because it brought major solutions to many issues associated with

manual voting system [15]. Nations like Switzerland, United Kingdom, Germany,

India, Estonia and some developed nations are using this at the moment [16] instead

of manual ways of voting. Systems have been built in various polling units and

computer and mobile devices have also been used for voting [16]. At the moment,

most of the states in the U.S. are using Remote electronic voting system called REVS

through SERVE (Secure Electronic Registration and Voting Experiment) [17].

1.3 Electronic Voting Systems, Their Merits and Limitations

EVS is one of the most researched areas of interest today, because it has to do with

information system security that could help make a difference from the ballot kind of

voting having such problems as:

5

a. Much rigging during and after the election process

b. Voters could vote as many times as possible

c. During counting of votes manipulated figures are generated.

d. Queues cannot be contained and most people are discouraged to vote at polling

booths.

Various studies and researches have been conducted in this area in the last 30 years

[18]; many cryptographic methods have been employed with the aim of making it a

secure EVS.

In [19], the following is stated. An issue associated with electronic voting is that

before the signing of server, one can vote and when the server is signing, it amounts

to double voting. This could be handled by blind signature, also cryptography can

help to correct these errors associated with EVS. But, malicious users could want to

produce a non-candidate signature for a crackdown of the system. Therefore, in [19],

an EVS is proposed using a Novel Oblivious and Proxy Signature therein.

6

Chapter 2

2LITERATURE REVIEW AND PROBLEM DEFINITION

In this chapter, firstly, we shall discuss on the history of paper ballot voting, the

vulnerabilities and failure that is associated with EVS, cryptographic techniques used

in EVS, and also the problem definition.

2.1 Brief History of Paper-Ballot Voting

In this section, we will discuss about the generations that voting was used. Voting

system was first adopted by USA, and the first election held in 1789 [41], but

election has undertaken various degree of transformation from one form to another.

This transformation has been to paperless environment from paper-ballot system,

from the manual system to technological system, from an offline base to an online

base, and many much more [20]. We will start our discussion with the paper based

ballot elections [21], people visits the nearby residential area where the polling unit

is assigned to register, they will be given a voters identification card which contains

their number and their information and after much confirmation is done, they are

equally allowed to vote on the day of election. What they will just need to vote with

is their cards [22]. This is a primitive way of voting, even though some countries and

organization still practice this. Election managers or officials are trained to take care

of the election processes on the registration stipulated time and the Election Day. The

managers and officials are expected to be there with the materials for the voting

(Ballot box, voters register, the ink pad for the thumb printing, the stamp, and

election result materials) will be on ground at least an hour before the time of

7

election. This method can easily be understood. Also this method of voting has a lot

of issues associated with it, like rigging, double voting, manipulation of result,

cancellation of results, and very costly to manage [21].

2.2 The Vulnerabilities and Failures Associated with EVS

EVS uses computer to make voting process, simple and secretive, provide security,

enable the counting process faster, reduce queuing at the voting centers, and can help

those who are disability and the aged to exercise their franchise in voting, [22] have

suggested across the nations of the world that voting with technology has much more

issues than with the manual voting methods and results can easily manipulated.

Others said; it is more expensive to implement EVS.

There has been a lot of issues accrue to EVS. In 2005, December, a company Black

Box Voting Inc. made an investigation in Florida, within Leon County [23]. Two

computer security experts Herbert Thompson and Harri Hursti made a huge headway

by hacking EVS which used the central vote tabulator and they were able to

manipulate the outcome of the election without anyone knowing that such an event

known as hacking had taken place. This shows that there are software‟s packages

that can be used to perform such hack events in EVS.

In [24], a report is given calling for a national database which shall be made

publicly available, containing information on voting system failures and

vulnerabilities. This report has found out that there are many maladies with EVS,

many election managers and workers are not aware of this lacuna associated with

electronic voting systems, because the programmers or the companies are not willing

to tell the electorate the problem associated with their systems

8

In the last election that happened in America, between the two presidential candidate

in 2016, Donald Trump (the incumbent as at today) and Hilary Clinton, it was said

that is was the 58
th

 presidential election that is held in America. The intelligence

agencies of the United States government on 6
th

 January 2017, asserted that

the Russian government had interfered in the 2016 United States elections result [25,

26, 27]. And knowing fully well that the election was conducted electronically and it

involves internet voting. President Trump has always showed his grievances against

such claim by the intelligent unit stating that it is fake news. The president has also

stated that the accusation against him (Trump campaign) and Russian collusion lacks

proof and evidence.

With all of this in view, we will be introducing cryptography which will help

minimize some aspect associated with EVS.

2.3 Cryptographic Techniques Used by EVS

Cryptography is the study and practice of techniques that is used for securing

network communications in the midst of adversaries [28].

Davtyan et al complained that cryptography cannot give all the necessary protections

to EVS [29].

We have two main classes of cryptographic techniques namely, Symmetric and

Asymmetric cryptography [30].

2.3.1 Symmetric Cryptography

Symmetric-key cryptography [31] is defined as an encryption method that both the

sender and receiver share the same key [30].

https://en.wikipedia.org/wiki/Russian_government
https://en.wikipedia.org/wiki/Russian_interference_in_the_2016_United_States_elections
https://en.wikipedia.org/wiki/Secure_communication
https://en.wikipedia.org/wiki/Secure_communication
https://en.wikipedia.org/wiki/Adversary_(cryptography)

9

Symmetric (Secret key) algorithm like Data Encryption Standard (DES), demands

that it is only possible to derive the secret key from the message that was encrypted

alone. This is quantities of mathematical computations will involve doing so to make

attempt that is infeasible with all a lot of hardware for the current computation [31].

Below, in Figure 3 is a diagram of symmetric cryptography.

Figure 3: An Example of Symmetric Key Encryption [32]

Caesar cipher [30] is one of the oldest known simplest ciphers. It is a type of

substitution cipher in which each letter in the plaintext is 'shifted' a certain number of

places down the alphabet. For example, with a shift of 1, A would be replaced by B,

B would become C, and so on. The method is named after Julius Caesar, who

apparently used it to communicate with his generals. First we translate all of our

characters to numbers, 'a'=0, 'b'=1, 'c'=2, ... , 'z'=25. We can now represent the Caesar

cipher encryption function, e(x), where x is the character we are encrypting, as:

 () ()

Where k is the key (the shift) applied to each letter. After applying this function the

result is a number which must then be translated back into a letter. The decryption

function is:

 () ()

10

2.3.2 Asymmetric Key Cryptography

Asymmetric key system or Public key system uses a pair of keys, each of which will

decrypt the messages that were encrypted by another one, making sure one of these

keys is kept secret (private key) [31].

RSA (Rivest–Shamir–Adleman) cipher is an example of Asymmetric key

cryptography technique for decryption and encryption [30]. RSA is hard to be

cracked that is based on the product of two large prime numbers factorization

problem complexity. Below in Figure 4, is an overview of RSA.

Figure 4: RSA - An Example of Asymmetric Key Cryptography [33]

RSA involves both public key and private key. The public key may be known by all;

it is used to encrypt messages. A message that was encrypted using the public key

will be decrypted only with private key. We are now ready to state the RSA scheme.

The ingredients are the following:

 𝑞 two large prime numbers(private, chosen)

 𝑞 (public, calculated)

 with)(1;1)),(gcd(neen   (public, chosen)

where

)1)(1()( qpn)

https://simple.wikipedia.org/wiki/Key_(cryptography)

11

)(mod1 ned  (private, calculated)

The private key consists of {d,n}, and the public key consists of {e,n}[31]. Suppose

that user A has published its public key and that user B wishes to send message M to

A. Then B calculates nMC e mod and transmits C. On receipt of this cipher text,

user A decrypts by calculating nCM d mod . It is worthwhile to summarize the

justification for this algorithm [27].

2.4 Novel Voting Protocol

Chen [35] in 1994, proposed oblivious signature. The schemes are of two types. The

first is n messages with one key, a signee selects a message to be signed in order for

the information not to be revealed to the signer, the second comprises of n keys with

one message, a message is signed by the receiver with one out of n keys that is

chosen by him or her, so that the signer is not aware of the key which was used by

the receiver. Oblivious signature is contrast to blind signature, in that it makes sure

the message signed is one of the predetermined messages; so that, the receiver cannot

submit additional messages, the scheme will not accept the signature. Chou, also in

2012 [34], suggested another more secured and efficient k out of n oblivious scheme,

for further clarity, Chiou in [36], gave more elaborate understanding on Novel t -out-

of- n Oblivious Signature. The proposed protocol [19] uses the oblivious signature

scheme that has the proxy protected and the proxy un-protected type. The scheme

has four phases: 1), The System setup phase, 2), the proxy phase, 3), the signing

phase, and 4) the verification phase in this protocol [19].

The scheme proposed for the signature consists of four entities: The original signer

tagged as A, a proxy signer is tagged as B, a receiver is tagged as R, and a verifier is

tagged as V. In this proposed scheme [19], let‟s say that the communications channel

12

among A and B is well secured. Any identity R or V communicates with B through

insecure channel, making room for adversaries to intercept.

The proxy-unprotected protocol type and that of the proxy protected protocol are as

follows:

2.4.1 Proxy-Unprotected Type Voting Scheme

A. System Setup Phase

This phase is also known as the key generation phase for both the original signer and

the proxy signer, it helps generate two large prime numbers arranged with pair of

keys, both for private and public for proceeding in the process. The scheme is

represented by Steps 1-4 below,

Step 1. Two large primes , q are chosen such that

 (–) (2.1)

Step 2. Two values, 𝑔 and ℎ, from
 of order q, are chosen:,

𝑔 , ℎ . (2.2)

Step 3. The original signer, A, chooses a random number,
 , as his private

key, and computes his public key

 𝑔 . (2.3)

Step 4. The proxy signer, B, chooses a random number
 , as his private key

and computes his public key

 𝑔 . (2.4)

We shall now use some numerical examples to test the authenticity of the system set

up phase:

13

Example 1. According to (2.1). Let , be our prime numbers chosen,

 From equation (2.2), we have

ℎ 𝑔 ℎ 𝑞 𝑔 𝑞

Table 1: Element h from
 of Order 𝑞

Table 2: Element g from
 of Order 𝑞

From (2.3), we have
 * +

Let , and then 𝑔 ,

From (2.4), we have 𝑔 .

End of Example 1.

B. Proxy Phase

This phase delegates authority from A, the original signer, to the proxy signer, B. It

is represented by Steps 1-3 below:

Step 1. The original signer, A, selects a random value,
 , and makes

computations (2.5)-(2.7), illustrated by Figure 5:

 (2.5)

 (2.6)

 𝑔 (2.7)

h^x\exponent, x 1 2 3 4 5

5^x 5 3 4 9 1

g^x\exponent x 1 2 3 4 5

9^x 9 4 3 5 1

14

Figure 5: Proxy Phase [19]

Step 2. The original signer, A, securely sends the pair (, 𝑠) to B and p is published.

Step 3. The proxy signer, B, verifies whether the values of left- and right-hand sides

of

 𝑔
 (2.8)

are equal to each other. If the values are equal, B accepts the proxy, and uses the

value 𝑠 received and computed in (2.6) as its secret proxy signature key.

We shall now use numerical examples to check the proxy phase

For (2.5) we choose from
 ,

„For (2.6) all values from (2.1), (2.2), (2.3) and (2.5),

 ,(𝑠) ()

 𝑔

Original signer, A, in a proxy transmission securely forwards the pair (𝑠), it is

(), in our case, to B, and then publishes (in our case,).

15

For (2.8), B checks if it holds (For our numbers, 𝑔

), If it does, B accepts the proxy, then uses 𝑠 as her or proxy secret

signature key.

C. Signing Phase

Signing phase is illustrated by Figure 6 and is represented by Steps 1-4 below:

Step 1. The voter, R, considers a list of candidates, represented as messages

{ } received from B, chooses the candidate of his choice, and

randomly chooses v from
 . Then, he computes:

 𝑔 ℎ , (2.9)

 and forwards to B.

Step 2. The proxy signer, B, chooses random numbers
ik

from
 ,

and computes:

modik

iK g p (2.10)

 (𝑔ℎ) (2.11)

 ̂ () ()

𝑠 ̂ 𝑠 ̂ (2.13)

16

Figure 6: Signing Phase [19]

Then, B sends pairs (̂ 𝑠 ̂) , back to the voter, R

Step 3. For all from 1 to , the voter, R, computes (2.11) and accepts the oblivious

signature if (2.14) holds:

 ̂ (𝑔
 ̂

 ̂) (2.14)

otherwise, the message is rejected.

Step 4. The voter, R, sets

 ̂ (2.15)

 𝑠 ̂ (2.16)

The signature for the message, , selected by R is

 () (2.17)

The signature (2.17) together with is sent to the voting center, V, as shown in

Figure 7.

17

Figure 7: Verification Phase [19]

For our numerical examples for signing phase:

n=6,

{ + * +

 𝑔 ℎ = = =

 are choosen randomly * +

Let in (2.10), . Then,

 , , ,

 , , ,

From (2.11),

 () , () ,

 () () ,

 () , () ,

From (2.12),

 ̂ ().

The hash function is be defined as follows. It takes the value of , as a character

string, concatenates it with a character string representing , returns sum

of ASCII codes of the characters modulo 256.

 ̂ () ()

 ̂ () ()

18

 ̂ () ()

 ̂ () ()

 ̂ () ()

 ̂ () ()

From (2.13), recalling (2.6), (2.10),

 𝑠 ̂

𝑠 ̂

𝑠 ̂

𝑠 ̂

𝑠 ̂

 𝑠 ̂

For R computes and accepts the oblivious signature if and only if

(2.14) holds,

 ̂ () ()

 ,

 ̂ () () ,

 ̂ () () ,

 ̂ () () ,

 ̂ () () ,

 ̂ () ()

For (2.15)-(2.17), from (2.12), (2.13), 𝑠

 𝑠 .

Values for (2.17):

19

 () So the signature is valid based on the computations.

D. Verification Phase

Verification phase is illustrated by Figure 7 and represented by Step 1 below:

Step 1. The voting center, V, accepts the signature. , when (2.18) holds:

 (, 𝑔
). (2.18)

We shall now use numerical examples to test our verification stage:

For our numerical examples for the verification stage of the scheme [19]

From (2.14), (2.15), (2.16), we verify (2.18) using values:

 () ()

This shows that the signature is valid for the fifth message chosen by R, the voter.

2.4.2 Proxy-Protected Type Scheme

Signing and verification phase of the proxy-protected type are the same as that of the

proxy unprotected, the only distinguishing factor between them is that for the proxy

protected one it has an additional mathematical computation

𝑠 𝑠 (2.19)

as illustrated by Figure 8.

Figure 8: Proxy Protected [19]

,yA

20

Publishing of is added by us in Figure 8 (according to Section 3.4).

Proxy-Protected- Phase

The proxy-protected phase is represented by Steps 1-3 below:

Step 1. The original signer, A chooses that belongs to
 randomly, makes

 𝑔 as in (2.5) and then computes

 𝑠 𝑞 (2.20)

 𝑔 (2.21)

The proxy transmission takes place after the computation is done.

Step 2. The original signer A securely sends the pair,(𝑠) to B and
 is published.

Step 3. The proxy signer B checks whether

 As r

Ag ry mod p
 (2.22)

holds. If it is does, B accepts the proxy and computes its secret proxy signature key.

 𝑠 𝑠 (2.23)

2.4.3 Voting Protocol Design and Implementation

In the proposed in [19] voting system, the same actors are expected as for the

schemas from Sections 2.4.1, 2.4.2: the creator (central government) A delegates

authority to proxy signer (local government) B, and R voter, can get a legal ballot

from B and send his or her vote to V (voting center), and vote results are displayed

on the bulletin BB. This protocol design has six phases. They are mostly similar to

those considered in Sections 2.4.1, 2.4.2 but introduce some new details related with

RSA, registration, and votes counting. The phases, system setup, proxy, registration,

circling, voting, and counting, is shown in Figure 9, and the voting protocol

computation time measured in (milliseconds), is shown in Table 4.

21

 Figure 9: System actors and phases [19]

The system involves six phases represented by Steps 1-6 below

Step 1. Setup phase: parameters are generated.

Step 2. Proxy phase

Step 2a. The original signer, A, delegates authority to B, the proxy signer.

Step 2b. Proxy signer, B, then publishes the public key to the bulletin.

Step 3. Register phase

Step 3a. Proxy signer, B, checks whether R, voter, is legally registered; if so, a

voting certificate is issued to R.

Step 3b. Proxy signer, B, publishes all the certificates to the bulletin.

Step 3c. Voter, R, checks via the bulletin whether he is registered successfully.

Step 4. Circling phase: The voter chooses a candidate and receives the signature on

it from the proxy signer.

Step 5. Voting phase

Step 5a. Voter, R, casts his vote by sends it to the voting center.

Step 5b. Voting center, V, immediately publishes a message about the vote cast by R

to BB.

Step 5c. Every voter, R, can confirm whether his or her ballot has been received by

the voting center; if not, he or she can resend the ballot.

22

Step 6. Counting phase

Step 6a. When the voting period has ended, B forwards the decrypting key to V, and

V verifies and counts the votes.

Step 6b. V publishes the result of the votes to BB, where every voter can count and

verify all votes.

2.4.4 Processes Involved in the Voting System, Experimental Settings

and Results

We assume that the system database already contains list of voters, and that BB is

read-only to all entities.

2.4.4.1 System Setup Design

This phase is represented by Steps 1-9 below [19].

Step 1. Two large primes , q are selected according to (2.1).

Step 2. Two generators, g, h, belong to
 of order q are chosen, according to (2.2).

Step 3. The original signer A chooses a random number,
 as his private key to

compute the public key according to (2.3), A publishes p, q, g, h, and on BB.

Step 4. The proxy signer B also chooses
 as his private

key to compute the public key

Step 5. B chooses two large primes , 𝑞

Step 6. B computes

 𝑞 (2.24)

23

Step 7. B computes totient function, ()

 () ()(𝑞) (2.25)

Step 8. B chooses RSA public key, , such that

 (()) . (2.26)

Step 9. B computes RSA private key

 (), (2.27)

Proxy signer, B, publishes , and on BB.

Numerical data can be used for the voting protocol exactly as in Example 1.

Example 2. Let , 𝑞 .

According to (2.24),

According to (2.25), () ()()

According to (2.26), () .

According to (2.27), .

Now, we need to compute
 () by using backward substitution of

GCD algorithm:

According to GCD:

 Therefore, we have:

 –

 Hence, we get
 () =

 =

 (–)

So, the public key is {3, 55} and the private key is {27, 55}

End of Example 2.

24

2.4.4.2 Proxy Phase Design

Proxy phase is illustrated by Figure 10 and represented by Steps 1-5 below.

Step 1. Original signer, A, randomly chooses

 and calculates

 𝑔 (2.28)

 A A As x r k mod q  , (2.29)

 𝑔 , (2.30)

the same as (2.5, 2.20, 2.21).

Step 2. Original signer, A, RSA encrypt the pair of (, 𝑠) using (,) , then

sends it to B.

Figure 10: Proxy phase design [19]

Step 3. B with RSA, decrypts (𝑠) using () , and checks whether equality

 𝑔
 ()

is true, similar to (2.8). If it is true, B accepts the proxy and calculates

 𝑠 𝑠 𝑞 ()

 as the secret proxy signature key.

Step 4. The proxy signer, B, generates a signature

 (𝑔) , (2.33)

25

 and forwards it to A.

Step 5. A checks whether

 𝑠
 (

) (2.34)

 is true. If it is true then
 published by A to the bulletin board BB.

Example 3. From (2.28),(2.29),(2.30)

 .

 3 + 3 mod 5= 4,

(𝑠) ()

 𝑔 ,

The original signer, A, encrypts the pair (, 𝑠) () using (,) ()

result of the encryption :(, 𝑠) ()

 , encryption of 𝑠 , the pair is

() and publishes

The proxy signer, B, RSA decrypts the message received using (,) ()

decryption of message :(,) ()

decrypt , decrypt 𝑠 , the pair is (),B

checks equality of (2.31) , for our numbers, 𝑔

 which holds, and B accepts it and computes 𝑠 according to

(2.32),

 () and (2.34)

 () ()

𝑠
 ()

Note that ASCII code for „5‟ is 53.

 (
) () ()

26

End of Example 3.

2.4.4.3 Register Phase Design

Register phase is illustrated by Figure 11 and is represented by Steps 1-3 below:

Step 1. Voter, R, picks pn as a pseudo-name and a password, pw, computes

 () (2.35)

RSA encrypts (id, pn,(pw)) using (,), and R sends it to B, where id is the

voter‟s identification number.

Figure 11: Register phase design [19]

Step 2. The proxy signer, B, decrypts (id, pn,) using (,) to check whether

R the voter is a legal voter. If R is, then, B stores (pn,) in the system database,

sets flag () , and calculates

 (), (2.36)

calculates RSA signature of (),

 𝑠 () ()

returns Cert(𝑅) to R, and the Cert(𝑅) is published to BB, where

 () (, 𝑠). (2.38)

Step 3. Then, R checks whether

 𝑠
 () (2.39)

is true. Note that (2.39) is not proved in [19]. If it is true, R has the right to vote.

27

Example 4 illustrates below numerically the register phase.

Example 4. According to (2.35), R enters password, pw= “FEYI”, and pseudo-name,

pn=“OLA”.

ASCII codes for each letter are added modulo N:

 ()

Encryption is done for each of id, pseudo-name and password, i.e., (())

(𝑔 ()) using (,) ()). For encryptionof the pseudo-

name, pn, we introduce character coding Table 3:

 Table 3: Character coding table

We now encrypt the value of each character. For OLA: 16-13-2, this takes each value

before the dash and uses an RSA encryption as follows: we used () ())

as our encryption keys, we have

 after these encryption, we have ().

The encrypted (()) is decrypted by B to give us () then R is

checked to be a legal voter and the flag (pn) value is set to be zero.

From (2.36), e.g., ()

From (2.37), () (()

 ()

The certificate, () () (), is forwarded to R.

Verification is done by voter, R, according to (2.39):

28

 () mod , and it is verified

because (2.39) holds.

End of Example 4.

2.4.4.4 Circling Phase

Circling phase is illustrated by Figure 12 and is represented by Steps 1-4 below:

Step 1. The proxy signer, B, forwards a random number belonging to
 to voter

R; this is done after receiving a login request from R, as illustrated in Figure 12.

Step 2. The voter, R, computes

 (()) (2.40)

 Figure 12: Circling phase design [19].

then R picks a random number v
 , and computes

 𝑔 ℎ according to (2.9), (* +) and forwards

(pn,
) to B.

Step 3. The proxy signer, B, examines whether

 () (2.41)

29

 is correct. If so, B checks whether 𝑔() . If true, B chooses

 , calculates modik

g p ,according to (2.10), (𝑔ℎ)

,according to (2.11), ̂ ()

according to (2.12), and

𝑠 ̂ 𝑠 ̂

according to (2.13), ∀ =1, 2, . . . , , returns (̂ 𝑠 ̂), 1 ≤ ≤ , to R, and sets

flag(pn) =1.

Step 4. R computes

 ,

and, for every calculates (𝑔ℎ) , according to (2.11),

and checks whether

 ̂ (𝑔 ̂
 ̂) ()

 is correct. If so, R computes

𝑠 𝑠 ̂

according to (2.16), and

 ̂,

according to (2.15).

The final signature is

 () (𝑠)

according to (2.17).

Note that (2.42) is not proved in [19]. The signing phase is illustrated numerically by

Example 5 below.

Example 5. The proxy signer, B, sends a random chosen number

* + to R, after which the voter is requested to login.

The voter R does some computations from (2.40)

30

 (()) () mod 55 = 46 for hash calculation.

Also, from (2.9), for our values, * + * +

 𝑔 ℎ

 (ℎ

)

 (* }), he then forwards the message (pn,
)

 () to B.

From (2.41),
 () ()

 From (2.10),

 ,

 , , ,

 , ,

From (2.11),

 () =4, () = 4, () =4

 () =4, () =4, () =4

Using a hash function that has three inputs introduced in (2.14).

 ̂ (), (2.43)

 ̂ () ()

 ̂ () () (

)

 ̂ () ()

31

 ̂ () ()

 ̂ () ()

 ̂ () ()

From (2.13), recalling (2.2), (2.10),

𝑠 ̂

𝑠 ̂

 𝑠 ̂

 𝑠 ̂ ,

 𝑠 ̂

𝑠 ̂

. (̂ 𝑠 ̂) () () () () () ()

𝑠

according to (2.17), () (e,s) =()

End of Example 5.

2.4.4.5 Voting Phase

Voting phase is illustrated by Figure 13 and is represented by Steps 1-3 below:

Step 1. The voter R calculates (()) and uses a Caesar cipher symmetric

key encryption to encrypt (()) to generate a cipher , and

sends ((𝑅)) to the voting center,V.

Step 2. The voting center, V, first examines whether

𝑠
 ()

32

according to (2.39), illustrated in Figure 13, holds. If so, V publishes

((𝑅)) to BB.

 Figure 13: Voting phase design [19]

Step 3. Every voter R can check if their vote is received by V via BB. If not, R

resends ((𝑅))

The voting phase is illustrated numerically by Example 6 below continuing Example

5.

Example 6. R uses a symmetric key () to encrypt

(()) =(, - , -), using Caesar cipher encryption;

where c is cipher, p is plaintext, and k is the key (the shift), therefore, we have

 , 4+46 mod55=50; which produces

 () It will now send ((𝑅)) as (, -) (, -) to

the voting center, V.

The voting center, V checks if

 ()

is true, V publishes (Cert(𝑅),) on BB and each voter can check its presence there,

End of Example 6.

2.4.4.6 Counting Phase

Counting phase is illustrated by Figure 14 and is represented by Steps 1-3 below:

Step 1. The proxy signer B forwards key,

33

 () , (2.44)

to V.

Step 2. The voting center, V, uses a Caesar cipher to decrypt using the symmetric

key, , publishes ((𝑅)) to BB, and calculates

 ,

and verifies whether

 (, 𝑔
)

(2.45)

is true. If (2.45) is valid, the vote is counted.

Step 3. The voting center, V, publishes the voting results on BB. Everyone can count

and verify the ballots from BB.

Figure 14: Counting phase design [19]

The counting phase is illustrated numerically by Example 7 below.

Example 7. The proxy signer, B, forwards the key, () , to V.

The voting center decrypts using symmetric encryption, (, -) using

 , with formula p = c - k mod N, where c is cipher, p is plaintext and k is

key, therefore we have 50-46=4, 39-46=-7+55=48, 50-46=4; we have this result

(, - , -), then it publishes ((𝑅)

) (() ()),

34

From (2.18), also adding a final variable

 (, 𝑔
 mod)= H(4, OLA,) ()

() which is correct.

End of Example 7.

2.4.4.7 Experimental Settings and Results

Table 4 below shows the computation time for each of the phases involved in the

proposed voting system [19] measured in milliseconds. For the voting protocol [19],

it was not specified the software package that was used for its implementation but the

results were given, where PP stands for the Proxy Phase, RP stands for the

Registration Phase, CiP stands for the Circling Phase, VP stands for the Voting Phase

and CoP stands for the Counting Phase. It gives the computational role for each

phase.

 Table 4: Computation time of the voting protocol (milliseconds) [19] phases PP,

 RP, CiP, VP, and CoP, and roles A, B, R, and V.

Phase PP RP CiP VP CoP

Role A B R B R B R V V

Time 42.4 31.5 22.85 19.55 31.2 31 19.8 10.35 20.25

2.5 Problem Definition

The problem definition and the aims of the thesis are:

1. Study the VS [19].

2. Provide proofs for oblivious signature and VS [19] formulas (2.8), (2.14),

(2.18), (2.34), (2.39), and (2.42).

35

3. Design, implement and test VS [19] to ascertain the scheme proposed just for

a single user

4. Conduct experiments with the VS similar to those made in [19] and compare

them versus Table 4.

The rest of the thesis is organized as follows. In Chapter 3, we give proofs of the

conditions used in VS [19] without justification, and adjust VS [19] according to

inconsistences found. In Chapter 4, we discuss our VS [19] design, implementation

and testing. In Chapter 5, we conduct experiments in the settings of [19] and

compare our results versus Table 4. In Chapter 6, we conclude the thesis and discuss

future work.

36

Chapter 3

3 ANALYSIS AND PROOF OF THE VOTING SYSTEM

CORRECTNESS

We analyze the VS [19] described in Chapter 2 and prove consistency of the

conditions (2.8), (2.14) and (2.18) used in the novel oblivious signature and (2.34),

(2.39), and (2.42) used in VS [19] without justification. The VS is adjusted according

to the proofs made.

3.1 Proof of the Conditions Used in Novel Oblivious Signature

Scheme [19]

We prove conditions (2.8), (2.14) and (2.18) used in VS [19].

3.1.1 Proof of (2.8)

Let us prove that (2.8) holds.

Proof. Consider its left-hand side (LHS). From (2.6), we get:

𝑔 𝑔 𝑔 (((𝑔))((𝑔)

(𝑔)) , (3.1)

where

 ⌊() 𝑞⌋ . (3.2)

 From (3.1), (2.3), (2.2), and (2.5), we get

𝑔 (
)

 .

As far as our result is equivalent to the right-hand side (RHS) of (2.8), hence, (2.8) is

proved. QED

37

3.1.2 Proof of (2.14)

We prove that LHS of (2.14) is equal to RHS of (2.14). LHS of (2.14) is equal to

RHS of (2.12), hence we prove that RHS of (2.12) equals to RHS of (2.14). We see

that they are equal if

 𝑔 ̂
 ̂

Using (2.9) -(2.11) in the LHS, so we have

𝑔 (𝑔ℎ) 𝑔 𝑔 ℎ 𝑔 ℎ 𝑔 ℎ
 mod p

Now, taking RHS, we use (2.9), (2.11), (2.13), and (2.7),

 𝑔 ̂
 ̂ 𝑔 ̂ (𝑔) ̂ (𝑔 ℎ 𝑔 ℎ)

𝑔 ̂ ̂ i bh 

mod p,

where ⌊(𝑠 ̂) 𝑞⌋.

From (2.2), 𝑔 𝑔 and from the last equality,

 𝑔 ̂
 ̂ 𝑔 i bh 

 Thus, RHS of (2.14) equals to the RHS of (2.12) hence their LHS‟s are also equal,

and (2.14) is proved. QED

3.1.3 Proof of (2.18)

 LHS of (2.14) for , equals to LHS of (2.18) because of (2.15), Let us prove

that the RHS‟s of (2.14) and (2.18) are also equal:

 . 𝑔
 ̂

 ̂ / (𝑔

)

 𝑔 ̂
 ̂

 = 𝑔
 mod

Using (2.15), (2.16), we have

𝑔
 ̂ = 𝑔 ̂

 ̂ 𝑔 ̂
 ̂ (3.3)

where ⌊(𝑠̂) 𝑞⌋.

38

From (2.2), since 𝑔 we get 𝑔 .

Substituting our equation into the RHS of (3.3), we get

𝑔
 ̂ = 𝑔 ̂ 𝑔

 ̂ .

 Using (2.9) and (2.11), we have

 (𝑔ℎ) 𝑔 ℎ (𝑔ℎ) 𝑔 .

Thus, it is true, hence,

𝑔
 ̂ = 𝑔 ̂ 𝑔

 ̂ 𝑔 ̂
 ̂

 ,

holds, and (2.18) is proved. Q.E.D.

3.2 Adjustment of the Novel Oblivious Signature

There are some issues associated with the signature [19], which we will adjust in this

section of the thesis.

In spite of the correctness of (2.8), it can‟t be verified by B because s/he does not

know , hence, we can make a conclusion that in the proxy phase, shall be

published, not only as it is specified in the original protocol. Hence, Step 2 of the

proxy phase shall be adjusted as follows:

Step 2 Adjusted: The original signer, A, securely sends the pair (, 𝑠) to B and p ,

 are published.

3.3 Proof of the Voting System Correctness

3.3.1 Proof of (2.34)

Using (2.33) to expand the left hand side of (2.34), we have

𝑠
 ((𝑔)) (

) ,

due to (2.27), and reminding RSA encryption/decryption, considered in Section

2.3.2. Thus, we get

RHS of (2.34), Q.E.D

39

3.3.2 Proof of (2.39)

From (2.37),

 () .

Using the right hand side of (2.39) to prove the equality, and reminding RSA

encryption/decryption, we have

 (())

 () ,

 Q.E.D

3.3.3 Proof of (2.42)

We refer to the proof of (2.14), Section 3.1.2, just that an additional variable pn

(pseudo-name) is included in (2.42) and it holds.

3.4 Modification of the Voting System

The modification for the proposed method [19] at the System Setup Phase: shall

be published to be used in the proxy phase by B. And this is described in the

modified Figure 8, where we have added publishing of .

3.5 Summary

In summary, based on the proposed voting [19] protocol, we have proved (2.8),

(2.14), (2.18), (2.34), (2.39) and (2.42) not proved in [19]. We have found in the

course of proving some problems with the oblivious signature scheme and VS [19]

and made necessary adjustments.

40

Chapter 4

4 VOTING SYSTEM DESIGN, IMPLEMENTATION

AND TESTING

We discussed the Voting System in Chapter 2 and its proof and adjustment in

Chapter 3. We proceed in this chapter to the system design, implementation, and

testing of the voting system [19]. We design EVS architecture (Section 4.1), specify

tools used in its implementation (Section 4.2), and provide information on EVS

implementation (Section 4.3) and testing (Section 4.4).

4.1 Voting System Design

Based on the voting system design, we show implementation by Steps 1-6 below for

the EVS.

Step 1. Parameters are generated.

Step 2. The original signer, A, delegates authority to B, the proxy signer, and B then

publishes the public key to the bulletin.

Step 3. The proxy signer, B, checks whether R, is voter legally registered; if so, a

voting certificate is issued to R. B publishes all the certificates to BB (the bulletin

board). R checks whether he is registered via BB successfully.

Step 4. The voter, R, makes his choice candidate and receives signature on it from B.

Step 5. The voter, R, casts his vote by sending it to V (the voting center), V

immediately publishes a message about the vote cast by R to BB. Every single R can

confirm whether his/her vote was received by V; else, voters can resend their votes.

41

Step 6. When the voting period has ended, B forwards the decrypting key to V, and

V verifies and counts the votes. V publishes the result of the votes to BB, where

every voter can count and verify all votes.

We design the voting system using context diagram and use-case diagram as shown

in Figures 15 and 16, respectively. The context diagram for the EVS represents the

entirety of the EVS and how it relates with the actors, it is built for one user, the

system administrator, acting as the original signer, A, proxy signer, B, voter, R, and

voting center, V.

Figure 15: Context diagram for EVS

42

Figure 16: Use-case diagram for EVS

The use-case diagram for EVS in Figure 16 has five actors: System administrator,

SA, Original signer, A, Proxy signer, B, Voter, R, and Voting center, V. Based on

our EVS implementation, we simulated the work of all these five actors to be done

by just one actor, SA. The Registration Dbase use-case is used to populate the

database with the information of all Voters. The Login use-case is provided for each

actor to be able to have access to the EVS. We have the setup phase use-case for A,

and the separate setup use-case for B. We also have the proxy phase for A and B

where A delegates authority to B. We also have registration phase use-case, this is

where B checks if R is a legal voter by identity number, ID, and registered voters can

get Cert(R) and make progress to vote. In circling phase use-case, B checks whether

R has voted, if he has, the process gets terminated, else he is given access to continue

to vote and make his choice from the candidate list. In voting phase, R encrypts the

ballot and sends to V in order to hide his choice until the end of the voting period.

43

From the counting phase use-case, every candidate selection tallies only with

corresponding pseudo-name (pn) available from BB.

BB writing use-case provides access for an actor to write on the bulletin board so that

everyone could have access to vital information that is specific to them, voters from

it could ascertain whether their names and votes have been received by the vote

center and election results can be verified. While, for the BB reading use-case is

available for everyone to be able to verify their information on the screen; you could

also click on the BB button on the menu page to have access to the page, according

to Figure 22.

4.2 Tools Used for EVS Implementation

We implemented the EVS [19] using Windev express version 17 [37, 38] which has

a built-in database called Hyper File SQL. WinDev is an integrated platform for

software development. Most software developed with WinDev offers a set of

advanced features, you can download it from [37, 38], and the installation steps and

work environment is shown below, Figures 17-20.

Figure 17: WD Full Application Install.exe

44

To install WinDev17, click on the WD full Application install.exe icon, as shown in

Figure 17:

1. Click on “installation de Windev 17” during installation, as shown in Figure 18.

Figure 18: Installation Phase for French Language

Figure 19: Setup Directory for Windev Application

2. Validate the setup directory by clicking on the application, as shown in Figure 19.

3. Move to next step and end the setup for the application.

4. Then the application starts up. Click to validate the steps of the setup.

5. Then we have the work environment, as shown in Figure 20.

45

Figure 20: Windev Work Environment

More details on how to install Windev Application are given in the webpage in [39].

4.3. Voting System Implementation

We model the EVS as proposed by [19] based on the context diagram in Figure 15

and use-case diagram in Figure 16. It will be run by a single user, SA, representing

all actors. In the Login use-case, SA logs on and then moves to the Menu page use-

case to select whatever process he wants to choose either A, B, R, or V. Figure 21 is

the screenshot for the Login use-case and Figure 22 is the screenshot for the Menu

page.

Figure 21: Login screenshot

46

 Figure 22: Menu page screenshot

4.3.1. Implementation of Setup Phase for A and B Use-Case

Figure 23 shows the screenshot of the system setup phase use-case for both A and B,

Figure 16 described the use-case for the setup phase for A and B in Section 2.4.4.1

of our protocol design. In Step 1, A selects two large prime values, p and q (see

Appendices A.1.2, lines #9-28, and A.1.3, lines #29-57), according to (2.1). In Step

2, two generators of order 𝑞, which are ℎ and 𝑔 according to (2.2) (Appendix A.1.4,

lines #59-66, and Appendix A.1.5, lines #68-80) are selected by A. In Step 3, A

chooses
 (Appendix A.1.12, lines #156-160), and calculates , defined by

(2.3) (Appendix A.1.6, lines #81-83). Then, A publishes 𝑞 𝑔 ℎ and values on

BB (Appendix A.1.1, lines #1-4) as described on Figure 16 as BB writing use-case.

In Step 4, B enters and computes , according to (2.4) (Appendix A.1.9, lines #

128-131). In Step 5, B chooses two large prime numbers and 𝑞 (Appendices

A.1.7, A.1.8, lines #84-127). In Step 6, the product of and 𝑞 is stored in

according to (2.24), (Appendix A.1.8, lines#116-117). In Step 7, Euler totient

function, (), is calculated according to (2.25) (Appendix A.1.8, lines#119-121).

In Step 8, B selects RSA public key, , meeting condition (2.26). In Step 9, B

calculates private key , according to (2.27) (Appendix A.1.10, lines #131-151).

Then B publishes , on BB (Appendix A.1.11, lines #152-155).

VoterVerifier

Original signer Proxy Signer

Bulletin Board

47

Figure 23: System Setup Phase for A and B

4.3.2 Implementation of Proxy Phase Use-Case

Figure 24 shows the screenshot of the proxy phase, Figure 16 described the use-case

for the proxy phase described in Section 2.4.4.2 of our protocol design. In this phase,

communication is made between A and B. In Step 1, A chooses a random number, ,

and computes 𝑠 and
 according to (2.28)-(2.30). (Appendix A.2.2, lines# 165-

168) In Step 2, A encrypts (𝑠) using RSA, and it is forwarded to B, (Appendix

A.2.2, lines # 164-180). In Step 3, B decrypts the message (𝑠) using RSA private

key () (Appendix A.2.5, lines #231-239) and checks condition (2.31) to know

if values have been compromised, (Appendix A.2.3, lines #181-212). If (2.31) is true,

B accepts the message and computes 𝑠 as his own secret key signature, according to

(2.32). In Step 4, B generates signature according to (2.33) and forwards it to A

by clicking the send button (Appendix A.2.4, lines #213-230). In Step 5, A checks if

the signature is valid according to (2.34) (Appendix A.2.6, lines #240-249). If

(2.34) is true, the original signer A publishes
 to BB (Appendix A.2.1, line #156-

158).

Publish p,q.g,h,yA

48

Figure 24: Proxy Phase

4.3.3 Implementation of Register Phase Use-Case

Figure 25 shows the screenshot of the register phase, Figure 16 described the use-

case for the register phase described in Section 2.4.4.3 of our protocol design. Every

eligible voter name exists already in the database called IDExpress_Flag designed in

HyperFileSQLWindev; this is detailed in Section 4.3.7. Figure 25 shows that Voters

R records are already populated in the database on a grid. It is populated by A with R

records, so R updates records of password (pw) and pseudo-name (pw), according to

Section 2.4.4.3. In Step 1, R encrypts his id, pseudo-name and hash of his password,

according to (2.35) (Appendix A.3.1, lines #250-276, Appendix A.3.2, lines #277-

301, and Appendix A.3.3, lines #302-325), using () published on BB and

sends it to B, Figure 11. In Step 2, B decrypts it using and checks if the ID is

valid, sets the vote flag to zero meaning the voter has not voted, and then allows the

voters The proxy signer B computes and 𝑠 , according to (2.36), (2.37)

respectively; (Appendix A. 3.4, lines #326-346) and then forwards the certificate of

voter R (Appendix A.3.5). R sees it, and proceeds to vote (Appendix A.3.6, lines#

360-388).

49

Figure 25: Registration phase

4.3.4 Implementation of Circling Phase Use-Case

Figure 26 shows the screenshot of circling phase, Figure 16 described the use-case

for the circling phase described in Section 2.4.4.4 of our protocol design. In Step 1, B

sends a random number r after the request from R, (Appendix A.4.1, lines # 389-

392). In Step 2, R proceeds to calculate
 using an hash function, according to

(2.40), (Appendix A.4.2, lines# 393- 404), this is where the use of the oblivious

signature comes in, R picks a random number used as a blinding factor (Appendix

4.3, lines# 405- 408), and computes for all candidates and picks as the candidate

of his or her choice, , from the whole candidates list () , according

to (2.9), (Appendix 4.4, lines# 409-429), and forwards the values to B, (Appendix

4.5, lines# 430-457). In Step 3, B checks whether the hash function are equal,

according to (2.41), (Appendix 4.6, lines# 458-469), then B chooses some and

calculates value for ̂ and 𝑠 ̂ for all , (Appendix A.4.7, lines #470-501), B

sets the flag(pn) to and sends ̂ and 𝑠 ̂ for all back to R, according to (2.10),

(2.11), (2.12), (2.13), (Appendix A.4.8, lines #502-516). In Step 4, R, calculates ,

according to (2.19), (Appendix A.4.4, lines #409-414), for all i, he calculates for

 , ̂ according to (2.11), (2.42) respectively, is correct, (Appendix

50

A.4.8, lines #517-522), then R computes 𝑠 and , according to (2,15), (2.16)

respectively as the final signature (Appendix A.4.9, lines #527-545).

 Figure 26: Circling Phase

4.3.5 Implementation of Voting Phase Use-Case

Figure 27 shows the screenshot of voting phase, Figure 16 described the use-case for

the voting phase described in section 2.4.4.5 of our protocol design. In Step 1, R

calculates (()), (Appendix A.5.1, lines #546-555) and uses it as a

symmetric key to encrypt (, ()), produces a cipher , (Appendix A.5.2, lines

#556-580), then send the certificate to the voting center V, (according to Appendix

A.5.3, lines #581-588). In Step 2, V examines it, according to (2.39), (Appendix

A.5.4, lines # 589-619) and sends it to BB; (Appendix A.5.5, lines #620-632). In

Step 3, every voter can check whether his or her ballot is received by V via BB, else

the voter resends his ballot.

51

Figure 27: Voting Phase

4.3.6 Implementation of Counting Phase Use-Case

Figure 28 shows the screenshot of the counting phase, Figure 16 described the use-

case for the counting phase described in section 2.4.4.6 of our protocol design; this

phase is done between B and V. In Step 1, the key generated by B during the

registration phase is sent to V; according to (2.44), (Appendix A.6.1, lines #633-

636). In Step 2, V decrypts , (Appendix A.6.2, lines #637-646) and V now

publishes (() ,) on BB, (Appendix A.6.3, lines #647-655, and V

calculate , according to (2.19), (Appendix A.6.4, lines #656-663), then, V verifies

 , according to (2.45), (Appendix A.6.5, lines #664-687). In Step 3, V publishes the

election result on BB, (Appendix A.6.6, lines #688-700) and everyone can verify and

count the ballots via BB.

52

Figure 28: Counting Phase

4.3.7 Database Implementation

There are several ways available to connect to database. The connection to database

in this thesis is done directly by connecting to a HFSQL Classic database. The main

operation that is performed in order to make use of WDSQL is that we have to

establish foremost connection to database. Once this connection is done, we can now

have access to run and create SQL queries on the used database.

The database used is inbuilt with Windev application called HFSQL, as shown in

Figure 29 for the overall view of the database; we have a database with four tables.

For the Registration of voters and voter‟s choice, Express_flag table was used, as

shown in Figure 30. For login information for all users, Fich_Login table is used to

store records for each user that have access to the EVS, as shown in Figure 31. For

character coding table, we used the Express_alphabeth table to store the values, as

shown in Figure 32. For the database of contestant and vote result we used

candidate.fich as shown in Figure 33.

53

Figure 29: Database view [Overall]

Figure 30: Table for Express_flag

Figure 31: Table for Fich_login

54

Figure 32: Table for Express alphabeth

 Figure 33: Contestant and results table

4.4 Voting System Testing

In software development, the testing phase is of uttermost importance. After the

software was developed the voting protocol was also tested, so to ascertain that it met

the necessary requirements as proposed by [19] and also the modifications made in

these thesis. Below are the snapshots for each of the phases of the voting protocol.

55

 4.4.1. Testing of System Setup Phase Use-Case

Figure 34: Testing for ystem setup phase

Tested result for Figure 34 has been explained in example1 and example 2 of section

2.4, for Figure 34 the Right hand side is original signer A segment and the left hand

side is the proxy signer B segment.

According to (2.1). Let 𝑞 be our prime numbers chosen,

From equation (2.2), ℎ 𝑔 𝑞 𝑞

From equation (2.3),
 * +

Let and then 𝑔 ,

From equation (2.4), we have

 Let , 𝑞

According to (2.24),

According to (2.25), () ()()

According to (2.26), . According to (2.27), 27.

Now, we need to compute
 () by using backward substitution of

GCD algorithm:

According to GCD:

56

 Therefore, we have:

 –

 Hence, we get
 () =

 =

 (–)

So, the public key is {3, 55} and the private key is {27, 55}.

4.4.2. Testing of Proxy Phase Use-Case

Figure 35: Testing for proxy phase

Tested result for Figure 35 has been explained in Example 3 of section 2.4, for

Figure 35 the Right hand side is original signer A segment and the left hand side is

the proxy signer B segment.

Recall (2.5) r was used as our notation, we will now use in place of r for this

example

„For (2.20),

𝑠

57

(, 𝑠)= (3,4)

 𝑔

the original signer, A, encrypted pair (, 𝑠) (()) using (,) (

()) and
 will be forwarded to B. The proxy signer B must decrypt the

message using (,𝑠) (()) using (,) ()

 (𝑔
)

 B accepts computes 𝑠

From (2.2) –(2.6), which hold, 𝑠

 (),

 () H() = ,

𝑠
 () (Note: The ASCII value for 5 is 53)

 (
) () () 53.

4.4.3 Testing of Register Phase Use-Case

Figure 36: Testing for Registration Phase

58

Tested result for Figure 36 has been explained in Example 4 of section 2.4, for

Figure 36 the Right hand side is the voter R segment and the left hand side is the

proxy signer B segment.

From (2.39), R enters Password as “FEYI” and pseudo-name as “OLA”

Each of the ASCII value for each letter is taken added up modulo N

 = H(pw) =70+69+89+73 =

Encryption is done for each of id, pseudo-name and password, i.e., (id, pn, H(pw))

(e.g.,=(2,OLA,26)) using (,)= (3, 55)) which when encrypted, for the pseudo-

name (pn), we introduced Character Coding Table, illustrated in Table 3

We now encrypt the value of each character. For OLA: 16-13-2, this takes each value

before the dash and encrypt it as follows: we used () ()) as our

encryption keys, we have after

these encryption, we now concatenate each encrypted the value to get

 taken out the dash(“-”) to form . We have () after the

encryption for each of them.

The encrypted (()) is decrypted by B to give us () then R is

checked to be a legal voter and the flag () value is set to be zero,

From (2.36), calculated to give (e.g. ()

From (2.37) () (()

 ()

This is forwarded to R as certificate, (𝑅) (,) ()

The certificate, () () (), is forwarded to R.

Verification is done by voter, R, according to (2.39):

59

 () mod , and it is verified

because (2.39) holds.

4.4.4 Testing of Circling Phase Use-Case

Figure 37: Testing for Circling Phase

Tested result for Figure 37 has been explained in Example 5 of section 2.4, for

Figure 36 the Right hand side is the proxy signer B segment and the left hand side is

the voter R segment.

The proxy signer B sends a random chosen number
 * + to the

voter R after which the voter R is requested to login.

The voter R does some computations from (2.44)

 (()) ()

Also, from (2.9), for our values, * } * +

 𝑔 ℎ

 ℎ

 =

 ({ }), he then forwards the message (
) ()

to the proxy signer B

60

For (2.41)
 () ()

 From (2.10)

 * +

 , , ,

 ,

From (2.11)

 () , () , (

) .

 () , () , (

)

From (2.15) it used two variables for the hash function, but here we are introducing

for three variables for this hash function.

Using a hash function that has three inputs introduced in (2.14).

 ̂ (), (2.43)

 ̂ () ()

 ̂ () () (

)

 ̂ () ()

 ̂ () ()

61

 ̂ () ()

 ̂ () ()

From (2.13), recalling (2.2), (2.10),

𝑠 ̂

𝑠 ̂

 𝑠 ̂

 𝑠 ̂ ,

 𝑠 ̂

𝑠 ̂

. (̂ 𝑠 ̂) () () () () () ()

𝑠

according to (2.17), () (e,s) =().

4.4.5. Testing of Voting Phase Use-Case

Figure 38: Testing for voting phase

62

Tested result for Figure 38 has been explained in Example 6 of Section 2.4, for

Figure 38 the Right hand side is the voter R segment and the left hand side is the

verifier V segment.

R uses a symmetric key () to encrypt (())

=(, - , -), using Caesar cipher encryption; where c is

cipher, p is plaintext, and k is the key (the shift), therefore, we have

 , 4+46 mod55=50; which produces

 () It will now send ((𝑅)) as (, -) (, -) to

the voting center, V.

The voting center, V checks if

 ()

is true, V publishes (Cert(𝑅),) on BB and each voter can check its presence there.

4.4.6 Testing of Counting Phase Use-Case

Figure 39: Testing for Counting Phase

63

Tested result for Figure 39 has been explained in Example 7 of Section 2.4, for

Figure 39 the Right hand side is the proxy signer B panel and the left hand side is the

verifier V panel.

The proxy signer, B, forwards the key, () , to V. The voting

center decrypts using symmetric encryption, (, -) using ,

with formula p = c - k mod N, where c is cipher, p is plaintext and k is key, therefore

we have 50-46=4, 39-46=-7+55=48, 50-46=4; we have this result (, - , -), then

it publishes ((𝑅)) (() ()),

From (2.18), also adding a final variable

 (, 𝑔
 mod)= H(4, OLA,) ()

() which is correct.

4.5. Summary

We designed the EVS architecture in section 4.1, we also specify the tools used for

the implementation of our EVS in section 4.2 as Windev 23 Express Version, and we

also provided screen shot of our implementation with respect to various design phase

in Section 4.3 and finally we obtain results for our design and implementation to

produce the screen shots for our testing in Section 4.4.

64

Chapter 5

5 COMPARISON OF COMPUTATION TIME FOR

KNOWN AND IMPLEMENTED VOTING SYSTEMS

This chapter shows a comparison of the implemented and tested voting protocol as

against the known one [19] for oblivious and proxy signature.

For the known Voting protocol [19], it was not specified the software android mobile

package that was used by for the implementation of our voting protocol, but the

computation time in milliseconds gave the results [19] in Table 4, as shown in

Section 2.4.4.7, where PP stands for the Proxy Phase, RP stands for the Registration

Phase, CiP stands for the Circling Phase, VP stands for the Voting Phase and CoP

stands for the Counting Phase. Other notation like A is the original signer, B is the

proxy signer, R is the voter, and V is the verifier. After we used Windev 23 express

edition for our implementation and testing, the result obtained is fair and better than

that of the known [19] computation time. There is an inbuilt function in Windev, it is

a function that is used to calculated runtime in seconds. To get the mathematical

calculation of the time it takes for a process to complete its operation, we use an

inbuilt function in Windev 23 Edition to perform the computation time. We call the

function of the clock called ChronoDebut() at the start and at the end (ChronoFin)

using the subroutine code which measures time in seconds, and then we further

divide by 1000 to get processing time in millisecond. Appendix A, Source code lines

(# 177,181, 195,204,205,206). These average computation time was tested 4 times

http://www.cplusplus.com/reference/ctime/CLOCKS_PER_SEC/

65

(according to Appendix B, Experimental Results screen shots) and the average of the

results was computed.

These functions are used to calculate the time passed between the start

(ChronoDebut) and the end (ChronoFin) , we used this to calculate the average

computation time from one phase to another. Table 5 shows the average computation

time measured in milliseconds for the known [19] and the implemented.

 Table 5: Average computation time for EVS (milliseconds) for 6 phases
Phase SP PP RP CiP VP CoP

Role A | B A B R B R B R V V

Time[19] - 42.4 31.5 22.9 19.6 31.2 31 19.8 10.4 20.3

Time

(Implemented)

- 4.2 3.1 2.6 2.1 3.2 3.5 2.0 1.4 2.0

Relative

change (%)

- 90 90.2 88.6 89.3 89.7 88.7 89.8 86.5 90.1

We shall do the comparison based on each of the six phases of the implementation

using Relative Change [42] to compare with the known system [19].

The formula for Relative change is represented as

66

 ()
 ℎ 𝑔

where x is time in (milliseconds) for the implemented EVS for each phase, and

 is the time in (milliseconds) for the known EVS for each phase. So after

computation, the results obtained for all the phases are:

Phase (PP): For A in known [19], it took 42. 4ms to complete the process while for

implemented, an average of 4.191ms

𝑅 ()

For B in known [19], it took 31.5ms to complete the process while for implemented,

an average of 3.1ms

𝑅 ()

Phase (RP): For R in known [19], it took 22.9ms to complete the process while for

implemented, an average of 2.6ms

 𝑅 ()

For B in known [19], it took 19.6ms to complete the process while for implemented,

an average of 2.1ms

𝑅 ()

Phase (CiP): For R in known [19], it took 31.2ms to complete the process while for

implemented, an average of 3.2ms

𝑅 ()

67

For B in known [19], it took 31ms to complete the process while for implemented, an

average of 3.5ms

𝑅 ()

 .

 Phase (VP): For R in known [19], it took 19.8ms to complete the process while for

implemented, an average of 2ms

𝑅 ()

For V in known [19], it took 10.4ms to complete the process while for implemented,

an average of 1.4ms

𝑅 ()

Phase (CoP): For V in known [19], it took 20.3ms to complete the process while for

implemented, an average of 2ms

𝑅 ()

We conclude that the value for the implemented has better computation time than

that of the known [19] in Relative Change (RC) with an average of 80.29% which is

good for our implementation.

68

Chapter 6

6 CONCLUSION AND FUTURE WORK

This thesis is devoted to the study, design and implementation of the VS based on the

use of proxy and oblivious signature for providing privacy to the voters of EVS [19].

This scheme is implemented with Windev Express 23 version for our voting

application on Dell Inspiron 3542, Windows 8.1 Operating System and a RAM of 16

GB. EVS was studied, necessary for it proofs are provided, and also some adjustment

in the oblivious signature of the EVS are made. Design, implementation and testing

of the EVS are made in the thesis. Experiments with the EVS similar to those made

in [19] are conducted.

Time of completion of six phases of the known EVS from [19] and our

implementation are compared using Relative Change (RC). The implemented EVS

computation time is better with about an average of 80.3% than the reported in [19].

For future work, since most of the computations were done on the voter‟s side, this

might discourage the use of the system if implemented. A revised version of the

protocol to have less computation on the voter‟s side will be encouraged.

Furthermore, implementation of the modified protocol to use it in small-scale

election will be given a consideration.

69

REFERENCES

[1] T.M. Buchsbaum, (2004) „E-voting: international development and lessons

learnt‟, Proceedings of the ESF TED Workshop on Electronic Voting in

Europe, Schloss Hofen/Bregenz, Lake of Constance, Austria”. [Online].

Available: https://www.researchgate.net/profile/Robert_Krimmer/publication

/220789172_Security_Assets_in_E-Voting/links/0912f50cb2746f2e8900000

0.pdf#page=30. [Accessed 30 02 2019].

[2] P.J. Hayes, (1988). “Computer Architecture and Organization”, (2nd edition)

 Textbook. Advances in Computers, vol.49, pp.286-289, 1999.

[3] R. Joaquin, P. Ferreira & C. Riberio , "EVIV: An End-to-End Verifiable

Internet Voting System," Journal of Computer and Security, vol. 32, pp. 170-

191, 2013.

[4] “Democracy”. [Online]. Available: https://en.wikiquote.org/wiki/Democracy.

[Accessed 20 02 2019].

[5] “Election 2016: Ballot mishaps across four states plague the AEC”. [Online].

Avaialable:https://www.abc.net.au/news/2016-07-07/election-2016-widespre

ad-ballot-issues-around-australia/7577548. [Accessed 03 03 2019].

https://www.researchgate.net/profile/Robert_Krimmer/publication%20/220789172_Security_Assets_in_E-Voting/links/0912f50cb2746f2e8900000%200.pdf#page=30
https://www.researchgate.net/profile/Robert_Krimmer/publication%20/220789172_Security_Assets_in_E-Voting/links/0912f50cb2746f2e8900000%200.pdf#page=30
https://www.researchgate.net/profile/Robert_Krimmer/publication%20/220789172_Security_Assets_in_E-Voting/links/0912f50cb2746f2e8900000%200.pdf#page=30
https://en.wikiquote.org/wiki/Democracy

70

[6] “Despairing about elections? This is why your vote matters”.

[Online].Available: https://theconversation.com/despairing-about-elections-

this-is-why-your-vote-matters-60123. [Accessed 03 03 2019].

[7] D. DeSilver, “U.S. voter turnout trails most developed countries”. Fact Tank

Blog, Pew Research Center. August 2, 2016. [Online].Available:

http://www.pewresearch.org/fact-tank/2018/05/21/u-s-voter-turnout-trails-

most-developed-countries. [Accessed 03 03 2019].

[8] B.C. Burden, D. T. Canon & K. R. Mayer , et al, Election laws, mobilization,

and turnout: The unanticipated consequences of election reform. American

Journal of Political Science. September 9, 2013. AJAPS.12063.vol.58,

Issue1, pp. 95-109, January 2014.

[9] "Why it takes so long to get election night results," Nov 6, 2018.

[Online].Available: https://www.vox.com/2018/11/6/18066350/midterm-

elections-2018-vote-counting. [Accessed 03 03 2019].

[10] V. Mateu, F. Sebe & M. Valls, "Constructing Credential-Based E-Voting

Systems from Offline E-Coin Protocols," Journal of Network and Computer

Applications, vol. 42, pp. 39-44, 2014.

[11] “Issue voting”. [Online].Available: https://en.wikipedia.org/wiki/Issuevoting.

[Accessed 03 03 2019].

http://www.pewresearch.org/fact-tank/2018/05/21/u-s-voter-turnout-trails-most-developed-countries
http://www.pewresearch.org/fact-tank/2018/05/21/u-s-voter-turnout-trails-most-developed-countries
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Canon%2C+David+T
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Mayer%2C+Kenneth+R
https://en.wikipedia.org/wiki/Issuevoting

71

[12] M. M. Sarker & T. N. Akhund.” The Roadmap to the Electronic Voting

System Development: A Literature Review”, IJAEMS, vol. 2, Issue 5,

pp.492-497,2016.

[13] “Vote Recorder”. [Online].Available: http://edison.rutgers.edu/vote.htm.

[Accessed 03 03 2019].

[14] "Historical Timeline, Electronic Voting Machines and Related Voting

Technology”. [Online].Available: https://votingmachines.procon.org/view.ti

meline.php?timelineID=000021. [Accessed 21 02 2019].

[15] "Which Countries Use Electronic Voting?" [Online]. Available:

https://www.lifewire.com/which-countries-use-electronic-voting-4174877.

[Accessed 21 02 2019].

.

[16] M. O‟ Meara (2013), “ Survey & Analysis of E-Voting Solutions”, A thesis

submitted at the University of Dublin, Trinity College, May, 2013. [Online].

Available: https://scss.tcd.ie/publications/theses/diss/2013/TCD-SCSS-

DISSERTATION-2013-045.pdf. [Accessed 11 02 2019].

[17] D. Jefferson, A. D. Rubin & B. Simons, et al (2004) “A Security Analysis of

the Secure Electronic Registration and Voting Experiment (SERVE)” January

5, 2004. . [Online]. Available: http://euro.ecom.cmu.edu/program/courses/tcr

17-803/MinorityPaper.pdf. [Accessed 11 02 2019].

http://edison.rutgers.edu/vote.htm
https://votingmachines.procon.org/view.ti%20meline.php?timelineID=000021
https://votingmachines.procon.org/view.ti%20meline.php?timelineID=000021
https://www.lifewire.com/which-countries-use-electronic-voting-4174877
https://scss.tcd.ie/publications/theses/diss/2013/TCD-SCSS-DISSERTATION-2013-045.pdf
https://scss.tcd.ie/publications/theses/diss/2013/TCD-SCSS-DISSERTATION-2013-045.pdf
http://euro.ecom.cmu.edu/program/courses/tcr%2017-803/MinorityPaper.pdf
http://euro.ecom.cmu.edu/program/courses/tcr%2017-803/MinorityPaper.pdf

72

[18] L.F. Cranor, (2003) In Search of the Perfect Voting Technology: No Easy

Answers. In: Gritzalis D.A. (eds) Secure Electronic Voting. Advances in

Information Security, vol. 7. pp.17-30, 2003.

[19] S.-Y. Chiou, T.-J, Wang & J,-M, Chen, “Design and Implementation of a

Mobile Voting System Using a Novel Oblivious and Proxy Signature”,

Security and Communication Networks, vol. 2017, article Id 30752210,

pp.1-16, 2017.

[20] M. M. Sarker, T. N. Akhund,”The Roadmap to the Electronic Voting System

Development: A Literature Review”. International Journal of Advanced

Engineering, Management and Science (ISSN: 2454-1311), vol.2, issue5, pp.

492-497, 2016.

[21] A. Parveen, S. Habib & S. Sarwar “Scope and Limitation of Electronic

Voting System” IJCSMC, vol. 2, issue 5, pp. 123-128, 2013.

[22] D. W. Jones (2003): "A Brief Illustrated History of Voting”.

[Online].Available: www.cs.uiowa.edu/~jones/voting. [Accessed 11 02

2019].

[23] H. Thompson (2006): "Expert Calls for increased E-Voting Security,".

[Online].Available:https://www.computerworld.com/article/2560901/security

0/expert-calls-for-increased-e-voting-security.html. [Accessed 11 02 2019].

http://www.cs.uiowa.edu/~jones/voting
https://www.computerworld.com/article/2560901/security0/expert-calls-for-increased-e-voting-security.html
https://www.computerworld.com/article/2560901/security0/expert-calls-for-increased-e-voting-security.html

73

[24] L. Norden, "Voting System Failures: A Database Solution", Brennan Center

for Justice, Sep. 13, 2010. [Online].Available: https://www.brennancenter.

org/publication/voting-system-failures-database-solution. [Accessed 20 02

2019].

[25] G. Miller & A. Entous,"Declassified report says Putin 'ordered' effort to

undermine faith in U.S. election and help Trump". [Online].Available:

https://www.washingtonpost.com/world/national-security/intelligence-chiefs-

expected-in-new-york-to-brief-trump-on-russian-hacking/2017/01/06/5f5914

16-d41a-11e6-9cb0-54ab630851e8_story.html?noredirect=on&utm_term=.ca

c4a3087770. [Accessed 21 02 2019].

[26] F. Fleitz, "Was Friday's declassified report claiming Russian hacking of the

2016 election rigged?". [Online]. Available: https://www.foxnews.com/opi

nion/was-fridays-declassified-report-claiming-russian-hacking-of-the-2016-

election-rigged. [Accessed 21 02 2019].

[27] E. Kurt ,"Trump, Putin and the hidden history of how Russia interfered in the

U.S. presidential election” January 10, 2017). [Online].Available: https://ww

w.newsweek.com/trump-putin-russia-interfered-presidential-election-541302.

[Accessed 21 02 2019].

[28] W. Diffie & M. Hellman, "New Directions in Cryptography", IEEE

Transactions on Information Theory, vol. IT-22, pp. 644-654, 1976

https://www.washingtonpost.com/world/national-security/intelligence-chiefs-expected-in-new-york-to-brief-trump-on-russian-hacking/2017/01/06/5f5914%2016-d41a-11e6-9cb0-54ab630851e8_story.html?noredirect=on&utm_term=.ca%20c4a3087770
https://www.washingtonpost.com/world/national-security/intelligence-chiefs-expected-in-new-york-to-brief-trump-on-russian-hacking/2017/01/06/5f5914%2016-d41a-11e6-9cb0-54ab630851e8_story.html?noredirect=on&utm_term=.ca%20c4a3087770
https://www.washingtonpost.com/world/national-security/intelligence-chiefs-expected-in-new-york-to-brief-trump-on-russian-hacking/2017/01/06/5f5914%2016-d41a-11e6-9cb0-54ab630851e8_story.html?noredirect=on&utm_term=.ca%20c4a3087770
https://www.washingtonpost.com/world/national-security/intelligence-chiefs-expected-in-new-york-to-brief-trump-on-russian-hacking/2017/01/06/5f5914%2016-d41a-11e6-9cb0-54ab630851e8_story.html?noredirect=on&utm_term=.ca%20c4a3087770
https://www.foxnews.com/opi%20nion/was-fridays-declassified-report-claiming-russian-hacking-of-the-2016-election-rigged
https://www.foxnews.com/opi%20nion/was-fridays-declassified-report-claiming-russian-hacking-of-the-2016-election-rigged
https://www.foxnews.com/opi%20nion/was-fridays-declassified-report-claiming-russian-hacking-of-the-2016-election-rigged

74

[29] S. Davtyan, A. Kiayias & L. Michel, et al," Integrity of Electronic Voting

Systems: Fallacious use of Cryptography," in Symposium On Applied

Computing, SAC‟12, Riva del Garda (Trento), Italy, March 25-29, 2012.

[Online].Available:http://www.engr.uconn.edu/~sad06005/pubs/Conference/s

ac12.pdf. [Accessed 21 02 2019]

[30] “Cryptography”. [Online].Available: https://en.wikipedia.org/wiki/Cryptogra

phy. [Accessed 21 02 2019]

[31] A. Dollin, “A comparison of a public and a secret key cryptosystem”, (1995

February, 29). [Online]. Available: www.dcs.ed.ac.uk/home/adamd/essays/

crypto.html. [Accessed 21 02 2019]

[32] “Symmetric Encryption”.[Online]. Available: https://www.ssl2buy.com/wiki/

wp-content/uploads/2015/12/Symmetric-Encryption.png. [Accessed 02 01

2019].

[33] “Asymmetric Encryption”.[Online]. Available: https://www.ssl2buy.com

/wiki/wp-content/uploads/2015/12/Asymmetric-Encryption.png. [Accessed

02 01 2019].

[34] J. S. Chou, “A novel k-out-of-n oblivious transfer protocol from bilinear

pairing,” Advances in Multimedia, vol. 2012, article ID 630610, pp. 1-9,

Article ID 630610, 2012.

http://www.engr.uconn.edu/~sad06005/pubs/Conference/sac12.pdf
http://www.engr.uconn.edu/~sad06005/pubs/Conference/sac12.pdf
https://en.wikipedia.org/wiki/Cryptogra%20phy
https://en.wikipedia.org/wiki/Cryptogra%20phy
http://www.dcs.ed.ac.uk/home/adamd/essays/%20crypto.html
http://www.dcs.ed.ac.uk/home/adamd/essays/%20crypto.html
https://www.ssl2buy.com/wiki/%20wp-content/uploads/2015/12/Symmetric-Encryption.png
https://www.ssl2buy.com/wiki/%20wp-content/uploads/2015/12/Symmetric-Encryption.png

75

[35] L. Chen, “Oblivious signatures,” in Computer Security– ESORICS 94,

Lecture Notes in Computer Science 875, vol. 875 of Lecture Notes in

Computer Science, pp. 161–172, 1994.

[36] S.Y. Chiou, T.J, Wang and J.M, Chen ” Design and Implementation of a

Multiple-Choice E-voting Scheme on Mobile System using Novel t -out-of- n

Oblivious Signature”, Journal. Inf. Sci. Eng., 2018, vol. 34, pp. 135-154,

2018

[37] “Creating the setup program and deploying it: How to proceed?”. [Online].

Available: https://doc.windev.com/?2028001. [Accessed 03 03 2019]

[38] “WINDEV; Easily Develop Cross-platform Applications”. [Online].

Available: https://www.easi.net/business-software/solutions/windev-

development-cross-platform. [Accessed 03 03 2019].

[39] “Deploying the Application”. [Online]. Available:

https://doc.windev.com/en-US/?1410086701&name= lesson_414_deploying

the application. [Accessed 02 03 2019].

[40] “WINDEV Tools”. [Online]. Available: https://help.windev.com/?3084011&

name=windev_tools. [Accessed 27 02 2019].

https://doc.windev.com/?2028001
https://www.easi.net/business-software/solutions/windev-development-cross-platform
https://www.easi.net/business-software/solutions/windev-development-cross-platform
https://doc.windev.com/en-US/?1410086701&name=%20lesson_414_deploying%20the%20application
https://doc.windev.com/en-US/?1410086701&name=%20lesson_414_deploying%20the%20application
https://help.windev.com/?3084011&%20name=windev_tools
https://help.windev.com/?3084011&%20name=windev_tools

76

[41] “First U.S. Presidential Election”. [Online]. Available: https://www.history.

com/this-day-in-history/first-u-s-presidential-election. [Accessed 10 02

2019].

[42] “Relative Change and Difference”. [Online]. Available:

https://en.wikipedia.org/wiki/Relative_change_and_difference. [Accessed 24

06 2019]

https://en.wikipedia.org/wiki/Relative_change_and_difference

77

APPENDICES

78

Appendix A. Voting System Source Codes

//The codes use French language terms. So we give their translation in Table A.1

 Table A.1. English translations of French terms used in the source codes

French term English translation

Si If

Fin End

TANTQUE AS LONG AS

Alors Then

Vrai True

Info Message

Reprisesaisie Return To Capture;

RETOUR RETURN

Faux False

Raz Reset

Grise Grey

Titre Title

Ligne Line

Ouvre Open

et and

non no

Appendix A.1. System Setup Phase Source Code

Appendix A.1.1 Publish BB

Click Publish// BB is published “Publish- //p,q,g,h,yA” is clicked

Libellé1=Libellé1+" p = "+enter_p+", q = "+enter_q+", g = "+enter_g+" , h = "+enter_h+" , yA = "+Ya

Libellé1..Visible=Vrai

//end of click publish

Appendix A.1.2 Prime Number p

Exit from enter_p//Procedure invoked when cursor exits enter_p field

I est un entire

I=2;

TANTQUE (i<=(enter_p)-1)

 SI ((enter_p)modulo(i))<>0 ALORS

 i=i+1

 SI NON

 Info("Please enter a prime number")

 RepriseSaisie(enter_p)

 RETOUR

 FIN

FIN

// code to perform p-1 divide q and to check validity

SI (enter_q<>0) ALORS

SI ((enter_p1)modulo(enter_q))<>0 ALORS

 Info("(P-1)/Q is a decimal number! please change their values ")

 RAZ(Vrai)

 RepriseSaisie(enter_p)

 RETOUR

ELSE

 enter_P_1_Q=enter_p1/enter_q

FIN

FIN

//end of exit from enter_p

Appendix A.1.3 Prime Number q

Exit from enter_q//Procedure invoked when cursor exits enter_q field

i1 est un entier

i1=2;

TANTQUE (i1<=(enter_q)-1)

 SI ((enter_q)modulo(i1))<>0 ALORS

79

 i1=i1+1

 SINON

 Info("Please enter a prime number")

 RepriseSaisie(enter_q)

 RETOUR

 FIN

FIN

TableSupprimeTout(Table1)

IF enter_p=0 THEN

 Info("Please enter the value of P")

 RepriseSaisie(enter_p)

END

Table1.Ligne2..Titre=enter_h

SI (enter_p<>0) ALORS

 SI ((enter_p1)modulo(enter_q))<>0 ALORS

 Info("(P-1)/Q is a decimal number! please change their values ")

 RAZ(Vrai)

 RepriseSaisie(enter_p)

 RETOUR

 ELSE

 enter_P_1_Q=enter_p1/enter_q

 FIN

FIN

//end of exit from enter_q

Appendix A.1.4 Generator h Order p

whenever modifying enter_h//procedure to get h

i is int

FOR i=1 TO enter_p1 STEP 1

 TableAddLine(Table1,i,(Power(enter_h,i))modulo(enter_p))

 TableDisplay(Table1)

END

Table1..Visible=Vrai

// end procedure for h

Appendix A.1.5 Generator g Order p

whenever modifying enter_g//procedure to get g

Table2.Ligne2..Titre=enter_g

TableSupprimeTout(Table2)

IF enter_p=0 THEN

 Info("Please enter the value of P")

 RepriseSaisie(enter_p)

END

i is int

FOR i=1 TO enter_p1 STEP 1

 TableAddLine(Table2,i,(Power(enter_g,i))modulo(enter_p))

 TableDisplay(Table2)

END

Table2..Visible=Vrai

//exit enter_g

Appendix A.1.6 Compute

whenever modifying Xa// procedure to get Ya

Ya=(Power(enter_g,Xa))modulo(enter_p)

//exit Xa

Appendix A.1.7 Prime Number

Exit from enter_p_1 // procedure for entering Pb

i est un entier

i=2;

TANTQUE (i<=(enter_p_1)-1)

 SI ((enter_p_1)modulo(i))<>0 ALORS

 i=i+1

 SINON

 Info("Please enter a prime number")

 RepriseSaisie(enter_p_1)

 RETOUR

 FIN

FIN

SI enter_q_1<>"" ALORS

80

 NB=enter_p_1*enter_q_1;

FIN

SI (enter_p_1<>0) ET (enter_q_1<>0) ALORS

 enter_n=(enter_p_1-1)*(enter_q_1-1);

FIN

//exit from Pb

Appendix A.1.8 Prime Number

Exit from enter_q_1 //procedure to invoke when cursor exits enter_q_1

i1 est un entier

i1=2;

TANTQUE (i1<=(enter_q_1)-1)

 SI ((enter_q_1)modulo(i1))<>0 ALORS

 i1=i1+1

 SINON

 Info("Please enter a prime number")

 RepriseSaisie(enter_q_1)

 RETOUR

 FIN

FIN

SI enter_p_1<>"" ALORS

 NB=enter_p_1*enter_q_1;

FIN

SI (enter_p_1<>"") ET (enter_q_1<>"") ALORS

 enter_n=(enter_p_1-1)*(enter_q_1-1);

FIN

//TableSupprimeTout(Table1)

IF enter_p_1=0 THEN

 Info("Please enter the value of PB")

 RepriseSaisie(enter_p_1)

END

// end of exit enter Qb

Appendix A.1.9 Compute

whenever modifying Xb// procedure to get Yb

Yb=(Power(enter_g,Xb))modulo(enter_p)

//end of exit for Xb

Appendix A.1.10 Compute

Exit from Eb// procedure for checking Eb

r,r1,u,v,u1,v1,rs,us,vs sont des entiers;

r= Eb; r1= enter_n; u= 1; v= 0; u1= 0; v1= 1;

q est un entier

r = (Eb*u)+(enter_n*v); r1=(Eb*u1)+(enter_n*v1);

TANTQUE (r1 <> 0)

 q= r/r1;

 rs= r; us= u; vs= v;

 r= r1; u= u1; v= v1;

 r1= rs - q*r1; u1= us - q*u1; v1= vs - q*v1;

 FIN

SI (r<>1) ALORS

 Info("GCD is different from 1, please change the value")

 RepriseSaisie(Eb)

 RETURN

FIN

IF (u<0) ALORS

u=enter_n+u;

FIN

Db=u;

// end of exit from Eb

Appendix A.1.11 Publish

Click Bouton1// procedure to publish the values of Nb, Eb, and Yb

Libellé3=Libellé3+" NB = "+NB+", eB = "+Eb+" , yB = "+Yb

Libellé3..Visible=Vrai

//end of Click Bouton1

Appendix A.1.12 Enter

SI (Xa<1) OR (Xa>(EXPRESS_crypt.enter_q-1)) ALORS
 Info("Please enter value between 1 and "+(EXPRESS_crypt.enter_q-1))

81

 RepriseSaisie(Xa)
FIN
// end of exit from Xa

Appendix A.2. Proxy Phase Source Code

Appendix A.2.1 Publish BB

Initializing Libelle2 // to display published in bulletin board

Libellé2=("[eB ,NB] ="+"["+EXPRESS_crypt.Eb+", "+EXPRESS_crypt.NB+"] ")

//End of initializing Libelle2

Appendix A.2.2 Compute

Exit from sai_k// on cursor exit

SI (sai_k<1) OR (sai_k>(EXPRESS_crypt.enter_/q-1)) ALORS

 Info("Please enter value between 1 and "+(EXPRESS_crypt.enter_q-1))

 RepriseSaisie(sai_k)

FIN

Ra=Puissance((EXPRESS_crypt.enter_g),sai_k)modulo(EXPRESS_crypt.enter_p)

Sa=((EXPRESS_crypt.Xa)*(Ra)+(sai_k))modulo(EXPRESS_crypt.enter_q)

Libellé1=("[rA ,sA] ="+"["+Ra+", "+Sa+"] ")

Libellé1..Visible=Vrai

SI sai_k<>"" ALORS

 dlg=(Puissance(Ra,EXPRESS_crypt.Eb)modulo(EXPRESS_crypt.NB))

FIN

SI sai_k<>"" ALORS

 dlg1=(Puissance(Sa,EXPRESS_crypt.Eb)modulo(EXPRESS_crypt.NB))

FIN

yP=(Puissance((EXPRESS_crypt.enter_g),Sa)modulo(EXPRESS_crypt.enter_p))

//end of Exit from sai_k

Appendix A.2.3 Compute

Click SEND // clicked to produce result

monchono1, monchrono2,monchrono sont des entiers

desdlg=dlg

desdlg1=dlg1

gSA=yP

ChronoDébut()

gSA1=(Ra*(Puissance(EXPRESS_crypt.Ya,Ra)))modulo(EXPRESS_crypt.enter_p)

SI (gSA=gSA1) ALORS

 SI YesNo("(g^sA)MOD(P)=(rA*yA^rA)MOD(P)= "+gSA+ "HOLDS"+" Would you like to continue

the process")=Vrai ALORS

 Sp=((Sa)+(EXPRESS_crypt.Xb))modulo(EXPRESS_crypt.enter_q)

 monchono1=ChronoFin()

 ELSE

 RepriseSaisie(sai_k)

 FIN

ELSE

 Info("Values are not equal")

FIN

ChronoDébut()

a1,b1,mod,div,a2 sont des entiers

mod=(EXPRESS_crypt.Db)modulo(5)

div=PartieEntière(EXPRESS_crypt.Db/5)

a2=(Puissance(EXPRESS_crypt.enter_g,Sa))modulo(EXPRESS_crypt.enter_p)

a1=(Puissance(a2,div))modulo(EXPRESS_crypt.NB)

b1=(Puissance(a2,mod))modulo(EXPRESS_crypt.NB)

S_A_B=((Puissance(a1,5))*b1)modulo(EXPRESS_crypt.NB)

monchrono2=ChronoFin()

Libellé3="[yp' = "+yP+"]"

monchrono=(monchono1+monchrono2)/1000

Saisie1=monchrono

Saisie3=Saisie1+ Saisie2

//End of Click SEND

Appendix A.2.4 Comparism of S and H value

Click Bouton3//on click procedure

monchrono est un entier

ChronoDébut()

82

sab1,hyp sont des entiers

sab1=(Puissance(S_A_B,EXPRESS_crypt.Eb))modulo(EXPRESS_crypt.NB)

hyp=(yP)modulo(EXPRESS_crypt.NB)

S_A_B_eB=sab1

H_yP=hyp

H_yP=hyp

SI(sab1=hyp) ALORS

 Info("S(A,B)^eB=H(yP') = "+sab1+" hold")

FIN

S_A_B_eB..Visible=Vrai

H_yP..Visible=Vrai

monchrono=ChronoFin()

Saisie2=(monchrono)/1000

Saisie3=Saisie3+Saisie2

//End of Bouton3

Appendix A.2.5 RSA Decryption for secret proxy signature

Click Bouton2// click to decrypt..

monchono1 sont des entiers
ChronoDébut()
desdlg2=POW_FUNC1(desdlg,EXPRESS_crypt.Db,EXPRESS_crypt.NB)

desdlg3=POW_FUNC1(desdlg1,EXPRESS_crypt.Db,EXPRESS_crypt.NB)

monchono1=ChronoFin()
Saisie5=(monchono1)/1000
Saisie4=Saisie5
//End of click Bouton2

Appendix A.2.6 Forward value

Click Bouton1 // Send back to A

monchono2 sont des entiers
ChronoDébut()
S_A_B1=S_A_B

S_A_B1..Visible=Vrai

Bouton3..Visible=Vrai;
monchono2=ChronoFin()
Saisie6=(monchono2/1000)
Saisie4=Saisie4+Saisie6
//Endof Click buoton1

Appendix A.3. Registration Phase Source Code

Appendix A.3.1 Hash function for password

 Exit from ID //

SI ID<>"" ALORS

som est un entier

som=0;

SI (Password<>"") ALORS

 som=H_FUNC(Password)

 pwencrypt=som;

FIN

SI (Pseudoname="") AND (Password="") ALORS

 Libellé1="["+ID+","+0+", "+0+"]"

FIN

SI (Pseudoname<>"") AND (Password="") ALORS

 Libellé1="["+ID+","+Pseudoname+", "+0+"]"

FIN

SI (Pseudoname="") AND (Password<>"") ALORS

 Libellé1="["+ID+","+0+", "+som+"]"

FIN

SI (Pseudoname<>"") AND (Password<>"") ALORS

 Libellé1="["+ID+","+Pseudoname+", "+som+"]"

FIN

SI ID<>"" ALORS

 SI HLitRecherchePremier(EXPRESS_flag,ID,ID,hIdentique)=Vrai ALORS

 ID=EXPRESS_flag.ID

 FIN

FIN

83

FIN

//End of Exit from ID

Appendix A.3.2 Hash function for Pseudoname

Exit from pseudoname//this works by keypress or cursor blink

som est un entier

som=0;

SI (Password<>"")ALORS

som=H_FUNC(Password)

pwencrypt=som

FIN

SI (ID="") AND (Password="") ALORS

 Libellé1="["+0+","+Pseudoname+", "+0+"]"

FIN

SI (ID<>"") AND (Password="") ALORS

 Libellé1="["+ID+","+Pseudoname+", "+0+"]"

FIN

SI (ID="") AND (Password<>"") ALORS

 Libellé1="["+0+","+Pseudoname+", "+som+"]"

FIN

SI (ID<>"") AND (Password<>"") ALORS

 Libellé1="["+ID+","+Pseudoname+", "+som+"]"

FIN

SI ID<>"" ALORS

 SI HLitRecherchePremier(EXPRESS_flag,ID,ID,hIdentique)=Vrai ALORS

 PN=EXPRESS_flag.pseudonime

 FIN

FIN

//End of Exit from pseudoname

Appendix A.3.3 Encryption of Id, pn, pw

Click Bouton3//

monchrono est un entier

i est un entier

ch est une chaîne

ChronoDébut()

sai_ch=ENCRYP_FUNC(Pseudoname,EXPRESS_crypt.Eb,EXPRESS_crypt.NB)

POUR i=1 À Length(sai_ch) PAS 1

 SI (sai_ch[[i]]<>"-") ALORS

 ch=ch+sai_ch[[i]]

 FIN

FIN

pseu=ch

SI Libellé4<>"Encrypted Values :" ALORS

 Libellé4="Encrypted Values :"

 Libellé4=Libellé4+"["+POW_FUNC(ID,EXPRESS_crypt.Eb,EXPRESS_crypt.NB)+", "+pseu+",

"+POW_FUNC(pwencrypt,EXPRESS_crypt.Eb,EXPRESS_crypt.NB)+"]"

monchrono=ChronoFin()

ELSE

Libellé4=Libellé4+"["+POW_FUNC(ID,EXPRESS_crypt.Eb,EXPRESS_crypt.NB)+", "+pseu+",

"+POW_FUNC(pwencrypt,EXPRESS_crypt.Eb,EXPRESS_crypt.NB)+"]"

FIN

Saisie2=(monchrono)/1000

Saisie3=Saisie3+Saisie2

//End of Click bouton3

Appendix A.3.4 Decryption of pn, pw, id

Click Bouton2//

monchrono1 est un entier

id1,ps1 sont des entiers

pseudo est une chaîne

ChronoDébut()

id1=POW_FUNC1(Table1.ID,EXPRESS_crypt.Db,EXPRESS_crypt.NB)

ps1=POW_FUNC1(Table1.PW,EXPRESS_crypt.Db,EXPRESS_crypt.NB)+(PartieEntière(pwencrypt/EXPRESS

_crypt.NB))*EXPRESS_crypt.NB

pseudo=DECRYPT_FUNC(sai_ch,EXPRESS_crypt.Db,EXPRESS_crypt.NB)

 monchrono1=ChronoFin()

SI Libellé5<>"" ALORS

 Libellé5=""

 Libellé5=Libellé5+"["+id1+", "+pseudo+", "+ps1+"]"

84

 Libellé5..Visible=Vrai

 ELSE

 Libellé5=Libellé5+"["+id1+", "+pseudo+", "+ps1+"]"

 Libellé5..Visible=Vrai

 FIN

Saisie5=(monchrono1)/1000

Saisie4=Saisie4+Saisie5

//End of Click Buoton2

Appendix A.3.5 Decryption of pn

Click Bouton1//

monchrono2 est un entier

id1,ps1 sont des entiers

pseudo est une chaîne

ChronoDébut()

id1=POW_FUNC(Table1.ID,EXPRESS_crypt.Db,EXPRESS_crypt.NB)

ps1=POW_FUNC(Table1.PW,EXPRESS_crypt.Db,EXPRESS_crypt.NB)+(PartieEntière(pwencrypt/EXPRESS_

crypt.NB))*EXPRESS_crypt.NB

pseudo=DECRYPT_FUNC(sai_ch,EXPRESS_crypt.Db,EXPRESS_crypt.NB)

monchrono2=ChronoFin()

Saisie6=(monchrono2)/1000

Saisie4=Saisie4+Saisie6

//End of Click Bouton1

Apprendix A.3.6 Store pn, id, pw in Dbase

Click Buoton4//

monchrono est un entier

ch sont des chaînes

ChronoDébut()

ch=Pseudoname+EXPRESS_crypt.Eb

SI (POW_FUNC1(sb,EXPRESS_crypt.Eb,EXPRESS_crypt.NB))= (H_FUNC(ch))modulo(EXPRESS_crypt.NB)

ALORS

 SI test<>"" ALORS

 test=""

 test="[sB^eB = H(pn,eB)Mod(NB) = "+ (H_FUNC(ch))modulo(EXPRESS_crypt.NB)

 ELSE

 test="[sB^eB = H(pn,eB)Mod(NB) = "+ (H_FUNC(ch))modulo(EXPRESS_crypt.NB)

 FIN

 Ouvre(EXPRESS_vote)

monchrono=ChronoFin()

ELSE

 SI test<>"" ALORS

 test=""

 test="[sB^eB ="+(POW_FUNC1(sb,EXPRESS_crypt.Eb,EXPRESS_crypt.NB))+"<>"+

"H(pn,eB)Mod(NB) = "+(H_FUNC(ch))modulo(EXPRESS_crypt.NB)+"]"

 ELSE

 test="[sB^eB ="+(POW_FUNC1(sb,EXPRESS_crypt.Eb,EXPRESS_crypt.NB))+"<>"+

"H(pn,eB)Mod(NB) = "+(H_FUNC(ch))modulo(EXPRESS_crypt.NB)+"]"

 FIN

 Info("You can't vote")

FIN

Saisie1=(monchrono)/1000

Saisie3=Saisie3+Saisie1

//End of Click Buoton4

Appendix A.4. Circling Phase Source Code

Appendix A.4.1 Generate r

Initializing enter_r// initializing random value for r

InitHasard() // it generate a random value for r

enter_r=Hasard(1,EXPRESS_crypt.enter_q-1)

// end of Initializing enter_r

Appendix A.4.2 Ecryption of R ballot

Click Bouton2 //

monchrono1 est un entier

ch est une chaîne

ChronoDébut()

ch=EXPRESS_registration.pwencrypt

ch=ch+enter_r1..ValeurAffichée

hr=H_FUNC(ch)

85

hr1=hr

monchrono1=ChronoFin()

Saisie8=(monchrono1)/1000

Saisie7=Saisie7+Saisie8

//end of click Buoton2

Appendix A.4.3 Choose blinding factor v

Initializing select_v//

InitHasard()

select_v=Hasard(1,EXPRESS_crypt.enter_q-1)

//end of Initializing selct_v

Appendix A.4.4 Completeness of Oblivious signature generated

Click Bouton7 //

monchrono2 est un entier

sig,ei,i,rs,yp,res sont des entiers

ch est une chaîne

ChronoDébut()

yp=POW_FUNC1(EXPRESS_proxy.yP*EXPRESS_crypt.Yb,1,EXPRESS_crypt.enter_p)

POUR i=1 À TableOccurrence(k)

sig=POW_FUNC1(EXPRESS_crypt.enter_g*EXPRESS_crypt.enter_h,i,EXPRESS_crypt.enter_p)

sig=(c*sig)modulo(EXPRESS_crypt.enter_p)

 ch=""

 rs=POW_FUNC1(EXPRESS_crypt.enter_g,k[i].si1,EXPRESS_crypt.enter_p)

 res=(rs*POW_FUNC1(yp,k[i].ei,EXPRESS_crypt.enter_p))modulo(EXPRESS_crypt.enter_p)

ch=Table1[i].Message+EXPRESS_registration.Pseudoname+POW_FUNC1(res*k[i].δi,1,EXPRESS_crypt.enter_

p)

 ei=H_FUNC(ch)

 TableAjouteLigne(k1,i,sig,ei)

 TableAffiche(k1)

FIN

monchrono2=ChronoFin()

Saisie9=(monchrono2)/1000

Saisie7=Saisie7+Saisie9

// end of click Bouton7

Appendix A.4.5 Flag (pn) value checker

Click Bouton4 //

monchrono2 est un entier

ChronoDébut()

SI (pn_hr_c)<>"" ALORS

 pn_hr_c=""

 pn_hr_c="["+EXPRESS_registration.Pseudoname+", "+hr+", "+c+"]"

 pn_hr_c..Visible=Vrai

ELSE

 pn_hr_c="["+EXPRESS_registration.Pseudoname+", "+hr+", "+c+"]"

 pn_hr_c..Visible=Vrai

FIN

SI hhr=hr1 ALORS

 SI

HLitRecherche(EXPRESS_flag,EXPRESS_flag.ID,EXPRESS_registration.ID,hIdentique)=Vrai ALORS

 SI Libellé3="Flag(PN)=" ALORS

 Libellé3=Libellé3+EXPRESS_flag.flag

 Libellé3..Visible=Vrai

monchrono2=ChronoFin()

 ELSE

 Libellé3="Flag(PN)="

 Libellé3=Libellé3+EXPRESS_flag.flag

 Libellé3..Visible=Vrai

 FIN

FIN

FIN

Saisie8=(monchrono1)/1000

Saisie7=Saisie7+Saisie8

// end of bouton4

Appendix A.4.6 Compleness of the proxy signature check

click Buoton1//on click procedure

monchrono est un entier

enter_r1=enter_r

ch est une chaîne

86

ChronoDébut()

ch=EXPRESS_registration.pwencrypt

ch=ch+enter_r

hhr=H_FUNC(ch)

monchrono=ChronoFin()

Saisie5=(monchrono)/1000

Saisie4=Saisie4+Saisie5

//End of click Bouton1

Appendix A.4.7 Calculation of Ki for completion of signature

Click bouton5 //

monchrono1 est un entire

ChronoDébut()

SI TableOccurrence(k)+1<=Saisie2 ALORS

 i,ki1,sig,e1,s1,sig1,j sont des entiers

 ch est une chaîne

 i=TableOccurrence(k); j=1;

 SI TableOccurrence(k)<=Saisie2 ALORS

 ki1=POW_FUNC1(EXPRESS_crypt.enter_g,enter_ki,EXPRESS_crypt.enter_p)

 sig1=POW_FUNC1(EXPRESS_crypt.enter_g*EXPRESS_crypt.enter_h,i+1,EXPRESS_crypt.enter_p)

 sig=(c*sig1)modulo(EXPRESS_crypt.enter_p)

 ch=""

ch=Table1[i+1].Message+EXPRESS_registration.Pseudoname+POW_FUNC1(ki1*sig,1,EXPRESS_crypt.enter_

p)

 e1=H_FUNC(ch)

 s1=(enter_ki-EXPRESS_proxy.Sp*e1)modulo(EXPRESS_crypt.enter_q)

 IF s1<0 ALORS

 s1=s1+EXPRESS_crypt.enter_q

 FIN

 TableAjouteLigne(k,i+1,ki1,sig,e1,s1)

 ELSE

 Info("You have already entered the required number for ki")

 RETURN

 FIN

 TableAffiche(k)

monchrono1=ChronoFin()

ELSE

 Info("Your calculations are complete")

 RETURN

FIN

Saisie6=(monchrono1)/1000

Saisie4=Saisie4+Saisie6

// End of click bouton5

Appendix A.4.8 Flag (pn) validator

Click Bouton6 //

monchrono est un entire

ChronoDébut()

SI HLitRecherchePremier(EXPRESS_flag,EXPRESS_flag.ID,EXPRESS_registration.ID,hIdentique)=Vrai

ALORS

 EXPRESS_flag.flag=1

 HModifie(EXPRESS_flag)

 SI Libellé3="Flag(PN)=" ALORS

 Libellé3=Libellé3+EXPRESS_flag.flag

 Libellé3..Visible=Vrai

 ELSE

 Libellé3="Flag(PN)="

 Libellé3=Libellé3+EXPRESS_flag.flag

 Libellé3..Visible=Vrai

 FIN

FIN

i est un entier

POUR i=1 À TableOccurrence(k)

 TableAjouteLigne(Table2,"["+k[i].ei+", "+k[i].si1+"]")

FIN

TableAffiche(Table2)

Table2..Visible=Vrai

monchrono=ChronoFin()

Saisie5=(monchrono)/1000

87

Saisie4=Saisie4+Saisie5

// End of click Bouton6

Appendix A.4.9 Final signature confirmation

Click Bouton8 //

monchrono2 est un entire

ChronoDébut()

comp_s=POW_FUNC1((k[choose_b].si1+EXPRESS_vote.select_v+(choose_b)),1,EXPRESS_crypt.enter_q)

comp_e=k[choose_b].ei

SI e_s<>"(mb)" ALORS

 e_s="(mb)"

 e_s="["+comp_e+","+comp_s+"]"

 e_s..Visible=Vrai

 Libellé1..Visible=Vrai

monchrono2=ChronoFin()

ELSE

 e_s="["+comp_e+","+comp_s+"]"

 e_s..Visible=Vrai

 Libellé1..Visible=Vrai

FIN

Saisie8=(monchrono2)/1000

Saisie7=Saisie7+Saisie8

// end of click Bouton8

Appendix A.5. Voting Phase Source Code

Appendix A.5.1 Signature confirmation

Click Bouton1//

monchrono2 est un entire

ChronoDébut()

hh_eb=EXPRESS_registration.keyr

mb=EXPRESS_vote.Table1[EXPRESS_vote.choose_b].Message+","+EXPRESS_vote.comp_e+","+EXPRESS_

vote.comp_s

monchrono2=ChronoFin()

Saisie1=(monchrono2)/1000

Saisie3=Saisie3+Saisie1

//end of Click Bouton1

Appendix A.5.2 Symmetric Encryption to produce (Cert(R),Cr)

Click Bouton3//

monchrono est un entier

i est un entier

ch est une chaîne

ChronoDébut()

get_cr=""

TANTQUE i<(Length(mb)+1)

 ch=""

 TANTQUE (mb[[i]]<>",") ET (i<(Length(mb)+1))

 ch=ch+mb[[i]]

 i=i+1;

 FIN

 i=i+1

 SI get_cr<>"" ALORS

 get_cr=get_cr+","+POW_FUNC1(Val(ch),hh_eb,EXPRESS_crypt.NB)

 ELSE

 get_cr=POW_FUNC1(Val(ch),hh_eb,EXPRESS_crypt.NB)

 FIN

FIN

cert_r="(["+EXPRESS_registration.Pseudoname+", "+EXPRESS_crypt.Eb+", "+EXPRESS_registration.sb+"

])"+",(["+get_cr+"])"

monchrono=ChronoFin()

Saisie2=(monchrono)/1000

Saisie3=Saisie3+Saisie2

// end of Click Bouton3

Appendix A.5.3 Sending of (Cert(R),Cr)

Click Bouton2//

monchrono2 est un entire

ChronoDébut()

cert_r1=cert_r

88

monchrono2=ChronoFin()

Saisie1=(monchrono2)/1000

Saisie3=Saisie3+Saisie1

// end of Click Bouton2

Appendix A.5.4 Verification of (Cert(R),Cr)

Click Bouton4//

monchrono1 est un entier

ch sont des chaînes

ChronoDébut()

ch=EXPRESS_registration.Pseudoname+EXPRESS_crypt.Eb

IF (POW_FUNC1(EXPRESS_registration.sb,EXPRESS_crypt.Eb,EXPRESS_crypt.NB))=

(H_FUNC(ch))modulo(EXPRESS_crypt.NB) ALORS

SI test<>"" ALORS

 test=""

 test="[sB^eB = H(pn,eB)Mod(NB) = "+ (H_FUNC(ch))modulo(EXPRESS_crypt.NB)

ELSE

 test="[sB^eB = H(pn,eB)Mod(NB) = "+ (H_FUNC(ch))modulo(EXPRESS_crypt.NB)

FIN

 Info("HOLD")

ELSE

SI test<>"" ALORS

 test=""

 test="[sB^eB

="+(POW_FUNC1(EXPRESS_registration.sb,EXPRESS_crypt.Eb,EXPRESS_crypt.NB))+"<>"+

"H(pn,eB)Mod(NB) = "+(H_FUNC(ch))modulo(EXPRESS_crypt.NB)+"]"

ELSE

 test="[sB^eB

="+(POW_FUNC1(EXPRESS_registration.sb,EXPRESS_crypt.Eb,EXPRESS_crypt.NB))+"<>"+

"H(pn,eB)Mod(NB) = "+(H_FUNC(ch))modulo(EXPRESS_crypt.NB)+"]"

FIN

Info("IT DOESN'T HOLD")

FIN

monchrono1=ChronoFin()

Saisie5=(monchrono1)/1000

Saisie4=Saisie4+Saisie5

// end of Click Bouton4

Appendix A.5.5 Sending of (Cert(R),Cr) to BB

Click Bouton5//

monchrono2 est un entire

ChronoDébut()

SI test1<>"" ALORS

 test1=""

 test1=test1+cert_r1

ELSE

 test1=cert_r1

FIN

monchrono2=ChronoFin()

Saisie6=(monchrono2)/1000

Saisie4=Saisie4+Saisie6

//End of Click Bouton5

Appendix A.6. Counting Phase Source Code

Appendix A.6.1 Get key generated

Click Bouton1//

hh_eb1=hh_eb2

cr1=EXPRESS_Fenêtre1.get_cr

//end of Click Bouton1

Appendix A.6.2 Symmetric key decryption

Click Bouton2//

monchrono1 est un entier

ChronoDébut()

decrypt_cr=DECRYPT_FUNC1(cr1,Inverse_MOD_FUNC(hh_eb1,EXPRESS_crypt.enter_p),EXPRESS_crypt.e

nter_p)

decrypt_cr=EXPRESS_Fenêtre1.mb

monchrono1=ChronoFin()

Saisie1=(monchrono1)/1000

Saisie3=Saisie3+Saisie1

89

//end of click Bouton2

Appendix A.6.3 Publishing on BB

Click Bouton3//

monchrono1 est un entire

ChronoDébut()

test1="("+EXPRESS_Fenêtre1.cert_r+",["+EXPRESS_vote.Table1[EXPRESS_vote.choose_b].Message+"

],["+hh_eb1+"])"

monchrono1=ChronoFin()

Saisie2=(monchrono1)/1000

Saisie3=Saisie3+Saisie2

//end of click Bouton3

Appendix A.6.4 Calculate Proxy public key

Click Bouton4//

monchrono2 est un entier

ChronoDébut()

get_yp=POW_FUNC1(EXPRESS_proxy.yP*EXPRESS_crypt.Yb,1,EXPRESS_crypt.enter_p)

monchrono2=ChronoFin()

Saisie1=(monchrono1)/1000

Saisie3=Saisie3+Saisie1

//end of click Bouton4

Appendix A.6.5 Signature verification

Click Bouton5//

monchrono2 est un entier

comp_e=EXPRESS_vote.comp_e

ch est une chaîne

rs,res sont des entiers

ChronoDébut()

ch=""

rs=POW_FUNC1(EXPRESS_crypt.enter_g,EXPRESS_vote.comp_s,EXPRESS_crypt.enter_p)

res=(rs*POW_FUNC1(get_yp,EXPRESS_vote.comp_e,EXPRESS_crypt.enter_p))modulo(EXPRESS_crypt.ente

r_p)

ch=ch+EXPRESS_vote.Table1[EXPRESS_vote.choose_b].Message

ch=ch+EXPRESS_registration.Pseudoname

ch=ch+res

comp_e1=H_FUNC(ch)

IF comp_e=comp_e1 THEN

 Info("The signature is valid and the ballot is counted ")

 Bouton6..Visible=Vrai

ELSE

 Info("The signature is invalid ")

 RETURN

END

monchrono2=ChronoFin()

Saisie2=(monchrono2)/1000

Saisie3=Saisie3+Saisie2

//end of click Bouton5

Appendix A.6.6 Publish election result on BB

Click Bouton6//

monchrono2 est un entire

ChronoDébut()

SI test3<>"" ALORS

 test3=""

 test3="The ballot is counted, "

ELSE

 test3="The ballot is counted, "

FIN

monchrono2=ChronoFin()

Saisie1=(monchrono2)/1000

Saisie3=Saisie3+Saisie1

//end of click Bouton6

//---

//Global Procedure H_FUNC
//-------------------
PROCEDURE H_FUNC(plaint est une chaîne)
som, i sont des entiers
som=0;

90

POUR i=1 À Length(plaint) PAS 1
 som=som+Asc(plaint[[i]])modulo(256)
 som=(som)modulo(256)
FIN
RENVOYER som

//---
-
//PROCEDURES
Global Procedure ENCRYP_FUNC // Function call for Encryption
PROCEDURE ENCRYP_FUNC(ch est une chaîne,eb est un entier, nb est un entier)
i,res sont des entiers
Val est une chaîne
Val=""
 POUR i=1 À Length(ch) PAS 1
 SI
HLitRecherchePremier(EXPRESS_alphabet,EXPRESS_alphabet.letter,ch[[i]],hIdentique)=V
rai ALORS
 res=(POW_FUNC1(EXPRESS_alphabet.number,eb,nb))
 SI (Val="") ALORS
 Val=Val+NumériqueVersChaîne(res)
 SINON
 Val=Val+"-"+NumériqueVersChaîne(res)
 FIN
 FIN

 FIN
 RENVOYER Val

//---
-
Global Procedure DECRYPT_FUNC // Fucntion for Decrytion
PROCEDURE DECRYPT_FUNC(ch est une chaîne ,db est un entier, nb est un entier)
i,nb1 sont des entiers
ch1,me sont des chaînes
i=1
TANTQUE i<(Length(ch)+1)
 ch1=""
 TANTQUE (ch[[i]]<>"-") ET (i<(Length(ch)+1))
 ch1=ch1+ch[[i]]
 i=i+1;
 FIN
 nb1=POW_FUNC1(Val(ch1),db,nb)
 SI
HLitRecherchePremier(EXPRESS_alphabet,EXPRESS_alphabet.number,nb1,hIdentique)=Vrai
ALORS
 me=me+EXPRESS_alphabet.letter
 FIN
 SI (ch[[i]]="-") OU (i<=Length(ch)) ALORS
 i=i+1
 FIN
FIN
RENVOYER me

//--
Global Procedure POW_FUNC1 // Function for raising to power
PROCEDURE POW_FUNC1(nb est un entier,e est un entier, mod est un entier)
i, res sont des entiers
res=1;
POUR i=1 À e PAS 1
 res=(res*nb)modulo(mod)
FIN
RENVOYER res
//--
Global Procedure DECRYPT_FUNC1
 PROCEDURE DECRYPT_FUNC1(ch est une chaîne ,db est un entier, nb est un entier)
i,nb1 sont des entiers
ch1,me sont des chaînes

91

i=1
TANTQUE i<(Length(ch)+1)

 ch1=""
 TANTQUE (ch[[i]]<>",") ET (i<(Length(ch)+1))
 ch1=ch1+ch[[i]]
 i=i+1;
 FIN
 nb1=POW_FUNC1(Val(ch1),db,nb)
 SI (me<>"") ALORS
 me=me+","+nb1
 ELSE
 me=nb1
 FIN

 SI (ch[[i]]=",") OU (i<=Length(ch)) ALORS
 i=i+1
 FIN
 FIN
RENVOYER me

Global Procedure Inverse_MOD_FUNC
PROCEDURE Inverse_MOD_FUNC(nb est un entier,mod est un entier)
r,r1,u,v,u1,v1,rs,us,vs sont des entiers;
r= nb; r1= mod; u= 1; v= 0; u1= 0; v1= 1;
q est un entier
r = (nb*u)+(mod*v); r1=(nb*u1)+(mod*v1);
TANTQUE (r1 <> 0)
 q= r/r1;
 rs= r; us= u; vs= v;
 r= r1; u= u1; v= v1;
 r1= rs - q*r1; u1= us - q*u1; v1= vs - q*v1;
 FIN
IF (u<0) ALORS
 u=mod+u;
FIN
RENVOYER u;

92

Appendix B. Experimental Results

The Screen shot for Computation Time:

 Screen shot for Computation Time for Proxy Phase (PP) of A and B, see

(Appendix A, A.2 proxy phase source code, lines #177,181,194,202,204-206,

210,222-224,227-228,231-234,236-237, 241-243).

 Screen shot for Computation Time for Register Phase (RP) of R and B, see

(Appendix A, A.3 registration phase source code, lines# 298,301,313,318-

319,322,325,330,339-340,343,346,351-353,356,358,369,381-382)

93

 Screen shot for Computation Time for Circling Phase (CiP) of B and R, see

(Appendix A, A.4 circling phase source code, lines# 389,392,396-398,407-

408,430,435-437,439-440,459-461,464,466,471-473,480-481,486,491-492,495-

496,511,519-520,523,526,539-541,544-545,553,559-560).

 Screen shot for Computation Time for Voting Phase (VP) of R and V, see

(Appendix A, A.5 voting phase source code, lines# 563-564,568-570, 573,576,593-

595,598-599,601-603,606,608,632-634,637-638,645-647).

94

 Screen shot for Computation Time for Counting Phase (CoP) of V,

see (Appendix A, A.6 counting phase source code, lines# 654-655,659-661,664-

665,668-670,673-674,676-678,681,685,700-702,705-706,713-715). Verifier makes

the output.

