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ABSTRACT 

Adaptive filtering is an important and rapidly developing discipline in the signal 

processing and communications field. Many different algorithms were developed 

throughout the years. LMS and RLS being the most well-known and studied of the 

algorithms. Like in many disciplines in engineering there exists many disadvantages 

in these algorithms and so variations were proposed. The main parameters sought after 

in a new algorithm were convergence speed, stability, and computational complexity. 

LMS suffers in the former as it has generally low convergence speed. Meanwhile, RLS 

main disadvantage is the computational complexity it introduces, in addition to being 

unstable in varying channel settings. RI adaptive filtering algorithm proposed in 2009 

provides some solutions to the aforementioned issues.  

In this thesis, the use of the RI algorithm in common communication channel setting 

is simulated. The performance of the algorithm is studied and compared to some other 

adaptive filtering algorithms in terms of BER. Both channel estimation and channel 

equalization performances are investigated and commented upon. The conclusions 

reached will be that RI outperforms RLS in terms of convergence speed and 

computational complexity in all cases studied while giving similar results to NLMS in 

frequency selective channels but outperforming it in flat fading channels. 

Keywords: Adaptive filter, recursive inverse, RLS, communication channel 
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ÖZ 

Uyumlu filtreleme sinyal işleme ve iletişim alanının önemli ve gelişmekte olan bir 

disiplinidir. Alanın gelişme sürecinde farklı uyumlu filtre algoritmaları geliştirilmiştir. 

Least Mean Squares (LMS) ve Recursive Least Squares (RLS) algoritmaları en fazla 

bilinen ve başarımı araştırılan algoritmaların başında gelmektedir. Geliştirilen 

algoritmaların olumlu ve olumsuz yönleri bulunmakta ve araştırmacılar uygulamaya 

özge farklı geliştirmeler önermektedirler. Bu kapsamda en önemli başarım 

parametreleri yakınsama hızı, kararlılık ve hesaplama karmaşıklığıdır. LMS genel 

olarak düşük yakınsama hızına sahiptir. RLS ise, yüksek hesap karmaşıklığına ve 

kararlılık sorunlarına sahip olmakla birlikte, hızlı ve ilintili gürültü ortamlarında bile 

çalışabilen bir algoritmadır. 2009 yılında önerilen Recursive Inverse (RI) uyarlanır 

algoritması, yukarıda bahsedilen olumsuz yanların gelişmesine katkı koymaktadır.  

Tezde, RI algoritmasının iletişim kanallarında başarımı benzetimler yoluyla 

incelenmiştir ve farklı güncel algoritmalarla Bit Hata Oranı (BER) açısından 

karşılaştırılmıştır. Kanal kestirimi ve kanal dengeleme başarımları incelenerek ulaşılan 

BER değişimleri gözlemlenmiştir. RI algoritmasının, RLS, LMS ve Normalized Least 

Mean Squares (NLMS) algoritmalarından yakınsama hızı ve hesaplama karmaşıklığı 

açısından avantajları farklı ortamlarda belirlenmiş ve sunulmuştur.  

Anahtar Kelimeler: Uyumlu filtre, sönümlemeli haberleşme kanalı, kanal dengeleme  
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

One of the well-established topics in digital signal processing is adaptive filtering. A 

field that had many researchers and innovation in over the years [1]. Adaptive filters 

are more suited for uses when the statistics of the data is not known in advance as they 

provide the ability to adapt to changes in the impulse response, hence the prospect of 

employability in many applications in digital signal processing and communication 

systems. 

Adaptive filtering comprises of two basic processes; generating an out signal after 

filtering some input data, and secondly the process of adaptation. The adaptation 

process aims to minimize a specific cost function by adjusting the filter coefficients. 

The way these processes are done may vary as the algorithms change. 

Adaptive filtering can and has been implemented in both infinite impulse response 

(IIR) [2]; filters that are characterized by the fact that the impulse response never truly 

settles to zero but may decay, and finite impulse response (FIR) [2]; filters that have a 

finite impulse response defining it. The focus of this thesis will be solely on FIR filters. 
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1.2 Problem Statement 

The fact that the common communication channel model is that of an ever-changing 

and varying one requires the adaptive filter to be robust enough to be able to adapt fast 

and with as little errors as possible. RI algorithm [3] which will be discussed later, 

provides a better alternative than other adaptive filters in such an environment. 

1.3 Thesis Objective and Contribution 

The main objective of this thesis is to apply the RI algorithm to such a channel, with 

the aim of testing and gauging the performance of RI compared to RLS [1] and 

NLMS in terms of channel estimation and equalization when it comes to the 

calculated BER. Some example cases will be laid out in which RI is the better option 

compared to the other algorithms due to its ability to better adapt to variations in the 

channel. 

1.4 Thesis Overview 

The thesis is organized in the following way, after the brief introduction in this chapter, 

Chapter 2 provides some overview of the various adaptive filtering algorithms and 

their shortcomings. Chapter 3 lays out the Recursive Inverse algorithms that will be 

under the subject of assessment, and the various components implemented to obtain 

the simulation results. Chapter 4 presents the simulation results and invites discussion 

upon them. Finally, Chapter 5 concludes the thesis with final observations and the 

possibility of future work. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction  

The two algorithms that had the biggest effect and popularity are least mean square 

(LMS) [1] and recursive least squares (RLS) [1] algorithms. LMS algorithm is one of 

the earliest and most well-known adaptive algorithms and was used in many 

applications [4-6]. To outperform the different LMS algorithms, a different algorithm 

was developed which was the recursive least squares (RLS) algorithm. RLS algorithm 

employs an estimated autocorrelation matrix (and its inverse) and relies on recursion 

in updating the estimates. Many algorithms have been proposed that try to increase 

efficiency and enhance the performance of adaptive filtering. 

2.2 LMS 

LMS algorithm has the advantage of its simplicity both software and hardware-wise 

with fast convergence if the step size is tuned right [1]. Normalized Least Square 

Algorithm (NLMS) was proposed [7-10] to offer lower gradient noise amplification in 

the case of large input values. This fixed step size utilized in the previous algorithms 

turns into a disadvantage and to circumvent it, variable step size LMS variants were 

proposed like VSSLMS [11], still these algorithms fair badly with highly correlated 

input signals and in additive impulsive noise. Transform domain variants of LMS like 

the discrete cosine transform LMS (DCTLMS) [12] and the transform domain LMS 

with variable step-size (TDVSS) [13] and provide good performance in environments 

with correlated noise, but because of the need by these algorithms for some 
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transformation processes and even information regarding the variance of the noise, 

they suffer from high computational complexity. 

2.3 RLS 

To obtain an improved efficiency in comparison to the different LMS variants. Various 

people developed the recursive-least-squares (RLS) algorithm [1], [14]-[15]. Although 

the RLS algorithm does succeed in that, it has the disadvantage of suffering from high 

computational complexity and the possibility of numerical instability due to the use of 

the inverse autocorrelation matrix, this issue is also shared by the different variants of 

RLS like the ones discussed below. 

Another shortcoming of the algorithm is the tuning required for the forgetting factor 

and the need for it to be a relatively high value approaching unity so that stability and 

convergence are guaranteed, this issue leads to a limiting scope of use in applications 

that involve non-stationary environments [16]-[17].  

Some variants of RLS proposed was the robust RLS (RRLS) [18]. Instead of a fixed 

step size, this algorithm utilized a variable one which leads to better performance in 

varying environments. One disadvantage of RRLS lies in the fact that it has a very 

high computational complexity even when compared to RLS. 

Another improvement to the algorithm proposed was the stabilized fast traversal RLS 

(SFTRLS) [19]-[20] were proposed in the efforts to reduce the complexity of the RLS 

algorithm but the tradeoff was the lower performance that this algorithm provided. 
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2.4 RI  

Recursive Inverse (RI) algorithm [21] was developed in 2009. The RI algorithm was 

created to remedy some of the challenges and problems mentioned earlier concerning 

these algorithms. The RI algorithm has the advantage of not updating the inverse 

autocorrelation matrix unlike the RLS algorithm, this technicality leads to a substantial 

decrease in computational complexity [3]. Regarding how the RI algorithm performs, 

the results were of a comparable level compared to RLS in terms of MSE convergence 

albeit as previously mentioned with a lower complexity especially when using a large 

number of filter taps. RI also has a much better performance than that of LMS and 

with significantly higher convergence speed also [3]. 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Chapter 3 

METHODOLOGY 

3.1 Introduction 

The previously developed Recursive Inverse (RI) algorithm offers a faster 

convergence compared to LMS and better performance than RLS in a non-stationary 

environment which is our concern as communication channels are usually modeled to 

be of varying nature. 

This chapter will start by showing the RI algorithm derivation. Following will be the 

discussion for the test environment and channels to be used in the simulations along 

with the way the performance comparisons will be carried out to obtain the attached 

results. 

3.2 Derivation of the Recursive Inverse Algorithm 

The derivation of the update equation of the RI algorithm and its convergence analysis 

is detailed in [21], and the derivation will be summarized below. 

The FIR filter coefficients optimum solution can be derived from the Wiener-Hopf 

equation [1], the filter weights can be calculated as 

𝐰(𝑘) = 𝐑−1(𝑘)𝐩(𝑘) (1) 

  

The time parameter is represented by k (k = 1,2,3,…), the filter weight vector is 

represented by 𝐰(𝑘), 𝐰(𝑘) is the vector evaluated at time k, an estimate of the 

autocorrelation matrix of the input vector is represented by R(k), whereas a cross-
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correlation vector between the desired output signal value and the input of the filter 

taps is estimated in the parameter p(k). Solving (1) is needed at each time-step as the 

filter coefficients are updated. Additionally, another restriction imposed by the inverse 

of the autocorrelation matrix is that inevitability of said matrix should be guaranteed 

at each time-step. 

The correlations in (1) are updated in a recursive manner as follows 

R(k) = βR(k − 1) + x(k) 𝐱𝑻 (k) (2) 

p(k) = βp(k − 1) + d(k)x(k) (3) 

a value close to 1 is mostly chosen for the forgetting factor, here given the symbol of 

β. Substituting the above two equations into the Wiener-Hopf equation produces 

𝐰(𝑘)  =  {𝛽𝐑(𝑘 − 1) + 𝐱(𝑘) 𝐱𝑻 (𝑘)}−1[𝛽𝐩(𝑘 − 1) + 𝑑(𝑘)𝐱(𝑘)] (4) 

rearranging the resultant equation after taking the matrix inversion lemma [22] into 

use  

𝐰(𝑘) =  [𝑰 −
𝐑−1(𝑘 –  1)𝐱(𝑘)𝒙𝑇 (𝑘)

𝛽 +   𝐱𝑇(𝑘)𝐑−1(𝑘 –  1)𝐱(𝑘)
] 𝐰(k –  1) 

+ [
𝐑−1(𝑘 –  1)𝐱(𝑘)

𝛽 +  𝐱𝑇 (𝑘)𝐑−1(𝑘 –  1)𝐱(𝑘)
] 𝑑(𝑘) 

=  𝐰(𝑘 −  1) +  𝜇(𝑘)𝐑−1(𝑘 −  1)𝐱(𝑘)𝑒(𝑘)                      (5) 

Newton-LMS algorithm [23]-[27] has the update equation as in equation (5) with the 

error e(k) equaling:   

𝑒(𝑘)  =  𝑑(𝑘)  −  𝐱𝑇 (𝑘)𝐰(𝑘 −  1) (6) 

Equation below shows the step-size calculation 

𝜇(𝑘) =
1

𝛽 +  𝐱𝑻 (𝑘)𝐑−𝟏(𝑘 −  1)𝐱(𝑘)
 

(7) 
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Taking the inverse of the autocorrelation matrix is required for Newton-LMS. But for 

RI that is not necessary. The RRLS shares some similarity with Newton-LMS but with 

the major difference being that the inverse autocorrelation matrix is updated instead of 

updating the estimated correlation matrices. 

The iterative solution of the wiener equation will yield the following equation that 

will eventually converge to a solution.      

𝐰𝑛+1(𝑘) =  [𝐈 − 𝜇𝐑(𝑘)]𝒘𝒏(𝑘) + 𝜇𝐩(𝑘),                     𝑛 =  0, 1, 2, . .. (8) 

if 𝜇 is chosen to satisfy the criterion of convergence, then  

𝜇 <  
2

𝜆max(𝐑(𝑘))

 
(9) 

Considering the equation used to update the correlations in (2), and then evaluating 

the expected value of 𝐑(𝑘) we obtain,  

𝐑(𝑘 + 1) =  𝛽𝐑(𝑘) + 𝐑𝑥𝑥 ,    (10) 

where 𝐑𝑥𝑥 = 𝐸{𝐱(𝑘)𝐱𝑇(𝑘)} and 𝐑(𝑘) = 𝐸{𝐑(𝑘)} solving equation (10) gives out  

𝐑(𝑘) =
1 − 𝛽𝑘

1 − 𝛽
𝐑𝑥𝑥 ,   

(11) 

As  𝑘 →  ∞   

𝐑(∞) =
1

1 − 𝛽
𝐑𝑥𝑥 . 

(12) 

Equation (11) allows for the understanding of the behavior of the eigenvalues of the 

autocorrelation matrix and Eq. (12) gives the values at the limit. Knowing criterion in 

(9) must be satisfied at the limit, we get  

𝜇 <
2(1 − 𝛽)

𝜆max(𝐑𝑥𝑥)
 

(13) 
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Eq. (13) puts a restriction on 𝜇 such that it can only take values much smaller than 

those permitted by (7) when using 𝐑𝑥𝑥 instead of 𝐑(𝑘), thus it is better to use a 

variable step-size 𝜇 as in  

𝜇(𝑘) <
2

𝜆𝑚𝑎𝑥(𝐑(𝑘))
= (

1 − 𝛽

1 − 𝛽𝑘
) (

2

𝜆𝑚𝑎𝑥(𝐑𝑥𝑥)
) =

𝜇𝑚𝑎𝑥

1 − 𝛽𝑘
  , 

(14) 

Or  

𝜇(𝑘) =
𝜇0

1 − 𝛽𝑘
   where 𝜇0 <  𝜇𝑚𝑎𝑥.    (15) 

The iteration in (8) has the disadvantage of being computationally complex. Using a 

step-size that is variable reduces the iterations needed at each time step down to 1. 

Thus, the RI algorithm update equation of the weight values is therefore: 

𝐰(𝑘) = [𝐈 − 𝜇(𝑘)𝐑(𝑘)]𝐰(𝑘 − 1) + 𝜇(𝑘)𝐩(𝑘) (16) 

The RI algorithm has the edge in terms of complexity as it has lower computational 

complexity compared to RLS type algorithms that require updating the inverse 

autocorrelation matrix unlike RI as can be seen from Eq. (16). 

3.3 Channel and Test Environment  

In the following, some key points and characteristics of the test environment that will 

be used in the simulations along with some channel models to obtain the performance 

metrics will be discussed. 

3.3.1 Rician Multipath Fading Channel 

The Rician multipath channel is a communication channel model widely used as a 

test environment to verify and study the performance of different Algorithms and 

modulation techniques. This channel will be used in some simulations as will be 

noted where necessary. 
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The channel is characterized by having a Rician distributed coefficient for the line 

of sight component and a Rayleigh distributed coefficients for the remaining delayed 

paths, these coefficients act as the fading coefficients. Also, the channel introduces 

uniform phase jitter to the input signal. 

3.3.2 Doppler Shift  

The Doppler phenomenon is a physical phenomenon caused by the sender or receiver 

being in motion, moving either in the direction of or opposite of the other. This 

phenomenon leads to a change in the frequency of the signal transmitted or received 

leading to the possibility of introducing errors to the signal. The model built to test 

the performance of the different algorithms takes Doppler shift into consideration 

because of the nature of the common commination channel of containing movement 

in some of its components. Ignoring the Doppler phenomenon will lead to a static 

channel whereas including it leads to a non-stationary impulse response of the 

channel as it contributes to different cases of multipath interference due to the 

presence of the frequency shift and thus the varying impulse response.  

3.3.3 Stationary Channel 

For the sake of testing the convergence performance, some simulations will be made 

over a stationary channel model. Such a channel [28] is laid out in Eq. 17 below 

ℎ(𝑛) =  {
(

1

2
) [1 + cos ((

2𝜋

3.3
) (𝑛 − 2))] ,

    0 ,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

  𝑛 = 1,2,3     } 

(17) 

3.3.4 Channel Equalization Block Diagram 

The general block diagram of the channel equalization system which will be 

implemented can be seen below. The input signal goes through the channel, the 

channel used will be stated where necessary in the simulation results chapter later on. 

After the signal passes the channel, it is corrupted by noise mainly AWGN. The result 
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of this operation then passes the adaptive traversal equalizer and the difference 

between the output of said filter and a delayed version of the original input is used as 

error feedback to the many adaptive filtering algorithms used. 

 

Figure 1: Channel equalization block diagram 

3.3.5 AWGN 

After the signal passes through the implemented channel, it is corrupted by AWGN 

which stands for Additive White Gaussian Noise. Additive because the values that 

are being introduced are added to the input of such channel. White refers to the fact 

that it is frequency independent having constant power density for all frequencies. 

Gaussian means that these values follow a Gaussian distribution. Finally, noise refers 

to an unwanted component corrupting the desired signal. 

Gaussian is the most commonly used noise model in simulation because it is the one 

that most resembles the real world noise effects on signals. According to the central 

limit theorem, the effect of many different probability density functions can be 

approximated by the Gaussian distribution. 
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Noise introduced to the desired signal usually comes from other signals present in 

the medium of transmission, like air in wireless communications as well as thermal 

noise caused by electronic components used in the transmitter and receiver circuits.  

3.3.6 Modulation Technique  

The modulation technique used throughout the simulations is Binary Phase Shift 

Keying (BPSK). Some cases use BPSK with 0 initial phase shift while others use 

BPSK modulation with an initial phase shift of π/4. The use of either case will be noted 

wherever necessary. 

 

Figure 2: Constellation diagram of BPSK with no initial phase shift (left), and with 

an initial phase shift of π/4 (right) 

3.3.7 Monte Carlo Simulations 

Monte Carlo simulations are a form of a statistical analysis tool widely used in many 

non-engineering fields and also engineering fields, to simulate predictions for systems 

that contain probabilistic parameters. 

Throughout the simulations to follow, it should be noted that the results are obtained 

using the Monte Carlo simulation by having many runs of the same program averaged 

out to provide a more accurate representation of the results by limiting the effect of 

uncertainty. 
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3.4 Multipath Fading Channels 

Given the fact that the varying channel implemented in the simulations is a multipath 

fading channel, some brief explanation of such channels is to be presented in this 

section. 

There are mainly two ways these channels can be categorized. The two distinctive 

properties that determine what each channel may be classified are called the coherence 

bandwidth and the coherence time. Coherence bandwidth may be simply defined as 

the frequency band within which the different frequency components experience 

similar levels of attenuation. This coherence bandwidth is inversely proportional to the 

arrival times of the delayed signals. Coherence time means the time period during 

which the channel approximately retains similar structure without much change.  

In the following, the main classification of channels depending on coherence 

bandwidth and coherence time will be presented. 

3.4.1 Flat Fading Channels 

Flat fading channels are characterized by the fact that nearly all of the transmission 

bandwidth lays within the coherence bandwidth thus leading to different frequency 

components being affected by nearly equal gain values as was mentioned before. 

Such a channel can usually be represented by an impulse response that has one or very 

few significant values. 

Fading channels will be flat if the line of sight component of the channel environment 

has a significantly higher power that other delayed signals arriving reflected off 

different elements in the environment. In other words, a flat fading channel is one in 
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which all significant delayed versions of the signal arrive before the arrival of the next 

bit or symbol. This model can be seen in some cases of Rician multipath fading as this 

kind of channel includes a line of sight component. Whereas for Rayleigh multipath 

fading channel, this fading model is less prevalent as Rayleigh channels usually lack 

the line of sight component.  

3.4.2 Frequency Selective Channels 

This type of channel has the characteristic of having a transmission bandwidth that is 

larger than the coherence bandwidth of the channel. This leads to some frequency 

components of the signal to be affected by different levels of attenuation. 

This type of channels may be represented by channel impulse response that has many 

significant values unlike flat fading. 

Frequency selective channels are those in which the delayed signals could arrive after 

subsequent symbols are received at the receiver leading to distortions to that symbol. 

Such a configuration may result because of the existence of many reflections caused 

by the different environmental obstacles. 

3.4.3 Fast Fading Channels 

The categorization of how fast a channel is depends as previously mentioned on the 

coherence time of the channel. The channel is generally considered fast if its coherence 

time is less than the symbol period. Thus, channel variations are faster than baseband 

signal variations.  

The change in the channel characteristics can be observed in the change of the impulse 

response representing such a channel. The impulse response generally retains similar 

values during the coherence time. 
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Fast fading happens when the maximum Doppler shift affecting the channel is off a 

considerable amount in comparison to the transmission rate of the channel. This 

happens in real world when there is high amount of mobility in the environment, for 

example moving cars. 

3.4.4 Slow Fading Channels  

Flowing the explanation for fast fading channels, a channel is generally said to be slow 

fading if its coherence time is larger than symbol period, which means the channel 

retains similar characteristics for a longer period of time than fast fading. Thus, 

channel variations are slower than baseband signal variations. These slow changes are 

reflected by the slow changing impulse response representing the channel. 

This case of fading usually happens when the maximum Doppler shift affecting the 

transmission is low valued in comparison to the transmission bandwidth. This can be 

reflected in real situations when there is not much movement in the transmission 

environment due to nearly stationary components making it up.  

It should be noted that the first two classifications are independent than the latter two, 

that means that it is possible to obtain a fading channel that is a fast flat fading channel 

or one that is a slow frequency selective fading channel, and so on. 

3.5 Proposed Simulation System 

The main concern and aim is to develop a system that tests the performance of different 

adaptive filtering algorithms in terms of channel equalization in a non-stationary 

environment setting. These results will be discussed in section 4.2. the following figure 

shows the block diagram of the implemented system. 
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Figure 3: Block diagram of the implemented system 

The simulation starts with the generation of input bits represented as having a value of 

either 0 or 1 randomly. These input bits are then given to a BPSK modulator; the 

modulator has an initial phase shift of π/4 for ease of further analysis.  

The modulated signal is then processed by the MATLAB object 

(comm.RicianChannel). To simulate the effect of the signal passing through a Rician 

multipath fading channel, exact parameters used to prime the object are laid out and 

discussed later in the next chapter of simulation results.  

After that, the resultant signal is simulated as having gone through a AWGN by adding 

Gaussian generated noise to the signal with the noise having different variance values 

according to the SNR level given. 

The signal then passes to the adaptive equalizer part of the system which changes the 

weights of the filter such that to try and make the effect of passing through both the 
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multipath fading channel and the equalizer as close to the effect of not passing through 

either as possible. In addition, the output of both the multipath fading channel and the 

AWGN also goes through a channel estimator to help give a visualization of the 

corruptive channel impulse response. 

The method in which the adaptive equalizer in adapting is chosen to be using the phase 

of the original bit signal as the modulation method used is BPSK and the original 

information of the bit is encompassed in its phase. Furthermore, unlike when doing 

system identification there is a delay inserted in the case of channel equalization. 

Now for the important part of figuring out whether a bit was received after going 

through all the previous processes was in error or not. Again, since an important part 

of the signal is its phase, the method used in determining the existence of an error or 

not is through the phase. 

The bit is accepted as being of correct value if the phase of said bit is within a region 

of 0.5π radians of the original phase. Because of the nature of signal phases, a phase 

difference of more than 0.5π radians in either direction (positive or negative) is 

considered to be a difference that will lead to an error. 

In the end, the number of errors is added up to find the BER rate of the system for a 

specific SNR level and then the SNR is changed to different values for the final BER 

vs SNR plot. Also, it is worth noting that this whole process is done many times to 

minimize the effect of uncertainties through Monte Carlo simulations. 
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Chapter 4 

SIMULATION RESULTS 

This chapter will layout the results of the simulations showcasing the RI algorithm 

performance in comparison to different adaptive filtering algorithms. Some 

simulations will be done on a stationary channel to specifically show the minimization 

of error as time steps increase. Then, a varying channel is tested to show the 

performance of adaptation of the RI, RLS and NLMS algorithms, by using the system 

described just briefly before. 

4.1 Stationary Channel  

 For this simulation,  Xn is a Bernoulli input sequence of alternating 1 and -1 

representing a simplified Binary Phase Shift Keying (BPSK).  The corrupting channel 

is modeled as defined by the impulse response in Eq.16 and represented in figure 

below. disturbance noise is a zero mean normal random variable with its variance 

depending on the SNR level defined. 
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Figure 4: Impulse response for the stationary channel 

The simulation was done as follows. First, the input sequence of [1, -1] was convolved 

with the channel impulse response defined earlier. Then the additive white Gaussian 

noise was generated according to the desired SNR value and after that, an attempt at 

reconstructing the input signal is made. The error between the actual value and the 

calculated one is used in the adaptive algorithm to equalize the channel. 

The first thing to look at is the performance of the filter algorithm in reducing the bit 

errors after it has converged.  Figures below show the histogram of signal values in 3 

different cases all under AWGN with SNR of 4. Without passing through the 

corrupting channel (figure 2). After passing through the channel but without being 

equalized and finally after passing through both the channel and the traversal filter 

(figure 3).   
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Figure 5: Histogram of the signals without passing through the corruptive channel. 

 

Figure 6: Histogram of signals without channel equalization(left), and with 

equalization(right) 

Previous figures serve the purpose of providing insight into the effect channel 

equalization would have on the communication channel. As can be seen, the 

probability of the decision being made in error decreases after the signal is equalized 

as the inter symbol interference introduced by the corruptive channel is reduced 

leading to more accurate decisions being made. The difference of interest here is the 
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one between the cases where the corruptive channel is used that shows the decrease in 

ISI after channel equalization. 

Because of the heavy use and importance of channel equalization in the simulations 

done, the following figure shows the performance of EMSE convergence of different 

adaptive filtering algorithms for channel equalization, the simulation is done in a 

stationary channel as described at the begging of section 4.1. Parameters used in the 

simulation were as follows, delay for all algorithms was set to 7, for RI, β=0.97 and 

𝜇0 = 0.004. Whereas RLS had β=0.991. As for LMS a step size of value 0.0024 was 

used, a step size equal to 0.03 was used for NLMS in addition to ϵ being equal to 0.01. 

The additive white Gaussian noise level used was 15dB. 

 

Figure 7: EMSE convergence for RI, RLS, LMS, and NLMS in a stationary channel 

RI 

RLS 

NLMS 

LMS 
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The previous figure demonstrates the performance of different algorithms in 

converging to the minimum mean square error in a channel equalization setting. It can 

be seen that both RI and RLS converge to a close value of minimum mean square error 

with a minuscule difference. As for LMS and NLMS, it is obvious that they both would 

take more time in converging to a steady value of MSE due to their feature of lacking 

memory of preceding time steps. 

The following simulation was done to observe the BER performance of the different 

algorithms in a stationary environment. The method makes the bit value decision after 

each time step and sums up the number of errors after the end of the test message. This 

means that each run only used 1 test sequence with 1 bit checked after each time step. 

Parameters used in the simulation were as follows, for RI, β=0.97 and 𝜇0 = 0.004. 

Whereas RLS had β=0.991. for LMS the step size used was 0.0024 and as for NLMS 

the step size was set to 0.03 with ϵ=0.01. 

 

Figure 8: BER vs SNR for RI and RLS in a stationary channel 
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The figure above shows that RLS is performing better than RI by around 1dB, the 

reason for this is that as shown previously the RLS algorithm converged faster than RI 

thus creating this gap in the comparisons. LMS and NLMS, on the other hand, show 

bad performance which can also be backed up by the figure detailing EMSE 

convergence previously. The apparent but unexpected convergence of values 

especially those for RLS and RI is due to the limited number of samples used in the 

simulation. 

This section laid out some performance comparisons between these different adaptive 

filtering algorithms, but these results are not conclusive as the channel was a stationary 

one and the samples were limited, such a set up might not be optimal to compare the 

different algorithms, as it might not truly show the advantages and disadvantages of 

these algorithms. 

4.2 Rician Channel  

The following simulations were done to test the performance of RI and RLS and 

NLMS in a continuously changing channel model represented by the Rician multipath 

fading channel as was described in section 3.5. Different cases of the calibration of the 

channel are presented. 

The channel equalization model is the one given in figure 1. The parameters for the 

simulations were β=0.8 and 𝜇0 = 0.004 for RI. Whereas for RLS, β=0.9999 to 

guarantee stability and initial autocorrelation matrix diagonals being equal to 100. For 

NLMS a step size of 0.03 was chosen with ϵ being equal to 0.01. The input signal was 

a BPSK modulated signal represented by random [1, -1]. The different parameters used 

for the calibration of the channel were mostly fixed with a variation being applied only 
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in the input data sample rate to produce the various cases to be discussed. For 

reproducibility, the random stream used in the MATLAB object was “mt19937ar with 

seed 10”. 

A good way to illustrate and understand the performance differences would be to look 

at the ability of the algorithms in terms of estimating the channel presented so those 

figures will also be made available.  

The first case done was with an input data sample rate of 500KHz, delay vector of [0 

, 2 , 4]x 10−6 s, multipath gain vector of [0 , -6 , -9] dB for the paths considered, and 

maximum Doppler shift of 3Hz that is necessary to produce the varying nature of the 

channel and a Rician distribution k factor of 10. This configuration produces a slow 

fading frequency selective channel. The following figures show a few snapshots of the 

frequency repose of this channel, BER vs SNR for RLS, RI and LMS, and a look at 

the estimate produced by each algorithm to help understand the difference in 

performance. 
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Figure 9: Frequency response of the channel with a sampling rate of 500KHz at 

sample time 500 

 

Figure 10: Frequency response of the channel with a sampling rate of 500KHz at 

sample time 6000 
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Figure 11: Convergence of most significant filter weight for a  sampling rate of 

500KHz, RLS and RI on top, RLS and NLMS on bottom 
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Figure 12: BER vs SNR for RI, RLS, and NLMS for a sampling rate of 500KHz 

Previous two figures show the faster convergence of RI in this frequency selective 

environment and the better performance of RI over RLS into terms of BER especially 

at higher SNR levels while at the same time being less complex. Whereas RI shows a 

very similar performance to NLMS at nearly all SNR levels shown. 

The similarity in results between all 3 algorithms can be attributed to the fact that the 

impulse response of the channel is a slow fading one but is producing frequency 

selective characteristics so that the speed of convergence of RI does not play a big of 

a role so it does not hold a big advantage. 

A second case that had frequency selective characteristics but with the weights 

changing faster than in the first case was done with an input data sample rate of 50KHz, 
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delay vector of [0, 2, 4]x 10−6 s, multipath gain vector of [0, -6, -9] dB, and maximum 

Doppler shift of 3Hz to produce the variation in the channel, and a Rician distribution 

k factor of 10. This model represents a less frequency selective channel than in the first 

case but with faster fading. The following figures show BER vs SNR for RLS, RI and 

LMS, and a look at the estimate produced by each algorithm to help understand the 

difference in performance. 

 

Figure 13: BER vs SNR for RI and RLS for a sampling rate of 50KH 

It can be noticed from previous figure that now the distinction in performance between 

RI algorithm on one hand, and RLS on the other is now more prevalent due to the fact 

that the impulse response of the channel is now more rapidly changing and the faster 

and better adaptability of the RI algorithm plays a more important role in setting the 

algorithm up to produce fewer bit errors, whereas compared to NLMS, RI is still 

producing similar results at nearly all SNR levels shown mainly due to the fact that it 
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lacks memory of previous values. The difference reaches around 7dB between RI and 

RLS at the highest SNR level tested here of 20dB. 

The third case was conducted with an input data sample rate of 20KHz, delay vector 

of [0, 2, 4]x 10−6 s, a multipath gain vector of [0, -6, -9] dB, and maximum Doppler 

shift of 3Hz, and a Rician distribution k factor of 10. These settings produce a flat 

fading channel that has fast variations as will be seen. Below figure shows a 

representation of this channel at a random instance of time. 

 

Figure 14: Frequency response of the channel with a sampling rate of 20KHz at 

sampling time 100000 
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Figure 15: Frequency response of the channel with a sampling rate of 20KHz at 

sampling time 6300 

 

Figure 16: Convergence of most significant filter weight for a sampling rate of 

20KHz 
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Figure 17: BER vs SNR for RI. RLS and NLMS for a sampling rate of 20KHz 

The figures for the case parented above shows how RI outperforms RLS because of its 

ability to adapt to changes faster as the channel presented is one of fast variations but 

no frequency selectiveness, whereas RLS shows bad performance in that regard as the 

channel changes before the algorithm even has the chance to adapt due to the nature 

of the algorithm of requiring very high forgetting factor which leads to worse 

adaptation to variation. NLMS, on the other hand, is still showing good performance 

compared to RI with the RI having a slight advantage at higher levels of SNR. 

The improvement in BER performance of RI over RLS and NLMS increases with the 

incrimination of SNR levels to reach approximately 7dB and 1dB respectively at the 

highest SNR level tested. 
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To further understand the performance of RI in the system constructed over other 

adaptive filtering algorithms like RLS and NLMS, a case is presented where the data 

sampling frequency is chosen to be 10KHz with the other parameters being same as 

in preceding cases. Following are figures of the convergence of the most significant 

weight value and BER vs SNR. 

 

Figure 18: Convergence of most significant filter weight for a sampling rate of 

10KHz 
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Figure 19: BER vs SNR for RI. RLS and NLMS for a sampling rate of 10KHz 

As can be seen in previous two figures, this case that presents a fast-changing flat 

fading channel shows a better performance of RI over both RLS and NLMS, 

especially at higher SNR levels. 

The improvement in BER performance of RI over RLS and NLMS increases with the 

incrimination of SNR levels to reach approximately 6dB and 3dB respectively at the 

highest SNR level tested. 

As can be inferred from the figures the RI algorithm adapts to the change in the 

channel impulse response with greater speed and accuracy compared to the RLS 

algorithm which shows an abysmal performance in this regard, often not converging 

before another change occurs in the channel and environment.  
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In the case of NLMS, the results show us that both it and RI deliver an approximately 

equal performance when it comes down to the issue of bit errors in the cases where 

the impulse response of the channel changes at a slow rate (slow fading). The RI 

algorithm shines in the regard of bit errors compared to NLMS whenever the channel 

has a fast variation in the impulse response (fast fading) as can be seen in the last 

two cases due to its superior ability in adapting to these changes.   
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Chapter 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, a simulation system for testing the SNR vs BER performance of different 

adaptive filtering algorithms was presented.  

Results presented compared the performance of RI against other algorithms mainly 

RLS and NLMS in a Rician multipath fading channel. Simulations were done in 

various channel settings including fast flat fading channel and slow fading frequency 

selective channel model. 

It was noticed that in the slow fading frequency selective cases presented RI performed 

better than RLS and had similar results to NLMS. The real advantage that RI had over 

the other algorithms was in the fast flat fading cases, as the results illustrated that RI 

was clearly the better algorithm in adapting to the channel variations. 

5.2 Future Work 

Future work to be implemented to better understand and appreciate the performance 

of the RI algorithm would be to simulate the same system in other noise models such 

as ACGN, AWIN, and ACIN. 
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In addition, the system could be further improved by implementing a different way of 

channel equalization, namely decision feedback equalizer (DFE) which would in 

principle improve the results of the equalization process. 
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