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ABSTRACT

In this study we propose special difference problems of the four point scheme and six
point symmetric implicit scheme (Crank and Nicolson) for the approximation of first

and second partial derivatives of the solution u(x,t) of the first type boundary value

problem for one-dimensional heat conduction equation, with constant coefficients.

A four point implicit difference problem is proposed for the approximation of Z_u under
X

the assumption that the initial function belongs to the Holder space c5«, 0<a <1,

the nonhomogeneous function given in the heat equation is from the Holder space

3ta 5+a

3Ha,—— . 27 L.
c. , the boundary functions are from C 2 also between the initial and boundary

X,t

functions the conjugation conditions up to second order (q=0,1,2) are satisfied.

5+a

5+a,
When the initial function belongs to c7+«, the nonhomogeneous termisfrom C . 2,

T+a

the boundary functions are from C ? , alsothe conjugation conditions up to third order
(q=0,1,2,3) are satisfied, a six point implicit difference problem is given. It is proven

that the solution of the constructed four and six point implicit difference problems

converge to the exact value of Z_u on the grids of order O(h2 +7) and O(h2+fz)
X

respectively, where, h is the step size in spatial variable X and 7 is the step size in

time variable t.

Furthermore, boundary value problems and implicit difference problems are given to

ou
the first derivative of the solution with respect to time variable t, [Ej and for the



pure second derivative with respect to the spatial variable X. Also special implicit

difference boundary value problem is proposed for the mixed second derivative of the

o°u
oxot

solution, ( j When the initial function belongs to C *“, the heat source function

6+a 8+a

6+a,—— ; ora
given in the heat equation is from C,, 2, the boundary functions are from C 2

Holder spaces and between the initial and boundary function the conjugation
conditions of orders q=0,1,2,3,4 are satisfied, it is proven that the solution of the

proposed implicit difference schemes converge uniformly to the corresponding exact

derivatives @, ou and o%u on the grids of the order O(h2 +T) . On the other hand,
ot ox? oxot

8+a

when the initial function belongs to C ***«, the heat source function is from CX:a' 2

10+a

the boundary functions are from C 2 Holder spaces and between the initial and

boundary functions the conjugation conditions of orders q=0,1,2,3,4,5 are satisfied,

the constructed six-point symmetric (Crank-Nicolson) implicit difference boundary

value problems converge with the order O(h*+7%) to the corresponding exact

2 2
derivatives a_“, U and 9
ot ox32 OxXot

Finally, in order to justify the theoretical results, several numerical examples are

constructed and the obtained results are presented through tables and figures.

Keywords: Finite difference method, Approximation of derivatives, Crank-Nicolson

scheme, Uniform error, Heat equation.



Oz

Bu c¢alismada sabit katsayili tek boyutlu 1s1 denkleminin birinci ¢esit sinir deger
probleminin  u(x,t) ¢6zominun birinci ve ikinci kismi tdrevlerinin yaklasik
hesaplanmasi i¢in dort nokta kapali ve alti nokta simetrik kapali fark semali (Crank ve

Nicolson) 6zel fark problemleri 6ne straldu.

Baslangi¢ fonksiyonunun C >, 0<a <1, 1s1 denklemindeki homojen olmayan

3+a S+a
3+a,——

terimin C,, 2 ve sir fonksiyonlarinin C 2 Hélder uzaylarindan oldugu ayrica

baslangi¢ ve sinir fonksiyonlar: arasinda ikinci dereceye kadar (q =0,1,2) baglayici

kosullarin sagladigi kabul edildiginde Z—u yaklagimi i¢in dort nokta kapali fark
X

problemi 6ne siirlildi. Baslangic fonksiyonunun C fra oldugu, homojen olmayan

5+a T+a

- - +a' . . T e ~
terimin C,, 2, smr fornksiyonlarmm ise C 2, Hélder uzaylarindan oldugu ve

baglayici kosullarim tiglincii dereceye kadar (q=0,1,2,3) saglandigi durumda ise alt1

nokta kapali fark problemi verildi. Olusturulan dért nokta ve alti nokta kapali fark

problemlerinin diigiim noktalarinda Z_U fonksiyonunun gercek degerine O(h* +7) ve
X

O(h*+7°) mertebesinden diizgiin yakinsadigi isbat edildi ki h, X degiskenindeki

adim uzunlugu, 7 ise zaman degiskeni { i¢in adim uzunlugudur.

. _(ou
[laveten, ¢6zOmiin t degiskenine gore kismi tiirevi (Ej X degiskenine gore ikinci

tlrevi icin sinir problemleri ve kapali fark problemleri verildi. Ayrica ¢éziimiin ikinci



.. [ &
dereceden karisik tirevi

p atj icin 6zel bir fark sinir deger problemi Onerildi.
X

8+a

8+a,——
Baslangl¢ deger fonksiyonun C,, 2 1s1 denklemindeki 1s1 kaynagi fonksiyonunun

8+a
6+a,6+7a

C,. % vesmir fonksiyonlarmnin C 2, Holder uzaylarindan oldugu, ve baslangig ile

sinir forksiyonlar1 arasinda baglama sartlarinin q=0,1,2,3,4 dereceden saglandig:

) e ou o7 o%u
zaman One siiriilen kapali fark semalarmin karsilik gelen =, ve .
o ox? oxot

tirevlerine dizgln O(h2 +7) mertebesinden yakinsadigi gosterildi. Diger taraftan

8+a,——

baslangi¢ deger fonksiyonun C 10+a, 1s1 kaynagi fonksiyonunun C . 2 ; smr

10+
fonksiyonlarmin ise C 2 Ho6lder uzaylarindan ve baslangi¢ ile sinir fonksiyonlari

arasinda q=0,1,2,3,4,5 dereceden baglayict kosullarin saglandigi durumda

olusturulan alt1 nokta simetrik (Crank-Nicolson) kapali fark problemleri karsilik gelen

o o%u

2
1 ve o‘u
ot ox? oxot

. . 2. 2 _
tirevlerine O(N” +7°) mertebesinden diizgiin yakinsar.

Son olarak teoretik sonuglari desteklemesi amaci ile bir¢ok sayisal 6rnekler kuruldu

ve elde edilen sonuclar tablo ve sekiller ile gosterildi.

Anahtar Kelimeler: Sonlu fark metodu, tiirerlerin yaklasik hesaplanmasi, Crank-

Nicolson semasi, diizgiin hata, 1s1 denklemi.

Vi
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Chapter 1

INTRODUCTION

1.1 Motivation

Motivation is one of the key elements of learning system and it is the sole factor that

has a direct impact on the success of academic. In science, especially in mathematical

physics, applied thermal engineering in particular, not only the calculation of the

solution of the differential equation but also the calculation of the derivatives of the

solution are very important to provide information about some physical phenomena

[1]. Some examples are listed below:

1.

2.

The first derivatives of the potential function defines the electrostatic field [2].
In heat conduction problems involving phase changes such as the problem of
melting of a solid when the liquid is removed immediately on formation [3, 4,

g
oX

5], the accurate calculation of the rate of heat flow into the soli , the rate of

heat absorption by melting % where, U(X,t) is the temperature and X = s(t)

is the distance from the initial position of heated face are considerably
important.

The phenomena of impact of a moving foot on the transfer of heat from a
constantly heated warm water into the foot immersed within a footbath [6] and
the enhancement of performance by increasing the thermal efficiency of a
direct absorption solar collector based on analimino-water nanofluid [7] of

which the derivatives of the solution are also essential.



4. In [8], theory of the drying wood adopts the fundamental hypothesis that the

rate of which transfusion takes place transversely with respect to the wood

00 2
fibers (E] is proportional to the slope of the moisture gradient [2—0] , Where

XZ

6 is the moisture content expressed as a percentage of the oven-dry weight of

f 99

the wood. Therefore, accurate approximation o IS very important to

provide information about the moisture gradient.
1.2 Review of literature

To find highly accurate computations of the derivatives of an unknown solution of a
differential equation is problematic because the differentiation operation is ill-
conditioned. Also, it is well known that accuracy of the approximate derivatives

depends on the accuracy of the approximate solution.

The study of approximate derivatives using finite differences was investigated in [9]
where, it was proved that the high order difference derivatives uniformly converge to
the corresponding derivatives of the exact solution for the two-dimensional Laplace

equation in any strictly interior subdomain with the same order O(h) (his the grid

step) of which the difference solution converges on the given domain.

For the Dirichlet problem of the Laplace equation on a rectangle in [10] O(h?) order

of uniform convergence of the solution of the difference equation and its first and pure
second difference derivatives to the solution and corresponding derivatives of the exact
solution for the two-dimensional Laplace equation was proven over the whole grid

domain.



Later, in [11], under the conditions that the boundary functions belong to C®*,

0< A <1, on the sides of the rectangle and are continuous on the vertices and second,
fourth order derivatives satisfy the compatibility conditions on the vertices which
results from the Laplace equation, difference schemes are constructed for the first and
pure second order derivatives of the solution. It is proved that the order of convergence

of the solutions of these difference schemes is O(h*).

For the three dimensional Laplace equation difference schemes for obtaining the
solution of the Dirichlet problem, its first derivatives and second derivatives on a cubic

grid with uniform accuracy O(h?) are constructed in [12] under the agreement that
the boundary functions belong to C**, 0<. <1,0n the faces, are continuous on the

edges, and their second order derivatives satisfy the compatibility condition.

In [13] difference schemes for the approximation of the first and pure second
derivatives of the solution of the Dirichlet problem in a rectangular parallelepiped

which converge uniformly on the cubic grid of order O(h*). are proposed when the
boundary functions belong to C®*, 0<.<1,0n the faces, are continuous on the

edges, and have second and fourth order derivatives satisfying the compatibility

conditions.

Most recently, in [14] difference schemes on a cubic grid for obtaining the solution of
the Dirichlet problem for the 3D Laplace equation on a rectangular parallelepiped, its
first and pure second derivatives, difference schemes are constructed and the
approximate values of the first and pure second derivatives converge with orders

O(h®|In h]) and O(h**), 0< <1, respectively. It is assumed that the boundary



functions on the faces have seventh derivatives satisfying the Holder condition and on

the edges their second, fourth and sixth derivatives satisfy the compatibility condition.

At the same time in [15], O(h®™), p <[4,5] order of approximation for the first order

derivatives of the solution of the 3D Laplace equation is proven under a weaker
assumption on the smoothness of the boundary functions on the faces of the

parallelepiped than those used in [13].
1.3 Basic notations and first type boundary value problem

Based on Section 5, Chapter IV in [16], we give the following definitions. We denote

0 0
by A(x,t,&,a) the linear parabolic differential operator with real coefficients

n

0 0O ou o%u n ou
A Xt—,—ju=—- ) w . (xt +> W (X, 1) —+w(X,t)u. 1.1

Let Q be a bounded domain in n-dimensional Euclidean space E,. It is assumed that
the coefficients of the operator of (1.1) are defined in a layer D=E, x(0,T). In the
cylindrical domain Q = Qx (0, T) with lateral surface S; or more precisely the set of
points (x,t) of E.. with X=(X,X,...X,) €S, t <[0,T] Where S is the sufficiently

smooth boundary of Q2 and that Q= QUS, the first type boundary value problem is

given as
o 0
A(x,t,&,aju = f(x,1), (1.2)
Ulo=@(x), (1.3)
uls, = (x1). (1.4)

Let g be a non-negative integer. We use the notations



u®x) =p(x), q=0, (L.5)
ou(x,t

U(Q)(X)=% , q=123,.., (1.6)
t=0

and the operator

n 2 n
A(x,t, %)u = i;va (x,1) af,ali _;V\/i (x,t)%ui —w(X,t)u. (1.7)

j

From (1.2), (1.5) and (1.7), Eq. (1.6) can be rewritten as

u®(x)= A(x, 0%) o(X)+ f(x,0), (1.8)

0 q
u(q+1)(X) ZK%A(XJ’%jU(X’t)—F% f (X,t)j v 0=L12,3,... (19)

t=0

The conjugation (compatibility) conditions up to order m > 0 are

@) _0'g(x,1)
u (X) |xeS_ 8’[q

=4 (X), g=01..m. (1.10)

t=0

Let Q and S_T be the closure of Q and S; respectively, and s > 0 be a non-integer

ou ou ou ou
OX OX

number. Let —=U, =| —,—,...,— | and Let D/ denote any derivative with
X axi axz j X y

n

respect to X of order ]. Further, st? (Q) denotes the classical Hélder space of
functions u(x,t) that are continuous in (5 together with all derivatives of the form
DD, for 2j,+ ] <$ and have finite norm defined in C, 2(Q). C*(Q) is the Holder

space whose elements are continuous functions g(x) in Q having in Q continuous



derivatives up to order [s] inclusively, and have finite norm defined in CS(Q) (see

[16]).

Theorem 1.1: (From Theorem 5.2, Section 5, Chapter IV in [16]) suppose s > 0 is a

non-integer number, the coefficients of the operator A belongs to the class Cj? (Q),
and the boundary S belongs to the class c*2. Then, for any feCj?(@),
o(x)eC**(Q), and ¢(x,t)ecj:2%+1(8_T) satisfying the compatibility conditions
(1.10) up to order |:%:|+1, problem (1.2)-(1.4) has a unique solution from the class

s+2,§+1

C.. * Q)

1.4 Organization of the chapters

In this thesis, we organize the chapters as follows: In Chapter 2, we propose special
difference problems of four point and six point symmetric implicit difference schemes
for the derivative of the solution u(X, t) of the first type boundary value problem for
one dimensional heat conduction equation of constant coefficient with respect to the
spatial variable X. For the construction of the four point implicit difference problem

we require that:

a) the initial function belongs to C>**, the nonhomogeneous term given in the

3+a 5+a

3Ho,—— . >
heat equation is from C,, 2 , the boundary functions are from C 2 , and

the conjugation conditions of orders q=0,1, 2 are satisfied at the corners of the

boundary. For the construction of the six point implicit difference problem it

is assumed that:



b) The initial function belongs to C’**, the nonhomogeneous term is from

5+a 7+o

conditions of orders q=0,1,2,3 are satisfied.

In Chapter 3, we consider the first type boundary value problem for one dimensional

heat equation of which the initial function belongs to C®"* 0<« <1, the heat source

6+a 8+a

6+o,,—— . o
function is from C,, 2, the boundary functions are from C 2 , and between the

initial and the boundary functions the conjugation conditions of orders q=0,1,2,3,4

are satisfied. Denoting the exact solution of this problem by u(xt), difference

problems of four point implicit schemes approximating

constructed. It is obtained that the solution of the constructed difference schemes

_ ou o°u o'u 52U
converge uniformly to the exact values of —,—,—5 and

\ \ respectively, on the
ool ot oot | oPeCtVEl

grids of order O(h? +7) .

In Chapter 4, we continue the extension of the method given in Chapter 2 of this

research and in [17] to find the first difference derivative of u(x,t) with respect to t

. . . . . 2 2
and its second order difference derivatives with O(N”+7°) order of convergence to

the corresponding exact derivatives. Here, the initial function belongs to C™*, the heat

8+a 10+a

8+o,—— .
source functionis from C, 2 , the boundary functions are from C 2 , and between

the initial and the boundary functions the conjugation conditions of orders



g=0,1,2,3,4,5 are satisfied. The general idea of this research work is presented as

an extended abstract in [18]. In Chapter 5, the concluding remarks are given.



Chapter 2

IMPLICIT METHODS FOR THE FIRST DERIVATIVE
OF THE SOLUTION OF ONE-DIMENSIONAL HEAT

EQUATION WITH RESPECT TO SPATIAL VARIABLE

2.1 Chapter overview

The work of this chapter is organized as follows: In Section 2, for the approximate
solution of the first type boundary value problem for one dimensional heat conduction
equation with constant coefficients, we use four point implicit or six point symmetric
implicit schemes [19] under the assumption that the boundary value problem satisfies
the conditions (a) or (b) respectively, (Chapter 1, Section 1.4). In both cases for the

error function we provide a pointwise prior estimation depending on (X, t), which

is the distance from the current grid point in the domain to the boundary. In Section 3,
we consider the boundary value problem satisfying the conditions (a) and propose a

f o

special four point implicit difference problem for the approximation o 5
X

. We prove

that the solution of the constructed difference scheme converges uniformly to the exact

value of Z_uon the grids of order O(h2 +T). In Section 4, we require that the
X

boundary value problem satisfies the conditions (b) hence, a special six point implicit

fou

difference problem for the approximation o is proposed. Uniform convergence

2 2 . . . e .
of order O(h +7 ) for this scheme is shown. Section 5, justifies the theoretical results



using numerical examples and the obtained results were presented via tables and

figures.

2.2 Implicit difference solution of first type boundary value problem

for one dimensional heat equation

Take Q=(0,h), o7 =(0,T),and Q, 0; are the closure of these sets respectively, also

Q ={(xt):0<x<b,0<t<T},  n={(01t):tec }, ¥, ={(x,0):x € Q}, and
3 —

7,={(b,t):te }. Let y = represent the boundary of Q;, and Q; =Q; Uy. we
i=1

o~ o d* d
P 0" =%and D s DY e to present the kth

use the notations 0; =
partial and ordinary derivatives respectively with respect to time variable t, spatial
variable x. We consider the first type boundary value problem for a one dimensional

heat equation:

Lu=f(x,t) on Q (2.1)
u(x,0)=uy(x) on 7, (2.2)
u@t)=u() on 7, ubt)=u,{t) on 7s, (2.3)
2
where L Ea—ay and a is positive constant. The conjugation conditions (1.5),
(1.8) and (1.9) are
u® (x) = U (x), (2.4)
u®(x) = aD?u,(x) + f (x,0), (2.5)
U9 (x)=a0u ")+ F0(X), g=23,.. (2.6)

respectively, where f@(x)=f(x,0)and f@(x)=0f(x,t)|_, . Also

10



ul(O) (0) =ty (t) .o, u£0) (0)=u,(t) |t:0 (2.7)

ul(q)(o) = thul(t) |t=0’ ugq) (O) = thuz (t) |t:0’ q=12,.. (2.8)
Furthermore, the conjugation conditions up to order m>0 in (1.10) for the one

dimensional heat problem (2.1) — (2.3) are derived as

190 =u,"(0), ub)=u"(0), g-01..m (2.9)

Problem 1: Let « «(0,2)

(1) The boundary value problem (2.1) — (2.3) satisfying the conditions

3+a 5+a

U,()eC™ (@), f(xteC, ? (@Q)andut)eC? (7). j=12.  (210)

and the conjugation conditions (2.9) up to second order (q=0,1, 2).

(i1) The boundary value problem (2.1) — (2.3) satisfying the conditions

5+a T+a

U,()eC™ (@), f(xt)eC,, " 2 (@) and u(t)eC ? (&), j=12. (2.11)

and the conjugation conditions (2.9) up to third order (q=0,1, 2, 3).

Theorem 2.1: [17] Problem 1(i) has a unique solution u(x,t) belonging to the class
5+a

CXIQ’T (Q;). The Problem 1(ii) has a unique solution u(x, t) belonging to the class

Proof: The proof of Theorem 2.1 follows from Theorem 1.1. |
We define
_ b
@, = xm:mh,h:N,mzo,...,N : (2.12)
e T 0. M
W, = tj—jr,z'—m,j— ey : (2.13)

11



and @, . =@, x®, where, the set of internal nodes are defined by
o, =o,x0, ={(x,t):m=1L..,N-1j=1.,M}. (2.14)

The set of nodes on y;, 1=1,2,3are presented by

. T .
a)o]rz{(o,tj):tj :Jr,rzm,jzo,...,M}, (2.15)
_ _ b
a)h,(): (Xm'o)'xm:mh'h:N’m:O!"'aN ’ (216)
T
%’T:{(b,tj).tj:jr,r:M,j:O,...,M}, (2.17)
t
t=T
t:;\ L ui;,ltll .HJ{J'H ”Ji:-ll q:\
2] S
f!‘\ l{)’{ifl u;{, ”jﬁl ,!\
2 ]
S g
] =
T
t=0 —0 o °
Joh u(x,0) = up(x) x=b ¥

Figure 2.1: Six Point Difference Scheme

respectively. Assume that C;,C,,... are positive constants independent from h and z;
in each section, those constants are enumerated anew. For the numerical solution of
the Problem 1(i), we use the four point difference problem (;=3) and for the
numerical solution of the Problem 1(ii), we use the six point symmetric difference

problem (¢ =6) [19]. We denote the solution of these difference problems by ¢ and

12



use the notations U5 =U(X,,0) on @, 4, U =0(0,t;) on @,,,and 0} =0(b,t;) on

@, .- The difference schemes are as follows:

~h, 7 ~h,z h,z
Ufr =a®0," +df " on @,,, =3 or c=6 (2.18)
l]r(; ZUO(Xm) on @h,O’ (219)
0 =u(t;) on @, U =ul) on o, (2.20)
where,
e l]j+l—l]j
u?:m —_m m , (221)
T
I F T E oy Ea
®3ur:, — _m-1 hrg m+1, (222)
oogh = L[ G =20 + 000 Oy, —20, +0,, (2.23)
m 2 h2 hZ !
f=f|xp.t ;| if =6, (2.24)
I+

The operator ®°0is the central difference formula and ®°U"7 is the averaging

central difference formula with three points and six points respectively, for

approximating 5iu. Here tj+1 =1, +0.57, f(x,t) is the given function in (2.1) and
2

UO(X) given in (2.2), U;(t), U,(t) given in (2.3) are the initial and boundary functions,

respectively.

Consider the following systems:

o shr | &h,
fn_a®gqu+g “on @, =3 0r c=6,

(2.25)
4y =0 on @, (2.26)
=0 on @, G4=0 on o,,, (2.27)



G =207y +3" on @, =3 or =6, (2.28)
020 on @, (2.29)

0% >0 on @, 04i20on a,, (2.30)

~h

o oh . . ~h, _h, .
where §°, " are given functionsand | 4" | <T""on @,, also G5, T

are difference formulae analogous to (2.21) and ®°G"", @°T"" are difference

formulae analogous to (2.22) or (2.23) for . =3 or ¢ =6, respectively.

Lemma 2.2: [17] The solution § of the system (2.25) — (2.27) and the solution @ of
the system (2.28) — (2.30) satisfy the inequality

1qI<q on @, (2.31)
for any r by the four point implicit scheme (¢=3) and for r < 1, by the six point

symmetric implicit scheme (¢ =6) where r:%_

Proof: Taking into consideration that the canonical form of the equation

~hz 3ah,7 ~Ah,z -
Ji'm =20O7°(," +9 " is

. A J+L A j+L )
(1+2—?qu;*1:a ot * O | 2 4 g (232)
r h h T

inthe form A(P)4(P)= > B(P,Q)4(Q)+F(P) where P =P(X,t;.;) asanode of

QePatt(P)

the grid @,.and Patt(P) consists of the nodes Q =(X,.t;), Q,=(X,1t.1),
Q; =(Xp.1ti) €, - It can be easily seen that A(P) > 0, B(P, Q) > 0 for every

QePatt(P) and D(P) = 0 where D(P)=A(P)— > B(P,Q). Similarly the

QePatt(P)
. . ~h,t 6 ah,r ~h .
canonical form of the equation (¢, =a®°q,," + g™ is

14



1 a).. qjt1+qj+1 qj_ +qj 1 ajA, h
4+ 2 gt = g| dmt mil |4 g dm-1 mel 4| 2 2 |gd + v 2.33
(r qu [ 2h? 2h? ¢ pz)in"S (239

where P =P(X,t;,;) and Patt(P) consists of the nodes Q, = (X,,t;), Q, = (X, 1, t;.1),
Q= (nania)y Qo= (% pty)s Qs =(Xp0,t;)- Here A(P) >0, D(P) = 0 and B(P, Q)
> 0 for every Q e Patt(P) if r:%SL The proof follows from the Comparison

Theorem (see Chapter 4 in [19]) because the coefficients of the finite difference
schemes (2.32) and (2.33) satisfy all conditions of the comparison theorem for any r

and for r <1, respectively. [ |

Lemma 2.3: [17] For the solution of the problem

4ir =a®Gh" +Bon @, c=3 or c=6, (2.34)
4n =0 on @,, (2.35)
ds =0 on @, G} =0 ona,,, (2.36)

the following inequality holds true:

q<pds on @, (2.37)
where
_h2+T for §:3,
p = p(h ) “Th2+2  for =6 (2.38)
-
d= max[g,l , (2.39)

for any r by the four point implicit scheme (¢ =23) and for r <1, by the symmetric six

point implicit scheme (¢ =6). Here, p = p(X,t) is the distance from the current point

(X,t) € @, , to the boundary v of Q-

15



Proof: For the four point implicit scheme (s =3), we consider the functions

Gf(x,t):%(hz+r)[bX;ij20, Gxt)=(h*+7)t>0 on @,, (2.40)

which are the solutions of ¢f";, =a®’q/" +h*+7 on @, . On the basis of Lemma
2.2 we obtain

4<ming’(xt) < pd(h+7) on . (2.41)

For the six point symmetric implicit scheme (¢ =6), we consider the functions

qf(x,o=§(h2+r2)(bX;X2Jzo, P =("+>0 on @,., (242)

which are the solutions of ¢, =a®°q}" +h’+7% on @,,. Using Lemma 2.2 we
obtain

G<ming’(x,t) < pd(h®+z%) on @, , (2.43)
Theorem 2.4: [17] The solution d of the four point finite difference problem (2.18) —
(2.20) (¢ =3) satisfies the following pointwise estimation:
|0-ul < ¢p(h+7), (2.44)
ar

for any value of r = ' >0 Wwhere u is the exact solution of Problem 1(i). The solution

uof the six point finite difference problem (2.18) — (2.20) (¢ =6) satisfies the

following pointwise estimation:

ja—ul <6p(h° +7°) (2.45)

for r <1 where u is the exact solution of Problem 1(ii).

16



Proof: On the basis of Theorem 2.1, the exact solution u of Problem 1(i) belongs to

5+a

Cf’:a’T((jT). Therefore, (3;1U and 5t2U are bounded up to the boundary. Let

h, ~ — . . h, .
g =U-Uon @y, . . Obviously the error function &, " satisfies

&t m =805+, on @, (2.46)
Eum =0 on @y, (2.47)
83'0 =0 on @, , EJN =0on @,., (2.48)

where , =a@’u —Ug , +f "*. Using Taylor’s formula for the function u(x,t) about

the node (X,,t;.,) shows that ¥, =O(h’ +7) and applying Lemma 2.2 to the problem

(2.34) — (2.36) for =3, (2.46) — (2.48) and on the basis of Lemma 2.3 we obtain

h

| ] |<c,p(h? +7). From Theorem 2.1, the exact solution u of Problem 1(ii) belongs

T+a

to CX:a'T(QT). Hence, the derivatives 03U, 0:U are bounded up to the boundary.

The error function «9:’1 satisfies the following difference problem:

&yt m=a0%, 1+, on o, (2.49)
5S,m =0 on @,,, (2.50)
glo=00n @, & =0ona,,, (2.51)

Using Taylor’s formula for the function u(x,t) about the node (X,,t ;) shows that
J+

2
w, =0(h? +7%) . Applying Lemma 2.2 to the six point implicit difference problem
(2.34) — (2.36) for (¢ =6) and (2.49) — (2.51) and on the basis of Lemma 2.3 we obtain

|e] I<c,p(h® +7°). ]

17



2.3 Implicit four point difference approximation of 0,u
Problem 2:

(i) Given the Problem 1(i), we denote P, =0,U on 7;, i =1, 2,3 and set up the

next boundary value problem for V=204,

Lv=0,f(x;t) on Q (2.52)
v(x,0)=p, on 7, (2.53)
VOt)=p on 7, VbY)=p; on 7, (2.54)

where f (x,t) is the given function in (2.1). We take

_ —3uy(t) +4d(h,t) —a(2h,t)

1 o on @, (2.55)

Py =0Uy(X) on @, (2.56)

3u, (t) —4d(b—h,t) +d(b—2h,t)
3h — 2h

on @, (2.57)

and Uy(X) given in (2.2), U;(t), U,(t) given in (2.3) are the initial and boundary

functions, respectively, G is the solution of the four point difference problem (2.18) —

(2.20) (¢ =23).

Lemma 2.5: [17] The following inequality holds:

| P (0) = Py (U) ] < Cl(hz +7), i=13. (2.58)

where u is the solution of the differential Problem 1(i) and Gis the solution of the four

point difference problem (2.18) — (2.20) (¢ =3).

18



Proof: Taking into consideration Theorem 2.1, and using (2.55) and (2.57) and

Theorem 2.4, we have

| i (0) = P (U) | < 2—1h[4(<:2h)(h2 +D)+ (G200 +7) e (P +7), =13 (259)

Lemma 2.6: [17] The following inequality is true:

max | p, (0)—p;|<c,(h®+7), i=13. (2.60)

7 7

where, U is the solution of the four point difference problem (2.18) — (2.20) (¢ =3).

5+a

Proof: On the basis of Theorem 2.1, the exact solution Cf:a’T (Q;). Then at the end
points (0,07) € @), and (b,07) € @, , of each line segment [(X,1):0<x<h,0<t<T]

(2.55) and (2.57) give the second order approximation of a,u, respectively. From the

truncation error formula (see [20]) it follows that

h2
max | p,(U)—p, | <—max|oju| <ch’, =13, (2.61)
@ a 3 &
Using Lemma 2.5 and the estimation (2.56), (2.61) follows. |

We construct the following difference problem for the numerical solution of Problem

2(3i):

W =a®% " +®0, f" on o, ., (2.62)
Uy =Py oOn @ o (2.63)
Vy =Pi(@) on @y, Vi=p;0) on o, (2.64)
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where \72;,?1 is analogue to (2.21) and ®°*7"" is analogue to (2.22) using V instead of

0 and the P, are defined by (2.55) — (2.57) and @0, f"" =0, f [y @D T is the

solution of the four point difference problem (2.18) — (2.20) (¢ =3).

Theorem 2.7: [17] The solution ¥V of the finite difference problem (2.62) — (2.64)

satisfies

max |V -v| <c,(h*+7), (2.65)

T

where V=0,U is the exact solution of Problem 2(i).

Proof: Let

& =V-V on @,,, (2.66)

where V=0,U. Denote by &= max |\7—V|. From (2.62) — (2.64) and (2.66) we
have )

& n =20+, on @, (2.67)

&n=0 on @, (2.68)

5\/j,o =py(0)-V on @, gvj,N =Py (@)-v on @, (2.69)

where v, =a®@v-v, . +®d, f"*. We take

& =6 +e", (2.70)
and &, &2" satisfy the problems
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& =80%, " on @, @2.71)
=0 on @y, (2.72)
11 =P, (@) -V on Wy o “ = Py, () =V on Wy ;s (2.73)
and
&im=0% " +y, on @, (2.74)
&m=0 on @, (2.75)
21—0 on @, 2’ =0 on a,,, (2.76)

respectively. From Lemma 2.6 and by maximum principle for the solution of the

problem (2.71) — (2.73) we have

ool < maxmax| p,, (0) -v| < ¢, (h* +7). (2.77)

max‘g
i=13 @,

The solution Evz’h’T of the problem (2.74) — (2.76) is the error of the approximate

solution obtained by the finite difference method for the boundary value Problem 2(i)

when the boundary values satisfy the conditions

_ 2 ta
p,eC*(Q), o, f(x)eC, 2 @) peC? (&) j=13  (278)
P (0)=v®(0),
pi¥ (0)=v¥(b), g=0,1,2. (2.79)

Since the function V=0, satisfies Eq. (2.52) with the initial function P, on 7, and

boundary functions P;; P; on %; and 73, respectively, and on the basis of Theorem

1.1 and the maximum principle, we obtain

2,h,t

<c,(h* +7), (2.80)

Oh

and using (2.70), (2.77) and (2.80) we obtain (2.65). |
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2.4 Implicit six point symmetric difference approximation of 0,u
Problem 2:

(ii) Given the Problem 1(ii), we denote P =5XU on /i i=1,2,3 and set up the

boundary value problem (2.52) — (2.54) for V.= 0,U.

Lemma 2.8: [17] The following inequality holds:

| P (0) = Py, (U) | < Cl(hz +7°), =1,3. (2.81)

where u is the solution of the differential Problem 1(ii) and G is the solution of the

symmetric six point difference problem (2.18) — (2.20) (c=6) for »<1and [, are

defined by (2.55) — (2.57).

Proof: On the basis of Theorem 2.1, and from (2.55), (2.57) and using Theorem 2.4,

we have

| P (0) = Py (U) | < 2—1h[4(c2h)(h2 +22)+(c,20)(N7 +72) < ¢ (W +72), 1 =1,3. (2.82)

Lemma 2.9: [17] The following inequality is true:

max | p, (0) - p |5C3(h2+72), i=1,3. (2.83)

@ o \Ja,

T

where 0 is the solution of the six point difference problem (2.18) — (2.20) (¢ =6) for

r<1.

Proof: Using Theorem 2.1, the proof is analogous to the proof of Lemma 2.6. [ ]
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We propose the following six point difference problem for the numerical

solution of Problem 2(ii):

\7?; = a®6\7r2’f +@0, f " on @y s (2.84)
Vo =Py on h o (2.85)
\70J = Py (0) on Wy ;s \7|i| = Psy (0) on Wy ;s (2.86)

where [); are defined by (2.55) — (2.57) and @0 f"" =0 f o« ,, and 0 is the

solution of the six point difference problem (2.18) — (2.20) (¢ =6) for r<1.

Theorem 2.10: [17] For » <1, the solution V of the finite difference problem (2.84) —

(2.86) satisfies
max |V—v| <c,(h*+7%), (2.87)

where, V=0,U is the exact solution of Problem 2(ii).

Proof: The proof is analogous to the proof of Theorem 2.7. From (2.84) — (2.86) and

(2.66) we have
rr . =a0%) s +y, on @, ., (2.88)
gam =0 on @, (2.89)
5\},0 =p,(0)-Vv on @y, g\/j,N =Py (@)-v on @, (2.90)

where v, =a®%v—v, , +®3, f"". We take

g =& +eE, (2.91)

1,h,z 2,h,r
&,

\

and ¢

v 1

satisfy the problems

23



g =a0%,"" on @, ., (2.92)

Evtm
0 on @, (2.93)
11 =p,(@)-v on @, “ =pu(0)-v on @,,, (2.94)

and
&im=a0""+y, on @, (2.95)
eln=0 on @, (2.96)
8v20’ =0 on ., 5V2h‘, =0 on a,,, (2.97)

respectively. From Lemma 2.9 and by maximum principle for the solution of the

system (2.92) — (2.94) we have

| s mexmex|p, @) - <¢,(n"+27). (2.98)

max‘g
=13 o

The solution 8\,2’h’r of the problem (2.95) — (2.97) is the error of the approximate

solution obtained by the finite difference method for the boundary value Problem 2(ii)

when the boundary values satisfy the conditions

A+ 6+a

p,eC™(Q), a,f(xt)eC,; % (Q), peC? (5,)i=13. (2.99)

p{™ (0)=v(" (0),
p{ (0)=vP (b), q=0123,.. (2.100)

Since the function V=0,U satisfies Eq. (2.52) with the initial function P, on 7, and

boundary functions P;; P; on ; and s, respectively and on the basis of Theorem 1.1

and the maximum principle in Chapter 4 of [19], we obtain

max |2"*| <c,(h? +77) (2.101)
h
using (2.70), (2.98) and (2.101) we obtain (2.87). |
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2.5 Numerical aspects

All the computations in this section and in the numerical aspects sections of the
proceedings Chapters are carried out in double precision using the FORTRAN

programming language. For all the constructed examples we take
Q ={(xt):0<x<10<t<}  »={01):0<t<1, 7, ={(x,0):0<x <1,

2

0 0
73 ={(L1):0<t<L}, and the constant a in the operator L Ea—ay is taken as

a=1. In all the tables Central Processing Unit (CPU) presents the total solution time

in seconds.

Example 1: [17]

Lu=f(xt) on Q
26
u(x,0)=x5+sin(%xj on 7,
13
u(0,t)=t* on 74,

13 13

u(Lt)=t5 +cos(ts)+1 on 7,,

%8 13 8 16 B 2
where, f(x,t)=——x5t5sin(t5)+Et5——62—1x5cos(t5)+”—sin(£x) Using
5 5 55 4 2

the implicit four point difference scheme (2.18) — (2.20) (¢ =3) we obtain the

following matrix form of the system of equations, for time layer t=(j+1)z,

. . . T
~ j+1 ~ 1 .
§=0,123..M—1as AI'"" =0"+7f'" where r=—h2 , since a=1.
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lv2r -r 0 0 0 0 o0 o0 \|u a A
ro142r or 0 ——— o a’ | | a f,"
0 -r  1+2r  -r 0 | a* a f
\ \\\ | ] e
0 -r 1+2r —r 0 (la| o, f
0 - -== - S S A T I fi
0 0 0 0 0 0 12 g | (g f o

The coefficient matrix is tridiagonal band matrix. Therefore, Gauss — Thomas Method
is used. The algorithm consists of three steps: decomposition and forward and back

substitution [21]. In a generalized form we consider the tridiagonal system below:

b, € 0 0 0 0 0 0 )| 1
a b, & 0 ——— ——— —— 0 ||Y% d,
0 d, ~3 G 0 -0 T 0 U, aa
‘ \\\ ‘ _ ‘ (2.103)
0 ——— —— 0 &, by, €, 0 [u.| |d,.,
0 T T 0 dy, by, G Uy, dez
0 0 0 0 0 & by, ) 4,
and present the pseudocode to implement the Thomas algorithm as follows:
(a) decomposition
DOFOR j = 2toN-1
a =48 /b,
b. =b ;o€
ENDDO
(b) forward substitution
DOFOR j = 2to N-1 (2.104)

d =d -4&-d,

ENDDO
(c) back substitution
Uy, = dy, / by,
DOFOR j = N-2tolstep -1
=(d; — ¢ ~u,) /b,
ENDDO

26



where N is the number of intervals along spatial variable x, N = % . The approximate

solution (i is obtained at each time level with space step size h = 27# and time step size

r=2"where u, 4 are positive integers. Next, the boundary value problem for v = u

OX
Is constructed using the obtained approximate solution 0 and the proposed Problem

2(i). The structure of the coefficient matrix A is same as in (2.102). Furthermore, the

approximate solution V of the difference problem (2.62) — (2.64) is obtained by using

Gauss-Thomas Algorithm (2.104) at the same grid points. The exact solution is known

21 13
as v(x,t) =€x5 cos(t® )+%cos[% xj and we denote the maximum errors on the

h,z
gv

grid points by

‘= max |V —V|. Table 2.1 demonstrates the maximum errors for
Ohr

r=2", w=2,3 and the corresponding CPU time for different step sizes with the

order of convergence R as;

27# 274
\%

RO — (2.105)

2—(;1+1) '2—(/1+2)

\

of V with respectto h and 7, for Example 1.

Table 2.1: Maximum errors, corresponding CPU time for different step sizes in space
and time and TRCT for Example 1.

(h=2" 7= 2-1) (h _ 2 () = 2-(4+2)) vﬂ’ﬂ Vz—(#+l)'2—(i+2) gﬁc,r
h,z CPU h,z CPU

(2°,2%) 0344 | (2°,2%) 2109 | 2438E-02 | 6.383E-03 | 3.820

(2°,2*) 2109 | (27,27%°) 15.094 6.383E-03 | 1.633E-03 | 3.910

(2°,27%) 0656 |(2°2") 4.250 2439E-02 | 6.385E-03 | 3.820

(2°,2%) 4250 | (27,2") 30312 6.385E-03 | 1.633E—03 | 3.910
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Table 2.2 presents the maximum errors and the corresponding CPU for h=27,

r=2", 1=6,7,8,9,10,11 and the order of convergence %: as;

h,27*

\2

h,2- (4D

v

of V with respect to 7, for Example 1.

(2.106)

Table 2.2: Maximum errors, corresponding CPU time for different step size in time

and R;, for Example 1.

(h=2"7=2")| (h=2* =2 707 i R
h,z CPU h,z CPU

(2°,2°) 0125 | (2°27) 0125 | 6.087E-02| 3.058E-02 | 1.991

(2°,27) 0125 (2°2%) 0125 | 3.058E-02| 1.531E-02 | 1997

(2°,2%) 0250 | (2°2° 0.250 | 1531E-02 | 7.634E-03 | 2.006

(2°,2°) 0438 | (2°,27%°) 0875 | 7.634E-03| 3.791E-03 | 2.014

(2°,2%°) 0875 | (2°,2™) 1750 | 3791E-03 | 1.867E-03 | 2.031

According to the definition of the maximum error the third and fourth columns of

Table 2.1 and Table 2.2 present the theoretical upper bound errors given in (2.65), for

Example 1. Note that the O(h2 +7) order of convergence corresponds to ~ 2°of the

quantities defined by (2.105), and = 2" of the quantities defined by (2.106). Figure 2.2

7 2717

- ~ -7 .
g2 ? |=|V=-v| for h=2"", and r=2"7. The maximum

presents the error function

279 T

&, H when h=2_g,with respect to z, are shown in Figure 2.3 and the

errors

-17

. -17 . .
maximum errors when 7=2", with respect to h, are demonstrated by Figure

h,2
&y

2.4. Figure 2.5 shows the exact solution V(X,t) =0,U, and the grid function v? 2"
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presenting the approximate solution v of 0,U when h= 2_7, r=2"isgiveninFigure

2.6.

x 10

05"

0.4

06
0.8 0 )
i
. . 277 ot ~ _n-T __n-17
Figure 2.2: The error function |, ‘=IV—V| when h=2", and 7=2"", for
Example 1.

0.9 ; ;
0.8f .
0.7t i
06f i

= 05f -

= 04t -
0.3F i

P
0.2t / :
01 P |
-
0 G S _éﬁ-l 1
10* 10° 107 107 10"
T
. . 27912' h -9 .
Figure 2.3: The maximum errors (&, when N=2"", with respect to 7, for

Example 1.
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Figure 2.4: The maximum errors 8Vh'2 when 7 = 2_17, with respect to h, for

Example 1.

Figure 2.5: The function V presenting the exact solution 0,U , for Example 1.

30



0 0 {

Figure 2.6: The grid function v2 2" presenting the approximate solution ¥ of O,U
when h=27, =27 , for Example 1.

Example 2: [17]

Lu=f(xt) on

55 % Vi
U(X’O)Z%EXSH"‘(EXJ on 7,

5 8
U(O,t)=Et5 on 74,
18 18
> ° 2 °)+1 on s,

ul,t)=—t°> +——cos(t
4y 36 3618 (

13 26 18 2

36 13 18

f(x,t)= _2 55 sin(t®)+t° —Ex? cos(t ) +Tsin [% xj. Using the

where

implicit six point difference scheme (2.18) — (2.20) (¢ =6) we obtain the following

.1
o . . i < i
system of equations in matrix form at each time level, as A0’ =Ba’ +7f 2 where

.
r:F for a=1.
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1
-
JuN

1+r -05r O 0 0 0 0 0 h
-05r 1+r -05r O —— e 0 a+
0 -0.5r 1+r -0.5r 0 _——— e 0 g3i+1

0 - -m o |l

0 ——— === === 0  -05r I+r -05r| it

0 0 0 0 0 0  -05r 1+r )| in
N-1

~j fj+0.5
1-r 05r 0 0 0 0 0 0 U 1

~j fj+0.5
05r 1-r 0.5r 0 —-—— ——= ——= 0 ||% 2
0O 05r 1-r 05r 0 -——— ——— 0 [a f o8
0 -—— -—— 0 05r 1-r 05r 0 |, f s
0 —-- —== -—== 0 05r 1-r 05r| gl f o5
0 0 0 0 0 0 0.5r 1-r)| ~i f j+0.5

l“IN—l N-1

The approximate solution ( is obtained by applying Gauss — Thomas algorithm (2.104)
for solving the algebraic system of equations (2.107) at each time level for =2"*

where A is nonnegative integer. Next the boundary value problem for V:a_u IS

OX
constructed from the proposed Problem 2(ii) using the obtained approximate solution
U. The structure of the obtained algebraic linear system is analogues to (2.107).

Furthermore, the approximate solution v for AU s obtained at the same grid points

OX
by solving the problem (2.84) — (2.86) using Gauss-Thomas algorithm (2.104), and

compared on the grids with the known exact solution

5 % % /4 V4
v(X,t) =—x5 cos(t®)+—=cos| —x |. We use
18 2 2
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oH A
\"

(2.108)

v 2~ (1) ,2’“*1)
v

to present the order of convergence of V with respect to h and 7. Note that the
O(h* +7%) order of convergence corresponds to ~ 2% of the quantity by (2.108). Table

2.3 shows the maximum errors for h=2" 4=456,78 and r=2",

A1=13,14,15,16,17, respectively, and the corresponding CPU time for each step sizes

and the orders ET%T . The third and fourth columns of this table presents the theoretical

-7 =17
2

2
&, for

upper bound errors given in (2.87). Figure 2.7 present the error function

-17

-7 . -17 .
h=2", and r=2". The maximum errors avh'z when 7=2"", with respect to h,

is demonstrated by Figure 2.8. Figure 2.9 shows the exact solution V(X,t)=0,U, and

the grid function v> 2" presenting the approximate solution 7 of 0,U when h=2"",

r=27",

Table 2.3: Maximum errors, corresponding CPU time for different step sizes in space
and time and TRS’T , for Example 2.

(h=2"7=2") | (h=20 7 =" )| |22 Uz || ghe
ht  CPU h,z CPU

(2%,2) 0453 | (2°,2)  1.312 | 10567E-02 | 3.1449E-03 | 3.360

(2‘5, 2_14) 1.312 (2_G , 2_15) 4.312 | 3.1449E-03 | 8.5353E-04 | 3.687

(2°,27%%) 4312 | (27,27%%) 15.328 | 85353E-04 | 2.2209E-04 | 3.842

(27,2%) 15328 | (2°,277)  58.609 | 22209E-04 | 5.6628E—05 | 3.921

33



1 0.8 | X
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Figure 2.7: The error function el =|V—V| when h=2", and 7 =27, for
Example 2.

0.07 —— ———

0.06

0.05

0.04 -

h,z'ﬂ

[le

0.03

0.02

0.01

s

0
3

10 0

10

-17

Figure 2.8: The maximum errors «9:’2 for =2" with respect to h, of Example 2.
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SN
t 0 o

X

Figure 2.9: The exact solution 0,U, and the grid function vZ' 2" when h= 27,

r=2"", for Example 2.

Example 3: [17]

Lu=fxt) on Qr,
ux,0)=e™ on 7,

25
u(0,t)=1+0.001t" on 7,
2 25

u(Lt) =0.0001sin(t 7 ) +0.001t 7 +e™*

Where,

25 50 18 25 25 18

f(x)=0.00017"

Tt7 cos(t7 )+ 0.0017t 7

on 7/31

N
0.00012473 X5sint’)-e™.

The initial function, the boundary functions and the nonhomogeneous term f (x,t)

satisfy the conditions (2.11) of Problem 1(ii). Using the proposed implicit six point

difference problem (2.18) — (2.20) (¢ =6) we obtain the approximate solution i at
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each time level. Next the boundary value problem for v = AU s constructed from the

OX

proposed Problem 2(ii) using the obtained approximate solution g; then the
approximate solution v of V=0,U is obtained at the same grid points by solving the

system of equations resulting from (2.84) — (2.86). Let V> "% (x,t) be the
approximate solution v at (x,t) when h=2*and r=2"*. The exact solution V is not

given. To verify the order of convergence of the computed solution ¥V to the exact
solution V we compute the solution at grid points with successively reduced step sizes
h and 7 by a factor of two and the ratio of the absolute successive errors (see Chapter
2 of [22]). Table 2.4 presents V22" (x,t) at the grid points (0.125, 1), (0.25, 1),
(0.375, 1), (0.5, 1), (0.625, 1), (0.75, 1) and (0.875, 1) for the pairs (4, 2) = (5, 13),
(6,14), (7, 15), (8, 16) which means that the step sizes h in X and 7 in t are halved

successively.

Table 2.4: The approximate solution V on t =1, for Example 3.

X V20 (x,0) VD V(D) v (x,D)

0.125 -0.88218321 -0.88241771 -0.88247701 —0.88249191
0.25 -0.77852029 -0.77872997 -0.77878291 —0.77879622
0.375 -0.68703982 —-0.68722539 -0.68727216 —0.68728390
0.5 -0.60630576 —-0.60646779 -0.60650853 —0.60651874
0.625 -0.53504253 —-0.53518148 -0.53521631 —-0.53522502
0.75 -0.47210904 —-0.47222525 —0.47225424 —-0.47226147
0.875 -0.41647280 —-0.41656648 —0.41658968 —0.41659545

Table 2.5 demonstrates the absolute error ratios

~ Vet (x,2) ERV-A (x,1)|

1=

36

V27612—14 (X,l) —V277’2715 (X’]_)"



v (X ) -vE (x,1)|
V27712—15 (X’l)_vz—syzfle (X’]_)"

and the corresponding orders

v (x, ) v (x,1)|

p = Iog -6 ~»-14 -7 »-15 1
' 2ly22 (x,D)-v* *? (x,1)‘
276 2—14 277 2715
O (xD-ve T (x0)
pZ = I092 277 2715 278 2716 |’
Vet (x, ) -ve (x,l)‘

for the considered points at t =1. By analyzing the values of P; and P, in the third

and fifth columns of Table 2.5, respectively, we conclude that the order of convergence

is quadratic in the two variables x and t on t=1. Figure 2.10 illustrates the grid

8 »-16

function V° presenting the approximate solution v of V=0,U when h=27%,

-16
T=2".

Table 2.5: The absolute error ratios at some grid points on t =1 and the orders P;, P,,

for Example 3.
X

A Py P P,
0.125 3.9544688 19835 3.9798658 1.9927
0.25 3.9607102 1.9858 3.9774606 1.9919
0.375 3.9675005 1.9882 3.9838160 1.9942
0.5 3.9777172 1.9917 3.9902057 1.9965
0.625 3.9893770 1.9962 3.9988519 1.9996
0.75 4.0086237 2.0031 4.0096819 2.0035
0.875 4.0379310 2.0136 4.0207972 2.0075
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-8 ~-16

Figure 2.10: The grid function Ve e presenting the approximate solution vV of

V=0,U when h= 2°, 27*¢, for Example 3.
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Chapter 3

FOUR POINT IMPLICIT METHODS FOR THE
APPROXIMATION OF SECOND DERIVATIVES TO

HEAT EQUATION WITH CONSTANT COEFFICIENTS

3.1 Chapter overview

This chapter extends the methods given in Chapter 2 of this dissertation and in [17] for

finding the first difference derivative of u(x,t) with respect to t and its second order

difference derivatives with O(h2 +7) order of convergence to the corresponding exact

derivatives. The general idea of this research work is presented as an extended abstract

in [23].

Here, we consider the first type boundary value problem for one dimensional heat

equation of which the initial function belongs to C®* the heat source function is

6+a 8+a

6+a,—— . - .
from C,, 2, the boundary functions are from C 2 , and between the initial and the

boundary functions the conjugation conditions of orders q=0,1,2,3,4 are satisfied.

. . .. oudu d
Difference problems of four point implicit schemes approximating rrara and

o%u _ _ ou ou du
are constructed, which converge uniformly to the exact values of —,—5 =5
oxot ot ox° ot

2

Pvpn respectively, on the grids of order O(h* +7) .

and
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Under the above assumption, we organized this chapter as follows: In Section 2

boundary value problems for Z_l: and Zi: are given and difference boundary value
X

d &u

. are constructed. MOFGOVGF,
OX

problems of implicit schemes approximating ‘Z_l: an

for the error function we provide a pointwise prior estimation depending on po(X,t)

which is the distance from the current grid point in the domain to the boundary. In

Section 3, we propose a special implicit difference problem for the approximation of

2

ra and prove that the solution of the constructed difference scheme converge

2

u
uniformly to the exact value ? on the grids of order O(h2 +T). In Section 4, a

o%u

is given, of which
oxot

special implicit difference problem for the approximation of

o%u

the solution converge uniformly to the exact value of — >
xot

on the grids of order

2 L . . .
O(h* +7). To justify the theoretical results, a numerical example is constructed and

obtained results are presented through tables and figures in Section 5.
3.2 Implicit schemes for the approximation of 6,u and d’u

Let the following problem be given:
Problem 1:

(iii) The boundary value problem (2.1) — (2.3) satisfying the conditions

6+a 8+a

U,(x) €C™“(Q), f(xt)eC, 2 (@) and y(t)eC 2 (&), i-12. (3.1)

and the conjugation conditions (2.9) of order 0,1, 2,3, 4.
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Also, let W= 5tU and ¢ = 5iu then w and ¢ satisfy the following boundary value

problems respectively, see also [18, 23].

Problem 3:
Lw=0,f(xt)=F(xt) on Q, (3.2)
w(x,0)=u?(x)=w(x) on 7, (3.3)
w(0,t) =D, (t) =w(t) on 7, (3.4)
w(b,t)=Du,(t) =w,(t) on 7, (3.5)

Problem 4:
Lg=0f(x,t)=G(x,t) on Q;, (3.6)
¢(X’ 0) = 5§U0 (X) = ¢0 (X) on T (3.7)
#0.1) =§[Dtul(t)— fOn]=4® on i (3.8)
#(b,1) =§[Dtu2 ®-fbO.H]=4 on I (3.9)

where, f(x,t) is the heat source function given in (2.1), Uy(X) and U;(t), U,(t) are

the initial and boundary functions given in (2.2), (2.3) respectively, also U(l)(X) is as

defined in (2.5). Furthermore,

4+a 6+a

Fixt)eC, "2 (@), W()eC™(@Q), w(t)eC? (&), i-12, (3.10)
G(DeCT 7 @), HNeC™ @), 4MeC? (G) i=12 (@1

both satisfying the conjugation conditions (2.9) of order 0, 1, 2, 3.
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8+a

Lemma 3.1: The Problem 1(iii) has unique solution UECXSIQ’T(QT) and the

constructed Problem 3 with (3.10) and Problem 4 with (3.11) have unique solution w

6+a

and ¢ respectively, belonging to the space Cf:a'T(QT).

8+a

Proof: From Theorem 1.1, Problem 3 has unique solution u € CfImT(@). Taking into

account that Problem 3 with (3.10) and Problem 4 with (3.11) are also first type
boundary value problems analogous to the problem (2.1) — (2.3) on the basis of

Theorem 1.1 the proof follows.

To realize the numerical solution of the Problem 4 with (3.10), we propose the

following implicit difference problem, of which the solution is w,

R =a@ W)+, on @, (3.12)
i =Wo(x,) on @, (3.13)
Ny =wy(t;) on @, W =w(t) on @,,, (3.14)

gt = T (3.15)
T
. V~VJ+1 _2V~Vj+1 +W]+l
®3Wrir1],r —_m-tl h;w m+1 , (316)
Pam = F (Xrtn) =0, F (Xt ). (3.17)

For the numerical solution of Problem 4 with (3.11), we propose

K =a@°gh +p; on @, (3.18)
b =d(X,) on @, (3.19)
h=4t) on @, Gli=g() on o, (3.20)
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and denote the solution of this difference system by (/5 , where, ¢, and ®3¢7n:‘" are

t,m>?

formulae analogous to (3.15) and (3.16) respectively, and ;Zrﬁ :¢7(Xm,0), &Oj = ¢7(0,t.),

4 :(/Z(b,tj) also ;. :G(Xm,tjﬂ):@if . By the maximum principle the

(Xrn vtj+1)

difference problems (3.12) — (3.14) and (3.18) — (3.20) have unique solution.

Theorem 3.2: Let W be the solution of the Problem 3 with (3.10) and W be the
solution of the difference problem (3.12) — (3.14). The following pointwise estimation
holds true

1w—w| <¢p(h* +7) (3.21)

6+a

6+o,——  —
Proof: On the basis of Lemma 3.1 the exact solution weC,, 2 (Q;). Let

8VhV’T =W-W then the error function «93’1 satisfies the following difference problem

Enin=80°6,T +, Oon @, (3.22)
Enm=0 on @y, (3.23)
ao=0 on @, &,,=0on @, (3.24)

where ¥, = a@"‘W—Wf,m +@ym and @y is as given in (3.17). Using Taylor’s formula

for the function w(x,t) about the node (X,,t;.,) gives that ¥, = O(h’ +7). Applying

Lemma 2.2 to the problem (2.34) — (2.36) for ¢ =3 and (3.22) — (3.24) and on the

[ |
basis of Lemma 2.3 we obtain | &) | <c,p(h +7).
Theorem 3.3: The following inequality holds
|§—| <c,p(h*+7) (3.25)
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where, ¢ is the solution of the Problem 4 with (3.11) and ¢; is the solution of the

difference problem (3.18) — (3.20).

Proof: The proof is analogous to the proof of Theorem 3.2.

3.3 Implicit difference problem for the approximation of o:u

When the Problem 1(iii) is given we set up the Problem 3 with (3.10) for W= 5tU and

use the difference system (3.12) — (3.14) for obtaining the approximate solution W.

We denote (] =8t2U on i i=12,3 and construct the following boundary value

problem for Z = 07U, see also [23].

Problem 5:
Lz=0’f(x,t) on Q, (3.26)
2(x,00=0, on 7y (3.27)
20t)=0 on 7, 2(BY=0 on 7 (3.28)

where, f (x,t) is the heat source function in (2.1).

We take
0, = D{u, (t) = Dw(t) on @, (3.29)
g,, (W) = %[v“v(x, ) —W, (x)] on E)h,O’ (3.30)
05, = DU, (t) =Dw,(t) on @, (3.31)

where, W,(X) =u”(X) is as defined in (2.5) and U;(t), U,(t) are given boundary

functions in (2.3).
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Lemma 3.4: The following inequality holds:

|G, (W) = 0, (W) [ < ¢, (0" +7) (2:32)
where, w is the solution of Problem 3 with (3.10) and W is the solution of the difference

problem (3.12) — (3.14).

Proof: From Theorem 3.2, we have

|0, (W) — 0, (W) | < %[(clr)(hz +)] = +2) (3.33)

Lemma 3.5: The following inequality is true:
max | q,, (%) g, | <G, (N +7) (3.34)
®h o

where, W is the solution of the difference problem (3.12) — (3.14).

6+a

Proof: On the basis of Lemma 3.1, we Cj:a’T (Q;) and at the end points (mh,0) € @, ,
of each line segment [(X,t) :0<x<h,0<t ST] the equation (3.30) gives the first order
approximation of 5tW- From the truncation error formula (see [20]) it follows that

max | d,, (W) —a, | Szmﬁax|8t2W|SC27, (3.35)
h o 2 o

Using Lemma 3.4 and the estimation (3.32), (3.35) follows (3.34) [ |

We construct the following difference problem for the numerical solution of

Problem 5
2 =a®’y +¢,  on @, (3.36)
Z0 =0, (W) on @y, (3.37)
)=t on @, I'=0; on @, (338)



where, 0., i=1,2,3 are defined by (3.29) - (3.31) and ¢, =0; f |, ,

J+1)

Theorem 3.6: The solution 7 of the finite difference problem (3.36) — (3.38) satisfies

maxl Z_Zl £C3(h2+f), (339)
@y,

where Z= 5fu is the exact solution of Problem 5.

Proof: Let

& =1-7 on @,,, (3.40)

2
where, Z =0,

=max|Z-z|. From (3.36) — (3.38) and (3.40) we
a)h,T

have

?, —a®3gh’+‘1’ on @, (3.41)
&m =0 (W) =2 on @, (3.42)
£,=0 on a,, 8Zj’N:0 on @ ., (3.43)

where V¥, =a®’z-z; . +¢,,,. We take

h,r Lhr 2,h1

& =g +e" (3.44)

and &7, 2" satisfy the problems
& =a0’ " on @, ., (3.45)
€§Z?n=qu(W)—Z on @0, (3.46)
g0=0 on @, 8;[{]:0 on @, (3.47)

and

eim=a0% "+, on @, (3.48)
=0 on @,,, (3.49)
=0 on @, &3=0on @, (3.50)
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respectively. From Lemma 3.5 and by maximum principle for the solution of the

problem (3.45) — (3.47) we have

Lh,r
gz

max < rghax\qu (W) -] <c,(h*+7). (3.51)

The solution Ef’h’f of the problem (3.48) — (3.50) is the error of the approximate

solution obtained by the finite difference method for the boundary value Problem 5

when
2+a 4+
0, eC*(Q), @f(xt)eC,, ? Q) ¢eC? () i=13 (352
and
o ¥ (0)=2(0),
ol (0= (b), q=012. (3.53)

Since the function Z= 5t2U satisfies the equation (3.26) with the initial function J, on

7, and boundary functions 0;, U; on }; and }; respectively, using (3.52), (3.53)

and on the basis of Theorem 1.1 and the maximum principle in Chapter 4 of [19] we

obtain
max|e"| <c,(h* +7). (3.54)
a)h,l'

Using (3.44), (3.51) and (3.54) we obtain (3.39). |

3.4 Implicit difference problem for the approximation of 0,0,U

Given the Problem 1(iii), we setup the Problem 3 with (3.10) for W= 5tU and use the

difference system (3.12) — (3.14) for obtaining the approximate solution Ww. We denote

P,=0,0U on i, i=1,23 respectively, and give the following boundary value

problem for Y =0,0,U (see also [23]).
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Problem 6:

Ly=0,0,f(x,t) on Q (3.55)
y(x.0)=p, on 7, (3.56)
yO,t)=p, on », Ybt)=p, on 7, (3.57)

where, f (x,t) is the given function in (2.1). We take

—3w, (t) + 4W(h, t) — W(2h, t)

Py, (W) = on on @, (3.58)
P =DW(X) on @,,, (3.59)
o, () SO AFO DD HEO-20 o g (360

2h

where, Wy (X) =U®(X) and w, = D,u,(t), w, = Du,(t).

We construct the following difference problem for the numerical solution of

Problem 6 and denote this solution by ¥

)7?,’;= ®337§{’+¢y,m on @, (3.61)
Yo = Py ON @0, (3.62)
Jo=Pu(¥) on @, ¥i=pu() on @,,. (3.63)

Here, Py, are defined by (3.58) — (3.60) ¥;™, ®°J"" are formulae analogous to (3.15)

and (3.16) respectively, and Vo = ¥(x,,0), a=90t), ¥i=9bt) and

Dym = 0,0, f

(%motya)

Lemma 3.7: The following inequality holds

| 0y (W) - p, W) [ < cy(h*+7), j—13. (3.64)
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where w is the solution of the Problem 3 with (3.10) and W is the solution of the

difference problem (3.12) — (3.14).

Proof: From (3.58), (3.60) and Theorem 3.2, we have

|pih(w)_pih(W)|S%I:4(Ch)(h2+2')+(C2h)(h2+2'):|SC1(h2+Z'), i—13 (3.65)

Lemma 3.8: The following inequality is true
max | p,(W)—p, | SC(N"+7), i-13 (3.66)
@\

where, W is the solution of the difference problem (3.12) — (3.14).

Proof: On the basis of Lemma 3.1, the exact solution of Problem 3 belongs to

6+a

C,." 2 (Q,). Then at the end points (0,07)€®@,,and (b,07)€®,, of each line
segment [(X,t) :0<x<h,0<t ST] the equations (3.58) and (3.60) give the second order

approximation of oW respectively. From the truncation error formula (see [20]) it

follows that

h2
max | p, (w)— p,| < - max| S| <ch?, j-13. (3.67)

On the basis of Lemma 3.7 using the estimation (3.64) and (3.67) follows (3.66). W

Theorem 3.9: The solution y of the finite difference problem (3.61) — (3.63) satisfies

max| g y| <Cq(h"+7), (3.68)

where Y =0,0,U is the exact solution of the Problem 6.

Proof: Let
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h, ~ —
g " =Y-y on @,

(3.69)

where Y =0,0,U. Denote by H«?S’H = maaX|37— y|. From (3.61) — (3.63) and (3.69) we

have

3 h,
n =80’ +y, on @ .,

‘c"y,m:O on a)h,O’

£,0=Py(W)—y on a,, EJ,N:pzh(W)_y on @,

where ¥, = a®’y — Yem+ @y m We take

Zhr

and g“‘ o satisfy the difference problems

lhr 3 lhr
Erm =807 " on @, ,

ym—O on @,

1J_plh(W) y on @, 11 _p3h(W) y on @,,,

and

Zhr 3 Zhr
ytm =a0’¢ W on a)h,r’

ym_O on a)hO’

J_ 2'] —
&p=0 on @ ., & x\=0on o,

(3.70)
(371)
(3.72)

(3.73)

(3.74)
(3.75)

(3.76)

(3.77)
(3.78)

(3.79)

respectively. From Lemma 3.8 and by maximum principle for the solution of the

system (3.74) — (3.76) we have

L <maxmax\p,h -yl <c,(h* +7).

max‘e
i=13 @
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2,ht

The solution &,

of the problem (3.77) — (3.79) is the error of the approximate

solution obtained by the finite difference method for the Problem 6 when the boundary

values satisfy the conditions

~ +a3+—a — 5+7a
p,eC™(Q), 0,0,f(xt)eC,," 2 (@), peC? (&) i=13. (3.81)
p{? (0)=y¥ (0),
p{® (0)=y@(b), g=012 (3.82)

Since the function Y = @Xﬁtu satisfies the equation (3.55) with the initial function P,

on 7, and boundary functions P;; P; on }; and 7;, respectively using (3.81) and

(3.82) and on the basis of Theorem 1.1 and the maximum principle in Chapter 4 of
[19] we obtain

2,ht
y

<c,(h* +7). (3.83)

max‘g
E’h,r

using (3.73), (3.80) and (3.83) we obtain (3.68). |
3.5 Numerical aspects

Example 4: we consider the following boundary value problem

Lu=f(xt) on Q
il

u(x,0) =1-X° on Vs,

u(0,t) =cos(zt) on 7,
41

u(Lt)=tsinl)+cos(zt)-1 on 7,

where

a8 2 2 a af a4 w
£ (x.1) = sin(x® )[f—;tm +(4€1j x5t1°]—ﬂsin(ﬂt)+%%x5 {Hw cos(XS)}.

3.5.1 Numerical results for 5tU and (3iu
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Using the proposed Problem 3 with (3.10) and Problem 4 with (3.11) we construct the

boundary value problems for W=0tU and ¢ = 5§U, respectively. Then for the
approximate solution of the Problem 3 with (3.10) the difference system (3.12) — (3.14)
and for the Problem 4 with (3.11) the difference system (3.18) — (3.20) are solved

directly by applying Gauss-Thomas Method. Using the exact solutions,

a4
w(x,t) = Etm sin(x ® ) — zsin(zt),

[ 4 Q 2 24 i
d(x,t) = %1% XS {tw cos(x %) —1} = (%1} X 5t sin(x %),

we denote the maximum error on the grid points by HEQ’THﬂTjaXIW—WI and by
a)h"[

= max | ¢;—¢|- Table 3.1 demonstrates the maximum errors for r= 2 — 2
O

h,r
H8¢ 2

« = 2,3 and the corresponding process time for different step sizes and the order of

convergence R"*

2 gt

2—(,u+1) '2—(/1+2)

ROT = (3.84)

w

of W to the exact solution W=0,U with respect to h and 7, for Example 4.

Table 3.1: Maximum errors, corresponding CPU time for different step sizes in space

(h=2"*7=2") | (h=2"“" r=2") |2"2" AR
h,z CPU h,z CPU

(2°,2%) 0469 | (2% 2™) 2938 | 13101E-02| 3.3328E-03 | 39309

(2°,274) 2938 |(27,27%) 22422 | 3.3328E-03| 8.3892E-04 | 39727

(2°,2%) 0812 |(2°2") 5812 1.3335E-02 | 3.3906E-03 | 3.9329

(2°,27) 5812 |(27,27) 44542 | 33906E-03| 8.5244E-04 | 39775

and time and R\", for Example 4.
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Table 3.2 presents the maximum errors and the corresponding central processing unit

time for N'=2", r=2", 1=7,8,9,10,11 and the order of convergence X',

o - H‘:@z | (3.85)

w

of W in time variable t (with respect to 7).

Table 3.2: Maximum errors, corresponding CPU time for different step size in time
and Ry, , for Example 4.

(h=2"7=2"%) | (h=2"7=2") | |z2"2" S N
ht CPU h,7 CPU

(2°,27) 0234 | (2°2°% 0359 | 22916E-02 |1.1459E-02 | 1.9998

(2°,2°) 0359 | (2°,2°) 0672 | L1459E-02 |5.7182E-03 | 2.0040

(2°,2°) 0672 | (2°,2%) 1312 | 5.7182E-03 | 2.8450E-03 | 2.0099

(2°,2%°) 1312 | (2°,2%) 2609 | 2.8450E-03 |1.4078E-03 | 2.0209

Note that the O(h*+7) order of convergence corresponds to ~ 2?of the quantities

defined by (3.84), and ~ 2' of the quantities defined by (3.85) respectively. Figure 3.1

2714

shows the exact solution W=5tU and the grid functions W denoting the

approximate solution W for h=2" and 7 =2" for Example 4. The error function

2711 2—14
w

= W-w| for h=2" and 7 =2 is given in Figure 3.2. The exact solution

¢=0% and the grid functions 4> 2 denoting the approximate solution @ for
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h=2" and 7=2" are presented in Figure 3.3. Also the error function

2—11 2—14

=¢-¢| for h=2"and 7=2" is shown in Figure 3.4.

W2",2 12

w=‘r')tu

271

Figure 3.1: The exact solution W=0,U and the grid functions w2 presenting the

approximate solution W when h=2" and 7 = 27 for Example 4.
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-11 »-14

Ew

representing | w—w| when h=2"and

Figure 3.2: The error function
=274, for Example 4.

0 0
20 20
-40 3 -40
5 3
g =
£ -0 ~, 60
-80 -80
-100 -100 |
1 1
1 1
05 0.5
0.5 0.5
t 0 0 X t 0 o x

Figure 3.3: The exact solution ¢ = Giu and the grid functions ¢27u'2714 presenting the

approximate solution (5 when h=2" and r=2", of Example 4.
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t 0 o ’ 5

-11 »-14

presenting |§—¢| for he2 and 7 =2,

Figure 3.4: The error function ‘8,,5

of Example 4.

3.5.2 Numerical results for atzu

Here, the boundary value problem for Z=5t2U is constructed using the proposed

Problem 5 and the approximate solution w. Further, the approximate solution Z of
the difference problem (3.36) — (3.38) is obtained at the same grid points. Using the

exact solution

21 41
z(x,t) = f—éf—;tm sin(x 5 ) — % cos(rt)

h,z
82

we present the maximum errors by =max|Z-z|. The order of convergence of
a)h‘r

the approximate solution 7 to the exact solution Z =5t2U in spatial variable x and in
time variable t is denoted by ERQ’T analogous to the formula (3.84). The order of

convergence of 7 to the exact solution Z in time variable t is represented by %;

analogous to the formula (3.85). Table 3.3 shows the maximum errors and the

corresponding CPU time for r=2"", & = 2,3 and the order of convergence 9127
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while Table 3.4, shows the maximum errors for h=2° and = = 2_’1,

A1=7,8,9,10,11, and the corresponding elapsed time with the order of convergence
R, for Example 4. Figure 3.5 demonstrates the exact solution Z =5t2U and the grid

functions z2 % denoting the approximate solution 7 for h=2 and 7 =2, for

-11 »-14 o
Example 4. The Figure 3.6 illustrates the error function g ‘=I Z-1| for h=2™

and 7=2"*, for the same example.

Table 3.3: Maximum errors, corresponding CPU time for different step sizes in space
and time and R}, for Example 4.

(h=2"7=2") | (h=27"" =27 | ]2 A IR
hr  CPU h,z CPU

(25,2%%) 0453 | (2°,27%) 3344 |4I795E-02 | LOG3LE-02 | 3.9314
(2°,27) 3344 | (27,2%) 26.000 |L0631E-02 | 26706E-03 | 3.9808
(2°,27%) 0922 | (2°,2%°)  6.828 |4.2309E-02 | 1.0758E-02 | 3.9328
(2°,27%°) 6.828 | (27,2%) 52375 |L10758E-02 | 2.7008E-03 | 3.9833

Table 3.4: Maximum errors, corresponding CPU time for different step size in time

and R;, for Example 4.

(h=2"7=2")| (h=2"7=2") | 272" A R;
h,t CPU ht CPU

(2°,27) 0266 | (2°,2°) 0406 | 5.1406E-02 | 25678E-02 | 2.0019
(2°,2%) 0406 | (2°,2°) 0781 | 25678E-02 | 1.2708E-03 | 2.0206
(2°,2°) 0781 | (2°,2%°) 1531 | 1.2708E-02 | 6.3529E-03 | 2.0004
(2°,27) 1531 | (2°,2") 3.078 | 6.3529E-03 | 3.1301E-03 | 2.0296
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271

Figure 3.5: The exact solution Z = atzu and the grid functions 22 presenting the

approximate solution Z for Z=0:U when h=2" and z =2, of Example 4.

-11 »-14

&

Figure 3.6: The error function presenting | z—z|for h=2"and r=2"",

of Example 4.

3.5.3 Numerical results for 0,0,U

We setup the boundary value problems for Y = 8X8tu from the proposed Problem 6

using the approximate solution W. The approximate solution Yy of the difference

system (3.61) — (3.63) is obtained at the same grid points. By virtue of the exact

solution

4 % 31 L
y(x,t):ngH10 cos(x %)
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. h, ~ .
We denote the maximum error by Hsny:n]aXIy—yI. The maximum errors,
On

corresponding CPU time for different step sizes in space and
PV

mﬁ:y‘

y 2*(#4'1)’2*7~ !
y

(3.86)

which is the order of convergence of § to the exact solution Y = ﬁxﬁtu in the spatial
variable x (with respect to h) are given in Table 3.5. Table 3.6 presents the processing

unit time for different step sizes and the corresponding maximum errors with the order

of convergence iR; of ¥ analogous to the formula (3.85) to the exact solution

y=0,0U in time variable t , for Example 4. Figure 3.7 demonstrates the exact

2—1

solution Y =5X5tu and the grid function yzfu' A denoting the approximate solution

-11 5-14
2

=|§-y| for h=2" and

gy for h=2" and z=2"* The error function ‘85

-14

when 7=2"* with

-14 - . . . h,2
7=2" is shown in Figure 3.8. The maximum errors Hsy

-9
respect to h, and the maximum errors ng ’H when h =27°, with respectto 7 are

illustrated by Figure 3.9 and Figure 3.10, respectively.

Table 3.5: Maximum errors, corresponding CPU time for different step sizes in space
and time and R ;° , for Example 4.

(h=2"7=2") (h=2"0" =27
CPU

27(;/+1) Y27/1

o H 2 i
gy

y

h,t
E}{V

ht CPU h,
(27,2 7.203 | ( ) 13859 | 0.1170 3.0533E-02 | 3.832
(2°%,27) 13.859 | (2°2*) 27.453 | 3.0533E-02 | 6.9746E-03 | 4.378
(2°°,27") 27.453 | (22" 55016 | 6.9746E-03 |1.0375E-03 | 6.723
(27%°,27%) 55.016 | (2%,2%) 73.091 |1.0375E-03 | 1.9800E-04 | 5.240
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Table 3.6: Maximum errors, corresponding CPU time for different step size in time

and R §, for Example 4.

(h=2"7=2") | (h=2"7=27"7) | [z2+2" 2t
h,z CPU h,7 CPU

(2°,27) 0375 | (2°,2%) 0438 0.1661 7.9536E -02 | 2.088
(2°,2°) 0438 | (2°,2°) 0859 | 7.9536E-02 | 3.6201E-02 | 2.197
(2°,2°) 0859 | (2°,2") 1672 | 36201E-02 | 1.4559E 02 | 2.487
(2°,27%%) 1672 | (2°,27") 3422 1.4559E -02 | 4.9560E-03 | 2.938

20

Figure 3.7: The exact solution Y =0,0,U and the grid function yz_n’z_u presenting the

approximate solution

for h=2" and =274, of Example 4.

60



%1073
(&

-11 »-14

presenting | y—y| for h=2" and r=2",

Figure 3.8: The error function ‘85

of Example 4.

05F .

10 10° 107 10
h

-14

.o—'-"—-_-'_'-
0 L Lo B L L
= i

when =27, with respectto h, for

. . h,2
Figure 3.9: The maximum errors Hé‘y

Example 4.
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Figure 3.10: The maximum errors HS?Q'TH when h =2, with respectto 7 , for

Example 4.
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Chapter 4

SIXPOINT IMPLICIT METHODS FOR THE
APPROXIMATION OF SECOND DERIVATIVES TO

HEAT EQUATION WITH CONSTANT COEFFICIENTS

4.1 Chapter overview

The work in this chapter is organized as follows: In Section 2, the first type boundary

value problem for one dimensional heat equation is considered requiring that the initial

8+a

8+o,——
function belongs to C™ the heat source function is from C.. %, the boundary

10+a
functions are from C 2 , and between the initial and the boundary functions the

conjugation conditions of orders q=0,1, 2,3,4,5 are satisfied. We give the boundary

value problems for %“ and gi;' based on the assumptions, and difference problems of
X

symmetric six point implicit schemes approximating Z_l: and ZLLZ‘ are constructed. For
X

the error function we provide a pointwise prior estimation depending on po(Xx,t)
which is the distance from the current grid point in the domain to the boundary. In

Section 3, and Section 4, special six point implicit difference problem for the

o%u 2
approximation of Fo and

ut respectively are proposed and it is proved that the

solution of the constructed difference schemes converge uniformly to the exact value

of the respective derivatives on the grids of order O(h2+2'2). In Section 5, we
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constructed a numerical example to justify the theoretical results and the obtained

results are presented through tables and figures.
4.2 Crank-Nicolson schemes for the approximation of 6,u and o:u

Let the following problem be given:
Problem 1:

(iv) The boundary value problem (2.1) — (2.3) with the assumption

8+a 10+a

U,(X) eC**(Q), f(xt)eC,. "2 (@) and ut)eC ? (&) i-12 (4.1)
and satisfying the conjugation conditions (2.9) of order 0,1,2,3, 4,5.

Let W= QU and ¢ = 5§U and further W satisfies Problem 3 and ¢ satisfies Problem

4, where,
F(x,t)eCfI“’%@T), W, (x) € C**(Q), vvi(t)ec%(a), i=12, (4.2)
G(1)eCT T @), HMeC™ (@) 4M)eC? (G) i-r2  (43)

both satisfying the conjugation conditions (2.9) of order 0, 1, 2, 3, 4.

1040 200% _
Lemma 4.1: The Problem 1(iv) has unique solution ueC,, ? (Q) and the

constructed boundary value Problem 3 with (4.2) and Problem 4 with (4.3) have unique

8+a

solution W and ¢ respectively, belonging to the space Ci:a'7((§T).

10+
Proof: From Theorem 1.1, Problem 1(iv) has unique solution u eCi’t 2 (QT).

Taking into account that Problem 3 and Problem 4 with (4.2) and (4.3) respectively
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are also first type boundary value problems analogous to the problem (2.1) — (2.3) on

the basis of Theorem 1.1 the proof follows.

To realize the numerical solution of the Problem 3 satisfying (4.2) and Problem 4 with
(4.3), we propose the following implicit six point difference problems, of which the

solution of (4.4) — (4.6) is denoted by , and the solution of (4.10) — (4.12) is presented

by qz see also [18].

~t£1’,r; = a@ﬁw:],r + (Dv”v,m on a)h’z_, (44)
~r?1 =W, (Xm) on a_)h,o ' (4.5)
Wg = Wl(tj) on @, V~\/|£l =W, (tj) on @, (4.6)

s V~VJ'+1_V~VJ
Wy, = —" 4.7)
T
M+l o+l ~ j+1 ~ iyl ~
®6V~v:],rzé|:wm1 2\:]/;1 +Wm+1+ m-1 2t\1/\;m+wm+li|’ (48)
gowym:F[xm,t_ lJ:atf[Xm’t. 1} (4.9)
J+§ J+§
A :a®6¢3n2"+%m on @,,, (4.10)
B = (%,) on @y, (4.11)
¢oj :¢1(tj) on @, ¢r\i :¢2(tj) on @, (4.12)
where @7, ©°4" are formulae analogous to (4.7) and (4.8) respectively, and

R =d(x ,0), & =4(0t), &d:&(b,tj) also %’mze(xm,t#}:aif[XW“], Here

t ,=t;+0.57, f(x,t) is the given function in (2.1) and u,(x) given in (2.2),

1
"2

65



u,(t), u,(t) given in (2.3) are the initial and boundary functions respectively. Using

maximum principle the difference problems (4.4) — (4.6) and (4.10) — (4.12) have

unique solution.

Theorem 4.2: Let W be the solution of the differential Problem 3 with (4.2) and W
be the solution of the difference problem (4.4) — (4.6). The following pointwise

estimation holds true

lw—w| <¢p(h’+7°) (4.13)

For r <1.

8+a

Proof: On the basis of Theorem 1.1 the exact solution WeCan’7(C§T). Let

8VhV’T =W-W then the error function 8£’T satisfies the following difference problem

Ewin =80°€,0 Y, on @, (4.14)
&un =0 on @, (4.15)
gy=0 on @, &,=0on @, (4.16)

where v, = 8.@6W—Wt—]m +@ym and @y, is as given in (4.9). Using Taylor’s formula

for the function w(x,t) about the node [xm,t J gives that wsz(hzﬂz).

1
I3

Applying Lemma 2.2 to the problem (4.10) — (4.12) and (4.14) — (4.16) and on the
basis of Lemma 2.3 we obtain | )" | <¢,p(h* +7%). u

Theorem 4.3: The following inequality holds
|§-¢] <c,p(h’+77) (4.17)

For r <1 where, ¢ is the solution of the differential Problem 4 with (4.3) and ¢Z IS

the solution of the difference problem (4.10) — (4.12).
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Proof: The proof is analogous to the proof of Theorem 4.2.
4.3 Six point implicit scheme for the approximation of d;u
When Problem 1(iv) is given we setup the boundary value Problem 3 with (4.2) for

W=0,U and use the difference system (4.4) — (4.6) for obtaining the approximate
solution w. We denote G; =8fu on Jiy i=12,3 and construct Problem 5, given in

Chapter 3, Section 3 for Z = 5t2U, see also [18].

We take Q,, as same in (3.29),

q,, (W) = Zi[—BWO (X) +4W(x, 7) —W(X,27)] On @y, 0 (4.18)
T

and G, as in (3.31), where, W,(X) =U"(X) as defined in (2.5).

Lemma 4.4: The following inequality holds:

|q21(~)_q21(w)| SCl(hz-l_z-z) (419)
For r <1 where, w is the solution of the differential Problem 3 with (4.2) and wis

the solution of the difference problem (4.4) — (4.6).

Proof: From Theorem 4.2, we have

|0, (W) -0, (W) | < 2—11_[4(02')(hz +22)+(c20)(h +72) ] < ¢ (0 +7%) (4.20)

Lemma 4.5: The following inequality is true:
max | 6, (W) —q, | <&,(N° +7°) (4.21)
Wno

for r <1 where, W is the solution of the difference problem (4.4) — (4.6).
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8+a

Proof: On the basis of Lemma 4.1, we CXBIQ’T (Q;) and at the end points (Mh,0) € @, ,
of each line segment [(x,t):0<x<b,0<t<T] the equation (4.18) gives the second

order approximation of atW- From the truncation error formula (see [20]) it follows

that

2
.
max | g, (W) g, | < —-Max| awl<c,r?, (4.22)
@h o

Using Lemma 4.4 and the estimation (4.19), (4.22) follows (4.21). [ |

We construct the following difference problem for the second order accurate in space

and in time for numerical solution of Problem 5.

Z'n =802, +9, on @, (4.23)
Zn =0 (W) on @, (4.24)
zé = qlT on a)O,z" zzJ = q3r on a)b,z-’ (425)

where, 0;,, i=12,3 are defined by (3.29) , (4.18) and (3.31) respectively and

D3 m =8t2f |[ J .
Xm ot 1

Theorem 4.6: The solution 7 of the finite difference problem (4.23) — (4.25) satisfies
max |Z—z| ch(hZJFTZ), (4.26)
Dh

for r <1 where, Z= an is the exact solution of Problem 5.

Proof: Let

e =7-7 on @, (4.27)

68



where Z =3t2U- Denote by 8?" ‘= n]ax|2—z|. From (4.23) — (4.25) and (4.27) we
a)h,l'
have
& n=20"¢7 +¥, on o, (4.28)
Epn =0, (W) =2 on @y, (4.29)
gzj,o =0 on @, ‘C"zj,N =0 on @, (4.30)

where ¥, =a0®°z-z; , +¢,,. We take

h,z Lhr 2,ht

& =& té (4.31)
and &7, 2" satisfy the problems
&tn =20, on @, (4.32)
&m =0 (W) ~2 on @y, (4.33)
g;(l)zo on a)O,T’ g::JN :0 on a)b,z" (434)
and
& tm=00% "+, on @, (4.35)
&n=0 on @, (4.36)
gzzoj =0 on @, 53:# =0 on @, (4.37)

respectively. From Lemma 4.5 and by maximum principle for the solution of the

system (4.32) — (4.34) we have

max "
wh,r

< rghax\qu(v”v)—z\ <c,(h*+7%). (4.38)

The solution 822'h’T of problem (4.35) — (4.37) is the error of the approximate solution

obtained by the finite difference method for the Problem 5 when

4tq 6+a

6, C™(Q), f(xt)eC,, 2 (@) GeC? (5) i=13. (4.39)
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and

oV (0)=21(0),
?(0)=2D(b), a=0123 (4.40)

Since the function Z =5t2U satisfies the equation (3.26) with the initial function J, on

7, and boundary functions G;;0; on }; and 75 respectively, using (4.39), (4.40) and

on the basis of maximum principle in Chapter 4 of [19] we obtain

2,ht
82

<c (h?+77%). (4.41)

max
Using (4.31), (4.38) and (4.41) we obtain (4.26). ]
4.4 Six point implicit scheme for the approximation of 0,0,u

Given the Problem 1(iv), we setup the Boundary Value Problem 3 with (4.2) for

W=0,U and use the difference system (4.4) — (4.6) for obtaining the approximate

solution W. We denote P;=0,0U on J;, i=123 respectively and construct

Problem 6 for Y =0,0,U.

We construct the following difference problem for the numerical solution of

Problem 6 and denote this solution by ¥

Yirn=a0°yr +¢9, on @, _, (4.42)
Y = Py ON @, (4.43)
Jo=Pu() on @, ¥i=ps(W) on a,,. (4.44)

Here, P, are defined by (3.58) — (3.60) Y?jfn, ®6)7:f are formulae analogous to (4.7)

and (4.8) respectively, and  ¥» =¥(x,,0), §I=9(0t), ¥ =9(bt) and

Pym =0,0,f |{ ] .

Xt
j+

N
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Lemma 4.7: The following inequality holds

| ()~ Py (W) [ <, (h* +7°), i =13, (4.45)
for r <1 where w is the solution of the differential Problem 3 with (4.2) and W is the

solution of the difference problem (4.4) — (4.6).

Proof: From (3.58), (3.60) and Theorem 4.2, we have

| i (W) = Py, (W) | < 2—1h[4(ch)(h2 +22)+ (20 +7) <o (W +77), =13, (4.46)

Lemma 4.8: The following inequality is true
max | py, (W) —p; | <c,(h®+7%), j—13, (4.47)
@, S,

for r <1 where, W is the solution of the difference problem (4.4) — (4.6).

Proof: On the basis of Lemma 4.1, the exact solution of Problem 3 with (4.2) belongs

Bra
to C,." 2 (Q,). Then at the end points (0,07) € @,, and (b,07) €@, of each line

segment [(x,t):0<x<b,0<t<T] the equations (3.58) and (3.60) give the second order

approximation of oW respectively. From the truncation error formula (see [20]) it

follows that

h2
max | p,(w)—p, | < - max|ow| <eh’, 13 (4.48)

On the basis of Lemma 4.7 using the estimation (4.45) and (4.48) follows (4.47). N

Theorem 4.9: The solution ¥ of the finite difference problem (4.42) — (4.44) satisfies
max | §—y| <c,(h*+7%), (4.49)
e

71



for r <1 where, Y =0,0,U is the exact solution of Problem 6.

Proof: On the basis of maximum principle in Chapter 4 of [19], the proof follows from

Lemma 4.8 and is analogous to the proof of Theorem 3.9.
4.5 Numerical aspects

Example 5: [18] We consider the following boundary value problem

Lu=f(xt) on Q,

u(x,0)=0.005+sin(2zx) on 7,,

51

u(0,t)=0.005cos(t®) on ¥,

51 51

u(L,t) =0.0005sin(t°) +0.005cos(t®) +sin(2z) on /s,

51 a a
where, F(x,t) = sin(xlo){—0.0005%1§ N —0.005?—;t10}

51 41 41

+0'0005E X 5t10 cos(x1°) + 47 sin(27x) (4.50)

4.5.1 Numerical results for 0,U

The boundary value problems for W=5tU is constructed using the proposed Problem

3 with (4.2). Further, the approximate solution W of the difference system (4.4) — (4.6)
is obtained by using Gauss-Thomas Algorithm (2.104) since the obtained algebraic
system of equations at each time level has a structure analogues to (2.107). By the

known exact solution

51 41 51 41 51
51

w(x,t) = 0.0005% X 5t10 cos(t2) —O.OOSEtE sin(t) (4.51)
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we denote the maximum error by Hg&””zmax|vv—w|, Table 4.1 presents the
On z

maximum errors and the corresponding CPU time for different step sizes in space and

the order of convergence of the approximate solution W to the exact solution W= 5tU

in spatial variable x (with respectto h).

v
w

9" = (4.52)

2~ (ul) '271

w

Table 4.2, shows CPU for different step sizes of the maximum errors and the order of

convergence ‘R}}f analogues to (2.108) with respect to X and t of W to the exact

solution W in X and t.

Table 4.1: Maximum errors, corresponding CPU time for different step size in space
and R}, for Example 5.
(h=2"*7=2") |(h=2"D =2

h,z CPU h, CPU
(27*,27%) 4375 | (2°,2%) 6969 | 2.6585E-05| 6.6997E —06 | 3.9681

(2°5,27%%) 6969 | (2°,27%) 12578 | 6.6997E-06 | 1.6794E —06 | 3.9893
(2°,27%) 12578 | (27,2°%) 23.672 | 1.6794E-06 | 4.2013E —07 | 3.9973
(27,27%%) 23672 | (2°,2%%) 46.375 | 4.2013E-07 | 1.0505E —07 | 3.9993

22 27 () 97

w

R

w

Table 4.2: Maximum errors, corresponding CPU time for different step sizes in space
and time and R\" for Example 5.
(h=2"*7=27") | (h=27%D =270

h,z CPU h,z CPU
(24,25) 0625 | (2°,2%) 1.719 2.6585E -05| 6.6996E —06 | 3.9682

(2°,27%) 1719 | (2°,2") 6.219 6.6996E -06 | 1.6794E —06 | 3.9893
(2°,2%) 6219 | (27,2%) 23.672 1.6794E-06 | 4.2013E —07 | 3.9973
(27,27 23672 | (2°,27") 92891 4.2013E -07 | 1.0505E —07 | 3.9993

K '27/1 27(;#1) '2—(/1+1)

w

hr
9%Vv

w
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Note that the O(h2 +7 2) order of convergence corresponds to ~ 2°of the quantity
defined by (4.52). The exact solution W=0,U and the grid functions w> 2" presenting

the approximate solution W when h=2" and 7=2"® are shown in Figure 4.1 for

A B 277 9716 ~ . .
Example 5, while the error function |&, = W-W| for h=27,and =2 is given
in Figure 4.2.
0.005 0.005
0 0
-0.005 -0.005
] =
= -0 o 0.1
1l L
= 0.015 hé 0.015
-0.02 -0.02
-0.025 -0.025
1 1
1 1
0.5
! 0 o X t 0 o X

Figure 4.1: The exact solution W=5tU and the grid functions w? presenting the
approximate solution W for h=2" and r=2"¢, of Example 5.
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2—7 Y2—16
gW

Figure 4.2: The error function =|W-w| when h=27 and =2, for

Example 5.

4.5.2 Numerical results for 5§U

We present the numerical results for the approximate solution of pure second

derivative of the solution u(x,t) with respectto X. The boundary value problems for

¢=5§U is constructed using the proposed Problem 4 satisfying (4.3). Then, the
approximate solution 5 of the difference problems (4.10) — (4.12) is obtained at the

same grid points using the Algorithm (2.104). By the known exact solution.

5146 % %
#(x,t) = 0.0005€?x5 sin(t) — 4z sin(27x), (4.53)

we denote the maximum errors by ||8;’|| =max | ¢ —¢|. Table 4.3 shows the maximum
h,e

errors and the corresponding processing time for different step sizes in space and the
order of convergence 9?; of the approximate solution ¢ to the exact solution ¢ = 5iU
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for Example 5, analogous to the formula (4.52) in spatial variable X (with respect to

h). Table 4.4, shows the maximum errors, the elapsed time and the order of

convergence ER;"of @ to the exact solution ¢ in time variable t analogous to the

formula (2.108). As expected, O(N’ +7%) order of convergence corresponds to ~ 22

of the quantities was achieved. Figure 4.3 demonstrates the exact solution ¢ = 5§U and

the grid functions ¢° 2 presenting the approximate solution ¢ when h=27 and

2—7 ‘2—16

7 =27 for Example 5. The error function ‘8¢ ‘=I¢3—¢| forh=27",and z=2"is

given in Figure 4.4.

Table 4.3: Maximum errors, corresponding CPU time for different step size in space
and %;, for Example 5.

(h=247=2") |(h=2“D r=27%) | |.2"2" G20t R

h,z CPU h,z CPU ’ ¢ ¢
(2427 3344 |(2°,2%%) 4797 | 05116 0.1272 4.0220
(2°,27%) 4797 |(2°,27%%) 7484 | 0.1272 3.1745E-02 | 4.0069
(2°,27%) 7484 |(27,27%°) 12703 | 3.1745E-02 | 7.9334E-03 | 4.0014
(27,27%) 12703 |(27°,27*°) 23.250 | 7.9334E-03 | 1.9832E-03 | 4.0003

Table 4.4: Maximum errors, corresponding CPU time for different step sizes in space
and time and SR;T for Example 5.

(h — 2*!1,2_ _ 2—/1) (h — 2*(!t+1)1z. — 27(1+l)) oH g gjf(,lu)’zf(mn ER;T
¢
h,z CPU h,z CPU
(242 0516 |(2°2™) 1141 | 05116 0.1272 10220
(2527 1141 |(2°27%) 3672 | 01272 3.1745E-02 | 4.0069
(2°,2") 3672 |[(27,2%) 12703 3.1745E-02 | 7.9334E-03 | 4.0014
(27,27 12703 [(2%,277) 46344 | 7.9334E-03 | 1.9832E-03 | 4.0003
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Figure 4.3: The exact solution ¢=0°U and the grid functions ¢° % presenting the

approximate solution ¢ when h=27 and =2 , for Example 5.

t 0 o X

2—7 ]2—16

Figure 4.4: The error function ‘8¢ =¢—¢| when h=27,and =2, for

Example 5.

4.5.3 Numerical results for 5t2U
Now we present the numerical results for the approximate solution of pure second
derivative of the solution U(X,t) with respect to t. First we construct the boundary

value Problem 3 with (4.2) and the approximate solution W is obtained by solving the

system (4.4) — (4.6). Then the boundary value problem for Z = af U is constructed using
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the proposed Problem 5. Further, the approximate solution Z of the difference

problems (4.23) — (4.25) is obtained at the same grid points. Using the exact solution

kL 2 514 31
z(x,t) =sin(t**)| -0.0005 SLY x5 _0.00521 240
10 1010

5141 2%
(4.54)

2 51\
+cos(t%0) —0.00S[—] t5 +0.0005—-—x5t°
10 1010

h,z
gz

we denote the maximum errors by ‘:max|i—z|. Table 4.5 present the
{uh‘f

maximum errors, CPU time and the order of convergence ‘RQ of the approximate
solution to the exact solution Z =5t2U in spatial variable x analogous to the formula
(4.52). Table 4.6, shows the maximum errors, process time and the order of

convergence 9?2’1 of Z to the exact solution Z with respectto h and 7 analogous

to the formula (2.108). The exact solution Z :8fu and the grid functions 72727

presenting the approximate solution Z when h=2", z=2"° are shown in Figure

-7 5-16 . . -
4.5 while the error function gf 2 ‘:I ZI-17| for h=27,and r=2"%is presented in

Figure 4.6.

Table 4.5: Maximum errors, corresponding CPU time for different step size in space
and®R}, for Example 5.

(h=2"%7=2") (h=2"wD 7 =27%) 22’*‘,2* Zz*“*“,z" 9{?

h,7 CPU h,z CPU
(2*,27%°) 6.234 | (2°,2"°) 10562 | 7.8539E-05 | 1.9792E-05 | 3.9682
(2°°,27%%) 10562 | (2°,2°) 19.922 | 1.9792E-05 | 4.9611FE —06 | 3.9894
(2°,27%%) 19.922 | (27,27°) 38.891 | 4.9611E-06 | 1.2411E—06 | 3.9973
(27,27%%) 38.891| (2°,27) 73516 | 12411E-06 | 3.1033E-07 | 3.9993
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Table 4.6: Maximum errors, corresponding CPU time for different step sizes in space

and time and R}, for Example 5.

(h=2"7=2") | (h=20Dr=20") [ 20z A
hr  CPU h,z cPu
(2—4’ 2—13) 0844 (2—5’ 2—14) 2641 7.8539E - 05 19972E —05 39682
(2‘5, 2‘14) 2.641 (2‘6, 2‘15) 9.953 1.9972E-05 | 4.9611E-06 | 3.98%4
(2‘6 , 2‘15) 9.953 (2‘7 , 2‘16) 38.891 49611E-06 | 1.2411E-06 | 3.9973
(27,27%°) 38.891| (2°,2") 81.016 | 1.2411E-06 | 3.1034E-07 | 3.999?
0.05 0.05
0 0
005 . -0.05 |
q_gp o~
I, 01 o, 01
-0.15 -0.15
02| 0.2
1 1
1 1
0.5 0.5
0.5 0.5
t 0 o ¥ t 00 x

Figure 4.5: The exact solution Z=07U and the grid functions z°

>

approximate solution Z when h=2", r=2"%, for Example 5.
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Figure 4.6: The error function =[Z-17| for h=2", =27, of Example 5.

4.5.4 Numerical results for 6 6,u

Finally, we present the numerical results for the approximate solution of mixed second
derivative of the solution U(X,t) . First we construct the boundary value Problem 3
with (4.2) and the approximate solution W is obtained by solving the problem (4.4) —
(4.6). Then, we construct the Problem 6 for y = ©,0,u approximate solution .
We them, obtain the approximate solution y of the difference problem (4.42) — (4.44)
at the same grid points. Using the exact solution

% 4 51
y(x,t) = 0.000S%% X 5110 cos(x*°) (4.55)

we denote the maximum error by ||83'T = rghax| y-YI. Table 4.7 presents the CPU

. . h . .
time, maximum errors and the order of convergence ‘Ry of the approximate solution

Yy to the exact solution y = 0,0,uU in spatial variable x analogous to the formula
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(4.52). Table 4.8, shows the maximum errors and its processing unit time and the order

of convergence SR';" of ¢ to the exact solution y in time variable t analogous to the

2—7 ’2—16

formula (2.108). The exact solution Yy = 0,0,U and the grid function y

presenting the approximate solution ¢ when h=2", =27 are given in Figure

4.7 and the error function ‘8577’2716‘ ={¥-y| for h=2", £=2" is given in Figure

-16

when = =271,

4.8 for Example 5. Figure 4.9 shows the maximum errors H8;"2

with respectto h fory .

Table 4.7: Maximum errors, corresponding CPU time for different step size in space

(h=277=27) | (h=207=27) | 22’ £ R

h CPU h cPU
(27%,27%%) 4906 | (2°2%) 7719 | 7.8539E-05| 1.9792E-05 | 3.9682
(25,27%) 7719 | (2°,2%%) 14.422 | 19792E-05| 4.9611E-06 | 3.9894
(2°,27%%) 14.422| (27,27%°) 27547 | 49611E-06| 1.2411E-06 | 3.9973
(27,27%) 27547 (2°,2%) 54328 12411E-06| 3.1033E-07 | 3.9993

and ER;, for Example 5.

Table 4.8: Maximum errors, corresponding CPU time for different step sizes in space
and time and SRE’T , for Example 5.

(h=2"*7=2") | (h=2W" =207 5*“,2*‘ 5*“*“,2*“*1) g){*y‘vf
h,z CPU h,t CPU

(2*,27%) 0688 | (2°2%) 2.016 7.8539E -05 | 1.9972E-05 | 3.9682

(2,27 2016 | (2°2%) 7156 | 1.9972E-05 | 4.9611E-06 | 3.989%4

(2°,2%) 7156 | (27,27%°) 27.547 49611E-06 | 1.2411E-06 | 3.9973

(27,27%%) 27547 (2°%,27") 69.009 | 1.2411E-06 | 3.1034E-07 | 3.9992
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-0.005 -0.005
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> 0015 ~ 0.M5
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Figure 4.7: The exact solution y = &,8,u and the grid function y* 2"
presenting the approximate solution ¢ when h=27, 7 =2"°, for Example 5.

—7 ~-16
Figure 4.8: The error function ‘85 2 ‘

=[§-y| for h=27, 7=27", of

Example 5.
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Figure 4.9: The maximum errors Hs'y"z for = = 27*°, with respectto h, of

Example 5.
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Chapter 5

CONCLUSION AND FINAL REMARKS

We study the finite difference approximation of 0,U, d,U, 62U, 0;u and 0,0U of

which, u(X,t) is the solution of the first type boundary value problem for one

dimensional heat equation with constant coefficients. Difference boundary value
problems of four point and six point implicit schemes are constructed. It is assumed
that the initial function, boundary functions and the nonhomogeneous term in the heat
equation possess a number of derivatives in the variables X and t necessary in this
connection for performing current and subsequent manipulation in approximating the

considered derivatives. We prove that the solution of the proposed four point and six

. . ou ou i
point difference schemes converge uniformly to the exact value of x o
X
o’ o°u . 2 2,2 .
ot and Pl the grids of order O(h"+7) and O(h"+7°) respectively, where, h

is the step size in X and 7 is the step size in time

Remark: These results can be used in some domain decomposition methods allowing
parallel computation [24, 25] and also the methodology may be extended to two-

dimensional heat equation.
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