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ABSTRACT 

The excitability of cells will be facilitated by voltageــgated ion channels. Although, 

these channels are accommodating individually by a multiple number of gates. The 

effects of ion channel fluctuations on the transmembrane voltage activity are profound 

of small-size membranes patches. 

 Recently, a model that captures the collective dynamics of Markov chain ensembles 

was proposed by Güler, M. (2015) [Physical Review E, 91(6), 062116] under the name 

"Minimal diffusion formulation of Markov chain ensembles". Additionally, two 

simpler variants of it. Called 2v1n and 1v1n formulations, were introduced by the same 

author [Physical Review E, 93(2), 022123]. 

By applying the minimal diffusion formulation to the gating dynamics which is in ion 

channel clusters and it was seen that the formulation accurately describes the 

excitability of neurons. On the other hand, the 2v1n and 1v1n formulations’ 

performance for the ion channel clusters are not examined.  

In this thesis, a study on the neural dynamics is performed using the 2v1n and 1v1n 

formulation. The study examined the accuracy of the formulation by numerical 

simulation. In doing so, the exact microscopic dynamic simulations of the ion channel 

cluster were taken as the reference point. 

Keywords: Ion Channel, Channel Noise, Stochastic Hodgkin-Huxley, Markov chain, 

Minimal diffusion formulation. 
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ÖZ 

Nöron uyarılmasını hücre zarında bulunan ve voltaj bağımlı geçirgenlik sergileyen 

iyon kanalları sağlar. İyon kanal dalgalanmaları  küçük boyutlu hücre zarlarındaki 

voltaj farkı üzerinde hayati etki yapabilmektedir. 

Son yıllarda, toplu Markov zincir dinamiği üzerine “Minimal Markov zincir difüzyon 

formülasyonu” adı altında Güler, M. (2015) tarafından bir model ortaya konulmuştur 

[Physical Review E, 91(6), 062116]. Ayrıca, aynı yazar tarafından, bu modelin daha 

basit iki formulasyonu olan 2v1n and 1v1n adıyla bilinen varyasyonları ortaya 

konulmuştur [Physical Review E, 93(2), 022123]. 

Minimal difüzyon formülasyonu, iyon kanallarının dinamiğine uygulanmış ve hayli 

başarılı sonuçlar gözlenmiştir. Ancak, 2v1n and 1v1n formulasyonları, iyon 

kanallarının dinamiğine uygulanmamıştır. 

Bu tezde, iyon kanal dinamiği, 2v1n and 1v1n formulasyonları kullanarak sayısal 

olarak çalışılmıştır. Karşılaştırmalar, mikroscopik benzeşim sonuçları baz  alınarak 

yapılmıştır. 

Anahtar Kelimeler: İyon kanalı, Kanal gürültüsü, Stokastik Hodgkin-Huxley, 

Markov zinciri, Minimal difüzyon formülasyonu. 
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  Chapter 1 

1 INTRODUCTION 

The excitability of cells, as an essential physiological process, entails the process 

through which voltage-gated ion channels enable the conductance of potassium and 

sodium, as well as the numerous gates accommodated in each of the individual ion 

channels. In response to Hille (2001)'s charge that it was necessary to explore the 

impact that gate multiplicity has on the functioning of a cell, particularly when the size 

of the membrane is limited. Furthermore, bearing in mind a realistic membrane, 

(Güler, 2011) found that gate multiplicity had a significant character to play in the 

performance of a limited-size of cell as it led to nontrivially tenacious membranous 

cross correlations(NCCP). NCCP seemingly the primary reason for the increased 

excitability and spontaneous firing in small neuronal membranes.  

The impact of noise on the neurons results in an abnormal configuration of the 

neuronal dynamic. The noise may be either internal or external (Faisal, 2008). The 

limited numbers of voltage gated ion channels are the foremost source of internal noise 

in a neuronal membrane spot. These channels can usually be found in either of two 

states: open or closed. The amount of channels when opening oscillates of a seemingly 

unsystematic manner Sakmann and Neher (1995) leading to the conclusion that that 

there is a fluctuation in the level of conductivity of the membrane itself thus implying 

variations in the transmembrane voltage.  
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Zeng and Jung (2004) explored the place of synaptic noise in the creation of action 

potentials by small and large clusters of ion channels within the neuronal membrane; 

the voltage dynamic is represented by Hodgkin-Huxley (1952)'s renowned equations 

when there is a large number of ion channels. However, a smaller membrane patches, 

the potential of influence on the voltage activity of the cell caused by fluctuations in 

the channel are potentially overwhelming (Güler, 2013a). Furthermore, the nontrivial 

cross correlation persistency (NCCP) increases the consistency of the spike train; the 

normalization of which is to be realized through the incorporation of appropriate 

functional procedures in the deterministic of equations. 

Correspondingly, more reliable and overt route would be to introduce the colored noise 

sketch in the excitable membrane (Güler, 2013a). For this purpose, the term of a 

Gaussian White noise exists of the Langevin equation in each individual gating 

variable as in Fox & Lu (1994)'s equations and additional term of colored noise 

available of the conductance. Within the context of, Kurtz (1978) approximated the 

Markov process, which is dependent on density, through a series of stochastic 

differential equations (Baxendale, 2011) in a study of ion channel clusters (Fox and 

Lu, 1994).  

Numerous studies have investigated the role of channel noise in causing unprompted 

firing in regularly uneventful membrane patches (DeFelece and Isaac, 1992; 

Strassberg and DeFelece, 1993; Rowt and Elson, 2004; Güler, 2007; Güler, 2008). 

Noise on the ion channels usually results in spontaneous fire though the generation of 

noise-induced action potentially varies as a result of analytical and numerical 

fluctuations in ion channels (Koch, 1999; White, 1998). Almassian and Güler (2011) 

discovered that a substantially greater SNR value was the result of the renormalized 
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equations of activity; a display of the Stochastic Resonance phenomenon occurred as 

a result (Jung and Shuai, 2001). While the inferiority of deterministic models relative 

to the DSM model has already been established (Güler, 2008), stochastic models 

(which exclusively use stochastic differential equations acquired through the insertion 

of some white-noise vis-à-vis vanishing) have also been known to result in lower SNR 

relative to the DSM model. 

The level of requisite noise terms rises relative to the state space size, leading to the 

introduction of contemporary attempts at bypassing the matrix square root calculations 

(Orio and Soudry, 2012; Mélykúti, Kay, and Burrage, 2010). The preexisting model 

allowed for a particularly large number of noise terms and differential equations. (Zeng 

and Jung, 2004) provides a comparative overview of the aforementioned models in 

regards to their respective computation times as well as the model in paper (Güler, 

2013b). The diffusion approximation formula is minimalistic, as it employs just two 

of stochastic variables equivalent to only two terms of noise despite of the density of 

the transition matrix and is hardly have been limited by the matrix square root 

operation. Even though, this is achieved by taking the consequences of fluctuations in 

the state density (less the density of the pertinent state) collectively, as opposed to 

taking said fluctuations individually. Employing this method in regards to ion channel 

cluster gating exemplifies its precision in replicating the numerical characteristics of 

the precise microscope Markov simulations. (Schmandt and Galan, 2012) argue that if 

fluctuations in only those states with a direct connection to the pertinent state of all 

chains are considered, the time needed to calculate the precise microscopic Markov 

simulations will be significantly reduced without only a negligible reduction in 

accuracy. Other diffusion models do not require a matrix square root computation 

(Orio and Soudry, 2012; Güler, 2013b; Linaro, 2011). Furthermore, the value of 
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parameters as well as the noise of variance during formulation is confirmed exclusively 

on the basis of criteria set forth in order to be portrayed by any reliable approximation 

sketch (Güler, 2015). 

The gating of ion channels however, is usually cast by a Markovian kinetic sketch 

where transitions in the stochastic state are wholly dependent on the voltage in the 

membrane without any mention of particular molecular details (Sakmann and Neher, 

1995; Hille, 2001). If we assume a two-state ion channel specification (open or closed), 

Markovian transitions may be depicted on the basis of the respective residence time 

probability distributions of remaining in both states. However, a multiexponential 

function is the autocorrelation function for single-channel conductance if we assumed 

a multistate ion channel specification (one open and at least two closed states) (Güler, 

2007). It has been determined that the time distribution in the closed state residence is 

in fact, not exponential; this was revealed using the patch clamp technique, which 

allows individual ion channels to be used in calculating ionic currents, for 

experimental investigation (Sakmann and Neher, 1995). 

The autocorrelation function is present in two exponentially decay additive terms. The 

formula posited by Güler includes variations of the marginal diffusion formulation and 

denotes the variants as two stochastic variables and one noise term (2v1n) and one 

stochastic variable and one noise term (1v1n); the two variants it has one noise. In 

recollection of the fact that the minimal diffusion formulation comprises a couple of 

stochastic variables and two noise terms, it is represented by the expression "2v2n 

model" otherwise "2v2n formulation" (Güler, 2016).  
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 Structure of Thesis 

This thesis is structured as follows: Chapter one provides a description of and 

introduction to the thesis. The second chapter gives a description of structure of 

neurons. Chapter three provides a description of ion channel dynamics. Chapter four 

describes the neuron models (Güler models (original minimal diffusion (2v2n)) and 

minimal diffusion with variant 2v1n, and 1v1n), Chapter five will describe minimal 

diffusion formulation. Chapter six shows the experiment and results, while Chapter 

seven is conclusion. 
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  Chapter 2 

2 STRUCTURE OF NEURONS 

 Introduction 

Contemporary research into neural computation is driven to a large extent by a desire 

to invent artificial computing networks. However, as implied by the term ‘neural 

network’, the original objective of the field was to create modelling networks based 

on actual neural networks in the brain.  

 Neurons 

Approximately 1011 neurons (nerve cells) of various kinds can be found in the brain. 

Figure 2.1 provides a schematic representation of the characteristics of a single neuron. 

The cell body or soma (the location of the cell nucleus) is connected to the dendrites 

(tree-like nerve fiber networks). A single long fiber, the axon, extends from the cell 

body and arborizes into various strands and substrands, at the ends of which are 

synapses – the transmitting ends of synaptic junctions, at their ends (Hertz and Palmer, 

1991). 
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Figure 2.1: A drawing of the neuron highlighting its dendrites, cell body, and 

axon (Kolb and Whishaw, 2009). 

The external and internal elements of a neuron are shown above in Figure 2.1 above. 

Largely responsible for increasing the neuron’s surface area, the dendrites are arguably 

its most characteristic feature. Numerous branches and small protrusions known as 

dendritic spines cover every individual branch and further increase the surface area of 

the dendrite. A single neuron can have between one and twenty dendrites, each with 

at least one branch of its own; each individual branch has spines that can number in 



 

8 

 

the thousands. The surface area of the dendrites determines the amount of information 

the neuron can gather since it is the dendrites that collect information from other cells. 

Individual neurons have a single axon extending from the cell body. The terminal 

button at the end of this axon lies close to, but does not touch, the dendritic spine of 

another neuron. This ‘almost connection’ between the surface of the end foot of the 

axon, the matching side of the neighboring dendritic spine, and the gap between them 

is known as a synapse. Compared to the broad capacity of the dendrites and spines to 

gather information, the neuron’s single axon limits it to only one communication 

output channel (Kolb and Whishaw, 2009). 

2.2.1 Synapses 

The connection between a presynaptic neuron’s axon and a postsynaptic cell’s dendrite 

(soma) occurs in a synapse. The chemical synapse is the most common type of synapse 

in the vertebrate brain. Here, the axon terminal lies pretty close to the postsynaptic 

neuron, resulting in a synaptic cleft: the little space left between the pre and post-

synaptic cell membranes. 

Thus far, two kinds of ion channels have been encountered: calcium activated ion 

channels and voltage activated ion channels. Transmitter-activated ion channels are a 

third type of ion channel participated in synaptic transmission with which we have to 

deal. Neurotransmitters are released into the synaptic cleft as a result of the activation 

of the presynaptic neuron. This caused the transmitter molecules to move to the 

opposite side of the cleft and cause receptors found in the postsynaptic membrane to 

be activated.  
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 The Gate 

The closing of a gate can interrupt the conduction of ion through the pore. Similarly, 

changes in temperature can also cause the gate to open and close sporadically, as well 

as a cause unwanted interruptions in the current. P0, which is the probability that the 

gate is open in voltage-dependent channels, is contingent on the membrane potential. 

The 𝑃0 in most voltage-dependent 𝑁𝑎+ , 𝐾+ , and 𝐶𝑎2+ ( Callahan and Korn,1994) 

channels from nerves and muscles rises relative to membrane depolarization (i.e. a 

decrease in the resting potential). There have been few instances where 𝑃0 increases 

on hyperpolarization. One such instance is the Kat1 channel (Chung, Anderson, and 

Krishnamurthy, 2007). 

 Neuronal Dynamics 

An intercellular electrode can be used to record the effect of a spike on the postsynaptic 

neuron. The intercellular electrode calculates the membrane potential: the likely 

difference between the cell’s interior and its corresponding surroundings. 

2.4.1 Spike 

The short electrical pulses contained in neuronal signals can be observed through the 

placement of a fine electrode in the proximity of the soma or axon of a neuron. These 

pulses are also known as action potential or spikes (Gerstner and Werner, 2002). 

Numerous types of cells, such as cells from pumpkin stems, eggs, and tadpole skin, 

have been known to produce voltage spikes across their cell membranes. Furthermore, 

action potential might be irrelevant for cell-to-cell signaling despite its role in cell 

division (Izhikevich, 2000). 

The contacts on a typical neuron’s dendritic tree are called synapses. These synapses 

allow the neuron to receive inputs from over ten-thousand other neurons (see Figure 
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2.1) and also change the membrane potential of the neuron by producing electrical 

transmembrane currents. While large currents result in significant postsynaptic 

potentials (PSPs) that the voltage-sensitive channels incorporated into the neuronal 

membrane can amplify and consequently result in a spike or an action potential, 

smaller channels produce only minimal PSPs. The spikes that result from large 

currents are the primary means of communication for the neurons; neurons hardly ever 

fire on their own and typically do so in response to spikes received from other neurons. 

Neurons aggregate all of the incoming PSPs and compare the “integrated” PSP with a 

voltage value. This value is known as the firing threshold. When the integrated value 

falls below the threshold, the neuron becomes dormant. However, it fires an all-or-

none spike and restores its membrane potential to its original state when the integrated 

value moves above the threshold. Theoretical plausibility is added to this argument by 

referring to the Hodgkin-Huxley model of spike generation in squid (Izhikevich, 

2007).  

2.4.2 Bursting 

Bursting occurs when neuron activity oscillates between repetitive spiking and a 

quiescent state (Izhikevich, 2000). Bursting is often the result of a slow voltage-

dependent process capable of modulating fast-spiking activity. The underlying theory 

is based on the discovery that the dynamics of a neuron have numerous time scales 

and may be explained using a singular perturbed dynamical system (Izhikevich, & 

Hoppensteadt, 1997). 

 The Action Potential 

Electrically stimulating the cell membrane at its resting potential results in 

concentrated graded potentials on the axon. Conversely, an action potential is a 

substantial, albeit brief, swap in the axon membrane’s polarity with a duration of 
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approximately one millisecond. The sudden voltage reversal across the membrane in 

an action potential makes the interior of the membrane positive, relative to the exterior. 

That is, up until the voltage sharply reverses again and the resting potential is restored. 

This sudden change in polarity occurs when the membrane’s potential depolarizes to 

threshold potential at approximately -50mV as a result of the large graded potential 

resulting from electrical stimulation. The membrane experiences significant change at 

-50mV, even without additional stimulation (Kolb and Whishaw, 2009). 

Irrespective of the numerous mechanisms that facilitate the communication between 

neurons, action potentials still play a particularly crucial role. Because they involve 

sudden changes in a cell membrane’s electrical potential, they can propagate in an 

essentially constant shape (Izhikevich, 2000). The neural axon is typically in either of 

two states. In the first, the results of processing in the soma are used as a basis for 

propagating an action potential. The shape and level of the propagating action potential 

are very stable, as is the possible difference across the cell membrane. This difference 

is reproduced at the axon’s branching points. The amplitude is in the order of 10-1 mV. 

The axons do no propagate any action potential in the second (resting) state. 
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Figure 2.2: Permeability changes and ion fluxes during an action potential 

(Sherwood, 2011). 

The above figure illustrates that (1) Resting potential: all voltage-gated channels 

closed. (2) At threshold, 𝑁𝑎 activation gate opens and 𝑃𝑁𝑎 rises. (3) 𝑁𝑎 enters cell, 

causing explosive depolarization. (4) At peak action potential, 𝑁𝑎 inactivation gate 

close and 𝑃𝑁𝑎 falls. At the same time, 𝐾activation gate opens at 𝑃𝑘rises. (5) 𝐾 leaves 

cell, causing its repolarization resting potential, which generates falling phase of action 

potential. (6) On return to resting potential, 𝑁𝑎 activation gate closes and inactivation 

gate opens. (7) Further outwork movement of 𝐾  through open 𝐾  channel briefly 

hyperpolarizes membrane. (8) 𝐾  activation gate closes, and membrane returns to 

resting potential. 
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 Excitability 

A ‘superthreshold’ input causes a large all-or-none action potential while a 

‘subthreshold’ synaptic input results in a small graded postsynaptic potential in what 

is known as neuronal excitability. The neuronal excitability is larger than the sub-

threshold response’s amplitude. Geometrically speaking, a dynamical system with a 

constant equilibrium is excitable when the large amplitude piece of trajectory is large 

and starts in a small area around said equilibrium, goes away from the area, and comes 

back to the equilibrium. These excitable systems occur close to bifurcations. A 

periodic trajectory may result from the modification of the vector field in the tiny 

shaded area. 

2.6.1 Neuronal Excitability 

While neurons are usually at rest, they are excitable in that they can react to certain 

stimuli by firing sparks. The computational properties of the neurons include: the spike 

latencies (delays), their firing frequency range, the coexistence of resting and spiking 

states, etc. From the perspective of dynamical systems, neurons alternate between 

spiking activity and resting and thus, are excitable due to their bifurcation. The 

computational properties of neurons are determined by the type of bifurcation, as 

opposed to the ionic currents (Inzikevich, 2007). 

 Noise in Spiking Neuron Models 

In vivo recordings of the activities between neurons are often plagued with a high 

level of inconsistency. The irregularity of spikes in individual neurons is 

accompanied by the seemingly random relationship between the firing patterns of 

multiple neurons. One of the most pertinent problems facing neuroscience is how to 

uncover the rhythm behind the neuronal activity rather than just meaningless noise 

(Gerstner and Werner, 2002).  
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2.7.1 Spike Train 

Neuron models, such as the Hodgkin-Huxley or the integrate-and-fire model, tend to 

produce a steady sequence of spikes when engendered by an equally steady and 

powerful current. Conversely, while neuronal models with adaptation currents might 

have constant inter-spike intervals, this is usually followed by an initial, short transient 

phase. The behavior of typical neuron spike trains in viva is considerably more 

irregular (Gerstner and Werner 2002). 

2.7.2 Are Neurons Noisy? 

A number of in vivo experiments have been known to demonstrate the noisy behavior 

of the central neuron. For instance, it is possible to record the activities of neurons in 

the visual cortex when a bar (moving slowly) is placed on screen in view of the animal 

under study (Gerstner and Werner, 2002). However, the spike train tends to fluctuate 

substantially between trials after several repetitions of the experiment. Additionally, 

the same neuron is also impulsively active. The intervals between subsequent spikes 

varies greatly during such spontaneous activity and causes the range of inter-spike 

intervals to be rather wide. 

Is the presence of ubiquitous noise in the central nervous system proven by these 

experiments? The aforementioned observations relate to experiments that consider the 

neural system in its entirety. The cortical neuron that forms the field for such 

experiments receives inputs from numerous neurons in the brain in addition to those 

received from the retina. 

2.7.3 Noise Sources  

There are two types of noise sources: extrinsic noises, which are the result of network 

effects and synaptic transmission; and intrinsic noises, which generate stochastic 

behavior on the neuronal dynamic level (Manwani and Koch, 1999). Thermal noise is 
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literally an omnipresent source of noise. The voltage in any electrical resistor tends to 

oscillate at finite temperatures due to the discrete nature of electrical charge carriers 

(Johnson noise).  

The neuronal membrane potential also fluctuates as a result of neuronal dynamics 

being represented by a similar resistor-containing electrical circuit. However, 

fluctuations resulting from Johnson noise are negligible in comparison to those cause 

by other sources of noise in neurons (Manwani and Koch, 1999). 

The fixed number of ion channels in a neuronal membrane patch serve as another 

neuron-specific source of noise (White et al., 2000; Schneidman et al., 1998). These 

channels are always either open or closed. 

 Origins of computer science and neuroscience 

Both Neuroscience and computer science came into being at nearly the same time and 

in influenced each other heavily in their formative stages. Over time, the fields have 

diverged excessively and have developed very different notions of seemingly shared 

concepts such as memory, cognition, and intelligence (Lytton, 2002). 

One difference between the neuroscience and computer science viewpoints has to do 

through the necessary adoption of a big-picture approach through the computer 

scientists and a reductionist method by many neuroscientists. These two approaches 

are usually called top-down and bottom-up, respectively. The top-down approach rises 

from an engineering perspective: design a machine to do a particular assignment. If 

you're interested in intelligence, then design an artificial intelligence machine. The 

bottom-up perspective is the province of the phenomenologist or the taxonomist: 

collect data and organize it. Even granting that most U.S. science today is federally 
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mandated to be hypothesis-driven, a vital element of biology is the discovery of facts. 

Hypotheses are then intended to fit these facts together. As summarized here, these 

situations are caricatures. numerous biologists want to consider how the brain thinks, 

and several computer and cognitive scientists are interested in what roll on inside the 

skull.   
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 Chapter 3 

3 ION CHANNEL DYNAMICS 

 Introduction 

Hodgkin and Huxley (1952) proposed a set of coupled, differential, nonlinear, 

deterministic equations, which is concerned with how sodium and potassium ions are 

conducted in the nerve membrane and the transmembrane voltage, which control how 

these ion currents are triggered. The transmembrane voltage is averse to metabolic 

energy, which is itself significantly affected by the ion currents. The governing rate 

constants depend on the particular voltage in question. These equations can, under 

specific conditions, result in solutions that display unstructured, yet periodic, spiking 

that is relatively similar to the calculated electrical voltage spiking in squid axon as 

has been observed by electrophysiologists  

The patch-clamp technique posited by Neher and Sakmann (1995) has provided the 

opportunity to take certain measurements, which have shown that the minimalistic 

voltage fluctuations produced by individual ion channels are the result of said ion 

channels being simple stochastic elements that spontaneously open and close. A 

conclusion that was already considered based on previous voltage noise measurements 

but could not be confirmed as the measurements weren’t for individual channels. It is 

almost certain that the origin of the ions’ intrinsic stochasticity is thermal. DeFelice 

and Isaac (1993) integrated the ion channels’ stochasticity in the computer model they 

used to microscopically describe the channel dynamics. Consequently, their model is 
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inherently stochastic as opposed to deterministic. It also uses the individual channels’ 

voltage-dependent transition probabilities to indirectly couple them and possess an 

accelerated equilibration of the capacity of the transmembrane voltage in sizeable 

portions of the membrane. 

 Channel Noise 

When variations are the result of seemingly random openings and closings of ionic 

channels, the result is channel noise. An ionic channel could either be a pore or a spore 

within a cell membrane. Ionic channel is so named based on the ionic species that it 

most commonly allows to pass through it – Na channel, K channel. Physically 

speaking, an ionic channel is understood to be a relatively big molecule, the different 

configurations of which match the channel being either closed or open; determined by 

a gate. Ionic channels noise is generally divided into one of two types: nonsynaptic 

and synaptic channels noise (Tuckwell, 1989). 

3.2.1 Open Channel Fluctuations 

Thermal fluctuations cause channels to remain in flux and constantly open and close. 

Consequently, the amount of open channels, and the amount of ion current permitted 

by said channels equally fluctuate. Let us first consider the channel transition starting 

from open and ends to close. For sodium channels every channel that is open has all 3 

of its m-domains in an open state and its h-domain in a similarly open position. Should 

any of these cease to be open, the channel itself would close (Adair, 2003). According 

to HH, the depolarization happens when 3 of the domains, considered m, are typically 

closed at the membranes resting potential. The fourth, considered h, is mostly active 

at the resting potential and closes upon depolarization. Even though, the channel is 

considered open if the 3 similar mــdomains are open and it has an active h domain, 

and is closed otherwise. When opening, Na ions permit into the cell driven through an 
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electrochemical gradient created through ion pumps. The K channel consists of 4 

duplicate n-domains that are mainly in a closed state at the resting potential and drive 

to an open state on depolarization. Although, the channel is open while altogether 

domains are open and closed else. Thus, the potassium channels are same largely 

closed through the resting potential and then open while the membrane is depolarized 

permitting K ions to discharge motivated similarly by an electrochemical gradient. 

Nevertheless, the K channels open additional slowly than the sodium channels and also 

close slowly just happening repolarization. 

 The DSM Neuron 

Güler (2006) first proposed utilizing stochastic mechanics, in occurrences of 

dissipation, as a means to model just how voltage dynamics in the excitable membrane 

were affected by ion channel noise. Güler (2007) further expanded the proposed 

ansatz-reliant method both in terms of its fundamentals and formalism. The present 

understanding of the prosed method is based on the latter paper. The unique 

formulation that mentioned in the DSM neuron s based on the understanding that 

conformational changes in ion channels are, in reality, exposed to two distinct types of 

noise. In the first, gates open and close based on different probabilities such that the 

voltage specifies the average (rather than precise) number of the gates open in the 

membrane. The movement of the voltage-dependent gating particles in and out of the 

membrane in this kind of noise is stochastic and is known as intrinsic noise. The other 

kind of noise, topological noise, results in the channels having more than one gate and 

thus, is inherently different from intrinsic noise. Topological noise is the result of 

changes in the topologies of open gates as opposed to changes in the amount of open 

gates. Due to their different origins, intrinsic and topological noises need to have their 
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effects on voltage dynamics formulated independently. Despite this, they both interact 

through the membrane voltage in a coupled form (Güler, 2007). 

In a toy membrane with just 3 potassium channels (twelve gates), for example, 9 open 

gates may be set in various topological states with the possibility that either none, one, 

or two of the channels are open. Throughout the dynamics, the gating particles are 

hardly organized, both when leaving the open gates and occupying the closed gates 

that are available. As such, the membrane can have an identical number of open gates 

at two different times but with dissimilar conductance values. So, when regulating the 

voltage dynamics, all of the open gates’ permissible topologies ought to be taken into 

consideration. The fluctuations resulting from the uncertainty surrounding access to 

acceptable topological states is known as topological noise, and motivates the 

implementation of stochastic mechanics. Two forms of noisy systems have been 

identified: the collective system and the intrinsic system. The former occurs in the 

membrane voltage phase space while the latter is the result of dynamical attributes 

linked with the gating particles. Understood to be under the influence of topological 

noise, the collective system is joined to the intrinsic system in a systemــplusــreservoir 

strategy. While certain types of random noise can be found independently in both the 

collective and intrinsic systems, when they are not bothered by their respective 

existence, unpredictable effects are expected to result from the interaction between 

these two noisy systems. Consequently, reduced density operator techniques were used 

to calculate the voltage dynamics of the through the system (collective and intrinsic 

systems included). It has been discovered that the combination of both systems results 

in the renormalization of both the membrane capacitance and the voltage-dependent 

potential function, and channel dissipation (Güler, 2008). 
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3.3.1 The Approach for Signal-To-Noise Ratio Computation 

One particular issue that results from extracting a signal from background noise is 

stochastic resonance (SR) (Adair, 2003). SR also coherently explains how weak 

signals are amplified in nonlinear systems. It is known that ion channel noise in 

neurons can result in stochastic resonance. While the actual optimal size of the cluster 

is contingent upon the frequency of the signal, it is usually either a large cluster size 

with several hundred or even thousands of channels or small clusters with only a few 

channels (Jung and Shuai, 2001). The stochastic resonance is typically determined 

using the ratio of the signal peak height to the height at the background – the signal-

to-noise ratio (SNR). The aim of this study is to uncover the possible effects of 

renormalization terms on the SNR by way of periodic input currents. The following 

formula is used to measure SNR: 

𝑆𝑁𝑅 =  
𝐴𝑖

𝐶𝑉 (𝑑)
 

Where the amplitude of the input current is represented by 𝐴𝑖; 𝐶𝑉()  represents the 

variation coefficient; d represents either the inter-bursting is the space among two 

consecutive bursts(time interval) during a bursting activity phase , or the inter-spike is 

the time between spikes (time interval). During a tonic firing activity phase. The 

variation coefficient the formula uses is defined as 𝐶𝑉(𝑑) =  
𝑉𝑎𝑟(𝑑)

𝜇
 , where 𝑉𝑎𝑟(𝑑) is  

the variance of d, and µ is the average value of d. It was found that the renormalized 

correlations can lead to an increased SNR (Almassian and Guler, 2011b). 

 Application to Ion Channel Clusters 

Specific types of ion channels conduct specific species of ions and control how 

channels conduct sodium and potassium through the membrane (Hille, 2001). The 

number of channels that are open at any specific point in time changes relatively 
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sporadically (Sakmann and Neher, 1995), causing both the membrane’s conductivity 

and the transmembrane voltage to fluctuate. The fluctuations in the voltage are 

insignificant when the quantity of ion channels (which determines the area of the cell 

membrane) membrane patch is large. As such, the dynamics of the transmembrane 

voltage are described using the renowned Hodgkin-Huxley (HH) equations (Hodgkin 

and Huxley, 1952). The effects of channel fluctuations are possibly more intense, 

however, in smaller membrane patches. Figures 3.1 and 3.2 illustrates below the state 

transition figures for potassium and sodium respectively. As shown in the diagrams, 

sodium channels have 3 m gates and 1 h gate and potassium channel have 4 n gates 

(Chow and White, 1996).  

 
Figure 3.1: Kinetics scheme of state transition used for of a potassium channel 

(Chow & White, 1996). 

 
Figure 3.2: Kinetics scheme of state transition used for a sodium channel 

(Chow & White, 1996). 

A channel is considered closed if at least one of its gates is closed. Furthermore, the 

individual channels do not interact with one another. The present formulation is easily 
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applied to potassium and sodium channel clusters by means of the state transition 

diagrams shown in Figures 3.1 and 4.1. 

A basic stochastic approach that simultaneously monitors the Markov process for each 

gate can be used to provide a microscopic Markov simulation for a given channel 

population. There is a growing need to develop a different formulation in which the 

microscopic dynamics are competently approximated without a corresponding rise in 

the cost of computation due to increases in population size. In a seminal study, Fox 

and Lu (1994) investigated a method of diffusion approximation for discrete gate 

dynamics, where the vector including the fractions of likely channel states experiences 

changes corresponding to the Langevin-type of equation in matrix formula. 

Additionally, numerically calculating the square-root of matrix at every time step is 

required by this approach. 
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   Chapter 4 

4 MODELS OF NEURONS 

 The Hodgkin-Huxley Model 

Through experiments performed on the giant axon of a squid, Hodgkin and Huxley 

(1952) discovered a leak current consisting primarily of 𝑐𝑙− ions and three kinds of 

ion current: potassium, sodium,. Separate specific voltage-dependent ion channels 

regulate the flow of sodium and potassium ions through the cell membrane. The 

Hodgkin-Huxley model’s dynamics vary for different inputs – step current, pulse, and 

constant – and also take into account inputs dependent on time (Gerstner and Werner, 

2002). In addition to functioning as a capacitor, the semi-permeable cell membrane 

also acts as a divide between the extracellular liquid that surrounds the cell and its 

interior. Injecting an input current into the cell can either lead to the presence of more 

charges in the capacitor, or even cause the current to permeate the cell membrane. The 

level of ion concentration in the cell's interior differs from the ion concentration in the 

extracellular liquid due to the movement of ion through the cell membrane. Batteries 

are a manifestation of the Nernst potential that results from the different levels of ion 

concentration. 

 The Membrane Dynamics 

V, which represents the transmembrane voltage, evolves as such: 

𝐶
𝑑𝑉

𝑑𝑡
=  −𝑔𝐾𝜓𝐾 (𝑉 − 𝐸𝐾) −  𝑔𝑁𝑎𝜓𝑁𝑎 (𝑉 − 𝐸𝑁𝑎) − 𝑔𝐿 (𝑉 −  𝐸𝐿) + 𝐼 (4.1) 
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Where the number of potassium channels were open relative to the aggregate number 

of membrane potassium channels is represented by variable 𝜓𝐾  and the number of 

sodium channels were open is represented by 𝜓𝑁𝑎 . The value of the constant 

membrane parameters utilized in Eq. (4.1) are provided in Table 1. The equations of 

Hodgkin-Huxley (HH) approximate the channel variables 𝜓𝐾 and the channel variable 

𝜓𝑁𝑎  to the deterministic values  𝜓𝐾  = 𝑛4  and  𝜓𝑁𝑎 = 𝑚3ℎ ; these values are 

representative of both the 4 nـgates present in a single potassium channel, and the 

single hـgate and 3 mـgates in a sodium channel. For a channel to be considered open, 

all of its constitutive gates must be open. Here, the gating variables are represented by 

n, m, h, the total number of K and Na channels are represented by 𝑁𝐾  and, 𝑁𝑁𝑎 

respectively, and the number of open hـgates, mـgates, and n-gates, correspond to 

𝑁𝑁𝑎ℎ, 3𝑁𝑁𝑎m, and 4𝑁𝐾𝑛. 

Table 4.1: Instant of membrane (Hodgkin and Huxley, 1952) 

C Membrane Capacitance 𝟏𝝁𝑭/ 𝒄𝒎𝟐 

𝒈𝒌 Maximal Potassium Conductance 36 mS/𝑐𝑚2 

𝑬𝒌 Potassium Reversal Potential -12mV 

𝒈𝑵𝒂 Maximal Sodium Conductance 120mS/𝑐𝑚2 

𝑬𝑵𝒂 Sodium Reversal Potential 115mV 

𝒈𝑳 Leakage Conductance 0.3mS/𝑐𝑚2 

𝑬𝑳 Leakage Reversal Potential 10.6mV 

 Density of Potassium Channels 18chns/𝜇𝑚2 

 Density of Sodium Channels 60chns/𝜇𝑚2 
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The Markov process outlined below can also be used in computing gate dynamics. If 

one of the n-gates is closed at a specific time (t), exp( −𝛼𝑛𝛥𝑡)represents the probability 

of it being closed at time t + Δt, while exp( −𝛽𝑛𝛥𝑡)represents the chance of it being 

open at time t + Δt. The opening and closing rates of n-gates, which are voltage-

dependent, are denoted by the parameters 𝛼𝑛 and 𝛽𝑛  – similar for the rates of h-gates 

and m-gates. The rate function that is used therefore, is represented as: 

𝛼𝑛 = (0.1 − 0.01 𝑉) (exp(1 − 0.1 𝑉) − 1)⁄ , (4.2a) 

𝛽𝑛 = 0.125 exp(−𝑉 80⁄  ), (4.2b) 

𝛼𝑚 = (2.5 − 0.1 𝑉) (exp(2.5 − 0.1 𝑉) − 1)⁄ , (4.2c) 

𝛽𝑚 = 4 exp(−𝑉 18⁄  ), (4.2d) 

𝛼ℎ = 0.07 exp(−𝑉 20⁄  ), (4.2e) 

𝛽ℎ = 1 (exp(3 − 0.1 𝑉) + 1)⁄ , (4.2f) 

4.2.1 Conductance Fluctuations 

Thus far, we have taken the sources of noise to have a passive path that matches the 

excitable element itself. To the end of gaining more intricate knowledge of the various 

processes within the membrane, the noise that results from the voltage-dependent 

conductance of Sodium (Na), specifically its fluctuations, becomes all the more 

interesting. For example, Lecar & Nossal (1971) analyzed how each conductance noise 

contributes to the overall fluctuations in the threshold. In particular, they searched for 

a model to account for how unitary conducting channels open and close, thus resulting 

in conductance noise. 
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Furthermore, Lecar & Nossal (1971) think through a model in which the voltage-

dependent conductance originates from a Langevin force connected with thermal 

fluctuations of the amount of open channels. The equilibrium characteristics of the 

channel fluctuations be able to achieve in a common manner by a straightforward 

statistical argument. They characterize the normalized conductance, while channel is 

open and close. The average value equal to the probability that opening at the n-th 

times. Subsequently whole channels are identical and independent, the probability of 

every time are opening channel is in turn set by the expectation value, membrane 

conductance are normalized. 

 The Non-Trivial Cross Correlation Persistency (NCCP) 

Knowing the number of open gates in a potassium channel (n) does not uniquely 

specify 𝜓𝐾 since the channel has over one n-gate. To illustrate, while a toy membrane 

with eight gates in two potassium channels might have two open gates in one channel 

and four open in the other at time 𝑡2; it can also have both channels each have three 

gates open at another time 𝑡1. And so, while the total number of gates open at both 

times 𝑡2 and 𝑡1 is equal, one of the channels is open in the former, while none of them 

is open in the latter (see Figure. 4.1). Figure 4.1 (below) shows two conformational 

conditions of a figure membrane, at times 𝑡1and 𝑡2. The membrane consists of two 

potassium channels for a total of eight nـgates. The filled black circles represent open 

gates, while the small dots closed gates. The channels are represented by the larger 

circles. Regardless of the fact that at 𝑡1and 𝑡2 the number of open gates is the same 

(six), there is one open channel (shadowed) at 𝑡2 and no channel is open at 𝑡1  the  ـ

gateـtoـchannel uncertainty. The terms gate-to-channel uncertainty and gate noise are 

respectively used to describe the uncertainty that occurs in regards to 𝜓𝐾 even when 

the value for n has been computed, and the amount of fluctuations in n. Other terms 
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had hitherto been used to represent these two phenomena, but were changed following 

a conviction in the field that earlier terms did not convey as much clarity. The 

uncertainty regarding the gateـtoـchannel ratio manifests itself as a random dynamic 

variation in the construct 𝜓𝐾  which isolates the fluctuations in the channel that ,[𝜓𝐾] ـــ 

result from the uncertainty in the gateــtoــchannel ratio. Consequently, the construct 

would cease to exist if this uncertainty is to be resolved, regardless of gate noise. 

 
Figure 4.1: Two possible conformational states of a toy membrane (Güler, 

2011). 

In the above, the configuration average of the relative number of opening potassium 

channels is represented by  𝜓𝐾 and is calculated for the membrane’s possible 4𝑁𝐾𝑛 

open n-gates. The construct 𝜓𝐾  −  [𝜓𝐾] is used to calculate the difference between 

the configuration average at a particular point in time and the number of open channels. 

So long as the membrane is not too small, it is assumed that 

𝜓𝐾  ≈  𝑛4 (4.3) 

Güler (2011) found that 𝜓𝐾 ـــ [𝜓𝐾] (construct fluctuations) and the fluctuations of 

voltage in the phase of subــthreshold activity share a non-transient correlation, which 
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is precisely what is referred to by NCCP. The autocorrelation time of the construct 

𝜓𝐾  while finite, must not equal zero; this is crucial for the occurrence of ,[𝜓𝐾] ـــ 

NCCP. Looking at Equation 4.1, it is evident that a negative variation comparable to 

𝜓𝐾  −  [𝜓𝐾]  >  0  happens in V over a particular period in time. Conversely, the 

variation is positive if throughout 𝜓𝐾  − [𝜓𝐾] <  0 in the same period. NCCP occurs 

so long as the residence time for 𝜓𝐾  −  [𝜓𝐾] is of a suitable duration in the algebraic 

sign. A pictorial illustration is offered in Figure 4.2. 

According to the construct, the formulation 𝜓𝑁𝑎  −  [𝜓𝑁𝑎] is believed to represent the 

gateــtoــchannel uncertainty that accompanies to sodium channels. Provided the 

membrane is not extremely small, the configuration average of the number of sodium 

channels that are open [𝜓𝑁𝑎] goes thus: 

 
Figure 4.2: An illustration of the variant in the V. Adopted from Güler (2011). 

𝜓𝑁𝑎  ≈  𝑚3ℎ 
(4.4) 
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 The Colored Noise Model Formulation 

Because the autocorrelation time for 𝜓𝐾  −  [𝜓𝐾] , is non-zero and (on a microscopic 

timescale) its algebraic sign is durable, 𝜓𝐾 can be computed as 

𝜓𝐾 = [𝜓𝐾] +  𝒬𝐾 (4.5) 

Where the autocorrelation time for 𝒬𝐾  – a stochastic variable with an expectation 

value equal to zero at equilibrium – is greater than zero. As such, it is possible to treat 

𝒬𝐾 as colored noise. It is somewhat necessary, however, to properly define 𝒬𝐾 so as 

to analytically implement NCCP. 

It is easier to approximating the equation 4.5 as: 

𝜓𝐾 =  𝑛4 +  𝜎𝐾𝔮𝐾 (4.6) 

Where the approximation found in equation 4.3 was used, and a different stochastic 

variable – 𝜎𝐾 – is introduced. 𝜎𝐾 represents the standard deviation for 𝜓𝐾, which is 

calculated for the potential formations of a membrane with 4𝑁𝐾𝑛  open nــgates. 

However, it is more convenient to calculate the standard deviation in a case whereby 

the probability of n covers the chance of each gate in each configuration being open 

without the limitation of being equal to 4𝑁𝐾𝑛 open gates per configuration, is much 

easier. The following formula is applicable for such a case: 

𝜎𝐾 = √
𝑛4(1 −  𝑛4)

𝑁𝐾
 (4.7) 

The formula for the random walk problem was only used in the above derivation of 

𝜎𝐾, after 𝑛4 had been taken to represent the probability that a channel will be open. 

Güler (2013a) posited that, as represented in Equation 4.7, 𝜎𝐾 is a suitable estimate of 

the real standard deviation, although just for a proportionality constant incorporated 

into 𝔮𝐾 . It is noteworthy that 𝜎𝐾  disappears in the bounded of an infinite 

membraneــsize; consequently, the following formula is relevant for said limit: 𝜓𝐾 =
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𝑛4 . No gateــtoــchannel uncertainty exists in regards to when all of the nــgates 

potassium channels are closed or open i.e. n = 0 or n = 1 respectively. As such, such 

cases are expected to be accompanied by the disappearance of colored noise and 𝜎𝐾 

being equal to zero at these unique n-values. 

Güler (2013a) considers the stochastic variable 𝑞𝐾 to follow equations similar to those 

adhered to by the position variable of a Brownian harmonic oscillator. As a result, 𝑞𝐾 

demonstrates near periodicity, has memory, contains an unbounded variance and is 

stochastic. These are also the characteristics of the construct 𝜓𝐾  with a time  [𝜓𝐾] ــــ 

of autocorrelation is nonzero. It is for this reason that we adopt the Brownian harmonic 

oscillator as a possible way to biologically emulate the construct. The dynamics of 𝑞𝐾 

are described by the following equations: 

𝜏𝑞𝑘̇ =  𝑝𝑘 (4.8a) 

𝜏𝑝𝑘̇ =  −𝛾𝑘𝑝𝑘 −  𝜔𝑘
2𝐷𝑛𝑞𝑘 +  𝜉𝑘 (4.8b) 

Where  𝐷𝑛 is represented as 

𝐷𝑛  ∶= 𝛼𝑛(1 − 𝑛) + 𝛽𝑛𝑛 (4.9) 

And 𝜉𝑘 is a zeroــmean Gaussian white noise term with a mean square calculated as: 

〈𝜉𝑘(𝑡)𝜉𝑘(𝑡′)〉 =  𝛾𝐾𝑇𝐾𝐷𝑛𝛿(𝑡 − 𝑡′) (4.10) 

τ is the parameter that equal to the unit time. Both the constants 𝛾𝐾, 𝜔𝐾 and 𝑇𝐾, and the 

variables 𝑞𝐾  and 𝑝𝐾 are represented by dimensionless units. The speed at which a 

conformational state experiences memory loss (on a microscopic timescale) is 

represented by 𝐷𝑛 . As α𝑛  increases, so does an nــgate is the probability of 

transitioning from when closed to open; the probability of the gate transitioning from 

open to closed rises with 𝛽𝑛. 𝑞𝐾  is expected to switch sign more frequently and behave 

more erratically when 𝐷𝑛 is a larger value, thus causing it to be accompanied by the 
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constants 𝜔𝐾  and 𝑇𝑘 . The proportionality of 𝐷𝑛  to the noise variance which the 

nــgates in the FL equations is no coincidence. Based on non-equilibrium statistical 

mechanics (Zwanzig, 2001), it is assumed that if 𝑞𝐾 obeys the above equations, its 

variance at equilibrium, is computed as: 

〈𝑞𝐾
2 〉𝑒𝑞   =  

𝑇𝐾

𝜔𝐾
2  (4.11) 

It is worth pointing out that the variance is, as it should be, a constant. 

As was noted in the construct of 𝜓𝐾  − [𝜓𝐾], the construct 𝜓𝑁𝑎 ــــ [𝜓𝑁𝑎] equally has 

a fixed autocorrelation time is nonــzero that causes the NCCP characteristic of the 

sodium channels. Thus, the colored formulation intended for the K conductances able 

to be adapted for Na conductances. Applying approximation 4.4, were calculated 

𝜓𝑁𝑎 using equation 4.6 as: 

𝜓𝑁𝑎 =  𝑚3ℎ +  𝜎𝑁𝑎𝑞𝑁𝑎 (4.12) 

Where 𝑞𝑁𝑎 is a stochastic variable with an autocorrelation time greater than 0 and a 

zeroــexpectation value at equilibrium. The standard deviation of 𝜓𝑁𝑎 is represented 

by 𝜎𝑁𝑎 , which is calculated for all possible configurations of a membrane with 

3𝑁𝑁𝑎𝑚 open mــgates and 𝑁𝑁𝑎ℎ open hــgates. The method utilized in calculating  𝜎𝐾  

may also be used for 𝜎𝑁𝑎; hence, 

𝜎𝑁𝑎 = √
𝑚3(1 − 𝑚3)

𝑁𝑁𝑎
ℎ (4.13) 

Both 𝑞𝐾   and the stochastic variable  𝑞𝑁𝑎  adhere to the same kind of dynamical 

equations: 

𝜏𝑞𝑁𝑎̇ =  𝑝𝑁𝑎, (4.14a) 

𝜏𝑝𝑁𝑎̇ =  −𝛾𝑁𝑎𝑝𝑁𝑎 − 𝜔𝑁𝑎
2 𝐷𝑚𝑞𝑁𝑎 +  𝜉𝑁𝑎 (4.14b) 

Where 𝐷𝑚 is denoted as 
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𝐷𝑚  ∶= 𝛼𝑚(1 − 𝑚) + 𝛽𝑚𝑚 (4.15) 

The Gaussian white noise term 𝜉𝑘 has a zero-mean and a mean square denoted as: 

〈𝜉𝑁𝑎(𝑡)𝜉𝑁𝑎(𝑡′)〉 =  𝛾𝑁𝑎𝑇𝑁𝑎𝐷𝑚𝛿(𝑡 − 𝑡′) (4.16) 

At equilibrium, the variance of 𝑞𝑁𝑎 is: 

〈𝑞𝑁𝑎
2 〉𝑒𝑞 =

𝑇𝑁𝑎

𝜔𝑁𝑎
2  (4.17) 

The table 4.2 includes the constant value of The above variable are given by: 

Table 4.2: The values of parameters 

𝛾𝐾 = 10 𝜔𝐾
2 = 150 𝑇𝐾 = 400 

𝛾𝑁𝑎 = 10 𝜔𝑁𝑎
2 = 200 𝑇𝑁𝑎 = 800 

 

 The Gate Noise 

In addition to providing a better understanding of NCCP, the whole set of analytical 

activity should also account for the gate noise. For this purpose, FL's Langevin 

equations were used as a reference point used for the gating variables. In the (Güler, 

2011a) case, the white noise terms utilized in the Langevinــequations have changed 

noise variances. The following formulae apply to the gating variables: 

𝑛̇ = 𝛼𝑛(1 − 𝑛) − 𝛽𝑛𝑛 + 𝜂𝑛 (4.18a) 

𝑚̇ = 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 + 𝜂𝑚 (4.18b) 

ℎ̇ = 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ + 𝜂ℎ (4.18c) 

Where the mean zero Gaussian white noise terms  𝜂𝑛, 𝜂𝑚, and 𝜂ℎ are assumed to have 

mean squares computed as follows: 

〈𝜂𝑛(𝑡)𝜂𝑛(𝑡′)〉 =  
𝐷𝑛

4𝑁𝐾
𝛿(𝑡 − 𝑡′) (4.19a) 
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〈𝜂𝑚(𝑡)𝜂𝑚(𝑡′)〉 =  
𝐷𝑚

3𝑁𝑁𝑎
𝛿(𝑡 − 𝑡′) (4.19b) 

〈𝜂ℎ(𝑡)𝜂ℎ(𝑡′)〉 =  
𝐷ℎ

𝑁𝑁𝑎
𝛿(𝑡 − 𝑡′) (4.19c) 

The terms 𝐷𝑛 and 𝐷𝑚 were respectively defined in equations 4.9 and 4.15. 

𝐷ℎ is likewise defined as: 

𝐷ℎ  ∶= 𝛼ℎ(1 − ℎ) + 𝛽ℎℎ (4.20) 

Furthermore, the study also chooses to utilize the Brownian motions as opposed to the 

Gaussian white noise terms 𝜂𝑛, 𝜂𝑚, and 𝜂ℎ in equations 4.18a to 4.18c (Saarinen..., 

2008). It does, however, still adopt the (Fox and Lu) formula for the gating variables 

as the formula was used in developing the white noise terms in the gating dynamics 

equations. 

 HH Model Under Noisy Rate Function 

Study of dynamics under noisy rate functions is also of interest. In this context Güler 

(2013b) opines that the weak performance of the Linaro, Storace et al. The model in 

(Güler, 2011) is the result of its use of a covariance function of open channels at the 

steady state in its derivation. Conversely, the model (Güler, 2011b) does not succumb 

to the problem of noise being present in the rates since it does not utilize steady-state 

approximation as in the Linaro et al. model. This makes it a more generic formulation 

that is more reliable for mechanisms aimed at generating neuronal signal with unique 

specifications. Additionally, it has also been argued in the context of gating particles 

that the anticipated noise in the rate functions is possibly of a physiological nature. 

However, the stochasticity is generally uncommon and usually only affects smaller 

membrane sizes. 
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The noise terms in the conductances, 𝜙𝑘
𝐺  and 𝜙𝑁𝑎

𝐺 , were also taken into consideration 

in an effort to gain a better understanding of NCCP.  The two terms are functions of 

their attendant gating variables: 𝜙𝑘
𝐺   depends on n while 𝜙𝑁𝑎

𝐺  depends on m and h. The 

NCCP characteristic of the potassium channels is represented by term 𝜙𝑘
𝐺  , which is 

computed as: 

𝜙𝑘
𝐺 = √

𝑛4(1 − 𝑛4)

𝑁𝐾
𝑞𝐾  (4.21) 

The following formula represents the NCCP attributed to the sodium channels: 

𝜙𝑁𝑎
𝐺 = √

𝑚3(1 − 𝑚3)

𝑁𝑁𝑎
ℎ𝑞𝑁𝑎 (4.22) 

Where 𝑞𝑁𝑎 obeys a stochastic variable having a zero-mean Gaussian white noise. All 

of the pertinent values can be found in Güler (2013b); both the noise terms associated 

with the gating variables and their mean squares are Gaussian. 

The values representing the variance of 𝜂ℎ in the present study are similar to that used 

in Fox and Lu (1994)’s model. However, the variances for both 𝜂𝑛 and 𝜂𝑚   are 

respectively one-fourth and one-third of their variances in the Fox and Lu model. 

Based on the non-equilibrium statistical mechanics, it can be concluded that the 

variances for the stochastic variables 𝑞𝑘  and 𝑞𝑁𝑎  at equilibrium can be computed. 

During the numerical application of the model (Güler, 2011b), subsequent checks are 

necessary following every time step to ensure that the noise terms that in Equations 

4.18a until 4.18c do not have a value other than 0 or 1 for either n, m, or h. If they do, 

the relevant step must be carried out again with a new set of numbers each for 

𝜂𝑛, 𝜂𝑚, 𝑜𝑟 𝜂ℎ.  
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Chapter 5 

5 MINIMAL DIFFUSION FORMULATION 

Güler (2015) recently suggested that each of the ensemble’s chains be imagined as a 

particle to make them easier to visualize. The formulation offers a diffusion 

approximation so as to determine the dynamics for the density of chains in a particular 

relevant state, and is valid after the system is relaxed. The ensemble is understood to 

be comprised of Markov chains of an ergodic (irreducible) Markov chain continuous-

time nature, which autonomously evolve within a shared transition rate matrix in the 

limited spaces of certain states. The cardinal benefit of the formulation is that it is not 

too complex. Notwithstanding the size of the state space or density of the transition 

matrix, it is always comprised of only two noise terms and two stochastic variables, 

neither is it limited by matrixــsquare root operations. The formulation is allowed to 

function such that it takes the effects of state density fluctuations for non-relevant 

states as a collective as opposed to individually.  

However, because it does not use any other state density fluctuations besides 𝜙𝑟  and  

𝜙𝑠 – as the overall result of all other density fluctuations is inherent to the formulation 

(Güler, 2015) – the diffusion approximation advanced here does not suffer from the 

aforementioned problems. Furthermore, at equilibrium and characterized by the 

probability of transition, the process 𝜙𝑠  is Markovian process and also stationary 

process. It may also be taken as a Gaussian process, although this is not entirely 

accurate. In reality, it is actually an Ornstein-Uhlenbeck; this is the conclusion drawn 
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from Doob’s theorem. When the process is concurrently stationary, Markovian 

process, and Gaussian process, it is either a entirely random process or an Ornstein-

Uhlenbeck.  

N is taken to represent how many Markov chains the ensemble has, while {0, . . . L} 

represents the space of the states. Additionally, 𝜃𝑙 (l = 0, . . . L) denotes how many 

chains are in state l at a specific time, while the synonym is 𝜓𝑙 ∶=
𝜃𝑙

𝑁
 represents the 

state’s density. The state density’s fluctuation in the 𝜓𝑙 is symbolized by 𝜃𝑙; that is: 

 𝜓𝑙 ∶=
𝜃𝑙

𝑁
 〈𝜓𝑙〉 + 𝜙𝑙 

Where the expectation value is represented by 𝜓𝑙 . It is worth mentioning that the 

chance of discovering a chain in state l is a probability correlates with the average state 

density 〈𝜓𝑙〉. Essentially, this reads: 

∑〈𝜓𝑙〉 = ∑ 𝜓𝑙 = 1

𝐿

𝑙=0

𝐿

𝑙=0

 (5.1) 

∑ 𝜙𝑙 = 0

𝐿

𝑙=0

 (5.2) 

 
Figure 5.1: Case of a state transition diagram represented that the 

demonstration of the master equation (Guler, 2015). 

A coupled linear deterministic differential equations is represented by The L, and then 

the master equation governs, can be used to calculate how the expectation values 
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evolve 〈𝜓𝑙〉 (l = 0,1, . . ., L). One fundamental characteristic of the master equations in 

Markov processes is that every solution has a tendency to be stationary when the state 

set contains an explicitly limited amount of discrete states and the timing of the 

transition rates remains unchanged as 𝑡 → ∞. Consequently, when transition rates are 

constant, 〈𝜓𝑙〉 (l = 0,1, . . ., L) attains a distinct constant state overtime. The minimal 

diffusion formulation will take transition rates to either experience very little change, 

or as constant. In the case of the illustrative state transition diagram in Figure 5.1, the 

master equation reads as: 

𝑑〈𝜓0〉

𝑑𝑡
= 𝒵01〈𝜓0〉 + 𝒵10〈𝜓1〉  

𝑑〈𝜓1〉

𝑑𝑡
= 𝒵01〈𝜓0〉 − (𝒵10 + 𝒵12〈𝜓1〉 + 𝒵21〈𝜓2〉 (5.3) 

𝑑〈𝜓2〉

𝑑𝑡
= 𝒵12〈𝜓1〉 − 𝒵21〈𝜓2〉  

And Eq. (5.2) becomes 

〈𝜓0〉 + 〈𝜓1〉 + 〈𝜓2〉 = 1 (5.4) 

Depending on the constraint (5.4). For constant transition rates, the steady state 

𝑑〈𝜓0〉

𝑑𝑡
+

𝑑〈𝜓1〉

𝑑𝑡
+

𝑑〈𝜓2〉

𝑑𝑡
= 0 (5.5) 

Equations (5.3)–(5.5) uniquely solve 〈𝜓0〉, 〈𝜓1〉, and 〈𝜓2〉  

 The Fluctuations of the Relevant State Density  

When the dynamics of the fluctuation is formulating 𝜙𝑟 – where the relevant state is 

denoted by the subscript r – the special case where r shared a direct connection with 

only one state (such as state s, shown below) is an appropriate starting point: 
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Figure 5.2: relevant state makes through connection with one state only (Güler, 

2015). 

Assuming that the transition rates shown in Figure. 5.2 (α and β) are positive constants 

and minimal diffusion formulation supposes an equilibrium context, although the 

equations below are outlined then adapted for the evolution of state density 

fluctuations and remain true after the system has relaxed. 

The differential equations: 

𝜙𝑟̇ = −𝛽𝜙𝑟 + 𝛼𝜙𝑠 + 𝜉 (5.6a) 

𝜙𝑠̇ = −𝛾𝜙𝑠 − 𝜉 + 𝜂 (5.6b) 

Where the parameter 𝛾 is given as 

𝛾 =
𝛼〈𝜓𝑠〉2 + 𝛽〈𝜓𝑟〉(1 − 〈𝜓𝑠〉)

〈𝜓𝑠〉〈𝜓𝑟〉
 (5.7) 

where the mean square mean of the zero Gaussian white noise 𝜉 is: 

〈𝜉(𝑡)𝜉(𝑡′)〉 =
𝛼〈𝜓𝑠〉 + 𝛽〈𝜓𝑟〉

𝑁
𝛿(𝑡 − 𝑡′) (5.8) 

Calculating the square root of a matrix is necessary in the original description – in its 

general form for a Markov Chain (MC) with at least two states – of the diffusion 

approximation (DA) (Fox and Lu, 1994). Furthermore, Orio and Soudry (2012) found 

that it is more common for the proposed DA method to have a numerical stability 
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similar to that of MC modelling, even when the former uses a basic Euler-Maruyama 

integration scheme. 

The terms 𝜉 and 𝜂 in Eq. (5.6a) and (5.6b) are autonomous zero mean Gaussian white 

noises, the mean squares of which are calculated using Eq. (5.8) and 

〈𝜂(𝑡)𝜂(𝑡′)〉 =
𝛼〈𝜓𝑠〉𝐶𝛼 + 𝛽〈𝜓𝑟〉𝐶𝛽

𝑁
𝛿(𝑡 − 𝑡′) (5.9) 

The synonyms 𝐶𝛼 and 𝐶𝛽 in Eq. (5.9) are respectively calculated as follows: 

𝐶𝛼 ∶= 2〈𝜓𝑠〉(1 − 〈𝜓𝑠〉) − 𝜓𝑟 (5.10a) 

𝐶𝛽 ∶= 2(1 − 〈𝜓𝑠〉)2 − 〈𝜓𝑟〉 (5.10b) 

As such, in computing the relevant state density fluctuation 𝜙𝑟  from the 

aforementioned formulation through 〈𝜓𝑟〉 (in the master equation), the evolution of 𝜓𝑟 

is calculated as: 

𝜓𝑟 = 〈𝜓𝑟〉 + 𝜙𝑟 

The stochastic differential Langevin equation is characterized by an Ornstein-

Uhlenbeck process, and so Güler (2015) employed the following equation for the 

evolution of 𝜙𝑠: 

𝜙𝑠̇ =  −𝛾𝜙𝑠 − 𝜉 + 𝜂 (5.11) 

Where 𝜂 is Gaussian white noise with mean zero autonomous from 𝜉. The ـــ𝜉 term in 

Equation 5.2 was added for the purpose of counter-balancing 𝜉 ’s influence on 𝜙𝑠. The 

parameter 𝛾 and in the same time the variance of 𝜂 were calculated in Güler (2015) by 

solving a differential equation, and are, for the progress of fluctuations in the state 

density, at equilibrium in the ensembles of Markov Chain. 
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 Autocorrelation Function of the Relevant State Density in The 

Minimal Diffusion Formulation Model (2v2n Model) 

Güler (2016) calculated the autocorrelation function for the relevant state’s density in 

the 2v2n formulation. This calculation is relevant not just on the basis of its merit, but 

also because the autocorrelation function is the foundation of the 2v1n and 1v1n 

models. The calculation takes the transition rates to be constant and is especially 

relevant in the long-run. 

The differential equations 5.6a and 5.6b are respectively used to calculate the values 

for 𝜙𝑟 and 𝜙𝑠. While not absolutely essential, assuming that the system had already 

reached equilibrium at time 0 is somewhat helpful. Assuming that 〈𝜂𝜉〉 = 0, and is 

read in the limit 𝑡 ⟶ ∞, 𝜙𝑠
2 is calculated as: 

〈𝜙𝑠
2〉 =

〈𝜓𝑠〉(1 − 〈𝜓𝑠〉)

𝑁
 (5.12) 

As transition rates are assumed to be time-independent in the present study, it is 

possible to incorporate the average state densities at the steady state found in Güler 

(2016)’s equation. The master equation for 〈𝜓𝑟〉 is computed as: 

𝑑〈𝜓𝑟〉

𝑑𝑡
= −𝛽〈𝜓𝑟〉 + 𝛼〈𝜓𝑠〉 (5.13) 

Which leads to the conclusion that 

𝛼〈𝜓𝑠〉 = 𝛽〈𝜓𝑟〉 (5.14) 

at the steady state. And so, by incorporating Equation 5.14 into Equations 5.8, 5.9, and 

5.12, we find that the inequality 〈𝜓𝑟〉 + 〈𝜓𝑠〉 < 1 is consistently finite and positive. 

The equation gives the variance: 

〈𝜙𝑟
2〉 =

〈𝜓𝑟〉(1 − 〈𝜓𝑟〉)

𝑁
 (5.15) 
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It results of the binomial distribution of dissipation relation in agreement with that 

provided in Güler (2015). 

The autocorrelation function of 𝜙𝑟  is given by (Güler, 2016) computing expected 

value 〈𝜓𝑟〉 in equation 5.13 and where gives equation 5.14 steady state is released. 

After utilizing equation 5.14 in equation (5.7), (5.8) and (5.12) gives equation 5.16. 

𝑁〈𝜙𝑟(𝑡)𝜙𝑟(𝑡 + 𝜏)〉 = 〈𝜓𝑟〉 (1 −
〈𝜓𝑟〉

1 −
𝛼
𝛽

〈𝜓𝑟〉
) 𝑒−𝛽𝜏 +

𝛽〈𝜓𝑟〉3

𝛼 − 𝛽〈𝜓𝑟〉
𝑒−𝑦𝜏 (5.16) 

 The Variant 2v1n 

In contrast to the 2v2n formulation, which has two noise terms, the 2v1n formulation 

comprises of two stochastic variables and a single noise term. The two formulations 

do, however, have identical autocorrelation functions and standard deviations for 

relevant state density fluctuations. 

The density fluctuation 𝜙𝑟 in this variant is calculated as: 

𝜙𝑟 = 𝑘𝑎𝜙𝑟,𝑎 + 𝑘𝑏𝜙𝑟,𝑏 (5.17) 

Where 𝑘𝑎  and 𝑘𝑏  are specific parameters, and 𝜙𝑟,𝑎  and 𝑘𝑏𝜙𝑟,𝑏  are two diffusively 

coupled Ornstein-Uhlenbeck calculated using the following Langevin equations: 

𝜙𝑟,𝑎
̇ = −𝛽𝜙𝑟,𝑎 + 𝜉 (5.18a) 

𝜙𝑟,𝑏
̇ = −𝛾𝜙𝑟,𝑏 + 𝜉 (5.18b) 

Here, the mean square of the zero-mean Gaussian white noise ξ is calculated using 

Equation (5.8). The parameters 𝑘𝑎 and 𝑘𝑏 are set such that they help in attaining an 

autocorrelation function matching that gotten using the 2v2n model. The specific 

parameters are calculated using the following formulae: 

𝑘𝑎 = √
2𝛽(𝛽 + 𝛾)𝐶2

2𝛽𝐶3 + 𝛽 + 𝛾
 (5.19) 

And 
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𝑘𝑏 = 𝐶3𝑘𝑎 (5.20) 

Where both the differential equations 5.18a and 5.18b, their respective solutions, and 

the coefficients of 𝐶2 and 𝐶3 are provided by Güler (2016). 

The parity between the 2v1n and 2v2n formulations is not easily substantiated 

however, as they might still have different transition probability functions.  Regardless, 

the congruence between their respective autocorrelation functions makes the 2v1n and 

2v2n formulations extremely compatible when computing fluctuations in the state 

density. 

 The Variant 1v1n 

An alternative formulation that is simpler than the 2v1n and 2v2n formulations is the 

1v1n formulation. This formulation has only one stochastic variable and one noise 

term. Unfortunately, however, its relevant state autocorrelation function only matches 

up with that of the 2v2n formulation in the time gap’s first order. The following 

Langevin equation denotes the diffusive dynamics for this formulation read as: 

𝜙𝑟̇ = −𝛾̃𝜙𝑟 + 𝜉 (5.21) 

The same noise from Langiven type of equation here, ξ is a zero mean Gaussian, the 

mean square of which is computed through Equation 5.8, and parameter 𝛾̃  is the 

friction coefficient has been calculated. 

While the approach adopted by Linaro et al. (2011) is relevant for older Langevin-

based formulations, it is considerably different in terms of how it reintroduces channel 

fluctuations in model equations. It is a precise and systematic generalization of the 

algorithm posited by Fox (1994) and provides analytical results detailing where it has 

failed as supporting information. On the other hand, a more effective method for 
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single-compartment neuronal simulations is to define the precise simulations of the 

stochastic channel’s kinetic schemes. The occupation numbers of these simulations 

could have large fluctuations, thus resulting in larger noise levels. The simulated 

Markov chains used here (despite the size of the fluctuations) utilize the “stochastic-

shielding” approximation posited by Schmandt and Galán (2012). The approximation 

is only appropriate for cases in which only a small sample of states in the model is 

relevant. To illustrate, in a case where the relevant state only connects directly to just 

one other state (Figure 5.2), the totality of fluctuations in all of the states disappears 

as: 

∑ 𝜙𝑙 = 0

𝐿

𝑙=0

 

Because all state density fluctuations apart from 𝜙𝑟  and 𝜙𝑠  are set to zero in the 

stochastic shielding approach, the result is that 𝜙𝑠 = −𝜙𝑟 . As such, the diffusion 

approximation relative to the stochastic shielding simulation approach is given as: 

𝜙𝑟̇ = −(𝛼 + 𝛽)𝜙𝑟 + 𝜉 (5.22) 

Where the noise ξ is identical to that given in Equation 5.8. The minimal diffusion 

formula 5.6a can easily be used to deduce this stochastic differential equation. When 

compared to Equation 5.21, it is evident that the stochastic shielding diffusion and 

1v1n formulation share a single differential equation within an identical noise 

variance, however here have different values for parameter 𝛾̃ . The variance at 

equilibrium can be computed using Equation 5.23 below: 

〈𝜙𝑟
2〉 =

𝛽〈𝜓𝑟〉

𝑁(𝛼 + 𝛽)
 (5.23) 

This variance however, differs from the dispersion relation (5.15). It is for this reason 

that the 1v1n formulation has better accuracy than the stochastic shielding diffusion 

approximation in determining the autocorrelation function, at least for smaller time 
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gaps. Güler (2015) provides a discussion on stochastic shielding as it related to the 

minimal diffusion formulation. 
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  Chapter 6 

6 EXPERIMENTS AND RESULTS   

 Results Discussion 

Applying the present formulation to sodium and potassium channel clusters is easily 

done via the state transition diagrams contained in Figures 3.1 and 3.2 in the third 

chapter.  

Here, performing the calculations is a simple matter of using the average of each gating 

variable represented by  𝑛, 𝑚 and ℎ, rather than specifying 𝜓𝑟 for 𝜓𝑠 for each of the 

channel types through the master equation. The averages of each of the gating variables 

are calculated using the following formulae:  

𝑛̇ =  − 𝛽𝑛𝑛 +  𝛼𝑛(1 −  𝑛) (6.1a) 

𝑚̇ =  − 𝛽𝑚𝑚 +  𝛼𝑚(1 −  𝑛) (6.1b) 

ℎ
̇

=  − 𝛽ℎℎ +  𝛼ℎ(1 −  ℎ) (6.1c) 

Where the opening and closing rates of n gates are respectively denoted by 𝛼𝑛 and 𝛽𝑛; 

those for m gates are 𝛼𝑚 and 𝛽𝑚; and 𝛼ℎand  𝛽ℎ for h gates. The following formulae 

therefore, are used for potassium channels: 

〈𝜓4〉 =  𝑛
4
 (6.2a) 

〈𝜓3〉 =  4𝑛
3

(1 −  𝑛) (6.2b) 

While sodium channels are calculated using: 

〈𝜓31〉 =  𝑚
3

ℎ (6.3a) 
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〈𝜓21〉 =  3𝑚
2

(1 −  𝑚)ℎ (6.3b) 

〈𝜓21〉 =  3𝑚
2

(1 −  𝑚)ℎ (6.3c) 

Where the average chain densities of both channels’ relevant states are respectively 

represented by 〈𝜓4〉 and 〈𝜓31〉. Because no other state shares a direct connection to 

either the sodium relevant state 𝑚3ℎ1 , or the potassium relevant state 𝑛4 

calculating the expectations values for other states is not necessary. 

Here, j is the probability will open nــgates of a K channel  is represented by 〈𝜓𝑗〉 (j = 

0, …,4), while the likelihood of the probability that i open for Na channel having 

mــgates and, j open h gates is denoted by 〈𝜓𝑖𝑗〉 (i = 0, 1, 2, 3; j = 0, 1). 

Therefore, for a potassium channel cluster:   

𝛼 =  𝛼𝑛, 𝛽 =  4𝛽𝑛, 〈𝜓𝑠〉 =  〈𝜓3〉, 

By virtue of Eqs. (6.1a) and (6.2). Then, the density of 𝜓4 open potassium channels is 

calculated as 𝜓4 = 〈𝜓4〉 + 𝜙𝑟. Before using the formulation, the equations in Güler's 

(2015) paper should be evaluated for sodium channel clusters using the following 

settings: 

𝛽 = 3𝛽𝑚 + 𝛽ℎ, 𝛼𝑗 = 𝛼𝑚, 𝛼𝑘 = 𝛼ℎ, 

〈𝜓𝑗〉 = 〈𝜓21〉,  〈𝜓𝑘〉 = 〈𝜓30〉. 

Which is easily followed by the density of open sodium channels  〈𝜓31〉. 

Here, Eqs. (6.1b), (6.1c), and (6.3) are used to calculate for 〈𝜓31〉 , 〈𝜓21〉, and 〈𝜓30〉. 

Depending on the particular channel type being considered, the parameter N denotes 

the amount of cluster in the potassium or sodium channels when using the formulation. 

A numerical study of 𝜓4  and 𝜓21  is presented in Figure. (6.1) The study utilizes 

different constant sets of rate values of parameters; particularly, those of their means ( 
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〈𝜓4〉 and 〈𝜓31〉) standard deviations (𝜎4 and 𝜎31), and autocorrelation times (𝜏4 and 

𝜏31). Subsequently, the results attained when using model (Güler, 2015) are taken 

relative to the relevant microscopic simulation results; they show that with remarkable 

accuracy, this model predicts 〈𝜓4〉 , 〈𝜓31〉,  𝜎4, and 𝜎31 almost same for models. Such 

precise accuracy is missing, however, in its prediction of autocorrelation times, which 

itself still enjoys a high degree of accuracy. 

The use of these models can contribute to the implementation of a realistic the neuron 

in technology. We used C++ programming which is developed by Güler, with some 

minor modification and MATLAB has been used for plotting the results. 
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Figure 6.1: Various experiments that have proving the value of the model 

Güler (2015) using conductance's for 1000 sodium channels and 300 for 

potassium channels clusters for all three models 2v2vn, 2v1n and 1v1n.  
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Figure 6.1 shows the various experiments that have been conducted for 300 potassium 

channel and 1000 sodium channel clusters that have been conducted in the hopes of 

proving the value of the model of paper Güler (2015). For the potassium experiments, 

we used a series of sixty randomly generated rate values. A number of different 

statistical observables are calculated using for all three models 2v2vn, 2v1n and 1v1n. 

Using set of sixteen randomly generated rate value observed of {α_n is in the set (0:1); 

β_n is in the set (0:0.5)} used for potassium; for the sodium channels, were placed in 

the space of [α_m is in the (0:1); β_m is in the set (0:0.5); α_h is in the set (0:1); β_h 

is in the set (0:0.5)] was used. (denoted by superscript C) using these rate tuples; these 

observables are also compared to the relevant measurements for the microscopic 

simulation (denoted by the superscript S). Additionally, the autocorrelation time and 

standard deviation are respectively denoted by τ and σ. The perfect match between the 

microscopic simulation and the present model is illustrated by a linear line. The linear 

line was added to provide guidance in each of the plots; expectation values were 

calculated using a 400s time window. 

Another numerical experiment we conducted (Güler, 2015) concerns the HH type 

membrane’s spiking frequencies. The following differential equation is used to 

calculate the evolution of the transmembrane voltage (V) overtime in equation 6.4. 

𝐶𝑉̇ =  −𝑔𝐾𝜓4 (𝑉 − 𝐸𝐾) − 𝑔𝑁𝑎𝜓31 (𝑉 −  𝐸𝑁𝑎) − 𝑔𝐿 (𝑉 −  𝐸𝐿) + 𝐼 (6.4) 

Where the input current is represented by I. The constant membrane parameters’ 

values are: the voltage-dependent membrane capacitance (contained in Table 4.1) and 

rate function of the membrane provided in Chapter (4). 
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(e) 

 
 

 

(f) 

 
 

Figure 6.2: Mean spiking rates versus the input current, exposed by a 

membrane patch.  

Fig. 6.2 shows the spiking frequencies versus input current corresponding to two sizes 

of membranes. The result of the Mean Spiking Freq. rates versus the amount of input 
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current, demonstrated by a membrane patch comprising (a), (b) and (C) were used 7, 

200 potassium channels for all three graphs and the number of sodium channel is 24, 

000 and (d), (e) and (f) 720 potassium channels and 2, 400 sodium channels comprising 

from the microscopic simulations and calculation from the 2v2n, 2v1n and 1v1n 

models respectively. One plot for every figure corresponds either to a result of the 

microscopic simulations or the calculation of the 2v2n, 2v1n and 1v1n models, 

respectively. The averages were calculated over a period of 50s. It is evident that the 

model of paper (Güler, 2015) resulting frequencies correspond greatly with those of 

the microscopic simulations. While the transition rates were previously taken as 

constant in the minimal diffusion (MD) model or 2v2n model, the present rates are 

altered sporadically during spiking due to their voltage-dependent nature. Regardless, 

what really matters for an action potential to start is the sub-threshold activity; said 

activity changes very little within that phase and so the model remains applicable for 

2v2n model. Furthermore, the other two model are closed together 1v1n model is more 

closed to microscopic simulation than, the 2v1n model. Güler (2011) showed that 

changes in the number of open channels and transmembrane voltage fluctuations in 

the phase of sub-threshold activity share a non-transient correlation. Known as NCCP, 

this phenomenon has been found to be a major reason for limited-size neuronal 

membranes’ increased excitability and spontaneous firing. Finite and pivotal to the 

existence of NCCP, the autocorrelation time for the number of open channel 

fluctuations must not equal zero. (Güler, 2015)'s model accuracy in representing the 

spiking frequencies shown in Figure 6.2 illustrates how efficient and exact it is in 

finding autocorrelation times and fluctuation amplitudes.  
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 Experiment results 

The present study assesses 2v2n, 2v1n, and 1v1n formulations by taking them in 

conjunction with the precise microscopic Markov simulation; specifically, this is done 

by considering the specific standard deviation and autocorrelation time of the relevant 

state density 𝜓0. 𝜏 is taken to represent the autocorrelation time provided it complies 

with the following equality: 

〈𝜙0(𝑡)𝜙0(𝑡 + 𝜏)〉

〈𝜙0
2(𝑡)〉

= 𝑒−1 (6.5) 

Where the time 𝑡 accommodates the attainment of an equilibrium. Hence, 60 sets of 

measurements have been taken by way of distinct randomly-generated transition rate 

matrices for each set. 𝜓𝑘 for simulation it is exact simulation, the result is computed 

for both model 2v1n and 1v1n of each data. After modifying original model minimal 

diffusion by using ion channel dynamic according to input voltage for both model 2v1n 

and 1v1n. And taking the average density fluctuation for number of open and close ion 

channel for example for potassium or sodium. At the same time, it is the average ratio 

for potassium. We can get the result after it is computed from the exact microscopic 

simulation. 
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   (b) 

  
     (c) 

 
Figure 6.3: The relevant state autocorrelation times calculated for the (a) 2v2n, 

(b) 2v1n, and (c) 1v1n formulations (respectively corresponding to τ2v2n, 

τ2v1n, and τ1v1n). 

Figure 6.3 Shows that the microscopic standard deviation is predicted with an 

impressive degree of accuracy in all three of the models (2v2n, 2v1n, and 1v1n); also 

illustrated the calculated for the formulations corresponding to τ2v2n, τ2v1n, and 
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τ1v1n in comparison to those acquired from the microscopic Markov simulation 

(represented by 𝜏𝑠). By using a collection of independently-evolving Markov chains, 

when each developing autonomously under the state transition diagram provided in 

Figure (3.1) and figure (3.2) in chapter (3). A different transition matrix was used to 

measure a total 60 sets of autocorrelation time, where for each of the randomly-

generated matrix elements of a value between 0 and 0.5 in each of the sets. Whereas 

the strategically-placed straight line is proposed to point to the exact similarity among 

the model and the microscopic simulation. The models are similar to the equivalent 

exact microscopic simulation. In regards to the autocorrelation times, also figure 6.3 

shows that the results obtained from 2v2n and 2v1n are practically the same while that 

of the 1v1n formulation was notably different. These results were anticipated because, 

while the 2v1n formulation was formulated such that it gave results similar to those of 

the original 2v2n model, the 1v1n was only supposed to provide firstــorder accuracy 

relative to the 2v2n model’s autocorrelation time. Furthermore, it is evident that where 

microscopic simulations are concerned, the autocorrelation times provided by both the 

2v2n models are more accurate than those in the 1v1n and 2v1n model, in the same 

time 1v1n closer to the microscopic simulation than 2v1n. This is believed to be the 

case because, relative to their relevant microscopic autocorrelation time-

measurements, the majority of the measurements in the 1v1n model are somewhat 

biased (at an average of 10%) towards smaller values. Based on the equations provided 

by Güler (2016) and Equation (6.5), it is evident that the number of Markov chains N 

has little to no impact on the autocorrelation time. In providing evidence in support of 

this, the autocorrelation times of a variety of N values were measured for both the 

microscopic simulations and (Güler, 2016) models; it was revealed that they were 

independent of the size of the ensemble.  
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    Chapter 7 

7 CONCLUSION 

This thesis has shown that in a membrane with a limited area, the function of the cell 

is significantly affected by whether or not each of the ion channels has multiple gates. 

This multiplicity, in addition to inducing spike-coherence-enhancing NCCP, is one of 

the primary reasons for the increase in spontaneous firing and excitability of smaller 

neuronal membranes (as it often results in non-trivially persistent membranous cross 

correlations). Güler (2011) discovered that even in relatively larger membranes where 

the gate noise is insufficient to activate the cell, spontaneous firing continues to be 

facilitated by NCCP, which also improves spike train consistency. As such, NCCP is 

expected to play a primarily facilitative role where synaptically-joined neurons – 

specifically their synchronization over time – are concerned. Further investigation is 

warranted into the role of NCCP for noisy input and time varying currents, as they 

relate to stochastic resonance. The argument that the mere introduction, into 

deterministic HH equations, of certain white noise terms with vanishing means was 

insufficient to allow the modelling of size-limited cell dynamics beyond a particular 

level of accuracy was made by this thesis. Furthermore, channel variables in said 

equations need to be renormalized into a new strand of functional forms that depend 

on the particular voltage in question.  

Stochastic HH equations are incapable of satisfactorily capturing NNCP despite their 

relatively accurate spike generation statistics. Güler (2011) suggests that this may be 
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remedied by supplanting the conductances with a few additive colored noise terms. In 

this thesis, white noise terms for the gating variables in Langevin equations were used 

in the implementation of the gate noise. A series of numerical experiments were 

subsequently conducted by utilizing expressed equations under constant stimulus and 

stimuli pulses. The resulting values for spike coherence and generation, jitter, and 

firing efficiency were found to correspond to those gotten from the exact microscopic 

Markov simulations. These observations lend credence to the importance of NCCP 

and explicitly demonstrate that the inadequacy inherent to FL equations has little 

bearing on the present formulation, the equations of which are essentially a generalized 

form of the HH equations for limited-size membranes.  

Güler (2011) argued that rather than implementing NCCP using colored noise terms 

in the conductance's, channel variables could alternatively be renormalized into certain 

functional forms that are determined by the voltage in question. This method 

incorporates certain analytical terms such that the parameters Ω𝐾
𝑉 − Ω𝑁𝑎

𝑉  VK and V Na 

are used to acquire proper non-vanishing values, as opposed to simply adding colored 

noise terms. The question of which functional forms are capable of accurately 

reflecting NCCP remains open, despite the availability of a renormalization scheme in 

Güler (2011). The model outlined in this thesis could offer some useful insight into the 

role of NCCP as it relates to spike propagation and the very nature of said propagation. 

The individual channels were taken to be linked to their surrounding channels, such 

that the opening of surrounding channels increased the probability of and individual 

opening. This cooperation shares some similarities with the non-zero autocorrelation 

time characteristic of NCCP generation in sodium channels – represented by the 

construct 𝜓𝑁𝑎
𝐿 − 𝑚3ℎ. It would be unwise, however, to postulate the existence of a 
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shared biophysical ground as neither the NCCP framework, nor the autocorrelation 

construct, display any cooperation between each neighboring channels (or the reliance 

of a channel’s opening on how open surrounding channels are). Regardless, both 

phenomena may have related effects on how action potentials are initiated since NCCP 

is known to promote excitability. 

A theoretical argument has been propounded here for the purpose of deriving the 

formulation and positing criteria (to be encapsulated in any approximation scheme) 

useful in determining both the parameter values and the attendant noise variances. The 

formulation manifests itself as a pair of diffusively-coupled Langevin-type equations 

and is advantageous due to its inherent simplicity. The density of transition matrix and 

the state space are irrespective of the size, as well as it accounts for just two stochastic 

variables and their corresponding noise terms while also overcoming potential 

restrictions imposed by the matrix square root. Consequently, the effects of 

fluctuations in the densities of all states other than the relevant state were taken as a 

collective as opposed to individually. The efficiency of (Güler, 2016) model as it 

relates to clusters of sodium and potassium channels and limited-size membrane 

excitability has been proven. Efforts are presently underway to analytically evaluate 

the relevant state density’s probability function and extend the formulation to include 

cases with a random number of relevant states. 

This thesis aimed to explicate the properties of the minimal diffusion formulation, 

which is here termed the 2v2n model. It began, first, with analyzing the autocorrelation 

function for the density of the relevant state using the aforementioned formulation; the 

autocorrelation was found to be represented by a pair of exponentially decaying 

additive terms. What followed was the introduction of two diffusion models – 1v1n 
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and 2v1n, containing just one noise term each. While they approximated the 2v2n 

model’s dynamics for sodium and potassium, both models also adversely affected its 

structural complexity. The 1v1n model, despite being first-order time gap accurate, 

has one less stochastic variable and is thus less accurate than the 2v1n model, whose 

autocorrelation function is equal to the 2v2n model’s autocorrelation function. The 

theoretical analysis is supported by numerical simulations, which were also provided. 

The 1v1n and 2v1n models facilitate the computation of the Markov chain ensembles’ 

collective fluctuations, even further than the minimal diffusion formulation. Their lack 

of complexity also makes them potentially useful for the analysis and promotion of 

Markov chain ensembles’ collective evolution. The 1v1n and 2v1n formulations are 

better suited for qualitative and quantitative analysis respectively. As with all other 

diffusion formulations, the minimal diffusion formulation (of which the 1v1n and 2v1n 

models are variants) is not suitable for dynamics absent at equilibrium. It is for this 

reason that the analysis assumed the transition rates to be constant since equilibrium 

would have been difficult to reach if the rates were allowed to change rapidly.  

Both 〈𝜓𝑠〉 and 〈𝜓𝑟〉 were used in the formulation without commanding the steady-state 

condition 𝛼〈𝜓𝑠〉 = 𝛽〈𝜓𝑟〉. This was necessary to ensure that the models remained 

valid even in conditions with slow-varying transition rates. When steady-state 

conditions are used in formulating a Markov diffusion model (like that in Ref. Linaro 

and Storace…, 2011), the resulting model is rendered inaccurate under noisy transition 

rates Güler, (2013b) or at non-equilibrium (Orio and Soudry, 2012). Although, 

consider the case of study the variant formulation 2v1n and 2v1n gives equivalent 

results, but 1v1n although good enough is less accurate corresponding to the 2v2n and 
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2v1n. Even though, the two model 2v1n and 1v1n were closed together but 2v2n which 

is term of minimal diffusion still better than them.  
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