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ABSTRACT

The purpose of this study is to prepare a brief summary of some matrix summability
methods. This thesis consists of four chapters. In the first chapter, a general

introduction to the matrix summability method is mentioned.

In Chapter 2, deals with the basic definitions and theorems of sequences associated
with matrix summability methods. In this thesis contains some proper examples and
definitions that are related to sequences, subsequences, bounded sequences,
monotone sequences, convergent sequences, divergent sequences and Cauchy
sequences. In addition to this, some basic theorems about sequences and basic
properties of infinite matrices are given. Some of properties of infinite matrices;

product of matrices, triangle matrices, inverse of matrices, triangular matrices.

In Chapter 3, contains the theory of matrix summability methods. In the first part,
basic definitions and theorems of matrix summability methods are examined. Then,
these two theorems and their examples are given which enable us to learn whether
the matrices are conservative matrix (Schur-Kojima Theorem) or regular matrix
(Silverman-Teoblitz Theorem). Furthermore, comparable matrix methods (stronger
or weaker matrix) are included. In the last section, zero preserving matrix,

multiplicative matrix and some related theorems are examined.

In the last chapter, some matrix summability methods are discussed together with
general definitions, theorems, and examples. Also the proofs of the theorems are
given. These methods are: Cesaro methods, Hélder methods, Euler Knopp methods,

and Hausdorff matrix methods.



Keywords: matrix summability methods, conservative matrix, regular matrix,
Cesaro methods, Hausdorff methods, Riesz methods, Holder methods, Euler

methods.



Oz

Bu calismanin amaci bazi matris toplanabilme yontemlerinin kisa bir Ozetini
hazirlamaktir. Bu tez dort bolimden olusmaktadir. Birinci boliimde, matris

toplanabilme yontemine genel bir giristen bahsedilmektedir.

Bolim 2'de, matris toplanabilme yontemleri ile iliskili olan dizilerin temel tanimlar
ve teoremleri ele alinmaktadir. Bu boliimde, diziler, alt diziler, simirli diziler,
monoton diziler, yakinsak diziler, iraksak diziler ve Cauchy dizileri ile ilgili tanimlar
ve uygun oOrnekleri bulunmaktadir. Buna ek olarak, sonsuz matrislerin temel
ozellikleri verilmistir. Sonsuz matrislerin bazi 6zellikleri; matrislerin ¢arpimi, iiggen

matrisler, matrislerin tersidir.

Boliim 3, matris toplanabilme yontemleri teorisini igermektedir. ilk kisminda, matris
toplanabilirlik yontemlerinin temel tanimlar1 ve teoremleri incelenmistir. Daha sonra,
matrislerin  konservatif matris (Schur-Kojima Teoremi) veya duzenli matris
(Silverman-Teoblitz Teoremi) olup olmadigini 6grenmemizi saglayan bu iki teorem
ve Ornekleri verilmistir. Buna ek olarak, karsilagtirilabilir matris yontemlerine (daha
giiclii veya daha zayif matris) yer verilmistir. Son kisimda, sifir koruyucu matris ve

carpimsal matris yontemleri ile ilgili bazi teoremler incelenmistir.

Son boliimde, bazi matris toplanabilme yontemleri genel tanimlar, teoremler ve
orneklerle birlikte tartigilmaktadir. Ayrica teoremlerin kanitlart da verilmistir. Bu
yontemler: Cesaro metodu, Holder metodu, Euler metodu ve Hausdorff matris

metodudur.



Anahtar Kelimeler: matris toplanabilme yontemi, konservatif matris, regular matris,

Cesaro metodu, Hausdorff metodu, Riesz metodu, H6lder metodu, Euler metodu.
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Chapter 1

INTRODUCTION

The main idea of this thesis is to prepare a brief summary about matrix summability
methods. This brief summary will include some basic definitions and theorems
related with matrix summability methods such that a non-familiar reader will get an
idea about what is a matrix summability method. Moreover, since a matrix
summability method is a mapping on a subspace of the space of sequences a
summary of the basic theory of sequences and related topics will be given. To
prepare such a summary, we shall start with the basic definitions and properties of
infinite matrices. After that basic definitions and theorems about matrix summability
methods will be discussed. Two important concepts conservative and regular matrix
methods will be explained by using different sources. A matrix method A is called
conservative if it preserves the convergence of a sequence x. An important subclass
of conservative matrices is the class of regular matrices. A regular matrix is
conservative matrix method so that it preserves the limit of a convergent sequence X
as well. In this thesis after basic theory of matrix methods we focus on some well-
known matrix summability methods such as Cesaro Matrix method, Euler Method,
Holder Method and in more general perspective Hausdorff methods. All these matrix
methods will be discussed with details including the inclusion relations between

these methods.



In Chapter 2, we introduce a short summary of the theory of sequences which
includes the basic theory about sequences, subsequences, bounded sequences,
monotone sequences, convergent and Cauchy sequences. Moreover, we give some
theorems related with sequences, subsequences, bounded sequences, monotone
sequences, convergent and Cauchy sequences. All definitions and theorems given in
this chapter are illustrated by appropriate examples. In the last part of Chapter 2, we
discuss infinite matrices and operations such as matrix addition, matrix

multiplication and multiplication of a matrix by a scalar on infinite matrices.

Chapter 3 is devoted to the theory of matrix summability methods. We start to this
chapter with basic definitions and properties of matrix summability methods. Then
we give basic definitions related with matrix summability methods such as
application domain, convergence domain, stronger or weaker matrix summability
methods. Also we explain what is a comparable matrix method. In the last part of
this chapter we discuss two basic theorems of matrix summability methods namely,
Schur-Kojima and Silvermen-Teoblitz theorems. The Schur-Kojima theorem gives
the necessary and sufficient condition for a matrix to be a conservative matrix. The
second theorem which is Silvermen-Teoblitz theorem gives necessary and sufficient
conditions for a matrix to be a regular matrix. In the last part of this chapter we
study zero preserving and multiplicative matrix methods and some related theorems.
To make it more clear to the readers, all definitions and theorems are explained on

suitable examples.

In Chapter 4, some well-known regular matrix summability methods such as Cesaro

matrix methods, Euler Matrix methods, Holder matrix methods and Hausdorff



Matrix methods are introduced and studied. Some well-known properties of these
matrix methods are given. Related theorems are given with proofs. In the last part of
this chapter we study inclusion properties of these matrix methods. Similar to other

chapters, all definitions and theorems are illusrated by examples.

Finally we would like to mention that, this thesis consisting of four chapters, The
first two chapters, Chapter 1 and Chapter 2 are used to give some basic theory of the
sequences and infinite matrices. Of course, the whole theory of sequences and
infinite matrices are not given here, we just give a summary of then including the
part that will be needed to dicsuss the main chapters of the thesis. Main chapters of
the thesis are Chapter 3 and Chapter 4, and these to chapters are used to explain the

main part of the thesis as we mentioned above.



Chapter 2

PRELIMINARIES

In this chapter, some basic topics that we need in the thesis will be included. Firstly,
some basic features and theorems related to sequences will be briefly summarized.
Then, we shall introduce basic properties of infinite matrices. To prepare this
chapter we use the following references ([2], [3], [4], [6], [9], [10], [13], [14]).

2.1 Sequences

In this section, we briefly discuss sequences, sub-sequences, convergent sequences,
divergent sequences, bounded sequences, monotone sequences, Cauchy sequences

and basic theorems related to these concepts.

Definition 2.1: Any function defined from the set of natural number is called a
sequence and denoted by the N. The sequences take various names according to
their codomains. If the codomain of the sequence is a subset of real number R, then

the sequence is called real number sequence. If the codomain is a subset of Q

(Rational numbers), the sequence is called a rational number sequence. In the case

that codomain is a subset of C (complex numbers), it is called complex valued
sequences. A sequence is shown in many sources by (31,52,33, ...... sn,...)or shortly
(s,). Usually s,, (the n™ term) is called the general term of the sequence.

The space of all sequence is denoted by @ .

o:={x=(x),x: NU{0} >K|



K=R or K=C.

Example 2.1: The function f (n)=s, := (ij is a rational number sequence with

" 4n
n™ term (ij
4n

So,

so= (L]t i Lt L
4n 4'8'12'16

n

Example 2.2: The function f (n) =S :=(\/ﬁ) is a real number sequence with n"
term s, =(Jﬁ) with

s,:= (V) =(1v2,43,2,45,...)

Example 2.3: The function f(n)=s,:=(3n’) gives a complex valued sequence,

with,

s, :=(3n%1)=(0,3i,12i,27i,48i,...).

Definition 2.2: Let (s,) be any sequence and let (n,)be a strictly increasing

Ny

(n<n,<ny<..<n <n, <..) sequence of natural numbers. If (s, )=(s,) then

(s, ) s called a subsequence of (s,).

Example 2.4: Let x, :=(3ij:[11 111111 j
n



Iis a subsequence of x, where n, = (6_1kj k=123,..

Definition 2.3: If all terms of the sequence x, are less than or equal than a real
number L , x, iscalled bounded above and L, is called an upper bound. That is
x,, is bounded above if ,

n

3L eR suchthat x, <L, forall neN.

Definition 2.4: If all terms of the sequence x, are greater than or equal to a real
number L,, it is called bounded below and L, is called a lower bound for x,. That
is x,, is bounded below if,

3L, eR suchthat x, >L,forall neN.

Definition 2.5: Let x, be a sequence. If there is a number L >0 that provides the
condition —L <x, <L ,the sequence x, is called bounded sequence. In other words

x_ is bounded if and only if,

n

3L >0 suchthat |X,|<L forall neN.

Obviously, a bounded sequence is a sequence which is bounded above and bounded

below.

The space of all bounded sequences is represented by the notation /7~ or m.
e =m:={x=(x):[x], =sup, |x| <o}
where,
|| " >R U{0}

is called the supremum norm.



Example 2.5: The sequence x, := (—3”) is not a bounded sequence.

Example 2.6: The sequence X, :L } is a bounded sequence from both the

above and below.

Example 2.7: The sequence,

X, :=(-n)=(0,-1,-2,-3,—4,...)

n

is bounded above , but it is not bounded below. Hence (x,) is not a bounded

sequence.

Example 2.8: The sequence,

X,:=(n?)=(0,1,4,9,16,25,...)

is bounded below, but it is not bounded above. Therefore (x,) is not a bounded

sequence.

Definition 2.6: If a sequence (xn) is bounded above, the smallest upper bound is

called the supremum of the sequence and indicated by the notation sup x,. Similarly
if a sequence is bounded below, the greatest lower bound is called the infimum of the

sequence (x,) and denoted by inf x .

Definition 2.7 (¢ - Neighbourhood): Let ¢ >0 and b e R. Then,
K:={x:[x-b<e, xeR]}

is a called the ¢ - neighbourhood of b.



The ¢ - neighbourhood of b is the interval

(b—¢g,b+¢).

Definition 2.8 (Convergent Sequence): Let s, be a real number sequence and s e R.
The sequence s, is convergent to S if and only if every ¢- neighbourhood of s
excludes only finitely many terms of s_. This is shown as
lims,=s or (s,)—>s
In other words s, converges to s, if
Ve>0, IN=N(¢) suchthat vn>N(e) [s,—s|<¢.
The space of all convergent sequence is generally represented by the notation c,

c::{s =(s,) ew| lims, exist}.

nN—oo

2
Example 2.9: Given s, := 4n2_+2 :
5n® +7
Then,
. 4n’+1 4
lim ——=—
e 52 +4 5

. 4
Thus, the sequence is convergent to T

Bounded sequences need not be convergent, this is illusrated in the following

example.



Example 2.10: The sequence s, := ((—1)” +1) is bounded, but since,

s,=(0,2,0,2,...) and lim

n—oo

((—1)” +1)
does not exists. That is s, is not a convergent sequence.

As a consequence of the definition, we can conclude that an unbounded sequence is

not convergent.

Example 2.11: The sequence x_ ::(Jﬁ) is not a bounded sequence. Also x_ is not

convergent sequence.

Definition 2.9: The sequence which is convergent to 0, is called a null sequence. The

space of all null sequences is denoted by c, .

cozz{s:(sn)ew| Iimsn:O}.

nN—oo

2

Example 2.12: The sequence s, ::L j is converges to 0. So it is a null

n~+n

sequence.

Definition 2.10: A sequence which is not convergent is called divergent sequence.

Example 2.13: The sequences s, := (—1)n and x, := (n) are divergent sequences.
We have the following inclusion relation for the space of sequences c,,c,(* and w.

c,cccl”cw.



Theorem 2.1: Let{s,} and {d,} be two sequences and let o eR. If {s,}and {d,}

are convergent, then

a. lim(s,+d,)=lims +limd,

n—o0 n—oo0 n—oo

b. Iim(sndn)z(limsn)-(limdn)

n—oo n—oo n—oo

c. lim(as,)=alims,

n—oo n—o0

g lims
d. lim—t=2==— if limd, 6 #0.
n—ow dn ||mdn n—w

nN—oo

Theorem 2.2: If the sequence{sn} IS convergent, then each sub-sequence of {snk}is

also convergent and it converges to the same limit.

Proof: Let {s, | be asub-sequences of {s,}, where lims, =s. Then,

n—oo

Ve> AN suchthat vn>N |[s —s|<e.
Since {n,} is strictly increasing, 3K st. vk >K, n, > N. Then

vk > K,

Sn, —s‘<g.

This means that, lims, =s.
k—o K

Example 2.14: Consider x, :(lj which is convergent to 0. So every sub-sequence
n

of X, converges to 0.

The converse of the above theorem is not true, that is if a sequence is divergent this
does not mean that its all subsequences are divergent. This is illusrated in the

following example.

10



Example 2.15: Consider x_ ::(—1)n =(-11-11...) , then x,, :=(1,1,11,....) and
Xon, - =(—1,-1,—1,—1,....) are two convergent subsequences of X, . The subsequence

X,, converges to 1 and X,,,, converges to -1, but X, is not convergent.

Theorem 2.3: Let s, be a convergent sequence. Then limit of X, is unique.
Proof: Suppose that s, has two limits, x, and x,. Then,

lims,=x and lims,=x,.

n—o0 n—o0

Given £>0, IN=N,(¢) suchthat Vvn>N, (¢)

s, - x| <Z.

2

Likewise, IN=N, (&) suchthat Vn>N, (¢)
s

—x,|<Z
n 2 2

Let N:=max{N;,N,}, than ¥n>N, we have,

X =X, | =X, =S, + 5, = Xo| <[5, = %] +[5, =%

which implies that,

Theorem 2.4: A convergent sequence s, is bounded.
Proof: Let s, be a convergent sequence with lims, =s. Then,
Ve>0, AN=N(¢) suchthat vn>N(e) |s,—s[<e.

Now, take ¢ =1, then

11



AN suchthat vn>N s, —s|<1.

Thatis Vn>N,
IS, =[5, =S+ <[s, — 5| +[s| <1+]s].
So if,
M =max(|s,[,[s,|,....|s |, 1+]3])
then,

vn,|s,| <M.

So (s,) is bounded.

Theorem 2.5: Any convergent sequence is bounded, but every bounded sequence

may not be convergent.

Example 2.16: The sequence (—1)n is a bounded but it is not a convergent sequence.

Definition 2.11: Let x, be a sequence,

a. If vneN, x, <x X, Is called an increasing sequence

n+l !

b. If VneN, x, =X X, is called a decreasing sequence

n+l?

c. If vneN, x,<Xx,,,, X, Is called a strictly increasing sequence

n+1?

d. If vneN, x,>Xx,,,, X, iscalled a strictly decreasing sequence

n+11

e. An increasing or decreasing sequence is called a monotone sequence.

12



Example 2.17: Given x, :=(1—1j.
n

Then,

X, Is increasing, strictly increasing and monotone.

Example 2.18: Let x, :=(1+1j :
n

Then,

X, is decreasing, strictly decreasing and monotone.

Remark: (xn) is increasing (strictly increasing) if the sequence (—Xn) is decreasing,

(strictly decreasing).

Theorem 2.6 (Monotone Convergence Theorem): Let (Sn) be a monotone and

bounded sequence , then lims, is exist.

Proof: We will prove that, an increasing bounded sequence converges to its

supremum and decreasing bounded sequence converges to its infimum.

a. Suppose that, (sn) is increasing and bounded sequence and let
S=sup{s,,S,,S;...} -
Since (s,) is bounded above , s=sup{s,} exists . We need to show that lims, =s.

n—o0

By the properties of supremumVe >0, 3s, suchthat s—e <s,.

13



Therefore, vh> N

S—&<§, <5, £5<S+¢
—£<8§,—5<¢
s, —s|<¢

(s,) isan increasing and lims, =s.

b. Suppose that, (sn) is a decreasing sequence and bounded. Then
s=inf{s,s,,...}.
Let Ve >0 3s, suchthat s, <s+e.Since (s,) isa decreasing sequence.

Then vn>N .
S—&<S<S§ <S5, <S+te.

We see that, lims, =s.

n—o0

Therefore, (s, )is a convergent.

Definition 2.12: A sequence x, is said to be a Cauchy sequence, if

Ve>0, AN(e)eN such that Vn,m>=N(g),[s, —s,|<e.

Theorem 2.7: A convergent sequence is a Cauchy sequence.

Proof: Lets, be a convergent sequence with lims, =s. Then,
Ve>0, 3N such that vn>N |s, —s|<§.
Therefore, vn,m> N

|sn—sm|£|sn—s|+|sm—s|<§+§:g.

14



So, {s,}is a Cauchy.

Theorem 2.8: Each Cauchy sequence is bounded.

Proof: Let {s,} be a Cauchy sequence. Then,

Ve >0, IN(&)eN such that Vn,m>N(¢),

IS, — S| <&
Take £=1, then, 3N such that vn,m>N, |[s s |<1.
Fix m, > N.Thenvn>N,

s,/ <

Sn—5%‘+‘3mo‘<1+

S,

So, if

M = max{[s,],[s,],-..|su,[sn, | +1]

then, Wn, |s,|<M. Therefore {s,} is bounded.

Theorem 2.9: Every Cauchy sequence is convergent.

Theorem 2.10 (Then Balzano-Weierstrass Theorem): Every bounded real number

sequence has at least one convergent sub-sequence.

Proof: Asuume that {s,} is bounded:

1. {s,}has finite number of distinct term. After that one of terms must have

infinite repeatitions. The subsequence that is the consisting of repation is a

constant sequence and therefore converges. So this implies that sequence is

converges.

15



2. Suppose that, {s,}has a infinite number distinct terms. Since {s, } is bounded

then we have,

c<s, <d,

For some real numbers c andd. We divide the interval of [c,d]into two sub-
intervals. These are {c, %} and {%d} At least one of them contains

infinite many distinct term of {s }. Assume that sub-interval [c,,d,] contains oo
many terms. So, we acquire a sequence of intervals {[ck ,d, ]} with properties.

a. vk, [c,,d,] contains co many distinct terms of {s,}.

b. VK, [c1.da] <[ dc].

d-c

C. \V/k, dk —Cy :T

Let sellect a subsequence {s }of {s,}. Take any term s_in [c,,d, ]. Since [c,,d,]

contains co many distinct terms of {s {,3n,>n st s _<[c,d,]. In this way and

obtain subsequence {Snk} of {s,}. This subsequence has the following property,

vk,m>K, SdK—Ck:d_C.

2K

S, —S

Ny

If any ¢ >0 is given, we can find K such that ¢ &.Then Vk,m > K,

2K

o = Sn <e.

d
<
2

We say that {Snk} Is cauchy sequence and therefore, the sequence is converges.

16



Definition 2.13: Let{s,} be a sequence, then

a. {s,} is divergentto +oo means that,
VA eR dneN,Vnzn s, >A.

In this case we write ,

lims, =+o.

noc
b. {s,} isadivergentto —o so,
VA, eR dn,eN,Vnxn, s, <A,
In this case we write,

lims, = —o.

Example 2.19: The sequence s, = Jn diverges to infinity. That is,
lim+/n = +oo.

n—o0

Example 2.20: The sequence s, := (—n)diverges to —o. That is,
lim(—n)=—o.
Theorem 2.11:

a. Assume that (s,)and (d, ) are sequences and, s, — +o .

1. If d_is bounded below. Then,

n

lim(s, +d,)=+o.

nN—o0

2. If >0,

lim(as, ) = +oo.

n—oo

17



3. Let {d,}ishoundedand s, #0,so

Iimﬁzo.

n—o0 S
n

b. Assume that (s, )and (d,) are sequences then, s, — —o.

1. If d_is bounded above. Then,

n

lim(s, +d,)=—.

nN—o0

2. If a>0,

lim(ax,)=—x.

nN—o0

3. Let{d,}isboundedand s, #0, so

Iimﬁzo.

n—o0 S
n

2.2 Infinite Matrices

This section is devoted to the infinite matrices and their properties. In this section we
are aiming to discuss infinite matrices and basic operations, such as addition,
subtraction, scalar multiplication and multiplication on infinite matrices. These

properties of infinite matrices will be used in the later chapters.

Definition 2.14: An infinite matrix A=(a, ) is a matrix that has infinitely many

rows and columns.

Ay 8y ... Y
A, a; dp...... a, ..
A=|: : A —n" row
a, @, ag...... a, ...

T k™ column

18



Definition 2.15: Let X =(x, )and Y =(Yy,) be any two infinite matrices and let
A be ascalar. Then,

a X+Y =(Xy)+(Yu)

b. AX =(Axy)-

Definition 2.16: An infinite matrix A=(a,, ) is called a non-negative infinite matrix

if a, >0 forall nkeN°.

Example 2.21: The following matrices are infinite

N e
TN N N O

R P O O
N O O O

The infinite matrix B is non-negative.

cC={ 0 0 -1 0 -1 -
0 0 0 -1 0 -

Definition 2.17: Let x=(x.)and y=(y,) be any sequences and C,D be infinite

matrices. Then,

a. xy=(xJYy) (scalar product)

19



¢, Cp Ciz veennr Cy - X chkxk
Ca C2 Cog vovee Cox - X z
Ca X
) . . C e C e X3 .
b. Cx:=(Cx, )= | = :
chkxk
Cnl Cn2 Cn3 """ an Xk .

Example 2.22: Let d =d, =(1,2,3,4,5...) be sequences, and A=(a, ) be an infinite

matrices, with,

1 0 0 0 0O
% 0 % 0 0
A= (@)= ] 1 1|
0 ot 0o =
3 3 3
then
1 0 0 0 © 1 1
2
% 0 % 0 0 3 —+g 2
Ad =(ayd,)=| | 1 1 |lall1 3 s5[7°
- 0 = 0 - ~+—+—1| |4
3 3 3 5 3 3| .

c. yD=(3 v,dy)

20



Example 2.23: Let s, :=(0,2,4,6,8...) be a sequence and

E=e,:=(1 0 1 0 1 ---) isinfinite matrix, then

00 oo M N O

00 oo M N O
O O O O O
00 oo A N O

o O O o o
.00 oo b N O

d. C.D=(b, )where b, =(>c,d, ) (nkeN’)

Example 2.24: Let

1 01
3000
010
0 300
C=c, = and D=d,=|1 0 1
0 030
. : 010
then,
30 30
03 03 -
C-D=c,-d, = =b,
30 30 -

21
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Definition 2.18: Let A and B two infinite matrices. Then,
a. If A-B=I then A is called left inverse of B and B is called the right

inverse of A.

Example 2.25: Let

1 0 0 0 o -
0 1 0 0 0o -
1 0 1 0 0 -

A= ,
0 1 0 1 0 -
1 0 1 0 1 -
1 0 0 0
0 0 0 0
-1 1 0 0

B=
0 -1 0 1 0
0 0 -1 0 1

then
1 0 0 0 0o -
0 1 0 0 0o -
0 0 1 0 0 -
A-B= =1

0 0 0 1 0 -
0 0 0 0 1.

b. IfA-B=B-A=1 then B s called the inverse of A and denoted by

B=A"(or A=B™).
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1 0 0 - 1 0 0 0 O -
-1 1 0 0 - 1 1 0 0 0 -
Example2.26 A= 0 -1 0 - and B=({1 1 1 0 0 -
O 0 -1 1 1 1 1 1 0
then,
1 0 0 0 0
0 1 0 0 0
A-B=|0 0 1 0 0 =1
0 0 0 1 0
and
1 0 0 0 1 0 0
1 1 0 0 -1 1 0 0
B-A=:1 1 1 0 0 -1 1 0 =L
1 1 1 1 0 0 -1 1

Therefore A and B are inverses of each other.

Definition 2.19: The matrix A=(a,) is called a triangular matrix if a, =0 for

k >n. A triangular matrix with a,, =0 for all n is called a triangle matrix.

Example 2.27: The matrix

10000
37000
E={4 9 6 0O
5 2890

is a triangular matrix.
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Example 2.28: The matrix

is a triangle matrix.
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Chapter 3

MATRIX METHODS

So far, we discuss some concepts that will be needed to study Matrix Summability
theory which is the main subject of this thesis. In the present chapter, we shall
discuss the general theory of matrix summability methods. We shall start with matrix
transformations, and then, some basic definitions like, convergence and application
domains, conservative and regular matrices, Kojima Schur and Silverman Teoblitz
theorems will be considered. Later operations on matrices that preserves regularity
and conservative property will be studied. In the last part of this chapter we shall
focus on multiplicative matrix methods, zero preserving matrix methods and their

properties.

Definition 3.1 [5]: Let A=(a, ) be an infinite matrix and x=(x,) be a sequence

then the A-transform of x:=(x,)is denoted by Ax:= ((Ax)n) and defined as

(Ax)n :Za”kxk !
=1
if it converges for each n.

A matrix summability method consisting of three parts;

1. Aninfinite matrix A=(a,)

2. Convergence Domain

3. Limit operator.
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If A=(a,) isan infinite matrix then, the following set
W, = {x =(%)ew, Ax:= > a, X, converges for every n> 0}
k

is called the application domain of A. In other words application domain w, of an
infinite matrix A=(a,, ) is a subset of W, such that for all xew,, Axis defined.
The following subset ¢, of w,

cy={xew, Axec}

is called the convergence domain of A. In other words, Xec,, if and only if Axis

convergent.

Also, for A=(a,, ) we can define the following limit operator,

A—limx =lim(Ax).

k—o0

Therefore, (A,c,,limA) is called a matrix summability method.

Example 3.1: The infinite Identify Matrix (I,c, Iim) is a matrix summability method

where

[

Il
O O o B
o o+~ O
o B O O
R, O O O
O O O o

is the Identity Matrix.
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Example 3.2: Consider the following matrix

1 9 0 0 o
2
11y 0 o
2 2
z.-lo L 1 o o
! 2 2
0o o X 1 o
2 2

which is called Zweir matrix.

2 2 2

The matrix method [Zl,czl L, — Iimj is called the Zweir summability method.

Definition 3.2 (Conservative Matrix)[1]:  An infinite matrix A is called
conservative matrix if and only if the convergence of the sequence x implies the
convergence of AXx.

In other words, A is conservative if and only if

Vxec = Axec (limitof x and Ax can be different).

The space of all conservative matrices will be denoted by (M, ).

Example 3.3: Let,

O O OMN
O O N O
O N PO

N P O O
B, O O O

For the sequnece,
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we have
limx, =0.
On the other hand,
2
1+1
4
AX, = l+1
2 8
1 1
_+_
4 16
limAx, =0.
Example 3.4: Let,
0 000D
0 00 00O
0=/0 0 0 OO
0 00 0O

For any sequnece, X,=(X,X,,X;.....), limAx =0. Therefore, zero matrix is

n—w

conservative. Moreover, consider the convergent sequence x, =(3,3,3,....) which

converges to 3. Ax, is convergent but the limit of Ax, is 0. So, for the

conservative matrices limits need not be the same.

28



The following Theorem of Kojima and Schur gives necessary and sufficient

conditions for conservative matrices.

Theorem 3.3 (Kojima and Schur) [7]:
Let A=(a, ) n,k=0,1,23,.. isan infinite matrix. Then, A=(a,,) is conservative
matrix if and only if,

1. lima, =4 Vvk=012,..

2. lim> a, =1
Nn—oo =1

3. sup <H <w forall H>0.

D a,

k=1

Example 3.5: Let,

0000
2

2l o000

Z,=|2 2

2

o £ 1 00
2 2

1. IimzZ, =0 forall k=0,12,...
—0 E

o0

2. lim> 7, =1
n—>ook:1 E
3. sup|D) Z,| 1<
k=L 7

Zweir matrix is a conservative matrix. That is for any

Xec=7Z XecC.
2
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Example 3.6: Let

O 1 0 0 0 o

0 % 0 % 0 O

D=d, = 1 n L
o = 0 = 0 = 0--

3 3 3

be an infinite matrix.
By Kojima and Schur theorem;

1. limd, =0 forall k=0,1,2,...

nN—oo

2. lim>d, =1
k=1

n—w
)
2. dn
k=1

3. sup —>1l<®

D is a conservative matrix.

Theorem 3.4 [5]: Let n be any positive integer and E be a conservative matrix.
Then E" is also conservative.
Proof: We need to show that E"x is also convergent. We can prove this theorem by

using mathematical induction. Let, E be a conservative matrix. Then,

n=1 — E"X=EXx. Here, Ex isaconvergent.
n=k — Assumethat E* isa conservative. Then, E"x=E*x is convergent.
Thatis E*x —L,.
n=k+1 — E"X=E"*'Xx . Here, Ex isa conservative and E* is a conservative.
Thatis E“'x=E"(Ex)—> L.

Therefore, E"x is a conservative.
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Theorem 3.5 [5]: If B and D are two conservative matrix. Then

a. D+B isconservative

b. DB and BD are conservative

c. AD where Aany scalar is conservative.

Proof:

a. Taking a convergent sequence X =(X,) such that limx, = L. Then,

X—>00

D is conservative = Dx =L,

B is conservative = Bx =1L,
(D+B)x=Dx+Bx— L, +L,. Therefore D+B is conservative.

b. Let X =(Xk) be a convergent sequence with limx, =L. Then, Dx is convergent

sequence. So,
Bx is a convergent. Thatis Bx— L, and D is a conservative matrix.
(D.B)(x)=D(Bx)—>L,
e The proof that DB is conservative. Can be obtained in a similar way.

c. For any scalar A and for any convergent sequence X = (xk ) , with limx, =L

(AD)(x)=A(Dx) - AL,

So, AD is conservative.

Remark: If A is a conservative matrix, then
NA=A+A+A+....+A

is also conservative matrix.
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Definition 3.3 (Regular Matrix) [1]: An infinite matrix A:(ank) is called regular
matrix if for any convergent sequence, X, with X, =L, AX, is convergent and

AX, — L. (The limit values of x, and Ax, must be the same).

The space of conservative matrix will be denoted by M ;.

Theorem 3.6 (Silverman and Teoblitz) [7]:

An infinite matrix A=(a,, ) is regular if and only if,

1. lima, =0 foreachk=0,12,..

n—o0

2. lim>a,
Nn—oo k=1
3. sup> a,|<H <o forall H>0.
k=1

Example 3.7: Consider the following infinite matrix,

1 0 0 0 0
1o 1 o o
2 2
1 1 1
0 = 0 = .

B=h, =|3 3 3
1 9 1 5.1
n n n

Since,

1. limb, =0 forall k=0,12,..

n—oo

2. limYb, =1
n—ow k=1

Z bnk

k=1

3. sup —>1l<oo
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Therefore, for any x ec where x > L, Bxecand Bx — L.

Example 3.8: Let D be an infinite matrix given by

2 -1 0 0 0 0--
o 32 1 09 o o
2 2
D=d,=/0 0 % —% 0 0
0 0 0 5 _1 0--
4

By Silverman and Teoblitz theorem,

1. limd, =0 forall k=0,12,..

n—o0

2. limYd, =1
k=1

3. sup|>.d,|—>1l<w.
k=1

D is a regular matrix. For any x e c where x - L, Dxecand Dx — L.

Theorem 3.7 [5]: If A is any regular matrix, Then A" is also regular.

Proof: Let X ecC be any convergent sequence with x — L. If n=1,

Ax— L (Aisregular).

Suppose that A is regular for k >1. That is (Akx)—> L, then
A= A(A'x) > L.

So, A“! isaregular. A" is also regular.

Theorem 3.8 [5]: If D and B are two regular matrices, then

a. %(D +B) is regular.
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b. DB and BD are regular.

Proof: Taking any convergent sequence X with X — L, then obviously, Dx — L

and Bx — L. Now,

is regular.

(D+B)
2

a. %(D+ B)x=(% Dx+%ij—>L,since X is arbitrary

b. Similarly, (DB)x=D(Bx), but Bx is a sequence that converges to L, and

D is regular implies then, D(Bx)—> L. Since X is arbitrary DB is regular.

Similarly one can show that BD is also regular.

Theorem 3.9 [5]: Let D,,D,,....D, be n regular matrices. Then
1 .
a. =(D,+D,+..+D,) isregular.
n

b. D,-D,---D, isregular.

n
Proof: Let X be any convergent sequence, with X — L then,

a. Since D, D,,....,D, are regular matrices, D.x > L, i=12,....,n. Then,

14D+ 2D P B(x)  Di(x)
(D +D, n) (%)

n n n

1
=H(L+L+L+....+L)=L :

Therefore,

1

H(D1+D2+...+Dn)
is a regular.

b. Taking any convergent sequence X withx —L andlet S=D,-D,---D,. We need
to show that Sx — L.
Sx=(D,-D,-D,---D,)(x)=D,-D,-D,---D,, (D,x)
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Here, D.x—> L
Say D, x=y—>L. Then,
Sx=D,-D,---D, Y.
Similarly,
D, x=y,—>L,
and

Sx = Dl'DZ'“Dn—Zyl

If we continue in this way, we get,
SX—L

which implies that D, -D, ---D, is a regular matrix.

Remark: As a consequence of the definitions, we have, M, M, .

Definition 3.4 [5]: Let A be an infinite matrix. Then, A is a zero preserving matrix
if
for all xec,, Axec,.

The space of all zero preserving matrices will be denoted by M or M, .

Theorem 3.10 [5]: Let E be a zero preserving matrix then,

1. lime, =0 forall k=0,12,...

n—oo

<H<ow .

2. sup[de,
k
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Example 3.9: The following matrix,

10000O0 -
011000 -
D=0 01 1 0 0 -
000110 -

satisfies the conditions,

limd, =0 foreach k=0,12,...

n—o

and

=2<0.

SL:p‘z dnk

So, D isa zero preserving matrix.

Theorem 3.11 [5]: Taking two zero preserving matrices D and K. Then,
a. K+D is zero preserving matrix.
b. KD and DK are zero preserving matrix.
c. Foranyscalar A, AA is zero preserving matrix.

Proof: Suppose that s e c, is arbitrary. Then,
a. (K+D)s=Ks+Ds—0.
b. DKs=D(Ks), but KeM, implies that Ks -0 and DeM, implies that

D(Ks) — 0, therefore DK e M,,.

Similarly, we can show that KD € M, .
c. (AD)(s)=4(Ds),but DeM, implies that Ds —0 and A(Ds)— 0, which

implies that AD € M, .
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Lemma 3.1 [5]: Let A, A,,..., A, €M,. Then,.
1. A+A+..+A eM,.
2. LA+ LA +...+4,A, €M, where liis an arbitrary scalars i =1,2,...,n.
3. AA.AeM,.

Proof: Let Xec, beany sequence, then Ax—0, i=12,...,n.

1. Obviously, (A+A, +..+ A )(X)=(Ax+AX+...+Ax)— 0. Therefore,

2. Let A, 4, A, be any scalars and X ec, . Then,

(AA+ LA+ 4A)(X) =4 (AX)+ 2, (AX) +...+ 4, (AX) >0 and

LA+ LA+ A+ A A M.

3. Let Xec, beany sequence. Then,

(AA A )(X)= AA AL (AX)=A-A AL (AL (AX))

%/_J
€Co gy

If we continue in this way,
(A-A--A)(X) =0
So,

ARy A e M.

Definition 3.5 [5]: Let E be an infinite matrix, and A be a scalar then E is called

multiplicative matrix with multiplier 4, if
lim(Ex)=Alimx forall xec.

The space of all multiplicative matrices with multiplier A is denoted by M, .
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Theorem 3.12 [5]: Let E be an infinite matrix. Then E is multiplicative with

multiplier A if and only if,

L lim)e, =2

n—o0

2. lime, =0

n—oo

<

3. sup|Y e,
k

Example 3. 10: Let E = (e, ) be an infinite matrix where

3+%, k=n
E=e,:=1-%, k=n+l
0, otherwise
then,
4 -1 0 0 0 0
0 ot 0 0 0
2 2
E=0 0 w01 0 0
3 3
0 0 0 181 0
4
1 lim) e, =3

n—o0

2. lime, =0

n—oo

3. sup|Y e |=8<wx .
k

So, E is multiplicative matrix with multiplier A =3.
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Lemma 3.2 [5]: If A,A,,..,A eM,.Then
1. %(A1+A2+...+A1)e|v|l.
2. A-AeM,.
3. A'eM,,.

Proof: Taking a convergent sequence X such that limx=L. Then,

1. %(A1+A2 e A])x:%(Aix+Azx+...A1x)
1
~(naL)=2L

2. (A-A)(x)=A(AxX) but Ax—AL and
Ai(AZX)—)Z(ﬂ,L):/IZL =A-AeM,

3. By mathematical induction:

Ifn=1 = AeM,
Suppose that(Al)k €M, . For any convergent sequence x with limit L, we have,

(A) " —2L

Then, we need to show that (A )" e M ,..

Let,
(A) " x=A(A%) > A(AL) > 2L
-
AL
Thus,
A"eM .
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Remark: As a consequence of the definitions, we have
a. M, =M,

b. M, = M,.

Lemma33[7]: fDeM  and KeM,.
a. DKeM,

b. KDeM,.

Lemma3.4[7]: Let DeM, and KeM,. Then
a. DKeM,
b. KDeM,
c. ADeM, forallA

d. iKeM if A=0.
1 reg

In the following definition we give some new definitions such as conservative matrix

for ¢, and coercive methods, also some definitions that are given above are define

by using a different way.

Definition 3.6 [5]: Let D be an infinite matrix and (D,cD, D—Iim)be a matrix

summability method then,

a. D iscalled conservative for ¢, if ¢, cc, thatis
Sec,>sec,,Dsec

b. D isconservative if ¢ cc,, thatis,
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sec —» Dsec
c. Disregularif ¢ ccyand D-lims=lims Vsec.

d. D iscoercive if, (* ccy

Example : Consider the zero matrix,

- O O O O
- O O O O

o O O o
. O O o o

is coercive, for every bounded sequence x. That is B°x — 0.

Example 3.12: The Cesaro matrix of order 1,

1 00O0O0TDO

1 1 0 00O

2 2

111400

C,=|3 3 3
111 1,
n n n
is not coercive.
Consider the sequence x=|0,1,0,0,1,1,11,0,0,.....,0,1,.....3,0,..... | . Then
44 —times 8times 42 _times

1

1¢ 41 4n(1_4”] 1
[ p— k = — = —)—
[Cxler = 4 2.4 34" 34" 3

k=0
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l 4n+l 1 g

[C.x]

24"
k=0

The sequence x is a bounded. But X & . . Therefore, C, is not coercive.

Let D=(D,cy,D-lim)and K =(K,c,,K—lim) be two matrix summability

methods. Furthermore, let L —w be any space of sequence, then we can give the

following definitions (see [1] and [5]).

Definition 3.7: Kis stronger than D, or D is weaker than K , if and only if
Cp C Cy.
On the other hand, K is called stronger than D relative to L if

ConLcCy.

Definition 3.8: We say that matrix methods D and K are equivalent. If
Cp =Cy .
Moreover, D and K are equivalent relative to L if D and K are equivalent on

LNC,nCy.

Definition 3.9: Let D=(D,c,,D—lim)and K =(K,c,,K—lim) be two matrix
summability methods. Then D and K are called consistent if,

D—-limx=K-limx forallxec, n¢,.
Moreover, D and K are called consistent relative to L cw if

D-limx=K-limx, VxeC, nC, L
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Example 3.12: Consider the following Zweir matrix and Cesaro matrix of order 1.

%00000... 1 0 0O
1 1
%%oooo EEOO
11 111,
Z. =0 = =Z 000 C =
SRR
0 0 5 200 111
: n n n
Then, taking x=(1,0,-1,1,0,-1,1,0,—1,...) then,
1
L voo0oo0o0.|[1?
2 0 %
116000 -1 —y
2 2 1 )
0
Z OEEOOO 0 Xé&cC
1 Z
2 2 2 L }/ :
1 1 - 2
00 = =00 1 _
2 2 2
: : 0 0
1 000 0 1\ (1
1 1yho0o0 A
2 2 1| g
Cllloo 1
1:3:3:3 : 0 % "<t
.1.11'1 -1 °
- = Za. = 0.
n n n n 1%

Since ¢, cc., C, isstrongerthan Z,. Inother words Z, is weaker thanC,.
g 2 2

Moreover, the above example shows that, ¢, zc,, (ccl #Cy, j ,
2 2
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which means that C, and Z, are not equivalent ( C, and Z, are consistent).
2 2

Example 3.14: Let E and Z, be an infinite matrix. Then x = (—1)n and y, = (n) are
2

any two sequence.

a. x=(-1)
1 0 O0-- 1 1
-1 1 0 0|1 -2
Ex={ 0 -1 1 O 1|=| 2| —> xg¢c
o 0 -1 1.-]]|-1 -2
loooo0o 1) (1
; -1| |0
11 0 00O 1 0
Z,x=|2 2 = — X€C,
: 0 11 0 00 o X %
2 2 1|0
x:=(-1)" E(Czl \CAJ.
b. y,=(n)
1 0 O 0---) (0 0
-1 1 0 O 0---111 1
Ey=| 0 -1 1 0 0---(:]2]|=1 y eCg.
0O 0 -1 1 0--- 113 1
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%ooooo 0) (O
1
L 19000 2%
Z,y=12 2 3=% ye&c, .
2 11 2
2 5
0> 5000 44

y::(n)e[ CE\Czlj'

2

Thus, we can see that E and Z, are not comparable methods.
2

Theorem 3.13 (Comparison by using a transition matrix) [5]: Taking three infinite

matrix these are D,K and E with K = ED such that (ED)x and E (Dx)are defined
(ED)x=E(Dx) holds for all xec,.

1. K isstronger than D if E is conservative(c, =c, ).
Proof: Assume that E is conservative. We need to show that(c, —c, ). Let X be

any elements ofc,,.
X € ¢, — Dx is a convergent.

Kx =(EDx)=E(Dx). Here, E is conservative and Dx is a convergent.

Therefore,

E (Dx)— convergent and x ec,.
C, ¢ = K isstrongerthan D.
2. K is stronger than and consistent with Dif E is regular (c, =c,) and

(D—lim=K —lim).
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Proof: Suppose that E is regular (c, =c,).Then Vxecp.
lim, x=Ilim_ Dx =limg x

lim, =lim;.

Theorem 3.14 (Comparison, Consistency) [5]: Let D be a row-finite and E be a

triangle. Then, C := DE™. This theorem has the following statements.

a. D isstronger than E if and only if Cis conservative .

b. D isstronger than and consistent with E if and only if C is regular.
Proof: We will prove "="for aand b.

a. Suppose that C is not conservative,3z e ¢ such thatz ¢ c. .

Then for all
x=E"'z = Ex=z isaconvergent (xec.).

Dx =(CE)x =C(Ex)=Cz does not convergent(Cz ¢c).
Thus, D is not stronger than E .

b. Assume that C is conservative but not regular. After that,
dzec suchthat lim z=Ilimz.
Sothat,if x=E'z wehave D isstronger than E

XeC. CCp .

limy x=Ilim. Ex=lim, z=limz =lim_ x.

Thus,
limg x=limg x.
D is stronger than and consistent with E if and only if C is regular.
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Chapter 4

SOME MATRIX METHODS

This chapter is devoted to some well-known matrix summability methods such as
Cesaro Matrix methods, Holder Methods, Reisz Method and Euler- Knopp Methods.

In this chapter, we shall discuss some basic properties of these matrix methods.

4.1 Cesaro Methods

Definition 4.1 [5]: Letar € R with (—cr ¢ N). The Cesaro matrix C, :=(c5; ) defined

n—k+a-1

e

Co = N+a ’
)

is called the Cesaro matrix of order o or Cesaro method and it is denoted by C,, .

by

Example 4.1: The Cesaro matrix of order 0 (« =0) is the identity matrix I.

Example 4.2: The C, (Cesaro matrix of order 1)

If we choose « =1in the above definition of C_ =(c”,). We obtainC,, the Cesaro

matrix of order 1, where
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n—k
[n—kj 1 ksn
CL={(n+1 ksno_ !
nk " -
(nj 0 yk>n
0 ‘k>n

and

Let X, =(X,,%,,X,,.....) be any sequence. Then,

1 0 0 0 0 X, X,

1 Lo 0 o0 .l% X

2 2 X, 2

L1 o1y XX % Lo
Cx,=| 3 3 3 = 3 = _zxk

. : : : Ni=o

1 1 1 X+ X, + X500 X,

= = - ... = 0 - X

n n n n n

The matrix method (C,,c,,,C, —lim)is called the Cesaro Summability method of

order 1.

Example 4.3: The second order Cesaro matrix, C, is defined by

[n—k+1}
Ln-k )

Ci=1{ (n+2 T
n

0 ‘k>n

or
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2(n—k+1
M k<n
(n+1)(n+2)
ank =
0 ;k>n
the matrix form of C, is the following matrix
1 0 0 0 0
2 1 o 0 O
3 3
|2 2 1 g g
6 6 6
4 3 2 1 40
10 10 10 10

and the other Cesaro matrices can be defined accordingly when needed.

Theorem 4.1 [5]: Let ne N° and « > 0then C_, is regular.
Proof: It is enough to show that, C_ satisfies the conditions of Silverman — Teoblitz

Theorem. Recall that,

SR

Therefore,

On the other hand,

(n—km—lj (N—K+a-1)(n—k+a—2)-(a)
n—k (n—k)!

n+a n+a)n+a-1)---(a+1)

( n j n!
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n n-1 n-k+1 «

= —0.
nN+a-1n+a-2 n+a-kn+a
Finally, we need to prove that
sup| D ¢y | =M <oo.
k=1
If «>0then, c“, >0 and
sup|D ¢ |=M <o,
k=1
follows from
¢’ =1
k=0

Remark : If « <0, C_is not conservative and regular.

Theorem 4.2 [5]: Let —1<a < /. Then C,is stronger than and consistent with C,, .
That is
Cc, ©Cc, and lim; x=lim; x.
Proof : Let & and S be two real numbers satisfying -1<a < and x=(x,)and
y=(y,) and z =(z,) be sequences, such that
y=(y,)=C_Xx, and  z=(z)=C,x.

In this case, the transition matrix A= (a, ) which is defined by;
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(I—v+,8—a—lj
I-v if v<I

oo (V)

0 if v>I,

for 1,veN°, satisfies the condition,

C,=AC

B a
Now, we shall prove that the transition matrix Ais regular. It is obvious that,

zga'v :[' ﬂli(' _V+ﬁ—a_1J(V+aj

= l—v v

_(I +ﬁj_l(l —O+,B—a+(a+1)—lj

2

\4

aIv

I -0
=1

This means that the first and the third conditions of the Silverman Teoblitz Theorem
are satisfied. Now we need to prove limit condition of the Silverman Teoblitz
Theorem.

As a first step we shall consider the case v =0.Taking, 7=/-a—1, we obtain that

[Iﬂ _ (1+0)(1+7=1)(r+1)
(I +ﬁj (1+B8)(1+B-1)---(B+1)

[

If we use the fact that, 1+r<e’ (reR),
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BT B B
O<a <e|+ﬂel+ﬂl eﬂ+l

=exp( ikl J—)O (1> ),

since 7=4-a-1 and Z—l—>oo Therefore, (a,,), — 0. On the other hand,
v+

for the case, v >1, and | >v we have,

- [.(Ilz% [EVZ 2) - (|(_I_VI . ) o)

l-v+1 v-1

_V+a

(I > ),

which implies that,

|I|m Q= I|Im ay == ||Im a,.,= ||Im q,=

Since Adis regular then C, is stronger than and consistent with C,, .

Definition 4.2 (Type M) [5]: A matrix A with bounded columns is called of Type M
if

tA=0 implies that t=0

for all, absolutely summable sequences t, (t<l, that isZ|tk| <o0).
k=0

Theorem 4.3 [5]: A regular triangle, A=(a, )is of type M if Ahas bounded
columns.

Proof: Assume that t el and tA=0 then, since A™has bounded columns we have,
t=tAA™ = (tA)A™ =
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Theorem 4.4 [5]: For any « >0the matrix C, is of M type.
Proof: For any « >0 the matrix C_is regular triangle. Its inverse satisfies the limit

condition of the regular matrices so it has bounded columns. So it is of Type M .

Theorem 4.5 (Knopp) [5]: For each & € N, the matrix methods C_, and C,-C_,are

equivalent and consistent.
4.2 Holder Methods

The Holder matrices are derived by the Cesaro matrix of order 1 by iteration.
Therefore, many properties of Holder methods can be obtained from the Cesaro
matrix of order 1. This is the most important advantages for the Holder methods. On
the other hand, since the product of two Cesaro matrix is not a Cesaro matrix, this

will cause to handle Holder matrices in an easy way.

Definition 4.3 [5]: Let C, be the Cesaro matrix of order 1 where e N° (a>1).

The Hoélder matrix (or Holder method) of order « is denoted by H“ and defined as

H*=(C,)" .

Lemma 4.1 [5]: The Holder method has the following properties:

c. H*=HH“'=CH"? (a>1)

d. H™ =H*H’

e. H“ iswell defined and a triangle as a product of triangles.

53



Example 4.4: Let’s find H and H?. Obviously, H =C,. The second order Holder

method is H?>=C,H =C,C,. So,

1 0 0 0 1 0 0 0
% % 0 0 % % 0 0
H*=C, G, = 1 11 1 11
= 2 0 )
3 3 3 3 3 3
1 0 0 0
H2 = 4 4
no5 2
18 18 18
Example 4.5: H®=H-H?=C,-H?. Then,
1 0 0 0 1 0 0 0
G R = f 12 1 fl ; 2
e ) = 2 <
3 3 3 18 18 18
1 0 0 O
L
H3= 8 8
85 19 4
108 108 108
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Theorem 4.6 [5]: H* isregular.

Proof: From the Definition 4.3, H“:=(C,)" , if we take a=1 we have,

H =H'=C, and it is regular. As a product of regular matrices H* is regular.

Theorem 4.7 [5]: For eacha N, the method H*" is strictly stronger than and

consistent with H* . That is to say

c.cc X (VXecHQ).

e SC,pen and IlmHa X =lim

Lt
Proof: By comparison, consistency theorem,
“If Eand D are row finite andC =E™'D. Then C is regular if and only if D is
stronger than and consistent E .

H** =HH* =CH",
So, since C, is regular, H**" is stronger than and consistent with H* .
Moreover, we know that

CcCg but c=c .

Therefore this implies that H*" is strictly stronger than H“ .

Theorem 4.8 (M type) [5]: If o e N° then the matrix H*is of type M .
Proof: Let & e N°. Itis clear that (H “)71 =(C,*)"and it is column finite triangle.

Therefore H*is of type M .
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4.3 Riesz Methods (Weighted Means)
The Riesz method or weighted mean represents a class of regular matrices. It is
known as the generalization of C,, the Cesaro matrix of order 1. The most important

advantage of this method is to be a simple method to define a regular matrix and its
inverses by using a sequence of numbers with some conditions. That is if you have a

sequence (p,) then you can create a regular matrix from this sequence.

Definition 4.4 [5]: Let p= ( pk) be a sequence with p, >0 and p, >0 forkeN.

Then define P, by,

Definition 4.5 [1]: Let p= ( pk) be a sequence with p, >0, keN andP, = Z Py -

k=0

Then the Riesz matrix or method correspondingto P = ( pk) is denoted by
(R, )or R, and defined by,

R,=(R,p)=(R,p,)=(ry)
with

P .
r, = F: T ke<n (k,nen®).

0 otherwise
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Example 4.6: Letp:(pk)=e=(1,1,1,....1, ..... ).Then P, =n+1.

Then,
1 0 0 0 0
l E 0 0 0
2 2
s o3 o3 00
(R’e): : : I
1 1 Lo N
n+l n+1 n+1 n+1

which is the Cesaro matrix of order 1. In other words the Cesaro matrix of order one

is a Reisz Method (or Weighted mean) generated by the sequence

p=(p)=(111..1,...).

Definition 4.6 [1]: Let p, >0, VneN°, theinverse R;*:=(r, )of R is given by
X n, k=n

roc :=<—(n-1), k=n-1 (n,keNO).
0, otherwise

Example 4.7: The inverse of C, is the following matrix

1 0 0 0
-1 0 0 0
0o - 3 0 0
0 0 —(n-1) n
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Theorem 4.8 [5]: Let R be a Riesz method associated with p. Then, R  is

conservative.

Proof: Let R, be a Riesz method with

0, otherwise

To show that this is a conservative matrix it is enough to show that it satisfies the

conditions of Kojima-Schur Theorem.

a D => I :Z& = iz p, =1,therefore row sum condition is satisfied.

k=0 k=0 k=0 Pn n k=0
b. sup> |r|=sup> r, <1
k k

c. Forfixed k, r, is decreasing and bounded sequence, so it is convergent.

Therefore as a consequence of (a), (b) and (c), the Riesz Method is conservative.

Theorem 4.9 [5]: Let R, be a Riesz method associated with p. Then, R, is regular
if and only if p, — oo.

Proof: To show that this is a regular matrix it is enough to show that it satisfies the

conditions of Silverman-Teoblitz Theorem Let R, be a Riesz method, then

a D re=>r, :Z& = iz p, =1 therefore row sum condition is satisfied.

k=0 k=0 k=0 Pn Pn k=0

b. supd |r,|=supD r, <1<oo,
k k

c. IfP,>wasn—owr, P onsw This means that

n

limr, =0 VkeN..

nN—o0

So, as a consequence of Silverman-Teoblitz Theorem Riesz method is regular.
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Theorem 4.10 (M type) [1]: If p, >0 vneN°, the matrix R, is of type M .

Theorem 4.11 (Comparison) [1]: Let R be a regular Riesz method generated by

(p ) withp, >0 andlet B :(bnk) be any conservative matrix. B is stronger than

R, if and only if;

1. Iimbl‘zo
k—o pk
and
b
2. sup, > P Do Dniest|
pk pk+l

4.4 Hausdorff Methods

The class of Hausdorff Methods is a class of regular matrices that includes the
Holder and Cesaro matrix methods. Basically, a Hausdorff method is based on
differences of a sequence or more generally on difference matrix. The representation

of the Holder matrices as a Hausdorff matrix enable us to extend the definition of

Holder matrices for & e N° to o e C (the set of ) complex numbers.

Definition 4.7 (Difference Operator) [5]& [7]: Let X= (xk) be a sequencek e N°.
Define the following operator;
AL =% and A} =A"'x -A"'x, (n21).

X

Is called the difference operator. By induction,

A=Y () [”jka .

v=0 v

and if takek =0 we get,
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The above equation defines the following matrix which is called difference matrix.

Definition 4.8 (Difference matrix): The following matrix A,

(—1)“(“} if 0<v<n

A=(A,,)= v
0 if v>n
Or equivalently,
1 000
1-1 0 0
A=[1-2 1 0
1-3 3 1 0--

is called the difference matrix.

Remark (Inverse of A): Since AA =1, then the inverse of the difference matrix is

itself, thatis A=A,

Definition 4.9 (Hausdorff matrix) [5]: Let p=(p,) be a sequence where ne N°.

The Hausdorff matrix generated by the sequence p= ( pn) is denoted by H  and

defined by

H,:=(H,p)=(H,p,)=Adiag(p,)A.

Here, diag( p,) is the diagonal matrix with diagonal elements p, .
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hence, C, is a Hausdorff method.

Adiag(2")A

Example 4.9: Let p, ::(2”). Then H,, ::(H :(2"))

1 000
1-1 00

1-3 310

11-2 1 0

1 000
0200
140 0 4 0

0008 O

1 000
1-1 0 0

1-2 10

1-3 3 1 0---

A-diag(2")-A
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Lemma 4.2 [5]: Let H, and H, be two Hausdorff matrices generated by the

sequences P=(p,)and q=(q,)respectively. Then,

n

L H,=(h,)= [k

0 if k>n

j A"*p, if0<k<n (knere).

2. H,,=H,+H,
3. The matrices H is atriangle, if and only if p, #0 v(n eNO).

4. HH =H

p"q pq

5. Inverse: (H p)fl exists if and only if p, #0 Vn e N. Furthermore,

(Hy) =(H.p.").
Proof:

1. Let Adiag( pn)=(Aw pv), we get for all k <n the equalities

h = EAW pA = (1) [njpv (-2 m

v=k

S n ()

_(n "Z—‘i(_l)v n—ky (n AN
- k = pv+k Vv - k pk'
2. It comes from Lemma 4.2 (1). Since A"* is linear for n>k

H,., =(Adiag(p, +q,)A)

= Adiag (p, +q,)A=(H, p,)+(H.q,).
=H, +H,.

3. Since p, is the coefficient of H  inthe n" position of its diagonal < p, = 0.
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4. Since Hausdorff matrices are row finite. We get,

H,H, =(Adiag(p,)A)(Adiag(g,)A)
= Adiag ( p, )diag(q, )A

:Adiag(pnqn)A:(Hv pnqn)'

5. Let H isatriangle necessary and sufficient condition p, =0 VneNN.
Inthisway q=(q,) with g=p," VneN’. From it comes Lemma 4.2 (4),

H,H, :(H’ pnqn):(H’e):I

Therefore Hq is the inverse of Hp.

Theorem 4.12 [5]: If H  and H, are Hausdorff matrices and H  is triangle. Then

the following statements hold:

a. H, isstronger than H  if and only if [Hq—”} IS conservative.

n

b. H, isstronger than and consistent with H  if and only if (H q—”]

n

is regular.

Theorem 4.13 (Characterization) [5]: Let p=(p,) be a sequence with

P, = P (n=k). And let Bz(bnk) be lower triangular matrix. Then B is a
Hausdorff matrix if and only if

BH, =H,B (B=H,BH, ).
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Proof: Let p=(p,) beasequenceand B= (bnk) be a lower triangular matrix.
Assume that B is a Hausdorff matrix, then B=H,_ . In this case
BH, =H H, =H_, =(H,q,p,)=(H,p,q,)=H:H, =H.B.
Now, suppose that BH, = H,B. Multiplying both sides of BH, =H_,B by A,
we get,

ABH,A = AH,BA
or

ABAdiag(p,)=diag(p,)ABA.
Now if we put, C =(c, ) =ABA, we get C, P, = P,C, , Which means that, ¢, =0
for k =n since p, # p, . But this means that C is a diagonal matrix

C =diag(c,,)=ABA and this proves that B = Adiag (b,, ) A.

Theorem 4.14 (Consistency) [5]:Regular Hausdorff matrices are pairwise consistent.

Proof: Let sec, ncy . Then,
lim, s=limH s=lim, Hs=1im(H,H,)s
Iim(Hqu)s:IimHp H,s=limH s= Iiqu S.
From Lemma 4.2 (4), we have,

HpSEC and HqSEC.

Lemma4.3[5]: H ,andH, " are inverse of each other.

&)

Proof: By Lemma 4.2 (4) H H,=H
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1
2

Example 4.10: H, and H ( ) are inverse of each other.

Hy =(H:(2)")

1 000
1-1 0 0

1-3 31 0--

11-2 1 0

1 000
0 200
140 0 4 0

0008 O

1 000
1-1 0 0

1-2 10

1-3 3 1 0---

A-diag(2")-A
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1 0 0O
1 00
11 459
H H -1 2 0 O 2 2
Ty T _ '
SN S R  E R
P 4 2 4
0 0O
|01 00 1
= L 0 =1

Theorem 4.15 [5]: Let H :(H : pn) be any Hausdorff matrix generated by p = (p,)

(If(H:=(h,)), then

(Z hnk j =Po-
k=0 neN?®

Proof: Let
(Adiag(p,)A)e=Adiag(p,)Ae
1 0 0 0 . 1 1
1-1 0 0 - 1 0
Ae=[1-2 1 0 - ||1]=|0|=¢,
1-3 31 0---(|1 0
P 000 1) (P
0 p0 O 0| |0
0 0 p,0 o| |0
Pn€ = o 52 : 0 = 0 = Po€
000 p--||0O] |O
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1 000 1 1
1-1 00 0] |1
Agy=11-2 1 0 - |-|0|=]|1|=e
1-3 31 0---1|0] |1

4.5 Euler- Knopp Methods

The Euler-Knopp methods are special case of Hausdorff methods. Let o e C be any

complex number then the Hausdorff matrix, H::(H:a“) generated by the

sequence (a") is called an Euler matrix of order & .

Definition 4.10[7]: If E= (eﬁf)) is an Euler matrix generated by « . Then,

el

k
0 , otherwise

(nJ ak (1—05)n_k ,0<k<n

more specifically, the Euler matrix E_ is:

1 0 0 0 0 0
(1-a) a 0 0 0 0
(1-a)  2a(l-a) a? 0 0 0

Ea _ . . . . .
(1-a)’ noc(l—oc)n*1 n(n2—1) 052(1—05)n*2 a" 0
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Lemma 4.4 (Properties of Euler Matrix) [5]: Let «, € C. The Euler method has

the following properties:

=E,.
2. E'= E. «a=z0

Proof: 1. Let, a= (aj) be any sequence and let

J ol (1—05)'“j and e/ :z(tj] Vi (1—,8)“.

:CD

2R

I
7 N\
—_— K

Lemma 4.5 [5]: The inverse of E_ is E, .

a

Proof: By Lemma4.4 (1) E,, =E_E,.
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Theorem 4.16 [5] : The Euler Method E,_, generated by « < C is a conservative

method if 0<a <1.

Proof: We need to prove that the matrix E_ satisfies the conditions of Kojima-Schur

Theorem. By the definition,

=]

n

S -3 1o (1o ~farsia-a) -1

k=0 k=0

On the other hand,

e =1l<w,

Sup)

:supZ‘(EJak(l—a)nk

Finally, for 0<a <1 each column of a Euler matrix is convergent therefore E, is

conservative.

Theorem 4.17 [5]: E, is regularif 0<a <1 .
Proof: We need to prove that the matrix E_, satisfies the conditions of Silverman-

Teoblitz Theorem. By the definition,

>

S -3 1o (1o ~farsia-a) -1

k=0 k=0

On the other hand,

Sup) .

a
enk

:supZ‘(Ejak(1—a)n_k‘:1<00.

Finally, for 0 <« <1 each column of a Euler matrix is convergent to zero therefore

E, is conservative.
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Theorem 4.18 [5] :If 0< g <a. Then, Eis stronger than and consistent with E,, .
Proof: By Theorem 4.17, E_ isregularifandonly if 0O<a<1. Let 0<fg<a.We
need to prove that Eis stronger than and consistent with E, .

By lemma4.4 (1) E ,=E,E,. Then E,=E,E, . Here E,isregular. If we apply

N]
N

Theorem 4.12 (b), completes the proof.
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