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ABSTRACT 

The purpose of this study is to prepare a brief summary of some matrix summability 

methods. This thesis consists of four chapters. In the first chapter, a general 

introduction to the matrix summability method is mentioned. 

In Chapter 2, deals with the basic definitions and theorems of sequences associated 

with matrix summability methods. In this thesis contains some proper examples and 

definitions that are related to sequences, subsequences, bounded sequences, 

monotone sequences, convergent sequences, divergent sequences and Cauchy 

sequences. In addition to this, some basic theorems about sequences and basic 

properties of infinite matrices are given. Some of properties of infinite matrices; 

product of matrices, triangle matrices, inverse of matrices, triangular matrices. 

In Chapter 3, contains the theory of matrix summability methods. In the first part, 

basic definitions and theorems of matrix summability methods are examined. Then, 

these two theorems and their examples are given which enable us to learn whether 

the matrices are conservative matrix (Schur-Kojima Theorem) or regular matrix 

(Silverman-Teoblitz Theorem). Furthermore, comparable matrix methods (stronger 

or weaker matrix) are included. In the last section, zero preserving matrix, 

multiplicative matrix and some related theorems are examined.  

In the last chapter, some matrix summability methods are discussed together with 

general definitions, theorems, and examples. Also the proofs of the theorems are 

given. These methods are: Cesaro methods, Hölder methods, Euler Knopp methods, 

and Hausdorff matrix methods. 
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ÖZ 

Bu çalışmanın amacı bazı matris toplanabilme yöntemlerinin kısa bir özetini 

hazırlamaktır. Bu tez dört bölümden oluşmaktadır. Birinci bölümde, matris 

toplanabilme yöntemine genel bir girişten bahsedilmektedir. 

Bölüm 2'de, matris toplanabilme yöntemleri ile ilişkili olan dizilerin temel tanımları 

ve teoremleri ele alınmaktadır. Bu bölümde, diziler, alt diziler, sınırlı diziler, 

monoton diziler, yakınsak diziler, ıraksak diziler ve Cauchy dizileri ile ilgili tanımlar 

ve uygun örnekleri bulunmaktadır. Buna ek olarak, sonsuz matrislerin temel 

özellikleri verilmiştir. Sonsuz matrislerin bazı özellikleri; matrislerin çarpımı, üçgen 

matrisler, matrislerin tersidir. 

Bölüm 3, matris toplanabilme yöntemleri teorisini içermektedir. İlk kısmında, matris 

toplanabilirlik yöntemlerinin temel tanımları ve teoremleri incelenmiştir. Daha sonra, 

matrislerin konservatif matris (Schur-Kojima Teoremi) veya düzenli matris 

(Silverman-Teoblitz Teoremi) olup olmadığını öğrenmemizi sağlayan bu iki teorem 

ve örnekleri verilmiştir. Buna ek olarak, karşılaştırılabilir matris yöntemlerine (daha 

güçlü veya daha zayıf matris) yer verilmiştir. Son kısımda, sıfır koruyucu matris ve 

çarpımsal matris yöntemleri ile ilgili bazı teoremler incelenmiştir. 

Son bölümde, bazı matris toplanabilme yöntemleri genel tanımlar, teoremler ve 

örneklerle birlikte tartışılmaktadır. Ayrıca teoremlerin kanıtları da verilmiştir. Bu 

yöntemler: Cesaro metodu, Hölder metodu, Euler metodu ve Hausdorff matris 

metodudur. 
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Chapter 1 

INTRODUCTION 

The main idea of this thesis is to prepare a brief summary about matrix summability 

methods. This brief summary will include some basic definitions and theorems 

related with matrix summability methods such that a non-familiar reader will get an 

idea about what is a matrix summability method. Moreover, since a matrix 

summability method is a mapping on a subspace of the space of sequences a 

summary of the basic theory of sequences and related topics will be given. To 

prepare such a summary, we shall start with the basic definitions and properties of 

infinite matrices. After that basic definitions and theorems about matrix summability 

methods will be discussed. Two important concepts conservative and regular matrix 

methods will be explained by using different sources.  A matrix method A is called 

conservative if it preserves the convergence of a sequence x. An important subclass 

of conservative matrices is the class of regular matrices. A regular matrix is 

conservative matrix method so that it preserves the limit of a convergent sequence x 

as well.  In this thesis after basic theory of matrix methods we focus on some well-

known matrix summability methods such as Cesaro Matrix method, Euler Method, 

Hölder Method and in more general perspective Hausdorff methods. All these matrix 

methods will be discussed with details including the inclusion relations between 

these methods. 
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In Chapter 2, we introduce a short summary of the theory of sequences which 

includes the basic theory about sequences, subsequences, bounded sequences, 

monotone sequences, convergent and Cauchy sequences. Moreover, we give some 

theorems related with sequences, subsequences, bounded sequences, monotone 

sequences, convergent and Cauchy sequences. All definitions and theorems given in 

this chapter are illustrated by appropriate examples. In the last part of Chapter 2, we 

discuss infinite matrices and operations such as matrix addition, matrix 

multiplication and multiplication of a matrix by a scalar on infinite matrices.   

 

Chapter 3 is devoted to the theory of matrix summability methods. We start to this 

chapter with basic definitions and properties of matrix summability methods. Then 

we give basic definitions related with matrix summability methods such as 

application domain, convergence domain, stronger or weaker matrix summability 

methods. Also we explain what is a comparable matrix method.  In the last part of 

this chapter we discuss two basic theorems of matrix summability methods namely, 

Schur-Kojima and Silvermen-Teoblitz theorems. The Schur-Kojima theorem gives 

the necessary and sufficient condition for a matrix to be a conservative matrix. The 

second theorem which is Silvermen-Teoblitz theorem gives necessary and sufficient 

conditions for a matrix to be a regular matrix.  In the last part of this chapter we 

study zero preserving and multiplicative matrix methods and some related theorems. 

To make it more clear to the readers, all definitions and theorems are explained on 

suitable examples.  

 

In Chapter 4, some well-known regular matrix summability methods such as Cesaro 

matrix methods, Euler Matrix methods, Hölder matrix methods and Hausdorff 
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Matrix methods are introduced and studied.  Some well-known properties of these 

matrix methods are given. Related theorems are given with proofs. In the last part of 

this chapter we study inclusion properties of these matrix methods. Similar to other 

chapters, all definitions and theorems are illusrated by examples.   

Finally we would like to mention that, this thesis consisting of four chapters, The 

first two chapters, Chapter 1 and Chapter 2 are used to give some basic  theory of the 

sequences and infinite matrices. Of course, the whole theory of sequences and 

infinite matrices are not given here, we just give a summary of then including the 

part that will be needed to dicsuss the main chapters of the thesis.  Main chapters of 

the thesis are Chapter 3 and Chapter 4, and these to chapters are used to explain the 

main part of the thesis as we mentioned above.   
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Chapter 2 

PRELIMINARIES 

In this chapter, some basic topics that we need in the thesis will be included. Firstly, 

some basic features and theorems related to sequences will be briefly summarized. 

Then, we shall introduce  basic properties of infinite matrices. To prepare this 

chapter we use the following references ([2], [3], [4], [6], [9], [10], [13], [14]). 

2.1 Sequences 

In this section, we briefly discuss sequences, sub-sequences, convergent sequences, 

divergent sequences, bounded sequences, monotone sequences, Cauchy sequences 

and basic theorems related to these concepts. 

Definition 2.1: Any function defined from the set of natural number is called a 

sequence and denoted by the . The sequences take various names according to 

their codomains. If the codomain of the sequence is a subset of real number , then 

the sequence is called real number sequence. If the codomain is a subset of  

(Rational numbers), the sequence is called a rational number sequence. In the case 

that codomain is a subset of  (complex numbers), it is called complex valued 

sequences. A sequence is shown in many sources by  1 2 3, , ,...... ,...ns s s s or shortly 

 ns . Usually ns , (the 
thn  term) is called the general term of the sequence.  

The space of all sequence is denoted by . 

    : , : 0kx x x    
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or    . 

Example 2.1: The function    
1

:
4

nf n s
n

 
   

 
  is  a rational number sequence with 

thn term 
1

4n

 
 
 

. 

So, 

:ns    
1

4n

 
 
 

 
1 1 1 1

1, , , , ,...
4 8 12 16

 
  
 

.

 

Example 2.2: The function     :nf n s n    is  a real number sequence with 
thn

term  ns n , with 

:ns     n   1, 2, 3,2, 5,... .

 

Example 2.3: The function    2: 3nf n s n i   gives a complex valued sequence,   

with, 

   2: 3 0,3 ,12 ,27 ,48 ,... .ns n i i i i i   

Definition 2.2: Let  ns  be any sequence and let  kn be a strictly increasing 

 1 2 3 1... ...k kn n n n n        sequence of natural numbers. If     
kn ns s  then 

 
kns  is called a subsequence of   ns .  

Example 2.4:  Let 
1 1 1 1 1 1 1 1

: 1, , , , , , , ,...
3 3 6 9 12 15 18 21

nx
n

   
    
   

 then  

1 1 1 1,
: , , ,...

6 6 12 18
x

n

 
   

 
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   is a subsequence of nx  where 
1

: 1,2,3,...
6

kn k
k

 
  
    

Definition 2.3: If all terms of the  sequence nx  are less than or equal than a real 

number 
1L , nx   is called  bounded above and 

1L  is called an upper bound.  That is 

nx  is bounded above if ,  

1L   such that 
1nx L
 
for all n . 

Definition 2.4: If all terms of the  sequence nx  are greater than or equal to a real 

number 
2L , it  is called bounded below and 

2L is called a lower bound for nx . That 

is nx  is bounded below if, 

2L   such that  
2nx L for all n . 

Definition 2.5: Let nx  be a sequence. If there is a number 0L  that provides the 

condition 
nL x L   ,the  sequence nx

 
 is called bounded sequence. In other words 

nx  is bounded if and only if,  

0L   such that nx L   for all n . 

Obviously, a bounded sequence is a sequence which is bounded above and bounded 

below.  

The space of all bounded sequences is represented by the notation mor . 

 : ( ) : supk k km x x x x


      

where, 

 . : 0 


   

is called the supremum norm.  
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Example 2.5: The sequence  : 3n

nx   is not a bounded sequence. 

Example 2.6:  The sequence 
 

2

1
:

n

nx
n

 
 
 
 

 is a bounded sequence from both the 

above and below. 

Example 2.7:  The sequence,   

 

   : 0, 1, 2, 3, 4,...nx n        

is bounded above , but it is not bounded below. Hence  nx  is not a bounded 

sequence.  

Example 2.8:  The sequence,  

 

   2: 0,1,4,9,16,25,...nx n   

is bounded below, but it is not bounded above. Therefore  nx  is not a bounded 

sequence.  

Definition 2.6: If a sequence  nx   is bounded  above, the smallest  upper bound is 

called the supremum of the sequence and indicated by the notation sup nx . Similarly 

if a sequence is bounded below, the greatest lower bound is called the infimum of the 

sequence  nx  and denoted by inf nx .  

Definition 2.7 ( - Neighbourhood):   Let 0 .and b    Then, 

 : : ,K x x b x R     

is a called the  - neighbourhood of b. 
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 The  - neighbourhood of b is the interval   

 ,b b   . 

Definition 2.8 (Convergent Sequence): Let 
ns  be a real number sequence and s . 

The sequence 
ns  is convergent to s  if  and only if  every  - neighbourhood of  s  

excludes only finitely many terms of 
ns . This is shown as 

lim ns s      or      ( )ns s  

In other words 
ns  converges to s, if    

   0, nsuch that n s s             . 

The space of all convergent sequence is generally represented by the notation c,  

 : ( ) lim exist .n n
n

c s s w s


    

Example 2.9:  Given  
2

2

4 2
:

5 7
n

n
s

n

 
  

 
.   

Then,  

2

2

4 1 4
lim

5 4 5n

n

n





   

Thus, the sequence is convergent to
4

5
. 

Bounded sequences need not be convergent, this is illusrated in the following 

example.  
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Example 2.10: The sequence    : 1 1
n

ns     is bounded, but  since,  

 : 0,2,0,2,...ns   and    lim 1 1
n

n
   

does not exists. That is ns   is not a convergent sequence. 

As a consequence of the definition, we can conclude that an unbounded sequence is 

not convergent.   

Example 2.11: The sequence  :nx n  is not a bounded sequence. Also nx  is not 

convergent sequence. 

Definition 2.9: The sequence which is convergent to 0, is called a null sequence. The 

space of all null sequences is denoted by 
0c . 

  0 : lim 0 .n n
n

c s s w s


     

Example 2.12: The sequence 
2

1
:ns

n n

 
  

 
 is converges to 0. So it is a null 

sequence. 

Definition 2.10: A sequence which is not convergent is called divergent sequence. 

Example 2.13: The sequences   : 1
n

ns    and  :nx n  are  divergent sequences. 

We have the following inclusion relation for the space of sequences 
0 , , andc c w . 

0c c w   . 
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Theorem 2.1: Let   n ns and d be two sequences and let .  If    n ns and d

are convergent, then 

a.  lim lim limn n n n
n n n

s d s d
  

    

b.      lim lim limn n n n
n n n

s d s d
  

   

c.  lim limn n
n n

s s 
 

  

d. 
lim

lim lim 0.
lim

n
n n

n
n n

n n
n

ss
if d

d d



 



   

Theorem 2.2: If the sequence ns  is convergent, then each sub-sequence of  
kns is 

also convergent and it converges to the same limit. 

Proof: Let  
kns   be a sub-sequences of  ns , where lim .n

n
s s


  Then, 

, .nN such that n N s s         

Since  kn  is strictly increasing, . .K s t  ,k K   .kn N  Then  

, .
knk K s s      

This means that,  lim .
kn

k
s s


   

Example 2.14: Consider 
1

:nx
n

 
 
 

 which is convergent to 0. So every sub-sequence 

of nx  converges to 0. 

The converse of the above theorem is not true, that is if a sequence is divergent this 

does not mean that its all subsequences are divergent. This is illusrated in the 

following example.   
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Example 2.15: Consider    : 1 1,1, 1,1,....
n

nx       , then  2 : 1,1,1,1,....nx   and  

 2 1 : 1, 1, 1, 1,....nx        are two convergent subsequences of  nx . The subsequence  

2nx  converges to 1 and 2 1nx   converges to -1, but nx
 
is not convergent. 

Theorem 2.3: Let ns  be a convergent sequence. Then limit of nx  is unique. 

Proof: Suppose that 
ns  has two limits, 

1 2x and x . Then, 

                                      1lim n
n

s x


     and     2lim n
n

s x


 . 

Given  0  ,    1 1such that n        

1
2

ns x


  . 

Likewise,    2 2such that n        

2 .
2

ns x


   

Let  1 2: max ,N N N , than ,n N   we have, 

1 2 1 2n nx x x s s x    
1 2n ns x s x     

2 2

 
   , 

which implies that, 

1 2.x x
 

Theorem 2.4: A convergent sequence ns  is bounded. 

Proof: Let ns be a convergent sequence with lim .ns s  Then,     

   0, nsuch that n s s             . 

Now, take 1  , then 
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1nsuch that n s s      .
 

That is n N  , 

1n n ns s s s s s s s        . 

So if, 

 1 2max , ,..., ,1NM s s s s   

then, 

, .nn s M   

So  ns  is bounded. 

Theorem 2.5: Any convergent sequence is bounded, but every bounded sequence 

may not be convergent. 

Example 2.16: The sequence  1
n

 is a bounded  but it is not a convergent sequence. 

Definition 2.11: Let 
nx  be a sequence, 

a. If
 1, n nn x x     , 

nx  is called  an increasing sequence 

b. If
  1, n nn x x    ,  

nx  is called a decreasing sequence 

c. If
 1, n nn x x    , 

nx  is called a strictly increasing sequence 

d. If
 1, n nn x x    , 

nx  is called a strictly decreasing sequence 

e. An increasing or decreasing sequence is called a monotone sequence. 
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Example 2.17:   Given  
1

: 1nx
n

 
  
 

 .  

Then, 

1 2 3
: 0, , , ,...

2 3 4
nx

 
  
 

 

nx  is increasing, strictly increasing and monotone. 

Example 2.18: Let  
1

: 1nx
n

 
  
 

 .  

Then, 

3 4 4
: 2, , , ,...

2 3 4
nx

 
  
 

 

nx  is decreasing, strictly decreasing and monotone. 

Remark:  nx  is increasing (strictly increasing) if the sequence  nx  is decreasing, 

(strictly decreasing). 

Theorem 2.6 (Monotone Convergence Theorem): Let  ns
 

be a monotone and 

bounded sequence , then lim ns  is exist. 

Proof: We will prove that, an increasing bounded sequence converges to its 

supremum and decreasing bounded sequence converges to its infimum. 

a. Suppose that,  ns  is increasing  and bounded sequence and let 

 1 2 3sup , , ...s s s s .  

Since   ns
 
is bounded above ,  sup ns s  exists . We need to show that lim n

n
s s


 . 

By the properties of supremum 0,   
Ns such that Ns s  . 
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Therefore, n N   

N ns s s s s        

ns s      

ns s    

  ns  is an increasing and lim n
n

s s


 . 

b. Suppose that,  ns  is a decreasing sequence and bounded. Then 

 1 2inf , ,... .s s s  

Let 0   such thatNs    Ns s   . Since  ns  is a  decreasing sequence.  

Then n N  , 

                             
.n Ns s s s s      
 

We see that,  lim .n
n

s s


   

Therefore,  ns is a convergent. 

Definition 2.12: A sequence 
nx  is said to be a Cauchy sequence, if   

0,   N such that   , , .n mn m N s s    
 

Theorem 2.7: A convergent sequence is a Cauchy sequence. 

Proof: Let ns  be a convergent sequence with lim ns s . Then, 

0, .
2

nN such that n N s s


        

Therefore, ,n m N   

.
2 2

n m n ms s s s s s
 

         
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So,  ns is a Cauchy. 

Theorem 2.8: Each Cauchy sequence is bounded. 

Proof: Let  ns  be a Cauchy sequence. Then, 

   0, such that , ,

                         .n m

N n m N

s s

  



     

 

 

Take 1  , then, such that , , 1.n mN n m N s s      

Fix 
0 . ,m N Then n N    

0 0 0
1n n m m ms s s s s      

So, if 

 
01 2max , ,..., , 1N mM s s s s   

then,  , .nn s M   Therefore  ns  is bounded. 

Theorem 2.9: Every  Cauchy sequence is convergent. 

Theorem 2.10 (Then Balzano-Weierstrass Theorem): Every bounded real number 

sequence has at least one convergent sub-sequence. 

Proof:  Asuume that  ns is bounded: 

1.  ns has finite number of distinct term. After that one of terms must have 

infinite repeatitions. The subsequence that is the consisting of repation is a 

constant sequence and therefore converges. So this implies that  sequence is 

converges. 
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2. Suppose that,  ns has  a infinite number distinct terms. Since  ns is bounded 

then we have, 

nc s d  , 

For some real numbers and c d . We divide the interval of  ,c d into two sub-

intervals. These are ,
2

c d
c

 
 
 

 and ,
2

c d
d

 
 
 

. At least one of them contains 

infinite many distinct term of  ns . Assume that sub-interval  1 1,c d  contains   

many terms. So, we acquire a sequence of intervals   ,k kc d  with properties. 

a.   , ,k kk c d  contains   many distinct terms of  ns . 

b.    1 1, , ,k k k kk c d c d   . 

c. ,
2

k k k

d c
k d c


   . 

Let sellect a subsequence    
kn ns of s . Take any term 

1ns in  1 1,c d . Since  2 2,c d  

contains   many distinct terms of  ns ,  
22 1 2 2. . ,nn n s t s c d   . In this way and 

obtain subsequence    
kn ns of s . This subsequence has the following property, 

, ,
2k mn n K k K

d c
k m K s s d c


      . 

If any 0   is given, we can find K such that . , ,
2K

d c
Then k m K


    

2k mn n K

d c
s s 


   . 

We say that  
kns is cauchy sequence and therefore,  the sequence is converges. 
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Definition 2.13: Let ns be a sequence, then 

a.    ns  is  divergent to   means that, 

1 1 ,A n N    1 1.nn n s A  
 

In this case we write , 

lim .n
n

s


 
 

b.  ns is a divergent to   so, 

2 2 ,A n N    2 2.nn n s A  
 

In this case we write, 

 lim .n
n

s


 
 

Example 2.19: The sequence :ns n
 
diverges to infinity. That is, 

lim
n

n


  . 

Example 2.20: The sequence :ns   n diverges to  . That is, 

 lim
n

n


   . 

Theorem 2.11: 

 a. Assume that    n ns and d  are sequences and, ns  . 

1. If
 nd  is bounded below. Then, 

 lim .n n
n

s d


    

2. If 0,   

 lim .n
n

s


 
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3. Let  nd is bounded and 0ns  , so 

lim 0.n

n
n

d

s


 

  b. Assume that    n ns and d  are sequences then, 
ns  . 

1. If 
nd  is bounded above.  Then, 

 lim .n n
n

s d


  
 

2. If 0,   

 lim .n
n

x


 
 

3.  Let  nd is bounded and 0ns  , so 

lim 0.n

n
n

d

s


 

2.2 Infinite Matrices 

This section is devoted to the infinite matrices and their properties. In this section we 

are aiming to discuss infinite matrices and basic operations, such as addition, 

subtraction, scalar multiplication and multiplication on infinite matrices. These 

properties of infinite matrices will be used in the later chapters.    

Definition 2.14: An infinite matrix  nkA a  is a matrix that has infinitely many 

rows and columns.  

 

 

 

 

 

 

 

 

00 01 02 0

10 11 12 1

1 2 3

k

k

th

n n n nk

th

a a a a

a a a a

A n row

a a a a

k column

 
 
 
  
 
 
 
 


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Definition 2.15:  Let  nkX x and  nkY y  be any two infinite matrices and let 

  be a scalar. Then, 

 

                     .nkX x b.
 

Definition 2.16: An infinite matrix  nkA a  is called a non-negative infinite matrix 

if 00 for all ,nka n k  .
 

Example 2.21: The following matrices are infinite  

1 0 0 0

1 2 0 0

1 2 1 0

1 2 1 2

B

 
 
 
 
 
 
 
 

   

The infinite matrix B is non-negative.  

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0

C

  
 

  
   
 

 
 
 

  

Definition 2.17: Let    k kx x and y y   be any sequences and ,C D  be infinite 

matrices. Then, 

    . k kxy x y scalar producta
 

   nk nkX Y x y  a.
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 

11 12 13 1

21 22 23 2

1 2 3

...... ...

...... ...

. . . ...... . ...
. :

. . . ...... . ...

...... ...

k

k

k

n n n nk

c c c c

c c c c

Cx Cx

c c c c

 
 
 
 

   
 
 
 
 
 

b

1

2

3

k

x

x

x

x

 
 
 
 
 
 
 
 
 
 

1

2

k k

k k

nk k

c x

c x

c x

 
 
 
 

  
 
 
 
 






 

Example 2.22: Let  1,2,3,4,5...nd d  be sequences, and  nkA a  be an infinite 

matrices, with, 

 

1 0 0 0 0

1 1
0 0 0

2 2
:

1 1 1
0 0

3 3 3

nkA a

 
 
 
 

   
 
 
 
 

, 

then 

 

11 0 0 0 0

21 1
0 0 0

32 2

1 1 1 4
0 0

3 3 3 5

nk nAd a d

  
  
  
  

     
  
  
       

1

1 3

2 2

1 3 5

3 3 3

 
 
 
 
 

  
 
 
 

=

1

2

3 .

4

 
 
 
 
 
 
 
 

 

 

 . n nkyD y d c
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Example 2.23: Let : (0,2,4,6,8...)ns   be a sequence and 

 : 1 0 1 0 1nkE e    is infinite matrix, then
 

 n nks e 

0

2

4

6

8

 
 
 
 
 
 
 
  
 

 1 0 1 0 1    

0 0 0 0 0

2 0 2 0 2

4 0 4 0 4
.

6 0 6 0 6

8 0 8 0 8

 
 
 
 

  
 
 
  
 

 

      0. . ,nk nk nv vkC D b where b c d n k  d  

Example 2.24:  Let  

then, 

3 0 3 0

0 3 0 3
:

3 0 3 0
nk nk nkC D c d b

 
 
     
 
 
 

 

 

1 0 1 0
3 0 0 0

0 1 0 1
0 3 0 0

1 0 1 0
0 0 3 0

0 1 0 1

nk nkC c and D d

 
   
   
      
   
   
   

 
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Definition 2.18: Let A  and B  two infinite matrices. Then, 

a. If A B    then A  is called left inverse of B , and B  is called the right 

inverse of A . 

 

Example 2.25: Let 

1 0 0 0 0

0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

1 0 1 0 1

A

 
 
 
 

  
 
 
  
 

  , 

                                

1  0  0 0 0

 0  1  0 0 0

-1  0  1 0 0

 0 -1  0 1 0

 0  0 -1 0 1

B

 
 
 
 

  
 
 
  
 

  

then 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

A B

 
 
 
 

    
 
 
  
 

 

b. If A B B A      then B  is called the inverse of A  and denoted by

 1 1B A or A B   . 
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Example 2.26  

 1  0  0  0  

-1  1  0  0  

 0 -1  1  0

0 0 -1 1   

 

A

 
 
 
 
 
 
 
 

  and 

1  0  0   0  0  

1  1  0  0   0  

1  1  1  0  0  

1  1  1  1  0

B

 
 
 
 
 
 
 
 

 

then, 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

A B

 
 
 
    
 
 
 
   

and 

1 0 0 0 1  0  0 0

1 1 0 0 -1  1  0 0

: 1 1 1 0  0 -1  1 0 .

1 1 1 1  0  0 -1 1

B A

   
   
   
        
   
   
   
   

 

Therefore A  and B are inverses of each other. 

Definition 2.19: The matrix  nkA a  is called a triangular matrix if 0nka   for

.k n  A  triangular matrix with 0nna   for all n is called a triangle matrix. 

Example 2.27:  The matrix 

1 0 0 0 0

3 7 0 0 0

4 9 6 0 0

5 2 8 9 0

E

 
 
 
 
 
 
 
 

  

is a triangular matrix. 
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Example 2.28: The matrix  

1 0 0 0

2 2 0 0

3 3 3 0

0

F

n n n n n

 
 
 
 

 
 
 
  
 

. 

is a triangle matrix. 
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Chapter 3 

MATRIX METHODS 

So far, we discuss some concepts that will be needed to study Matrix Summability 

theory which is the main subject of this thesis. In the present chapter, we shall 

discuss the general theory of matrix summability methods. We shall start with matrix 

transformations, and then, some basic definitions like, convergence and application 

domains, conservative and regular matrices, Kojima Schur and Silverman Teoblitz 

theorems will be considered. Later operations on matrices that preserves regularity 

and conservative property will be studied. In the last part of this chapter we shall 

focus on multiplicative matrix methods, zero preserving matrix methods and their 

properties. 

Definition 3.1 [5]: Let  nkA a  be an infinite matrix and  nx x  be a sequence 

then the A -transform of  : kx x is denoted by   :
n

Ax Ax  and defined as 

 

 
1

nk kn
k

Ax a x




 , 

if it converges for each n.  

A matrix summability method consisting of three parts; 

1. An infinite matrix  nkA a   

2. Convergence Domain 

3. Limit operator. 

 



26 

 

 If   nkA a  is an infinite matrix then, the following set 

  , : 0A k nk k

k

w x x w Ax a x converges for every n
 

     
 


 

is called the application domain of A . In other words application domain Aw of an 

infinite matrix  nkA a  is a subset of w , such that for all Ax w ,  Ax is defined.  

The following subset Ac of Aw  

 : ,Ac x w Ax c  
 

is called the convergence domain of A . In other words, Ax c , if and only if Ax is 

convergent.    

Also, for  nkA a  we can define the following limit operator, 

 lim lim
k

A x Ax


  . 

Therefore,  , , limAA c A  is called a matrix summability method.  

Example 3.1: The infinite Identify Matrix  , , limc is a matrix summability method 

where 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 
 
 
  
 
 
 
 

 

is the Identity Matrix. 
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Example 3.2:  Consider the following matrix 

1

2

1
0 0 0 0

2

1 1
0 0 0

2 2

1 1
0 0 0

2 2

1 1
0 0 0

2 2

Z

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

which is called Zweir  matrix. 

 The matrix method 
1

2

1 1

2 2

, , limZZ c Z
 

 
 

 is called the Zweir summability method. 

Definition 3.2 (Conservative Matrix)[1]:  An infinite matrix A  is called 

conservative matrix if and only if the convergence of the sequence x   implies the 

convergence of  Ax . 

 In other words,  A  is conservative if and only if  

x c Ax c       (limit of x  and Ax  can be different). 

The space of all conservative matrices will be denoted by  .conM
 

Example 3.3: Let, 

                                               

2 0 0 0 0

0 2 1 0 0

0 0 2 1 0

0   0    0   2 1

A

 
 
 
 
 
 
 
 

. 

For the sequnece, 
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1

2

n

nx
 

  
          

 

 we have 

                                                       lim 0.n
n

x


  

On the other hand,  

2

1
1

4

1 1

2 8

1 1

4 16

nAx

 
 
 
 
 

  
 
 

 
 
 
 

 

   lim 0n
n

Ax


 .
    

    

Example 3.4: Let, 

                                           

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

 
 
 
 
 
 
 
 

 

For any sequnece,  1 2 3, , ,.....nx x x x , lim 0n
n

Ax


 . Therefore, zero matrix is 

conservative. Moreover,  consider the convergent sequence  3,3,3,.....nx   which 

converges to  3. 
nAx  is  convergent but the limit of 

nAx  is 0.  So, for the 

conservative matrices limits need not be the same. 
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The following Theorem of Kojima and Schur gives necessary and sufficient 

conditions for conservative matrices. 

Theorem 3.3 (Kojima and Schur) [7]: 

Let  nkA a
 

, 0,1, 2,3,...n k   is an infinite matrix. Then,  nkA a   is conservative 

matrix if and only if, 

1. lim 0,1,2,...nk k
n

a k


    

2. 
1

lim nk
n

k

a 





  

3. 
1

sup 0.nk

k

a H for all H




     

 

Example 3.5: Let, 

1

2

1
0 0 0 0

2

1 1
0 0 0

2 2

1 1
0 0 0

2 2

Z

 
 
 
 
 
 
 
 
 
 

 

1

2

1

1 2

1

1 2

lim 0 for all  0,1, 2,...

lim 1

sup 1

Zweir matrix is a conservative matrix. That is for any

n

n
k

k

Z k

Z

Z












 



  





1.

2.

3.

    

                                              
1

2

.x c Z x c  
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Example 3.6: Let 

0 1 0 0 0 0

1 1
0 0 0 0

2 2
:

1 1 1
0 0 0 0

3 3 3

nkD d

 
 
 
 

   
 
 
 
 

 

be an infinite  matrix. 

 By Kojima and Schur theorem; 

1

1

lim 0 for all  0,1,2,...

lim 1

sup 1

nk
n

nk
n

k

nk

k

d k

d

d












 



  





1.

2.

3.

 

D  is a conservative matrix. 

Theorem 3.4 [5]: Let n be any positive integer and E  be a conservative matrix. 

Then nE  is also conservative. 

Proof:  We need to show that 
nE x  is also convergent. We can prove this theorem by 

using mathematical induction. Let, E  be a conservative matrix. Then, 

1 nn E x Ex    .  Here, Ex  is a convergent.  

n k    Assume that  kE  is a conservative. Then,  
n kE x E x  is convergent. 

                                             That is  .k

kE x L  

1n k     
1n kE x E x  .  Here,  Ex  is a conservative and kE  is a conservative. 

                                        That is   1

1.
k k

kE x E Ex L

   

Therefore, nE x  is a conservative. 
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Theorem 3.5 [5]: If andB D are two conservative matrix. Then 

a. D B  is conservative 

b. DB and BD  are conservative  

c. D  where  any scalar is conservative. 

Proof:   

a. Taking a convergent sequence  kx x  such that lim .k
x

x L


  Then, 

D  is conservative 
1Dx L   

B  is conservative 
2Bx L   

  1 2D B x Dx Bx L L     . Therefore D B   is conservative. 

b. Let  kx x  be a convergent sequence with lim n
n

x L


 . Then, Dx  is convergent 

sequence. So, 

Bx  is a convergent. That is  1Bx L  and D  is a conservative matrix. 

     2.D B x D Bx L   

 The proof that DB  is conservative. Can be obtained in a similar way. 

c. For any scalar   and for any convergent sequence  kx x , with lim n
n

x L


  

     .D x Dx L   
 

So, D  is conservative. 

Remark: If A  is a conservative matrix, then 

....nA A A A A       

is also conservative matrix. 
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Definition 3.3 (Regular Matrix) [1]: An infinite matrix   nkA a  is called regular 

matrix if for any convergent sequence, nx with nx L , nAx  is convergent and 

nAx L .  (The limit values of n nx and Ax   must be the same). 

The space of conservative matrix will be denoted by 
regM . 

Theorem 3.6 (Silverman and Teoblitz) [7]: 

An infinite matrix  nkA a  is regular if and only if, 

1. lim, 0 0,1,2,...nk
n

a for each k


   

2. 
1

lim 1nk
n

k

a





  

3. 
1

sup 0.nk

k

a H for all H




     

 

Example 3.7: Consider the following infinite matrix, 

 

1 0 0 0 0

1 1
0 0 0

2 2

1 1 1
0 0

: 3 3 3

1 1 1
0 0

nkB b

n n n

 
 
 
 
 
 

   
 
 
 
 
 
 

 .         

Since,  

1

1

lim 0     for all  0,1,2,...

lim 1

sup 1

nk
n

nk
n k

nk

k

b k

b

b





 





 



 





1.

2.

3.
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Therefore, for any where , and .x c x L Bx c Bx L     

Example 3.8: Let D be an infinite matrix given by 

2 1 0 0 0 0

3 1
0 0 0 0

2 2

4 1
0 0 0 0

3 3

5 1
0 0 0 0

4 4

nkD d

 
 
 
 
 

   
 
 

 
 
 
 

 

By Silverman and Teoblitz theorem, 

1

1

lim 0 for all  0,1,2,...

lim 1

sup 1 .

nk
n

nk
n

k

nk

k

d k

d

d












 



  





1.

2.

3.

 

D is a regular matrix. For  any where , and .x c x L Dx c Dx L     

Theorem 3.7 [5]: If  A  is any regular matrix, Then nA  is also regular. 

Proof: Let  x c be any convergent sequence with x L . If 1,n   

Ax L    (A is regular). 

Suppose that 
kA  is regular for 1k  . That is  kA x L , then  

 1 .k kA x A A x L    

So, 1kA   is a regular. nA  is also regular. 

Theorem 3.8 [5]: If  D  and B are two regular matrices, then 

a.  
1

2
D B  is regular. 
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b. DB and BD  are regular. 

Proof: Taking any convergent sequence x  with x L , then  obviously, Dx L

and  Bx L . Now,
 

a.  
1 1 1

2 2 2
D B x Dx Bx L

 
    

 
, since x  is arbitrary 

 
2

D B
 is regular. 

b. Similarly,    DB x D Bx , but Bx  is a sequence that converges to  L , and 

D is regular implies then,  D Bx L .  Since x  is arbitrary DB is regular.  

Similarly one can show that BD  is also regular. 

 

Theorem 3.9 [5]: Let 1 2, ,.... nD D D be n regular matrices. Then  

a.
   

 1 2

1
... nD D D

n
    is regular. 

b. 
1 2 nD D D is regular.   

Proof:  Let x  be any convergent sequence, with x L then,   

a.   Since 
1 2, ,...., nD D D are regular matrices,  , 1,2,....,iD x L i n  . Then,

 

  
     1 2

1 2

1
...... .....

n

n

D x D x D x
D D D x

n n n n
            

                                         =  
1

....L L L L L
n

      .  

Therefore, 
 

 1 2

1
... nD D D

n
    

is a regular. 

b. Taking any convergent sequence x   with x L  and let 1 2 nS D D D  . We need 

to show that Sx L .   

                        1 2 3 1 2 3 1n n nSx D D D D x D D D D D x       
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Here, nD x L   

Say nD x y L  .  Then,   

1 2 1nSx D D D y  . 

Similarly,  

1 1nD x y L   , 

and  

1 2 2 1nSx D D D y   

 

If we continue in this way, we get,  

Sx L  

which implies that 
1 2 nD D D  is a regular matrix. 

Remark: As a consequence of the definitions, we have, 
reg conM M .

 

Definition 3.4 [5]: Let A  be an infinite matrix. Then, A  is a zero preserving matrix 

if 

0 0for all , .x c Ax c   

The space of all zero preserving matrices will be denoted by
0 0cM or M . 

Theorem 3.10 [5]: Let E be a zero preserving matrix then, 

lim 0 for all 0,1,2,...nk
n

e k


 1.
 

2. sup nk
k

e H    .   
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Example 3.9:  The following matrix, 

1 0 0 0 0 0

0 1 1 0 0 0

0 0 1 1 0 0

0 0 0 1 1 0

D

 
 
 
 
 
 
 
 

 

satisfies the conditions, 

lim 0 0,1,2,...nk
n

d for each k


 
 

and 

sup 2nk
k

d    . 

So,  D  is a zero preserving matrix. 

Theorem 3.11 [5]: Taking two zero preserving matrices D  and K . Then, 

a. K D  is zero preserving matrix. 

b. KD  and DK  are zero preserving matrix. 

c. For any scalar , A  is zero preserving matrix. 

Proof: Suppose that 0s c is arbitrary. Then, 

a.   0.K D s Ks Ds     

b.   ,DKs D Ks   but 0K M  implies that 0Ks  and  0D M  implies that 

( ) 0D Ks  , therefore 
0DK M . 

      Similarly, we can show that 0KD M . 

c.      ,D s Ds  but 0D M  implies that 0Ds  and   0,Ds   which 

implies that 0D M  . 
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Lemma 3.1 [5]: Let 
1 2 0, ,..., .nA A A M  Then,.  

1. 
1 2 0... .nA A A M     

2. 
1 1 2 2 0... where in nA A A M       is an arbitrary scalars 1,2,...,i n . 

3. 
1 2 0. ... .nA A A M  

Proof:  Let  0x c  be any sequence, then 0, 1,2,....,iA x i n  . 

1. Obviously,     1 2 1 2... .... 0n nA A A x A x A x A x        . Therefore,  

1 2 0...... nA A A M    . 

2. Let   1 2, ,....., n    be any scalars and 0x c  . Then, 

    
        1 1 2 2 1 1 2 2..... ..... 0n n n nA A A x A x A x A x              and 

1 1 2 2 0..... n nA A A M      . 

3. Let  0x c  be any sequence. Then, 

    

       
0 0

1 2 1 2 1 1 2 2 1. .... .n n n n n n

c c

A A A x A A A A x A A A A A x  

 

    

     If we continue in this way, 

  1 2 0nA A A x   

     So,  

1 2 0.nA A A M 
 

 

Definition 3.5 [5]: Let E  be an infinite matrix, and   be a scalar then E  is called 

multiplicative matrix with multiplier ,   if  

 lim lim .Ex x for all x c   

The space of all multiplicative matrices with multiplier    is denoted by M  .   
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Theorem 3.12 [5]: Let E   be an infinite matrix. Then E  is multiplicative with 

multiplier   if and only if, 

1. lim nk
n

e 


  

2. lim 0nk
n

e


  

3. sup . nk
k

e    

 

Example 3. 10: Let  nkE e  be an infinite matrix where 

1

1

3 ,

: , 1

0,

n

nnk

k n

E e k n

otherwise

 


    

  

then, 

4 1 0 0 0 0

7 1
0 0 0 0

2 2

10 1
0 0 0 0

3 3

13 1
0 0 0 0

4 4

E

 
 
 
 
 

  
 
 

 
 
 
 

 

1. lim 3nk
n

e


  

2. lim 0nk
n

e


  

3. sup 3nk
k

e     .   

So, E  is multiplicative matrix with multiplier 3  .  
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Lemma 3.2 [5]: If 
1 2, ,..., .nA A A M Then 

1.  1 2

1
... .nA A A M

n
     

2. 21 2 .A A M


   

3. 1 .n

nA M


  

Proof: Taking a convergent sequence x  such that lim .
x

x L


  Then, 

1.    1 2 1 2

1 1
.... ...n nA A A x A x A x A x

n n
       

                                   
1

n L L
n

   

2.     1 2 1 2A A x A A x       but  2A x L and  

    2

2

1 2 1 2A A x L L A A M


        

3. By mathematical induction: 

      If 11n A M    

Suppose that  1 k

k
A M


 . For any convergent sequence x with limit L, we have, 

 1 .
k k

x
A L  

Then, we need to show that   1

1

1 .k

k
A M

 




 

Let, 

     
1 1

1 1 1 .

k

k k k k

L

A x A A x L L



  
   

 

Thus, 

1 .n

nA M



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Remark: As a consequence of the definitions, we have  

a.  
1regM M  

b. 
0M M  .  

Lemma 3.3 [7]: If
0andregD M K M  .  

a. 
0DK M  

b. 
0.KD M  

 

Lemma 3.4 [7]:  Let andregD M K M  . Then  

a. DK M   

b. KD M   

c. D M   for all  

d. 
1

0.regK M if 


   

 

In the following definition we give some new definitions such as conservative matrix

0for c  and coercive methods, also some definitions that are given above are define 

by using a different way. 

 

Definition 3.6 [5]:  Let D  be an infinite matrix and  , , limDD c D be a matrix 

summability method then,  

a. D  is called conservative  for 0c , if  0 Dc c  that is  

0 ,Ds c s c Ds c     

b. D  is conservative  if  Dc c , that is, 
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s c Ds c    

c. D  is regular if   Dc c  and lim limD s s s c    . 

d.  D  is coercive  if, Dc     .  

 

Example : Consider the zero matrix, 

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

B

 
 
 
 
 
 
 
 

 

is coercive, for every bounded sequence x. That is 
0 0B x  . 

Example 3.12: The Cesaro matrix of order 1,  

                                      
1

1 0 0 0 0 0

1 1
0 0 0 0

2 2

1 1 1
0 0 0

3 3 3

1 1 1 1
0

C

n n n n

 
 
 
 
 
 

  
 
 
 
 
 
 

 

is not coercive.  

Consider the sequence 
1 284 4

0,1,0,0,1,1,1,1,0,0,......,0,1,......1,0,.....

timestimes times

x

 

 
 
 
 

. Then, 

 
1

1 4 1
0

1
4

4
n

n
k

n
k

C x





   

1
4 1

4 1 14

3 4 3 4 3

n

n n

n n

 
     

   



42 

 

 
1

1 2 4 1
0

1
4

2 4
n

n
k

n
k

C x


 






14 1 2

3 2 4 3

n

n

 
 

 
 

The sequence x is a bounded. But
1Cx c . Therefore, 1C  is not coercive. 

Let    , , lim , , limD KD D c D and K K c K     be two matrix summability 

methods. Furthermore, let L w  be any space of sequence, then we can give the 

following definitions (see [1] and [5]). 

Definition 3.7: K is stronger than D , or D  is weaker than K , if and only if 

.D Kc c  

On the other hand, K is called stronger than D  relative to L if 

D KC L C  . 

Definition 3.8: We say that matrix methods D  and K  are equivalent. If, 

D Kc c . 

Moreover, D  and K  are equivalent relative to L  if D  and K  are equivalent on  

D KL C C  . 

Definition 3.9: Let    , , lim , , limD KD D c D and K K c K     be two matrix 

summability methods. Then andD K  are called consistent if,  

lim limD x K x    for all D Kx c c  . 

Moreover, D  and K  are called consistent relative to L w  if 

lim limD x K x   , D Kx C C L     
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Example 3.12: Consider the following Zweir matrix and Cesaro matrix of order 1. 

 

 

1

2

1
0 0 0 0 0

2

1 1
0 0 0 0

2 2

1 1
0 0 0 0

2 2

1 1
0 0 0 0

2 2

Z

 
 
 
 
 
 
 
 
 
 
 
 
 
 

         

1

1 0 0 0 0 0

1 1
0 0 0 0

2 2

1 1 1
0 0 0

3 3 3

1 1 1 1
0

C

n n n n

 
 
 
 
 
 

  
 
 
 
 
 
   

 

Then, taking  1,0, 1,1,0, 1,1,0, 1,...x      then, 

 

1

2

11
0 0 0 0 0

2 0

1 1 10 0 0 0
2 2 1

1 1
0 0 0 0 0

2 2
1

1 1
0 0 0 0 1

2 2
0

Z

  
  
  
   
  
  
    
  
  
  
  
  
  

   

1

2

1

1
2

1
2

0

1
2

1
2

0

Zx c

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

1

1 0 0 0 0 1

1 1 00 0 0
2 2 1
1 1 1

10 0
3 3 3

0

1
1 1 1 1

0 1

C

n n n n

   
   
   
   
   
        
   
   
   
   

     

1

1

1
2

0

1
4

0

1
6

Cx c

 
 
 
 
 
 


 
 
 
 
 
 
 

  

Since 
1 1

2

Z Cc c ,  1C  is stronger than 1

2

Z .  In other words 1

2

Z  is weaker than 1C . 

Moreover, the above example shows that,  
1 1 1 1

2 2

C Z C Zc c c c
 

  
 

,   
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which means that 1C  and 1

2

Z are not equivalent ( 1C  and 1

2

Z   are consistent). 

 

Example 3.14:  Let 1

2

andE Z be an infinite matrix. Then  1
n

x    and  ny n  are 

any  two sequence. 

a.  1
n

x    

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

  

Ex

 
 
 
  
 

 
 
 

1

1

1

1

 
 
 
 
 
 
 
 

1

2

2

2

Ex c

 
 
 
   
 
 
 
   

1

2

1
0 0 0 0 0

2

1 1
0 0 0 0

2 2

1 1
0 0 0 0

2 2

Z x

 
 
 
 
 
 
 
 
 
 

1

2

1 1

1 0

1 0

1 0

1 0

zx c

   
   
   
   
      
   
   
      
   

 

 
1

2

: 1 \ .
n

Z Ax c c
 

   
 

 

b.  ny n  

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

 

Ey

 
 
 
  
 

 
 
 

0

1

2

3

 
 
 
 
 
 
 
 

0

1

1

1

Ey c

 
 
 
  
 
 
 
 

. 
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1

2

1
0 0 0 0 0

2

1 1
0 0 0 0

2 2

1 1
0 0 0 0

2 2

Z y

 
 
 
 
 
 
 
 
 
 

1

2

00

11
2

2
3

23
5

4 2

zy c

  
  
  
  

    
  
  
     

   

. 

 
1

2

: \ .E Zy n c c
 

  
 

 

Thus, we can see that 1

2

E and Z are not comparable methods.  

Theorem 3.13 (Comparison by using a transition matrix) [5]:  Taking three infinite 

matrix these are ,D K and E  with K ED  such that    ED x and E Dx are defined 

   ED x E Dx  holds for all Dx c . 

1. K  is stronger than D  if E  is conservative  D Kc c . 

Proof: Assume that E  is conservative. We need to show that  D Kc c . Let x  be 

any elements of Dc . 

Dx c Dx   is a convergent. 

   .Kx EDx E Dx    Here, E  is conservative and  Dx  is a convergent.  

 

Therefore,  

  convergent  and  .KE Dx x c 
 

D Kc c  K  is stronger than D . 

2. K  is stronger than  and consistent with D if E  is regular  D Kc c  and 

 lim limD K   . 
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Proof:   Suppose that E  is regular  D Kc c .Then  .Dx c   

lim lim limK E Dx Dx x   

lim lim .K D  

Theorem 3.14 (Comparison, Consistency) [5]: Let D be a row-finite and E  be a 

triangle. Then,
1:C DE . This theorem has the following statements. 

a. D is stronger than E  if and only if C is conservative . 

b. D is stronger than and consistent with E  if and only if C  is regular. 

Proof: We will prove " " for a and b. 

a.  Suppose that C is not conservative, z c   such that Cz c . 

 Then for all 

 1  a convergent Ex E z Ex z is x c    . 

   Dx CE x C Ex Cz    does not convergent  Cz c . 

Thus, D is not stronger than E . 

b. Assume that C  is conservative but not regular. After that, 

z c   such that lim limc z z . 

So that, if    
1x E z we have D is stronger than E  

E Dx c c   . 

lim lim lim lim lim .D C C Ex Ex z z x     

 

Thus, 

lim lim .D Ex x  

D is stronger than and consistent with E  if and only if C  is regular. 
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Chapter 4 

SOME MATRIX METHODS 

This chapter is devoted to some well-known matrix summability methods such as 

Cesaro Matrix methods, Hölder Methods, Reisz Method and  Euler- Knopp Methods. 

In this chapter, we shall discuss some basic properties of these matrix methods.  

4.1 Cesaro Methods 

Definition 4.1 [5]: Let  with    . The Cesaro matrix  : nkC c   defined 

by  

1

;
:

0 ;

nk

n k

n k
k n

nC

n

k n







    
 

  
  

 
 

 

 

is called the Cesaro matrix of order α or Cesaro method and it is denoted by C   
.   

Example 4.1:  The Cesaro matrix of order 0 ( 0  ) is the identity matrix I. 

Example 4.2:  The 
1C  (Cesaro matrix of order 1) 

If we choose 1  in the above definition of  ( )nkC c  .  We obtain 1C , the Cesaro 

matrix of order 1, where   



48 

 

                      
1

1
;

;
1:

0 ;

0 ;

nk

n k
k n

n k n
k n

nC

n k n

k n

   
     

   
     

   

and  

 1

1
.nkC c k n

n
  

 

Let  1 2 3, , ,.....nx x x x
 
be any sequence. Then,

 

 

 The matrix method  
11 1, , limCC c C  is called the Cesaro Summability method of           

order 1. 

Example 4.3: The second order Cesaro matrix, 2C  is defined by 

2

1

;
2:

0 ;

nk

n k

n k
k n

nC

n

k n

   
 

  
  

 
 

 

 

or  

11

1 22

3

1 2 3
4

1

0

1 2 3

1 0 0 0 0

1 1
0 0 0

2 2 2

1 1 1
0 0 1

3 3 3 3

1 1 1 1
0

n

n k

k

n

n

xx

x xx

x
x x x

x
C x x

n

x x x x
x

n n n n n



    
         
    
      
     

        
     

    
     

    
    
    


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 

  
2

2 1
;

1 2

:

0 ;

nk

n k
k n

n n

C

k n

  


 


 
 

  

the matrix form of  2C  is the following matrix  

 

 

 

 

 

 

and the other Cesaro matrices can be defined accordingly when needed. 

Theorem 4.1 [5]: 0Let and 0n   then C regular.is  

Proof:  It is enough to show that, C satisfies the conditions of Silverman – Teoblitz 

Theorem. Recall that, 

                       
0 0

1 1n n

k k

n k k n

n k k n

  

 

          
      

     
  . 

Therefore,  

                                            
0

1.
n

nk

k

c



  

On the other hand,  

1 ( 1)(n k 2) ( )

( )!

(n )(n 1) ( 1)

!

n k n k

n k n k

n

nn

   

  

         
 

   
    

 
 

 

2

1 0 0 0 0

2 1
0 0 0

3 3

3 2 1
0 0

6 6 6

4 3 2 1
0

10 10 10 10

C

 
 
 
 
 

  
 
 
 
 
 
 
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1 1
0.

1 2

n n n k

n n n k n



   

  
 

      
 

Finally, we need to prove that  

1

sup nk

k

c M




   .      

 If 0  then,  0nkc   and  

                                               
1

sup nk

k

c M




   , 

follows from 

                                                        
0

1.
n

nk

k

c



   

Remark : If  0   , C is not conservative and regular. 

 

Theorem 4.2 [5]:  Let 1     . Then C
is stronger than and consistent with C . 

That is  

C Cc c
 


 
and lim lim .C Cx x

 
  

Proof : Let and   be two real numbers satisfying 1      and  ( )kx x and 

( )y y  and ( )lz z be sequences,  such that    

( ) : Cy y x   ,           and      ( ) : Clz z x  . 

In this case, the transition matrix   (a )lA  which is defined by; 
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1

:

0 ,

l

l

l
if l

l

la

if l



  








     
 

  
  
  

   







 

for  
0,l  , satisfies the condition, 

C AC  . 

Now, we shall prove that the transition matrix A is regular. It is obvious that,  

1

0 0

1

1

0 ( 1) 1

0

1

l l

l l

l l
a a

l l

l l

l l

 
  

     

 

   



 



         
      

    

         
    

   



  

 

 This means that the first and the third conditions of the Silverman Teoblitz Theorem 

are satisfied.  Now we need to prove limit condition of the Silverman Teoblitz 

Theorem.  

As a first step we shall consider the case 0  .Taking,   1     , we obtain that 

    

    

1 1

1 1

1 1 1
1 1

l

l ll

l l l

l

l l



  

   

     

  

 
 

     
     

 
 

      
       

       
. 

If we use the fact that,  1 rr e r   ,  
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 

1 1

0

1

0

1
exp 0, ( ),

l l

l

l

k

a e e e

l
k

     

  

 


  
  

   



 

 
     

 
  

since  1      and 
1

.
1 



  Therefore,  0 0.l l

a   On the other hand,  

for the case,  1,  and l  we have,  

 

 

 ,

, 1

1

1 1 1

1 1

( ),

l

l

l

a ll

la l

l

l





   

   

      

 

 





     
   

      
          

   
     


   

which implies that,  

0 1 , 1 ,lim lim lim lim 0.l l l l
l l l l

a a a a       

 Since A is regular then C
is stronger than and consistent with C . 

Definition 4.2 (Type M) [5]:  A matrix A with bounded columns is called of Type M 

if   

0 implies that 0tA t   

for all,  absolutely summable sequences ,t  (
0

, that is k

k

t l t




  ). 

Theorem 4.3 [5]: A regular triangle, ( )nkA a is of type M  if  1A has bounded 

columns. 

Proof: Assume that and 0t l tA  then, since 1A has bounded columns we have,  

1 1( ) 0.t tAA tA A     
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Theorem 4.4 [5]: For any 0  the matrix C  is of  M type .
 

Proof: For any 0   the matrix C is regular triangle. Its inverse satisfies the limit 

condition of the regular matrices so it has bounded columns. So it is of Type M . 

Theorem 4.5 (Knopp) [5]: For each , the matrix methods C  and 
1 1C C are 

equivalent and consistent.
 

4.2 Hölder Methods 

The Hölder matrices are derived by the Cesaro matrix of order 1 by iteration.  

Therefore, many properties of Hölder methods can be obtained from the Cesaro 

matrix of order 1. This is the most important advantages for the Hölder methods. On 

the other hand, since the product of two Cesaro matrix is not a Cesaro matrix, this 

will cause to handle Hölder matrices in an easy way.  

Definition 4.3 [5]: Let 
1C  be the Cesaro matrix of order 1 where  0 1   . 

The Hölder matrix (or Hölder method) of order   is denoted by H and defined as  

 1:H C
    . 

Lemma 4.1 [5]:  The Hölder method has the following properties: 

a. 0H    

b. 1

1H H C   

c.  1 1

1. 1H H H C H        

d. .H H H      

e. H  is well defined and a triangle as a product of triangles.  
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Example 4.4:  Let’s find  
2.H and H  Obviously, 1H C . The second order Hölder 

method is  2

1 1 1H C H C C  . So,  

 

 

 

 

 

           

 

 

 

 

 

Example 4.5: 3 2 2

1H H H C H    . Then, 

 

3

1 0 0 0

7 1
0 0

8 8
.

85 19 4
0

108 108 108

H

 
 
 
 

  
 
 
 
 

 

 

 

2

1 1

1 0 0 0 1 0 0 0

1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1 1 1
0 0

3 3 3 3 3 3

H C C

   
   
   
   

      
   
   
   
   

2

1 0 0 0

3 1
0 0

4 4

11 5 2
0

18 18 18

H

 
 
 
 

  
 
 
 
 

2

1

1 0 0 0

1 1
0 0

2 2

1 1 1
0

3 3 3

C H

 
 
 
 

   
 
 
 
 

1 0 0 0

3 1
0 0

4 4

11 5 2
0

18 18 18

 
 
 
 
 
 
 
 
 
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Theorem 4.6 [5]: H  is regular.
 

Proof:  From the Definition 4.3,   1:H C
   , if we take  1    we have,

1

1H H C   and it is regular. As a product of regular matrices H  is regular. 

Theorem 4.7 [5]: For each , the method 1H  is strictly stronger than and 

consistent with H . That is to say 

1H H
c c   and  1lim lim

H H H
x x x c      .  

Proof: By comparison, consistency theorem, 

“If E and D  are row finite and
1C E D . Then C is regular if and only if D  is 

stronger than and consistent E ”. 

1

1 .H HH C H      

So, since 1C  is regular, 1H  is stronger than and consistent with H . 

Moreover, we know that 

                                                          
1Cc c but 

1Cc c .  

Therefore this implies that  
1H   is strictly stronger than H . 

Theorem 4.8 (M type) [5]:  If 
0   then the matrix H  is of type M .  

 

Proof: Let 
0  . It is clear that    

1
1

1H C





 and it is column finite triangle.  

Therefore H  is of type M . 
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4.3 Riesz Methods (Weighted Means) 

The Riesz method or weighted mean represents a class of regular matrices. It is 

known as the generalization of 1C , the Cesaro matrix of order 1.  The most important 

advantage of this method is to be a simple method to define a regular matrix and its 

inverses by using a sequence of numbers with some conditions. That is if you have a 

sequence ( )np  then you can create a regular matrix from this sequence. 

Definition 4.4 [5]: Let  kp p  be a sequence with 
0 0 0kp and p for k   .  

Then define 
nP  by , 

0 1

0

: ...... .
n

n k n

k

P p p p p


        

Definition 4.5 [1]: Let  kp p  be a sequence with 0,kp k    and
0

: .
n

n k

k

P p




Then the Riesz matrix or method corresponding to  kp p  is denoted by 

 p pR or R  and defined by, 

                                                : , : , :p n nkR R p R p r  
   

 with 

 0: , .

0

k

nnk

p
if k n

Pr k n

otherwise




 


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Example 4.6: Let    1,1,1,....1,.....kp p e   . Then 1nP n  . 

Then, 

 

 

                 

 ,R e 

 

 

 

which is the Cesaro matrix of order 1. In other words the Cesaro matrix of order one 

is a Reisz Method (or Weighted mean) generated by the sequence

   1,1,1,....1,....kp p  . 

Definition 4.6 [1]:  Let 00, ,np n    the inverse  1 :p nk pR r of R   is given by  

 
^

0

,

: ( 1), 1 , .

0,

nk

n k n

r n k n n k

otherwise




     



 

Example 4.7:  The inverse of 1C is the following matrix  

 

 

 

 

 

 

1

1 0 0 0 0

1 1
0 0 0

2 2

1 1 1
0 0

3 3 3

1 1 1 1
0

1 1 1 1

C

n n n n

 
 
 
 
 
 

 
 
 
 
    
 
 

 

1 0 0 0 0

1 2 0 0 0

0 2 3 0 0

0 0 1n n

 
 
 
 
 
 
  
 
 
 
 
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Theorem 4.8 [5]: Let 
pR  be a Riesz method associated with p. Then,

pR  is 

conservative. 

Proof: Let 
pR  be a Riesz method with 

,
:

0,

k

nnk

p
k n

Pr

otherwise




 



 

To show that this is a conservative matrix it is enough to show that it satisfies the 

conditions of Kojima-Schur Theorem. 

a. 
0 0 0 0

1
1

n n n
k

nk nk k

k k k kn n

p
r r p

P P



   

       ,therefore row sum condition is satisfied.  

b. sup sup 1nk nk

k k

r r    

c. For fixed k, 
nkr  is decreasing and bounded sequence, so it is convergent. 

Therefore as a consequence of (a), (b) and (c), the Riesz Method is conservative. 

Theorem 4.9 [5]: Let 
pR  be a Riesz method associated with p. Then, 

pR  is regular 

if and only if .np   

Proof:  To show that this is a regular matrix it is enough to show that  it satisfies the 

conditions of  Silverman-Teoblitz Theorem Let 
pR  be a Riesz method, then  

a. 
0 0 0 0

1
1

n n n
k

nk nk k

k k k kn n

p
r r p

P P



   

        therefore row sum condition is satisfied. 

b. sup sup 1nk nk

k k

r r     ,  

c. If 0 .k
n nk

n

p
P as n r n

P
      This means that 

lim 0 .nk
n

r k


   . 

So, as a consequence of Silverman-Teoblitz Theorem Riesz method is regular. 
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Theorem 4.10 (M type) [1]:  If 
00 ,np n    the matrix 

pR is of type M . 

Theorem 4.11 (Comparison) [1]: Let 
pR  be a regular Riesz method generated by 

( )kp with 0kp  and let  nkB b  be any conservative matrix.  B is stronger than 

pR  if and only if; 

, 1

1

lim 0

and

sup 0.

nk

k
k

n knk
n kk

k k

b

p

bb
P

p p









 

1.

2.
 

4.4 Hausdorff Methods

 The class of Hausdorff Methods is a class of regular matrices that includes the 

Hölder and Cesaro matrix methods. Basically, a Hausdorff method is based on 

differences of a sequence or more generally on difference matrix.  The representation 

of the Hölder matrices as a Hausdorff matrix enable us to extend the definition of 

Hölder matrices for 
0    to   (the set of ) complex numbers. 

Definition 4.7 (Difference Operator) [5]& [7]:  Let  kx x   be a sequence
0k  . 

Define the following operator; 

0 :
kx kx        and    

1 1

1: ( 1)
k

n n n

x k kx x n 

     . 

Is called the difference operator. By induction, 

 
0

: 1
k

n
vn

x k v

v

n
x

v




 
    

 
 . 

and if take 0k   we get, 
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 
0

0

: 1
n

vn

x v

v

n
x

v

 
    

 
 . 

The above equation defines the following matrix which is called difference matrix.  

Definition 4.8 (Difference matrix): The following matrix  , 

 
 1 0

:

0

v

nv

n
if v n

v

if v n

  
    

      




 

Or equivalently,  

1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1 0

 
 

 
   
 

 
 
 

 

is called the difference matrix. 

Remark (Inverse of ):  Since ,I   then the inverse of the difference matrix is 

itself, that is 
1   . 

Definition 4.9 (Hausdorff matrix) [5]: Let  np p  be a sequence where 
0n .  

The Hausdorff matrix generated by the sequence  np p  is denoted by pH and 

defined by 

                                               : , : , :p n nH H p H p diag p     . 

Here,  ndiag p  is the diagonal matrix with diagonal elements np . 
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Example 4.8: Let  1 11

1

1
: :

1
n

H H C H C
n



  

 
 

 

  
        

 

1 0 0 0

1 1 0 0
1

1 2 1 0
1

1 3 3 1 0

diag
n

 
 

 
 

      
   

 
 
 

1 0 0 0

1 1 0 0 00 0 0
2 1 1 0 0

1
0 0 0 1 2 1 0

3
1 3 3 1 0

1
0 0 0 0

4

 
 

  
     
    
  

  
    

 
 
 

 

 

 

hence,  1C  is a Hausdorff method. 

Example 4.9: Let  : 2n

np  . Then     2
: : 2 2n

n nH H diag     

 

1 0 0 0

1 1 0 0

2 1 2 1 0

1 3 3 1 0

ndiag

 
 

 
     
 

 
 
 

1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 8 0

 
 
 
 
 
 
 
 

1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1 0

 
 

 
  
 

 
 
   

  2
: : 2 :n

nH H 

1 0 0 0

1 2 0 0

1 4 4 0

 
 
 
 
 
   

 

1

1 0 0 0

1 1
0 0

2 2

1 1 1
0

3 3 3

C

 
 
 
 

 
 
 
 
 
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Lemma 4.2 [5]: Let 
p qH and H  be two Hausdorff matrices generated by the 

sequences     n np p and q q  respectively. Then,

 
1.     0

0
: : , .

0

n k

k

p nk

n
p if k n

H h k nk

if k n


 

   
   




 

2. 
p q p qH H H    

3. The matrices 
pH is a triangle, if and only if  00np n   . 

4. 
p q pqH H H  

5. Inverse:  
1

pH


 exists if and only if 0 .np n    Furthermore,    

                                     
   

1
1,p nH H p


  . 

Proof:   

1. Let    
nvn vdiag p p   , we get for all k n  the equalities  

      1 1
n

v k

nk nv v vk v

v v k

n v
h p p

v k

   
        

   
   

          1
n

v k

v

v k

n n k
p

k v k





  
    

  
  

         
0

1 .
n k

v n k

v k k

v

n n k n
p p

k v k








     
        
     
  

2. It comes from  Lemma 4.2 (1). Since n k  is linear for n k  

   p q n nH diag p q      

                   , , .n n n ndiag p q H p H q       

               .p qH H   

3. Since np  is the coefficient of 
pH  in the 

thn position of its diagonal 0np  . 



63 

 

4. Since Hausdorff matrices are row finite. We get, 

          p q n nH H diag p diag q      

                   n ndiag p diag q    

                   , .n n n ndiag p q H p q     

5. Let 
pH  is a triangle necessary and sufficient condition 0 .np n  

 

 In this way   nq q  with 
1 0

nq p n   . From it comes Lemma 4.2 (4), 

   , ,p q n nH H H p q H e   
 

Therefore qH  is the inverse of .pH  

Theorem 4.12 [5]: If  
pH  and 

qH  are Hausdorff matrices and 
pH  is triangle. Then 

the following statements hold: 

a. 
qH  is stronger than 

pH  if and only if  , n

n

q
H

p

 
 
 

 is conservative. 

b. 
qH  is stronger than and consistent with  

pH  if and only if  , n

n

q
H

p

 
 
 

 

is regular. 

 

Theorem 4.13 (Characterization) [5]:  Let ( )np p  be a sequence with

 .n kp p n k 
 

And let  nkB b  be lower triangular matrix. Then B is a 

Hausdorff matrix if and only if 

 1

P P p pBH H B B H BH    . 
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Proof:   Let  ( )np p  be a sequence and  nkB b  be a lower triangular matrix. 

Assume that B is a Hausdorff matrix, then  qB H . In this case  

   H,q p H,p q .P q P qp n n n n P q PBH H H H H H H B        

Now, suppose that .P PBH H B
 
Multiplying both sides of P PBH H B  by  ,

 

we get,  

P PBH H B     , 

or 

( ) ( )n nB diag p diag p B     . 

Now if we put,  nkC c B    , we get  nk k n nkc p p c , which means that, 0nkc   

for k n  since n kp p . But this means that C is a diagonal matrix

 nnC diag c B      and this proves that   .nnB diag b    

 

Theorem 4.14 (Consistency) [5]:Regular Hausdorff matrices are pairwise consistent.
 

Proof:  Let 
p qH Hs c c  . Then, 

 lim lim lim lim
p qH p H p q ps H s H s H H s    

 lim lim lim lim .
p qp q H q q HH H s H s H s s    

From Lemma 4.2 (4), we have, 

.p qH s c and H s c 
  

Lemma 4.3 [5]: 
1

and Hn

nH




 
 
 

 are inverse of each other. 

Proof: By Lemma 4.2 (4) 
p q pqH H H
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                           1
n nH H





 
 
 

 
1 1

n n nH H H



 

   
   
   

 
  11

.nH H   
     

 

Example 4.10: 
2 1

2

n nH and H
 
 
 

are inverse of each other. 

  2
: : 2n

n
H H

 

 

1 0 0 0

1 1 0 0

2 1 2 1 0

1 3 3 1 0

ndiag

 
 

 
     
 

 
 
 

1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 8 0

 
 
 
 
 
 
 
 

1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1 0

 
 

 
  
 

 
 
   

  2
: : 2 :n

nH H 

1 0 0 0

1 2 0 0

1 4 4 0

 
 
 
 
 
   

1

2

1
: :

2
n

n

H H
  

      

 

1 0 0 0

1 1 0 0
1

1 2 1 0
2

1 3 3 1 0

n

diag

 
 

   
              
 
 

1 0 0 0

1
0 0 0

2

1
0 0 0

4

1
0 0 0 0

8

 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1 0

 
 

 
  
 

 
 
   

1

2

1
: : :

2
n

n

H H
  

      

1 0 0 0

1 1
0 0

2 2

1 1 1
0

4 2 4

 
 
 
 
 
 
 
 
 
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2 1

2

n nH H
 
 
 

 

1 0 0 0

1 2 0 0

1 4 4 0

 
 
  
 
 
 

1 0 0 0

1 1
0 0

2 2

1 1 1
0

4 2 4

 
 
 
 
 
 
 
 
 

     

                                   

1 0 0 0

0 1 0 0
.

0 0 1 0

 
 
   
 
 
   

 

Theorem 4.15 [5]: Let  : nH H p  be any Hausdorff matrix generated by ( )np p

. If   : nkH h , then 

0

0

0

nk

k n

h p


 

 
 

 
 . 

Proof: Let 
 

    n ndiag p e diag p e      

 

0

1 0 0 0 1 1

1 1 0 0 1 0

1 2 1 0 1 0

1 3 3 1 0 1 0

e e

     
     

     
          
     

     
     
       

 

0 0

1

2

0 0 0

0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0

0 00 0 0

n

n

p p

p

p
p e p e

p

    
    
    
    

       
    
    
        

      
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0

1 0 0 0 1 1

1 1 0 0 0 1

1 2 1 0 0 1 .

1 3 3 1 0 0 1

e e

     
     

     
          
     

     
     
       

4.5 Euler- Knopp Methods 

The Euler-Knopp methods are special case of Hausdorff methods.  Let   be any 

complex number then the Hausdorff matrix,  : : nH H  generated by the 

sequence ( )n  is called an Euler matrix of order . 

Definition 4.10 [7]:     nkIf E e


  is an Euler matrix generated by . Then, 

   1 , 0

0 ,

n kk

nk

n
k n

e k

otherwise

  
 

   
  



 

more specifically, the Euler matrix E  is: 

 

   

   
 

 

2 2

1 22

1 0 0 0 0 0

1 0 0 0 0

1 2 1 0 0 0

1
1 1 1 0

2

n n n n

E
n n

n



 

   

     
 

 
 


 
  
 
 
 

   
 
 
 
     

.
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Lemma 4.4 (Properties of Euler Matrix) [5]: Let ,   .  The Euler method has 

the following properties: 

1. .E E E    

2. 1

1 0.E E 


    

Proof: 1. Let, ( )ja a be any sequence and let 

 : 1
k jj

nk

k
e

j

  
 

  
 

 and : 1 .
j tt

sk

j
e

t

  
 

  
 

 

   
0 0

1 1
jk

k j j tj t

j

j t

k j
E E a

j t
     

 

 

   
      

   
   

                 
0

1
k k

t j t k jt

j

j j t

k k t
a

t j t
    

 

 

   
     

   
   

            =      
0 0

1
k k t

t j k t j

j

t j

k k t
a

t j
   


 

 

   
    

   
   

            =    
0

1
k

t k t

j

t

k
a

t
 





 
 

 
 E . 

 

Lemma 4.5 [5]: The inverse of  E  is 
1E


. 

Proof:  By Lemma 4.4 (1) .E E E  
 

                           1E E



  1 1 1E E E E 

 


     
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Theorem 4.16 [5] : The Euler Method E  generated by    is a conservative 

method if  0 1  .
 

Proof:  We need to prove that the matrix E  satisfies the conditions of Kojima-Schur 

Theorem.  By the definition,  

    
0 0

1 1 1
n n

nn kk

nk

k k

n
e

k

    


 

 
      

 
  . 

On the other hand, 

 sup 1 1
n kk

nk

n
Sup e

k

  
 

     
 

  . 

Finally, for 0 1    each column of a Euler matrix is convergent therefore E  is 

conservative. 

 

Theorem 4.17 [5]: E  is  regular if 0 1   .
 

Proof:  We need to prove that the matrix E  satisfies the conditions of Silverman-

Teoblitz Theorem.  By the definition,  

    
0 0

1 1 1
n n

nn kk

nk

k k

n
e

k

    


 

 
      

 
  . 

On the other hand, 

 sup 1 1
n kk

nk

n
Sup e

k

  
 

     
 

  . 

Finally, for 0 1    each column of a Euler matrix is convergent to zero therefore 

E  is conservative.  
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Theorem 4.18 [5] :If  0 .    Then, E
is stronger than and consistent with E . 

Proof: By Theorem 4.17,  E  is regular if and only if 0 1  .  Let 0    . We 

need to prove that E is stronger than and consistent with E .  

By lemma 4.4 (1) .E E E    Then  E E E  



 .  Here E



is regular. If we apply  

Theorem  4.12 (b), completes the proof. 
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