Analysis and Implementation of a Method Resistant
to Functional Dependency Attacks on Databases with
Sensitive Records

Gnokam Fotso Flavien

Submitted to the
Institute of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
n
Computer Engineering

Eastern Mediterranean University
January 2020
Gazimagusa, North Cyprus

Approval of the Institute of Graduate Studies and Research

Prof. Dr. Ali Hakan Ulusoy
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science in Computer Engineering.

Prof. Dr. Isik Aybay
Chair, Department of Computer
Engineering

We certify that we have read this thesis and that in our opinion it is fully adequate in
scope and quality as a thesis for the degree of Master of Science in Computer
Engineering.

Assoc. Prof. Dr. Alexander Chefranov
Supervisor

Examining Committee

1. Assoc. Prof. Dr. Zeki Bayram

2. Assoc. Prof. Dr. Alexander Chefranov

3. Asst. Prof. Dr. Oykii Akaydin

ABSTRACT

The technology evolution has helped to develop large database management systems.
Certain information due to its importance is qualified as sensitive with the help of
security constraints (SC). Basic encryption method (BEM) encrypts sensitive cells in
respective sensitive records. But It does not guarantee security because of possible
data dependencies between attributes that may be used for functional dependency
attack (FDA) with the help of evidence records having the same values of left-hand
side attributes of functional dependencies defining right-hand side sensitive cells.
Partial encryption method (PEM) in addition to sensitive cells encrypts also some
attributes of functional dependences to resist FDA. These methods are investigated in
the thesis, and some problems of PEM are revealed (double encryption, absence of
ordering of FDs after finding minimal attribute cover (MAC)). Its modification,
PEM-M, eliminating double encryption and ordering FDs according to MAC is
proposed. Methods PEM and PEM-M are implemented using Windev 17 platform,
where a user can load a database with any scheme automatically recognized, define
its security constraints and functional dependencies. Then, the methods transform the
database to a form resistant to FDA. Implementation was tested on a number of
examples. Efficiency of the methods was studied on a benchmark Adults database
used originally for testing PEM by their authors. PEM-M was tested in the same way
but using Test database. Some experiments were done using 100 and 32K records of
Test database in PEM and PEM-M in order to compare efficiency and accuracy to
see which method performs better. It appear that in term of execution time, PEM can
performs better with scores of 0.311 and 859.13 seconds for 100 and 32K records

respectively comparing to 0,345 and 952.55 seconds for PEM-M. But, in term of

il

accuracy, PEM-M performs better with 0% of risk of double encryption which is not

the case for PEM.

Keywords: Database management system, Security constraint, Sensitive cell,
Sensitive record, Basic encryption method, Functional dependency, Functional

dependency attack, Evidence record, Partial encryption method.

v

(0Y/

Teknoloji gelistirme, bliylik veritabant yonetim sistemlerinin gelistirilmesine
yardimer olmustur. Onemi nedeniyle, bazi bilgiler giivenlik kisitlamalar1 (SC)
yardimiyla hassas kabul edilmektedir. Temel sifreleme yontemi (BEM), hassas
hiicreleri ilgili hassas kayitlarda sifreler. Bununla birlikte, sag tarafa duyarl hiicreleri
tanimlayan fonksiyonel bagimliliklarin sol taraf 6zelliklerinin ayni degerlerine sahip
baz1 kanit kayitlarinin yardimiyla, fonksiyonel bagimlilik i¢in mevcut ozellikler
arasindaki olas1 veri bagimliliklar1 nedeniyle giivenligi garanti etmez saldir1 (FDA).
Kismi sifreleme yontemi (PEM), hassas hiicrelere ek olarak, FDA'ya kars1 koymak
icin fonksiyonel bagimliliklarin baz1 6zelliklerini de sifreler. Bu yontemler tezde
incelenir ve bazi PEM problemleri ortaya ¢ikar (¢ift sifreleme, minimal bir 6znitelik
kapagi (MAC) bulduktan sonra FD'ler siralanmaz). Modifikasyonu olan PEM-M, c¢ift
sifrelemeyi ortadan kaldirir ve FD'leri MAC ile siralar. Yontemler PEM ve PEM-M,
kullanicinin otomatik olarak taninan herhangi bir sema ile bir veritaban
yiikleyebilecegi, gilivenlik kisitlarint ve islevsel bagimliliklar1 tanimlayabilecegi
Windev 17 platformu kullanilarak uygulanir. Yontemler daha sonra veritabanini
FDA'ya dayanikli bir forma doniistiiriir. Uygulama birka¢ Ornek {iizerinde test
edilmistir. Yontemlerin etkinligi, baslangicta PEM'yi yazarlan tarafindan test etmek
icin kullanilan bir karsilagtirmali Yetigkin veritabaninda incelenmistir. PEM-M de
Test veritabani kullanilarak test edilmistir. Hangi yontemin daha iyi performans
gosterdigini gormek icin verimliligi ve dogrulugu karsilastirmak amaciyla Test
veritabaninin 100 ve 32K kayitlar1 kullanilarak PEM ve PEM-M'de baz1 deneyler
yapildi. Yiriitme siiresi acisindan, PEM, 100 ve 32K kayitlar1 i¢in sirasiyla 0.311 ve

859.13 saniye puanlartyla PEM-M i¢in 0.345 ve 952.55 saniyeden daha iyi

Y

performans gosterebilir. Bununla birlikte, dogruluk acisindan, PEM-M, PEM ig¢in

uygulanamayan% O cift sifreleme riski ile daha iyi performans gosterir.

Anahtar Kelimeler: Veritabani yonetim sistemi, Giivenlik kisiti, Hassas hiicre,
Hassas kayit, Temel sifreleme yontemi, Fonksiyonel bagimlilik, Fonksiyonel

bagimlilik saldirisi, Kanit kaydi, Kismi sifreleme yontemi.

DEDICATION

Dedicated this report to my family for their support

vi

ACKNOWLEDGMENT

I would first like to thank God for his benefits in my life, and to have accompanied

me throughout this training.

I would also like to thank all the EMU’s staff and in particular Assoc. Prof.

Alexander Chefranov; for guiding and helping me to drive this project to completion.

Finally, I would like to thank my family who has given me unconditional support so

that I can live these unforgettable moments.

vii

TABLE OF CONTENTS

ABSTRACT ...ttt ettt et e st e e e e e s e 111
O Z ettt iv
DEDICATION ...ttt ettt ettt sbe et et eteenteseeenseeneesneenees vi
ACKNOWLEDGMENTooiiiiiiiiieeetee ettt vii
LIST OF TABLES ..ottt xii
LIST OF FIGURES........ooiiiiitiiiiieeteteee ettt Xiv
LIST OF ABBREVIATIONS ..ottt s XVi
1 INTRODUCTION.oouiiiiiiieiieieiestesie ettt sttt ettt sbe st sae b enes 1
1.1 GeNeral OVETVIEWc..eiuiiriiiiiiiieiteie ettt ettt sttt ettt saees 1
1.2 Database Security CONCEINScc.eecuieruieriieeitieniieeieeneeeieesieeereesereeseenseesnneenees 3

2 RELATED WORK AND PROBLEM DEFINITIONcccoooviiiiiiiiieeeieeeeeieee 4
2.1 Database CONCEPLS.eervieruireiieriieeiienieeieesreeteestteebeessaeeteesseeeseessaesnseesseeenns 5
2.1.1 DEFINITION ettt 5

2.1.2 Brief History of Databases..........ccccvevieriieriieiiieiieeieeeeeee e 5

2.1.3 Structure of Database..........coeevuerieriiiirienieeeeee e 5

2.2 ENCTYPHION 1utiiiiieiieeiieeeite ettt ettt et site et e st e esbeessbeesseesaseenseeesseensaesnseenseans 7
2.2.1 DEIINITION 1.ttt ettt st e 7

2.2.2 Vigenere Encryption Method............cccoeviiiiiiniiiiiiieeieeeeeee e 7

2.3 MUlti-Level SECUTILYccueieiiieiiieiieeie ettt et ens 8
2.4 Basic Encryption Methodcoceeiiiiiiiiiieieiieieee e 9
2.4.1 Security CONSAINSccvieeiieriieeiieriie et eieeeteeieeere e e eebeebeeseaeeeeeseeeenne 9

2.4.2 Basic Encryption, Sensitive Cells and Sensitive Recordsc..cc.c...... 10

2.5 Functional dependencycccueeuierieiiiienieeiieriie ettt 10

2.6 EVIAEnce RECOTAS .ooooviieiiieiiieee 11

2.7 Functional Dependency Attacks.........ccceeeuierieriienieniieiieeie et see e 12
2.8 Partial Encryption Method (PEM)........ccociiiiiiiiiieciieieeeeeeee e 12
2.8.1 Flowchart Of PEM........cooiiiiiiiiiiieiiececeeeeeee e 13

2.8.2 Robustness CheCKingcocveeiierieiiieiieeieee et 15

2.8.3 Defending Against Functional Dependency Attacks..........cccceeeriencenene 16
2.8.3.1 Case of One Security CONStraint...........ccccveeeeerienieenienieeieeseeeenens 17

2.8.3.2 Case of Multiple Security Constraints (MSCS.........ccoceeverienerneennee. 20

2.9 Problem DefiNitioncocuevieriiiiiiieniiienieieee ettt 28

3 PROBLEMS OF PEM ..ottt 29
3.1 Problem 1: GMM can result in double encryption...........cceceevverieeniienieennnens 29

3.2 Problem 2: Basic encryption scheme and ML security are two different models

3.3 Problem 3: Lemma 4.1 [1] for ML security is not true for the use of basic
ENCTYPLION SCREIME ...eviiiiiieiieeie et e e et eaae s 32

3.4 Problem 4: Algorithm 2 outputs minimum attribute cover instead of

functional dependency with @ NEW OTder..........ccccuviiieriiiiiieieeieeee e 33
4 PARTIAL ENCRYPTION METHOD MODIFIED (PEM-M)......cccccuvvviannnen. 34
4.1 Flowchart Of PEM-Mcccooiiiiiiiiiiiiiieeeeee et 34
4.2 Modification 1: Contribution to solve problem of double encryption............. 36
4.3 Modification 2: Contribution to solve problem of Algorithm 2..................... 37
S IMPLEMENTATION ENVIRONMENTcooiiiiiiiiieteee e 39
I BN VA 5T (537 R D 1T o1 o) 5) o R 39
5.2 Database 1N WINAEV........coiiiiiiiiiiiiieeieeiee et 39
6 IMPLEMENTATION OF PEM AND PEM-Mccccooiiiiiiiiieceeeeee e 41

X

6.1 Flowchart of PEM and PEM-Mccccccoiiiiiininincccccceeeeee 42

0.2 OPEN the SYSTEIM ...eeiiiieiiieiiieiie ettt ettt ettt e sae et e seteesbeeseaeeseesaeeens 43
6.3 Selection of Method PEM or PEM-M........ccccooiiiiiniiniiiiiiceeeeeeee 43
6.4 Dataset Loading of PEM or PEM........cccccoiiiiiiiiiiiieeceee e 44
6.5 Enter Functional Dependencyccccceeuieiiiiiiieniieiiienieeieeee e 45
6.6 Get MAC set of PEM of PEM-Mcccoiiiiiiniiiiiiiiceceeeeeeeeee 46
6.7 Enter Security CONSLIAINTSc..eeevieriieeiiieiiieeiiesieeieesiteetee e eieeseeeaeesaeeneeens 48

6.8 Basic Encryption Scheme, Robustness Checking and Generation of Buckets

(HD ettt sttt 48
6.8.1 Basic encryption for PEM..........ccccoiiiiiiiiiiiiniicieeeeece e 48
6.8.2 Basic Encryption of PEM-Mccccociiiiiiiiiiiiiiceeeeee e 49

6.9 Robustness Checking and Generation of Buckets for PEM or PEM-M 50

6.10 Partial ENCryPtioncc.ceiiieiiieiiieiieeie ettt ettt e 51
6.10.1 Partial Encryption for PEMccccccoiiiiiiiiiiiiieceeeeee e 51
6.10.2 Partial Encryption for PEM-M.........ccccccoiiiiiiiiniiiieiiecieceeee e 51

7 EXPERIMENTS ON PEM AND PEM-Mcccciiiiiiiiiiiiiiieeee e 53

7.1 Experimental Environment USedccccoevciiiiiiiiieiienieceeie e 53
7.1.1 Adult Database........cccceoieriiriinieieeiereeeee e 53
7.1.2 TEST databasecccuerueerierieniieiiiiesieeestesieee sttt 53

7.1.2.1 Description of TEST Dataset...........ccooiiiiiiiiiiiiiiiiiiiiiieen, 53
7.1.2.2 Structure of TEST Dataset.........o.ovvvriieiiiiiiiiiiiiiiiiineneee, 54

7.2 MALETIALS ...ttt ettt sttt 54

7.3 EXperiments DESCTIPLIONccuveeeeuiieeiiieeiiieeiieeeieeeeieeeeveeeevee e e e sreeesesee e 54

7.4 Experimental Results using PEM-Mccccooiiiiiiiiiiiicecee e 55

7.5 Results Obtained using PEM..........ccccoiiiiiiiiiiieieceece e 58

7.6 Results COMPATISON........eeiiieiieeiieiieeieeiee et erite e e sttesbeeseeesbeesseeesbeessnesnseens 60

8 CONCLUSION AND FUTURE WORKc.cccccoiiiiiiiiiiiiieneneneeeeeeeceenne 61
REFERENCES.....c.ooiiiiiiititt ettt 62
APPENDICES ...ttt s 66
Appendix A: Load input, Vigenere Encryption and MAC...........ccevivviiniincnnene 67
Appendix B: First part GMMcocoiiiiiiiiiiiieiecieteeeeeee et 81
Appendix C: Partial ENCIYPHON ..oc.eeviiiiiiiiiiieniieieeesteeeeeee e 84
Appendix D: Execution Time for PEM or PEM-Mccoccoiiiiiniiniiiinicnceee 88

xi

LIST OF TABLES

Table 1: Original Table.........ccceioiiiiiiiee e e e 2
Table 2: Basic ENCTYPHION.iiiiiiiiiieciie ettt e e e e svaeesevee e 2
Table 3: Obtained Results in PEM [1].......oooiiiiiiiie e 4
Table 4: Basic Encryption D of D.....ocvviiiiiiiieeie et 9
Table 5: Original Table 0f D........ooouiiiiiieceeee e 9
Table 6: Basic Encryption of D of D......c.coociieiiiiiiiiiiiiieeeeeeeeee e 11
Table 7: Original Table of D........oooouiiiiiiieieeee e 11
Table 8: Basic EncryptionD of D.......c.ccccioiiiiiiiiiiiiicieeeeee et 15

Table 9: Original Table 0f D.......c.ccciiiiiiiiiiiee e 15
Table 10: Basic Encryption D of D.......coooviiiiiiiiiiie et 18

Table 11: Original Table D........cccoociiiiiiiiieieeitee e 18
Table 12: Result after Applying Local Solution (Robust).........ccccceceevirieninncnienennne. 19
Table 13: Result after Applying Global Solution (Robust).........c..ccccevveriiienienennene 20
Table 14: Basic Encryption D of D.......coooiiiiiiiiiiie e 21

Table 15: Original Table 0f D.......ccccuoieiiiiiiieie e e 21
Table 16: Result Using Local Solution (Robust with Overhead=3)............c..ccccuvee..... 22
Table 17: Result Using Global Solution (Robust with overhead=2).............cccueenn... 22
Table 18: Basic Encryption D of D.......ccoooiiiiiiiiiiiieiecetee e 24

Table 19: Original Table 0f D.......ccccueiiiiiiiiiiie e e 24
Table 20: Result after 1st Encryptions Using Hy [1]...cccciieeiiieiiiiiiieeeeceeeeeee 25
Table 21: Result After 2nd Encryptions Using Hy [1]..ccccvveeeiieeeiiiiiieeiieeieeiee e 25
Table 22: Original Table 0f D........cccoiiiiiiiiieie e e 29
Table 23: Basic Encryption D of D.......c.coooiiiiiiiiiiiiieieeeee e 29

xii

Table 24: Structure Of TEST DaAtaSet........covveiiieieieeenenennne 5

Table 25: Basic Encryption of

Do 36

Table 26: Original Table D Of D.......ccooveiiuiiiiieieciieeeeeeeteeee et 36

Table 27: Results Comparison

xiii

LIST OF FIGURES

Figure 1: Various techniques for database security [4]......cccccvveeriieerieeeiieeeieeeieeeee 3

Figure 2: Structure of a Relational Database: "Modeling of voluntary saccadic eye

movement during Decision Making” (Mvsemdm) [8].......ccccoviiriiiieriiieeniieeiee e 6
Figure 3: Flowchart 0f PEM.........cocoiiiiiiiiiiieeeeteeee s 14
Figure 4: Flowchart 0f PEM.........cocoiiiiiiiiiieeeteee e 14
Figure 5: Example of Multilevel Security [12]cccooiriiniiiiniiniiieieeeeeceieeeen 30
Figure 6: Illustration of Encryption Model [12]......ccccooviiiiiiniiiiiiiiiiiieieeeeee e 31
Figure 7: Flowchart of PEM-M........cccccooiiiiiiiiiiiiiiieeeeeeee e 35
Figure 8: Figure of table AIphabetccccooiiviiiiiiiiiiiiiieeee e 40
Figure 9: Figure Showing Values Inside Table Alphabet...........cccceovriiniininiennnnne. 40
Figure 10: Flowchart of PEM and PEM-M........cccccocoiiiiiiniiiiniiciecceeeeen 42
Figure 11: Selection of Method PEM or PEM-Mcccccoiiiiiniiniiiinienieeeeeeen 43
Figure 12: Loading of Dataset of PEM or PEM-M..........ccccoviniiniiiiniiniecciceee, 44
Figure 13: Enter FDS ..c..ooiiiiiiiiiieeeeteeee e 45
Figure 14: Implementation of MAC for PEM or PEM-M (part 1)cccccoevvenvenennne. 46
Figure 15: Get Attributes Weight for PEM or PEM-Mcccccooiiiiiiniiniiiiieeee, 46
Figure 16: Get MAC and Reordered FDs for PEM or PEM-M (part 2)..................... 47
Figure 17: Enter SCs for PEM or PEM-M......ccccooiiiiiiiiiniiiiicceeeeeee e 48
Figure 18: Basic Encryption 0f PEMccoiiiiiiiiiiiiiiiiieceeeeeeeeee 49
Figure 19: Basic Encryption of PEM-M Robustness Checking and Buckets (H)50
Figure 20: Partial Encryption for PEMcccooiiiiiiiiiiicceeeeeeee 51
Figure 21: Partial Encryption for PEM-Mcooooiiiiiiiiiniiicceeeeee 52
Figure 22: Obtained Result with 1 FD and 1 SC using PEM-M.........ccccocvvviniennnnne. 55

Xiv

Figure 23: Execution Time for 100, 1000, and 5000 Records using PEM-M 56
Figure 24: Execution Time for 10000, 15000 and 20000 Records using PEM-M56

Figure 25: Execution Time for 20000, 25000 and 32000 Records using PEM-M57

Figure 26: Parameters used for 100 Records for PEM.........ccccoceviininiiiniininicnenne, 58
Figure 27: Execution time using 100 Records 4 FDs and 4 SCs for PEM 59
Figure 28: Execution Time for 100 and 32K Records using PEMc..ccccceeneenne. 59

XV

FD

FDA

MAC

MLS

PEM

PEM-M

SC

LIST OF ABBREVIATIONS

Functional Dependency

Functional Dependency Attacks
Minimum Attribute Cover
Multi-level Security

Partial Encryption Method

Partial Encryption Method Modified

Security Constraint

Xvi

Chapter 1

INTRODUCTION

1.1 General Overview

One of the most important aspects of technological advances is the secure
management of databases Cryptographic techniques tries preventing potential attacks
on databases [1] [2]. Partial encryption method is developed to allow different users

to have access according to the rights they have [1].

Access to information in databases is usually regulated by different levels of security
[2] [3]. Thus, for a user A who has higher security level than user B, it can get access
to information present in the level of B but the inverse is not possible [4]. However,
functional dependency (FD), showing relationship between attributes, in the form of
A—>B (where A and B are subsets of a database attributes, meaning that if any two
tuples in the database have the same values of attribute from A, they also have the
same values of their attributes B), can lead to inferring from the level of B, the
information contained in the level of A. It is therefore said that database can be
attacked [1] using functional dependency. A general solution to solve that issue was
to encrypt all data in the database but, in the case of Data Base as A Service (DAS)
where there is a large volume of data [1]; it's a pretty heavy process. The appropriate

solution is therefore a partial encryption based on security constraints (SC).

Example 1: Original database is shown in Table 1 and basic encryption in Table 2 [1]

Table 1: Original Table Table 2: Basic Encryption
NM | SEX | AGE | DC DS NM | SEX | AGE | DC DS
Alice F 53 | CPDS5 HIV Alice F 53 | CPD5 HIV
Carol | F 30 | VPI8 | Breast Cancer Carol | F 30 | VPI8 o
Ela F 24 | VPI8 | Breast Cancer Ela F 24 | VPI8 | Breast Cancer

Example 1 shows a database with three patients who are registered with their name
(NM), sex (SEX), age(AGE), disease code (DC), and disease (DS) in the original
database, Table 1. Alice, Carole and Ela all have illnessyi. Since all patients have
access to this database, some of them would not want their disease to be publicly
available; this request for confidentiality is represented by a security constraint (SC).
As it is shown, after encrypting DS attribute for Carol in Table 2 (Breast Cancer is
encrypted by a) which represents here a sensitive cell [1], it is still possible to infer
her DS based on the FD between DC and DS (DC->DS), since evidence record for
Ela has the same DC as Carol has, and thus, basic encryption of the database does not
resist FD attack (FDA). In fact, FD existence can represent a way by which
confidential information can be attacked throughout evidence record [1] which is the
record that shows the same disease code but non encrypted disease label (DS). Thus,
somebody who knows FD: DC->DS can easily infer that Carol’s disease is Breast
Cancer because Carol and Ela tuples have the same DC values (VP18) and by virtue

of the FD their DS attributes shall be also equal.

The idea here is to develop a system that can transform an input database to an output

database resistant against FDAs with a minimal number of encrypted information.

1.2 Database Security Concerns

Database security has become one of the most important issues in database
management. With the creation of Client/Server techniques, it is now possible to
detect vulnerabilities in a system and attack its databases [4] [2].Various database

protection techniques have been developed.

Technigues of

database security

Figure 1: Various techniques for database security [4]

From the techniques shown in Figure 1, Database encryption and integrity constraints
first of all will be described, and will be used to build a partial encryption system

with the purpose of making database resistant to FD attacks [1].

Chapter 2

RELATED WORK AND PROBLEM DEFINITION

In this part, will be defined and explained the key concepts of the work done and

discuss about existing problem.

The partial encryption method (PEM) is used in [1] with the goal of resisting

functional dependency attacks. It aims reducing the number of encryptions. PEM

uses concepts of database, functional dependency, security constraint, and some

other. Experiments were conducted with PEM [1] implemented in Java using two

datasets (Adults [5] and Order) and obtained results show estimates of execution time

with different number of records. GMM algorithm created for attacks problems and

optimal solution were used in the implementation approach and it appears that using

both datasets, different number of functional dependencies and different number of

security constraints, results presented in Table 3 were obtained.

Table 3: Obtained Results in PEM [1]

Data n m f t W
Adult 32K 32,000 15 78 3877.4 1.016
Adult 64K 64,000 15 78 3989.7 2.03

Adult 128K 128,000 15 78 3990.4 4.059
Adult 256K 256,000 15 78 3988.9 8.129
Orders 0.3M 300,000 9 10 125.8 126.82
Orders 0.6M 600,000 9 10 191.1 306.51
Orders 0.9M | 900,000 9 10 229.7 383.12
Orders 1.2M | 1,200,000 9 10 259.6 459.99
Orders 1.5M | 1,500,000 9 10 288.7 508.37

To understand how this method works, concepts used will be described and analyzed

in the following sections.

2.1 Database Concepts

2.1.1 Definition
Nowadays, database can be defined as an organized collection of data, generally
stored and accessed electronically from a computer system [6] but, before the

creation of computers, data storage facilities already existed.

2.1.2 Brief History of Databases

The main idea about a database system is to store data. In early computer era,
information storage was already observed in hospitals, administrative offices and
some enterprises. In 1960s, with the technological improvement the first electronic
database was developed [7]. This technology evolved and in the 1970s the first
relational databases were created, and many improvements made have resulted in the

existence of several types of databases to date.

2.1.3 Structure of Database

The goal of a database is to allow users to manipulate data quickly and reliably. A
database must therefore be well structured for this purpose. There are several types of
database, but relational databases will be used for this work. A relational database is

defined as follows:

[Pi) PkMovement

PkSessions

FkSession

Participants XCoordinate

2 YCoordinate
PkParticipant

FkParticipant
Date

Time Screen

Initials
Description FkFrame

PkExperiment

FkSession ra—‘ Sex
FleStimulus g Information
17K} PkStimulus —
LifeTime PkFrame
Heotoy FkStimulus
threction Framelndex PH.).?I
Delay FkFrame
Coherence XCoordinate
Velocity YCoordinate
Number DColor

Figure 2: Structure of a Relational Database: ” Modeling of voluntary saccadic eye
movement during Decision Making” (Mvsemdm) [§]

Figure 2 shows the Mvsemdem relational database where tables can be easily seen,
represented by boxes with names shown in their headers, attributes shown in the
boxes, and relationship among tables shown as links between the boxes. Consider for
example table Participants, where it is shown five attributes (PKParticipant,_Initials,
Age, Sex, Information). PKParticipant is a primary key (specific choice of
a minimal set of attributes that uniquely specify a tuple in a table [8] (it is shown in
bold and underlined). Thus, using PKParticipant, other tuple having a particular
value of the attribute in the table can be uniquely determined. A primary key is also
used for creating relationship between two tables [8] [9]. In that case, cardinality (In
the context of databases, cardinality refers to the uniqueness of data values contained
in a column. High cardinality means that column contains a large percentage of
totally unique values. Low cardinality means that column contains a lot of “repeats”
in its data range.), will allow one of the two primary keys to move to the second table
and be a foreign key there. Consider for example a relationship between table Stimuli

(PKStimulus, Lifetime, Scolor, Direction, Delay, Coherence, Velocity, Number) and

6

table Frame (PKFrame, FKStimulus*, Frameindex). It is noticed that PKStimulus
moved to table Frame, and there, instead of PKStimulus, FKStimulus is used but as a
foreign key.

2.2 Encryption

2.2.1 Definition

Encryption can be defined as a process of hiding information so that to access it, a
user needs special knowledge [10]. In fact, there are two techniques used to hide
information using encryption, symmetric and asymmetric techniques. In this paper a
symmetric technique named Vigenere will be used for encryption.

2.2.2 Vigenere Encryption Method

Vigenere method is defined as an alphabet encrypting method which uses a series of
interwoven Caesar cipher [11][12]. Algebraically, going from A to 9 in the alphabet,
a number will be attribute for each character starting from 0 to 35, for example A=0,
B=1,...,9=35, and since numbers go up to 35, addition will be perform with this.
Then, if Tex considered as plaintext and K as key, Vigenere of Tex names cipher text
Ct will be Ct=Texy(Nt)=(Nt+Kt)Mod37, where Nt is the number attributed to the

character in the plaintext and Kt the number attributed to the character in the key.

Example 2: Let consider Tex=SAME and key=KEY, if starting from A to 9, S=18,
A=0, M=12, and E=4. For the key, K=10, E=4 and Y=24. Thus,

C(S)=(18+10) mod 36 =28 =>2

C(A)=(0+4) mod 36 =4=E

CM)=(12424) mod 36 =0=> A

C(E)=(4+10)mod36=14=>0

So Vigenere cipher encryption of “SAME” is “2EAQO” using key="KEY”

2.3 Multi-Level Security

A system with multi-level security is a system with different levels of access
[10].Thus, if A and B are two attributes, SL(A) security level of A and SL(B)
security level of B, SL(A) > SL(B) means security level of A is higher than security
level of B and consequently a user in a level of B cannot get access to information to
the level of A. Therefore due the fact that databases are relational, and FDs among
attributes interact, it could be attacked by FDA [12]. To prevent potential FD attacks,
the approach is to avoid presence of compromise FDs. It has been shown that a FD
can yield derivatives, and it is important to make sure that the derived FDs are also
safe. So, Lemma 3.1 has shown that when FD set is safe, its derivatives, FD set
closure, is also safe [13], If F is a set of functional dependencies FD, F" denotes the
set of derivatives called a closure. Lemma 3.1 is as follows:

Lemma 3.1: For the set of functional dependencies, F= {FD;, FD,, , FD,}, defined

on the database scheme R, if all FD=A->B € F, if SL is a security level and

SL(Aj))= SL(B;) with A; € A and B; € B then, there does not exist an FD €

F*compromissing the database scheme R [13].

Technically, for ML security, two rules, “No-read up” and “No-write down”, shall be
provided, meaning that a subject with the lower security level (SL) cannot read a
document with the higher SL and a subject with the higher SL cannot write into a
document with the lower SL respectively. Therefore, data inference can be
responsible of FD compromise. To clearly understand what is FD compromise and

how to fix it, let us consider Example 3.

Example 3: Compromise relationship and fixing method

Let the set of attributes R = {A, B, C, D}, SL is a security level, and
SL(A) > SL(B) > SL(C) > SL(D). A FD compromises the database with the scheme
R, when attribute with the bigger security level represents the right hand side of the
relation. So, D> A is a compromising FD, but A>B is not. To fix the compromising

issue, security level of D should be increased to be at the same level with A.

That was the idea about Multi-level security and how it works.
2.4 Basic Encryption Method

Basic encryption method (BEM) [1] is used for encryption of sensitive cells. Its goal
is to hide sensitive information defined by security constraints.

2.4.1 Security Constraints

The security constraints represent conditions used to restrict the level of access to the
data. It is then said constraints make it possible to further restrict a domain of an
attribute [8]. To be clearer and show the rule of constraint in the process of basic

encryption, consider Table 4 and Table 5.

Table 4: Original Table of D Table 5: Basic Encryption D of D
TID A B C TID A B C

1 a b, Ci 1 a; B, 9
999 a bl Cy 999 3:1 B.l C'2
1000 ay b1 Cy 1000 a Bl Cy
1001 ay bl C3 1001 ap b1 C3
1002 a b2 C3 1002 ar b2 C3
2000 8, b, e 2000 2 b, o

FD: A>B, SC;: [I;00=c.,
SCy: 130 0=c,

Given database with a scheme having a set of three attributes {A, B, C}where B is
functionally depending on A (FD: A->B), Table 4 is the original table and there are
two thousand rows conditioned by two security constraints (SCs). The first one
SC: Ilgoc= is a projection on attribute B and selection of attribute C with value
clrequests, which means necessity of encryption of attribute B in the tuples where
C=cy, and the second one SC;:Ilg6c=¢; is the same meaning but the tuples shall be
with C=c.

2.4.2 Basic Encryption, Sensitive Cells and Sensitive Records

If Table 4 and Table 5 are considered again, it is noticed in Table 5 that values of
r[B] are encrypted in the rows where C=c; and C=c, respectively. To be clearer, it is
easily seen that D is obtained after applying security constrains SC; and SC,, and in
which values of B are encrypted in rows 1, 999 and 1000. The process is called basic
encryption and respective cells to be encrypted are called sensitive cells. Sensitive

records are then all the rows containing sensitive cells [1]. So in general, given a set

of data D with attributes A, B and C, security constraint IIgG =, sensitive cells are

all cells r[B] where r[C]=c and sensitive records are all records where r[C]=c.
2.5 Functional dependency

Functional dependency (FD) denotes constraint between attributes. As explained in
Section 2.2.3, relationship can exist between attributes and in the context of
functional dependency, if given functional dependency FD: A->B with A and B two
sets of attributes, B is functionally depending on A, which means A can uniquely
determine B [1]. A is left hand side (LHS) attribute and B is right hand side attribute
(RHS). Sensitive data defined by security constraints can be disclosed using FD: if

LHS are the same then it can be inferred that RHS are also equal [12].

10

2.6 Evidence Records

Evidence here represents the flaw by which system can be attacked [1]. For a dataset
D with attributes A and B, FD: A 2B, L = {SC, SC,...SC,} list of constraints and D
dataset with basic encryption, it appears that D has an evidence record if for a row r
with r[B] cipher text and r[A] plaintext, there is any record r’ € D where r’[A] = 1[A]
and r’[B] is not encrypted [1]. To be more explicit, take into account tables in

Example 4.

Example 4: Example of detection of evidence record [1] (Table 6, 7)

Table 6: Original Table of D Table 7: Basic Encryption of D of D
TID | A B C TID | A B C
I ap b1 C1 I aj Bl €1
I a, | by | ¢ n ag | by | o
13 a, | by | cs 13 ap | by | ¢
Iy a | by | ¢ Iy a | by | ¢

As evidence record was described in the definition, Example 4 show Table 6 and

Table 7 which are respectively original table and basic encryption. In Table 7, it is

noticed that ri[B] is encrypted after applying security constraint SC:HBGC:C1_

Now, in application of what was described before, considering D, functional

dependency FD: A->B, and r1[B]=B1 which is an encrypted value. It appears that

r1[A]=a; is not encrypted. By checking into others rows, it is also noticed in rows r;
and r3 that r[A]=r3[A]=r[A]=a; (Not encrypted value), and r,[B]=r3[B]=b; (Not
encrypted value) thus, based on 1y, r3 and FD B1=bl can be easily inferred and

consequently 1, and r3 are called evidence records.

11

2.7 Functional Dependency Attacks

Since sensitive and evidence records were defined, it’s easy to understand the
principle of FD attack. In fact, a system that leaves the gaps is not robust and can be
attacked. Attacks are made in a dataset which from one or more properties can reveal
certain secret information. It means for a dataset D and his basic encryptionD, D can
be attacked if it exists any evidence record in D. Then, some steps should be

followed to check if a system can be attack or not:
e Check if it exists any sensitive record: As sensitive record was defined, this
step aims to detect in D, if it exists any record r’; where r’;[A] is a plaintext

and r’|[B] is a cipher text.

e Check if it exists any evidence record: since sensitive record is detected, the
next step is to verify if it exists any other record r’; where r’,[A] and r’;[B]

are plaintext, and r’|[A]=r",[A]

If these situations are found, conclusion is that D is not robust and can be attacked.
There is a way to fight against functional dependency attacks by making system
robust to potential attacks.

2.8 Partial Encryption Method (PEM)

The idea here is to check existence of gaps in the system and prevent it for being
attacked. As discussed before, a dataset which has evidence records in basic
encryption is not robust and needs to be secure in order to be robust for attacks. To

perform it, some steps need to be followed as shown in the flowchart.

12

2.8.1 Flowchart of PEM
The flowchart will represent steps to perform PEM. It means he shall start after basic
encryption and the whole process of the method combining basic encryption and

partial encryption will be represent in Section 4.

13

MAC (FDs, Set

of MAC)
! S | -
I MaAc y .
! Calculate I

i attributes weight I

i Generate set of |
MAC .

Legend

1- Minimum attribute cover
(MAC)

2- Robustness checking (RC)

3- Defending against FD
attacks (DFD)

Dataset Encrypted
by BEM

GMM (Inputl, Dataset
Encrypted by PEM)

RC (Inputl, (Set of Buckets H, Dataset, FDs) =Outputl)

\ 4

Find sensitive (Sv) and evidence records (Ev) of
basic encryption set and generate buckets

o -
DFD (Input2, Dataset Encrypted by PEM)
Yes
»<_ H=0
Remove Hi | No Ve—] Remove
) encrypted
A value in Hi
Hi=@? Or

Sij=0?, Eij=0?
Yes

Ev>Sv?

Encrypt r[A] or
1[B]

*

Encrypt r[A] and remove it in Hi

|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
: No
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

\4

Dataset Encrypted by PEM

Figure 4: Flowchart of PEM

Ston

2.8.2 Robustness Checking

In the

easier way, robustness checking means check if there does not exist any

evidence record when sensitive records exist like précised in (2) in the flowchart.

Thus, for a dataset D and its basic encryption D, one security constraint such that B

is sensitive, and one FD: A->B, to verify whether the system is robust, two

conditions related to Lemma 4.1 [1] should be considered, that shall hold for each

record r where r[B] is sensitive.

Lemma 4.1 conditions:

Condition 1: There exists at least one attribute Z € A such that r[Z] is

encrypted.

Condition 2: If r[A] is not encrypted, and there does not exist a record r’

where 1r’[A] =r[A] and r’[B] is not encrypted.

If those conditions are respected, consequently system is robust. Consider the

following example to prove the previous conditions of Lemma 4.1 [1].

Example 5: Example of robustness checking after basic encryption [1].

Table 8: Original Table of D Table 9: Basic EncryptionD of D
TID A B C D TID A B C D
I aj by c1 d; r| ay by Y1 dg
1 aj by c1 dy r a by Y1 dy
13 ay by 2 dy 3 ay b, 2 dy
r4 ay by c1 d3 r4 ay by Y1 d;
rs ap by cy d; rs ap by Y1 d;

15

This example is used to illustrate the conditions mentioned above., For a dataset D

represented by Tables 8, which contains four attributes {A, B, C, D}, one functional

dependency FD: {A, B} C and one security constraint SC: IICGB:bl. The result

after basic encryption, based on security constraint is represents in Table 9. It appears
that rows 1y, 12, 14 and rs were selected where b=b;, and projection on cells r[C],
12[C], 13[C] and r5[C] was done in order to get them encrypted as it is seen in
Table 9. Since D is table of basic encryption and represents by Table 9, those
conditions of Lemma 4.1 should be applied on it to verify if system is robust or not.
For the first condition, it exists at least one row in D where r[X] is not encrypted and
r[Y] is encrypted. They can be verified in rows ry, 12, r4 and rs where none of r[A] or
r[B] is encrypted but r[C] is encrypted. For the second condition, if rows r[C]s with
encrypted values are considered, the next step is to check if there exist any other row
r[X] represents by r[A] and r[B] is not encrypted, and r[Y] represents by r[C] is also
not encrypted. Going through Table 9, there is not such kind of row which means D
is robust.

2.8.3 Defending Against Functional Dependency Attacks

A system can defend itself against FD attacks when he is robust. Thus, the idea
behind defending against FD attacks is to make the system robust by encrypting the
non-sensitive cells which can represent the way throughout the system can be attack
[1] [2]. The process to make a system robust depends on some parameters such as
number of functional dependency, and number of security constraints. The process

with one security constraint will be the first case of the description.

16

2.8.3.1 Case of One Security Constraint

As it was said before, it is not possible to talk about sensitive records if it does not
exist security constraint, and don’t talk about attacks if there is no evidence records.
Thus, the process on how to check the existence of evidence records and fix the gaps

for a case of single security constraint will be explained. Since security constraint is a

selection query, consider SC: HBGC where B is the right hand side (RHS) of the

functional dependency FD: A->B. The idea here is to get based on FD and SC all the
attributes which are concerning in the process of encryption. Then, security

constraint will be transformed so that left hand side (LHS) and (RHS) will be getting

in the same selection, by applying security constraint. Then, SCZH(A,B)GC which

means select (A,B) where condition C is respected will be the transformation result
and after that, the next step is to divide it in bucket in order to get a unique sensitive

cell for each bucket and it matching A value. The process is then followed by

applying two selections. One selection Ss: HTIDG(A=a,B=b)UC with C as selection

condition to get sensitive records, and another selection Se: HTIDG(A=a,B=b) to get

all the records which have the same attribute A with the ones considering as sensitive
records. As soon as sensitive records are obtained after basic encryption, there are
two cases:

e First case : There are no evidence records

In this case, conclusion is that dataset is robust and cannot be attacked.

e Second case : There is at least one evidence record

17

In this case, the problem should be fixed by encryption, and to do that, two

possibilities (Local and Global solutions) are envisaged [1].

-1*" Possibility (Local Solution): For each sensitive record r, pick A € LHS and
encrypt r[A] in the case that there is only one attribute in the LHS, or randomly pick

A € LHS and encrypt r[A] in the case of many attributes in LHS.

nd Possibility (Global Solution): For each evidence records r’, which is representing
by Se(D)-Ss(D) and means the attributes which are present in Se(D) but not in Ss(D),

select A or B and encrypt r’[A] or r’[B]. Take into account Example 6 to be clearer.

Example 6: Example of solving the problem of evidence records with one constraint.

Table 10: Original Table D Table 11: Basic Encryption D of D
TID A B C TID A B C
I ay b; Cy I aj B1 Cy
|9) ap by 2) ay by 2
I3 ay by C3 I3 ay by 3
Iy as b3 Cq Iy as b; Cyq
s a4 by Cs Is a4 by Cs

Let FD: A->B, and SC: HBGC:CI. Table 10 is representing original table and

Table 11 Basic encryption. As explained before, the first thing to do is to check if

Table 11 with basic encryption is robust or not. Based on the result, it is shown that
D is not robust due to the fact that sensitive record r; has an evidence record r3 and

need to be fixed. To fix it, those steps need to be followed:

18

Transformation of IIBGCZCI; Rewrite the query so that all attributes

concerning by the FD during the selection. Then rewriting result is

H(A,B)GCZCL

The next step is to get our buckets, for the first one, apply the following query

IITIDG(A=a,B=b)Ucl to have bucket Bj(a;,b;,c;) which will generate

sensitive record Ss(D)={r;}. For the second query HTIDG(A, B), bucket

Ba(aj, b;) is obtained and it contains Se(D)={r;, r3}. Solving possibilities can

now be applying to fix the problem.

Solving with first possibility (Local Solution) : If r[A] in Ss(D) is encrypted,

the obtained result is like in Table 12.

Table 12: Result after Applying Local Solution (Robust)

TID A B C
Iy (U5} B1 Ci
I a b2 Co
I3 a b1 C3
T4 az b3 Cyq
I's a b4 Cs

Solving with the second possibility (Global Solution): If Se(D)-Ss(D) is
applied, {r3} is obtained so, r[A] or r[B] will be encrypted in r3 to get result in

Table 13.

19

Table 13: Result after Applying Global solution (Robust)

TID A B C
r ay B1 Ci
1§ a b2 C2
I3 a B1 3
I4 az b3 C4
I's a b4 Cs

It is noticed in Table 12 and Table 13 after applying both cases that tables are robust,
and in this example Ss(D) and Se(D)-Ss(D) have the same number of encryption
overhead which is one. Note that encryption overhead means total number of
encryption after basic encryption. Therefore, it might happen than one of the two
solutions needs more encryptions than other, therefore the best solution is the one
which has a minimum number of encryption. To decide on which solution has a less
number of encryption, the number of records where cell has to be encrypted should
be considered thus, if Nev is a number of evidence records in the first solution and
Ns=Se(D)-Ss(D) the number of records to encrypt in the second solution, to select
the best solution to apply, Nev and Ns should be compared in order to apply the
solution with the minimal number of record to encrypt after basic encryption. In
other words, it means, get Min (Ns, Nev) and apply the result corresponding to the

minimal value.

After getting how to fix the problem of robustness with one security constraint, let
see how to solve with multiple security constraints (MSCs)

2.8.3.2 Case of Multiple Security Constraints (MSCs)

MSCs mean existence of more than one security constraint [3]. In such kind of case,
the solving process that is used for one security constraint can be used in each

security constraint [1] to solve the problem. In others words, if

20

£ = {SCy, SC,,...SC,}is the set of security constraints, for each security constraint

from 1 to n, the same solving process used to get solution with one security
constraint will be followed. Therefore, to optimize the solution, the less number of

overhead encryption should be considered.

Example 7: Solution with MSCs (Proposed example).

Let D a set of data and D basic encryption representing by the following tables

Table 14: Original Table of D Table 15: Basic Encryption D of D
TID A B C TID A B C
rl aj by c1 rl a B1 ci
r2 aj by c1 r2 a B1 ci
13 ay b, C3 13] b C3
r4 aj by %) r4 a B1)
r5 a by C4 r5] by C4

With one FD: A->B, two security constraints SC1=HBGC:CI and SC2=HBGCZCQ,

Table 14 as original table and Table 15 as basic encryption for SCy, r| and r, are

sensitive records because of r;[B] and r;[B] which are encrypted, and for SC; r4 is
sensitive record because of r4[B] which is encrypted also. If local optimal solution is
applied, for SCy, r3 and r5 are evidence records, and total of sensitive record=total of
evidence records=2, so r[A] can be encrypted to fix the problem, which will give a
total of 2 encryptions ri[A] and rp[A] as it is seen in Table 13 below. For SC,, r3 and
r5 are also evidence records, but since total sensitive record<total evidence record

which is 1<2, r[A] will also be encrypted to fix the problem, which will give one

21

encryption. So, for optimal encryption, a total of 3 encryptions are obtained. If
consider global solution now, total of sensitive records is 3 (r, 1, 14) and total of
evidence records is 2 (13, 15) then, to fix the problem, r[B] will be encrypted for each

evidence record and system will get robust. Total encryption overhead is 2

(r3[B], rs[B]) as in Table 17.

Table 16: Result Using Local Solution Table 17: Result Using Global Solution

(Robust with overhead=3) (Robust with overhead=2)
TID A B C TID A B C
rl al B1 cl rl al B1 cl
2 al B1 cl 2 al B1 cl
3 al bl c3 r3 al p1 c3
4 al B1 c2 r4 al B1 c2
S al bl c4 5 al B1 c4

In conclusion, global encryption is the best solution to solve the problem because
solution is obtained (Table 17) with a minimal number of encryption. Based on what
was described till now, a process of fixing FD attacks can be summarized by

algorithm [1].

This algorithm is called GMM [1] and is used to go through security constraints and
functional dependencies to detect and fix a database attacks problems. Its uses:

- Z={SC;,SC,,..., SCn}as a list of SCs
- FD: XY represents functional dependency
- Vjjas asensitive cell

- Sv as a sensitive record

- Ev as an evidence record

- Hj as a bucket which contains a set in the form of (Vjj, Sv, Ev) for each SC

22

Algorithm 1 of fixing FDs attacks: GMM (£ = {Si, S,....,Sn}, X2Y) [1]

While Hi#® foralli€1,....k do
Let Min, = MinforallVijeHiMin(|Sij|, |Vij|)
10. Let Min, be the sensitive cell that deliver Min,
11. Let S, and E,, sensitive and evidence records of Min,
12. If |S,|<=|E,| then
13. Mine=S,
14. Pick randomly an attribute A € X, and encrypt A in all records € Sv
15. Else
16. Ming,=Ev
17. Pick randomly attribute A € X U Y , and encrypt A in all records € ev
18. Endif
19. For all H;do
20. Forall (Vij, Sij, Eij) € Hi do
21. If Vij = Min, then

1. Forall SC; € £ do

2. Checking of sensitive cell { Vj;} set

3. Forall V;do

4. Find S;; and E;; sensitive and evidence records respectively
5. end for//Vj

6. Let Hi={(Vij, Sij, Eij)}

7. End for

8.

9.

22. Sij = Sij-Mil’lse

23. Cij = Eij-Mil’lse

24. If S;j= ® or Eij = ® then

25. Remove(Vj;, S, E;j) from H;
26. End if

27. End if

28. End for

29. End for/Hi
30. End while

Consider Example 8 to see exactly how Algorithm1 works.

23

Example 8: Example of application of Algorithm1 [1]

Table 18: Original Table of D

Table 19: Basic Encryption D of D

TID | Name | Sex | Age | DC DS TID | Name | Sex | Age | DC DS
1l Joe M | 28 | CPDS5 | HIV r Joe M | 28 | CPD5 o
1 Alice F 24 | CPDS | HIV) Alice F 24 | CPDS5 o
o Maggy | F 33 | CPDS | HIV r3 Maggy | F 33 |CPD5 | a
t4 Phil M 43 | CPDS | HIV 4 Phil M 43 | CPDS5 | HIV
rs Peter | M 39 | CPDS5 | HIV rs Peter | M | 39 | CPDS | HIV
r6 Rey M 52 | CPDS5 | HIV 6 Rey M 52 | CPDS5 | HIV
r7 Steve | M 31 | CPDS5 | HIV 7 Steve | M 31 | CPDS | HIV
For this example, consider original Table 18, FD: DC->DS and two security

constraints SCj: IIso Age<30 and SCy: HDSGSex=”F”~ After applying SC; and

SC,, basic encryption is represented by Table 19. Since at least on sensitive record

exists, GMM can be applied in order to make system robust.

For SC;, there are two sensitive records I'; and 1; and four evidence records Iy, I's, I's

and 17, thus H; will be:

Hj (Scy, DC>DS) = ({{r1[DS], r2[DS]},{r1, r2},{rs, 15, 16, 17} }). In the same logic,

For SCy, Hz (Scp, DC2>DS) = ({ {r2[DS], r3[DS]},{r2, 13}, {14, 15, 16, 17} }). SO,

= {Hi, Hy} is set of H evoked in step 8 of Algorithml.

H

For H;, Min (|Sv|, |Ev|) =2 which is the number of sensitive records then, based on

FD, r{[DC] and r,[DC] should be encrypted to get the results presented in Table 20.

24

ptions Using H; [1]

Table 20: Result after 1st Encr

TID | Name | Sex | Age | DC | DS
ry Joe M | 28 B o
r, | Alice | F | 24 B a
r; | Maggy | F 33 [CPD5| «a
4 Phil M | 43 | CPDS | HIV
rs Peter | M | 39 | CPDS5 | HIV
r6 Rey | M | 52 | CPD5 | HIV
r; | Steve | M | 31 | CPDS | HIV

H1=(|) and due to the fact that r; is already encrypted, it will be removed in H, and

the new value will be H, (Scp, DS>DC) = ({{rz[DC], 13| DC]},{r3},{r4, 15, 16, T7} }).

For Hy, Min (|Sv|, [Ev|) =1 which is the number of sensitive record, and r;[DC] has to

be encrypted. The next table will be:

Table 21: Result After 2nd Encryptions Using H, [1]

TID | Name | Sex | Age | DC DS
1 Joe M |28 B o

1 Alice F 24 B o

r3 Maggy | F 33 B a

4 Phil M |43 | CPD5 | HIV
rs Peter |M |39 | CPDS | HIV
6 Rey M |52 | CPD5 | HIV
17 Steve | M | 31 CPDS5 | HIV

As shown in Table 21, system is robust after 2 iterations and cannot be attacked.
It was shown how to process to get solution with more than one security constraint

let see now how to process when more than one functional dependency are given.

2.8.3.3 Multiple Functional Dependencies

Multiple functional dependencies mean existence of more than one functional

dependency. As the goal is to prevent FD for attacks, each FD must be checked to

25

verify if the security is guaranty [1] [12]. Before explaining how the robustness can
be achieved, let talk about security level with encryption which is totally different
from security level with multi level security. In fact, in multi level security, all
attribute in the same line have the same level security [12] but in the case of
encryption, only encryption can put to attributes in the same level. Therefore, when a
system has to be prevented from FD attacks, as previously sensitive and evidence
information must be encrypted by going through each FD dependency. The only
problem now is how to manage those FD to easily get the minimal encryption during
solving the problem. To solve this, Minimal Attribute cover (MAC) is used to
classify FD in order to encrypt the most frequent attributes first, and the rest after.
One second algorithm is then proposed for minimum attribute cover [1]. This
algorithm takes as input set of functional dependencies and outputs set of minimum
attributes cover. Consider:

- Z={F1, F2,..., Fn}as set of functional dependencies
- A4 as set of Minimal Attribute Cover

- RHS as right hand side attribute in the FD
- LHS as left hand side attribute in the FD

- Ras set of attributes

- W as weight

For this algorithm, input is 7 = {F1, F2,..., Fn} and output is 4.

Algorithm 2 [1]: Find Minimum Attributes Cover (%)

A=0

Forall A € R do
Aw=0

End For

Forall F € 7" do

Nk W=

26

6 For all A € LHS(F) do
7. A.wt+

8 End For

9 RHS(F).w++

10. End For

11. While 7'# @ do

12. Select A with the largest W in R

13. Forall F € 7" with A € LHS(F) OR A € RHS(F) do
14. Forall A’ € Fdo

15. A’ w - -
16. End For/4
17. 2'=7-F

18. A4 Add(A)
19. End For/F
20. End While
21. Return

For well understanding, consider Example 9 to see how this algorithm works.

Example 9: Application of Algorithm 2 for MAC (Proposed example).

Let F1= A, B=>C; Fp=A->D; F3=C->D, F= {Fy, Fy, F3}, R= {A, B, C, D}, # =0,

A.weight=0; B.weight=0; C.weight=0 and D.weight=0. After applying loop on F,

A.weight=2; B.weight=1; C.weight=2, D.weight=2.

Let A.weight=2 be the bigger weight because of the rank in the set, we are now in

line 11 of our Algorithm and for the second loop, we have 7’= {Fq, Fp, F3}.

For Fi:A.weingt=1; B.weight=0; C.weight=1 and D.weight=2, 7’= {F,, F3}, and

A={A}.

27

For Fp the bigger weight is for D and A.weight=0, B.weight=0; C.weight=1;

D.weight=1, #= {A, D} and 7’= {F3}.

For F3 the bigger weight is for C and A.weight=0, B.weight=0, C.weight=0,

D.weight=0, 7’= {@} and 4= {A, D, C}.

So minimal cover is #= {A, D, C}.

Previous sections presented what have been done to prevent and secure dataset for
functional dependency attacks and method used can now be analyzed to highlight the

shortcomings in order to improve the way to secure a system by partial encryption.
2.9 Problem Definition

Since the beginning of this work, key concepts were defined and analyzed in order to
understand how PEM works. For more understanding and especially the concern to
improve what have been done, the next work will focus first on analyzing PEM
problems, secondly will focus on proposition of modification of PEM for fixing
problems and get PEM-M, will thirdly focus on implementation of PEM and PEM-M
so that in the fourth point both methods will be tested and forward in the last point on
conduction of experiments on PEM and PEM-M similar to those conducted on PEM,

and compare their efficiency.

28

Chapter 3

PROBLEMS OF PEM

The goal of this section is to analyze and describe PEM in order to detect existing
problems. In fact, as mentioned previously, the purpose is to secure efficiently the set
of data with the smallest number of encryption. Therefore, the method proposed in
[1] 1s showing some problems that have to be solved to improve the way of securing
dataset. This part of work will first consist in analyzing PEM problems; secondly
consist in proposition of modification of PEM to get PEM-M for fixing attacks

problems.
3.1 Problem 1: GMM can result in double encryption
As said before, GMM is an algorithm to fix FD attacks problems. There are some

cases where it is not satisfied because of double encryption. Example 10 will clearly

show one case when double encryption is possible.

Example 10: Illustration of a case of double encryption using algorithm GMM with

multiple FDs (Proposed example)

Table 22: Original Table of D Table 23: Basic Encryption D of D
TID A B C D E TID A B C D E
I al b1 C1 d1 €1 I a] [51 aq d] €1
) a by [| d| & n ap by [| d| e
I3 az b1 (9] d1 €1 I3 asz Bl (9] d1 €1
14 a4 by | c3 | d3 | e 14 a4 by | c3 | d3 | e3
Is al b2 Co d2 €1 Is a] ﬁz (1] dz €1
Tg ag b1 C1 d1 €1 I'e ag [51 C1 d] €1
17 az by [0 | d| & 17 a7 b [|d | e

29

FD;: D>C, FD,: D>B, FD5: B>C

L —{SCI: HBGE:el; SC,: HCGA:al}’ Table 22 original table and Table 23 Basic

encryption. In Table 23, it is noticed in r; (B—>C) that attributes B and C are both

already encrypted. Thus, to determine evidence record, 1 should be consider as LHS

attribute. In that way, the next step will show one sensitive record (sv) and two
evidence records (ev) and {|sv|=1<=|ev|=2 =>Minse=sv= {r;} which means the total

number of sensitive record is less than the total number of evidence records and

sensitive records should be kept for encryption. B will then have to be encrypted
twice in r; which will give two encryptions in the same attribute. In conclusion it can
be say that GMM applying with MFD is not always satisfied.

3.2 Problem 2: Basic encryption scheme and ML security are two

different models

Multi-Level security is defined as the application of a computer system to process
information with incompatible classifications (i.e., at different security levels),
permitting access for users with different security clearances, and prevent users from

obtaining access to information for which they lack authorization [3].

Orbjecrs Suhject
I Top Secret (TS) i r s
Write
I Secret (5) i I Secret (5) I
I Confidential () i Read

I Unclassified (L7) i L

Figure 5: Example of Multilevel Security [12]

30

Figure 5 is showing many levels of security represented by each line. It can be
noticed that four levels of security are representing in descending order. In that
order, the level above can get access to the ones below. So, TS>S>C>U which
means TS has the highest security level and can access to the information to the
level below, and U has the lowest security level and can be accessed by the others
level. In the Basic encryption scheme, such levels are not considered, it is just
expected that sensitive cells are encrypted whereas non-sensitive cells are not
encrypted. As said in section 2.1.3 ML security works with two rules, “No-read
up” and “No-write down” with different level of security but basic encryption
scheme effectively has just two security levels: encrypted and not encrypted. A
holder of a secret key can access the both, a subject not having the key can access
just non-encrypted data. Thus, “no-read up” is supported, but a holder of the key
can write to non-encrypted data as well, and so, “no-write down” rule is not

supported. Thus, Basic encryption scheme differs from ML security model.

2= R=R

0O — 0
Secrel Hey Secrel Hey

Figure 6: Illustration of Encryption Model [12]

With Figure 6, it is noticed that the only condition to get access of information is to
have key then, you can be in the same level of security but if you don’t have key you

will not read the encrypted information.

31

That was prove that Multilevel Security model is not the same as Basic encryption

scheme model.

3.3 Problem 3: Lemma 4.1 [1] for ML security is not true for the use

of basic encryption scheme

Lemma 4.1 is used to check if a system is robust or not. Section 2.1.9.1 showed that
there are two conditions in Lemma 4.1. It refers to Lemma 3.1 [12] to prove that a
system is robust. However, Lemma 3.1 [12] is used to avoid FD attack on databases
with ML security [16] [6]. In others words, for a set of data D with A, B and C as
attributes, let SL denotes security level. If SL(A) > SL(B) > SL(C) >SL(D), it is says
that FD= B, C>A compromises A because SL(A) is greater than SL of B and C and
consequently they can determine A. to solve the problem, attributes should be
classified so that the left-hand side (LHS) of an FD has SL not less than SL of the
right-hand side of the FD. This is totally different from Lemma 4.1 which uses

encryption of sensitive cells to protect them instead of SL.

Proof:

Condition 1 of Lemma 4.1 states that if some attribute A € X is encrypted then the
sensitive cell, r[Y], cannot be compromised with X = Y. Assume that r[X]is
encrypted. If there exists other record, '+ r, such that r'[X] is encrypted and
r[X] =r[X], but r[Y] is not encrypted then original content of r[Y] can be
revealed as r[Y] from the functional dependency X — Y, this assumption on
existence of r' does not contradict Condition 2 of Lemma 4.1 since Condition 2
concerns not existence of the records with r [X] being a plaintext. Thus, Lemma 4.1

is not true for the case of using basic encryption scheme.

32

3.4 Problem 4: Algorithm_2 outputs minimum attribute cover

instead of functional dependency with a new order

As explained before, Algorithm 2 is used when there is more than one functional
dependency in order to reorder them so that in Algorithm 1, system will start working
with functional dependencies which have the most frequent attributes. Therefore,
Algorithm 2 just output a set of minimum attribute cover instead of set of set of
functional dependencies with new order while in Algorithm 1 system goes through

each functional dependency to fix attacks problems.

That was the problems retained by analyzing the method proposed in [1].

33

Chapter 4

PARTIAL ENCRYPTION METHOD MODIFIED

(PEM-M)

This Chapter aims to take into account problems detected in PEM and proposes
solutions for the ones which affect accuracy of fixing attacks problems. Based on
problems that were detected in the previous section, some solutions are proposed in
order to improve accuracy of the method. . To evaluate performance and accuracy of
PEM-M, implementation of PEM and PEM-M will be done in Section 4 and some
experiments will be done in Section 5 using a TEST database, PEM and PEM-M and
it will be shown that it works with 0% risk of double encryption but can perform less

better than PEM in the term of execution time.

Section 4.1 will show a flowchart diagram to present a general idea of PEM-M,
Section 4.2 will propose encryption of the concatenation of TID value and
concerning cell to encrypt for fixing double encryption problem and section 4.3 will
propose a modification of Algoritm 1 for MAC so that output will be a set of

reordered functional dependencies.
4.1 Flowchart of PEM-M

Let precise that PEM-M flowchart is almost similar to PEM flowchart due to the fact
that PEM was adjusted to get PEM-M. So, the part described in Section 2 will not be

described in this section.

34

of RFDs)

Calculate I
attributes weight I

Generate set of

MAC
i

Set of j
MAC

A 4

ReoFDs (SMAC, RDFs))

Legend

1- Minimum attributes
cover (MAC)

2- Robustness checking
(RC)

3- Defending against FD
attacks (DFDs)

RDFs: Reordered FDs
ReoFDs: Reorder FDS

SMAC: Set of MAC

by BEM

Dataset Encrypted

Encrypted by

GMM (Inputl, Dataset

PEM)

RC (Inputl, (Set of Buckets H, Dataset, FDs) =Output])

\ 4

Find sensitive (Sv) and evidence records (Ev) of
basic encryption set and generate buckets

DFD (Input2, Dataset Encrypted by PEM)

Yes

Hi=@?

Sij=p?, Eij=0?

Ev>Sv?

Yes

Yes
Ve— Remove
) encrypted
value in Hi
Or
Encrypt i+

1[A] or r[B]

f

Encrypt (ri+ r[A]) and remove it in Hi

|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
: No
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A

4

Figure 7: Flowchart of PEM-M

4.2 Modification 1: Contribution to solve problem of double

encryption

As explained in Problem 1 Section 3.1, there is a risk of double encryption in the
same attribute when existing more than one functional dependency. To solve this
problem and get 0% of risk of double encryption, a concatenation of TID value and
concerning cell before encryption is proposed so that for the same value, cipher text
can be different. It can be noticed in part 2 in the flowchart of PEM-M where row
number ri is concatenated with concerning value before encryption. If consider again
Example 10 Section 3.1, to solve the risk of double encryption before encrypting
each r[B], the corresponding value is concatenated with the value corresponding to
the row number. That will allow each value to have a unique encrypted value and

prevent a system for double encryption in the same value.

Demonstration:

Table 24: Basic Encryption of D Table 25: Original Table D of D
TID | A B CcC | D E TID | A B C | D E
ri a by ¢ | d; e ry a B1 o | d; e
) ay by || d| & n ap by || d| e
r3 | a3 by | ¢ | di | e 13 a3 yi | ¢ | d| e
14 ay by | c3 | d3y | e 14 ay bs | ¢35 | d3 | e3
Is a bz C2 d2 €1 Is a] ﬂz ay dz €1
193 ag bq ¢ | d; e Is ag X1 ¢ | d; e
17 az by [| d| & 17 a7 by [| d| &

FD;: D>C, FD,: DB, FD3: B>C and £ — {SC;: [Is0g=e¢;. SCy: Ilcop-ar} are

given. If r| and b; are concatenated before encryption, r3 and b; are also concatenated

before encryption, it means for the same value of b a unique cipher text is obtained.

36

As shown in Table 25, with different encrypted value al cannot be inferred using r3

and rg and following algorithm 1 they cannot be encrypted twice as shown before in
Example 10.
4.3 Modification 2: Contribution to solve problem of Algorithm_2

Algorithm 2 takes set of functional dependencies like input and output set of
minimum attribute cover which is not used in Algorithm 1. In fact, Algorithm 2
should output set of functional dependencies reordered. In Part 3 of flowchart of
PEM-M, it is noticeable that comparing to PEM, output is a set of reordered FDs. So
this part will be added in Algorithm 2 so that output will be a set of functional

dependencies reordered.

Algorithm 2-Modified: Finding reordered set of FDs using MAC (%)

A=0
Forall A € R do

Aw=0
End For
Forall F € 7' do

For all A € LHS(F) do

A.w++

End For

RHS(F).w++
10. End For
11. While 7'# @ do
12. Select A with the largest W in R
13. Forall F € 7" with A € LHS(F) OR A € RHS(F) do
14. Forall A’ € F do

CPRAADNER WD =

15. A'w--
16. End For//A
17. Z'=7-F
18. A4 Add(A)

19. End For/F
20. End While
21. Forall A € 4

37

22. ForallFeZz
23. If(AEF)And(FA7Z)
24, 7. ADD (F)

25. End If
26. End For
27. End For

28. Return (7)

If Example 9 in Section 2.1.8.3.3 is considered again, minimal cover is
A= {A, D, C} and FD order is F= {F|, Fp, F3}. Contrary to Algorithm 2,

Algorithm 2-Modified outputs reordered set of FD due to modifications done from

line 21 to line 28 in Algorithm 2.

38

Chapter 5

IMPLEMENTATION ENVIRONMENT

This section will described materials used for implementation.
5.1 Windev17 Description

Windev can be defined as software of engineering workshop developed in France in
1993 by PC soft Company [18]. In addition to languages like Java, SQI, Visual Basic
and others, this platform has his own language called WD language [19]. It is also
possible to import a database from others sources or create directly a database in the
platform. Started from version 1 to version 25 nowadays, the software is able to work
on windows and Linux system. This platform mainly allows development of data
oriented software, which can also work in windows and Linux. This software also
offers a possibility to develop web application throughout Webdev and Mobil
application throughout Windev Mobil. For this implementation, a database which
helps to apply Vigenere encryption method is created. Before showing the
implementation of the database, let see briefly how Vigenere encryption method

works.
5.2 Database in Windev

For implantation, a database was created with one table which is going to contain
alphabet characters and their representative numerical value. Two attributes Letter
and Number were created, with Letter as primary key. Letter is going to store an
alphabet character and Number is going to store a numerical corresponding value.

Alphabet is going from A to 9 and will use modulo 36 for Vigenere encryption

39

described in section 2.2.2. Database is called Pencrypt and contains table Alphabet

(Number, Letter). Let see how the database looks in Windev:

Alphabet

| =1/ Mombre de rubrigues et index : 3| Taile en octets - 19, || Afficher dans Fordre physigue

Vclé Mom Libelé Type Taille 3
IDAMpahabet + ldentifiant de Alpahabet Id. automatigue - -
letter Letter Texte 1

Mumber MHumber Humerigue 4

Figure 8: Figure of table Alphabet

Since database and table are created, different occurrences of data like in Figure 7

can be seen.

J’ [— = Humber .
- o o
B 1
[= z
(o] 3
E -

F 5
L =Y
H ra
[E=3
J o | =
o 10
| 11
A 12
N 13
o 13
P 15
=] 16
=3 17
= 183
o 19
o 20
W z1
W zz
4 23
o i
z 25 -

Figure 9: Figure Showing Values Inside Table Alphabet

Those values were introduced directly in the database without any writing code.

40

Chapter 6

IMPLEMENTATION OF PEM AND PEM-M

This chapter describes implementation environment and gives details about PEM and
PEM-M implementation based on scheme described in Chapters 2 and 3. Problems
detected in PEM will also be considered in implementation of PEM-M in order to
improve performance of functional dependency resisting attacks. Section 5.1 will
start giving flowchart of PEM and PEM-M as a whole, and the remaining sections of

the chapter will present PEM and PEM-M implementation figures.

First of all, let’s mention that PEM and PEM-M have the same flowchart but some

different part of algorithm due to modifications.

41

6.1 Flowchart of PEM and PEM-M

1 Open the system

v

Select method to use (PEM
2 or PEM-M)

3 Choose the data file

v

Load data in the system

4
T 6
_____________________ -
5 Inter FDs FD>1 _J
Get attributes weight
7 Inter SCs Get MAC set

8 Basic encryption
v .
9 Robustness checking

3

\ 4

Reorder FDs

10 Generate buckets H
11 Partial encryption

l
(®

Figure 10: Flowchart of PEM and PEM-M

Figure 10 shows all steps that should be followed for fixing FDA using PEM or
PEM-M. Both methods are almost similar. The difference between them was clearly

described in the previous section and it was said that PEM-M will concatenate row

42

value with main value before encryption unlike of PEM which encrypts only the

main value. For others steps, process is same.

When user will open proposed software, he will have to choose the use of PEM or
PEM-M like précised in 2 in Figure 10. After selecting what to use, the process of
loading dataset, entering FDs and SCs, MAC and sensitive cells encryption are the
same in both methods. Those steps represented from 2 to 9 were described in
Section 2 including robustness checking described in Flowchart of PEM in the same

section.
6.2 Open the system

The software has an executable file to run it. The file is called Pencrypt.exe and is in

the software package.

6.3 Selection of Method PEM or PEM-M

Open
PEM-M

Open
PEM

Figure 11: Selection of Method PEM or PEM-M

43

6.4 Dataset Loading of PEM or PEM

1- Selection of file

{5 C\School Thesishtest.alsx
DATA FD-SC
e st]) (0m) o — D B ——R
X £l
Leaf Lo Column LoNg Line a9, 8 | ‘ | | Submit)
F P X ¥ & v am —Y
- | (-
T o
2- Read the ﬁle Security Constraints N
F ES ES Soet & Whes & B ——
Original Table
TID i Nom o Sex 5 Age o oC o D§ B
rl Joe M 23 CPD5 Hiv =
r2 Hice F 24 CPD5 Hiv
r3 Maggy F 3 CPD5 Hiw
rd Phil M 43 CPD5 Hiv
5 Peter M k] CPD5 Hiv
6 Ray M 52 CFD5 Hiv
7 Steve M H CPD5 Hiv
Net>>

Figure 12: Loading of Dataset of PEM or PEM-M

Figure 12, shows that application allows user to select file (1). After selection he can
click on OPEN to see in the small table below, number of leaf, number of line, and
number of columns in the dataset. Since it is done, he clicks on READ (2) to load the
data in the big table below as shown in Figure 12. For this figure related to Example
8, 1 leaf, 5 columns and 8 lines are shown. When data are loaded, user can now go to
the next step. Those are the results obtained using codes described in Appendix Al
for opening the selected file from line 1 to line 17, and Appendix A2 for reading and

display file content from line 18 to line.

44

6.5 Enter Functional Dependency

Since data are loaded, select attributes which are going to represent functional

dependency and submit them to the set of functional dependency as in the figure

bellow.
LHS Attributes RHS Attributes
i) Main ==
DATA) FD-SC
il — v A— —— %
AL Fle :[C:\UsershFlavien'\Deskioptest\Adu]) (Open Selet XD\, = v|(#DD) Select ¥ ADD
. 3 & ¥ Submit
Leaf %7 Column %7 Ling BN | | ‘ ‘ i
= _ =
FD By ¥ By 2 EYEl e)
S "I - | (wmac)
= FD2 D E
Read e \
e
Set of FD
Security C il - 3
F ES aF Select & W o B —
[l 3
Original Table
EETD A e D S e N e T S R e N e e
r1 al b1 cl bl el lal al h1 i1 il k1 11 ml nl ol o
r2 a2 b2 c2 d2 e2 2 g2 h2 i2 i2 k2 12 m2 n2 02
r3 a3 b3 c3 d3 el 3 gl h1 i3 i3 k2 12 m3 n3 o3
rd ad b4 cd d4 e2 2 g3 h3 i4 i3 k3 13 mé nd od
=] ad b5 c1 d5 ed 4 g4 h4 i5 il k4 14 mé n5 ob
6 a6 b& ch dé eb i g5 hs i4 i4 k5 15 m5 nl of
7 al b1 ch d1 eb i g3 h3 i2 ia k& 16 ml né of
g a7 b7 c2 d7 e7 (i3 ab hé i3 il k7 I7 m2 n7 od Mext>>
[x:] a? h2 7 d? el (1 a7 h7 iR if k1 11 mh nl o7 - \—J J

Figure 13: Enter FDs

Figure 13 shows two FDs, FD1=A->B and FD,=D->E. representing in the table

which is considered as set of functional dependencies. The code used to implement
this is described in Appendix A.4 where FDs are inserted into the table from line 84

to line 9.

45

6.6 Get MAC set of PEM or PEM-M

For implementation of MAC, set of FDs was keep for both methods since it was not
possible to get result using set on minimum attributes. When there is more than one
functional dependency, MAC can be applied in order to use the best FDs order to
make implementation fast and efficient [1]. This function was implemented in the

basis of Algorithm 1 [1], and using Example 9 to see how it works in the application.

FD-SC
—
Select X |C ~| (ADDY) Select Y D >| [aoD)
= R E——T
Click on MAC to get
Functional Dependency form
FD %37 P AT Y EYE|

s Bl
FD2 A D
FD3 C D

-

Figure 14: Implementation of MAC for PEM or PEM-M (part 1)

In Figure 14, FD;, FD, and FDj are shown exactly like in Example 9. After getting

set of FDs, if number of FDs is greater than one you can click on MAC to apply

Algorithm 1. Let see the result in Figure 15.

b o=/

GUILFD
q g RS Bl et
i AB C N

] A D
m C D

R A B C D IC"V”I

Get Weight
| { y i L

Figure 15: Get Attributes Weight for PEM or PEM-M

46

The code using to get this example of result is described in Appendix A.5.1 where
from line 90 to 142, system goes through each functional dependency and generates

weight of each attribute.

Click on cover to
get MAC

Get FDs order

Figure 16: Get MAC and Reordered FDs for PEM or PEM-M (part 2)

In Figure 16, each attribute is weighted by clicking on button Weight. After getting

weight, just click on Cover to get MAC as shown in Figure 16. As in example 9,

A#= {A, D, C} and F= {FDy, FD,, FD3} which means function is working perfectly.

To get this result, the code used is described in Appendix A.5.2 where, from line 143
to line 170, using previous result set of minimum attribute A is obtained. To get now
the new order of FDs, the code used is Appendix A.5.3 and from line 171 to 214,

loop FOR is used to go through set of attributes to generate the new order.

47

6.7 Enter Security Constraints
Security constraint is the last element to enter before getting Basic encryption. As
FDs were entered, same process is used for security constraints but with different

box. Let see the result in Figure 17.

(===
FD-SC
Select_X |D -| ADD) Select_Y |[E - ADD)
x I == I | (submm)

BN H—> BN Y C, - —
N I - ((CMac)
D E

Functional Dependency

soea Al | whee

Security Constraints

SC T Select % Where 27 B —_

Figure 17: Enter SCs for PEM or PEM-M

Figure 17, shows in the table of security constraints two security constraints. This
result was obtained applying some codes used in Appendix A.6.2, especially lines
256, 282, 306 and 331 where for each case SCs are inserted in the table. The next
step is to get basic encryption, check if the system is robust, and generate Buckets H

in the case that the system is not robust.

6.8 Basic Encryption Scheme, Robustness Checking and Generation
of Buckets (H)

6.8.1 Basic encryption for PEM
As said before, for PEM only main value is concerns by encryption. Implementation

result is like follow.

48

4 D1 PEM
Basic Encryption R Ch
E TID > Nom = Sex = Age = oc T Ds B —
r Joe M 28 cPD5 17183 B (e
r2 Alice E: 24 CPD5 1718
r3 Maggy F k) CPD5 1718
rd Fhil M 43 CPD5 Hiv
r5 Peter M 39 CPD5 Hiv
6 Ray M 52 CPD5 Hiv
7 Steve M A CPD5 Hiv
-
Checking Results
E D Z Sensitive T Evidence 7 Checking §| GenemteH
Record Record Result =
FD1={DC->0S) 1 rd 5617 Na robust =
FD1={DC->D5) 2 rd 867 No robust
FD1={DC->D5) r3 rd 567 No robust
-
r sc T H T Value
ISC1 H1 (42} 4506070 . (73} F4.5.:06071)
sc2 H2 (1} &rd. 508070 , (42} F41516.17Y)
e
Nexts> J

Figure 18: Basic Encryption of PEM

It is noticeable in the first table of Figure 18 that sensitive cells are encrypted using

PEM method. The code used to get that result is in Appendix A.6.2 from line 352 to

line 468. And in line 252 it is show how only the main cell is encrypted.

6.8.2 Basic Encryption of PEM-M

The process is the same but as said before PEM-M used concatenation of row and

main value during encryption.

49

Thesishtest.xlsx

i 01
Basic Encryption Robustness Checking
i TID : Nemn * Sex : Age L2 DC L DS is] —
rl Joe M 28 CPD5 2r017E = e
2 Alice F 24 CPD5 211718
r3 Maggy F 33 CPD5 2FTEN
rd Phil M 43 CPD5 Hiv
r5 Peter M 39 CPD5 Hiv
6 Ray M 52 CPD5 Hiv
v Steve M 3 CPD5 Hiv
Checking Results
E FD . Sensitive = Evidence = Check EE Generate H
Record Record Resu =
FD1={DC—=D5) rl rd 567 Mo robust e
FD1=(DC—>DS5) 2 rdr5.r6r7 Mo robust
FD1=(DC—DS&) 3 rdr5.r6ry Mo robust =
4 3
r sc h H ~ Value
sC1 H1 i1} 506078 | (2} {rd r5.6.071)
sc2 H2 (2} {r4.r5r6071) | (I3} rd.r5.r6.070))

Figure 19: Basic Encryption of PEM-M Robustness Checking and Buckets (H)

Figure 19 shows basic encryption of PEM-M, and it is noticeable that the values are

different from the ones getting in PEM.
6.9 Robustness Checking and Generation of Buckets for PEM or
PEM-M

For this implementation, Figure 18 or Figure 19 can be used since the process is
similar in both methods. Consider SCs in the first table of Figure 19, Robustness
checking in the second one, and set of Bucket H in the third table. Those results were
obtained after applying codes used in Appendix A.6.2 or A.6.3 for PEM and PEM-M
respectively and Basic encryption, Appendix B.1 from line 469 to line 505 for
robustness checking and Appendix B.2 from line 505 to line 573. After getting all

those results, step about fixing attacks problems can be implemented.

50

6.10 Partial Encryption

6.10.1 Partial Encryption for PEM

H

sC1 H1 (14567 . (72} rd 56 7H)
5C2 H2 (2} {rd 506070 . (3} F4r505.:7)

Click on Iteration

Figure 20: Partial Encryption for PEM

In Appendix C.1 partial encryption for PEM is applying from line 574 to line 633
and it is noticeable that only main value is encrypted.

6.10.2 Partial Encryption for PEM-M

The process is almost the same with the one used in PEM, only encryption makes
difference. Figure 21 shows result with PEM-M and different encryption values can

be noticed.

51

H
B Value
sC1 H1 (1) Gr4r5r6.07)) . (2} rd.r5.06.71))
sc2 H2 ((fr2} rdr5607)) |, (Ir3} rdr5.06.071)

Click on Iteration

B RIBEEY -

Figure 21: Partial Encryption for PEM-M

As shown in Figure 21, in this step, after clicking on Iteration and obtaining a robust
system exactly as it was obtained in Example 10. This was made possible using code
described in Appendix C from line 634 to line 693 where, it is shows how program
goes through each record, check existence of evidence record, and solve the problem.
Let mention that to prevent the system to encrypt the same attribute twice as
mentioned in the previous chapter, concatenation value of TID and concerning value

attribute is done in order to get a unique result of each encryption.

52

Chapter 7

EXPERIMENTS ON PEM AND PEM-M

In this chapter, some experiments are made in order to evaluate the performance and
compare the results with the ones getting in [1]. Let describe experiment environment

first.
7.1 Experimental Environment used

Experiment will be done using result obtained with Adult database in [1] and
comparison will be done between PEM and PEM-M using TEST database which will
be described in the following sections.

7.1.1 Adult Database

As introduced in Chapter 2, Adult database was used in the experiment done in [1].
Based on the difficulty to get 78 FDs as they said during their experiment, a TEST
database will be created to perform experiment with PEM and PEM-M. Adult
database has 15 attributes and can be downloaded in [5]. TEST database will have
exactly 15 attributes in order to get something similar to Adult database.

7.1.2 TEST database

As said in the previous section, TEST database was created to perform experiments
in this work.

7.1.2.1 Description of TEST Dataset

TEST is a dataset with 15 alphabet letters considered as attributes. From A to O 5

FDs were considered FDy: A=>B, FD,: E=2F, FD5;: B=>D, FD4: G=>H, FDs: A>B

53

and FDs5: K> L. TEST was created in Excel 2007 and will be used with 100 rows up
to 32K rows.
7.1.2.2 Structure of TEST Dataset

Since caption is not clear to present TEST structure, following table will be used to

show how TEST dataset looks like.

Table 26: Structure of TEST Dataset
A |B |C /D |E |F |[G|H|I |J |[K |L '[M|N |O

a |by e |dy |e [g | |1 |31 ki [l |m[n |0

a |by | |d e [|2 | |1 |}o [k [|m|nm |0

a3 |by ez |d3 |es |3 g |hy |13 [j3 |k |[L |m3 |n3 |03

ag | by |cqg |dgy [|fh g3 |hs |14 |3 |ks |3 |my |ng |04
as |bs |c |ds |eq |fy g4 |hy |i5s |1 ks |14 |my |ns |05
ag_|bs |cs |de |es |fs |fs |hs |ig |jga |ks |ls |ms n; |os

a; |b; |ce |di |es [f6 |g3 |hs [1n |js |ke |l |my [ng |06

a7 |by |c |d7 |e7 |7 g |he |13 |J1 |ky |1z |mp |n7 |o4

a |by |¢c7 |dy |eg |fg |g7 |h7 |16 |J6 |ki |11 |mg |ng |07

7.2 Materials

Those experiments will be done in a Windows 7 system 64 bits, with processor Intel

(R) Core (TM) i5 CPU 2.6GHz and 4GB RAM.
7.3 Experiments Description

For the experiments, database TEST will be used with 100, 1000, 5000, 10000,
20000, 25000, and 32000 records. Execution time will be estimated using PEM-M
combinations numbers of FDs and SCs from 1 to 4. After getting execution time in

each case with PEM-M, the same experiment will be perform using PEM with 100

and 32K records applying with 4 FDs (FD=A->B, FD,: F2>E, FD3: G>H and FDy:

K>L) and 4SCs (SCi: IgOc=c1, G 1o, scs. Hpo,

54

SCy. HLGO=01). A performance comparison will be done and obtained results will

be commented.
7.4 Experimental Results using PEM-M

This experiment will summarize in different tables all what was described before and
analyze time execution based on each parameter using PEM-M. The following
figures are showing results obtained during experiments and different execution

times depending on different parameters. Result is shown in Table ITERATION and

for the first case with FD= A->B and SC= IIBGCZCL Figure 23 will show example

of result.

é Main

[=]
[
" .

f s ° H 7 Value Bl neraton |

({13 7 r18,29.,640./51 62, 73,r84190)) . (5} . (N2} {7.r18.r29.40101 1627384595} . (16} «

{233 r7.r18,29.,r40,51 162, 73.0841900) . (427} . (i34} {7.r18.r29.r40151 162173784 .r95)) . ({3t
SC1 H1 (rd5) 7.12,129 540,51 162,773,084 135)) . (749} . (156} 712,725,140 151 162,173 184 r85)) , (irf

67} 47018r29,r40,51 62,7384 195)) , ((71) , (78} 7.r18,29,40r51 162,73 r84r95))

Execution

™ A * 8 Time

R&H2ELRZ

b7 L
h? A2 et m

o6 RE B 7
a7 b7 &6 Kl

LA BT A et
" m& onl 7 = B = A

Figure 22: Obtained Result with 1 FD and 1 SC using PEM-M

55

The same process will be used to evaluate the others performances. Time is evaluated

with the function Chrono described in Appendix D

ESS - = | 2300.56
' A B c D E
1 Adttrubute Record Constraint FID Time(S)
> 15 100 1 1 0062
3 15 100 2 1 0.085
a 1s 100 2 2 o.12
s 15 100 3 2 0227
= 15 100 3 3 0.234
7 15 100 4 3 0.333
=2 15 100 4 4 0.345
9 15 1000 1 1 40_85
10 15 1000 2 1 91_91
11 15 1000 2 2 93 _45
1z 15 1000 3 2 95_74
13 15 1000 3 3 96_12
14 15 1000 4 3 oF_42
is 15 1000 4 4 9F_T9
16 15 SO00 1 1 150.15
17 15 SOD0 2 1 172 23
is 15 SO0 2 2 173 21
19 15 SO00 3 2 174.13
20 15 SO00 3 3 175.03
>3 15 SO00 4 3 177.51
> 15 SO00 4 4 180_06
Figure 23: Execution Time for 100, 1000, and 5000 Records using PEM-M
ESS - #x | 2300.56
S B . D E
23 15 1 OO 1 1 27815
24 15 1 OO 2 1 2To_TE
25 15 1O 0D 2 2 281 45
26 15 1 OHCMOMDR 3 2 286_31
27 15 1 OHCHOMDY 3 3 200 12
28 15 1 OO 4 3 295 65
29 15 1 OO 4 4 209 45
IO 15 1 5000 1 1 IB0_44
=3 B 15 1 5000 2 1 IB3I_ 12
32 15 1 SO0 2 2 IBS 21
33 15 1 50D 3 2 I3 _13
349 15 1 50D 3 3 IG_84
35 15 1 50D 4 3 3I9&_33
36 15 1 5000 4 4 G415
3T 15 20RO 1 1 546 25
=2 15 20000y 2 1 548 28
=l 15 200Dy . . 55149
T} 15 20HOHCHDY 3 2 554_31
a1 15 200HOHOHDY 3 3 S60_17
a2 15 20HOHOHDY 4 3 56461
a3 15 Z200HOROHDY 4 4 569 35

Figure 24: Execution Time for 10000, 15000 and 20000 Records using PEM-M

56

ESS - #~ | 2300.56
S B c D E
a7 15 2OHCHOMDY 1 1 S46_ 25
I8 15 20000y = 1 548 28
39 15 20000 2 2 551_49
20 15 Z2OHCHOHOY 3 = 55431
A1 15 200Dy 3 3 S650.17
az 15 20000 4 3 S64.61
a3 15 2OHCHOMDY 4 4 569 35
211 15 25000 1 1 TO3_87
as 15 25000 S 1 FOB_32
A6 15 2500 2 2 T11 21
a7 15 25000 3 2 713 43
as 15 25000 3 3 716_84
a9 15 2500 4 3 719 36
5.0 15 25000 4 4 T24 15
51 15 32000 1 1 92415
52 15 F 200D L 1 o209 28
53 15 32000 2 2 o934 19
549 15 32000 3 2 939 11
55 15 F 200D 3 3 o943 24
56 15 32000 4 3 o948 91
S 15 32000 4 a 952 55

Figure 25: Execution Time for 20000, 25000 and 32000 Records using PEM-M

Based on the obtained results, it is noticeable that performance is better with less
number of records. In Figure 25 with 100 records, execution time is 0.062s like
minimum time and 0.345s like maximum time depending on different parameter. It is
also noticed that when number of record increases, execution time also increases and

the system can take a lot of time to fix functional dependency attacks problems.

Comparing to what have been done in [1], the first thing to noticed is that
experiments in [1] were done using Adult and Orders databases as explained in
section 2.1, and Figure 3 shows performance evaluation results. But, these results
could not be used for comparison with the results obtained in the experiments done in
PEM-M since different databases and parameters were used. Therefore, to obtain a
reliable comparison results, Algorithm 1 used in PEM was run with TEST dataset
using 100 records and 32k records, with 4 FDs and 4 SCs. Obtained results are as

follow:

57

7.5 Results Obtained using PEM

The same process is used to evaluate execution time for PEM. For 100 records, FDs

and SCs described in Section 3 were used as shown in Figure 26.

i Main ==
DATA FD-5C
0 i [v e) (Orr) S — D R —
X Y)
B Leaf BN Column &7 Line 48 | ‘ | | Submit
] Functi —
i FD & X—> EN Yy a8
O O - | (-wrc)
= FD2 £ F
FD3 G H
Read | FD4 K L -

ear e e

Security Constraints - ,

sC 97 Select %" whee A8

Original Table
AL A B e L e i G P e s - M= RN S
al al b1 cl d1 el n gl h1 il il k1 n m1 nl ol =
2 a2 b2 c2 dz e2 2 a2 h2 i2 i2 k2 2 m2 n2 02
r3 a3 b3 c3 d3 el 3 gl h1 i3 i3 k2 12 m3 n3 03
Ird ad b4 cd d4 e2 f2 gl h3 id i3 k3 13 mé nd od
s a5 b5 cl d5 ed 4 gd h4 i5 il kd 14 mé n5 o5
6 ab b6 ch dé eb i) g5 hs i4 i k& 15 ma nl ob
r7 al b1 ch di eb 6 g3 h3 iz i5 k6 16 m1 né of
%] a7 b7 c2 d7 e7 7 a6 hé i3 il K7 7 m2 n7 od E}
9 aZ h2 =7 d2? eR (11 art h7 if 19 (al n mh nl a7 4

Figure 26: Parameters used for 100 Records for PEM

58

a7 h? o7

Figure 27: Execution time usiﬁg 100 Records 4 FDs and 4 SCs for PEM

H 7 Value B
i} o
{r7.r18.r29.r40,r51 r62.r73r84 351 0)r3 r14,r25,r36,r47 r58.r69 180 r9 131 9.r 20,31 r42 153 164 175

(5} 0y L (12}
Ar7.r18.,29,740751 r62r73.r84 raSH (31 4025,36 147 158./69 rB0 91920731 42153 164 175

L

n 4 rmomn ms AP A 45 AE Ae am eA AR AR AeWlR AR nd sn e na e

ST e

cl dl el 1570

2 a2 2 7]

3 d3 3 3 - |

c4 a4 2 7] .

cl 5 et 4 Execution
o5 @& 5 5 g5 n5 .

o5 41 5 6 a3 h3 Time

2

TR — ———

a7 -f a? iR n nt w7

The same parameters were used for 32K Records and the results obtained are

summarized in Table 28.

S

Attributes Records Constraints FD _ Time
15 100 a4 a4 0.311
15 32000 4 a4 859.13

Figure—28: Execution Time for 100 and 32K Records using PEM

From Figure 28, it is shown that using TEST dataset with parameters described

above, PEM performs 0.311 with 100 records and 859.13 with 32K records.

59

7.6 Results Comparison

During experiments, PEM-M performs 0.345s using 100 records and 952.55s using

32K records. Table 27 can be used to compare PEM and PEM-M in the term of

performance.
Table 27: Results Comparison
PEM PEM-M
SCs FDs Time(s) SCs FDs Time(s)
4 4 0.311 4 4 0.345
4 4 859,13 4 4 952.55

Based on obtained results as presented in Table 27, it is shown in the term of
execution time that PEM is better performing than PEM-M using 100 records and
32K records which are the minimum and the maximum number of records used for
experiments. This can be explained by the fact that for encryption, concatenation was
used to prevent double encryption as explained in Problem 1 Section 2. Therefore,
that concatenation of value of column TID with the main value to encrypt contributed

to improve accuracy and make the risk of double encryption equal to 0%.

60

Chapter 8

CONCLUSION AND FUTURE WORK

Based on what have been done in the main article and in this report, PEM is a good
method to adopt if there is a need of defending system against FDs attacks. From
chapter 2 to chapter 5, PEM was analyzed in order to better understand its technique
and its functioning. Therefore, some problems were detected in PEM method
proposed in [1], and to improve accuracy, problem 1 was adjusted so that
Algorithm 1 [1] will consider the case when |Sv|=|Ev|. The way of encryption was
also changed in order to prevent the case when system will face double encryption.
And finally software which can fix functional dependency attacks problems by taking
a dataset as input and generate a secure dataset in output was proposed. About
experiments some tests were made in Test dataset and the comparison result was
made between PEM proposed in [1] and PEM-M proposed in this paper using 100
records and 32k records. The proposed technique (PEM-M) improved the one
proposed in [1] (PEM) in the term of accuracy because, as said before, the risk of
double encryption is 0%, but in term of performance PEM-M still have to be
improved because it was noticed that method proposed in [1] (PEM) is faster. About
those problems which did not affect implementation of the technique on partial
encryption, the future works will be done in order to optimize the way of preventing

and fixing functional dependencies attacks.

61

REFERENCES

[1] B.Dong, HW. Wang. (2018) “Secure partial encryption with adversarial
functional dependency constraints in the database-as-a-service model”, Data and

Knowledge Engineering,, Vol. 116, pp.1-20

[2] Mamalis, T.Patel, “Database Security-Attacks and Control Methods”. (2016)
International Journal of Information Science and Techniques, Vol. 6, No 1/2,

pp-175-183

[3] P.D. Stachour, B.Thuraisingham. (1990) “Design of LVD: multilevel Secure
Relational Database Management System”. Transactions on Knowledge and

Data Engineering, Vol 2, No 2, pp.1-21

[4] A.-H.Almutari, A.H.Airuwaili. (2012). “Security in Database System”, Global

journal of Computer Sciences and Technology, Vol. 12, No 17, pp.1-7.

[5] R.Kohavi, B,Becker. (1996). “Scaling Up the Accuracy of Naive-Bayes
Classifiers: a Decision-Tree Hybrid”, Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining [Online] available

https://datahub.io/machine-learning/adult [Accessed 17-02-2020]

[6] Wikipedia contributors. (2019). Database. In Wikipedia, The Free Encyclopedia.
From https://en.wikipedia.org/w/index.php?title=Database&oldid=938672211,

[Accessed 22-12-2019]

62

[7] J.V.Loon. (2008). “Data Security Concept and Approach”, Seminar in database

System, vol. 9, No 265, pp.1-22

[8] R.StankovaKraleva, V.Kralev. (2018). “Design and Analysis of a Relational
Database for Behavioral Experiments Data”, International Journal of Online

Engineering, Vol. 14, No 2, pp.1-17

[9] A.Brodsky,C.Farkas, S.Jajodia. (2000). “Secure Database: Constraints, Inference
Channels, and Monitoring Disclosures”, IEEE Transaction on Knowledge and

Data Engineering, 2000, Voll2, No 6, pp.1-20

[10] Encryption. (2019). Wikipedia, The Free Encyclopedia.
From https://simple.wikipedia.org/w/index.php?title=Encryption&oldid=6628

741. [Accessed 13-02-2019]

[11] Q.-A.Kester. (2012) “A crypto system Based on Vigenere Cipher with Varying
Key”, Information Technology and Advanced Computing, Vol. 1, No 10,

pp-108-113

[12] Wikipedia contributors. (2019). “Vigenére cipher”. In Wikipedia, The Free
Encyclopedia,
From https://en.wikipedia.org/w/index.php?title=Vigen%C3%A8re cipher&o

1did=942750659, [Accessed: 28-12-2019]

63

[13] T.-A.Su, G.Ozsoyoglu. (1991). “Controlling FD and MVD Inferences in
Multilevel Relational Database Systems", IEEE Transaction on Knowledge and

Data Engineering, Vol 3, No 4, pp.474-485

[14] K.J. Singh, R.Manimegalai. (2015). “Evolution of Encryption Techniques and
Data Security Mechanism”, World Apply Science journal, Vol. 33, No 10,

pp.1597-1613

[15] M.Morgenstern. (1988) “Controlling Logical Inference in Multilevel Database

Systems”, Computer science, Vol.5, pp.245-255

[16] B.Dong, W.Wang, J.Yang. (2016) “Secure Data Outsourcing with Adversarial
Data Dependency Constraints”, IEEE International Conference on Intelligent

Data and Security, Vol. 2, pp.73-78

[17] M.B Thuraisingham. (1987) “Security Checking in Relational Database
Management Systems Augmented with Inferences Engines”, Computer and

Security, Vol.6, pp.479-492

[18] Wikipedia contributors. (2019). “Windev”. In Wikipedia, The Free
Encyclopedia libre,
From https://en.wikipedia.org/w/index.php?title=Vigen%C3%A8re cipher&o

1did=942750659, [Accessed 24-12-2019]

64

[19] PCsoft. (2019). ”Windev platform” [Online], Available:

https://www.windev.com/windev/index.html, [Accessed 24-12-2019]

65

APPENDICES

66

Appendix A: Load input, Vigenere Encryption and MAC

Appendix A.1: Load database file

This code was used for uploading of file in the system by clicking on button OPEN
in the main form

. IF TableOccurrence(Table_descript)<>0Then

. TablebeleteAll(Table_descript)

. END
4.1 is an integer

WN =

5. srFichier= SAI_FIC//allow the file Tink to the variable

6. fich=xTsouvre(sFichier,xlsEcriture)//0Open file and allow
content to variable fich

7 . IF ErrorDetected=False Then
8. nbfeuille is an integer=x1sNblift(fich)
9. FOR i=1 TO nblift PAS 1

10. x1sFeuilleEncours(fich,1)

11. nbcolumn is an integer=x1sNbColumn(fich, False)

12. nbline is an integer=x1sNbLine(fich, False)

13. TableADDLine(Table_descript,nblift,nbcolumn,nbline)
14. END

15. ELSE

16. Info("Error")

17. END

Appendix A.2: Load file content in the table
This code was used to load file content in the main table by clicking on button

READ in the main form

18. i,j,nb,k,f are integer

19. x1sCurrentLift(fich,Table_descript.Line)

20. nblineis an integer=x1sNbLigne(fich, Faux)

21. nbcol is an integer=x1sNbColumn(fich, Faux)

22. IF (nbcol+1<TableTID..Numbercolumn) Then

23. nb=TableTID..Numbercolumn

24. FORi=nb TO (nbcol+1) PAS -1

25. ChampSupprime(TableEnuméreColonne(TableTID, 1))
265) ChampSupprime(TableEnuméreColonne(Tablecopietid, i
27. END

28. END

67

29. IF (nbcol+1>Tab1eTID..NombreColonne) Then//Adjust
column number

30. nb=TableTID..Numbercolumn

31. WHILEnbcol+l<>nb

32. TableADDCoTlumn(TableTID)

33. TableADDColumn(TabTlecopietid)

34. END

35. END

36. TableDeleteAl1(TableTID)

37. TableDeleteAll(Tablecopietid)

38. {TableTID..Nom + "" + TableEnumérecolonne(TableTID,
1), indChamp}..Titre ="TID"//change column title and put TID in the
first column

39. {Tablecopietid..Nom + +
TableEnuméreColonne(Tablecopietid, 1), indChamp}..Titre
="TID"

40. k=2

41. FORi=1 A nbcol PAS 1// For 7i=1 to nbcol change
others titles

42. {Tab1leTID..Nom + "." + TableEnumérecColonne(TableTID,
k), indChamp}..Titre =xlsbonnée(fich,1,1)
{Tablecopietid..Nom + " +

TableEnumereColonne(Tablecopietid, k), indChamp}..Titre
=x1sbonnée(fich,1,1)

43. k=k+1

44 ., END

45. TableADjust(TableTID)

46. TableADjust(Tablecopietid)

47. // Upload attribute name in the application boxes

48. FORi=2 A TableTID..NombreColonne

49. ListeAjoute(Combo_X,{TableTID. .Nom + +

TabTleEnumérecolonne(TableTID, 1), 1ndChamp}. .Titre)
50. END
51. FORi=2 A TableTID..NombreColonne

52. ListeAjoute(Combo_Y,{TableTID. .Nom + +
TableEnuméreColonne(TableTID, i), indChamp}..Titre)

53. END

54, FORi=2 A TableTID..NombreColonne
ListeAjoute(Combo_X1,{TableTID..Nom + " +

TableEnumereColonne(TableTID, i), indChamp}..Titre)

55. END

56. FOR i=2 A TableTID..NombreColonne

57. ListeAjoute(Combo_x2,{TableTID..Nom + +
TableEnuméreColonne(TableTID, i), indChamp}..Titre)

58. END
59. k=1

68

60. FOR i=2A nbligne PAS 1

6l. TableAjoute(TableTID, ("r'+(TableOccurrence(Tablecopi
etid)+1)))

62. f=1;

63. TableAjoute(Tablecopietid, ("r'+(Tableoccurrence(Tab]l
ecopietid)+1)))

64. FOR j=2 A nbcol+l PAS 1

65. TableTID[k,j]l=x1sDonnée(fich,i,f,Faux)

66. Tablecopietid[k,jl=x1sbonnée(fich,i,f, Faux)

67. f=f+1

68. END

69. k=k+1

70. END

Appendix A.3: Vigenere Encryption

This code represents procedure used for Vigenere encryption

71. PROCEDURE Vigenere_Crypt(ch is a string)
72. i is an integer

73. chl is a string

74. ch1l=""

75. FOR i=1 A Length(ch) PAsS 1

76 IF

I:ILitRecherchePremier(M pahabet,Alpahabet.letter,ch[[i]],
hIdentique)=True Then//Check letter in the data base

IF chl="" Then
77. chl=(Alpahabet.Number+10)modulo(37)
78. ELSE

79. chl=chl+""+(Alpahabet.Number+10)modulo(37)
80. END

81. END
82. END
83. RETURN chl

Appendix A.4: Enter Functional Dependencies
This code is used to insert Functional Dependencies in the system. An example of
result is shown in Figure 11 after selecting FD and clicking on button SUBMIT.

84. i est un entier
85. i=TableOccurrence(Table_fd)

69

86.

e_Y)

87.
88.
89.

TableAjouteLigne(Table_fd,"FD"+(i+1),Saisie_X,Saisi

TableAffiche(Table_fd)
Saisie_x=""
Saisie_Y=

Appendix A.5: Minimum Attribute Cover (MAC)

This code is used for Minimum Attribute Cover, which helps of reordering of FDs.

For better understanding, three parts are used

Appendix A.5.1: Weighted Attribute

In this part, the goal is to calculate the weight of each attribute. An example of result

is shown in second table in Figure 13. Getting after clicking on button WEIGHT

90.
91.
92.

93.

i,j,t are integer
wrd, rep are string
Wr,d=||n ; r,ep=nnou ;

FOR 1i=1 A TableFD..Occurrence PAS 1//Extract

attribute name

94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.

109.
110.
111.
112.
113.

114.

IF ChaineOccurrence(TableFD[i].LHS,",")=0 Then
IF Tablew..Occurrence>0 Then
rep="no";

FOR t=1 A Tablew..Occurrence

IF (TableFD[i].LHS=Tablew[t].R) Then
rep="yes"

END

END

IFrep="no" Then
TableADDLine(Tablew,TableFD[i].LHS)
END

ELSE
TableADDLine(Tablew,TableFD[i].LHS)
END

ELSE

FOR j=1 A Length(TableFD[1].LHS) PAS 1
IFTableFD[i].LHS[[j]1]<>"," Then
wrd=wrd+TableFD[i].LHS[[j]]
END

(Tab1eFD[1] LHSL[3]11="") OR

IF
(j=Length(TableFD[i].LHS)) Then

rep="no"

70

115. FOR t=1 A Tablew..Occurrence PAS 1
116. 1IF (wrd=Tablew[t].R) Then

117. rep="yes"

118. EnD

119. Eenp

120. IFrep="non" Then

121. TableADDLine(Tablew,wrd)

122. wrd=""
123. END
124. END
125. END
126. EnD

127 rep="no"

128. FOR t=1 A Tablew..Occurrence PAS 1
129. 1IF TableFD[i].RHS=Tablew[t].R ALORS
130. rep="yes"

131. Eenp

132. EnD

133. 1IF rep="no" Then

134. TableADDLine(Tablew,TableFD[i].RHS)

135. EnD
136. wrd=""
137. EnD

138. FOrR j=1 A Tablew..Occurrence PAS 1

139. IF chaineOccurrence(Saisiel,Tablew[j,1]1)>0 Then

140. Tablew[j,2]=Chaineoccurrence(saisiel,Tablew[j,1])
141. enp

142. END

Appendix A.5.2: Minimum cover
In this second part of MAC, the following code is used to generate the set of
minimum attribute cover. A result illustration can be seen in the box A in Figure 14,

after clicking on button MAC

71

143.
144.

145.
146.
147.

148.
149.
150.
151.
152.
153.

154.
155.
156.
Then
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

170.

i,j,maxi are integer

mac,maxil are string

mac="";

FOR i=1 A TableFD..Occurrence PAS 1
maxi=0; maxil=""

FOR j=1 A Tablew..Occurrence PAS 1
IF Tablew[j].wl>maxi Then
maxi=Tablew[j].wl
maxil=Tablew[j].R

END

END

IF ChaineOccurrence(TableFD[i].xy,maxi1)>0 Then
FOR j=1 A Tablew..Occurrence PAS 1
IF Chaineoccurrence(TableFD[i].xy,Tablew[j].R)>0

Tablew[j].wl=Tablew[j].wl-1

END

END

TableDisplay(Tablew)

END

IF mac="" Then

mac=maxil

ELSE

IF ChaineOccurrence(mac,maxil)=0 Then
mac=mac+","+maxil
END

END

END

Saisie2=mac//Display MAC in the form

Appendix A.5.3: Change FDs order

In this last part of MAC, the following code is used to the reordering of FDs using

minimum cover obtained in the previous part. An example of result is shown in third

table in Figure 14 after clicking on button NEW ORDER

171.
172.
173.
174.
175.
176.
177.

i,j,k are integer

ch,rep are string

ch="";i=1 ; rep="no"

FOR i=1 A Length(Saisie2) PAS 1//Go through MAC
rep="no"

IF (saisie2[[i]1]<>"") Then
ch=ch+Saisie2[[i]]

72

178. END

179. IF (Ssaisie2[[i]1]1="") ou (i=Length(Saisie2))Then
180. FOR j=1 A TableFD..Occurrence PAS 1

181. 1F chaineoccurrence(TableFbp[j].xy,ch)>0 Then
182. 1IF TableFrDl..0ccurrence=0 Then

183. TableADDLine(TableFDl,TableFD[j].FD,TableFD[]].LHS,
TableFD[j].RHS,TableFD[]]. xy)
184. ELsE

185. FOR k=1 A TableFDl..Occurrence PAS 1
186. 1IF TablerDp[j]l.FD=TablerDpl[k].FD Then

187. rep="yes"

188. EnD

189. EnD

190. 1IF rep="no" Then

191. TableADDLine(Tablerpl,TableFD[j].FD,TableFD[j].LHS,
TableFD[j].RHS,TableFD[]]. xy)
2. END

193. EnD

194. END

195. EnD

196. ch=""

197. END

198. EnD

199. FOR i=1 A TableFD..Occurrence PAS 1

200. rep="no"

201. FOR j=1 A TableFDL..Occurrence PAS 1
202. 1F Tablerp[i].FD=TableFD1[j].FD Then

203. rep="yes"

204. ENnD

205. END

206. IF rep="non" END

207. TableADDLine(TableFD1,TableFD[i].FD,TableFD[i].LHS,
TableFD[i].RHS,TableFD[]]. xy)

208. ENnD

209. EnD

210. Tablepisplay(TableFDl)

211. TablepeleteAll(Main.Table_fd)//Delete FDs to add FDs with
new order

212. FOR i=1 A TableFDl..Occurrence PAS 1

213. TableADDLine(Main.Table_fd,TableFD1[i].FD,TableFD1[
i].LHS,TableFD1[1].RHS)//Add FDs with new order

214. END

73

Appendix A.6: Enter SCs and Basic encryption

These codes are used to get SCs and basic encryption table using FDs and security
constraints. An example of obtained result is shows in the first table in Figure 18 for

PEM and Figure 19 for PEM-M

Appendix A.6.1: Enter SCs for PEM of PEM-M
This process is includes in the code using for basic encryption so following

Appendices will be referred for this part.

Appendix A.6.2: Basic Encryption for PEM

215. i,j,k are integer
216. cola,colB,sr are string

217. FOR i=1 A Tablecopietid..NumberColumn PAS 1

218. 1F ({Tablecopietid..Nom + +
TableEnuméreColonne(Tablecopietid, 1), indChamp}..Titre
=Combo_Xx1) Then

219. cola={Tablecopietid..Nom + +
TableEnuméreColonne(Tablecopietid, i), indChamp}..Titre

220. j=i

221. END

222. IF ({Tablecopietid..Nom + +
TableEnuméreColonne(Tablecopietid, 1),
indChamp}..Titre=Combo_Xx2..valeurAffichée) Then

223. colB={Tablecopietid..Nom + " +

TableEnuméreColonne(Tablecopietid, i), indChamp}..Titre

224. k=1

225. END

226. END

227. IF (sai_j="") Then

228. sai_j=j

229. ELSE

230. IF (sai_j<>™) ET (chaineoccurrence(sai_j,j)=0)
ALORS

231. sai_j=sai_j+""+j

232. END

233. END

234. IF sai_k="" Then

235. sai_k=k

236. ELSE

237. IF (sai_k<>") ET (Chaineoccurrence(sai_k,k)=0) Then

238. sai_k=sai_k+""+k

239. END

74

240.
241.

242.

243.
244,

245.
246.
247.
248.
249.
250.
251.
252.

D

253.

254.
255.

256.

END
i=Tableoccurrence(Table_fdl)

IF (Combo_x3="Equalto") Then

S r‘=llll
FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

IF (Tablecopietid[t,k]=Saisiel) Then

IF sr="" Then

sr="r"+t

ELSE

sr=sr+"r"+t

END

IF (ChaineOccurrence(Tablecopietid[t,j],"")=0) Then

Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,]j

END

END
END

TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+"="+Saisiel,sr)

257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.

271.

Then
272.
273.
274.
275.
276.
277.
278.

D

TableDisplay(Table_fdl)
TableDisplay(Tablecopietid)

Combo_X1=""

Combo_Xx2=""

Combo_X3=""

Saisiel=""
combo_X2..Visible=Faux
Ccombo_X3..Visible=Faux
Saisiel..Vvisible=Faux
BtnADD. .Visible=raux

END
IF (Combo_X3..valeurAffichée="Less than") Then

S r‘=llll
FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

IF (Tablecopietid[t,k]..valeurAffichée<Saisiel)
IF sr="" Then

sr="r"+t

ELSE

sr=sr+",r'+t

END

IF (ChaineOccurrence(Tablecopietid[t,]j],"")=0) Then
Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,]j

75

279.

280.
281.
282.

END

END
END
TabTleADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+"<"+Saisiel,sr)

TableDisplay(Table_fd1l)

283.
284.
285.
286.
287.
288.
289.
290.
291.
292.

293.
294,

295,

Then
296.
297.
298.
299.
300.

301.

302.
D

303.

304.
305.
306.

Combo_X1=""

Combo_Xx2=""

Combo_X3=""

Saisiel=""

combo_X2..Visible=False
combo_X3..vVisible=ralse
Saisiel..Visible=ralse

BtnADD. .Visible=False

END

IF (Combo_X3..valeurAffichée="Morethan") Then
sr=""

FORt=1 ATableOccurrence(Tablecopietid) PAS 1

IF (Tablecopietid[t,k]..valeurAffichée>Saisiel)
IF sr="" Then

sr="r"+t

ELSE

sr=sr+",r'+t

END

IF (ChaineOccurrence(Tablecopietid[t,]j],"")=0) Then
Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,]j

END
END

END
TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1..valeurA

ffichée,Combo_Xx2+">"+Saisiel,sr)

307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.

318.
319.

TableDisplay(Table_fdl)

Combo_X1=""

Combo_Xx2=""

Combo_x3=""

Saisiel=""

Ccombo_X2..Visible=ralse
combo_X3..vVisible=ralse

Saisiel..Vvisible=False

BntADD. .Visible=False

END

IF (Combo_X3..valeurAffichée="Different from") Then
sr=""

FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

76

320.

321.
322.
323.
324.
325.
326.

327.

D

328.

329.
330.
331.

IF (Tablecopietid[t,k]<>Saisiel) Then

IF sr="" Then

sr="r"+t

ELSE

sr=sr+"r'"+t

END

IF (Chaineoccurrence(Tablecopietid[t,]j],"")=0) Then

Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,]j

END

END
END
TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_

X2+"<>"+Saisiel,sr)

332.

333.
334.
335.
336.

337.
338.
339.
340.
341.

TableDisplay(Table_fdl)
Combo_X1=""

Combo_Xx2=""

Combo_X3=""

Saisiel=""
combo_X2..Visible=False
combo_X3..visible=ralse
Saisiel..Visible=ralse
BtnADD. .Visible=False
END

Appendix A.6.3: Basic Encryption for PEM-M

342.
343.

344.

345.

i,j,k are integer
colA,colB,sr are string

FOR i=1 A Tablecopietid..NumberColumn PAS 1

IF ({TabTlecopietid..Nom + " +

Tab]eEnumereCo]onne(Tab]ecop1et1d i), indChamp}..Titre
=Combo_X1) Then

346. cola={Tablecopietid..Nom + " +
TableEnuméreColonne(Tablecopietid, i), indChamp}..Titre

347. j=i

348. END

349. 1F ({TabTlecopietid..Nom + " +
TableEnuméreColonne(Tablecopietid, 1),
indChamp}..Titre=Combo_x2..valeurAffichée) Then

350. colB={Tablecopietid..Nom + " +
TableEnuméreColonne(Tablecopietid, i), indChamp}..Titre

351. k=i

352. END

77

369.

370.

371.

372.
373.
374.
375.
376.
377.
378.

379.

END

IF (sai_j="") Then

sai_j=j

ELSE

IF (sai_j<>") ET (ChaineOccurrence(sai_j,j)=0)

sai_j=sai_j+","+j
END

END

IF sai_k="" Then

sai_k=k

ELSE

IF (sai_k<>") ET (ChaineOccurrence(sai_k,k)=0) Then
sai_k=sai_k+","+k

END

END
i=TableOccurrence(Table_fdl)

IF (Combo_x3="Equalto") Then
S r|=lll|
FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

IF (Tablecopietid[t,k]=Saisiel) Then

IF sr="" Then

sr="r"+t

ELSE

sr=sr+"r'"+t

END

IF (Chaineoccurrence(Tablecopietid[t,j],"")=0) Then

Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1

]+Tablecopietid[t, J])

380.

381.
382.

383.

END

END
END

TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_X2

+"="+Saisiel,sr)

384.
385.

386.
387.
388.
389.
390.
391.
392.
393.
394.

TableDisplay(Table_fdl)
TableDisplay(Tablecopietid)
Combo_X1=""

Combo_Xx2=""

Combo_Xx3=""

Saisiel=""
combo_X2..Visible=Faux
combo_X3..Vvisible=raux
Saisiel..Visible=Faux
BtnADD. .Visible=rFaux
END

78

395. IF (combo_x3..valeurAffichée="Lessthan") Then
396. sr=""
397. FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

398h IF (Tablecopietid[t,k]..valeurAffichée<Saisiel)

Then

399. 1IF sr="" Then

400. sr="r"+t

401. ELSE

402. sr=sr+"r'+t

403. END

404. IF (Chaineoccurrence(Tablecopietid[t,j],"")=0) Then

405. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1
]+Tablecopietid[t, J])

406. END

407. END

408. END

409. TableADDLine(Table_fdl,"SC"+(i+1),Combo_x1,Combo_Xx2
+"<"+Saisiel,sr)
TableDisplay(Table_fd1)

410. combo_x1=""

411. Combo_x2=""

412. Ccombo_x3=""

413. Saisiel=""

414. Combo_X2..Visible=ralse
415. combo_X3..Visible=rFalse
416. Saisiel..Visible=False
417. BTtNADD. .Visible=ralse
418. END

419. IF (Combo_Xx3..valeurAffichée="More than") Then
420. sr=""
421. FORt=1 ATableOccurrence(Tablecopietid) PAS 1

422h IF (Tablecopietid[t,k]..valeurAaffichée>saisiel)

Then

423. IF sr="" Then

424 . sr="r"+t

425. ELSE

426. sr=sr+"r'+t

427. END

428. IF (Chaineoccurrence(Tablecopietid[t,j]l,"™)=0) Then

429. Tablecopietid[t,j]=Vigenere_Crypt(Tablecopietid[t,1
]+Tablecopietid[t, J])

430. END

431. END

432. END

79

433.

TabTleADDLine(Table_fd1,"SC"+(i+1),Combo_X1..valeurA

ffichée,Combo_Xx2+">"+Saisiel,sr)

434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444
445,
446.

447 .

448.
449.
450.
451].
452.
453.

454,

TableDisplay(Table_fdl)
Combo_X1=""

Combo_Xx2=""

Combo_Xx3=""

Saisiel=""
combo_X2..Visible=ralse
combo_X3..Visible=ralse
Saisiel..Visible=False
BntADD. .Visible=False

END
IF (Combo_X3..valeurAffichée="Different from") Then

S r‘=llll
FOR t=1 ATableOccurrence(Tablecopietid) PAS 1

IF (Tablecopietid[t,k]<>Saisiel) Then

IF sr="" Then

sr="r"+t

ELSE

sr=sr+"r"+t

END

IF (Chaineoccurrence(Tablecopietid[t,]j],"")=0) Then

Tablecopietid[t,j]=Vvigenere_Crypt(Tablecopietid[t,1

]+Tablecopietid[t,j])

455.

456.
457.
458.

END

END
END
TableADDLine(Table_fd1,"SC"+(i+1),Combo_X1,Combo_

X2+"<>"+Saisiel,sr)

459.
460.
461.
462.
463.
464.
465.
466.
467.
468.

TableDisplay(Table_fdl)
Combo_X1=""

Combo_Xx2=""

Combo_X3=""

Saisiel=""
combo_X2..Visible=False
combo_X3..visible=ralse
Saisiel..Vvisible=ralse
BtnADD. .Visible=False
END

80

Appendix B: First part GMM

Appendix B.1: Robustness Checking
This code is used to check if there exists any evidence record in order to conclude
whether system is robust or not. The result is obtaining by clicking on button

CHECK in Figure 19. An example of result is shown in the second table.

469. 1i,j,k,numcoll,numcol2,f are integer

470. rec is a string

471. §=1;

472. FOR i=1 TOMain.Table_fd..Occurrence PAS 1

473. FOR j=1 TOTableTID..NombreColonne PAS 1

474 . IF (Main.Table_fd[i].x={TableTID..Nom + "" +
TableEnuméreColonne(TableTID, j), 1ndChamp} .Titre) Then

475. numcoll=j;

476. END

477 . IF (Main.Table_fd[i].y={TableTID..Nom + "" +
TableEnuméreColonne(TableTID, j), 1ndChamp} .Titre) Then

478. numcol2=j;
479. END
480. END

481. TableAjouteLigne(Tabledep,Main.Table_fd[i].fd,numco
11,numcol2)

482. Saisiel=numcoll; Saisie2=numcol?2

483. FOR k=1 A TableTID..Occurrence PAS 1

4184. rec="":

485. IF Chaineoccurrence(TableTID[k,numcol12]," >0 Then
486. FOR f=1 TOTableoccurrence(TableTID) PAS 1

487. IF TableTID[f,numcoll]=TableTID[k,numcoll] Then
488. 1F chaineoccurrence(TableTID[f,numco12],"™")=0 ALORS
489. IF rec=" Then

490. rec= "r'+f;

491. ELSE

492. rec=rec+"rM+f
493. END

494. END

495. END

496. END

497. END

498. 1F (chaineoccurrence(TableTiD[k,numcol2],"™)>0) AND
(rec<>"") THEN

499. TableaDDLine(Table_check,"FD"+i+"=("+Main.Table_fd[i]
X+"-->"+Main.Table_fd[i].y+")","r"+k, rec,"No
robust","FD"+1 ,numco11l,numcol 2)

81

500. EnD

501. IF (Chaineoccurrence(TableTID[k,numcol2],"")>0) AND
(rec="") THEN

502. TableaDDLine(Table_check,"FD"+i+"=("+Main.Table_fd[i]
X+"-->"+Main.Table_fd[i].y+")","r"+k, rec,"
Robust","FD"+1 ,numco11,numcol2)

503. EnD
504. END
505. EnD

Appendix B.2: Generation of Buckets H
This code is used for implementation of set of Bucket H based on what have been
done previously. An example of result is shown in the third table in Figure 16 after

clicking on button GENERATE H.

506. i,j,k,i1,t are integer
507. h,sr,er,tev,i2,evl are string

508. FOR i=1 A Main.Table_fdl..0ccurrence PAS 1

5009. h=""; er=""; tev="";i2=""

510. FOR j=1 A Length(Main.Table_fd1[i].sr) PAS 1

511. sr="";

512. IF mMain.Table_fd1[i].sr[[j]1]="r" Then

513. 11=7+1;

514. wHILE (il<=Length(Main.Table_fd1[i].sr)) AND
(Main.Table_fd1[i].sr[[11]]1<>"")

515. i2=i2+Main.Table_fd1[i].sr[[i1]]

516. i1=i1+1

517. END
518. sr="r"+i2
519. j2=""

520. IF h=""Then

521. h="(({"+sr+"}"

522. FOR k=1 TOTable_check..Occurrence PAS 1
523. 1IF Table_check[k].sr= sr Then

524. er=Table_check[k].er

525. h=h+"{"+Table_check[k] .er+")"

526. IF tev="" Then

527. tev=Table_check[k].er

528. ELSE

529. evl="";

530. FoR t=1 ToLength(Table_check[k].er)
531. IF (Table_check[k].er[[t]1]<>"") Then

82

532. evl= Table_check[k].er[[t]]
533. END

534. IF (TabTle_check[k].er[[t]1]1="") OR
ét:Length(TaMe_check[k].er)) Then

IF ChaineOccurrence(tev,evl)=0 Then//StringCount
536. tev=tev+"'+evl

537. evl=""
538. EnD
539. END
540. END
541. END
542. END
543. END
544. ELSE

545. h=h+", ({("+sr+"}"

546. FOR k=1 ToTable_check..0ccurrence PAS 1
547. 1IF Table_check[k].sr= srThEn

548. er=Table_check[k].er

549. h=h+"{"+Table_check[k] .er+")"
550. IF tev="" Then

551. tev=Table_check[k].er

552. ELSE

553 evl="":

554. FOR t=1 TOLength(Table_check[k].er)
555. IF (Table_check[k].er[[t]1]<>"") Then
556. evl= Table_check[k].er[[t]]

557 END

558. (Table_check[k].er[[t1]1="") OR
(t= Length(Tab]e check[k].er)) Then

559. IF chaineOccurrence(tev,evl)=0 Then//StringCount
560. tev=tev+"'+evl

561. evl=""
562. END
563. END
564. END
565. END
566. END
567. END
568. END
569. EnD
570. END
571. h=h+")"

TabTleADDLine(TableH_H,Main.Table_fd1[i].fd,"H"+(Tab
leH_H. .Occurrence+1) ,h)

572. TableApDLine(Table_h,Main.Table_fd1l[i].sr,tev

573. END
83

Appendix C: Partial Encryption

These blocs of code are used for solving problem of FDs attacks. It will then goes
through each Bucket and encrypt cells in sensitive or evidence record based of
minimum encryption overhead. An example of result is obtained in second table in
Figure 20 or Figure 21 based on the method used after clicking on button

ITERATION

Appendix C.1: Partial Encryption for PEM

574. sr,i2 Are string

575. 1i,j,k,il,tsont des entiers

576. ChronoStart()//Start counting execution time

577. FOR i=1 TOExpress_dl_PEM.Table_h..0ccurrence PAS 1

578. i2=""

579. 1F
ChaineOoccurrence(Express_dl_PEM.Table_h[i].sr,"r")<=Chain
eoccurrence(Express_dl.Table_h[i].er,"r) Then// Occurrence

of r

580. saisiel=(Length(Express_dl.Table_h[i].sr))
581. Forj=1 TO (Length(Express_dl_PEM.Table_h[i].sr))

PAS 1
582. sr=""
583. IF Express_dl_peM.Table_h[i].sr[[j]1]="r" Then
584. i1=j+1;
585. WwHILE (il<=Length(Express_dl_PEM.Table_h[i].sr))

AND (Express_dl_PEM.Table_h[i].sr[[i1]]1<>"")
586. i2=i2+Express_dl_PeM.Table_h[i].sr[[i1]]
587. il=i1+1

588. END
589. sr="r"+1i2
590 j2=""

591. saisiel=sr

592. FOR k=1 TOExpress_dl_PEM.Table_check..0Occurrence
593. IF sr=Express_dl_PeM.Table_check[k].sr Then
594, FOR t=1 TOTableTID..Occurrence

595. 1IF TableTID[t,1]=srThEn

596 IF

CHa?neOccu rrence(TableTID[t,Express_dl1_PEM.Table_check[k
] .numco11],"™")=0AThen

597. TableTID[t,Express_dl_PEM.Table_check[k].numcoll]=Vv
1gen$r§33(:rypt (TableTID[t,Express_dl_PEM.Table_check[k].n
umcoll

598. END
84

599. EnD

600. END

601. sr=""

602. END

603. END

604. EnD

605. END

606. ELSE

607.) FOR j=1 TO (Length(Express_dl_PEM.Table_h[i].er))

PAS
608. sr=""

609. IF Express_dl_pEM.Table_h[i].er[[j1]1="r" Then

610. 11=7+1;

611. wHILE (il<=Length(Express_dl_PEM.Table_h[i].er))
AND (Express_dl_PEM.Table_h[i].er[[11]1]<>"")

612. i2=i2+Express_dl_PEM.Table_h[i].er[[i1]]

il=11+1
613. END
614. sr="r"+i2
615. i2=""

616. FOR k=1 TO Express_dl_PEM.Table_check..Occurrence
617. 1F

CEafneOccurrence(Express_dl_PEM.Tab1 e_check[k].er,sr)<>0
Then

618. FOR t=1 TO TableTID..Occurrence
619. 1IF TableTID[t,1l]=srTHen

620. 1F
ChaineOccurrence(TableTID[t,Express_dl_PEM.Table_check[k
].numcol12],"")=0 Then

621. TableTID[t,Express_dl_PEM.Table_check[k].numcol2]=v
igenere_Crypt(TableTID[t,Express_dl_PEM.Table_check[k].n

umcol2])
622. END
623. END
624. END
625. END
626. END
627. END
628. sr=""
629. END
630. END
631. END

632. t=(ChronoStop())//Stop counting time

633. Execution_time=t/1000
TableDisplay(TableTID)

85

Appendix C.2 Partial Encryption for PEM-M

634.
635.
636.
637.

638.
639.

sr,i2 Are string

i,j,k,i1l,tsont des entiers
ChronoStart()//Start counting execution time

FOR i=1 TOExpress_dl.Table_h..0Occurrence PAS 1
Sy

IF

Chaineoccurrence(Express_dl.Table_h[i].sr,"r")<=ChaineOcc
urrence(Express_dl.Table_h[i].er,"r) Then// Occurrence of r

640.
641.
642.

643.
644.

645.

Saisiel=(Length(Express_dl.Table_h[i].sr))

FORj=1 TO (Length(Express_dl.Table_h[i].sr)) PAS 1
S r|=lll|

IF Express_dl.Table_h[i].sr[[j]1]1="r" Then

11=7j+1;

WHILE (il<=Length(Express_dl.Table_h[i].sr)) AND

(Express_dl.Table_h[i].sr[[11]1]<>"")

646.
647.
648.
649.

650.

651.
652.
653.
654.
655.

656.

i2=12+Express_dl.Table_h[i].sr[[11]]

il=11+1

END

sr="r"+i2
2 =llll

Saisiel=sr

FOR k=1 TOExpress_dl.Table_check..0Occurrence
IF sr=Express_dl.Table_check[k].sr Then

FOR t=1 TOTableTID..Occurrence

IF TableTID[t,1]=srThEn

IF

ChaineOccurrence(TableTID[t,Express_dl.Table_check[k].nu
mcol11],"")=0AThen

657.

TableTID[t,Express_dl.Table_check[k].numcoll]=Vvigen

ere_Crypt(TableTID[t,1]+TableTID[t,Express_dl.Table_chec
k[k].numcoT11])

658.

659.

660.
661.
662.
663.
664 .
665.
666.

667.

668.

669.
670.

671.

END
END

END
Sr=
END
END
END
END
ELSE

FOR j=1 TO (Length(Express_dl.Table_h[i].er)) PAS 1
S r|=lll|

IF Express_dl.Table_h[i].er[[j]1]1="r" Then

il=j+1;

WHILE (il<=Length(Express_dl.Table_h[i].er)) AND

(Express_dl.Table_h[i].er[[11]]<>"")

86

672. i2=i2+Express_dl.Table_h[i].er[[i1]]

il=11+1
673. END
674. sr="r'+i2
675 j2=""

676. FOR k=1 TO Express_dl.Table_check..0ccurrence
677 IF

Cﬁa?neOccurrence(Express_dl.Tab1 e_check[k].er,sr)<>0
Then

678. FOR t=1 TO TableTID..Occurrence
679. 1IF TableTID[t,1l]=srTHen

680. IF
ChaineOccurrence(TableTID[t,Express_dl.Table_check[k].nu
mcol12],")=0 Then

681. TableTID[t,Express_dl.Table_check[k].numcol2]=Vvigen
ere_Crypt(TableTID[t,1]+TableTID[t,Express_dl.Table_chec
k[k].numco12])

682. END
683. ENnD
684. END
685. END
686. END
687. END
688. sr=""
689. ENnD
690. END
691. ENnD

692. t=(ChronoStop())//Stop counting time

693. Execution_time=t/1000
TableDisplay(TableTID)

87

Appendix D: Execution Time for PEM or PEM-M

Evaluation time is performed by CHRONO used in WD language. The structure is
ChronoStart() // To start counting
ChronoStop() // To stop counting.

It is noticeable in Appendix C.1 il Line 576 that execution time start and stop in Line
632

88

