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ABSTRACT

In this thesis, we study the Bezier curves and their properties. Bezier curves are one of
the most important curves in Computer-Aided Geometric Design (CAGD). Bernstein
functions are the basis of the Bezier curves. Therefore, we investigate the Lupas g-
analogue of Bernstein functions, their properties and corresponding Lupas g-Bezier
curves and their useful properties. Finally, we have studied the de Casteljau algorithms

of Lupas g-Bezier curve and the upgrade procedure.

Keywords: Bernstein polynomials, Bezier curve, de Casteljau algorithms, degree
elevation, Lupas q-Bezier curve, Lupas g-Bezier surface, Lupas g-analogue of

Bernstein operator.



Oz

Bu tezde Bezier egrilerilerini ve bu ozellikleri inceliyoruz. Bezier egrileri, Bilgisayar
Destekli Geometrik Tasarim'daki (CAGD) en onemli egrilerden biridir. Bernstein
fonksiyonlar1 Bezier egrilerinin temelidir. Bu nedenle, Bernstein fonksiyonlarmin
Lupas g-analogunu, 6zelliklerini ve bunlara karsilik gelen Lupas q-Bezier egrilerini ve
yararli 6zelliklerini arastirtyoruz. Son olarak, Lupas q-Bezier egrisinin de Casteljau

algoritmalarini ve yiikseltme prosediiriinii inceledik.

Anahtar kelimeler: Bernstein polinomlar1, Bezier egrileri, de Casteljau algoritmasi,
derece yukseltme, Lupas g-Bezier egrileri, Lupas q-Bezier yuzeyi, Lupas g-analogue

of Bernstein operatoru.
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Chapter 1

INTRODUCTION

Bernstein Polynomials created by Sergei N. Bernstein [1] in 1912. In this thesis, he
gave an alternative proof of the Weierstrass Approximation Theorem [13]. He

introduced the following polynomials.

B, (h;7) = i[grk (1-7)"" h(fJ (1.1)

k=0 77

er[O,l], neN and heC[O,l].

Bernstein polynomials are the basis of the Bézier curves [13]. These are parametric
curves which are frequently used in computer graphics such as computer aided

geometric design (CAGD)[18] and related fields.

Nowadays, Bézier curve is used in countless areas from modelling applications to
writing type techniques. The foundations of the idea were first laid in 1959 by a French
automotive engineer named Paul de Faget de Casteljau who were working at Citroen.
In the same years, another French automotive engineer Pierre Bézier who carried out
investigations on the parts of cylinder parts in Renault also studied a similar approach.
Although these two engineers obtain the same results separately from each other, the
first article published on this subject is written by Pierre Bézier in 1970. Therefore,

these curves known as Bézier curves.



The rapid development of g-calculus [8] has led to the discovery of new

generalizations of Bernstein polynomials involving g-integers [4,10-12,14,16-17].

In 1987, Lupas [11] introduced the first g-analogue of Bernstein operators:

x(x-1)

[x] J n e
h[q . q ? (1-7)
Lo(hie)=3 7 [ } (1.2)

S § (SR

r=1

vze[01], neN and heC[0,1].

In 1996, George M. Philips [15] committed the g-analogue of the Bernstein
polynomials known as Philips g-Bernstein polynomials:

Bnyq(h;r):ir} h[%}r’(qﬁl(l—qu) (1.3)

=0 K j=0
where B, .:€[0,1]>€[0,1], Ve N, Vze[0,1] and arbitrary function. In 2003,

Oru¢ and Philips [14] used the basis function of Philips g-Bernstein operator for
construction of Philips g-Bezier curves and they studied the properties of the Lupas g-
Bezier surfaces as well as the degree elevation, degree reduction, variation diminishing

property as well as de Casteljau algorithms.

A new generalization of Bezier curves with one shape parameter which is based on the
Lupas g-analogue of Bernstein operators is created by Li-Wen Han et al. in [7]. The
new curves have some properties similar to classical Bezier curves. Also, they
demonstrate degree elevation and de Casteljau algorithm for the generalization.

Besides, they studied the properties of the Lupas g-Bezier surfaces such as the degree

elevation and de Casteljau algorithm.



This thesis is organized as follows:
In Chapter 2, the following topics are studied:
= Some useful definitions and properties associated with g-integer,
= basic and fundamental definitions and properties of g-calculus, Bernstein
functions, Bézier curves, Lupas g-analogue of Bernstein operators and Lupas

q- Bézier curves.

In chapter 3, we investigate:
= definition of polynomials,
= definitions of Bernstein basis polynomials,
= the properties of Bernstein basis polynomials,
e end-point property,
e symmetry,
e recursion formula,

e non-negativity on [0,1],

e partition of unity,
e degree raising,
e converting form the Bernstein basis to the power basis,
e converting form the power basis to the Bernstein basis,
¢ the Bernstein polynomials as a basis,

= derivatives,

= the matrix representation of Bernstein polynomials.

= In chapter 4, we study;

= definition of the Bézier curve and Bézier polygon,



e linear Bézier curve,
e quadratic Bézier curve,
e cubic Bézier curve,
= properties of Bézier curves,
e end-points interpolation,
e symmetry,
e end-point tangent property,
e variation diminishing property,
e invariance under affine transformation,
e convex hull property,
= derivatives,
= degree raising,
= de Casteljau algorithms,

= matrix formulation of Bézier curves.

In Chapter 5, we study
= the definition of the Lupas g-analogue of the Bernstein function,

= properties of the Lupas g-analogue of the Bernstein function,

non-negativity,

partition of unity,

end-point property,

g-inverse symmetry,

reducibility,
» degree elevation and reduction of the Lupas g-analogue of the Bernstein

functions,



= definition of Lupas g-Bezier curve,
= properties of Lupas g-Bezier curve,

e geometric and affine invariant,

convex hull,

the end-point interpolation property,

g-inverse symmetry,

reducibility,

derivatives of the end-point property,
e variation diminishing,
= degree elevation for Lupas g-Bezier curve,
e matrix representation of degree elevation of Lupas g-Bezier curve,
= de Casteljau algorithm for Lupas g-Bezier curve,
e matrix representation of de Casteljau algorithm for Lupas q-Bezier

curves.



Chapter 2

PRELIMINARIES

In this chapter we define some useful properties related with Quantum Calculus,
Calculus and my thesis topics.

Definition 2.1 [3] Binomial theorem
If r is any positive integer then,

(a+h)" :i(;]a"gbg

g=0
where

(rJ— r 9=012,3,....r
o) Torat 12,3,...,r.

Definition 2.2 [16] Let v denote the sequence(v, ), which may be finite or infinite.
Then we denote by S~ (v) the number of strict sign changes in the sequence v.
For instance, S™(-9,5,-6,7,-2,1) =5, S7(5,6,4,9,-7)=1, and S™(4,-4,4,-4,4,-4,..) =0

Definition 2.3 [16] Let
vi=>au, i=01..,s,
r=0

where a.,u.,V,eR. This linear transformation is said to be variation-diminishing if
S7(v)<S(u).
Theorem 2.4 [16] If (¢0,...,¢n)is totally positive on, then for any numbers k,,...,k,

S™ (ko +---+K 8, ) <S7 (KooK, )

Definition 2.5 [14] W is a transform on R® is any mapping W :R* — R". That is,

each point x € R? is mapped to exactly one point W (x) alsoin R?.



Definition 2.6 [14] Let W : RY — R be a transform. W is said to be linear transform
iff:

(i)Forall  eRand all meR", we have W (ax) = oW (m).

(ii) For all m,neR?, we have W (m+n)=W (m)+W (n).
Definition 2.7 [7] (Affine map) A map ¢:A— Bis called affine, if it can be
represented by an nxmmatrix A and a point of B such that

PX = AX+V,

where v represent the image of the origin of A.

Definition 2.8 [14] An affine transform is a transform that can be written as

W (x)=T (L(x)) where L(.) is a linear transform and T (.) is a translation. This can
also be written as W (x)=L(x)+t or W =T,L.

Definition 2.9 [14] A curve is said to be affine invariant if the affine transform ¢(.)
n

applied to the points generated by the curve, i.e @ (z)=) p.b"(r), produces
k=0

precisely the same curve as transforming the control points of the curve, p, , and the

calculating curve, that is:

n

o Sp1(0)|-Sa (o000

k=0
This will be satisfied if the basis functions BZ(T) of the curve satisfy the property

iB,'j (r)=1 for z€[0,1].

k=0
Definition 2.10 [14] Let {y,Y,,....y,} be a set of points in the d-dimension

Euclidean space R and a,,a,,...,a, be real numbers, then:



(1) Dlay, =ay,+a,y,+...+a,y, iscalled a linear combination of y,,y,,..., Y,

P}
(2) If Zm:ak =1, then iakyk =ay, +a,y, +...+4a,Y, iscalled an affine
P} =
combination of y,,V,,..., Y,
(3) If Zm:ak =1and a, >0, then Zm:akyk =ay, +a,y,+...+a,Yy, iscalled a
= =

weighted average of y,,¥,,..., Y,

Definition 2.11 [14] Let A be a set of points in R®. The set 4 is convex if and only if

for any two points X,y € A, the line segment joining x and y is entirely in A.

Definition 2.12 [8] For all x € Z*the g-integer [K]q is defined by

1-q~ f qeR+/{1}
[x],=1+a+0*+...+q" =1 1-q
K, if g=1

Note that, [0]q =0.

Definition 2.13 [8] For each integer x > 0, the g-factorial [k]q! is defined by

l— [K]q[’(_l]q'--[l]qf if «=12,3,...
ML"_{ 1, it x=0.

Definition 2.14 [8] For integers 0 <r <s, the g-binomial coefficient is defined by

eS|

Definition 2.15 [8] The g-analogue of (y—b)" is a polynomial of the form

(V—W":{ 1 if n=0
a (y—b)(y—qb)(y—qzb)...(y—q“’lb) if n>1



Proposition 2.16 [8] For any integer n,

D, (x—a); =[n], (x-a);"

Lemma 2.17 [8] For any integer m>0 and b be a number. Gauss's Binomial Formula

defined as,

y+b Zm:|: :| rl/2br m—r

0

Proposition 2.18 [8] There are two g-Pascal rules, namely;

m :["‘1} +q{’7‘1} (2189
K|, k-1 . K
m =q"-{’7_1} +[’7_1} (2.18b)
K, k-1 q K

and

where 1< x <np-1.



Chapter 3

BERNSTEIN BASIS POLYNOMIALS

3.1 Polynomials

Polynomials are useful mathematical tools in Science, computer aided geometric
designs and engineering. Therefore, firstly we need some definitions which are related
to polynomials.

Definition 3.1.1 [11] A real polynomial with degree 7 is an expression of the form:
P(t)=c X" +C, X"  +...+CX+C, (3.1)
where ne Z" is an non-negative integer and c,,c,,...,c, are the real numbers with

c #0..

n

The highest power of x that occurs is called degree of polynomials and denoted by
deg(P). The numbers ¢ 's are called the coefficients.

In this sections we study Bernstein basis Polynomials and its useful properties.

3.2 Bernstein Basis Polynomials

Bernstein polynomials were defined by Sergei Natanovich Bernstein in 1912 as

follows;

k=0
where

heC[0,1] and 7 €[0,1].

10



Definition 3.2.1 [11] The Bernstein basis polynomials of degree » are defined as

B (z‘)=(n]r’“ (1—2’)”7'(, z‘e[O,l] and x=0,1,...,¢7 (3.2)

K

with binomial coefficient

7 g<xs<
[ S <K< ,
(UJ: Kl(n-x)! 7
0 otherwise

Further, if 7 <x or 0> x,weset 57 =0.

In the following given examples contains graphs of some Bernstein basis polynomials.

Example 3.2.1:

(i) (ii) ]

0.1 b

Figure 3.1: The Bernstein basis polynomials of degree 1. (i)=5;(7r)=(1-7) and

(ii)=5}(7)=".

11



Example 3.2.2:

N e
i —

031 7

011 7

Figure 3.2: The Bernstein basis polynomials of degree 2. (i) = 5; (7) = (1—1)2 ,
(ii) =5 (T) = 21(1—2') and (iii) =5 (r) =7°,

12



Example 3.2.3:

091 &

0.8 7

07 , ( N) .

0.5

T
—_—
S—

0.2

0.1 7

Figure 3.3: The Bernstein basis polynomials of degree 3. (i) =52 (7) =(1-7)’,
(ii)= B (r)=3r(1-7)", (iii)=5; (r)=37°(1-7) and (iv)=5; (r)=7".

13



Example 3.2.4:

T
1

0.9

07- (’) ( V) 1

(i)

m il :

T
1

0.2

4

Figure 3.4: The Bernstein basis polynomials of degree 4. (i)= 5, () =(1-7)",
(i) =B (r)=4c(1-2), (iii)= B} (r) =622 (1-7)", (iv) = B2 (r) = 47* (1~ ) and
(v)=5, (r)=1".

14



Example 3.2.5:

0.9 =1

0.6 =

i v) :
o4 (iii) iv,

0.3 T

Figure 3.5: The Bernstein basis polynomials of degree 5. (i)=5; (7) = (1—7)5,
(ii) = Ef (r) = 52'(1—7)4 , (iii) = 525 (z’) =1072 (1—7)3 , (iv) = 535 (2') =107° (l—r)2 ,
(v) =b; (T) =5¢* (l—r) and (Vi) =b; (2') =7°.

3.3 The Properties of Bernstein Basis Polynomials
Bernstein basis polynomials satisfies the following properties:
Property 3.3.1 [11] End — point property

1 k=0
EZ(O):{O xk=1...,7

and

0 x=01,...,p-1
mw-{;

15



Proof. If we put x =7 into (3.2), we obtain

B} (7)= ["Jr” (1-z)""

n

Then, for 7 =1, we have

B (1)= mlﬂ (0" =1.

n

Secondly, if we put x =0 into (3.2), we obtain
53 (6)=( oy
Then, for = =0, we have

Bl (0)= (gjo" (1) =1.
Property 3.3.2 [11] They are symmetric
bl(r)=5, , (1-7) , k=01,....,77

Proof. From the definition of Bernstein basis polynomials (3.2), we have;

F'(r) = [ZJTK (1-7)""

Property 3.3.3 [11] They satisfy the recursion formula
BI(e) = A-0)B1 () + 7B () (33)

where 5" =5", =0.

n+1

16



Proof. From the definition of Bernstein basis polynomials (3.2), we have
-1 e
B (r) = (77 jr’“ (1—2')77 '
K
and
_ n-1) . ~1-(x-1)
57] 1 — 1 1_ n
K-1 (T) (K—ljz- ( T)

Then, from RHS of the equation of (3.3) and the binomial identity

k-1

N (77 _1J o (1-7)"" J{n _1j o (1-7)""

(1—2')5”(7—1(,[) n TBZ:ll(T) _ (1_ T)[U _1] ~ (1_2_)7771«—1 n T(U —1j oot (1_2_)4—1—(;«1)
K

Property 3.3.4 [11] Non — Negative on [0,1]

Bernstein basis polynomials are non-negative over the interval [0,1] and are strictly
positive on (0,1). That is,

B’(r)>0, 7 €[0,1] (3.4)
and

B’>0, r€(0,1)

17



Proof. To show this property, we use recursive property (3.3) of Bernstein basis
polynomials and mathematical induction method.

Base Case :
By(r)=1-7 and b,(r) =7

are both non-negative over the interval [0,1] .
Induction hypothesis : Assume 5!(7)2=0, Vx, j <z for some 7.
Then by our recursive definition :

B!(r) =(1-7)B!"(r) + 75 (7)
RHS of the above recursive equation are all non-negative for 0 <z <1.By induction,
all Bernstein bases polynomials are non-negative for 0<z <1. Thus 57(z)>0 on
[0,1].
If we change our hypothesis to be open interval (0,1) and if we apply the same steps,

we can show Bernstein bases polynomials are strictly positive on 0 <z <1.

Property 3.3.5 [11] Partition of Unity
A set of function h_(z) is said to partition unity if they sum to 1 for all values of 7.

The x+1Bernstein bases polynomials for a Bernstein polynomials of degree x form

a partition of unity. That is;

5(0)=Y B!(1)=B)()+ BI(0) +..+ BI(t)=1, 0<7<1.  (3.5)

k=0

18



Proof. To prove this property, we need to prove following property:
B (r)=5_,(7)
Then,
n n-1
2. Bl() =) B ()
k=0 x=0
If we use the recursive formula (3.3) of the Bernstein bases polynomials, we obtain

the following results:

b (7)= ZB"(T) Z[l T B” Yr)+ 7B’ (r)]

i[ 1- r B” Y(r)+ 7B 11(1')]

M=

=(1-7)> B/ M (2)+ ri Bl (r)

i
o

l—|

EE '(z)+ B 1(r)}+r[i5" (r)+ BT, 1(1’)}

K=

(1 r)ZE”l(r)Jrrz ()

n-1

_1-08 5+ S B

n-1

S

where we have operated 5" (r) = 5"*(r) =0.

Once we have established this equality, it is simple to write

S50 -5 50 =5 50 - ZEl(r) 1-7)+7=1

19



Property 3.3.6 [11] Degree Raising

Any of the lower-degree Bernstein polynomials of deg < can be expressed as a linear
combination of » degree Bernstein polynomials. On the other hand, any Bernstein
polynomial of degree n-1 can be written as a linear combination of Bernstein
polynomials of degree 7.

Proof. From the property of recursive property and formula (3.2);

B)(r)=(1-7)5"(r) +7B] ()

Then,
TE"Z (T) — (77} Z_:<+1 (1_ Z_)U—K _ (Zj z_:<+1 (1 )(77+l)—(zc+1)
)
tB](z) = n’i S BLA(7)
(K+l]
B =2 B .
n+1
and
n _ 77 K _ n—k+1
(l_T)BK(T)—[KjT (1-7)
gt klp+l-x)
(1 T)EK(T)—K!(U_K)! (72D B (7)
_ nrn =K+l . i
(1 T)EK(T)_—U-HI. B (7) (**)
Hence,
* *x\ _ o1 _77—K+1 - K‘_—l—l »
(*)+( )—E,((r)——77+1 B! (r)+77+15m(1)

20



On the other hand,

1

L B B @) = @) (- 0) + 1),
n n

[K‘j (K-i—l]

AR ) = )

n n

(1{] (K-i—lj

1 1

S Bl(@)+ /= bl.(7) =
n n
[K‘j [K+l] ( K ]

EZ (T) + EZ+1(T) =7 (1— 1')77"“ + 2.rc+l (1_ 2_)17—(1<+1)

—= B

Then,

-1
570) =(’7K ] B BL)
[ A

B0 = s e B0 Bl
kl(n—x)! (x +1D)1(n7—x-1)!

BI(z) {’7;’(}9:: (r>+[’j jB::ﬂ(r)

Hence, Bernstein polynomials of deg x <7 can be written as a linear combination of

Bernstein polynomials of degree 7.

21



Property 3.3.7 [19] Any Bernstein polynomials of degree » can be written as a linear

combination of Bernstein polynomials of 7+r (r>0).

g
BI(2) :ZK[U—:JKE ()
j

Property 3.3.8 [11] Converting form the Bernstein Basis to the Power Basis

Any Bernstein polynomials of degree »n can be written in terms of the power basis.
Proof. To prove this property, we need to Bernstein basis polynomials of degree n

expression and binomial theorem.

52(6) [ T amey

_N(qyix 1 (n-—x)t
D e eian Y e T T

= N ) i*'f77_! 1 ,J_'
D TT I T T

e (1

22




Property 3.3.9 [11] Converting form the Power Basis to the Bernstein basis
Each power basis element can be written as a linear combination of Bernstein basis
polynomials.

Proof. Here, we need degree elevation formula and induction hypothesis.

: j
n [ | —
=7y ) () (We use the induction hypothesis.)

Property 3.3.10 [11] The Bernstein Polynomials as a Basis

The Bernstein polynomials of degree » from a basis for the space of polynomials of
degree less than equal to 7.
Proof. To show this property, we need to prove two following conditions.
K ={b{,...,B"} is linearly independent.
and
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span{Eg,...,Bg} :{Eg,...,E;’} =P"(7)
where
P"(z)={a, +ar+a,s*+...+a,r" /a,...,a R}
of degree less than or equal than ».
For the first conditions, if there exists constants q,d,a,,...,8, such that;
0=ayby (1)+a,b; (t)+a,b; (t)+---+a,b] (1) , V7.
Then, all a_’s must be zero. Then we write,

0=a,5¢ (1) +ab; (1) +8,b7 (1) +--+a,b] (¢)

o-aSer(2fa)r sager (e e ()

SN R R PN

Since (*) is linearly independent;

which is stand for a, =a, =a,=---=a, =0.

Secondly, from the converting from the Bernstein basis to the Power basis property of
Bernstein polynomials, we know that each power basis {L,...,7"} can be written as a

linear combination of Bernstein basis polynomials. That is,
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span {Eg ..... Eﬁ}:P”(r):{a0+air+a272+...+anr’7}

3.4 Derivatives

Theorem 3.3.11 [17] Derivative of 7 -th degree of the Bernstein basis polynomials (
5’ (r)) are Bernstein basis polynomials of degree r-1.

LB () =n(Bri(e)-BI (7)), Osk<n (3.4)

Proof. The derivative of Bernstein polynomials 5! (z) is obtained as;

d d K n-k
EEZ (T)ZEKZJT @-7) }

| — |
K'77- Z_K—l(l_T)ﬂ—K _ (77 K)77

B xl(n—x)! 1(!(77—1()!TK(:L_T)’]_K_l

s (n-1)! gy - R (n-1)!

= K‘(K—l)!(?]—K‘)! K!(U_K_)(n_K__l)!TK(l—T)’F,(,
= 77(77_1)! k=101 _ 77—K_M K _ \n-x-1
RO I e T

i 7 — (77_1)' k=1 _ _\n—x _ (77_1)' K1 _ \n1-x-1
drEK(T)_T{(K—l)!(n—K)!T =2 K!(r]—/c—l)!r d=7) ]

Hence,

LB () =n(BI3(e)-BI (1)),
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3.5 The Matrix Representation of Bernstein Polynomials

A matrix representation for the Bernstein polynomials is very useful in many
applications. The main purposes of matrix representation are fast computation of
matrices multiplication and generating different Bezier control polygons for the cubic

curve [2].

Any P(z) polynomials is expressed as a linear combination of 5’(7) as the

following.
P(r) =c,B; (7)+C,BY () +---+¢,B) (7)
CO
_ n 7 K “
=[5 (r) BI(z) - B(7)]
Cn
Then;
_goo 0 0 0 _—Co_
010 91,1 0 0 G
P(T):[l r ot . T”:I 90 922 9o - 0 ||C
190 9p1 952 9 JLC
or

0 O 92 0 O, (| &
P(r)z[r” o l} 0 0 g - 9y ||C

where g, s are the coefficients of the power basis of the Bernstein polynomials.
In the following examples, we give matrix representation of cubic and quadratic case

of Bernstein polynomials.
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Example 3.4.1: In a quadratic case (17=2),

B2 (7)=(1-7) =1-27r+7?
Bl (r)=2t(-7)=2r-27°
E? (‘r) =7?

Then, the matrix representations;

1 0 O0jc,
P(r)=[1 = ]2 2 0|g
1 -2 1flg
or
1 -2 17c,
P(r)=[* = 1]0 2 -2|¢
0 0 1j|c

Example 3.4.2: If a cubic case (17 =3)

Eg(r):(l—r)3=1—3r+3rz—r3
B} (7) :31'(1—1)2 =3r-67°+3¢°
b3 (7)=3c"(1-7)=3r*-37°
533(1):13
Then, the matrix representation is;
1 0 0 O0jfc,
-3 3 0 0jlc
P =1 2 3 1
(T)[Trr]s—esso(:2
-3 3 -3 1]|c,
or
1 -3 3 -3][c,
s 0 3 -6 3]|c
P(T)—[f T 1]0 0 3 -3¢
0 0 0 1jc
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Chapter 4

BEZIER CURVES

A Bezier curve is a parametric curve used in computer graphics and related fields.
Pierre Bezier introduced the Bezier curve in the 1970°s while working for Renault.
Bezier curves and surface are very useful and play significant role for CAGD.
Definition [6] Bézier Curve

Let p,, p,,-...0, be asequence of control points, a Bézier curve of degree ris defined

by;

Ui
@(r)=) p.bl(r) , 0<r<1 (4.1)
k=0
where the basis functions 5" (7) are the Bernstein polynomials defined by;

! . nx
Bg(f):mf (1-7)

where (Zj :#l,()l .

Definition [6] Bézier polygon
Let p,, 0,,---.0, be asetof control points of the Bezier curve, the polygon formed by
connecting the Bézier points with lines, starting with p, and finishing with p,_, is

called the Bézier polygon. The convex hull of the Bézier polygon contains the Bezier
curve.

Let’s investigate some specials cases of Bézier curves.
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4.1 Linear Bezier Curve
Linear Bézier curve has 7 =1. We know from the definition of Bezier curve, if Bézier
curve of degree n have n+1 control points. Let p, and p, are two control points, a

Linear Bezier curve is simply a straight line between those two points, the curve is

defined by;
1
w(r)zz,oKEi (z‘) ,  7€[0,]]
k=0
a(t)=(1-7)p, +(7) o,
35 T T T
aF /01 i
251 =
w(=(1-1p,H7p,
2r =
15 B
= 4
05 =
0fF po :
05 | | | | | | |
0.5 0 0.5 1 15 2 25 3 35

Figure 4.1: Bezier curve of degree 1.
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4.2 Quadratic Bezier Curve
Let =2, a quadratic Bezier curve @ () has three control points p,, o, and p, ;

we have;
2
w(r)zz,oKBlf(r) , 7 €[0,1]
k=0

a(r)=(1- 7)2 po+2r(1-7)p,+7°p,

w1 p2rtorn,

Figure 4.2: Bezier curve of degree 2.
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4.3 Cubic Bezier Curve

Four control points p,, p,, p,, P, in the plane or in three-dimensional space define a
cubic Bezier curve, the curve starts at p, going toward p, and arrives at p, coming
from the direction of p,, usually it will not pass through p, or p,, these points are

only there to provide directional information, the parametric form of the curve is[6];
3
@ ()= pBi(r) . re[0,]]
k=0

@(t)=(1-7) py+3r(l-7) p+3c2(1-7) p, +T°p,

55 , : , : : :
5 P 2 i
45 2
Py
4r _
35 il
3F i
25 _
aff=(1-1) pgt (1) p 237 (1o e,

2 il
15 _

s po :03 ]
05 | | | | | | |

0 1 2 3 4 5 6 7

Figure 4.3: Bezier curve of degree 3.

To next section we give some properties of Bezier curves.
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4.4 Properties of Bezier Curves
Property 4.4.1 [6] End — points Interpolation

Bezier curves w(r) always passes through the first and last control points of p, and
p,- Thatis;
@(0)=p, and @(1)=p,

Proof. If we put 7 =0 into (4.1), we obtain

n
@(0)=2p.5!(0)
k=0
From the end-point property of Bernstein basis polynomials (property 3.3.1), we have

by (0)=1. Therefore;

@(0)=p,.

In addition, when we put 7 =1 into (4.1);

7(1)=3 0.5 ()

From the end-point property of Bernstein basis polynomials (property 3.3.1), we have

B! (1)=1. Therefore;

@(1)=p,.
Property 4.4.2 [6] Symmetry
Reversing the order of the control points produce the same curve.

Proof. Let

*

Pe= Py (k=01,...n)

Then, we have
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n
ZPKEZ Zp,,K ! )=Zop,<5,7_ (z)

Due to the symmetry property of Bernstein polynomials (Property3.3.2),

5, (5)= B2 (1-7).

ZpKB,'j 1-7)=w(1-7)
Property 4.4.3 [6] End — point tangent property
The end-point tangent vector are parallel to p, — p, and p, —p, ;.
@ (0)=1(p—p,)
and
@ (1)=n(p,-~,1)

Proof. From the definition of Bezier curve (4.1), we have;

ngk : Zp{ J (1-7)""

Then, we take derivatives of Bezier curve with respect to 7, we obtain;

P
for =0,

@ (0)=n(p—p)
for =1,

@ (1):77('0'7 _'077—1)
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Property 4.4.4 [6] Variation Diminishing Property
Let planar Bezier curves are variation dimension, this means that the number of
intersections of a straight line is no greater than the number of intersections of a line

with the control polygon.

Proof. In this proof Zre.;(o,m)[g(f)] denote the number of positive roots of any

polynomials g(7) on the interval I. That is.

Zyoa| Qg +ag++ar" |=S (g +ar++ar’)<S (a,a,..a,).  (4.2)
Let C denote a planar Bezier curve, M is any straight line, and let 1(C, M) the number

of times C crosses M. Establish the rectangular coordinate system whose abscissa axis

is M. Due to Bezier curves are geometric invariant, we can denote (Xi,yi)

(i :0,1,...,77) the new coordinates of the control points. Let P denote the control

polygon and I(P, M) the number of times P crosses M. Then we will prove that

1(C,M) < I(P,M).

We make a parameter transformation. Let u = : * , 7€(01), so that ue(0,+).
—7T

Then

(CM)=2, ., {Zo y.B" (T)} ~Zs {y,( @ " (1—7)"‘,(}
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241

221

0.8

5.5

4.5

35

25

Figure 4.5: Variation diminishing property of cubic Bezier Curves.
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Property 4.4.5 [6] Invariance Under Af fine Transformations

If ¢ is an affine transform, then

¢[§p,ﬁ:(r)]=§sz(r)¢(m)

Proof. Let w(7)= Z”:pKB,’j (7) where 7 €[0,1]. Since, partition of unity property

k=0

of B! (), every point @ (7) is an affine combination of control points p,,... 0,

From that, w(r)is affine invariant. If we assume ¢ is an affine transform in RY,

then

Property 4.4.6 [6] Convex hull property

A Bezier curve lies in the convex hull of the control points, that is

@(7)ewH(p,,...,p,) forall r<[0,1].
Proof. Every point in the @ () has the form;
ap, +ap +...+a,p, With a =5!(7).

Since non-negativity (3.4) and partition of unity property (3.5) of Bernstein

polynomials, we have;
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Hence; @ (7)ea@H(py,....0,) -

Figure 4.6: The curve lies in the convex hull of the control points.

4.5 The Derivative of a Bezier Curve

Theorem 4.5.1 [6] The derivative of @ (7)of order 7 is;

d -t ]
—dfw(r) =1 (Peat+p)BI(7)
k=0

Proof. From the derivative of 57 (7) (3.4);

n

;—Tw(r) - %[Zpﬂ (7) j =D Py %(53 (7))

k=0
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Then;

from 57 (z)=0 and 5] (7)=0,

n-1
nZB” 1(2)p—n) B (1) p,

k=0
and
UZE’” 7) Pt — UZE“ 7) P,
k=0
Hence;
d L 1
d—TW(T)=nZ(pK+1+pK)EZ (7)
k=0

4.6 Degree Raising

Definition 4.6.1 [18] Any Bezier curve of degree ; (with control points p,_) can be
expressed in terms of a new basis of degree 7 +1.The new control point p_ are given

by

where p, =p,, =0.

Proof. From the property of degree raising of 5" (1’) (3.3.6), we have;

1-7)5"(7) =’7;—f1+15:-1(r)

and
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+1one
o5 (1) = S8

Degree raising, obtained by simply multiplying the equation of the degree n of Bezier

curve by (1-7)+7 |=1:
w(r)z[(l — r)+ T:'ZU(Z')

[~ 1)+ ]Xp5l(0)
:pr (1-7)B!(7)+ TBZ(T)]

<, :(1 _ )@ (o)™ +[Zj <1—r)”"‘}

(Z ] o (1-r) " (ZJ (1 r)’”}
@E”“ ﬁ ()

=20, ) (r>+[,7+1)5ﬁ1

Kk+1

I
M=
S

i
o

A

K

Y nt  xKl+l-c)! n! (kD= .
_gp’(_(ﬂ—lf)!l(! (m+D)! b (T)+K!(,7_K)! (n+1)! Bm(f)}

k=0 77 +1

-Yp. ”‘—’(“B:“(r)+"—jl5:z:i(r)}

k=0 77+1 x=0
ntl +1 . n+l .
=2 PB () L paB(7)
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S| (M +1-K)p, + KDy | oyt
— K K B'?
5 rrn g

@(r)= ;p;BZ“(r)

where;

*

P

K

a}(p}(—l +(1_ax)p;( y O, =——r
n+1

In the next example we give degree raising of a cubic Bezier curve.

Example 4.6.1: The degree raising of cubic Bezier curve forn =3, the new control

points p._ are:

Po = Po

-1 .3
pl 4po 4p1
. 2 2
P2 :ZPﬁsz

« 3 1
Ps :sz +Zp3

*

Py = Ps

We illustrate graphically in next figure.
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Figure 4.7: Degree elevation of a cubic Bezier curve.

4.7 The de Casteljau Algorithm
The principal concept of de Casteljau’s algorithm is to choose a point C on a line

segment AB such that C divides the line segment AB in the ratio of 7:1-7.
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Definition 4.7.1 [6] A curve

0
Zp°5” ZPKB,’Z* )=..= > pIB(7)=p,

where
. ‘1 1 r=1..... N7
pLO=(-) e ()it |

p;(c) (T) = pK '
Then pf(z) is the point with parameter value z on the Bezier curve p, .

Proof. From the recursive formula of Bernstein polynomials (3.3), we obtain;

_ Z(; B (7)= 2; p[(1=7) B (0)+ 2572 (0)]

-1 n
_R o, (1—2')51’(7’1(r)+2p,( B! (7)
x=0 i=1
n-1
=~ (1-7)B( ZPMTE” N Z[pK 1-7)+p,.q () B (7)
k=0

pr=p.(1-7)+p.a(r)=p(A-7)+pl(7) for x=0,...,n-1.

if we apply the same argument to the above Bezier curve;

ZpKB,’Z N

yields

n-2

Zp
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where pi=p.(1-t)+p. v for x=0,..,n-2.

In general,

ZPKEZ '

where pr=pt(1-7)+plir for x=0,..,7-r. Taking r=n yields

ZpKE,’Z "

Figure 4.8: De Casteljau algorithms of cubic Bezier curves.

Next section we give matrix formulation of Bezier curve.
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4.8 Matrix Formulation of Bezier Curve

n
A curve of the form @ (7) =) p, 5" () can be interpreted as a dot product;
k=0

57
o(5)=[o, - 5]
(0

n

In addition,

where,

—

In the next examples, we give the matrix representation of Quadratic Bezier curve and
Cubic Bezier curve.
Example 4.8.1: Quadratic Bezier curve
Let n=2;
@ (t)=poby (7)+pB; (T)+ p,55 (7)
Then, the matrix representation of quadratic Bezier curve is;

1 0 0] (1-7)
a(t)=[py o p]|-2 2 0] 2c(1-7)
1 -2 1 r°
Example 4.8.2: Cubic Bezier curve
Let n=3;
ZU(Z-) :poBg (T)_"ple (1')"'/02523 (T)_"png (7)
@(7)= (1—?)3 yeX +3T(1—T)2 p+3c2(1-7) p, +7°p,
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Then, the matrix representation of cubic Bezier curve is;

1 0 O
-3 3 0
ZU(T):[po P P ps] 3 6 3
-1 3 -3
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Chapter 5

GENERALIZED BEZIER CURVES BASED ON LUPAS

q-ANALOGUES OF THE BERNSTEIN OPERATOR

5.1 Lupas g-Analogues of the Bernstein Function
The Lupas g-analogue of the Bernstein operator introduced by George M. Philips [8]

in 2010.
Definition 5.1.1 [7] Let heC[0,1]. The linear operator L, :C[0,1]—C[0,1] is

defined by

(5.1)

: mq TR hL[K]q J

L (h7)=
nyq( ) z : {(1—T)+qr_17} [77]

k=0 q

r

L, , is called the Lupas g-analoque of the Bernstein operator.

Definition 5.1.2 [7] Given a real number q>0, the Lupas g-analogues of the

Bernstein functions of degree r defined by;

n x(x-1)12__x _\1K
L{l q T (1 r)
ﬁ(l—rJrqr_lr)

r=1

z' (r;q)= x=01...,n, r€[0,1] (5.2)
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Example. The Lupas g-analogues of the Bernstein funtions of degree n =3;

(1-7)°

1—r)+qz-)((1—r)+q22')

Z, (T?CI)=((

S (1+q+0°)7(1-
1( ’q) 1 r +qr)((1 T +q Z')
z;(7;0)= (trare)rt(d-

1 z' +qz-)((1 T +q z‘)

3
T

1-7)+ qr)((l—r)+ qzr)

Zi(r;q)z((

We illustrate graphically in next figure.

091 A

08 o

07 o

05 i

031 2

02r .

01 &

Figure 5.1: Lupas g-analogues of the Bernstein functions of degree 3 with g=0.5.
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0.71 4

06 7

061 4

041 &

031 7

0.2 4

01 7

Figure 5.2: Lupas g-analogues of the Bernstein functions of degree 3 with g=6.
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0.9

081

0.7 i

T
1

0.5

04 -

021

Figure 5.3: Lupas g-analogues of the Bernstein functions of degree 3 with g=1/6.

In the next section, we give some general properties of the z” (r; q).

5.2 Properties of the Lupas g-Analogues of the Bernstein Functions

Theorem 5.2.1. [7] The Lupas g-analogues of the Bernstein functions possess the
following properties:
1.Non-negativity [7]:

2 (7;9)=0, =0,1,...,n, 7 €[0,1].
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2. Partition of unit [7]:

izz (r;q)=1, 7€[0,1].

Proof. From the g-analogue of Newton binomial theorem we have;

L+ 7)1 +qr)---(1+q"'r) i{”l g2 px

x=0| K

L)
=(1—T)"(1+ij£1+qéj (1+q‘11;}

=( ): (1—r+qr)-~-(1—r+q’7"lz')

= (l— T+ qr)---(l— T+ q”’lr) = ﬁ(l— T+ qr’lr)
r=1
SO

an{ﬂ} qK(Kfl)/er (1_T)H _ ll[(l—2'+ qr—1T)
q

r=1

and

ZH:{U} q° w2k 1_T)n—f<
k=0 q
li[(l—r+qr’lr)

r=1

3. End-point property [7]:

1, x=0, 1, x=n,
ZZ(O:q)={O o and ZZ(lifJ):{o HZ
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Proof. From the definition of the Lupas g-analogues of the Bernstein functions possess

the following properties:

If x=0= 27(0;q)=1.

andif k20 = z/(0;q)=0.

Secondly from the definition of Lupas g-analogues of Bernstein function;

77 K(r(—l)/Z K n-x
H g1 (0)
q
1 r-1
[1a

r=1

2! (Lq)=

If xk=n = z/(Lq)=1.
andif k=17 = z/(4q)=0.
4. g-inverse symmetry [7]:
2] (r:9)=2!(1-7;1/q), x=01,...,77.

Proof. From the definition of Lupas g-analogues of Bernstein function:
{ n } q(n*K)(TFKfl)/ZTU—K (1_2_)'(
n—-K,

ﬁ(l— T+ qr’lr)

r=1

z)  (70)=

|: n :| q(ﬂ—K)(l]—K—l)IZZ_r]—K (1—T)K
nm—x],

7 —
qn(nl)/z,[nH(l_,_ 1r—1z.j

r=1 q 7

o1



hence
2! (5;9)=2!QA-7;1/q).
5. Reducibility [7]:
When q=1, Lupas g-analogues of Bernstein function reduces to the classical

Bernstein bases.

Proof. If q=1 into the formula (5.2), we obtain

2’ (r;1) = t - =7,(7)

[T(a-7+1"7)

r=1

|:77:| 1/((/(—1)/2 ~ (l— T)’Y*K
q

5.3 Degree Elevation and Reduction for the Lupas g-Analogues of

the Bernstein Functions
Degree elevation technique for increase the flexibility of a curve. For degree
elevation and reduction of Lupas g-analogues of the Bernstein functions, the

following identities are very useful:

(1—;];1 a7 (r:0)= [1 [[Z;:]]q ]ZZE (z:0) (5:3)
e [t e
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Theorem 5.3.1[7] Degree raising
Each Lupas g-analogue of the corresponding Bernstein function of degree 7 is a linear

combination of two Lupas g-analogues of the Bernstein functions of degree n +1.

- _[77+1—K‘]q
2(m8) =]

q

27 (z;0) + 1—M z771(7;0) (5.5)
[7+1],

Proof.

ZZ(Z‘;Q)IZZ(Z‘;C{)(].— q'r N q'c ]

1-t+q9’t 1-7+d"r

_ n n n
=Z,’j(r;q) 1-7z+q9'z7 gz N q'r
1-7+q"c 1-7+q’ct 1l-7+q'r

- |:Z:| qK(K—l)/ZTK (1_1_)’7*K an |:z:| qK(K—l)/ZT;« (1_1_)’7*K
— — q + q
BRI § (S IR § (St )

r=1 r=1

Using formula (5.3) and (5.4), we obtain;

[17-«],
[7+1],

Zl(7;q) = [77[:;1—_’(]“ 27" (7;9) + [1

n+le .
+1]q J ZK+1(T’ q)

Theorem 5.3.2 [7] Degree reduction

Each Lupas g-analogue of the Bernstein function of degree 7 is a linear combination

of two Lupas g-analogues of the Bernstein functions of degree 7—1.

k-1

xK-1 _
(i) ZZ(r:q)zﬂ—T,,lZZi(r;quZZl(r;q), xk=01...n, (5.6)
-7 T

+q 1-7+q"'r

HH N (e _ qnilr n-lr_. 1-7 n-l7_. -01
(i) Z"(T’q)_—l—r+q”’lrZ"’l(r’q)+—1—r+q”’lrz" (;9), «=01....,n, (5.7)
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Proof.
(i) If we use the definition of g-binomial coefficients of the Pascal-type relations

(2.18) and formula (2.18a), we obtain the following equality:

n -1 K n -1 x(x-1)12__x L \TK
({K_l}-+q { . }Jq (1-7)
z)(z;q) = : -

n

@—T+q“%)
r=l1
n-1 (x-1)/2_x i | (x-1)/2_x n-x
| i o R
_ q " q
n n
II@—r+q“%) II@—T+qr%)
r=1 r=1
Hence
. Mt e A=)
ZZ(T,Q)=mZZj(T,Q)+mel(T,Q)-

(ii) If we use the definition of g-binomial coefficients of the Pascal-type relations

(2.18) and formula (2.18b), we obtain the following equality:

N/ 1 n -1 k(e-1)/2 _x n-K
q" [ } +{ }]q " (1-7)
[ K—lq K

2!(7;0) =
n
II@—r+q“%)
r=1
—K 77_1 k(k-1)12 _x n-K 77_1 k(k-1)12 _x n-K
g 1- 1-
qL(_Jq " (1-7) {K Q" (1-7)
II@ r+q'%) II@—r+q“%)
r=1 r=1
Therefore
)= —9 (g 27(z0)
K 1 1_T+ n-1 k-1 1 1_ q—lz_ K ’
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5.4 Lupas g-Bezier Curves
Definition [7] Lupas q — Bezier curves
Given a set of control points {po""'/’n} where p_eR® (k=0,1...,7) and ¢ >0,

the Lupas g-Bezier curves of degree n is:
n
p(7:9)=D p2!(7:9) (5.8)
k=0

where

K

ni| qK(K—l)/ZTK (1_ T)’Z—K
q

2! (7;0)= p and TE[O,].].

H(l— 7+Q" 11)

r=1
—— control points
—g=1
————— q=1/2
q=1f4
———g=17

Figure 5.4: The effect of the shape of cubic g-Bezier by 0<q<1.
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—ic— control points
q=1

————— g=1/3

T TR q=1‘|.r5
—_——g=1/9

Figure 5.5: The effect of the shape of cubic g-Bezier by 0<q<1.

—6— contral points
—_— =1
——ig=

........... q=4

— = —g=7

Figure 5.6: The effect of the shape of cubic g-Bezier q>1.
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In the next section we will discuss some basic properties of Lupas g-Bezier curves.

5.4.1 Properties of Lupas q-Bezier Curves

Property 5.4.1.1 [7] Lupas q-Bezier have geometric and affine invariance.

Proof. Since, z/(7;q) are partition of unity, p(z;q)is affine invariant. Let ¢ is an

affine transform in R? , then

#o(e )¢(i '7rqj=AipKzz<r:q>+v

k=0

i Azl (7;0)+ iz;’(r;q)v
k=0

n

(Ap, +Vv)z!(7:9)
=0

K

=34.(p.) 22 (:0)

k=0

Property 5.4.1.2 [7] Lupas q-Bezier curves lie inside the convex hull of its control

polygon.

Proof. Every point in the p(r;q) has the following terms;

oo + %0+t X 0, With X =27(7;q).
Furthermore, from the property 3.3.4 (non-negative) and property 3.3.5 (partition of

unity), p(z;q) is convex combination of the p,, o,...., p, -

Property 5.4.1.3 [7] The end — point interpolation property
p(O, q) =5

p(La)=p,
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Proof. From formula (5.8);
Zp,(z,’i 7,0) = pozg (7:09) + 4z (7:0) +...+ p,27 (7:0) (5.9)

For =0 into (5.9), yields
p(0:0)=p, 27 (0;9)
Due to the end-point property of Lupas g-analogues of the Bernstein functions, we
obtain the following result;
p(0;0)=

Similarly, if we substitute 7 =1 into (5.8), we obtain;

ZPUZ” Lq)
From the end-point property of Lupas g-analogues of the Bernstein functions. Hence,

p(La)=p,
Property 5.4.1.4 [7] q — inverse symmetry
The Lupas g-Bezier curves obtained by reversing the order of the control points are
the same as the Lupas g-Bezier curves with g replaced by 1/q.
Proof.

Let p.=p, ., £=01...,7,then

Z:,OKZ'7 rq an KZ" rq

|:77:| qK(K—l)IZZ_K (1_2_)777K
Ui
P (Ta)=2 P 5

x=0 H(l—r+qr‘lr)

r=1

then
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{ n } qry—x(n—x—l)ﬂz_n—x (1_ T)K
p(T:a)=.p, =
x=0 H(l—r+qr‘1r)

r=1

From the definition of the Lupas g-analogues of the Bernstein function, we obtain;

n
P (r:0)=> p2l (1-1;1/q)=p(1-7;1/q).
k=0

s control points /
i)

- (1)

Figure 5.7: The effect of the shape of cubic g-inverse symmetry of Lupas q-Bezier
curve for g=1/5by 0<qg<1.
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= control points
— ()
- = p(1-ri1/q)

Figure 5.8: The effect of the shape of cubic g-inverse symmetry of Lupas q-Bezier
curve for g=1/23 by 0<qg<1.

Property 5.4.1.5 [7] Reducibility

It is easily seen that when q =1, the Lupas g-Bezier curve (5.8) reduces the classical

Bezier curves (4.1).

Theorem 5.4.1.6 [7] The end — point property of derivative

p(Ga) =[], (- p.) plk0)= o, .

i.e. Lupas g-Bezier curves are tangent to fore-and-aft edges of its control polygon at
end points.

Proof. From the definition of Lupas g-Bezier curve (5.8):

Then



If we take derivatives of both sides with respect to 7, we obtain the following result;

p(ma)L(z:a)+p(na)L(7a)=S (r;q). (5.10)

S(T,q):ip’(|:2j| qK(Kl/2 K 1 T ZpKdU Tq
q

From the extension of Newton's binomial formula, we obtain;

ZpKdZ (7:9).

Due to

K K

[d,’Z (T;q)]' :|:77} qK(Kfl)IZ P (1_T)H _|:’7} qK(K /2 (77 K)(l_T)Hfl (5.11)

Besides that, we know the following equalities;

)

So (5.11) becomes;

' x -1 _ .
I:dn :' _ 77_]{77 1:| q K(x-1)/2 P (1_2_)77 _ 77]q {77 :| qK(K 1)/2 ~ (77 —K')(l—‘[)ﬂ 1
a q

[K] Kx-1
2e/d’(r;0)- 9. d!"(z;9)

where e’ =%q’“ K, ! =—FK.
[+] (],

q

Then;

S(0;a)=p,,  L(0;q)=1
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S(0:q)=¢e/p~97p, L(0:q)=¢~-g;
Therefore (5.10) becomes;
p (0:9)L(0;q)+p(0;q)L(0;9) =S (0;q)
P (0:0)+p,(e] — 97 ) =€/ p,— 9 p,
P (0:0)=¢/p,— 9! p,—€l P, +9. Py
P (0:0)=¢/ (o~ )

where

Secondly we calculation same steps for 7 =1,

S (1; q) =p, q’7(77—1)/2 , L(l; q) _ qﬂ(ﬂ—l)/z

S'(La)=(elp, - 9/p,.)a" ", L(La)=(e!-g7)g" ",

Finally again (5.10) becomes;
p (La)L(La)+p(La)L(Lq)=S(Lq)
p' (1; q) qn(v—l)/z +p, (eg —g7 ) (:]('7—1)(77—2)/2 _ (9,7,0,, _ glnpnil) q('7—1)(77—2)/2

(n-1)(n-2)/2
(:0)= (ep,—9/p,1—€lp, +8/p,)a"
P4 q77(77—l)/2
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Theorem 5.4.1.7 [7] “Planar Lupas q-Bezier are variation diminishing, which the
number of intersection points of any straight line with a Lupas g-Bezier is at most

the number of intersection points of same straight line with control polygon.”

Proof. In this proof Z_, _, .., [ 9(7)] denote the number of roots of any polynomials
g(z)on the interval L. For vector V =(vy,v,,...,v,) and S (Vy,Vy,...,V,) to
demonstrate the exact sign changes number in the or V. Due to (1,1,...,1'“) is totally
positive on [0,1], then for any sequence of real numbers bg,b,,...,b,

Zooa| by b7+ b 77 | =87 (I +lyr+-+b 27 ) <87 (I by, ).

Let p denote a planar p(7;q), Y is any straight line, and let L(p,Y )the number of
times p crosses Y. Establish the rectangular coordinate system whose abscissa axis is
Y. Because curves are geometric invariant, we can denote (f,S,) (k=0,1,...,m) the

new coordinates of the control points. Let Z denote the control polygon and L(Z,Y)

the number of times Z crosses Y. Then, we will prove that L(p,Y)<L(Z,Y).

We make a parameter transformation. Let , = r |t e(O,l), sothat ue (O,+oo).

1-7
Then
77 : yK |:Z:| qK(Kfl)/ZTK (1_ Z_)U*K
L(p’Y) = Z0<z'<l |:Z y77 ZZ (T’ q):| - ZO<T<1 Z '?
0 x=0 (1— T+ r‘lr)
r=1
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L(p,Y)SSHrgL yO,{TL qu me:S(yO,yl,...,ym)z L(Z.Y)

5.4.2 Degree Elevation for Lupas g-Bezier Curves

Definition 5.4.2.1: [7] Degree elevation

Any Lupas g-Bezier curves of degree » with control points p_ can be expressed of a

new basis of degree 77+1. The new control point p_ are given by

X [7+1-x] [7+1-x]
pK[l—Tl]q p’(1+T1]qu, K'=0,1,...,77+1, (512)
q q

Note that p, = p,,, =0.

Proof. From the definition of Lupas g-Bezier curve (5.8), we have;

p(r;q)=§pKZZ(T?Q)

From the degree elevation of the Lupas g-analogues of the Bernstein functions(5.5),

we obtain;
n [7-x+1] [7-x]
p(1,9)=) p.| ———2"(1;0)+| 1- L1z (79
(ra)=3; [ ) [ o e
v [n-x+1], . wif o [n+1-k]
= P (Td)+ )| 1- Lo 2 (74
X e, A O g et 9
7+l [7]+1—K‘] o, +(1—[77+1—K] ),0,(71 z”*l( 'q)
= T’
k=0 [77+1]q :
n+l .
=Y p. 2 (n:q)
k=0
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Where;

+1- +1-
p;—[l—ujp“+upk , k=01...,n+1
n

Next section, we give the matrix representation of degree elevation of p(z'; q).

5.4.2.1 Matrix Representation of Degree Elevation of Lupas q-Bezier Curves

Let pz(po,pl,...,pn )T indicate the vector of control points of the initial Lupas g-

Bezier curve of degree 7, and p¥ = (pg,pl*,...,p;l) shows that the control points of

the degree elevated Lupas g-Bezier curve of degree n+1.

Firstly, we apply the degree elevation algorithm of Lupas g-Bezier curves (formula

(5.12), we obtain following results:

*_[77+1]q
Po = [77+1]q Po
(bl b
P [77+1]q Po [77+1]q P
A Ml A N B
Py = [77+1]q P [77+1]q P>
A Pl R N
Ps = [77+1]q P> [77+1]q Ps

. _[MJP +[ﬂ})
-2 [77+1]q 3 [77+1]q -2

65



o [n+1], ~[1], - [1], ,
Tl ], )T ], )

() (0, )
L [7 +1]q " [ +1]q L

Then, the degree elevation procedure of for Lupas g-Bezier curves of degree r+1 can

be represented as the following:

@)

pPT=T,.p
where
po(7:0) p(zia) - p(za)  pa(0)
[7+1], 0 - 0 0
[7+1], ~[n], [n], - 0 0
T .- 1 : : . : :
[77+1]q 0 0o .- [2]q 0
0 0 [p+1)-f1], [,
0 0 - 0 1
[77+ ]q (n+2)x(n+1)

Generally; Vr e N, the degree elevated of Lupas g-Bezier curve of control points of
degree n+1 is:

O_T

n+l

T TP

n+2 'n+l" t

P

As 1 — oo, the control polygon p'") converges to a Lupas g-Bezier curve.
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5.4.3 De Casteljau Algorithm for Lupas q-Bezier Curves

Lupas q-Bezier curves of degree ; can be written as two kinds of linear combination

of two Lupas g-Bezier curves of degree 1.

Definition 5.4.3.1 [7] De Casteljau algorithms

A curve

n-1

ZpK (z:9)=--=> pi(r:9)2/ " (1;9) =
Where

P(Ea)=p0= oy k=0

r . qﬂ_rz— r- . 1-7 r- .
pK(r,q)szﬁi(r,q) g A (@A),

r=12,....m7, x=01...,7—r
or

PEa)=p0= gy k=0

qKT r— . qK (1_7) r= .
mpﬁi(ﬁ‘ﬂ L — &/ 1(T,Q),

pi(70)= 1-7+q9" "¢ "
r=2,....n, x=01...,n-r

o= py (530).

(5.13)

(5.14)

Proof. From the degree reduction of z/ (r;q)formula (5.7), we have;

Zp,(z” 7;q :gp}{I:(l—’[)ZZ_l(T;Q)+(T)ZZ_i(T;Q)i|

:O o (1_f)zg—1(f;q)+g p(7) 24 (7:0)
-5 p -2 () ps ()2 ()

n-1

=>[p.(1-7)+p.7 |21 (7:0)
x=0
n-1

= ZpiZ” (:a)
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where
p=p(1-0)+p t=pL(1-7)+pl,r for k=01,...,m-1.

If we apply same argument to the above to p(7;q);

n-1
7ZPKZ” *(z:0)
then
n-2
p(7:a)=> pizl*(7:q)
k=0
where
pe=p(1-7)+(t)pen .+  &=01..7-2
Generally
n-r
p(z:0)=> pi(z;0) 2" (z;09)
x=0
where
L 1-7 9"t e
pK(T,q) T (T q) mplﬁll( ,q) for K=O,...,7]—r.

Taking r =7. Yields;

plria) = 2oL ()2 (7i0) = 1 ()
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Py 3
Figure 5.9: The de Casteljau algorithms of cubic Lupas g-Bezier curves for g=2.

To next section, we investigate the matrix representation of de Casteljau algorithm for
Lupas g-Bezier curves.

5.4.3.1 Matrix Representation of De Casteljau Algorithm for Lupas q-Bezier

Curve

Let poz(po,pl,...,pq)T, p':(pg,plr,...,p,;_r)T, if we apply the de Casteljau

algorithm of Lupas g-Bezier curve(5.13), we get the following result;

69



r . qﬂ—l’z- r- . 1-7 r- .
Py (T’ q) = mpq 1(T1 Q)+—_I_P,,-1(T1Q)

q"'z

rf. . r-1¢ . 1-7 (-
Py (r:0)= mpmi(fl(])“‘_—_qu (7:9)

Secondly, if we apply the de Casteljau algorithm of Lupas g-Bezier curve(5.14), we

get the following result;

. . 1-7 1l
£o (T;Q)Zﬁpl 1(T§Q)+(—),Tpo 1(T,Q)

qr r1

P = s

2 2(1_
qr r-1 q g (1 T) H(T;q)

pzr(TiQ):m

ql]—r—lz_

= mfp,;j (7;0)+ T Prra

p;;—r—l(r;q)

L_rr - . q,7_r (1_7) r-1 (T' CI)

pre () = P ()

then the De Casteljau algorithm procedure of Lupas g-Bezier curves can be expressed

P (70)=M, (7,0)--M, (;0)M,(z:9) p°

where M, (7;q) isa (7—r+1)x(n7—r+2) matrix. Then;
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pé_l(r;q) plr_l(r;q) pg_l(r;q) p,r,_l(r;q) p,;j(r;Q)

0 0 0 1-7 q']_rr
1-r+q7 " 1-74¢""2
or
po  (ziq) plr_l(r;q) py  (7:9) p,;:r (:q) p,;:1r+1(r;Q)
1-7 T 0 0 0
l—r+qn_r1 1—T+q77;rr
gqll-7 qr
° 1—r+q77_rr 1—r+q’7_z' ° °
M : = : :
r (’ q) 0 i q77—r—1 (1— T) qn—r—lr .
1—r+qn_rr 1—T+qn_r2’
n=r(q_ n-r
0 0 0 ! (1,7_:) : ,;_
l1-7+q" 7 1-7+q" 7
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