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ABSTRACT 

“DE/current-to-pbest” is a new and increasingly common mutation strategy that 

involves an additional external archive and adaptively updates the control. This thesis 

introduces a novel algorithm known as JADE. The “DE/current-to-pbest” is a 

simplification of the typical “DE/current-to-best,” while historical data is used by the 

additional archive operation to provide information on progress direction. Both 

convergence performance and the diversity of the population are enhanced by the two 

operations. The control parameters are automatically updated to the appropriate values 

through parameter adaptation, which avoids relying on outdated information regarding 

the relationship between the characteristics of the optimization problems and the 

parameter settings. 

This thesis work introduces a JADE Algorithm and examines its feasibility based on 

the results of CEC'17 expensive benchmark problems for single objective optimization 

problems and for Multi-objective optimization. The methods used in our studies are 

compared to different well-knows methods proposed in the related literature was 

conducted. The final ranking of all test problems indicate that JADE was always 

among the top best algorithms that were used for the same purpose. 

Keywords: Multi-agent systems, Meta-heuristic algorithms, Multi-objective 

optimization, evolutionary optimization, Adaptive parameter control, Pareto 

optimality, differential evolution. 
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ÖZ 

“DE/current-to-pbest”, harici ek bir arşiv ile kontrolü adaptif olarak güncelleyen yeni 

ve giderek daha da yaygın olarak kullanılan bir mutasyon stratejisidir. “DE/current-to-

pbest”, özgün olan “DE/current-to-pbest” algoritmasının sadeleştirilmiş halidir. 

Historik veri, ilerleme yönü hakkında bilgi sağlamak amacı ile ek arşivleme işlemi 

tarafından kullanılır. Popülasyonun çeşitliliği ve yakınsama performansı, iki 

operasyon tarafından artırılmıştır. Kontrol parametreleri, optimizasyon problemlerinin 

karakteristikleri ve parametre ayarları arasındaki ilişki ile ilgili eski bilgilere 

dayanmaktan kaçınan parametre adaptasyonu ile otomatik olarak uygun değerlere 

güncellenmektedir.  

Bu tez çalışması, JADE algoritmasını sunar ve tek amaçlı optimizasyon problemleri 

ile çok amaçlı optimizasyon için CEC'17 pahalı kriter problemlerinin sonuçlarını baz 

alarak mümkünlüğünü inceler. Çalışmalarımızda kullanılan yöntemler, literatürde 

bulunan bilindik yöntemlerle karşılaştırılmıştır. Tüm test problemlerinin son 

sıralaması JADE’in her zaman aynı amaç için kullanılan en iyi algoritmalar arasında 

olduğunu göstermektedir. 

Anahtar kelimeler: çok ajanlı sistemler, üst-sezgisel algoritmalar, çok amaçlı 

eniyileme, evrimsel eniyileme, adaptif parametre kontrolü, Pareto optimalite, 

diferansiyel evrim. 
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Chapter 1 

INTRODUCTION 

A significant amount of the real-world problems we face today in science and 

engineering can be treated as an optimization problem. Some with single objects others 

with multi-objective criteria. The conventional optimization methods are useful for 

finding the optimal solution or unconstrained maxima or minima of continuous and 

differential functions. Such methods are limited to finding local optimal solutions and 

are usually analytical in nature. Significant research is continuously made towards 

inventing novel optimization technique which are applicable in solving real life 

problems with the capability of population based solutions and memory update. More 

recently, algorithms such as Evolutionary Algorithm, Genetic Algorithms, Differential 

Algorithm, and Simulated Annealing algorithm which are considered to be general 

purpose optimization technique have become standard optimization techniques. The 

techniques are popular due to their ability to adapt to their ever-changing environment 

in an effective and efficient manner. 

Differential Algorithm is a derivative free, population based global optimization 

algorithm. It is the most promising Evolutionary algorithm due to its powerful 

population-related stochastic direct search ability for finding the solutions to numeric 

optimization problems in a continues search environment.  
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1.1 Background of Study   

The common challenge of most engineering application problems is solving 

optimization problems. They are solved using optimization algorithms such as 

metaheuristics, which is a type of optimization algorithm that manifested from nature. 

According to Sorensen and Glover [1] metaheuristic is a “high-level problem-

independent algorithmic framework that provides a set of guidelines or strategies to 

develop heuristic optimization algorithms.” In the early 90’s, research on 

metaheuristics grew exponentially with the introduction of several frameworks 

improving the initial method. Sorensen and Glover [1] stated that application of 

metaheuristics has existed long before the term was coined. According to their 

research, five periods shaped the evolution of metaheuristics; Pre-Theoretical period 

(until C.1940). the second phase in the early period (C.1940-1980) which introduced 

the formal study of heuristics. Artificial intelligence was the term used to identify the 

work in that period. In 1960s, evolution was highlighted as a method of solving for 

problem solving, using insights from natural evolution to general optimization 

problems. Thus, several algorithms are developed using inspiration from natural 

evolution. Evolutionary programming was incepted in the later years of 1960, 

however, population and crossover methods were not utilized. The work of Goldberg 

[2] ignited the evolutionary revolution. Subsequently, evolutionary methods became 

very widespread. 

There are commonly two types of metaheuristics: the population based which produces 

a population of solutions, and the trajectory-based which produces a single solution. 

The metaheuristic algorithm uses a certain type of stochastic optimization that finds 
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the near global optimal or global optimal solution of a problem by using a random 

selection. Thus, they are utilized in solving numerous optimization problems [3]. 

The most prevalent types of trajectory-based metaheuristic methods include Artificial 

Bee Colony [4], Ant Colony Optimization [5], Simulated annealing [6], Tabu search 

[7], Differential evolution [3], and Great Deluge algorithm Dueck, [8]. 

1.2 Aim of the Study  

A number of real-word problems have multiple objectives that need to be optimized 

simultaneously. One major difference between single objective optimization and the 

simultaneous optimization of multiple objectives is that multi-objective optimization 

problems (MOPs) do not have a unique solution. Rather, the aim is to identify all good 

trade-off solutions to be evaluated by a decision maker according to some preferential 

information. JADE: Adaptive Differential Evolution with Additional External Archive 

is an Improved version of  differential evolution (DE) algorithm intended to enhance 

the  performance. The enhancement is achieved through the implementation of a novel 

mutation strategy “DE/current-to-pbest” with an additional external archive and 

adaptive control parameter updates So far, different strategies and models of (DE) 

algorithm are developed for solving difficult real- valued optimization problems. 

The aim of this master thesis study is to evaluate the performance of JADE for single 

and  multi-objective numerical optimization problems and comparatively evaluate its 

performance against other modern state-of-the-art metaheuristics. This will help in 

achieving a deep understanding of evolutionary algorithm computing within the 

framework of DE algorithms and experience the application of a particular method for 

the solution of widely used benchmark problems.  
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The test problems to be used in experimental evaluation will be the ones prepared for 

latest contests in well-known conferences, such as CEC2017 constrained and 

unconstrained benchmarks. In addition to these, some problem related to practical 

engineering applications will also be used in evaluating the DE strategies. Finally, 

detailed statistical analyses will be conducted to exhibit statistical significance of 

algorithms under consideration. 

1.3 Organization of the Thesis  

Chapter 2 present a brief introduction to optimization and evolutionary algorithm with 

a literature review on Differential Evolutionary algorithm. The methodology utilized 

in this thesis is presented in Chapter 3 with detail description and steps to how it was 

implemented. Chapter 4 covers the results and findings of the thesis with discussion 

of the achieved result. The thesis is concluded in chapter 5, summarizing the entire 

study and presenting a direction for future research based on our observed result.   
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Chapter 2 

LITERATURE REVIEW 

2.1 Optimization  

Optimization is an important part of our day-to-day lives. Optimizing every aspect of 

our lives locally or globally provides a more productive outcome. Many engineering, 

economic and scientific problems require optimizing an important set of parameters. 

Example of such problems include the minimization of electricity losses in an 

electricity grid which involves optimizing component for optimal configuration, or 

modifying a neural network to recognize faces. Other optimization application 

includes finding the shortest path for rural water connection. 

Optimization infers finding the one or more solution to a maximization or 

minimization problem of an objective function. An optimization problem is formally 

defined as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓𝑖 (𝑥), 𝑖 = 1, … 𝑀, 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝐷] 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1, … , 𝐽 

ℎ𝑘(𝑥) = 0, 𝑘 = 1, … , 𝐾 

𝑥 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥]𝐷 
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fi(x): objective function  

gj(x): inequality constraint function  

hk(x): equality constraint function  

A maximization problem Maximum f(x) can easily be converted into a minimization 

problem as Minimum -f(x). There are two kinds of optimization problems: Single-

objective optimization problems and Multi-Objective optimization problems. A 

single-objective optimization problem occurs when the problem involves a single 

objective function, while a multi-objective optimization problem tends to solve a 

problem having two or more objective functions. When the optimization problem is 

subject to certain parameters that need to be adhered to, the problem is called a 

constrained optimization problem; if it does not adhere to these parameters it is 

referred to as an un-constrained optimization problem. Furthermore, an optimization 

problem that has only bound constraints are considered to be unconstrained problems.  

A problem that can be modeled in form is called a Nonlinear program (NLP).  The 

field of nonlinear is complex, thus researchers have established a special case study. 

A very important case study is when the constraints are all gj(x) and hk(x) are all linear. 

Problems with such characteristics are called “linear constrained optimization”. When 

the objective function comes in a quadratic form, it is called “Quadratic programing”. 

A special case occurs when the objective function and constraints comes in linear form, 

they are called Linear Programming (LP). 

A solution that satisfies the subset of the linear program is called a global optimum 

solution, and it is possible to have more than one global optimum solution for an 

optimization problem. Optimization problems also present a local optimal solution.  
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Figure 2.1 illustrates a problem with two Local optimal and one global optimal solution 

of an optimization problem. When a problem present more than one local optimal 

solution, they are called multi-modal optimization problem.  

 
Figure 2.1: Local optima and Global optimum solution illustration 

 

Many algorithms have been developed for finding the local optimum of an 

optimization problem. The most common algorithms include, Steepest decent, Quasi-

Newton method, and interior-reflective Newton method. Most of the algorithms find 

the local optimum by starting with a point x0 and searching for the local optimum 

within the starting point.  

In cases where the objective is to find the global optimum, this is achieved by repeating 

the process by starting at different point to achieve the best solution within the local 

optima. In situations where the optimization problem is highly complex with a large 

number of local optima solutions, it is obvious that some algorithms cannot satisfy the 

requirement, thus the global optimization algorithm is needed where it is possible to 

find the global optimum solution regardless of where the starting point x0 is located. 

The Evolutionary algorithm provides the solution for this problem.   
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2.2 Concept of Algorithm  

The concept of algorithms is not a new phenomenon [10]. They were used by Greek 

mathematicians to find prime numbers in the sieve of Eratosthenes, while 

the Euclidean algorithm was used to identify the highest common divisor of two 

numbers.  Effective algorithms make assumptions, show a bias toward a simple 

solution, trade off the costs of error against the cost of delay, and take chances [9].  An 

algorithm is defined as a series of steps used to solve a particular problem. This process 

doesn't just apply to computers and machines but also has a great influence to humans. 

An algorithm is a set of rules or process to be used in problem-solving operations like 

calculations, particularly by a computer. Processing of data is one of the basic 

functions of a computer. Algorithms are an essential part of computer data-processing.  

 

Most computer programs have an algorithm that gives the basic instructions a 

computer should execute in an organized manner to complete a specified assignment, 

like printing students' report cards or calculating employees' paychecks, as well as the 

arrangement of complex data.  

Dadaism espouses a strictly functional approach to humanity, assessing the value of 

human experiences based on their utility in data-processing mechanisms. If we develop 

an algorithm that fulfills the same function better, human experiences will lose their 

value. Thus, if we can replace not just taxi drivers and doctors but also lawyers, poets 

and musicians with superior computer programs, why should we care if these programs 

have no consciousness and no subjective experiences? If some humanist starts 

adulating the sacredness of human experience, Dadaists would dismiss such 

sentimental humbug [11]. ‘The experience you praise is just an outdated biochemical 

https://en.wikipedia.org/wiki/Greek_mathematics
https://en.wikipedia.org/wiki/Greek_mathematics
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Euclidean_algorithm
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algorithm. In the African savannah 70,000 years ago, that algorithm was state-of-the-

art. Even in the twentieth century it was vital for the army and for the economy. But 

soon we will have much better algorithms. Therefore, an algorithm can hereby be 

stated to be any operational sequence that can be simulated through a Turing-

complete system [13][14][15]. 

Time, as well as storage is a factor that is theoretically required for a given algorithm 

to know its particular resource. The word 'algorithm' is rooted in a Latinized form of 

the name Muhammad ibn Musa al-Khwarizmi as an initial step towards algorisms. A 

number of different methods have been developed to analyze algorithms in an effort 

to achieve certain quantitative requirements. For example, virtually all classical 

mathematical algorithms can be described using a fixed number of English words. The 

performance of an algorithm is highly dependent on which trial vector generation 

strategy is chosen, and the values of the related parameters used in its operations 

knowing fully well the difficulty in selection of parameters that should be put in place 

[15]. In response to this, researchers developed certain techniques that allow them 

circumvent the problem of having to manually tune the control parameters. Searching 

every individual point presents an enumerative need for even moderately-complex 

problems to be broken down into smaller divisions to realize the best solutions. 

In reality, however, the overall time an algorithm needs to successfully complete its 

operation cannot be determined because it is not actually related to our traditional 

physical dimension. Algorithms related to information processing can typically read 

data from an input source, write it onto an output device, and store it for further 

processing. The data that is stored is considered an internal part of the entity executing 

the algorithm. The state is typically stored in at least one data structure. 

  

https://en.wikipedia.org/wiki/Turing_reduction
https://en.wikipedia.org/wiki/Turing_reduction
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi


 10 

2.2.1 Characteristics of Algorithms  

An algorithm is defined as a series of steps used to perform a particular task. This 

applies to humans just as much as it does to computers and machines. The following 

characteristics must be present for an algorithm to be considered valid: 

1. Finiteness; if the algorithm has not ended or reached a reasonable conclusion then 

it is really useless trying to apply it in solving a problem. 

2. Another characteristic is that it should a have well-defined instructions, meaning 

that all the steps in the sequence should be unambiguously defined. 

3. Lastly, it should be tremendously effective. The sequence must solve the required 

task. This should also be achievable by hand with just writing materials. 

4. Uniqueness – at each step, the results must be uniquely defined and depend solely 

on the input and outcome of the previous step(s). 

2.3 Evolutionary Algorithm  

The Evolutionary strategies or Evolutionary Algorithm (EA) has become an important 

aspect of optimization methods for solving different search and optimize procedures. 

Most recent EA starts by creating a finite group of correspondence structures presented 

as population. The structures are identical, and together they form a generation of 

individuals. A string presents an individual which imitates a biological genotype. 

Decoding the genotype presents a result. The result contains parameters which solves 

the problem that is being optimized. The value corresponds to the preferred factor that 

most suitable for reaching the optimal or near-optimal status [16].  

The concept behind the development of Evolutionary algorithm is from the natural 

habitat of survival of the fittest. Evolution of organisms are from two primary 

processes: reproduction and selection. The individual that survive and reproduce is 
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decided form the selection process, while reproduction combines the genes of their 

offspring.   

Evolutionary algorithm is implemented using stochastic search methods, emulating the 

metamorphosis evolution of biological organisms. In 1954, Barricelli, [17] simulated 

the evolution process. Subsequently, series of papers were published by Fraser [18] 

simulating the artificial selection of organisms. Bremermann [19] adopted a mutation, 

recombination and selection operators which form a basis for modern genetic 

algorithm. Holland [21, 22] popularized the technique by formally applying the EA in 

the adaptation in nature for applying the mechanisms in computer science. 

Compared to the traditional optimization technique, the EA starts the optimization 

process with a population of possible solutions as opposed to a single point. At this 

stage, every individual in the population is evaluated. New offspring are then generated 

through mutation and recombination. The offspring with greater fitness values have a 

better chance of generating more offspring, which are then evaluated and individually 

selected for the subsequent generation. The process pushes the population to move 

towards regions where good solutions have been established. 
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Figure 2.2 presents a flow chart depicting a typical evolutionary algorithm. 

 
Figure 2.2: General Flow Chart of Evolutionary Algorithm [19].  

The implementation procedure of EA is as follows: the generation step is broken down 

into recombination phase and selection phase. Figure 2.3 illustrates the division 

process. The strings are designated into adjacent slots during selection. The slots may 

be assigned randomly with the aim of shuffling the intermediate generation.  
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Figure 2.3: Recombination and Selection Phase of a Standard Evolutionary Algorithm 

 

The survival of the fittest strategy produces the range with the highest fitness value. 

The mutation and recommendation operators, potential of large search space is created, 

thus, the consequences of initialization like the case of local search is minimized. EA 

evades the possibility of getting stuck in local search optimum when presented with a 

complex multi-model problem. 
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 Figure 2.4 illustrates the search behavior of EAs and repeated local search. Another 

significant benefit of EAs is that they do not require detailed information on the 

problem’s rules, since they operate using their own rules. The evolution is executed 

through comparing the fitness values of the individuals. The output of a system or the 

results of experiments can be comparison criteria of EAs. Thus they can solve 

problems which do not have exact mathematic modals and cannot be solved using the 

traditional methods introduced before which use the first and second derivatives in the 

updating process. This is very useful for complex or loosely defined problems. At the 

same time, it eliminates the need to compute derivative information. Sometimes it is 

very time-consuming to numerically obtain derivative values for complex problems. 

Step 1: its start with a random solution; step 2: for most problems a local search 

algorithm is readily available; step 3 the for the perturbation, a random move in a 

neighborhood of higher order than the one used by the local search algorithm can be 

surprisingly effective; and step 4: a reasonable first guess for the acceptance criterion 

is to force the cost to decrease, corresponding to a first-improvement descent in the 

set. 



 15 

 
Figure 2.4: Evolutionary Algorithm vs. Repeated Local Search [22]. 
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Generally, there are three main Evolutionary algorithm methods: Genetic algorithms 

(GAs) which was initially introduced by Holland [20]. In this algorithm, 

recombination plays an important role, while mutation acts as an assistant operator. 

Evolutionary programming (EPs) was developed by Fogel [23] in relation to evolving 

finite state machines. The Evolutionary Strategies (ES) introduced by Rechenberg and 

Schwefel [24]. Contrary for Gas, the main operator in ES is mutation, while 

recombination is the assistant operator. Koza [25] introduced and popularize the 

Genetic programming (GP). The primary distinction between GP and EA is the 

representation of solutions. 

2.4 Single Objective Optimization  

Single objective numerical optimization is a new approach which is widely compared 

to other numerical and evolutionary optimization techniques in several engineering 

optimization problems with numerous types of constraints. With proper and accurate 

examination by researchers, it was proven that this recent approach can continually 

outperform the other techniques by making use of relatively small sub-populations, 

and also regardless of any significant sacrifice in terms of performance. Single 

objective would be the opposite of multi-objective optimization. In other words, 

standard optimization with a single objective function. Multi-objective optimization 

means optimizing at least two conflicting objectives in relation to a set of certain 

constraints [26].  

 For this process of single-objective numerical optimization, the problem mainly 

concerns either minimizing or maximizing the objective function relatively based on 

a unit or single variable while accounting for a constraint or in an unconstrained task. 

The single objective numerical optimization problems consists of only one variable in 
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the objective function. This may not be constant because there is a possibility of 

variations in different values of the given variable. They may vary in relative or local 

minimum, relative or local maximum, absolute or global minimum and absolute or 

global maximum.  

 The objective function of a single-objective optimization problem is written as (f (x’)), 

which must be minimized or maximized using a number of constraints (g (x’)). The 

general form of the formula is contained in Equation (1) as: 

Minimize 

 f (x’) s.t. 𝑔𝑗(x’) ≥ 0                 

where (j = 1,...,m) (1 ) x’ ∈ X ⊂Rn  

where x’ is a vector of n decision variables, x’ = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 , and X represents a 

feasible region. This above formula is a standard or general formula as it may be used 

to solve single objective numerical optimization problems with various objective 

functions. 

2.5 Multi-Objective Optimization  

In Multi-objective numerical optimization, two or more conflicting objectives are 

optimized simultaneously while adhering to a predetermined set of constraints. 

Meanwhile, in reality, the problems experienced in most cases which helps in 

improving one objective often cause another to degrade. Network analysis, 

bioinformatics, oil and gas, automobile design, aircraft design, and product & process 

design, are a few fields where we can see the impact and application of multi objective 

numerical optimization.  
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Optimization problems have the following characteristics: 

1. There should be different decision alternatives.  

2. The number of potential decision alternatives should be limited by additional 

constraints.  

3. On the evaluation criteria, there should be different effects taken by each decision 

alternative. 

4. The basic elements of an optimization, including decision variables, objective, and 

constraints. 

5. Solving simultaneous equations and other constraint satisfaction problems.  

Equation (2) outlines multi-objective optimization problems with a number of 

objective functions: 

 (𝑓 (x’) = (𝑓1 (𝑥’); 𝑓2 (𝑥’), … , 𝑓𝑘  (𝑥’))𝑇 ) can be stated as follows: 

Minimize  

𝑓 (x’) = (𝑓1 (𝑥’); 𝑓2  (𝑥’), … , 𝑓𝑘  (𝑥’))𝑇  

 s. t. 𝑔𝑗 (x’) ≥ 0 

 where (j = 1,…,m) (2) x’ ∈ X ⊂𝑅𝑛 

This above formula is a standard or general formula as it may be for solving multi-

objective numerical optimization problems with different objective functions. In 

multiple objective optimization, there is a Pareto-optimal solution set. And 

consequently, there is a tendency of weight addition to make a tradeoff or substitution 

between the criteria. This shows an attribute of single objective does from the 

beginning onset compared to that of multi objective.  
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It is usually proclaimed or assumed by myth that the multi-objective numerical 

optimization is only suitable for problem with multiple objectives while single 

objective optimization is believed to be responsible for tackling problems related to 

single objective. Meanwhile in reality both single and multiple objective numerical 

optimizations can be used to solve problems with multiple objectives. 

 In this case, a researcher might successfully compute a very small and short set of 

solutions and hence present all of his findings to the decision maker who in turn makes 

a choice one of which can then be applied or implemented. So, in real term the 

researcher is not always the decision maker. A very long time can be taken to solve a 

particular problem but it’s a fact now that the specific instance to accomplish the 

solution to the problem is not known long before a decision has to be made unlike 

some situations where the results can be affirmed even when the process has not been 

concluded. Apparently, when input parameters are achieved, it is only required to 

crosscheck the process to attain the best possible solution. 

However, there are advanced techniques that can be used for multi-objective 

optimization problems other than the few usual common techniques used for both 

single and multi-objective numerical optimization as they contain multi-dimensional 

objectives to be satisfied. These different optimization techniques can be categorized 

as calculus-based techniques or numerical methods, random techniques and 

enumerative techniques. These techniques have made processes more advanced and 

comprehensible leading to solving problems accurately with lesser time to achieve 

good results. 
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2.6 Basic Operators of Multi-Objective Evolutionary Algorithm  

The complexity which is the work done by an algorithm, is determined by the number 

of the basic operations necessary for tackling its problems. The complexity of a 

program that implements an algorithm is assumed to be the same, but not exactly the 

same as the complexity of the algorithm. By this, it means that algorithms independent 

on any particular implementation - programming language or computer used in 

actualization of the operation. Therefore, all attention will be focused mainly with the 

basic operations which are the number of times the basic operations have to be run 

depending on the available size of input.  

Consequently, with the application of several theories it is concluded that the total 

number of steps in the operation is averagely proportional to the number of the basic 

operations. Studies have shown that an algorithm that is required to execute a given 

task usually make use of some available set of basic operations. With the possibility 

of estimating the amount of work done by an algorithm we usually do not take to 

consideration all the necessary steps like initializing certain variables and all other 

criteria. The main benefit of these proposed algorithms is the creation of a computer-

based agent with the capability to mimic intelligent human decision-making in a 

dynamic game environment. This has many benefits for real-world problems provided 

the techniques are successfully applied, like in the application of complex systems. 

The complexity which is the work done by an algorithm, is determined by the number 

of the basic operations necessary for tackling its problems. The complexity of a 

program that implements an algorithm is assumed to be the same, but not exactly the 

same as the complexity of the algorithm. By this, it means that algorithms independent 
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on any particular implementation - programming language or computer used in 

actualization of the operation. Therefore, all attention will be focused mainly with the 

basic operations which are the number of times the basic operations have to be run 

depending on the available size of input.  

2.7 Adaptive Differential Evolutionary Algorithm  

Storn and Price [27] introduced the Differential Evolution algorithm. Subsequently R. 

Storm presented an application of DE in designing IIR-Filter. Several applications of 

DE are still introduced such as, P. Thomas and D. Vernon [28] in image registration. 

Majority of the application of DE are directed towards image processing. In 1998, a 

hybrid DE algorithm was introduced to initiate recognition of DE remarkable 

performance or solving engineering problems Bertsimas and Tsitsiklis [6]. 

Differential evolution is a relatively basic, yet efficient approach to numerical 

optimization [29]. The bulk of recent work has been geared towards the development 

of more adaptive mechanisms for differential evolution because the search efficiency 

of differential evolution is greatly dependent on its control parameter settings. Abbass 

et al. [30] introduced a Pareto-frontier Differential Evolution algorithm (PDE) to solve 

multi objective problem through the incorporation of Pareto dominance.  

The initial author later self-adapted the crossover rate of Pareto-frontier Differential 

Evolution algorithm; encoding each individual with the crossover rate allowed them 

to evolve simultaneously with other parameters. To attain the most suitable 

performance through the application of conventional differential evolution to a 

particular problem, it is advisable to perform a routine trial-and-error search or 

approach for the ideal trial vector generation strategy and continually adjust the values 
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of the related control parameter. Thus, different trial vector generation strategies have 

a greater level of effectiveness when combined with specific control parameter values 

during different stages of evolution.  

Differential evolution algorithm has proven to be a basic yet effective evolutionary 

algorithm for numerous optimization problems with applications in the real-world. 

This has given rise to check and actualization by many researchers so that they can be 

in relative term with general observations. A very tedious optimization trial is required 

in the trial-and-error method to adjust the control parameters, even for an algorithm 

whose parameters are fixed throughout the evolutionary search. The convergence 

performance of adaptive differential evolution algorithms have been found to be faster 

and more reliable than classic differential algorithms lacking parameter control for 

several benchmark problems. Moreover, the population of the differential evolution 

may switch regions within the search space over the course of the evolution, which 

increases the effectiveness of certain strategies associated with specific parameter 

settings. Therefore, it is necessary to identify inappropriate strategies and their 

associated parameter values at various stages of the evolution/search process in an 

adaptive manner. The algorithm operates using computational steps similar to those 

employed by a standard and classical evolution algorithm. In differential evolution, 

contour matching is known to be the most important feature, which means that the 

generation population takes up its operation in such way that the regions of the 

objective function surface are checked automatically as soon as they are noticed [21]. 

The adaptive numerical optimization procedure is used to obtain a discrete variable 

solution. Basically, numerical optimization techniques can be categorized as gradient-

based and no gradient algorithms. 
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The former often lead to local optimum while the latter on the other hand converge to 

a global optimum but the two variables usually require a great deal of function 

evaluations. Numerical optimization depicts a wide range of understanding and an up-

to-date explanation of the most effective and essential methods in continuous 

optimization. Thus, it is a response to the growing interest in optimization found in 

science, engineering, and business with a main focus on the methods that are most 

suitable for practical problems. The majority of algorithms for nonlinear optimization 

problems only seek out a local solution: the point at which all other viable nearby 

points are larger than the objective function.  

 

They are sometimes unable to identify the global solution – that is, the point with 

lowest function value. Despite being necessary for many applications, global solutions 

are often difficult to identify and even more difficult to locate. Local solutions double 

as global solutions for convex programming problems, most especially for linear 

programs.  

 

Both constrained and unconstrained general nonlinear problems can sometimes have 

local solutions that are not global solutions. From the analysis of Advances in 

Feedstock Conversion Technologies for Alternative Fuels and Bio products, 2019 

Numerical optimization was performed using Design Expert 8.0.4 software to 

maximize extracted oil yield within the range set for each parameters, and a second-

order polynomial equation was used to model the relationship between extract yield 

and the process parameters, as shown in the following equation: 

Y=𝛽0+∑ 𝛽𝑖𝑥𝑖
𝑛
𝑖=1  +∑ 𝛽𝑖𝑖

𝑛
𝑖=1 𝑥𝑖2+∑ −1𝑛

𝑖=1 ∑ 𝛽𝑗𝑙
𝑛
𝑖=1 𝑥𝑖𝑥𝑗. [50] 
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Where Y is the response variable (extract yield), 𝑥𝑖 and 𝑥𝑗 are coded independent 

variables, and 𝛽0 ,𝛽𝑖 ,𝛽𝑖𝑖   and 𝛽𝑖𝑗 are coefficients of intercept, linear, quadratic and 

interaction terms, respectively. A major benefit of optimization numerical methods is 

that it is possible to find a numerical solution for a problem even when it does not have 

an analytical solution. Furthermore, a numerical method only utilizes the evaluation of 

standard functions and their operations: addition, subtraction, multiplication and 

division. The advantage of numerical optimization is that it can be applied to a wide 

range of problems. It has also proven to be effective for reaching a local optimum for 

a smooth, continuous objective function. 
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Chapter 3 

METHODOLOGY 

This study employs an adaptive DE algorithms technique of metaheuristic 

evolutionary algorithm with a new mutation strategy to examine the results of single-

objective problem optimization and multi-objective problem optimization. Adaptive 

DE algorithms have been used by different researchers during the past ten years. While 

DEs have established their capacity for exploring large search spaces, they are 

relatively less efficient in their ability to fine-tune the solution. This disadvantage is 

typically overcome through the application of local optimization algorithms to 

individuals in the population [31]. 

 

Adaptive Differential Evolution with Additional External Archive: JADE is proposed 

to enhance optimization performance in the implementation of a new “DE/current-to-

pbest” mutation strategy, which includes an additional external archive and the 

adaptive update of control parameters. The “DE/current-to-pbest” is a simplification 

of the typical “DE/current-to-best,” while historical data is used by the additional 

archive process to offer solutions on progress diversity. Both convergence 

performance and the diversity of the population are enhanced by the two operations. 

 

The control parameters are automatically updated to the appropriate values through 

parameter adaptation, which avoids relying on outdated information regarding the 
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relationship between the characteristics of the optimization problems and the 

parameter settings [32]. 

3.1 Differential Evaluation Operation  

This section outlines the operation of differential evolution and presents the notations 

and terminology necessary to adequately understand the various adaptive evolutionary 

algorithms. 

Differential evolution shadows the typical path for the algorithm. The uniform 

distribution     𝑋𝑗
𝑙𝑜𝑤  ≤ 𝑥𝑗,𝑖,0 ≤ 𝑋𝑗

𝑢𝑝
, for j =1,2,...,D is used to randomly generate the 

first population {𝑥𝑖,0=(𝑥1,i,0,𝑥2,i,0,...,𝑥D,i,0) |i =1,2,...,NP}, where D and NP represent 

the dimension of the problem and population size, respectively. Following 

initialization, DE enters an evolutionary-operation loop: mutation, crossover, and 

selection [32]. 

Mutation: Mutation vectors  𝑉𝑖.𝑔  are created at each generation g using the existing 

population for offspring {𝑥i,g | i=1,2,...,NP}. Mutation strategies often found in the 

literature include: 

1) “DE/rand/1” 

                 𝑉𝑖,𝑔=𝑋𝑟0,𝑔+𝐹𝑖  . (𝑋𝑟1,𝑔 −  𝑋𝑟2,𝑔)                                                                (3.1) 

2) “DE/current-to-best/1” 

                 Vi,g=Xr0,g+𝐹𝑖  . (𝑋𝑟1,𝑔 −  𝑋𝑟𝑖,𝑔)  +  𝐹𝑖  . (𝑋𝑟1,𝑔 −  𝑋𝑟2,𝑔)                            (3.2)                             

3) “DE/best/1” 

   
   

                𝑉𝑖,𝑔
=𝑋𝑏𝑒𝑠𝑡,𝑔+𝐹𝑖  . (𝑋𝑟1,𝑔 −  𝑋𝑟2,𝑔)                                                             (3.3)    
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Where the r0, r1 and r2 indices are separate integers uniformly selected from the 

set{1,2,...,NP}\{i}, 𝑋𝑟1,𝑔-𝑋𝑟2,𝑔   is a difference vector used in the mutation of the 

matching offspring  𝑋𝑗.𝑔 , 𝑋𝑏𝑒𝑠𝑡,𝑔  best vector for generation g, and 𝐹𝑖 represent  

mutation with a range typically on the period (0,1+).  

 

𝐹𝑖 =F is a static parameter utilized in classic DE to produce the mutation vectors in 

every generation, while each individual (i) in numerous adaptive DE algorithms is 

linked to its particular mutation factor 𝐹𝑖. The generalization of the mutation strategies 

outlined above is possible through the implementation of multiple difference vectors 

different from  𝑋𝑟1,𝑔 − 𝑋𝑟2,𝑔 , which results in a strategy known as “DE/–/k” 

depending on how many difference vectors are utilized. 

 

It is noteworthy that some trial vector components might be in violation of predefined 

boundary constraints. This problem can be overcome through the use of penalty 

schemes, resetting schemes, or other possible solutions. For constrained problems, we 

employ a simple method in which the violating components are set in the middle of 

the violated bounds and the corresponding components of the parent individual [33]. 

 

       (3.4) 

Where the jth component of the mutation vector 𝑉𝑖,𝑔  and the offspring vector 𝑋𝑖,𝑔 at g 

generation  are represented by 𝑉𝑗,𝑖,𝑔  and 𝑋𝑗,𝑖,𝑔. when the best  solution is either on or 

close to the boundary This technique will be  particularly effective. 
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Crossover: a CR process is used in producing the last  trial offspring vector 

 𝑈𝑖,𝑔 = (𝑈1,𝑖,𝑔,𝑈2,𝑖,𝑔,...,𝑈𝐷,𝑖,𝑔) after the mutation 

                 𝑈𝑗.𝑖.𝑔 = {
𝑣𝑗,𝑖,𝑔 , 𝑖𝑓 𝑟𝑎𝑛𝑑 (0,1)  < 𝐶𝑅𝑖 𝑜𝑟 𝑗 = 𝑗𝑟𝑎𝑛𝑑           

𝑥𝑗,𝑖,𝑔  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                      (3.5) 

Where the rand (a, b) it’s an independently generated, random uniform number at 

interval [a, b] For all j and i, 𝑗𝑟𝑎𝑛𝑑  =randint (1, D) is a random number selected from 

1 to D and regenerated for every i, and crossover rate  𝐶𝑅𝑖  ∈ [0,1] somewhat parallels 

mean section for components vector derived as of the Mutation coefficient. In normal 

differential evolution ,𝐶𝑅𝑖 =CR is a generation static parameter and used in trial 

coefficient in every generation, while individual i’s in many adaptive evolutionary 

algorithms each correspond to their own crossover rate 𝐶𝑅𝑖. 

Selection: selection process chooses the superior between offspring  𝑋𝑖,𝑔 and the trial 

𝑈𝑖,𝑔 vectors using F values F(x). e.g., the chosen vector in a minimization problem can 

be given as: 

                            𝑋𝑖.𝑔+1 = {
𝑢𝑖,𝑔 , 𝑖𝑓 𝑓 (𝑢𝑖,𝑔)  < 𝑓(𝑥𝑖.𝑔)

𝑥𝑖,𝑔  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                           (3.6) 

which then becomes the offspring vector in the following generation  And The if the 

trial variable  𝑈𝑖,𝑔 is superior to the offspring  𝑋𝑖,𝑔 procedure in (3.6) can be considered 

a success, thereby indicating a positive evolution progress ∆ i,g =f(𝑋𝑖,𝑔)−f(𝑈𝑖,𝑔). 

Consequently, the control parameters 𝐹𝑖 and 𝐶𝑅 𝑖 utilized in generating 𝑈𝑖,𝑔 are 

respectively known as the successful mutation factor and crossover probability. 

Outlined above is a one-to-one selection process normally fixed in various differential 

evolutionary algorithms, although the crossover can present in variations different 

from the binomial operation in (3.5). As such, the naming of classic DE algorithms is 

based in history; e.g., “DE/rand/1/bin”, is indicative of its “DE/rand/1” binomial 

crossover process and mutation technique. 
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3.2 Pseudo-Code for JADE in Single Objective Optimization Problems 

This section provides a brief overview of recent adaptive DE algorithms involving the 

dynamic update of control parameters over the course of the evolutionary search. It 

outlines the convenient adaptation mechanism proposed in JADE, which is a novel DE 

algorithm, used in implementing the “DE/current-to-pbest” mutation strategy with an 

additional archive and adaptive control of F and CR. JADE implements identical 

crossover process  and the selection process as defined in (3.5) and (3.6). 

3.2.1 DE/current-to-pbest  

“DE/rand/1” it’s the first one type of DE mutation technique (3.1), (3.2), and is widely 

accepted in the literature as the most successful scheme [34]. However, “DE/best/2” 

might better than  “DE/rand/1”, even as “DE/best/1” is preferred for many official 

problems [35]. Furthermore, it has been argued in [36] that incorporating some   best 

solution info and the use of “DE/current-to-pbest/1” can be beneficial for an algorithm.  



 30 

Figure 3.1: “DE/current-to-pbest/1” mutation technique [32]. 

The figure above illustrates the “DE/current-to-pbest/1” mutation strategy 

implemented in JADE and the Optimization problem outlines are represented by 

dashed curves. 𝑉𝑖 represents the mutation variable  created for the individual 𝑋𝑖 

through  related 𝐹𝑖 mutation factor uniformly chosen form the set {1,2,….,NP}\{i} and 

𝐹𝑖 is the mutation factor that associate with 𝑋𝑖  and is re-generate at each generation by 

the adaptation process introduced later  in (3.5).DE/current-to-pbest is indeed a 

generalization of DE/current-to-best .any  of the 100p% solution can be randomly 

chosen to play the role of the single best solution in DE/current-to-best while  inferior 

solution when compared to the current population provide additional information 

about the promising progress direction .Donta A as the set of archived inferior solution 

and P as the current population. 

The incorporation of the solution in the DE search speeds up convergence. However, 

this information could also have adverse effects, such as premature convergence as a 



 31 

result of the reduction in the diversity of the population. Due to the faster but not as 

consistent divergence performance of prevailing technique (3.3) and (3.4), a novel 

mutation technique, known as “DE/current-to-pbest” with the  additional archive, is 

suggested as the possible for adaptive  algorithm that suggested in this thesis. 

As Figure 3.1 illustrates, a mutation vector  “DE/current-to-pbest/1” (without archive) 

that generated using: 

                   𝑉𝑖,𝑔=𝑋𝑖,𝑔+𝐹𝑖  . (𝑋𝑏𝑒𝑠𝑡,𝑔
𝑝

−  𝑋𝑖,𝑔)  +  𝐹𝑖  . (𝑋𝑟1,𝑔 −  𝑋𝑟2,𝑔)                            (3.7)  

where 𝑋𝑏𝑒𝑠𝑡,𝑔
𝑝

 is selected randomly as one of the top 100p% individuals in current 

population with p ∈ [0,1], with  𝐹𝑖 denotes the xi-associated mutation rate, which it’s 

re-generated through an adaptation technique described later in (3.11) at each 

generation. “DE/current-to-pbest” is essentially a general form of “DE/current-to-

best”. In “DE/current-to-best”, any more than 100p% sets  can be selected at random 

to perform the function of single optimal  set. 

 

 Additional information regarding the likely progress direction can be provided by 

comparing recently-explored inferior solutions to the existing population. With A 

denoting the set in archived low-grade sets and P as the existing population, 
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 The mutation vector in “DE/current-to-pbest/1” with archive its build as follows: 

                    𝑉𝑖,𝑔=𝑋𝑖,𝑔+𝐹𝑖  . (𝑋𝑏𝑒𝑠𝑡,𝑔
𝑝

−  𝑋𝑖,𝑔)  +  𝐹𝑖  . (𝑋𝑟1,𝑔 −  �̃�𝑟2,𝑔)                (3.8)    

where 𝑋𝑖,𝑔  , 𝑋𝑟1,𝑔 and 𝑋 𝑏𝑒𝑠𝑡,𝑔
𝑝

 “ they selected by P in a manner similar to (3.7), while 

�̃�𝑟2,𝑔 is selected at random from the union of P and P (P∪A). 

The operation of the archive is simplified to reduce the amount of computation 

required. Initially empty, the archive is filled with parent solutions that did not pass 

the selection process in (3.6) after each generation. Once it reaches a particular 

threshold, NP, solutions are removed from the archive at random to keep its size from 

surpassing said threshold. (3.7) is evidently a unique case of (3.8) in that the size of 

the archive is set at zero. 
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Figure 3.2: Pseudo JADE Code with additional Archive [32]. 

The archive offers solutions regarding the progress direction and also has the capability 

to improve population diversity. Furthermore, as the adaptation process parameters 

(3.11) and (3.13) later show, the best F values that help enhance the diversity of the 

population are encouraged. 
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Consequently, despite its bias in the way of a possible optimum (potentially a local 

optimum mini), “DE/current-to-pbest/1” proposed cannot be trapped to a local 

minimum. From a comparative standpoint, the search region of “DE/rand/1” is 

relatively small and has no apparent biases, while the search region of “DE/current-to-

pbest/1” with an archive is quite large and has biases towards favorable progress 

directions. Figure 3.2 contains the pseudo code of JADE. 

3.2.2 Parameter Adaptation 

The crossover probability 𝐶𝑅𝑖 of every individual 𝑋𝑖  in each generation g is generated 

independently in accordance with a regular distribution having a mean of μCR, 0.1 

standard deviation  

                                𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇 𝑐 𝑟 ,0.1)                                                            (3.9) 

And after that it’s become  to [0, 1]. 𝑆𝐶𝑅  the arrangement of success 𝐶𝑅𝑖 ’s rates in g 

generation. μCR is initially set at 0.5 and subsequently will updated after finishing 

every generation using the following equation: 

                      𝜇 𝐶𝑅= (1 - c) . 𝜇 𝐶𝑅 + c . mean𝐴 (𝑆𝐶𝑅)                                      (3.10) 

Where c is positive constant between  0 to 1 and mean𝐴(·)is the usual arithmetic mean. 

In a similar manner, the mutation rate 𝐹𝑖 for every  individual 𝑥𝑖 in every generation g 

is generated independently based on a Cauchy distribution with location parameter μF 

and scale parameter 0.1 

                                  𝐹𝑖 = randc𝑖 (𝜇 F, 0.1)                                                              (3.11) 

And then regenerated if  𝐹𝑖 ≤0 or truncated to 1 if 𝐹𝑖 ≥1. 𝑆𝐹  denotes the set of effective 

mutation rates in generation g.  
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The position of parameter μF of the Cauchy distribution is initially set at 0.5 and every 

time updated following in every generation as 

         𝜇 F = (1 −  c) . 𝜇 F + c . mean𝐿 (𝑆𝐹)                                                           (3.12) 

And the  mean𝐿(·) its represent  the Lehmer mean 

                      𝑚𝑒𝑎𝑛𝐿(𝑆𝐹) =
∑𝐹 ∈𝑆𝐹  

𝐹2

∑𝐹 ∈𝑆𝐹
 𝐹

                                                                      (3.13) 

3.2.3 Descriptions for  Parameter Adaptation 

μCR adaptation is guided by the notion that the individuals generated by better control 

parameters have a greater chance of survival and should therefore be propagated to 

subsequent generations. In practice, this involves recording the previses  success 

crossover rate and using them as a controller when generating new 𝐶𝑅𝑖’s. The standard 

deviation in (3.9) is set to a fairly minor figure to ensure that the adaptation functions 

efficiently; for example, in the rare instance of an infinite standard deviation, the value 

of μCR will not affect the truncated normal distribution. Relative to CR, the adaptation 

of μF involves two unique operations. In the first, 𝐹𝑖’s are generated in accordance 

with a truncated Cauchy distribution.  

 

Unlike normal distribution, a Cauchy distribution is better able to improve the diversity 

of mutation variable , thereby preventing convergence from occurring prematurely as 

is often the case with mutation technique (such as “DE/best”, “DE/current-to-best”, 

and “DE/current-to-pbest”) when mutation variable  are overly focused nearby to 

definite value. 

 In the second operation, μF adaptation attaches greater significance to bigger effective 

mutation rate through Lehmer mean as it’s declared  in (3.13), as opposed to an 

mathematics mean, which is the case in μCR adaptation. 
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As a result, Lehmer mean also useful in the propagation of large mutation factors, 

which leads to improvements in the progress rate. In contrast, the mutation factor’s 

optimal value tends to be larger than the arithmetic mean of 𝑆𝐹  , which results in a 

smaller μF value and ultimately premature convergence. The lesser μF is expected to 

the inconsistency between the rate of success and the rate of progress in DE search. In 

fact, an important similarity between the “DE/current-to-pbest” with small 𝐹 𝑖  and a 

(1+1) evolution strategy (ES) [37] is that the offspring generated by both tend to be in 

the area around the base vector. The (1+1) ES typically has a higher probability of 

success the smaller the mutation variance (a proven fact for sphere and corridor 

functions [37], [38]), although a near-zero variance value results in a trivial evolution 

progress. One way to overcome this shortcoming involves placing greater significance 

on successful mutation rate to speed up the evolutionary search process, which is both 

simple and effective. 

 

In regards to (3.10) and (3.12), parameter adaptation does not occur is the constant c 

= 0. Moreover, a successful 𝐶𝑅𝑖 or 𝐹𝑖 has a lifespan of approximately 1/c generations 

and so the previous estimation of μCR or μF is decreased  by “(1 − 𝑐)1/𝑐→1/e≈37%”, 

at c is near enough to zero. 
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3.2.4 Parameter Settings to Discussion  

F and CR are the two control parameters in classic DE that need to be user-adjusted. 

These problem-dependent parameters require a relatively tiresome process of trial and 

error to determine their appropriate value for specific problems. In contrast, the new c 

and p parameters in JADE are not particularly sensitive to different problems based on 

their role in JADE: c regulates parameter adaptation, while p regulates how greedy the 

mutation strategy is. The best JADE results are usually found under the following 

conditions: 

 1/c ∈ [5, 20] and p∈ [5%, 20%]; i.e., the μCR and μF values have a lifespan with a 

range of 5-20 generations, and top 5–20% high-quality solutions in the mutation are 

considered [32]. 

3.2.5 Adding External Archive to JADE 

The algorithm proposed here uses both internal population and external archive. 

Using a decomposition-based strategy, it is able to allow its working population evolve 

while maintaining the external archive using domination-based sorting. The 

information extracted from the external archive is utilized in the generation of a new 

solution using genetic operator, first solution selected from the archive using roulette 

wheel method and by select one solution from archive and second solution will 

generate randomly then modified both solution by crossover or mutation. 
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3.2.6 Update External Archive  

The external archive provides information about the progress direction and is also 

capable of improving the diversity of the population ,  A  denote as the set of archive 

inferior solution and P as set of successful current population archive  . 

 

              Archive P                        JADE new solution              Archive A  

 

 

 

 

                             

 

 

 

 where the new solutions are built by using both archive  some solution are selected 

randomly as one of the top individuals form current population  P  while the rest is 

randomly chosen from the union P∪A of the current population and the archive . The 

archive operation is made very simple to avoid significant computation overhead The 

archive is initiated to be empty. Then, after each generation, the parent solutions that 

fail in the selection process are added to the archive. If the archive size exceeds a 

certain threshold, say NP,then some solutions are randomly removed from the archive 

to keep the archive size at NP. 
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Figure 3.3 Illustrate Updating the Archive in JADE Algorithm 
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3.3 JADE for Multi-Objective Problems 

MOO has real-world uses in various fields, including finance, engineering, and science 

[39], due to the direct links between the outcomes of the optimization and cost prices, 

profit margins, and other factors that affect safety, performance, and the environment, 

amongst others. There is no simple way to compare different outcomes using a single 

dimension due to the involvement and competition between numerous non-

commensurable objectives/criteria. 

 

For example, financial managers need to account for both risk and return when making 

investment decisions; air traffic controllers need to balance between satisfying the 

preferences of stakeholders and reducing systemic airspace congestion. The presence 

of such multiple (and often conflicting) objectives in real-world decision-making 

applications presents a unique challenge to researchers. This necessitates that more 

effort, beyond conventional techniques such as linear and nonlinear programming, be 

put into solving such problems [38]. 

 

The design of multi-objective evolutionary algorithms has to primary objectives: 

maximizing the diversity and spread of solutions, and to enhance the speed of 

convergence to the Pareto-optimal front. The first issue is addressed in the literature 

through the use of different mechanisms for maintaining diversity, which primarily 

depend on crowding density estimates for solutions or by calculating crowding 

distance as the sum of the distance between point on both sides of a solution at all  

dimension in the problem  space. The techniques regard solutions that’s have either 

high crowding densities or small crowding distances as substandard and more likely 

to be eliminated to enhance the diversity of the population. 
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MOJaDE addresses the issues raised above. It is a multi-object algorithm, whose 

updated there control parameters in a self-adaptive way, thereby bypassing user 

interaction both prior and during the optimization process. In so doing, it prevents the 

algorithm’s performance from being adversely affected by wrongly-set parameter 

values. Explored inferior solutions are stored in a newly-introduced external archive 

provided their differences with the existing population show promise in regards to the 

direction of the optimal solution Pareto front. It is noteworthy that this archive is 

distinct from those in other MOEAs to store their best non-dominated solutions. 

Furthermore, crowding distance is calculated based on a fairness measure with a 

preference for solutions with a near-uniform yet large distance between them and their 

nearest neighbors. This is particularly important for the distribution of solutions after 

computing the non-dominated sets, which it could be speedily motivated in the 

direction of the optimal solution Pareto sets. Additionally, control parameters with the 

self-adaptive nature of the algorithm’s is help to avoid issues with parameter tuning 

for problems with diverse characteristics [40]. 

3.3.1 JADE Operation for Multi-Objective  

The DE crossover be able to perform identically for both single and multi-objective 

optimization. Due to the challenges unique to multi-objective optimization, however, 

there is a need to reconsider the selection and mutation processes. Firstly, despite the 

selection requirement that unique solutions in a multi objective dimension space be 

comparable, it is impossible to guarantee this using the rank dominance comparison 

since this establishes the order between the solutions. To overcome this, a second 

metric like crowding density can be introduced to facilitate the comparison of two 

solutions tied in the dominance comparison. 
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Secondly, the original meaning of the best-solution information utilized in a mutation 

technique is lost as it can no longer serve as a guide towards the optimum. This 

problem typically arises after a few generations, particularly when the objective space 

dimension is elevated, leading solutions to become non-dominated from one another. 

As such, crowing density is used to identify the best solutions rather than dominance. 

Consequently, the population is moved to the least-populated regions using a regular 

greedy mutation strategy, although these are not automatically nearer to the real Pareto 

front [38]. 
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Figure 3.4: MOJaDE Pseudo-Code  
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3.3.2 Pareto Dominance and Crowding Density 

In an M-objective minimization problem, it is defined that an objective vector 

 f = (f1, f2, …, fM) dominates another vector g =(g1, g2, …, gM) if  

∀𝒾 ∈ {1,2, … , 𝑚}: 𝐹𝑖 ≤ 𝑔𝑖  𝑎𝑛𝑑 ∃𝒾 ∈ {1,2, … , 𝑚}: 𝐹𝑖 < 𝑔𝑖                  (3.14) 

If it is dominant, the objective vector f (and its matching decision vector) is taken to 

be superior to vector g (and its matching decision vector). The definition of Pareto 

dominance makes it evident that it is possible to not be able to compare two objective 

vectors (i.e., neither dominates the other). 

A Pareto optimal solution is one that is not dominated by others in the problem space. 

Similarly, the Pareto-optimal front is a set containing these non-dominated solutions. 

Generally speaking, there is a near-unlimited number of Pareto optimal solutions. 

However, an EA is only capable of searching a small set of archetypal solutions, which 

should be diverse and dispersed across the Pareto-optimal front. This is typically 

attained using various methods to approximate the crowding density of solutions: more 

crowded solutions are typically eliminated to help maintain population diversity. 

3.3.3 Selection Operation  

The MOJADE selection operation involves comparing the Pareto dominance of 

solutions, as well as estimating their crowding density at a lexicographic order. As 

such, solutions are considered superior to others if they dominate or have a smaller 

crowding density in the event of a tie in dominance comparison. Specifically, the 

selection of NP vectors in MOJADE uses a three-step comparison of available (P') 

2NP offspring  and their trial vectors. Chosen vectors constitute the offspring  

population for the subsequent generation. The initial step involves  comparison of the 

dominance of each parent-trial vector pair. The non-dominated vector is then removed 
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from the available pool P' in a manner similar to the DE comparison process in single-

objective. Following this, P' has a scope ranging from NP to 2NP.  

In the next  step, P' it’s reduces to a smaller size using the dominance relationship 

among all solutions. In the initial stage, every non-dominated solutions are given rank 

1 to determine the solutions with the highest fitness value. The remaining solutions are 

then taken into consideration with the non-dominated ones being assigned rank 2. This 

procedure is repeated until rank values have been assigned to no less than NP vectors, 

after which the rest vectors are instantly eliminated from P'. 

After that its  involves estimating the crowding density of solution with the worst rank 

values. The most crowded solutions are eliminated, followed by updates of the 

crowding density of the remaining solutions until the scope of P' equals NP. The 

density is estimated on the basis of the principles that a solution has a lower 

crowdedness if the distance between it and its nearest neighbors is larger or more 

similar to the uniform. To this end, the most common fairness measure in network 

engineering [41] used to preserve the regularity of competing variables while 

simultaneously maximizing their summation is an ideal way to estimate crowding 

density.   
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Consider   the   (p,α)-proportionally fairness measure in [41]. With a usual p=1 

and,𝛼 ≥ 0 it is possible to compute the crowding distance 𝑑𝑖 of a solution i as  

𝑑𝑖 = {
∑ log 𝑑𝑖𝑗                       𝑖𝑓 𝛼 = 1𝑘

𝑖=1

(1 − 𝛼)−1 ∑ 𝑑𝑖𝑗
1−𝛼𝑘

𝑖=1          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                        (3.15) 

where dij denotes the Euclidean distance of solution i to its j-th nearest neighbor in P'. 

It is not difficult to show that di is the aggregate distance if 𝛼= 0.and  it is equal product 

distance ,If 𝛼 = 1 

                              di = ∏  dij 
k
i=1 ;                                                                                  (3.16) 

And its harmonic distance when 𝛼= 2   

                           di =
1

1

di,1
+

1

di,2
+⋯+

1

di,2(m−1)

                                                                     (3.17) 

And max-min distance when  𝛼 → ∞  

                           𝑑𝑖 = max(min(𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑘))                                                      (3.18) 

It is noteworthy that  both product and harmonic  are accepted in DE [42] as the 

crowding distance. 
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Figure 3.5: Best Solution Places Compare with  Other Solutions [38]. 

 

Figure 3.5 above illustrates the relative location of worst solutions (gray dots) and  the 

best (dark dots) in the problem space. 

 

The bidirectional arrows and unidirectional indicate the path of the progress towards 

the Pareto front and the distribution of the population, respectively. 
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3.3.4 Mutation Operation 

After a few generations, most or all individuals in the population will typically have 

become non-dominated. In the event of this, the best solutions are identified primarily 

based on crowding density.  The population is guided in the direction of the sparsest 

region with the best solutions as part of a usual greedy strategy. 

 

This situation differs from single-objective optimization and even the earlier stages of 

multi-objective optimization, in which the direction of the optimal solutions is 

indicated by the best solutions. This is illustrated in Fig. 3.5 where the best solutions 

are evidently unable to indicate a promising direction when they are non-dominated 

by other solutions. We propose a new approach of utilizing directional information 

based on the previously-explored inferior solutions in the optimization process. The 

external archive A is then used as a storage space for parent individuals recently 

eliminated from the population due to their domination by other solutions in the initial 

phases for selection process. After that, as an improvement on the mutation strategy in 

(3.5), the following formulation is used to generate the mutant vector:  

𝒗𝒊,𝒈 = 𝒙𝒊,𝒈 + 𝑭𝒊 [(𝒙𝒃𝒆𝒔𝒕,𝒈
𝒑

− 𝒙𝒊,𝒈) + (�̃�𝒓𝟏,𝒈 − 𝒙𝒓𝟐,𝒈)]                                                (3.19) 

where  �̃�𝑟1,𝑔is a randomly-selected vector by the  combination of the archive with the 

parent population, while 𝑋𝑟2,𝑔  and 𝑋𝑏𝑒𝑠𝑡,𝑔
𝑝

are selected from the parent population in 

the way as in (3.5). It is clear that (3.19) falls back to (3.5) if the archive is blank. 

�̃�𝑟1,𝑔 is  selected  from and archive if it is not empty,  while the  difference between 

�̃�𝑟1,𝑔   and �̃�𝑟2,𝑔  indicates the direction towards the optimum. It is important to note 

that this method is distinct from the one proposed in [43], where solutions in the current 

population are compared to obtain direction information despite differences in their 
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dominance ranks (which essentially means that direction information will be lacking 

if all solutions are non-dominated). Furthermore, the operation in (3.19) is distinct 

from many other MOEAs where saving the best non dominant solution in  an archive 

.However, similar to these archive-based strategies, our method is also helpful to 

enhance the diversity of solutions, other than its main benefit of providing direction 

information. Simple archive operations are used to make the process less complex. 

 

Initially empty, parent individuals that failed the initial steps of the selection process 

are added to the archive after each generation. Solutions are eliminated at random to 

maintain the size of the archive when it reaches a predefined threshold like 2NP [44]. 

3.3.5 External Archive 

In contrast to single objective optimization, MOJaDE are more likely to keep a group 

of non-dominated solutions. Due to the lack of preference information in multi-

objective optimization, no solution be able to superior to others. Consequently, JADE 

algorithm utilize an external archive as way to accurately document the pareto optimal 

set non dominated vectors encountered during the adaptation  method [54,55].  

3.3.6 Diversity 

The success of MODE can be attributed to its capability to uncover a group of non-

dominated solution (“Pareto optimal solutions”) from one iteration. Evolutionary 

algorithms need to conduct a multimodal search, which includes a variety of unique 

potential solutions, as a way to determine a reliable approximation of the Pareto 

optimal set from a single optimization run. As such, the efficiency of MODE 

considerably relies on the availability of a diverse population [53].  
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3.3.7 Update External Archive  

New solutions are consistently assigned to the external archive over the course of the 

evolution. The decision of new solution remains in the external archive or not  is based 

on a comparison between it and every other pareto optimal set (non-dominated 

0solution in the archive, the size of which is limited.  

 

Each individual in our algorithm search for a new solution in each generation. The new 

solution is allowed into the external archive if it is found to dominate the original 

individual. Conversely, if the original individual dominates the new solution, it is not 

permitted into the external archive. If neither of the two solutions dominates the other, 

one of them is chosen at random to add into external archive, which is updated after 

each generation. If the number of Pareto optimal set is greater than the pre-determined 

archive size, crowding distance [54] is then used to delete any extra members. 
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Chapter 4 

EXPERIMENTAL RESULT AND EVALUATIONS 

Execution evaluation of the algorithm suggested, and the display of the comparable 

success set apart from the standard meta heuristics is to be undertaken within the 

difficulties of CEC 2017 [45]. 

Although the definitions, categorizations and characteristics (fitness landscape) are not 

described here, the functional benchmarks are clearly explained in the references. To 

ensure an equitable and comparative evaluation, the independent runs, and the 

stopping criteria of the function evaluations will be identical to those of the 

corresponding references. Likewise, the proposed algorithmic parameter   

methodology will remain the same in all test functions; throughout the program 

executions, there will be no interactive intervention. Test function integrity also   

dictates that the number of variables, in respect of the test functions, also obtain to that 

of the corresponding references. 
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4.1 CEC'17 Expensive Optimization Test Problems  

4.1.1 Common Definitions 

All  test  functions  are  minimization  problems  defined  as follows in equation (4.1): 

min 𝑓(𝑥) , 𝑥 = [𝑥1, 𝑥2, … . , 𝑥𝐷]𝑇 

Where D is the number of decision variable. All search ranges and Dimension are 

clearly explained in the references [46]. 

4.1.2 Results 

Our Proposed algorithm was tested distinctly for optimizing CEC2017 single objective 

problems in 30 Dimension [46] .The results intended to demonstrate a large 

improvement from the JADE solutions. Each problem have been Averaged over 10 

runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(4.1) 
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Table 4.1: Summary of CEC’17 Optimization Test Problem 

 No. Functions 𝐹𝑖
∗=𝐹𝑖(𝑥∗) 

Unimodal 

Functions 

1 Shifted and Rotated Bent Cigar Function 100 

2 Shifted and Rotated Sum of Different Power 

Function 

200 

3 Shifted and Rotated Zakharov Function 300 

 

 

Simple 

Multimodal 

Functions 

4 Shifted and Rotated Rosenbrock’s Function 400 

5 Shifted and Rotated Rastrigin’s Function 500 

6 Shifted and Rotated Expanded Scaffer’s F6 

Function 

600 

7 Shifted and Rotated Lunacek Bi_Rastrigin’s 

Function 

700 

8 Shifted and Rotated Non-Continuous 

Rastrigin’s  Function 

800 

9 Shifted and Rotated Levy Function 900 

10 Shifted and Rotated Schwefel’s Function 1000 

 

 

 

 

Hybrid 

Functions 

11 Hybrid Function 1(N=3) 1100 

12 Hybrid Function 2(N=3) 1200 

13 Hybrid Function 3(N=3) 1300 

14 Hybrid Function 4(N=4) 1400 

15 Hybrid Function 5(N=4) 1500 

16 Hybrid Function 6(N=4) 1600 

17 Hybrid Function 6(N=5) 1700 

18 Hybrid Function 6(N=5) 1800 

19 Hybrid Function 6(N=5) 1900 

20 Hybrid Function 6(N=6) 2000 

 

 

 

Composition 

Function 

21 Composition Function 1 (N=3) 2100 

22 Composition Function 1 (N=3) 2200 

23 Composition Function 1 (N=4) 2300 

24 Composition Function 1 (N=4) 2400 

25 Composition Function 1 (N=5) 2500 

26 Composition Function 1 (N=5) 2600 

27 Composition Function 1 (N=6) 2700 

28 Composition Function 1 (N=6) 2800 

29 Composition Function 1 (N=3) 2900 

30 Composition Function 1 (N=3) 3000 
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Table 4.2 : Best Result of Improved  JADE Algorithm in Dimension 30 Over 10 Runs. 

Function Number Optimal Solution JADE Error 

1 100 100 0.00E+00 

    

3 300 300 0.00E+00 

4 400 400 0.00E+00 

5 500 500 0.00E+00 

6 600 600 0.00E+00 

7 700 710.9892139 1.10E+01 

8 800 800 0.00E+00 

9 900 900 0.00E+00 

10 1000 1006.322455 6.32E+00 

11 1100 1100 0.00E+00 

12 1200 1200 0.00E+00 

13 1300 1300 0.00E+00 

14 1400 1400 0.00E+00 

15 1500 1500 0.00E+00 

16 1600 1600 0.00E+00 

17 1700 1700 0.00E+00 

18 1800 1800 0.00E+00 

19 1900 1900 0.00E+00 

20 2000 2000 0.00E+00 

21 2100 2102.5727 2.57E+00 

22 2200 2200 0.00E+00 

23 2300 2300.000028 2.80E-05 

24 2400 2403.814833 3.81E+00 

25 2500 2504.837405 4.84E+00 

26 2600 2603.37198 3.37E+00 

27 2700 2703.231896 3.23E+00 

28 2800 2806.122754 3.33E+00 

29 2900 2902.831896 2.83E+00 

30 3000 3004.245148 4.25E+00 

 

 

The results of the analyses of Table 4.2 revealed an apparent improvement in the 

quality of solutions, which obviously tend to get closeness to the optimal values.The 

findings of our experiment with JADE are consistent to some extent with the past 

studies on Problem optimization. 
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Both of the Unimodal functions results in JADE algorithm in Dimension 30 reached 

optimal solutions without any small differences from optimality. Multimodal functions 

were mixed between problems which had very high differences from optimal 

solutions; problem no. 7, and Composite functions that included problem no. 10, had 

very small differences from optimal solutions.  

 

While the rest of the problems' results in the same category reached to the optimal 

solutions. Finally, Hybrid functions and Composition function which included 

problems from no.21 to no.30, reached near-optimal solutions with relatively small 

differences from optimality. 
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Table 4.3: IGD Values Obtained by Improved JADE and it are 3 Competitors for 30  
Test Function . 

Function Number JADE BCO LSHADE SPA 

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

     

3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

5 0.00E+00 0.00E+00 3.0E+00 1.8E+00 

6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

7 1.10E+01 1.04E+01 1.2E+01 1.2E+01 

8 0.00E+00 0.00E+00 2.4E+00 1.9E+00 

9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

10 6.32E+00 2.50E-01 2.2E+01 2.2E+01 

11 0.00E+00 0.00E+00 4.1E-01 0.00E+00 

12 0.00E+00 1.87E-01 7.7E+01 1.2E+02 

13 0.00E+00 1.44E-01 3.2E+00 3.6E+00 

14 0.00E+00 2.18E-02 1.7E-01 2.0E-02 

15 0.00E+00 5.37E-03 1.7E-01 2.7E-01 

16 0.00E+00 2.05E-01 4.1E-01 5.2E-01 

17 0.00E+00 8.10E-01 1.7E-01 1.2E-01 

18 0.00E+00 1.30E-01 2.8E-01 2.4E+00 

19 0.00E+00 1.74E-01 1.1E-02 5.5E-02 

20 0.00E+00 0.00E+00 1.5E-02 1.8E-01 

21 2.57E+00 1.09E-02 1.6E+02 1.6E+02 

22 0.00E+00 0.00E+00 1.0E+02 1.0E+02 

23 2.80E-05 2.47E-01 3.0E+02 3.0E+02 

24 3.81E+00 8.25E-03 3.2E+02 2.9E+02 

25 4.84E+00 2.33E-01 4.1E+02 4.2E+02 

26 3.37E+00 2.97E-02 3.0E+02 3.0E+02 

27 3.23E+00 1.90E-01 3.9E+02 3.2E+02 

28 3.33E+00 6.50E-01 3.6E+02 4.0E+02 

29 2.83E+00 0.00E+00 2.3E+02 2.3E+02 

30 4.25E+00 1.53E-03 7.8E+04 4.1E+04 

 
 

Table 4.3 shows the best IGD values for 30 Test Problem. The results gained JADE 

algorithm as against with the solution from [47][48]. IGD score of obtained solutions 

found by JADE approach are very small. That means JADE Algorithm can discover a 

well spread sets and high quality solution in objective range for each problems.  
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By examining the comparison between error rates demonstrated in Table 4.3, it can be 

concluded that the highest number of best problem optimization results belong to the 

JADE and BCO Algorithm. The table showed superior performance of JADE from 

optimizing results of 22 out of 30 problems, which is the highest between all the 

methods from literature. In problems number (12, 13,14,15,16,17,18,19, and 23), the 

error rates of JADE appeared to be very close to optimality. The rest of the problems' 

results varied between generally small differences and extreme differences from the 

optimal values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 57 

Table 4.4: average of IGD Values Obtained by improved JADE* with Addition 

Archive   and Normal JADE without Archive, Competitors for same 30 Test Function. 
Function Number JADE* JADE 

1 0.00E+00 0.00E+00 

   

3 0.00E+00 0.00E+00 

4 0.00E+00 0.00E+00 

5 0.00E+00 0.00E+00 

6 0.00E+00 0.00E+00 

7 1.10E+01 1.10E+01 

8 0.00E+00 0.00E+00 

9 0.00E+00 0.00E+00 

10 6.32E+00 9.82E+00 

11 0.00E+00 0.00E+00 

12 0.00E+00 0.00E+00 

13 0.00E+00 0.00E+00 

14 0.00E+00 0.00E+00 

15 0.00E+00 0.00E+00 

16 0.00E+00 0.00E+00 

17 0.00E+00 0.00E+00 

18 0.00E+00 0.00E+00 

19 0.00E+00 0.00E+00 

20 0.00E+00 0.00E+00 

21 2.57E+00 2.77E+00 

22 0.00E+00 0.00E+00 

23 2.80E-05 2.00E-01 

24 3.81E+00 2.67E+01 

25 4.84E+00 4.33E+01 

26 3.37E+00 3.00E+02 

27 3.23E+00 7.58E+01 

28 3.33E+00 3.00E+02 

29 2.83E+00 3.02E+01 

30 4.25E+00 3.53E+01 

 

 

Table 4.4 shows the average of IGD values for 30 Test Problem. The results gained 

JADE* algorithm with addition archive as against the solution of normal JADE 

without archive. 
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By examining the comparison between error rates demonstrated in Table 4.4 , it can 

be concluded that adding archive improves the  solution in problem number 

(10,21,23,24,25,26,27,28,29 and 30). 

4.1.3 Friedman Ranking Test 

The Friedman Test is a non-parametric statistical test developed by Milton Friedman. 

It is used to check the statistical similarities in treatments across multiple test attempts. 

The procedure involves ranking each row together, then considering the values of 

ranks by columns [51]. The P-value indicator represents the difference between the 

ranked functions statistically. The smaller the p-value is, the bigger the statistical 

differences between the ranked methods are [52]. 

 

The ranking procedure was used in order to assess the quality of the proposed JADE. 

A comparison among the three proposed variants EA algorithm  in dimension 30 

opposed to the JADE  results, and between EA algorithm proposed  in dimension 30 

with literature studies was conducted using Friedman test. 

Table 4.5: Friedman Ranking between JADE and literature EA algorithm in D30. 

Rank Function 

1 BCO 

1 JADE 

2 SPA 

3 LSHADE 

 

  

P-value = 1.08087e-06 

 

https://en.m.wikipedia.org/wiki/Non-parametric_statistics
https://en.m.wikipedia.org/wiki/Statistical_test
https://en.m.wikipedia.org/wiki/Milton_Friedman
https://en.m.wikipedia.org/wiki/Ranking
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In dimension 30, BCO and JADE had the same level of performance according to 

Friedman Test ranking in Table 4.5. Both of version BCO and JADE had the best rank 

before SPA followed by the original LSHADE. 

4.2 CEC'17 Test Problems for Multi-objective problem  

Set of benchmarks through ‘Extended shifted ‘and ‘Extended rotated’. More 

information for each problem are presented in [49]. 

Where the average inverted generational distance (IGD) value of each generation over 

30 independent runs calculated by using all NDS values. 

4.2.1 Results  

Table 4.6: Min, Max, Average, Standard Deviation of IGD Values and Number of 

Function Evaluation of JADE in 30 Runs. 

Function 

 

Average Min Max Std 

ZDT1 9.54E-04 6.56E-04 1.72E-03 2.61E-04 

ZDT2 1.51E-02 1.03E-03 9.00E-02 2.12E-02 

ZDT3 3.11E-03 2.00E-03 5.99E-03 8.93E-04 

ZDT4 9.47E-04 6.69E-04 1.51E-03 2.05E-04 

ZDT6 4.43E-03 1.52E-03 1.55E-02 3.09E-03 

DTLZ1 6.70E-04 5.81E-04 8.15E-04 6.39E-05 

DTLZ2 1.94E-03 1.63E-03 2.37E-03 1.96E-04 

DTLZ3 5.04E-01 1.08E-01 1.18E+00 2.70E-01 

DTLZ4 5.70E-01 8.60E-02 1.41E+00 3.58E-01 

DTLZ5 4.85E-04 4.11E-04 7.09E-04 6.68E-05 

DTLZ6 2.06E-02 5.08E-04 2.39E-02 5.59E-03 

DTLZ7 3.21E-03 1.68E-03 8.05E-03 1.62E-03 

WFG1 2.15E-03 2.20E-03 2.12E-03 2.66E-05 

WFG2 9.45E-03 7.89E-03 1.17E-02 1.06E-03 

WFG3 2.94E-03 1.81E-03 5.69E-03 9.10E-04 

WFG4 5.78E-03 4.06E-03 1.12E-02 1.53E-03 

WFG5 5.38E-03 4.34E-03 7.14E-03 6.82E-04 

WFG6 6.45E-03 4.75E-03 1.34E-02 1.76E-03 

WFG7 7.35E-03 4.91E-03 1.34E-02 2.37E-03 

WFG8 5.37E-03 4.52E-03 8.17E-03 8.74E-04 

WFG9 6.78E-03 5.01E-03 1.29E-02 1.87E-03 
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It can be seen from Table 4.6 that JADE is a robust and successful approach explain 

with small ‘IGD’ score and their standard deviation.  

Tables 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 clarify the rating of problems in 

“CEC2017” and JADE with respect to the IGD values. From [47] [48], MOEA/D, 

SMPSO, GDE3, MOCell and SPEA2 are the best five approaches in the contest in 

order .The defender of this contest was “MOCell”. From all our result can see that 

JADE acted better than “MOCell” in all test problem .The proposed JADE takes the 

first rank in most of test problems. 

Table 4.7: IGD Values Obtained by JADE and it are 11 Competitors for ZDT1, ZDT2 

and ZDT3. 

Rank ZDT1 IGD ZDT2 IGD ZDT3 IGD 

1 MOJaDE 9.54E-04 MOCell 3.79E-03 MOJaDE 3.11E-03 

2 SMPSO 3.67E-03 SMPSO 3.79E-03 SMPSO 4.28E-03 

3 MOCell 3.68E-03 AbYSS 3.82E-03 OMOPSO 4.35E-03 

4 OMOPSO 3.71E-03 OMOPSO 3.83E-03 GDE3 4.36E-03 

5 AbYSS 3.72E-03 SPEA2 3.89E-03 SPEA2 4.84E-03 

6 GDE3 3.77E-03 GDE3 3.91E-03 NSGAII 5.38E-03 

7 SPEA2 3.92E-03 CellDE 4.36E-03 MOCell 6.17E-03 

8 IBEA 4.10E-03 NSGAII 4.89E-03 CellDE 1.02E-02 

9 NSGAII 4.83E-03 MOEA/D 9.13E-03 AbYSS 1.50E-02 

10 CellDE 4.83E-03 IBEA 9.41E-03 MOEA/D 1.72E-02 

11 PAES 1.17E-02 PAES 1.46E-02 IBEA 2.97E-02 

12 MOEA/D 1.25E-02 MOJaDE 1.51E-02 PAES 5.61E-02 
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Table 4.8: IGD Values Obtained by JADE and it are 11 Competitors for ZDT4, ZDT6 

and DTLZ1. 

Rank ZDT4 IGD ZDT6 IGD DTLZ1 IGD 

1 MOJaDE 9.47E-04 MOCell 3.00E-03 MOJaDE 6.70E-04 

2 SMPSO 3.71E-03 OMOPSO 3.01E-03 SPEA2 2.02E-02 

3 MOCell 3.84E-03 SMPSO 3.03E-03 GDE3 2.33E-02 

4 SPEA2 4.07E-03 AbYSS 3.05E-03 MOEA/D 2.54E-02 

5 AbYSS 4.41E-03 GDE3 3.12E-03 NSGAII 2.61E-02 

6 NSGAII 4.93E-03 SPEA2 3.17E-03 AbYSS 2.73E-02 

7 PAES 7.34E-03 CellDE 3.43E-03 SMPSO 2.82E-02 

8 MOEA/D 1.43E-01 MOEA/D 4.16E-03 MOCell 2.86E-02 

9 GDE3 4.72E-01 MOJaDE 4.43E-03 PAES 5.86E-02 

10 IBEA 6.26E-01 NSGAII 4.76E-03 CellDE 1.60E-01 

11 CellDE 4.24E+00 IBEA 5.16E-03 IBEA 1.81E-01 

12 OMOPSO 4.92E+00 PAES 7.07E-03 OMOPSO 1.18E+01 

 

It is apparent from Table 4.7 and Table 4.8 that the MOJaDE is the most competitive 

algorithm and obtained the best values on 4 problems (ZDT1, ZDT3 , ZDT4 and 

DTLZ1), while the MOCell algorithm computed the second best fronts regarding this 

indicator on this evaluated problems. MOEA/D, SMPSO,AbYSS, GDE3 and 

OMOPSO have a similar performance, while CellDE and PAES has relatively poorer 

results in regards to this indicator. 
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Table 4.9: IGD Values Obtained by JADE and it are 11 Competitors for DTLZ2, 

DTLZ3 and DTLZ4. 

Rank DTLZ2 IGD DTLZ3 IGD DTLZ4 IGD 

1 MOJaDE 1.94E-03 SMPSO 1.15E-01 MOEA/D 5.49E-02 

2 SPEA2 5.42E-02 PAES 1.91E-01 AbYSS 6.05E-02 

3 GDE3 6.28E-02 NSGAII 2.93E-01 NSGAII 6.39E-02 

4 CellDE 6.61E-02 SPEA2 3.38E-01 OMOPSO 6.48E-02 

5 MOCell 6.68E-02 AbYSS 3.94E-01 GDE3 6.57E-02 

6 MOEA/D 6.71E-02 MOJaDE 5.04E-01 SMPSO 6.80E-02 

7 AbYSS 6.88E-02 IBEA 5.11E-01 CellDE 7.71E-02 

8 NSGAII 6.88E-02 MOCell 7.55E-01 MOCell 1.35E-01 

9 OMOPSO 6.88E-02 MOEA/D 1.17E+00 SPEA2 1.37E-01 

10 SMPSO 7.17E-02 GDE3 2.25E+00 IBEA 2.10E-01 

11 IBEA 1.22E-01 CellDE 8.51E+00 PAES 3.99E-01 

12 PAES 3.15E-01 OMOPSO 1.15E+02 MOJaDE 5.70E-01 

 

 

 

Table 4.10: IGD Values Obtained by JADE and it are 11 Competitors for DTLZ5, 

DTLZ6 and DTLZ7. 

Rank DTLZ5 IGD DTLZ6 IGD DTLZ7 IGD 

1 MOJaDE 4.85E-04 OMOPSO 3.89E-03 MOJaDE 3.21E-03 

2 MOCell 4.05E-03 SMPSO 3.93E-03 SPEA2 6.96E-02 

3 AbYSS 4.08E-03 GDE3 4.15E-03 GDE3 7.47E-02 

4 SMPSO 4.09E-03 CellDE 4.54E-03 NSGAII 7.64E-02 

5 OMOPSO 4.13E-03 PAES 7.13E-03 SMPSO 8.52E-02 

6 GDE3 4.19E-03 MOEA/D 9.36E-03 OMOPSO 8.68E-02 

7 SPEA2 4.33E-03 SPEA2 1.25E-02 CellDE 1.23E-01 

8 NSGAII 5.42E-03 NSGAII 1.35E-02 MOEA/D 1.90E-01 

9 PAES 6.83E-03 MOJaDE 2.06E-02 MOCell 2.45E-01 

10 CellDE 8.56E-03 IBEA 5.75E-02 AbYSS 3.94E-01 

11 MOEA/D 1.04E-02 AbYSS 7.89E-02 IBEA 3.99E-01 

12 IBEA 1.93E-02 MOCell 7.55E-01 PAES 8.87E-01 

 

It is apparent from Table 4.9 and Table 4.10 that the MOJaDE is the most competitive 

algorithm, having the best values on 3 problems (DTLZ2, DTLZ5 and DTLZ7), while 

the SMPSO algorithm computed the second best fronts regarding to this indicator in 

the evaluated problems. MOEA/D, SPEA2, AbYSS and OMOPSO performed 

similarly, while PAES and IBEA performed poorly in regards to this indicator. 
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Tables 4.8, 4.9 and 4.10 shows the best IGD values for all three objective function 

problems DTLZ1 to DTLZ7.The results gained JADE  algorithm as  against with the 

solution from [47][48]. IGD score of obtained solutions found by JADE are very small. 

That means JADE Algorithm can discover a well spread sets and high quality solution 

in objective range for all objective function for each problems. Tables illustrate the 

ranking of all three objectives DTLZ1 to DTLZ7 .From tables can be see that JADE 

acted better than other approaches in most of problems. JADE takes the first position 

in most of previous test problems. 

Table 4.11: IGD Values Obtained by JADE and it are 11 Competitors for WFG1, 

WFG2 and WFG3. 

Rank WFG1 IGD WFG2 IGD WFG3 IGD 

1 MOJaDE 2.15E-03 MOJaDE 9.45E-03 MOJaDE 2.94E-03 

2 GDE3 5.07E-02 GDE3 1.00E-02 MOCell 1.38E-01 

3 CellDE 8.73E-02 OMOPSO 1.03E-02 OMOPSO 1.38E-01 

4 NSGAII 1.96E-01 SMPSO 1.07E-02 SMPSO 1.39E-01 

5 IBEA 2.89E-01 CellDE 1.14E-02 GDE3 1.39E-01 

6 MOEA/D 3.21E-01 SPEA2 3.58E-02 IBEA 1.39E-01 

7 MOCell 3.46E-01 NSGAII 3.75E-02 AbYSS 1.39E-01 

8 SPEA2 3.71E-01 MOCell 4.93E-02 SPEA2 1.39E-01 

9 AbYSS 7.32E-01 MOEA/D 4.97E-02 NSGAII 1.41E-01 

10 OMOPSO 8.36E-01 AbYSS 6.21E-02 CellDE 1.42E-01 

11 SMPSO 1.10E+00 IBEA 9.84E-02 MOEA/D 1.43E-01 

12 PAES 1.25E+00 PAES 3.06E-01 PAES 1.67E-01 
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Table 4.12: IGD Values Obtained by JADE and it are 11 Competitors for WFG4, 

WFG5 and WFG6. 

Rank WFG4 IGD WFG5 IGD WFG6 IGD 

1 MOJaDE 5.78E-03 MOJaDE 5.38E-03 MOJaDE 6.45E-03 

2 MOCell 1.04E-02 AbYSS 6.59E-02 OMOPSO 1.26E-02 

3 AbYSS 1.04E-02 MOCell 6.62E-02 SMPSO 1.28E-02 

4 GDE3 1.08E-02 OMOPSO 6.62E-02 GDE3 1.30E-02 

5 SPEA2 1.27E-02 SMPSO 6.63E-02 CellDE 1.45E-02 

6 NSGAII 1.36E-02 CellDE 6.64E-02 MOEA/D 1.90E-02 

7 PAES 1.55E-02 GDE3 6.64E-02 SPEA2 2.31E-02 

8 CellDE 1.61E-02 SPEA2 6.67E-02 NSGAII 3.49E-02 

9 IBEA 2.02E-02 NSGAII 6.81E-02 IBEA 5.39E-02 

10 MOEA/D 2.22E-02 MOEA/D 6.82E-02 MOCell 6.32E-02 

11 OMOPSO 2.30E-02 PAES 6.97E-02 AbYSS 9.32E-02 

12 SMPSO 2.69E-02 IBEA 7.28E-02 PAES 9.74E-02 

 

 

Table 4.13: IGD Values Obtained by JADE and it are 11 Competitors for WFG7, 

WFG8 and WFG9. 

Rank WFG7 IGD WFG8 IGD WFG9 IGD 

1 MOJaDE 7.35E-03 MOJaDE 5.37E-03 MOJaDE 6.78E-03 

2 OMOPSO 1.17E-02 SMPSO 1.03E-02 GDE3 1.35E-02 

3 MOCell 1.17E-02 SPEA2 1.05E-02 SMPSO 1.35E-02 

4 SMPSO 1.19E-02 MOCell 1.17E-02 SPEA2 1.45E-02 

5 AbYSS 1.19E-02 CellDE 1.21E-02 MOEA/D 1.45E-02 

6 GDE3 1.24E-02 OMOPSO 1.26E-02 CellDE 1.45E-02 

7 SPEA2 1.29E-02 AbYSS 1.30E-02 NSGAII 1.55E-02 

8 CellDE 1.43E-02 IBEA 1.32E-02 IBEA 1.74E-02 

9 IBEA 1.55E-02 GDE3 1.36E-02 MOCell 2.01E-02 

10 NSGAII 1.62E-02 PAES 6.95E-02 AbYSS 2.03E-02 

11 PAES 1.95E-02 MOEA/D 8.30E-02 PAES 2.06E-02 

12 MOEA/D 2.02E-02 NSGAII 9.90E-02 OMOPSO 3.04E-02 

 

By observing Table 4.11, 4.12 and 4.13 carefully, we find that MOJaDE is the most 

competitive algorithm and obtained the best values on all problems, while the GDE3 

algorithm computed the second best fronts regarding this indicator in the evaluated 

problems. MOEA/D, SMPSO, AbYSS, MOCell and OMOPSO performed similarly, 

while PAES and IBEA performed poorly in regards to this indicator. 
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The IGD results from WFG1-WFG9 test problems generated by JADE algorithms are 

listed in Tables 4.11, 4.12 and 4.13, it is clearly shown that JADE  achieves the best 

performance among its all other  competitors in three  objective function problems.  

 

In addition, Tables illustrate the ranking of all three objective function problems 

WFG1 to WFG9. From tables can be see that the JADE performed better than other 

algorithms in all problems and takes the first position in all test problems. 

4.2.2 Friedman Ranking Test 

 Friedman Test is a non-parametric statistical test developed by Milton Friedman more 

details are mentioned in 4.1.3 .  

Table 4.14: Friedman Ranking between MOJaDE and Literature in D30. 

Algorithm Mean rank 

MOJaDE 1.646 

OMOPSO 3.2451 

MOCell 3.7351 

SMPSO 2.8 

AbYSS 4.4652 

GDE3 2.2573 

SPEA2 5.1341 

CellDE 5.7131 

IBEA 6.7 

NSGAII 7.1463 

PAES 8.1521 

 MOEA/D 6.1242 

P-value = 4.5764E-17 

 

 

https://en.m.wikipedia.org/wiki/Non-parametric_statistics
https://en.m.wikipedia.org/wiki/Statistical_test
https://en.m.wikipedia.org/wiki/Milton_Friedman
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Table 4.14 ranking results showed that between all literature results in dimension 30, 

compared with JADE. The proposed JADE method showed the best performance 

overall. 

 

Comparisons between JADE with the second best acting algorithm in the competition 

called SMPSO denote that the JADE is more efficacious than SMPSO in 16 test 

problems over all 21, while SMPSO just win in 5 test problems. 
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Figure 4.1: The Plots of Best Computed Pareto-Fronts and PF-True 

 

 

 

Figure 4.1 illustrate the plots of computed Pareto-optimal set gained by JADE and 

Pareto Front True shared  as a result of the competition .Plots present that the Pareto-

optimal set  found by JADE Algorithm quite close to PF-True and has a good spread. 
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Chapter 5 

CONCLUSION 

The optimization performance of an evolutionary algorithm can be enhanced through 

parameter adaptation, which automatically adjusts the control parameters to 

appropriate values over the course of the evolutionary search. Mutation Technique  

like “DE/current-to-pbest” are typically used together in an effort to bolster the rate of 

convergence, while ensuring that the algorithm remains highly reliable. This 

encouraged our interest in JADE, a differential evolutionary parameter “current-to-

pbest”. with “current-to-pbest,”, the sets of the  best solutions got the information 

where it’s used in balancing the population diversity and mutation greediness. The 

JADE parameter adaptation involved the evolution of mutation factors and crossover 

probabilities on the basis of their past successes. An external archive was also 

introduced for use in storing the already-explored inferior solutions, while the 

differences between them and the current population was used as a guide towards the 

optimum.   

 

Tested against classic benchmark functions found in the literature, JADE consistently 

displayed a well and enhanced  competitive degree of performance optimization in 

regards to the rate of convergence and reliability relative to other algorithms. 
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We suggested a novel differential evolution algorithm, MOJaDE for multi objective 

optimization through the self-adaptive control of parameters and the utilization of 

information gotten from archived inferior solutions.  
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