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ABSTRACT 

We study the possibility of constructing \ thin-shell wormhole (TSW) in a particular 

𝑓(𝑅)-gravity model coupled minimally with nonlinear electromagnetic fields. In doing 

so, first we give a new static spherically symmetric solution of the theory. Then we 

apply the cut-and-paste method to construct the TSW. As (the third order derivative 

with respect to 𝑅) 𝑓′′′(𝑅) ≠ 0 we use the specific junction conditions to match the two 

spacetimes. We find the exact equilibrium radius of the shell from non-black hole 

solution and show that a linear perturbation leaves the TSW stable. 

Keywords: 𝑓(𝑅) gravity, thin-shell wormhole, junction conditions, non-linear 

electrodynamics, stability. 

 



   
 

 iv 

 

ÖZ 

 

Doğrusal olmayan elektromagnetik alanla minimal kuplajlı özel bir 𝑓(𝑅) yerçekim 

alan modelinde İnce Zar Solucen Deliklerı (İZSD) incelenmektedir. Önce yeni bir 

statik, Küresel simetrık çözüm buluyoruz. Bunu kullanarak kesip- yapıştırma yöntemi 

ile İZSD tanımlanıyor. Üçüncü derece türev 𝑓′′′(𝑅) ≠ 0, durumunda bağlanma 

değerleri ile iki uzay-zaman birleştiriliyor. Kesin denge durumu yarıçapı etrafında 

karadelik içermeyen çözüm kullanılarak doğrusal sarsıma kararlı bır İZSD elde 

ediyoruz.  

Anahtar Kelimeler: 𝑓(𝑅) yerçekimi, ince-zar solucan deliği, bağlantı şartları, 

doğrusal olmayan elektrodinamik, kararlılık.  
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Chapter 1

INTRODUCTION

In Einstein’s general theory of relativity described by the Einstein-Hilbert (EH) action

supplemented by an energy-momentum, in general exotic, construction of thin-shell

1wormholes (TSWs) [1-3], has turned almost into a routine process. The original

idea by Visser [4] was to localize the non-physical source on a thin-layer, leaving the

rest of the bulk with a physical source. Similar constructions of TSWs in modified,

highly non-linear theories have also been attempted with considerable handicaps [5-

7]. Amongst those modified theories f (R) theory [8] has already been much popular

during recent decades. In this approach, the action of EH is modified into an arbitrary

junction of the Ricci scalar denoted by the f (R) [9-10] theory. In general, such a

theory may attain the EH limit or not. For physical requirements, however, the f (R)

theory must reproduce all the experimental tests that Einstein’s theory has successfully

passed. Besides, the stability criterion, as well as the absence of ghosts conditions,

must be satisfied before the f (R) theory is considered feasible [11].

In this thesis our aim is restricted by construction of TSWs in a particular f (R) theory

given by f (R) = R+ 2α
√

R+R0 +R1 [12]. in which α , R0 and R1 are dimensionful

constant, parameters of the theory. For α = 0, the theory reduces to the EH form

in which R1 acts as a cosmological constant. Our choice of f (R) relies on an exact

solution in the presence of non-linear electromagnetism. The extended source of our

f (R) is provided by a Lagrangian of non-linear electrodynamics (NED) of the form
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L = − 1
4π

(
F + 2β

√
−F

)
, in which F = 1

4FµνFµν is the electromagnetic invariant

and β is a constant parameter. Let us add that the same model of f (R) was considered

previously within the context of linear Maxwell electrodynamics [13] and Yang-Mills

fields [14]. In this approach, our NED is powered by a pure electric field without

a magnetic component so that from the outset our problem is assumed static. Once

obtain an exact solution of the model our next step is to search for the proper junction

conditions required in the construction of TSWs. We reviewed the junction conditions

valid for general relativity proposed long ago by Israel [15-16] do not apply in the

present problem without modifications. We search for an extension of those conditions

and arrive at the conditions [17-18] applicable whenever we have f ′′′ = d3 f
dR3 6= 0. To

construct TSWs we employ the exact solutions for black holes or non-black holes. Our

finding in the present problem is that although we obtain black hole solution it’s event

horizon lies outside the possible radius/ throat of the TSW. Since this is not admissible

for such passage through the throat from one universe to the other we had to abandon

the black hole solution and be satisfied only with the non-black hole solution with a

naked singularity. As a matter of fact, this is the case that we encountered first: usually,

in other models, it was possible to choose the radius of the shell arbitrary outside the

event horizon of the available black hole. Now we face a situation that the thin-shell

can not be located arbitrarily. The possible location of the shell which is determined

by the theory contains a naked singularity at the center instead of a black hole. Once

we fix our thin-shell appropriately to serve as a throat our next task is to perturb the

resulting TSW. We do and find out that for stability to be effective a non-barotropic

equation of state must be imposed at the throat after the perturbation. This implies

that the pressure (p) and energy density (σ) on the shell are related by p = P(a,σ)

2



where a stands for the time-dependent radius of the shell. Such a type of variable

equation of state [19] was proposed a priori but here it arises in a natural way which

can be considered an interesting result. Naturally, if our TSW was not stable it would

collapse at the slightest perturbation to the central naked singularity. Fortunately, this

does not happen, for tuned parameters we obtain a spherical harmonic oscillation about

the equilibrium throat of our TSW.

The thesis is organized as follows. In chapter 2 we introduce our moded and derive

exact solutions. TSW construction in the model and its stability is analyzed in chapter

3. We summarize our results in a conclusion which appears in chapter 4.
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Chapter 2

JUNCTION CONDITIONS

In this Chapter we start with a brief calculation that leads us to the Israel conditions.

Then, we review Visser’s works to describe the stability of thin-shell wormholes(TSWs).

2.1 Israel Junction Conditions

Let’s define a general diagonal metric as

ds2 = gttdt2 +grrdr2 +gθθ dθ
2 +gφφ dφ

2, (1)

or we can say that

ds2 = gµνdxµdxν , (2)

in which gµν = diag
[

gtt ,grr,gθθ ,gφφ

]
. We may represent the metric in Gaussian

normal coordinates such that

ds2 = εdw2 + γi jdxidx j, (3)

in which ε = +1,−1 for spacelike and timelike respectivley. Furthermore assume a

hypersurface F(xa) := ω = 0 in which ∂F
∂w = 1 and ∂F

∂xi = 0. The normal 4-vector to the

hyperplane F is defined by

nµ =
1√
∆

∂F
∂xµ

, (4)

in which ∆ = ∂F
∂xµ

∂F
∂xν gµν such that nµnµ = ε . Applying (4) one finds nt =

1√
∆

, nr = 0,

4



nθ = nφ = 0, 1
∆

gttn2
t = 1⇒ ∆ = gtt ⇒

nµ =
1
√

gtt
(1,0,0,0). (5)

The first fundamental form of the hyperplane is defined to be

hi j = gµν

∂xµ

∂ξ i
∂xν

∂ξ j , (6)

in which ξ i are the coordinates on the hyperplane. The second fundamental form is

also defined as

Ki j =−nρ

(
∂ 2xρ

∂ξ i∂ξ j +Γ
ρ

µν

∂xµ

∂ξ i
∂xν

∂ξ j

)
. (7)

in which Γ
ρ

µν are the Christofell’s symbols, defined by

Γ
ρ

µν =
1
2

gρλ (gλν ,µ +gµλ ,ν −gµν ,λ ). (8)

Furthermore, the Guass-Codazzi [20] equations are given by

Rwiw j = Ki j,w +Km jKm
i , (9)

Rwi jm = ∇ jKim−∇mKi j, (10)

and

Rli jm = 3Rli jm + ε

[
Ki jKlm−KimKl j

]
. (11)

Herein, R stands for the Riemann tensor of the original bulk spacetime while 3Rli jm

stands for the same tensor for three dimensional hypersurface.

5



On the other hand, Einstein’s field equations are given by

Gµν = κTµν , (12)

in which Gµν = Rµν − 1
2gµνR is the Einstein tensor and R = 4R is the Ricci scalar of

the bulk spacetime. Herein κ = 8πG is the Einstein’s constant with G the Newton’s

gravitational constant.

Our aim is to apply the Einstein’s field equations and in the limit, find the junction

conditions. Hence, we start with calculating the Einstein’s tensor. To do so, first, we

need to know the Ricci tensor’s components; which may be found as follows.

The first component is Rww to be found as

Rww = Ri
wiw = gi jR jwiw = gi jRw jwi. (13)

We note that the Riemann tensor is skew symmetry which means that Rµναβ =−Rνµαβ =

−Rµνβα . This property was used in the last step Eq.(13). Applying (9) in (13) one finds

Rww = gi j
[

Ki j,w +KmiKm
j

]
= Ki

i,w +KmiKmi = K,w + tr(K2), (14)

where K = Ki
i is the trace of K j

i and tr(K2) = KmiKmi. Please note the tr(K2) 6=

tr
(

K j
i

)
. Similarly, we obtain

Rwi = R j
w ji = gl jRlw ji =−gl jRwl ji. (15)
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Again, applying (10) in (15) we find

Rwi =−gl j
(

Kli; j−Kl j;i

)
=−K j

i; j +K j
j;i = K;i−K j

i; j, (16)

Rwi =−∇ jK
j

i +∇ jK j
w . (17)

Let’s add that K is a scalar and K;µ = K,µ . Also for the second step we used the

property of metric tensor gµν

;λ = 0. Finally, we write

Ri j = Rµ

iµ j = Rm
im j +Rw

iw j = gmlRlim j +gwwRwiw j =−gmlRli jm + εRwiw j. (18)

Applying (9) and (11) in (17) one obtains

Ri j =−gm j
(

3Rli jm + ε
[
Ki jKlm−KimKl j

])
ε
(
Ki j,w +Km jKm

i
)
=+3Ri j + ε

[
−Ki jKm

m +Kl
i Kl j

]
+ ε
(
Ki j,w +Km jKm

i
)
.

(19)

After some manipulation we find

Ri j =
3Ri j + ε

[
−Ki jK +Kl

i K jl +Ki j,w +Km
i K jm

]
=

= 3Ri j + ε

[
2KilKl

j +Ki j,w−KKi j

]
.

(20)

Please note that due to the symmetry property of the second fundamental form Ki j; i.e.,

Ki j = K ji; the two terms Kl
i K jl and Km

i K jm are identical.
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In the Einstein’s tensor, in addition to Rµν we need also R = Rµ

µ . Hence we write,

R = Rµ

µ = Rw
w +Ri

i =

= gwwRww +gµiRµi = gwwRww = g jiR ji+

εRww +gi j
(

3Ri j + ε
[
2KilK +Ki j,w−KKi j

])
.

(21)

Considering the terms, one finds

R = ε
(
K,w + tr(K2)

)
+ 3R+ ε

[
2KilKil +Ki

i,w−KKi
i
]

= 3R+ ε
[
3tr(K2)+2K,w−K2]. (22)

Finally,

R = 3R+ ε
[
3tr(K2)+2K,w−K2]. (23)

Having all components of the Ricci tensor and the Ricci scalar found, we write the

components of the Einsteins’s field equations as follows

Gww = κTww

Rww−
1
2

R = κTww

K,w + tr(K2)− 1
2

[
3R+ ε

(
3tr(K2)+2K,w−K2)]= κTww.

(24)

This can be simplified as

−1
2

tr(K2)− 1
2

3R+
1
2

K2 = κTww. (25)

Next, we write,

Gwµ = κTwµ , (26)

8



or equivalently

Rwµ −
1
2

gwµR = κTwµ , (27)

which knowing that gwi = 0, implies

Rwi = κTwi, (28)

and consequently

∇iK−∇ jK
j

i = κTi j. (29)

Finally, the last component of the Einstein’s equations gives ;

Gi j = κTi j, (30)

or equivalently

Ri j−
1
2

Rgi j = κTi j. (31)

From (19) and (22) we find

3Ri j + ε
[
2KilKl

j +Ki j,w−KKi j
]
−

1
2

gi j
[3R+ ε

(
3tr(K2)+2K,w−K2)]= κTi j.

(32)

With simplification , we get

(
3Ri j−

1
2

3Rgi j

)
+ ε

[
2KilKl

l +Ki j,w−KKi j−
3
2

gi jtr(K2)−gi jK,w +
1
2

gi jK2
]
. (33)

Next, we integrate all components of the Einstein’s equation and find the limit w→ 0

9



as follows :

lim
w→0

∫ w

−w
dwGww = lim

w→0

∫ w

−w
dwTww, (34)

and so on . Knowing the second fundamental form, Ricci tensors and Ricci scalars are

regular functions implies

lim
w→0

∫ w

−w
Gwwdw = 0, lim

w→0

∫ w

−w
Gwidw = 0, (35)

but

lim
w→0

∫ w

−w
Gi jdw = ε

[
−gi jK +Ki j

]∣∣∣∣∣
0+

0−
6= 0. (36)

On the other hand, if we assume Tµν = T−µνΘ(−w)+T+
ABΘ(+w)+Sµνδ (w) we find

lim
w→0

∫ w

−w
Twwdw = Sww = 0, (37)

lim
w→0

∫ w

−w
Twidw = Swi = 0. (38)

In summary, the junction conditions reduce to

ε

[
Ki j−Kgi j

]+
−

= κSi j, (39)

in which
[
X
]+
− implies

[
X
]+−[X]−.

2.2 Junction Conditions For f (R) Gravity

For a general spherically symmetric spacetime in f (R) modified theory of gravity, let’s

assume Σ to be a timelike hyperplane. As of the first chapter, we consider the line

10



element of the spacetime to be as

ds2
B =−gttdt2 +grrdr2 + r2(dθ

2 + sin2
θdφ

2). (40)

with the induced metric on the timelike hyperplane Σ given by (See Fig.1)

ds2
Σ = hi jdξ

idξ
j, (41)

in which hi j = gµν
dxµ

dξ i
dxν

dξ j . Furthermore, we assume that nµ = 1√
∆

dF
dxµ to be the spacelike

4-normal to the hyperplane Σ. In [11], it was proved that in any general nonlinear f (R)

gravity such that f (R) 6= R , Ki
i and R must be continuous i.e.

[
Ki

i
]
= Ki+

i −Ki−
i = 0, (42)

and [
R
]
= R+−R− = 0. (43)

Note that Ki
i is the trace of K j

i , the second fundamental form of the hyperplane , while

R is the Ricci scalar of the bulk spacetime.

Let’s also note that while condition (42) is required for all nonlinear f (R) gravity, the

condition (43) is avoidable if f ′′′(R) = 0. For instance R2 gravity satisfies f ′′′(R) = 0.

Following [11], we also divide the junction conditions in f (R) 6= R gravity into two

sections

i) f ′′′(R) 6= 0

For this wide class of f (R) gravity the generalized junction conditions are given by the

11



Figure 1: A plot of the timelike hyperplanes Σ± within the bulk M = M+∪M−

conditions (42) and (43) together with the following ;

κS j
i =

(
− f ′(R)[K j

i ]+ f ′′(R)nµ [∇µR]δ j
i

)
Σ

, (44)

in which all functions must be evaluated at Σ . Furthermore one can show that (44)

implies

niSi j = 0. (45)

ii) f ′′′(R) = 0

In this rather special case, in addition to the condition (42) the following condition

must be satisfied

κS j
i =−{1+α(R++R−}[K j

i ]+α{2aδ
j

i − [R](K j+
i +K j−

i )}, (46)

in which α = 1
2 f ′′(R), is a constant and a = ni[niR] defined on Σ.

12



Chapter 3

THIN-SHELL WORMHOLES IN f (R)-GRAVITY

3.1 The bulk solution in f (R) theory of gravity

The action of the f (R) modified theory of gravity coupled with a nonlinear Maxwell

Lagrangian is given by

I =
∫ √
−gd4x

(
f (R)
2κ

+L (F )

)
, (47)

in which L (F ) is the nonlinear Maxwell Lagrangian given by

L (F ) =− 1
4π

(
F +2β

√
−F

)
, (48)

where F = 1
4FµνFµν is the Maxwell invariant and

f (R) = R+2α
√

R+R0 +R1. (49)

Herein, R0, α and R1 are theory constants and Fµν is the electromagnetic tensor defined

through

F =
1
2

Fµνdxµ ∧dxν . (50)

Variation of the action (47) with respect to the metric tensor gµν yields the Einstein’s

13



field equations given by

f ′(R)Rν
µ +

(
@ f ′(R)− 1

2
f (R)

)
δ

ν
µ −∇

ν
∇µ f ′(R) = κT ν

µ , (51)

in which f ′(R) = d f
dR , and @ψ = 1√

−g∂µ(
√
−g∂ µ)ψ .

Furthermore, the energy momentum tensor T ν
µ is given by

T ν
µ = L (F )δ ν

µ −Fµλ Fνλ ∂L (F )

∂F
. (52)

In this study we choose the spacetime to be spherically symmetric and static whose

line element is given by

ds2 =−ψ(r)dt2 +
dr2

ψ(r)
+ r2(dθ

2 + sin2
θdφ

2). (53)

The nonlinear Maxwell’s field equations are also found by the variation of the action

with respect to the vector potential Aµ and is given by

d
(

?F
∂L (F )

∂F

)
= 0, (54)

in which the dual field ?F is defined by

?F =
1
2
?Fµνdxµ ∧dxν , (55)

where ?Fµν = 1
2ε

αβ

µνFαβ , in which ε
αβ

µν = gσαgλβ εσλ µν such that εσλ µν is the Levi-

Civita tensor.

14



The Maxwell field used in this study is a pure electric field given by

F = E(r)dt ∧dr, (56)

with its dual field

?F = ?(E(r)dt ∧dr) = E ?(dt ∧dr). (57)

To find the dual of dt ∧dr we use the line element (53) which gives

?(√
ψdt ∧ dr

√
ψ

)
= rdθ ∧ r sinθdφ , (58)

after simplification we obtain

?(dt ∧dr) = r2 sinθdθ ∧dφ . (59)

The nonlinear Maxwell’s equation, then becomes

d
(

ELF r2 sinθdθ ∧dφ

)
= 0, (60)

which upon the fact that E = E(r) it yields

E(r)LF r2 = constant =C. (61)

Here, C is an integration constant. On the other hand , F = 1
4FµνFµν = 1

2FtrF tr.

Explicitly one gets

F =
1
2

gttgrrF2
tr =−

1
2

E2. (62)

15



Combining (62), (61) and (48) one finds

LF =− 1
4π

(1− β√
−F

), (63)

and

−E
1

4π
(1− β

1√
2
|E|

)r2 =C. (64)

This equation implies (E > 0)

E−
√

2β =−4π
C̃
r2 E > 0, (65)

or after redifining the constant C̃ =−4πC it gives .

E =
√

2β +
C̃
r2 . (66)

Let’s note that the nonlinear Maxwell’s Lagrangian (48), in the limit β → 0, reduces

to the linear Maxwell Lagrangian i.e,

lim
β→0

L (F ) =− 1
4π

F . (67)

Hence, we expect the electeric field found in (66) to reduce to the classical electric

field Q
r2 in the limit β → 0. This, however, reveals the nature of C̃ to be the electric

charge i .e, C̃ = Q. As a result the electric field of the nonlinear Maxwell theory is

E =
√

2β +
Q
r2 . (68)

Having the closed form of the electric field and consequently the Maxwell’s invariant

16



F =−1
2E2 one finds from (52)

T r
r = T t

t = L −FtrF trLF = L −2FLF , (69)

and

T θ
θ = T φ

φ
= L . (70)

Explicitly, one finds

T t
t = T r

r =− 1
4π

(F +2β
√
−F )−2F{− 1

4π
(1− β√

−F
)}= F

4π
=

−1
2E2

4π
=− 1

8π
(
√

2β +
Q
r2 )

2,

(71)

and

T θ
θ = T φ

φ
=− 1

4π
(F +2β

√
−F ) =− 1

4π
(−1

2
E2 +2

β√
2

E) =
−E
8π

(
√

2β − Q
r2 )

2.

(72)

3.1.2 Solution of the Einstein’s field equations

In this section we use the energy momentum tensor’s components found in the previous

section to solve the Einstein’s field equaitions (51).

We start with the tt, and rr component of the Einstein’s field equations, which read

f ′(R)Rt
t +
(
@ f ′(R)− 1

2
f
)
−∇

t
∇t f ′(R) = κT t

t,r.

f ′(R)Rr
r +
(
@ f ′(R)− 1

2
f
)
−∇

r
∇r f ′(R) = κT r

r .

(73)

where

Rt
t = Rr

r =−
rψ ′′+2ψ ′

2r
. (74)
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Subtracting components of (73) one gets

∇
t
∇t f ′(R) = ∇

r
∇r f ′(R). (75)

This is because , Rt
t = Rr

r and T t
t = T r

r . Next, we find ∇t∇t f ′ and ∇r∇r f ′ bu applying

the definition of the covariant derivative; i.e. ,

∇
µFν = gµα

∇αFν = gµα(Fν ;α) = gµα(Fν ,α −Γ
λ
ανFλ ). (76)

Here Fν = ∇ν f ′ and Γλ
αν is the Christoffel symbols .Explicitly

∇
t
∇t f ′ = gtα

(
(∂t f ′),α −Γ

λ
αt∂λ f ′

)
= gtt

[
f ′,t,t−Γ

λ
tt ∂λ f ′

]
=−gtt

Γ
λ
tt f ′,λ . (77)

As , f ′ is a function of R only, with R given by

R = Rµ

µ = 2Rt
t +2Rθ

θ =−r2ψ ′′+5rψ ′+2(ψ−1)
r2 , (78)

then, f ′,t,t = f ′,t = 0 and only f ′,r 6= 0. Hence,

∇
t
∇t f ′ =−gtt

Γ
r
tt f ′,r. (79)

Here, Γr
tt =

1
2ψψ ′ and consequently

∇
t
∇t f ′ =

1
ψ

1
2

ψψ
′ f ′,r =

1
2

ψ
′ f ′,r. (80)
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A similiar calculation leads to

∇
r
∇r f ′ = grα

[
f ′,r,α −Γ

λ
αr f ′,λ

]
= grr

(
f ′,r,r−Γ

λ
rr f ′,λ

)
= ψ f ′,r,r−ψΓ

λ
rr f ′,λ . (81)

One finds, Γλ
rr =−1

2
ψ ′

ψ
only nonzero component of Γλ

rr which implies ;

∇
r
∇r f ′ = ψ f ′,r,r−ψ(−1

2
ψ ′

ψ
) f ′,r = ψ f ′,r,r +

1
2

ψ
′ f ′,r. (82)

Finally (75) becomess :

1
2

ψ
′ f ′,r = ψ f ′,r,r +

1
2

ψ
′ f ′,r, (83)

which implies

ψ f ′,r,r = 0, (84)

or f ′,r,r = 0 . This means that the second derivative of f ′(R) with respect to r must be

zero. Integration gives

f ′(R) = c0 + c1r, (85)

in which c0 and c1 are two integration constants. On the other hand , f (R) is given by

(49) , therefore

d
dR

(R+2α
√

R+R0 +R1) = c0 + c1r. (86)

Once we can solve this equation to find R , i.e.

R =−R0 +
α2

(c1r+ c0−1)2 . (87)
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By setting c0 = 1, the solution for R becomes

R =−R0 +
α2

c2
1r2 . (88)

In terms of the metric function ψ we have R to be given in (78) and (88) one finds

−r2ψ ′′+5rψ ′+2(ψ−1)
r2 =−R0 +

α2

c2
1r2 , (89)

which can be solved for ψ , the solution is given by

ψ = 1− 6α2

c2
1

+
R0

12
r2 +

c2

r
+

c3

r2 , (90)

in which c2 and c3 are the integration constants. Let’s add that the metric function

found in (90) has to satisfy all field equations and through that we find the nature of

the parameters in this solution.

Once more we look at the tt and rr components of the Einstein’s field equations.

Knowing f ′(R) = 1+ c1r one finds

∇
t
∇t f ′ =

1
2

ψ
′ f ′,r =

1
2

ψ
′(c1) =

c1

2
ψ
′, (91)

and

@ f ′=
1√
−g

∂µ(
√
−g∂

µ f ′=
1
r2 ∂r

[
r2grr

∂r
]
(1+c1r)=

1
r2 ∂r

[
r2

ψc1
]
=

c1

r2 (2rψ+r2
ψ
′).

(92)
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Finally the tt or rr components of the field equations implies

(1+ c1r)Rt
t +

(
c1

r2 (2rψ + r2
ψ
′) =

1
2

f
)
− c1

2
ψ
′ = κ(− 1

8π
)(
√

2β +
Q
r2 )

2. (93)

Here, f is found to be ;

f ′(R) =
d f
dR

= 1+ c1r

⇒ d f
dr

= (1+ c1r)
dR
dr

⇒ f =
∫
(1+ c1r)

dR
dr

dr+ c4

=
∫
(1+ c1r)(−2α2

c2
1r3 )dr+ c4

⇒ f =−2α2

c2
1

(
r−3+1

−3+1
+ c1

r−2+1

−2+1

)
+ c4.

(94)

In short

f =
α2

c2
1r2 +

2α2

c1r
+ c4, (95)

in which c4 is an integration constant. Finally eq. (93) reveals

2β
2− R0

4
− c4

2
= 0, (96)

c2
1−α

2 = 0, (97)

4
√

2Qβc2
1 +3c2c3

1−α
2 = 0, (98)

and

Q2− c3 = 0. (99)
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Imposing ,c1 = α , c2 =
1−4
√

2βQ
3α

, c3 = Q and c4 = 4β 2− R0
2 yields

ψ(r) =
1
2
+

R0

12
r2− 4

√
2βQ−1
3αr

+
Q2

r2 , (100)

and

f (R) =
1
r2 +

2α

r
+4β

2− R0

2
. (101)

Rewriting f (R) in terms of R , one finds

f (R) = R+2α
√

R+R0 +4β
2 +

R0

2
. (102)

Comparig this with the original form given in (49) we find

R1 = 4β
2 +

R0

2
. (103)

The last two equations to be checked are the θθ and φφ components of the Einstein’s

field equation.

Due to the symmetry θθ and φφ components of the Einstein’s equation are identical .

Let’s concentrate on θθ component only .

From (51) we find

f ′Rθ
θ +(@ f ′− 1

2
f )−∇

θ
∇θ f ′ = κT θ

θ . (104)

To continue we need to find

∇
θ

∇θ f ′ = gθθ [Fθθ −Γ
λ
θθ Fλ ], (105)
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in which Fθ = ∂θ f ′ = 0 and Fλ = ∂λ f ′ is nonzero only for λ = r. Hence,

∇
θ

∇θ f ′ = gθθ (−Γ
r
θθ f ′,r) =−

1
r2 (−ψr) f ′,r =

ψ

r
f ′,r. (106)

Finally we find (c1 = α , κ = 1,G = 1)

(1+ c1r)Rθ
θ +

[
c1

r
(2ψ + rψ

′)− 1
2

f
]
− ψ

r
(c1) = κ(

1
4π

)(−E2

2
+
√

2βE), (107)

in which E =
√

2β + Q
r2 . Putting ψ and Rθ

θ
gives

Rθ
θ =−rψ ′−1+ψ

r2 . (108)

Together with f and E, one finds this equation satisfied.

In summary, we have found a solution for f (R) modified theory of gravity given by

(102) coupled with a nonlinear Maxwell electric field given by (47) in the form of line

element (52) with the metric function (99).

This solution is a singular solution whose Ricci invariant is given by

R =
1
r2 −R0. (109)

By setting R0 = 0 the solution becomes

ψ =
1
2
− µ

3αr
+

Q2

r2 , (110)
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in which µ = 4Q
√

2β −1 and

f (R) = R+2α
√

R+4β
2, (111)

with the nonlinear Maxwell Lagrangian

L =− 1
4π

(F +2β
√
−F ). (112)

Please note that µ in (110) plays the role of the mass of the solution which is clearly

from nonlinear gravity f (R) and Maxwell Lagrangian L (F ). This solution admits,

black hole with two horizons or a single double horizon , and naked singularity ,

depending on Q√
2µ

less than , equal or greater than one, respectively. The two horizons

are given by

r± =
µ

3α

(
1±

√
1− 18α2Q2

µ2

)
, (113)

while the double horizon is found to be

rD =
1
3

µ

α
. (114)

Please note also that if µ <
√

18αQ there is no horizon at all. and the solution is naked

singular.

3.2 Thin-Shell Wormholes in f (R)-Gravity coupled with Nonlinear

Electromagnetism

Let’s start with the line element (53) with ψ(r) given by (100) the solution of the f (R)-

gravity (102) coupled with the nonlinear electrodynamics (48).
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Using the standart method of cut and paste introduced by Matt Visser in [4] and

applying the generalized Israel junction conditions [16] which we reviwed in chapter

(2), in this chapter we construct a thin-shell in the f (R)- gravity (102).

First we cut-out the region r < a(τ) from the bulk spacetime (53) and make two

identical copies of the rest of the manifold and call them M+ and M−. M+ and

M− are incomplete individually but if we paste them at their boundaries r = a(τ) then

the resultant Manifold i.e. , M = M+∪M− is a complete manifold, ( See Fig.2).

An embedded diagram of the resultant manifold is plotted in Fig.1b . As it is seen,

the two submanifolds M+ and M− are connected with a thin-shell (time-like ) r =

a(τ) . This spherical timelike thin-shell will be called the throat between the two

submanifolds, In other words, the traveler going toward the center (let’s say) of the

space time M+, when she reaches the surface r = a without realizing, enters the

second spacetime M−. Hence r = a(τ) which is a timelike hypersurface plays the

role of a gate or throat. In principle a(τ) > rh in which rh is the event horizon of the

bulk spacetime. Therefore, the traveler never encounters a horizon in her journey from

M+ and M− or M− to M+. The hypersurface Σ± := r±− a(τ) = 0, is one of the

boundary of each submanifold and we glue them at Σ = r−a(τ) = 0 . In other words,

in each submanifold i.e. , M+ , one may write

ds2
± =−ψ(r±)dt2 +

dr2
±

ψ(r±)
+ r2
±
(
dθ

2
±+ sin2

θ±dφ
2
±
)

(115)

(See Fig.3).
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Figure 2: a) Two geometry of the throat, b) An embeded plot of the thin-shell
wormhole.

The first boundary condition is to have the induced metric continuous across the

throat. Using the definition of the induced metric for M+ and M− one finds

h±i j = g±
αβ

∂xα
±

∂ξ i
±

∂xβ

±

∂ξ
j
±

, (116)

26



Figure 3: A plot of the geometry of the throat in the thin-shell wormhole

in which α,β = {t,r,θ ,φ}± while i, j = {t,θ ,φ} . Explicitly

h±tt = g±
αβ

dxα
±

dt±

dx±β

dt±

h±tt = g±rr
dr
dt±

dr
dt±

= g±rr

(
da(τ)
dt±

)2

=
1

ψ(a)

(
da(τ)/dτ

dt±/dτ

)2

=
1

ψ(a)

(
ȧ
ṫ±

)2

.

(117)

Herein , ȧ = da
dτ

and ṫ± = dt±
dτ

. Having htt continuous across the thin-shell implies

ṫ+ = ṫ− . Eq (117) shows that h+ττ = h−ττ . Next, we find h±
θθ

as follows

h±
θθ

=

(
g±

αβ

dxα
±

dθ±

dxβ

±
dθ±

)
Σ±(

g±
αβ

(
dθ±
dθ±

)2
)

Σ±
= (g±

θθ
)Σ±

= a2.

(118)

Again we see that h+
θθ

= h−
θθ

. Finally

h±
φφ

= g±
φφ

= a2 sin2(θ±). (119)
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Eq (119) implies that , in order to have hφφ continuous , i.e, h+
φφ

= h−
φφ

, one should

assume θ+ = θ−. Next, we write the induced metric for each submanifold, given by

ds2
± =−ψ(a)dt2

±+
ȧ2dτ2

ψ(a)
+a2(dθ

2 + sin2
θdφ

2
±). (120)

or after considering ṫ+ = ṫ− one may write it as

ds2
± = (−ψ(a)ṫ2 +

ȧ2

ψ(a)
)dτ

2 +a2(dθ
2 + sin2 dφ

2
±). (121)

There are two points which should be clarified ; 1) φ+ may not be equal to φ−.

2) −ψ(a)ṫ2 + ȧ2

ψ(a) may be set to -1 .

Actually, physically φ+ ∈ [0,2π] and φ− ∈ [0,2π]. Any translation does not change

dφ+ and dφ− which implies that one can set them identical. The second point yields

ds2
± =−dτ

2 + ȧ2(dθ
2 + sin2 dφ

2), (122)

in which

ṫ2
± = ṫ2 =

1
ψ(a)

(1+
ȧ2

ψ(a)
). (123)

From now on we refer to (122) , as the induced metric of the throat in which τ stands for

the proper time on the throat . To apply the other boundary condition including (38)

and (39) we must introduce the normal 4- vectors on the throat from both manifold

perspective ; i.e, (See Fig. 4 and 5.) The standard definition of n±γ are given by
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Figure 4: A plot of the Normal 4-vectors to the either side of the throat

n±γ =
±1√
∆±

∂Σ±

∂xγ
, (124)

in which Σ± := r±−a(τ) = 0 and ∆±is the coefficient makes n±γ n±γ = 1. The positive

direction is chosen to be from the throat toward M+ which makes the negative direction

from the throat toward M−.

Figure 5: A plot of the direction of the normal 4-vectors n±γ
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Therefore , One finds

n±t =
±1√
∆±

(
− da(τ)

dt±

)
=
−1√
∆±

ȧ(τ)
ṫ±

,

n±r =
±1√
∆±

(1) =
1√
∆±

n±
θ
= n±

φ
= 0.

(125)

Imposing n±γ n±γ = 1 yields

gαγ

± n±γ n±α = 1⇒ gtt± ȧ2

∆±ṫ2 +
rr±
∆±

= 1. (126)

One finds

∆
± = gtt ȧ2

ṫ2 +grr, (127)

or explicitly

∆
± =− 1

ψ

ȧ2

1
ψ
(1+ ȧ2

ψ
)
+ψ = ψ− ȧ2ψ

ψ + ȧ2 =
ψ2

ψ + ȧ2 . (128)

Finally ,

n±γ =±
√

ψ + ȧ2

ψ

(
− ȧ

ṫ
, 1, 0, 0

)
, (129)

or using ṫ =
√

ψ+ȧ2

ψ
one may write

n±γ =±
(
− ȧ, ṫ, 0, 0

)
. (130)

The next quantity to be calculated is the second fundamental form K±i j . Accroding to

the definition one writes

K±i j = −n±γ

(
∂ 2xγ

∂ξ i∂ξ j +Γ
γ

αβ

∂xα

∂ξ i
∂Xβ

∂ξ i

)∣∣∣∣∣
±

, (131)
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Without loss of generality , we drop the sub/super index ± and write

Kττ =−nγ

(
∂ 2xγ

∂τ∂τ
+Γ

γ

αβ

∂xα

∂τ

∂xβ

∂τ

)
Σ

=−nt

(
∂ 2t
∂τ2 +2Γ

t
rt ȧṫ +Γ

t
rrȧ

2
)

Σ

−nr

(
∂ 2r

∂τ2 +Γr
rrȧ2

)
Σ

,

(132)

which after knowing Γr
rr =−

ψ ′

2ψ
,Γt

rt =
ψ ′

2ψ
and Γt

rr = 0 it becomes :

Kττ =−(−ȧ)(ẗ +
ψ ′

ψ
ṫ ȧ)− ṫ(ä− ψ

2ψ
ȧ2)

⇒ Kττ = ȧẗ +
ψ ′

ψ
ṫ ȧ− ṫ(ä− ψ ′(a)

2ψ
ȧ2).

(133)

Furthermore,

Kθθ =−nt

(
∂ 2t
∂θ 2 +Γ

t
θθ

)
−nr

(
∂ 2r
∂θ 2 +Γ

r
θθ

)
=

(
− (−ȧ)(0)− ṫ(0+ψa)

)
= ṫaψ(a),

(134)

and

Kφφ = ṫaψ(a)sin2
θ . (135)

Explicitly we obtained

K±i j =±diag
[

ȧẗ +
ψ ′

ψ
ṫ ȧ− ṫ(ä− ψ ′

2ψ
ȧ2), ṫaψ(a), ṫaψ(a)sin2

θ

]
, (136)

or in a more convenient form

K j ±
i =±diag

[
− ȧẗ− ψ ′ṫ ȧ

ψ
+ ṫ(ä− ψ ′

2ψ
ȧ2),

ṫψ
a
,
ṫψ
a

]
. (137)
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To simplify more we remember

ṫ2 =
ψ + ȧ2

ψ2 =
1
ψ

+
ȧ2

ψ2 , (138)

which yields,

2ṫ ẗ =−ψ ′ȧ
ψ2 +

2ȧä
ψ2 −

2ψ ′ȧ2ä
ψ3 , (139)

and consequently

ẗ =
ȧ
2ṫ

(
2ä
ψ2 −

ψ ′

ψ2 −
2ψ ′ȧ2

ψ3

)
. (140)

Note that the chain-rule has been used to write d
dτ

ψ = dψ

da
da
dτ

= ψ ′ȧ. Finally after the

simplification one finds

K j ±
i =±diag

[
+

ψ ′+2ä

2
√

ψ + ȧ2
,

√
ψ + ȧ2

a
,

√
ψ + ȧ2

a

]
. (141)

In f (R) -gravity when f ′′′ 6= 0, the following two condiditions should be satisfied;

[
Ki

i
]
=
[
K
]
= 0, (142)

and [
R
]
= 0. (143)

The second one is trivially satisfied because the two submanifolds M+ and M− are

identical and therefore R+ = R−. The first condition however, implies

ψ ′+2ä

2
√

ψ + ȧ2
+

2
a

√
ψ + ȧ2 = 0. (144)
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This condition effectively gives a dynamic equation for the throat’s radius. If we

assume an equilibrium radius for the throat such that ȧ = ä = 0 and a = a0 the (144)

leads to

ψ ′(a0)

2
√

ψ(a0)
+

2
a0

√
ψ(a0) = 0, (145)

or

a0ψ
′(a0)+4ψ(a0) = 0. (146)

The last junction condition to be satisfied is

κS j
i =− f ′(R)[K j

i ]+ f ′′(R)
[
nγ

∇γR
]
δ

j
i , (147)

in which S j
i =(−σ , p, p) is the matter energy-momentum tensor on the throat. Practically

, [nγ∇γR] reduces to

nγ
∇γR = (nγ

∇γR)Σ+− (nγ
∇γR)Σ− = (nγR′)Σ+− (nγR′)Σ− = (2nγR′)Σ+

= (2grrnrR′)Σ+− (2ψ(a) ˙tR′)Σ+ = 2
√

ψ + ȧ2R′.

(148)

Upon (148) , one finds from (147)

κ(−σ) =−F ′
ψ ′+2ä

2
√

ψ + ȧ2
+F ′′2

√
ψ + ȧ2R′, (149)

and

κ p =−2F ′
√

ψ + ȧ2

a
+F ′′2

√
ψ + ȧ2R′. (150)
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For the specific f (R)-gravity we study here (102) one finds

f ′ = 1+
α√

R+R0
and f ′′ =

−α

2(R+R0)
3
2
. (151)

with R =−R0 +
1
a2 one finds

R′ =
−2
a3 , f ′ = 1+αa, f ′′ =−α

2
a3, (152)

and consequently

−κσ =−(1+αa)
ψ ′+2ä√

ψ + ȧ2
+2(−α

2
a3)
√

ψ + ȧ2(
−2
a3 ), (153)

and

κ p =−2(1+αa)

√
ψ + ȧ2

a
+2(−α

2
a3)
√

ψ + ȧ2(
−2
a3 ). (154)

Finally,

σ =
1
κ

(1+αa)(ψ ′+2ä)√
ψ + ȧ2

− 2α

κ

√
ψ + ȧ2, (155)

and

p =
−2(1+αa)

κa

√
ψ + ȧ2 +

2α

κ

√
ψ + ȧ2. (156)

Furthermore (144) implies

σ =
1+αa

κ

(
− 4

a

√
ψ + ȧ2

)
− 2α

κ

√
ψ + ȧ2

=− 2
κa

(
2+3αa

)√
ψ + ȧ2

. (157)

and

p =− 2
κa

√
ψ + ȧ2. (158)
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Therefore the equation of state of the matter on the shell is found to be

p
σ

=
1

2+3αa
= ω, (159)

or

p =
1

2+3αa
σ = ψ(a,σ). (160)

This is quite interesting that naturally the equation of state has formed to be of non-

barotropic [19] . At the equilibrium state where a = a0 and ȧ = ä = 0 one finds

σ0 =−
2

κa0

(
2+3αa0

)
√

ψ0, (161)

and

p0 =−
2

κa0

√
ψ0. (162)

Results :

As we have found, the metric function is given by

ψ(a) =
1
2
+

R0a2

12
− 4
√

2βQ−1
3αa

+
Q2

a2 , (163)

and it’s first dervative is obtained

ψ
′(a) = +

4
√

2βQ−1
3αa2 − 2Q2

a3 +
R0

6
a. (164)

The condition (146) yields

R0α(a0)
4 +4α(a0)

2 +(2−8Qβ
√

2)a0 +4Q2
α = 0. (165)
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This is a fourth order equation which can not be resolved analytically. However, for

our interest, we set R0 = 0 which simpifies significantly. Upon this, (165) becomes

a2
0 +

1
2α

(
2−4Qβ

√
2
)

a0 +Q2 = 0, (166)

with roots at

a±0 =
µ

4α

[
1±

√
1−
(4αQ

µ

)2
]
, (167)

in which µ = 1−4Qβ
√

2.

On the other hand, the horizon of the solution (163) is given by

ψ(r) = 0. (168)

The corresponding horizons are obtained to be

r±h =
µ

3α

(
1±

√
1−
(√18αQ

µ

)2
)
. (169)

It is not difficult to see that both a±0 are smaller than r±h which is the event horizon.

The only alternative left for this solution is the non-black hole case i.e. ψ(a) 6= 0.

The latter implies

1−
(√18αQ

µ

)2
< 0, (170)

but at the same time it must give a real solution for (166) . Hence,

0 < 1−
(4αQ

µ

)2
. (171)
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Combining (71) and (169) leads to

16
(αQ

µ

)2
< 1 < 18

(αQ
µ

)2
, (172)

or more conveniently

16 <
( µ

αQ

)2
< 18. (173)

Inserting µ one finally finds

16 <

(
1−4Q

√
2β

αQ

)2

< 18. (174)

There are two distinct cases;

1) −1+4Q
√

2β > 0 ,α > 0 , β > 0,

which implies

4 <
−1+4Q

√
2β

αQ
<
√

18. (175)

2) −1+4Q
√

2β < 0, α > 0 , β > 0

4 <
1−4Q

√
2β

αQ
<
√

18. (176)

The First case i.e, −1+4Q
√

2β < 0 , means µ < 0 and therefore a0 becomes negative

which is not desired.

Hence, the only case left is −1+4Q
√

2β > 0 which implies

a0 =
µ

4α

(
1+

√
1−
(4Qα

µ

)2
)
, (177)

both are acceptable. In Fig.6 we plot the metric function ψ(r) in terms of r for Q = 1,
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Figure 6: A plot of the Metric Function ψ(r) in terms of radius r for Q = 1, α = 1 and
β = 0.9.

α = 1 and β = 0.9 such that −1+4Q
√

2β > 0 is satisfied.

3.3 Stability Analysis

In this section we study the dynamic stability of the thin-shell wormhole solution,

constructed in the previous section. In doing so, we apply a linear-radial perturbation

to the TSW and upon that ȧ and ä are not zero.

The radius of the throat a(τ) after the perturbation should satisfy (144). One may

rewrite (166) as

ψ
′+2ä =

−4
a
(ψ + ȧ2), (178)

which after applying the chain-rule, i.e, ä = dȧ
da ȧ one simply finds

ψ
′+2ȧ

dȧ
da

=
−4
a
(ψ + ȧ2). (179)

This equation, after multiplying by a4 and simplifying 2ȧdȧ
da = d

da(ȧ
2) implies

a4
ψ
′+4a3

ψ = a4 d
da

(ȧ2)+4a3(ȧ2). (180)
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Both sides are total derivatives, i.e,

d
da

(a4
ψ) =

d
da

(a4(ȧ2)), (181)

which after an integration yields

a4
ψ = a4(ȧ2)+ c, (182)

in which c in the integration constant. To find c, we recall that at a = a0, ȧ = 0. Hence,

we obtain

c = a4
0ψ(a0) = a4

0ψ0. (183)

Taking back c into (182) we get finally

ȧ2 +
a4

0
a4 ψ0−ψ = 0. (184)

This is the equation of motion of the throat after the perturbation . Writing this equation

as

ȧ2 +V (a) = 0, (185)

in which

V (a) =
a4

0
a4 ψ0−ψ, (186)

one can study the stability status of the TSW as follows. As we already assumed, let’s

keep the equilibrium point to be at a = a0 where ȧ0 = ä0 = 0.
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The Taylor expansition of the potential V (a) about a = a0 is obtained to be

V (a) =V (a0)+V ′(a0)(a−a0)+
1
2

V ′′(a0)(a−a0)
2 +O((a−a0)

3). (187)

Herein

V (a0) =
a4

0

a4
0

ψ0−ψ0 = 0, (188)

and

V ′(a0) =
d

da

(
a4

0
a4 ψ0−ψ

)
a=a0

=

(
−

4a4
0

a5 ψ0−ψ
′
)

a=a0

=−
(

4ψ0+a0ψ
′
0

)
1
a0

(189)

V ′(a0) also vanishes due to the condition (149). Finally one obtains

V ′′(a0) =

[
+

20a4
0

a6 ψ0−ψ
′′
]

a=a0

=
20
a2

0
ψ0−ψ

′′
0 . (190)

Nevertheless, the linear equation of motion of the TSW after the perturbation becomes

ȧ2 +
1
2

(
20
a2

0
ψ0−ψ

′′
0

)
(a−a0)

2 ' 0. (191)

Therefore, the nature of the solution of (191) depends on the sign of ω2 = 1
2(

20
a2

0
ψ0−

ψ ′′0 ). If ω2 > 0 the solution after the perturbation is oscillatory which is an indication

for the stability. On the other hand, if ω2 < 0 the motion becomes of exponential type

which implies the TSW is unstable.

In summary, we shall look for the possible values for the parameters such that the
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expression for V ′′(a0), i.e,

V ′′(a0) =
20
a2

0
ψ0−ψ

′′
0 , (192)

becomes positive. Considering ψ given in (169) with R0 = 0 and −1+ 4
√

2βQ = µ

one finds

V ′′(a0) =
6µa0−14Q2α−10αa2

0

αa4
0

. (193)

We recall that, a0 is given by Eq. (177) which upon a substitution in (193) we find

V ′′0 (a0) =
256α3

(µ +
√

ξ )4

(
7µ2

8α
+

µ
√

ξ

4α
−14Q2

α− 5ξ

8α

)
, (194)

in which ξ = µ2−16Q2α2 > 0.

We recall that µ has been bounded due to other conditions such that

√
16αQ < µ <

√
18αQ. (195)

In Figure 7 we plot V ′′0 (a0) in terms of µ for α = 1 and Q = 1. Figure 6 shows clearly

that in the domain of µ,V ′′0 > 0. Finally, we conclude that our TSW in f (R)-gravity

Figure 7: A plot of V ′′0 in terms of µ for α = 1 and Q = 1.

is stable against a linear perturbation.
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Chapter 4

CONCLUSION

Due to the junction conditions construction of TSWs in f (R)-gravity in contrast to

Einstein’s general relativity, is a rather difficult operation. This originates from the

tough conditions imposed on the first and second fundamental forms. We overcome

the difficulty by considering a class of f (R) model coupled with NED whose third

derivative i.e. f ′′′(R) 6= 0 so that it satisfies the generalized junction conditions. An

exact solution is obtained which is supported by an external static field within the

context of NED. It admits electric black holes which, however, does not serve our

purpose of TSWs. The reason is simple: the existence of the event horizon is not

compatible with the radius of the thin-shell. We follow therefore a different route. We

choose the non-black hole branch of the solution which allows us to locate the shell.

The shell’s radius becomes founded from above which is stable against linear radial

perturbations. The fluid energy-momentum emerging of the throat upon perturbation

satisfies naturally a non-barotropic equation of state. If the shell was not stable then it

would collapse at the slightest perturbation to the naked singularity at the center.
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