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ABSTRACT

Wormholes appeared in general relativity as special solutions to Einstein’s field equa-

tions. These bizarre structures can be visualized as tunnels connecting remote points

within a single spacetime or points of two distinct spacetimes. The main problem with

the wormholes is that they are supported by exotic matter; a kind of matter which does

not satisfy the known energy conditions. In 1988, Morris and Thorne published a paper

and discussed the traversability of wormholes. The paper soon came to researchers’

focus and caused a new wave of studies over structural characteristics of wormholes.

In 1989, in one of these attempts, Visser developed a method with which a new class

of traversable wormholes came into existence; thin-shell wormholes. The principal

aim was to tackle with the exotic matter that necessarily gave life to such objects.

Visser’s recipe was to confine the exotic matter to a very narrow surface, i.e. the throat

of the thin-shell wormhole so that its existence can be justified in some way. Thin-

shell wormholes in isotropic spacetimes are represented traditionally by embedding

diagrams which were symmetric paraboloids. This mirror symmetry, however, can be

broken by considering different sources on different sides of the throat. This gives rise

to an asymmetric thin-shell wormhole, whose mechanical stability is studied here in the

framework of the linear stability analysis. In the first half of this dissertation, having

constructed a general formulation, using barotropic and variable equations of state, also

related junction conditions, the results are closely studied for some examples of diverse

geometries in general relativity. Specifically, the role of asymmetry in the stability of

thin-shell wormholes, if any, has been studied. It is shown that the stability of such pe-

culiar objects can be studied in the context of linear stability analysis and that they can
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be mechanically stable. It is seen that the asymmetric structures of thin-shell worm-

holes are less likely to be stable compared with their symmetric counterparts. Also, it

is shown that the discontinuities which appear in the stability diagrams of the asym-

metric thin-shell wormholes are due to a flaw in the barotropic equation of state, and

that such discontinuities can be lifted by exploiting a radius-dependent variable equa-

tion of state. The second half is devoted to constructing static thin-shell wormholes

in new massive gravity and investigating their properties. It is shown that the asym-

metry arises naturally in these thin-shell wormholes. Additionally, solutions such as

static BTZ and new type black holes, and warped (A)dS3 solutions admit no thin-shell

wormholes. Finally, the energy density and pressure of the constructed asymmetric

thin-shell wormholes become zero which implies no exotic matter.

Keywords: Thin-Shell Wormhole, Thin-Shell Formalism, General Relativity, New

Massive Gravity, Exotic Matter, Asymmetry.
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ÖZ

Genel görelilikte solucan delikleri, Einstein’ın alan denklemlerine özel çözümler olarak

ortaya çıktı. Bu tuhaf yapılar, tek bir uzay-zaman içindeki uzak noktaları veya iki farklı

uzay-zamanın noktalarını birbirine bağlayan tüneller olarak tasavvur edilebilir. Solu-

can delikleri ile ilgili ana problem, fiziksel olmayan madde -bilinen enerji koşullarını

sağlamayan bir tür madde- ile desteklenmeleridir. 1988’de, Morris ve Thorne bir

makale yayınladı ve solucan deliklerinin geçilebilirliğini tartıştı. Makale kısa sürede

araştırmacıların odağı haline geldi ve solucan deliklerinin yapısal özellikleri üzerinde

yeni bir çalışma dalgası yarattı. 1989’da, bu girişimlerden birinde, Visser, yeni bir

geçilebilir solucan deliği sınıfının ortaya çıktığı bir yöntem geliştirdi; ince-kabuklu

solucan delikleri. Asıl amaç, bu tür nesnelere zorunlu olarak hayat veren fiziksel ol-

mayan madde ile baş etmekti. Visser’in çözümü, fiziksel olmayan maddeyi çok dar

bir yüzeye, yani ince-kabuklu solucan deliğinin boğazına sınırlamaktı ki böylece var-

lığı bir şekilde doğrulanabilirdi. İzotropik uzay-zamanlarda ince-kabuklu solucan de-

likleri, geleneksel olarak bakışımlı paraboloitler olan diyagramların yerleştirilmesiyle

gösterilir. Ancak bu ayna bakışımlılığı, boğazın çeşitli taraflarında başka kaynaklar göz

önünde bulundurularak kırılabilir. Bu da, lineer kararlılık analizi çerçevesinde mekanik

kararlılığı burada incelenmiş olan bakışımsız bir ince-kabuklu solucan deliğini or-

taya çıkartır. Bu tezin ilk yarısında, barotropik ve değişken durum denklemleri ve

ayrıca ilgili birleşme koşulları da kullanılarak genel bir formülasyon elde edilerek,

sonuçlar genel görelilikteki farklı geometrilerin bazı örnekleri için yakından incelen-

miştir. Spesifik olarak, ince-kabuklu solucan deliklerinin kararlılığında bakışımsızlığın

rolü, eğer varsa, incelenmiştir. Lineer kararlılık analizi bağlamında, böyle tuhaf nes-
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nelerin kararlılığının çalışılabileceği ve mekanik olarak kararlı olabilecekleri göster-

ilmiştir. İnce-kabuklu solucan deliklerinin bakışımsız yapılarının, bakışımlı benzerler-

ine kıyasla daha az kararlı oldukları görülmüştür. Ayrıca, bakışımlı ince-kabuklu solu-

can deliklerinin kararlılık diyagramlarında görünen süreksizliklerin, barotropik durum

denklemindeki bir kusurdan kaynaklandığı ve bu tür süreksizliklerin yarıçap-bağımlı

değişken durum denkleminden yararlanılarak kaldırılabileceği gösterilmiştir. İkinci

yarı, yeni kütleli çekim kuramında statik ince-kabuklu solucan delikleri elde etmeye

ve bunların özelliklerini araştırmaya adanmıştır. Bu ince-kabuklu solucan deliklerinde

bakışımsızlığın doğal olarak ortaya çıktığı gösterilmiştir. Ek olarak, statik BTZ ve yeni

tip kara delikler gibi çözümler ve eğrilmiş (A)dS3 çözümleri, ince-kabuklu solucan de-

liklerini desteklememektedir. Son olarak, elde edilen bakışımsız ince-kabuklu solucan

deliklerinde enerji yoğunluğu ve basınç sıfır olmakta ve bu da fiziksel olmayan madde

olmadığı anlamına gelmektedir.

Anahtar Kelimeler: İnce-kabuklu solucan deliği, İnce-kabuk forrmalizmi, Genel görelilik,

Yeni kütleli çekim kuramı, Fiziksel olmayan madde, Bakışımsızlık.

vi



DEDICATION

To my extraordinary family

for their support and encouragement

vii



ACKNOWLEDGMENT

Throughout my graduate program and the writing of this dissertation I received a great

deal of support and assistance. I would first like to thank my dear supervisor and co-

supervisor, Prof. Dr. S. Habib Mazharimousavi and Prof. Dr. Mustafa Halilsoy, whose

expertise, wisdom and diligence lit up all the way from the first day to the last. It would

simply be impossible to make it without you.

I would like to kindly thank our department’s staff members. Specially, I would like

to single out our chair of department, Prof. Dr. İzzet Sakallı, for all the opportunities
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Chapter 1

INTRODUCTION

The history of wormholes goes back to the embedding diagrams of Ludwig Flamm [1]

in the newly discovered Schwarzschild metric in 1916. Later on, in 1935, Einstein

and Rosen [2] in search of a geometric model for elementary particles rediscovered a

wormhole as a tunnel connecting two asymptotically flat spacetimes. The minimum

radius of the tunnel, now known as the throat connecting two geometries, was inter-

preted as the radius of an elementary particle. The idea of wormhole did not go in much

popularity until Morris and Thorne [3,4] gave a detailed analysis, and in certain sense,

initiated the modern age of wormholes as tunnels connecting two spacetimes. It was

already stated by Morris and Thorne that the energy density of such an object, if it ever

exists, must be negative; a notorious concept in the realm of classical physics. This

could be supported by a type of hypothetical matter known as the exotic matter. Ex-

otic matter, which inevitably emerges in the theories of wormholes, violates the known

energy conditions such as the weak energy condition (WEC) [5]. In fact, wormholes

in general relativity violate all of the pointwise and averaged energy conditions [4, 6].

In quantum theory, rooms exist to manipulate and live along peacefully with negative

energy densities. However, being a classical theory, general relativity must find the

remedy within its classical regime without resorting to any quantum physics. At this

stage, an important contribution came from a new chapter in wormhole theories; thin-

shell wormhole (TSW). The concept of TSW was introduced by Visser in 1989 [7, 8]
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in the hope of keeping the idea of wormholes alive by confining the exotic matter to

a narrow band of the spacetime, called the throat of the TSW. The idea of TSWs be-

came as popular and interesting as the standard wormholes, verified extensively by the

literature in that context [9–39]. Prior to Visser’s articles, wormhole theories had the

exotic matter distributed on certain parts of the spacetime, if not all over it. However,

Visser’s so called cut-and-paste procedure allows us to confine such a notorious matter

on a very limited part of the space, the TSW itself. Moreover, the cut-and-paste pro-

cedure has the advantage that can be applied to a vast variety of spacetimes [21–33],

while before Visser only some certain spacetimes had the structure of a wormhole [6].

It is also worth mentioning that while TSWs are categorized as traversable wormholes,

not all the wormholes are considered to be traversable [3]. As another advantage in

favor of TSWs, Poisson and Visser developed a method [10] with which the dynam-

ical stability of TSWs could be appraised under a radial perturbation [32–39]. For

some more recent works we refer to [40–76]. Let us also remark that there have

been attempts to construct TSWs with total positive energy against the negative lo-

cal energy density [77–83]. This has been possible only by changing the geometrical

structure of the throat, namely from spherical/circular to non-spherical/non-circular

geometry, depending on the dimensionality. Stability of TSW is another important

issue that deserves mentioning and investigation for the survival of a wormhole (Fig.

1) [27–31, 34, 35, 45, 46, 84–86].

In this dissertation, we introduce TSWs that are constructed asymmetrically out of dif-

ferent bulk spacetimes [87–90]. So far, the spacetimes on the two sides of the throat

have been made from the same bulk material. Our intention is to consider different

spacetimes, or at least different sources in common types of spacetimes to impose a
2



Figure 1.1: Schematic embedding diagram of a symmetric (left) and an asymmetric
(right) thin-shell wormhole.

difference between the two sides. Naturally, the reflection symmetry about the throat

in the upper and lower halves will be broken and in consequence new features are

expected to arise which is the basic motivation for the present study. Note that for

non-isotropic bulks, asymmetric TSWs emerge naturally. For example, we consider

Reissner–Nordström (RN) spacetimes on both sides of the throat, but with different

masses and/or charges; Or two cosmic string (CS) spacetimes with different deficit

angles. This type of TSW, which we dub as asymmetric TSW (ATSW), has not been

investigated so far and so we will be focusing on them. One may anticipate that the

asymmetry of the wormhole will have an impact on particle geodesics, light lensing,

and other matters. Asymmetry may act instrumental in the identification of TSWs in

nature, if there exists such structures. Our next concern will be to study the stabil-

ity of such ATSWs and novelties that may arise, if any. As in the previous studies,

an equation of state (EoS) is introduced at the throat with pressure and density to be

used as the surface energy-momentum tensor. Then, the Darmois-Israel junction con-

ditions [92–97] relate these variables within an energy equation. Next is to radially

perturb the ATSW to see how this energy equation responds to the perturbation. Based
3



on the response, which is studied within the linear stability analysis framework, the

stability of the ATSW is assessed. In chapter 2, we study ATSWs in general relativity

constructed by, first, spherically symmetric and then, cylindrically symmetric solutions

of Einstein’s equations. Furthermore, we address an anomaly which occasionally oc-

curs in the stability diagram of an ATSW, called the infinite discontinuity. We discuss

what gives rise to it and how it can be removed. In chapter 3, static ATSWs are con-

structed in new massive gravity. There we reveal that for possible ATSW constructions,

exotic matter is not required. We conclude in chapter 4. Throughout the manuscript,

we follow the unit convention c = 8πG(n+1) = 4πε0(n+1) = 1, where c is the speed

of light, and G(n+1) and ε0(n+1) are the gravitational constant and the permittivity of

free space in n+ 1 dimensions, respectively. Moreover, to improve the readability of

the manuscript, we use the unusual term “side-spacetimes” to refer to the two bulk

spacetimes on the two sides of the throat of an ATSW.
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Chapter 2

ASYMMETRIC THIN-SHELL WORMHOLES IN

GENERAL RELATIVITY

2.1 Construction of a Spherical ATSW

To study the ATSWs in general relativity, we begin by specifying to the two side-

spacetimes, two general 3 + 1-dimensional spherically symmetric line elements in

spherical coordinates xµ
± = {t±,r±,θ±,φ±}, given by

ds2
± = g±µνdxµ

±dxν
± =−A± (r±)dt2

±+B± (r±)dr2
±+C± (r±)dΩ

2
±, (2.1)

in which, g±µν are the metric tensors of the two sides. The metric functions A± (r±),

B± (r±) and C± (r±) are all positive functions of radial coordinates r±, whereas dΩ2
±,

traditionally, are 2−sphere line elements defined by dΩ2
± = dθ2

±+ sin2
θ±dϕ2

±.

To construct an ATSW, following the Visser’s method in the spherical coordinates,

consider two distinct Lorentzian spacetimes denoted by (Σ,g)±, each having a line

element of the form in Eq. (2.1). Out of each spacetime, a subset (ϒ,g)± is cut such

that no singularities or event horizons of any sort are included, i.e. (ϒ,g)± ⊂ (Σ,g)±

and (ϒ,g)± = {xµ
±|r± ≥ a(τ) > reh}, where reh is any existed event horizon, and τ is

the proper time on the shell r± = a. Then, by pasting these two cuts at their common

timelike hypersurface H , such that H ⊂ (ϒ,g)±, one creates a geodesically complete

Riemannian spacetime which provides a passage from one spacetime to the other. The
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whole structure is called, in general, an ATSW, and the hypersurface H is indeed the

throat of the ATSW which contains the exotic matter. Note that, the coordinates of the

two sides of the throat xµ
±, and more generally, the very natures of the two spacetimes

do not necessarily need to be the same. However, if they are chosen to be exactly the

same, the ATSW reduces to an ordinary symmetric TSW. To analyze the stability of the

throat, one spots the time-dependent throat characterized by r± = a(τ), or implicitly

H (r±,τ) = r±−a(τ) = 0, (2.2)

where τ is the proper time measured by the observer on the shell. In the context of

Darmois-Israel junction formalism [91–97], two conditions must be satisfied at the

TSW’s throat. While the first junction condition expects a continuity in the first funda-

mental form, the second one requires a discontinuity in the second fundamental form of

the throat. Accordingly, the first junction condition gives rise to a unique line element

on the shell given by

ds2
H = habdξ

adξ
b =−dτ

2 +C (a(τ))dΩ
2, (2.3)

no matter from which spacetime one approaches the throat. Herein, ξa = {τ,θ,φ} are

the coordinates and hab are the components of the metric tensor on the throat. Equating

Eqs. (2.1) and (2.3) at the location of the throat, r± = a(τ), immediately results in

[
−A± (r±)dt2

±+B± (r±)dr2
±
]

r±=a(τ) =−dτ
2, (2.4a)

C± (r±) |r±=a(τ) =C (a(τ)) , (2.4b)

and

{θ±,φ±}= {θ,φ} . (2.4c)
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The first equation of the set above (Eq. (2.4a)), gives rise to an expression for the

square of the total derivative of t± with respect to the proper time τ, denoted by an

overdot as

ṫ2
± =

1+B±ȧ2

A±
. (2.5a)

Also, by taking derivative with respect to the proper time τ of the two sides of the

equation above, one calculates

ẗ± =
ȧ
(
A±B′±ȧ2−A′±B±ȧ2 +2A±B±ä−A′±

)
2A3/2
±
√

(1+B±ȧ2)
. (2.5b)

These two latter expressions will be used later in the calculations of the second junc-

tion condition which leads to the components of the second fundamental form. Fur-

thermore, Eq. (2.4b) states that the metric functions C± (r±) must be equal at any given

proper time τ at the location of the throat. This places a strong condition over these

metric function, imposing that the two functions C± (r±) must have a similar radial-

dependent structure, i.e. we must have C+ (r+) = C− (r−) at any given time τ. The

second junction condition is mathematically given by [93]

[Ka
b ]

+
−−δ

a
b [K]+− =−Sa

b, (2.6)

where Ka
b , K, and Sa

b indicate the mixed extrinsic curvature tensor, the total curvature,

and the energy-momentum tensor of the throat, respectively. Also, δa
b is the Kronecker

delta, and the square brackets [ ]+− impart a jump in the included physical quantity

passing across the throat, i.e. [ϒ]+− = ϒ+−ϒ−. The standard definition of the covariant

extrinsic curvature of the throat is given by

K±ab =−n±µ

(
∂xµ
±

∂ξa∂ξb +Γ
µ±
αβ

∂xα
±

∂ξa
∂xβ

±
∂ξb

)
, (2.7)
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where

n±µ =

(
gαβ

±
∂H
∂xα
±

∂H
∂xβ

±

)−1/2
∂H
∂xµ
±

(2.8)

are the spacelike four-normal vectors at the location of the throat satisfying n±µ nµ
±=+1

for the timelike hypersurface, while

Γ
µ±
αβ

=
1
2

gµν

±

(
∂g±αν

∂xβ

±
+

∂g±
νβ

∂xα
±
−

∂g±
αβ

∂xν
±

)
(2.9)

are the Christoffel symbols of the bulk geometries, compatible with g±µν. Note that, the

Christoffel symbols for a torsion-free spacetime, such as the ones we consider here,

are symmetric with respect to the commutation of their covariant indices [98]. This, in

turn, gives that the extrinsic curvature tensor is a symmetric tensor under the commuta-

tion of its indices. To derive the explicit expressions for the second junction condition,

let us start by calculating the unit vector components n±µ . Having the defining equation

of the hypersurface in Eq. (2.2), we find

∂H
∂t±

=− ȧ
ṫ±

, (2.10a)

∂H
∂r±

= 1, (2.10b)

and

∂H
∂θ±

=
∂H
∂φ±

= 0. (2.10c)

These equations, along with

gαβ

± = diag
(
−A−1
± (r±) ,B−1

± (r±) ,C−1
± (r±) ,C−1

± (r±)sin−2
θ±
)
, (2.11)
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enable us to calculate

n±µ =

(
−ȧ
√

A±B±,
√

B± (1+B±ȧ2),0,0
)
. (2.12)

To find the components of the second fundamental form in Eq. (2.7), one also needs to

compute for the Christoffel symbols given by Eq. (2.9) [98]. With some algebra, the

non-zero components of the Christoffel symbols are obtained as

Γ
t±
tr = Γ

t±
rt =

A′±
2A±

, (2.13a)

Γ
r±
tt =

A′±
2B±

, (2.13b)

Γ
r±
tr = Γ

r±
rt =

B′±
2B±

, (2.13c)

Γ
r±
θθ

=−
C′±
2B±

, (2.13d)

Γ
r±
φφ

=−
C′± sin2

θ±
2B±

, (2.13e)

Γ
θ±
rθ

= Γ
θ±
θr =

C′±
2C±

, (2.13f)

Γ
θ±
φφ

=−sinθ± cosθ±, (2.13g)

Γ
φ±
rφ

= Γ
φ±
φr =

C′±
2C±

, (2.13h)

and

Γ
φ±
θφ

= Γ
φ±
φθ

=
cosθ±
sinθ±

, (2.13i)

where a prime (′) stands for a total derivative with respect to the radial coordinate r.
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Collecting the results in Eqs. (2.5a, 2.5b), (2.12), and (2.13a-2.13i) into Eq. (2.7), one

calculates the non-zero components of the mixed extrinsic curvature tensor as

Kτ
τ± =

√
B±

1+B±ȧ2

[
ä+

A′±
2A±B±

+
ȧ2

2

(
A′±
A±

+
B′±
B±

)]
(2.14a)

and

Kθ

θ± = Kφ

φ± =

√
B±

1+B±ȧ2

[
C′±

2B±C±
+

ȧ2

2

(
C′±
C±

)]
. (2.14b)

Note that, in these last equations one of the indices has been raised up by Ka
b±= hacK±bc.

The total curvature K± is defined as the trace of the mixed extrinsic curvature tensor,

i.e. K± ≡ Tr
[
Ka

b±
]
= habK±ab. Therefore, one obtains the total curvature as

K± = Kτ
τ±+Kθ

θ±+Kφ

φ± =

√
B±

1+B±ȧ2×[
ä+

1
2B±

(
A′±
A±

+2
C′±
C±

)
+

ȧ2

2

(
A′±
A±

+
B′±
B±

+2
C′±
C±

)]
. (2.15)

Having the non-zero components of the extrinsic curvature tensor and the total curva-

ture, all one needs to finalize the second junction condition in Eq. (2.6), is to write

down the components of the energy-momentum tensor Sa
b. In this regard, we assume

that the exotic matter on the throat is a perfect fluid whose energy-momentum tensor

is given by

Sa
b = diag(−σ, p, p). (2.16)

Herein, σ is the energy density of the fluid on the throat and p is its angular/tangential

pressure. Combining Eqs. (2.14a, 2.14b) and (2.15), together with the energy-momentum

tensor of the shell in Eq. (2.16), turns the second Darmois-Israel junction conditions
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in Eq. (2.6) into the following set of equations:

σ =−C′

C ∑
i=+,−

√
1+Biȧ2

Bi
(2.17a)

and

p = ∑
i=+,−

{√
Bi

1+Biȧ2

[
ä+

(AiBiC)′

2AiBiC
ȧ2 +

(AiC)′

2AiBiC

]}
. (2.17b)

Remark that, according to the first junction condition and the related discussions, we

must have C±|a =C (Eq. (2.4b)). This is why writing a subindex for C is avoided in the

last set of equations. Moreover, according to the positivity of the metric functions, σ is

negative-definite so the matter on the throat does not satisfy the weak energy condition

and is regarded as exotic. At this point, one could investigate the energy conservation

of the throat. The energy conservation for such a structure is given by ∇ jSi j = 0

when i = τ [29, 98]. The detail of the calculation will not be brought here, however,

one must notice that Si j = h jkSi
k, where h jk = diag(−1,C−1,C−1 sin−2

θ), and ∇ jSi j =

∂Si j/∂ζ j+Γi
jkSk j+Γ

j
jkSik, where the Christoffel symbols are the ones compatible with

the induced metric of the throat hi j. Considering all these, the conservation of energy

for the throat turns into

Cσ
′+C′ (σ+ p)+

σ

2C′
(
C′2−2CC′′

)
=

C′

2 ∑
i=+,−

(AiBi)
′

AiBi

√
1+Biȧ2

Bi

 . (2.18)

In the case C = r2
i , which covers a large class of spherical solutions, the last term

on the left-hand side vanishes. Also, the condition Bi = A−1
i , which again includes

a wide range of solutions, nullifies the term on the right-hand side. For the rest of

this study, without loss of generality, we always consider cases in which Bi = A−1
i ,

unless otherwise is stated. However, note that this is not really a restriction, since in

general relativity, with proper coordinate transformations, the line elements can always
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be written in a fashion where Bi = A−1
i . Incidentally, for the solutions which satisfy

both conditions, such as the Schwarzschild, the Reissner-Nordström (RN), and the

(Anti) de-Sitter solutions ((A)dS), the energy conservation will have the simple form

σ
′+

2
a
(σ+ p) = 0. (2.19)

As it will be shown in the following sections, the conservation of energy plays a vi-

tal role in the mechanical stability of the ATSW. Moreover, it can be perceived from

Eq.(2.18) that the tangential pressure p and the energy density σ are not independent

quantities and can be considered related through an “Equation of State” or concisely an

EoS. Of all the EoSs which have been appeared in the literature, one may enumerates

the barotropic EoS [10], the EoS of a (generalized) Chaplygin gas [99], polytropic gas

EoS [56], phantom-like EoS [100, 101] and the variable EoS [22]. In this dissertation,

we mostly focus on two: the barotropic EoS, given by p = p(σ), and a rather general-

ized form of it, the variable EoS, given by p = p(σ,a). In both cases, p represents a

differentiable function of its argument(s). Note that, the latter is more appropriate for

the TSW perturbations since it involves more degrees of freedom to be accommodated

in comparison with the former. In what follows we will use a method called “linear

stability analysis” to study the mechanical stability of ATSWs.

2.1.1 Linear Stability Analysis

In this analysis method, developed by Poison and Visser in 1995 [10], firstly, it is

assumed that there exists an equilibrium radius a0, at which the ATSW is stable. Sec-

ondly, the throat is being radially perturbed to see whether 1) the throat goes back and

settles in a0 undergoing a (critical) damped oscillations, 2) oscillates about the equilib-

rium radius a0 without damping, 3) diverges to infinity, or 4) collapses to zero. Only
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in the first case it can be stated that the ATSW is mechanically stable.

Having considered the condition B± = A−1
± , we set up the ground by recasting Eq.

(2.17a) into the form

ȧ2 +V (a) = 0, (2.20)

which resembles the equation of conservation of mechanical energy with a kinetic term

ȧ2 and an effective potential term

V (a) =
1
2
(A++A−)−

[
C′ (A+−A−)

2Cσ

]2

−
(

Cσ

2C′

)2

, (2.21)

in which A±, C and σ are all functions of a. In case of a symmetric TSW, for which

the connected spacetimes have the same geometrical structure, we have A+ = A− = A.

Hence, the second term identically vanishes whereas the first term simplifies to A.

When the ATSW is lying static at its equilibrium radius a0, it possesses no speed and

we have V0 ≡ V (a0) = 0, according to Eq. (2.20). Once the ATSW is radially per-

turbed, the effective potential V (a) can be Taylor-expanded about V0, where for small

perturbations we truncate the series by keeping only the first three terms as follows

V (a) =V0 +V ′0 (a−a0)+
1
2

V ′′0 (a−a0)
2 +O3 (a−a0) , (2.22)

where V ′0 ≡
dV (a)

da |a=a0 and V ′′0 ≡
d2V (a)

da2 |a=a0 . The first term on the right-hand side is

zero, as discussed above. The second term is also zero, due to the presumption that a0

is the equilibrium radius, where the tangent to the curve of the potential-radius diagram

must vanish. In this regard, the sign of the effective potential, which is now approx-

imated by V (a) ' 1
2V ′′0 (a−a0)

2, depends only on the sign of V ′′0 . Consequently, the

ATSW is stable at equilibrium radius a0, if V ′′0 is positive (and so the concavity of the
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curve in the potential-radius diagram is upwards), and is unstable at a0 if V ′′0 is negative.

In case V ′′0 = 0, the throat is in a neutral stability which means that when it is slightly

perturbed it neither tends to return to its original position nor departs more widely from

it. Correspondingly, the next mission will be to compute the explicit form of V ′′0 . To

this end, we start with V (a) in Eq. (2.21) and take the first derivative with respect

to a. In the resulted expression, σ′ will appear, which should be substituted from Eq.

(2.18). Afterwards, the second derivative will be operated, but this time, in addition to

σ′, we will have p′ ≡ d p(a)/da appearing, as well. This is where the EoS enters the

calculations. Since the variable EoS p = p(σ,a) is a generalization of the barotropic

EoS p = p(σ), we proceed with the choice of a variable EoS. Whenever needed, just

by dismissing the explicit radius-dependency of the pressure, the barotropic EoS might

be recovered. Hereupon, for the variable EoS we shall have

p′ = ω1σ
′+ω2, (2.23)

where ω1 ≡ ∂p(σ,a)/∂σ and ω2 ≡ ∂p(σ,a)/∂a. Let us note that, after fluid mechan-

ics, ω1 can naively be taken as the square of the speed of sound in the perfect fluid

on the throat. However, for an exotic matter, it does not refer to “the square of the

speed of sound” in the usual sense, and indeed, its physical interpretation requires a

microphysical model for the throat. To be more specific, constraints such as ω1 > 0

due to the stable state of the matter, and ω1 ≤ 1 because of the fact that the speed of

sound is upper-bounded by the speed of light, do not necessarily apply here. For a de-

tailed discussion see [10]. Nonetheless, we intend to assume that at least the condition

ω1 > 0 is rather realistic, and at some points, discuss the features of stability diagrams

on this basis.
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After some mathematical calculations and simplifications, the explicit form of V ′′0 can

be expressed as

V ′′0 =
1

4C4
0C′20 σ4

0

{
−C0C′40 σ

2
0

[(
A0|+−

)2C0

]′′
−
(
A0|+−

)2 (5σ0 p0 +6p2
0
)

C′60

−8
(
A0|+−

)(
A′0|+−

)
C0C′50 σ0 p0 +C4

0C′20 σ
4
0
[
−2σ

2
0−3σ0 p0−2p2

0 +2
(
A′′0++A′′0−

)]
+σ0

[(
A0|+−

)2C′40 −C4
0σ

4
0

][(
(3σ0 +2p0)C′20 −2C0C′′0 σ0

)
ω10−2C0C′0ω20

]}
(2.24)

where all the functions are calculated at a0. We have also considered the static versions

of the energy density and the tangential pressure, σ0 and p0, by setting a = a0 and

ȧ = ä = 0 in Eqs. (2.17a, 2.17b) to obtain

σ0 =−
C′0
C0

(√
A0++

√
A0−

)
(2.25a)

and

p0 =
√

A0+

[
A′0+
A0+

+
C′0
C0

]
+
√

A0−

[
A′0−
A0−

+
C′0
C0

]
. (2.25b)

Also, the short notation A0|+− ≡ A0+−A0− has been used. It is obvious that in case of

a symmetric TSW where A0+ = A0− = A0, the expression for V ′′0 widely simplifies to

V ′′0 =

(
2A0A′′0−A′20

)
C2

0 +
(
2A0C′′0 +A′0C′0

)
A0C0−2A2

0C′20
2A0C2

0

+

(
2A0C0C′′0 −2A0C′20 +A′0C0C′0

)
ω1

C2
0

−
√

A0ω2. (2.26)

Furthermore, if we have C = a2, then

V ′′0 =
2A0A′′0a2

0−A′20 a2
0 +2A0A′0a0−4A2

0

2A0a2
0

+
2
(
A′0a0−2A0

)
ω1

a2
0

−
√

A0ω2. (2.27)

Having V ′′0 calculated, the next mission is to recognize the conditions under which V ′′0

is positive. The procedure is simple yet challenging due to some subtleties arising in
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some cases. The steps are as follows: We set V ′′0 in Eq. (2.24) to zero to write it for

ω10. Then, ω10 will be graphed against the equilibrium radius a0, or a redefinition of it.

This redefinition is sometimes necessary due to the existence of some other parameters

such as mass or charge, which appear in the calculations through the metric functions.

On the aforesaid graph, finally, we identify the regions in which V ′′0 is positive in value.

In these regions, the parameters are such that the ATSW is mechanically stable. In the

following section we investigate the mechanical stability of some ATSWs, applying

the analysis method above.

2.1.2 Stability of a Cloud-of-Strings ATSW

Let us begin by the simplest example. The geometry of a cloud-of-strings (CoS) is

defined by a dust cloud model in which the building blocks of the cloud are classical

relativistic strings instead of point particles [102]. The dynamics of such a cloud model

is given by a Nambu-Goto action

ICoS =

ˆ
dλ

0dλ
1M
√
−γ, (2.28)

where λA are the local coordinates parameterizing the worldsheet of the string, M is

a dimensionless non-negative constant characterizing the string by its tension, while

γ ≡ det(γAB) defines the determinant of the metric tensor γAB = gαβ
∂xα

∂λA
∂xβ

∂λB of the

string’s worldsheet. Here, gαβ and xα are the metric tensor and coordinates of the

3+1-dimensional background spacetime, which for the purpose of this section is con-

sidered to be flat. The solution, therefore, is given by [102, 103]

ds2 = kdt2 + k−1dr2 + r2dΩ
2 (2.29)

where k > 1 is a constant related to the proper density of the string cloud. Comparing

Eq. (2.29) to Eq. (2.1) one gets
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
A± = k±

C± = r2
±

(2.30)

for the metric functions of the side-spacetimes. Before we proceed, and in order to

provide ourselves with mathematical means which clearly reflect the asymmetry of

the side-spacetimes, let us redefine k± with k− ≡ k and k+ ≡ (1+ ε)k, and call ε the

asymmetry factor of the ATSW. Since k− > 1 and k+ > 1, the admissible domain of

ε is [0,∞), with ε = 0 referring to a usual symmetrical TSW. Considering the metric

functions, the effective potential V ′′0 in Eq. (2.24) simplifies to

V ′′0 =−2
√

1+ ε

(
2ω10 +1

x2
0

+
ω̃20

1+
√

1+ ε

)
, (2.31)

where we have introduced the reduced equilibrium radius x0 ≡ a0/
√

k and applied the

redefinition ω̃20 ≡
√

kω20, in order to excise k out of the calculations. Setting V ′′0 to

zero in Eq. (2.31), one recovers “the square of the speed of sound” as

ω10 =−
1
2

(
1+

ω̃20x2
0

1+
√

1+ ε

)
. (2.32)

It can easily be seen, that in case of a barotropic EoS (ω̃20 = 0) we have ω10 =−1/2,

regardless of the values of the asymmetry factor ε, the metric parameter k, or even

the equilibrium radius a0. However, for any physically meaningful (to the best of

our knowledge) values of ω10 ∈ (0,1), the potential is negative, back to Eq. (2.31).

This implies that a TSW, either symmetric or asymmetric, cannot be supported by a

barotropic fluid on its throat. On the other hand, a reasonable variable EoS (ω̃20 6= 0),

with sufficiently negative ω̃20 will lead to a meaningful ω10, and hopefully a positive

V ′′0 . For example, let us simply consider ω̃20 = −6/x2
0. Therefore, for any ε ∈ [0,24),

ω10 in Eq. (2.32) is in the range (0,1). However, note that ω̃20 being negative does
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not imply a negative pressure, since ω̃20 ∝
∂p
∂a |a0 only represents a gradient in pressure,

by definition. Fig. 2.1 has been plotted for ω10 against x0 for different values of ε

when ω̃20 =−6/x2
0. The regions marked with an “S” are where the effective potential

is positive, hence, the ATSW is mechanically stable. The important remark here is

that as the side-universes become more and more asymmetric with an increase in the

asymmetry factor ε, the stability region shrinks and as an outcome, the number of the

pairs (a0,ω10) which result in a positive effective potential decreases. This, somehow,

can be interpreted as the following: the odds to have a stable ATSW decreases by an

increase in the asymmetry factor ε; or, in other words, a symmetric TSW has a better

chance to be stable than an asymmetric one. Note that, setting k = 1 and ε 6= 0 leads

to a CoS-Minkowski ATSW, while the case k = 1 and ε= 0 is just a usual Minkowski

TSW. One can easily confirm that the discussions in the lines above applies to both of

these special cases, as well.

Figure 2.1: The graph shows ω10 against x0 for different values of ε when ω̃20 =−6/x2
0.

The regions underneath the lines are where the ATSW is mechanically stable.
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It was observed that, in general, a CoS ATSW cannot be supported by a barotropic

fluid. This obstacle, however, can be lifted by exploiting a variable EoS type of fluid at

the throat, instead of a barotropic fluid. As it was explained, in variable EoS, unlike in

barotropic EoS, there exists an explicit radial-dependency for the pressure of the fluid

at the throat, which is represented by ω̃20. To see the impact of ω̃20 more visibly, let

us solve V ′′0 = 0 in Eq. (2.31) for ω̃20 instead of ω10. The result is

ω̃20 =−
(2ω10 +1)

(
1+
√

1+ ε
)

x2
0

. (2.33)

From the form of this function, it is easy to see that for a constant ω10 and a constant ε,

the magnitude of ω̃20 decreases inversely by x2
0. This admits that the greater the equi-

librium radius is, the less the effective is the variable EoS’s impact (Compared with the

barotropic EoS). What is more, for a constant ω10 in constant reduced equilibrium ra-

dius x0, the magnitude of ω̃20 grows larger by ε. This means that the more asymmetric

the ATSW becomes, the role of the variable EoS becomes more outstanding, although

the rate of its growth decreases due to the square root. Fig. 2.2 summarizes the results.

Figure 2.2: The diagrams show a) ω̃20 versus x0 for constant ω10 and ε, and b) ω̃20
versus ε for constant ω10 and x0, for a CoS ATSW with a variable EoS.
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2.1.3 Stability of a Schwarzschild ATSW

In this section and the nexts, the EoS under consideration will be the barotropic EoS.

We will come back to the variable EoS in section 2.2, where we address the disconti-

nuity problem in the stability diagrams. As the next example, we look at the case in

which the throat provides a transition between two Schwarzschild geometries possess-

ing different central masses. In other words, we require
A± = 1− 2m±

r±

C± = r2
±

(2.34)

for the two side spacetimes, where analogous to the previous section, we define an

asymmetry factor ε ∈ [−1,∞), such that m− ≡ m and m+ ≡ (1+ ε)m. Each spacetime

has an event horizon at reh±= 2m±, so the equilibrium radius a0 must always be greater

than the greatest of these event horizon radii. From Eq. (2.24), V ′′ (a0) can be solved

to obtain ω10 in terms of ε, ω20 and x0, where x0 ≡ a0/m is the reduced radius. Here,

to avoid the awkwardness due to their very long mathematical forms, we refrain from

bringing V ′′ (a0) and ω20 explicitly. Instead, by analyzing the associated graphs we will

point out the important remarks. In the case of a barotropic EoS (ω20 = 0), one can plot

ω10 against x0 for various values of ε. It is not hard to see that for the special case of ε=

0, the symmetric Schwarzschild TSW studied by Poisson and Visser in [10] revives; the

throat connects two Schwarzschild geometries with the same central masses. Also, it

is worth mentioning that for ε=−1 the wormhole couples a Schwarzschild spacetime

with a flat Minkowski spacetime. In Fig. 2.3 the graphs for ω10 against x0 are depicted

for six different values of ε. Regions with an S are the regions of stability for the

wormhole where V ′′ (a0) is evidently positive. According to Fig. 2.3, as ε increases

from −1 to 0 (as the mass m+ grows from 0 to m), the reduced event horizon xeh ≡
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reh/m, which belongs to the greater mass m− = m, remains unchanged. Once the

value of ε passes zero upwards, the reduced horizon is divided by m+ = (1+ ε)m.

For all the values of ε considered here, the graphs keep exhibiting a similar character

to the symmetric case at ε = 0, consisting of a bowl-like branch followed first by

a discontinuity, and then by an asymptotically growing-to-zero branch. The square

of the speed of sound ω10 is always positive for the stability region of the bowl-like

branch in Fig. 2.3. The figure indicates that any deviation from symmetric case with

ε = 0, makes the region of stability smaller. This is the evidence that, at least for the

physically meaningful values of ω10, the more symmetric the TSW is, the more likely

it is to find it in a stable state against a radial perturbation. The discontinuity in the

stability diagram lies in the very heart of the definition of ω10. In section 2.2 we will

surgically revisit this issue. There, we will show how substituting the barotropic EoS

with a well-tuned variable EoS helps to remove this discontinuity.

2.1.4 Stability of an Extremal Reissner-Nordström ATSW

As the next example, let us investigate the behavior of an ATSW which connects two

extremal Reissner-Nordström (ERN) spacetimes. After the Schwarzschild solution, the

RN geometry is the second famous black hole solution of the Einstein’s field equations.

It actually generalizes the massive and non-rotating Schwarzschild black hole to a

massive, non-rotating and charged black hole with the mass m and the charge q. (In

fact q2 is the sum of the squares of the net electric and magnetic charges of the black

hole). The line element of RN spacetime is given as

ds2 =−
(

1− 2m
r
− q2

r2

)
dt2 +

(
1− 2m

r
− q2

r2

)−1

dr2 + r2dΩ
2, (2.35)
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Figure 2.3: The plots of ω10 versus x0 with different values of ε for a Schwarzschild
ATSW with barotropic EoS. The stable regions are marked with an “S”.
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with an event and an inner horizon at reh = m+
√

m2−q2 and rih = m−
√

m2−q2,

respectively. (Note that with respect to the unit convention used here, mass and charge

have the same dimensionality). If |q| ≤ m, then rh is real and the singularity is hidden

behind the event horizon, while for |q| > m the spacetime exhibits a naked singular-

ity. The special case of |q| = m occurs when the two horizons coincide and an ERN

spacetime eventuates. Consequently, the line element of ERN can be written as

ds2 =−
(

1− m
r

)2
dt2 +

(
1− m

r

)−2
dr2 + r2dΩ

2, (2.36)

with an event horizon at reh = m. The case of a usual symmetric ERN TSW has been

studied in the literature [25,28,64]. However, for the purpose of constructing an ATSW,

let us have 
A± =

(
1− m±

r±

)2

C± = r2
±

. (2.37)

where analogous to the previous section we have m− ≡ m and m+ ≡ (1+ ε)m, where

ε ∈ [−1,∞) is the asymmetric factor. The steps leading to ω10 is also similar to the

previous section. With these settings, the respective ω10 for an ERN ATSW is plot-

ted against x0 ≡ a0/m in Fig. 2.4, for a barotropic fluid on the throat (ω20 = 0) and

different values of ε. The stable regions are also shown. Although the location of the

event horizon and the discontinuity are different from the Schwarzschild ATSW, the

results are very similar. Firstly, the general shapes of the graphs and the stability re-

gions are the same. Secondly, the most likely stable configuration is the one of the

symmetric case, where ε= 0, in the sense that more (x0,ω10)-pairs are available in this

configuration such that V ′′ (a0)> 0.
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Figure 2.4: The plots of ω10 versus x0 with different values of ε for a ERN ATSW with
barotropic EoS. The stable regions are marked with an “S”.
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2.1.5 Stability of a Schwarzschild-Reissner-Nordström ATSW

As the next example, let us investigate the behavior of an ATSW which connects two

inherently different spacetimes; a Schwarzschild geometry with a central mass m−≡m

and an RN geometry with a central mass m+ ≡ (1+ ε)m and a non-zero total charge

q. Hereupon, we demand 
A− = 1− 2m−

r−

A+ = 1− 2m+
r+ + q2

r2
+

C± = r2
±

, (2.38)

for the two side-spacetimes. Due to our unit convention, we are allowed to express q

in terms of m in the fashion q = ζm+, where ζ is a real number. Inserting all these into

Eq. (2.24) beside considering a barotropic EoS, results in an expression for V ′′ (a0) in

terms of a0, ε, ζ, ω10 and m. Equating V ′′ (a0) to zero, one can untangle ω10 in terms of

the remaining parameters. Needless to say, interpolating the parameters included can

produce a huge number of combinations, each having the potential to be the subject

for a separate detailed study in the future. However, here in this account, we wrap it

up with a single example of a very specific case in which ε= 0 and ζ = 1; accordingly,

m− = m+ = q = m. Evidently, this grants the special case of ERN geometry for one of

the spacetimes. Hence, the expression for ω10 reduces to

ω10 =−
3
√

x0 (x0−2)3/2 + x0

2(x0−2)(3x0−8)
(2.39)

where in analogy with the previous sections, x0 ≡ a0/m. As shown in Fig. 2.5, the sta-

bility diagram for ω10 surprisingly depicts the same general configuration as the ones

in the previous sections. Note that the event horizon of the Schwarzschild spacetime is

at 2m while the event horizon of the ERN spacetime is at m. Therefore, we must have
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a0 > 2m or x0 > 2. Based on this, unlike what one naively concludes from Eq. (2.39),

there is only one discontinuity in the stability diagram at x0 = 8/3. Furthermore, the

subtle reader would note that if we had set ζ = 0, the discussions represented in section

2.1.2 for the Schwarzschild ATSW would be recovered.

Figure 2.5: The plots of ω10 versus x0 with for a Schwarzschild-ERN ATSW with
ε= 0, ζ = 1 and barotropic EoS. The stable regions are marked with an “S”.

2.1.6 Stability of a de-Sitter-Anti de-Sitter ATSW

As the last example, let us study an interesting case in which a de Sitter (dS) universe

meets an anti-de Sitter (AdS) universe with the same cosmological constant at the

throat of an ATSW. (A)dS geometries are the simplest solutions to the Einstein’s field

equations with a non-vanishing cosmological constant Λ. Usual symmetric TSWs in

Schwarzschild-de-Sitter and Schwarzschild-Anti de-Sitter spacetimes has been studied

before [104, 105]. Here we consider the metric functions as
A± = 1± r2

±
α2

C± = r2
±

, (2.40)
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where the + (−) sign represents AdS (dS) geometry. Also, we have α2 = 3/Λ for

dS and AdS, respectively, where Λ is the cosmological constant (positive for dS and

negative for AdS). Note that for the dS universe there is a cosmological horizon at

rch = α. Joining these two universes by cut-and-paste procedure at their common

timelike hypersurface at a0 < α, gives rise to a dS-AdS ATSW, for which

ω10 =−
2−
√

1− x4
0

2
(
1− x4

0
) . (2.41)

Herein, we have defined x0 ≡ a0/α, where x0 < 1. The associated stability diagram

along with the mechanically stable region is given in Fig. 2.6. As it can be seen, there

is no discontinuity corresponding to this ATSW. However, the dS-AdS ATSW is stable

only for negative values of ω10, which is not meaningful, from a physical point of view.

Here we investigated some examples for ATSWs. However, there are many more

choices to be studied within this framework. For instance, any other combinations

of the Schwarzschild, the Reissner-Nordström and the (Anti) de-Sitter spacetimes that

we have not considered here, could potentially be a test bed for ATSWs.

2.2 Infinite Discontinuity in the Stability Diagram

In this section, we address to a particular issue of stability which incorporates infinite

discontinuity in the stability diagrams of some ATSWs we have investigated in the

previous section. The divergence radius occurs at a finite radius which lies outside the

event horizon and inside the cosmological horizon (if any), excluding the divergences

at the center and at infinity. What gives rise to this behavior? Is it possible to eliminate

these types of divergences? When a barotropic EoS is in operation, we observed that

such discontinuities occurred in the stability diagrams of the Schwarzschild ATSWs,
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Figure 2.6: The plots of ω10 versus x0 with different values of ε for a Schwarzschild
ATSW with barotropic EoS. The stable regions are marked with an “S”.

the ERN ATSWs, and the Schwarzschild-ERN ATSWs, due to amplitude-divergences

in ω10. However, they did not emerge in the corresponding stability diagrams of the

CoS ATSWs and the dS-AdS ATSW. Firstly, we will explain this by spotting the origin

of such discontinuities, and then, as they are physically non-acceptable, we eliminate

them systematically by revising the EoS and fine-tuning the pressure at equilibrium.

Previously, we have observed that for the barotropic EoS we have p′0 = ω10σ′0 at the

throat. Exercising this on the static version of Eq. (2.18) leads to

ω10 =
p′0

−C′0
C0

(σ0 + p0)+
2C0C′′0−C′20

2C0C′0
σ0

, (2.42)

which goes to infinity once the denominator goes to zero, unless p′0→ 0 faster. There-

fore, the infinite discontinuity is fundamental and cannot be removed by, say, changing

the coordinates. In a case where C (a) = a2, the above equation reduces to the simpler
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form

ω10 =
p′0

− 2
a0
(σ0 + p0)

. (2.43)

In such a case, σ0 + p0→ 0 faster than p′0→ 0 leads to an infinite discontinuity. Here

we proceed with some examples.

The Schwarzschild ATSW: It is well-known that for a symmetric Schwarzschild TSW

there exists an infinite discontinuity at a0 = 3m, where m is the central mass of the

Schwarzschild spacetime [10]. More generally, for a Schwarzschild ATSW with metric

functions given in Eq. (2.34) we obtain

σ0 + p0 =−
1

a3/2
0 [a0−2(1+ ε)m] (a0−2m)

×

{
[a0−3(1+ ε)m] (a0−2m)

√
a0−2(1+ ε)m

+[a0−2(1+ ε)m] (a0−3m)
√

a0−2m
}
. (2.44)

where we have used m− ≡ m and m+ ≡ (1+ ε)m. This has a double root at

aID± =
3m
8

[
3(ε+2)±

√
9ε2 +4ε+4

]
, (2.45)

where the sub-index “ID” stands for infinite discontinuity. However, for the admissible

domain of ε, the root with the minus sign falls behind the event horizon, i.e. aID− < reh,

whereas aID+ > reh always holds. Hence, an infinite discontinuity is expected at aID+ ,

which obviously leads to aID = 3m for a symmetric Schwarzschild TSW with ε = 0.

Fig. 2.7, which illustrates m(σ0 + p0) versus a0/m for the symmetric case, explains

why lima0→3m±ω10 =∓∞.
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Figure 2.7: The graph shows m(σ0 + p0) versus a0/m for a symmetric Schwarzschild
TSW. At a0 = 3m, m(σ0 + p0) = 0 which validates the previous results. Note
that while σ0 + p0 is positive valued pre-3m, it is negative post-3m. This explains
lima0→3m± β2

0 =∓∞ in the original stability diagram.

The Extremal Reissner-Nordström TSW: The case of an extremal Reissner-Nordström

(ERN) TSW has also been considered in the literatures [25, 28, 29]. Given Eq. (2.37),

as the metric functions corresponding to the bulk spacetimes of the ERN ATSW, we

obtain

σ0 + p0 =−
2 [a0− (ε+2)m]

a2
0

. (2.46)

Accordingly, there must be an infinite discontinuity at

aID = (ε+2)m. (2.47)

As shown in [28], this also admits an infinite discontinuity at a0 = 2m for a symmetric

ERN TSW, when ε = 0. For such a symmetric TSW, analogous to the previous case,

lima0→2m±ω10 =∓∞, according to Fig. 2.8 plotted for m(σ0 + p0) versus a0/m.
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Figure 2.8: The graph of m(σ0 + p0) against a0/m for a symmetric ERN TSW. The
zero of the vertical axis at a0 = 2m is expected according to the previous studies.

The Dilaton TSW: In [31, 106], Eiroa studies a TSW constructed by two symmetric

spacetimes which are solutions of the action

I =
ˆ

d4x
√
−g
[
−R+(∇φ)2 + e−2bφF2

]
. (2.48)

Herein, g= det
(
gµν

)
, R is the Ricci scalar, φ is the scalar dilaton field, F =FµνFµν with

Fµν being the electromagnetic field, and b ∈ [0,1] is the coupling parameter between

the dilaton and the electromagnetic field. In Schwarzschild coordinates, the spherically

symmetric solution is given by

ds2 =−A(r)dt2 +A−1 (r)dr2 +C (r)dΩ
2 (2.49)

where the metric functions are [107, 108]
A(r) =

(
1− M

r

)(
1− Q

r

)(1−b2)/(1+b2)

C (r) = r2
(

1− Q
r

)2b2/(1+b2)
. (2.50)
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The constants M and Q are related with the mass m and charge q of the spacetime

through 
M = m±

√
m2− (1−b2)q2

Q =
(
1+b2)q2/M

. (2.51)

Here we consider only the plus sign, because it is the plus sign that corresponds to

the Schwarzschild metric when q = 0. The solutions for b = 0 reduce to the normal

RN solutions for the Einstein-Maxwell action with a scalar field. For b = 1 a family

of static, spherically symmetric charged solutions in the context of low-energy string

theory are recovered [107]. Moreover, for 0 ≤ q2/m2 < 1+b2 the solution is a black

hole with an event horizon at r = M and an inner horizon at r = Q. When 1+ b2 ≤

q2/m2 ≤ 1/
(
1−b2), the inner horizon grows larger than the event horizon and the

metric exhibits a naked singularity. Also, the spacetime is not well-defined if q2/m2 >

1/
(
1−b2). In what follows a0 is considered to be greater than M and Q, as it must be.

According to the solution in Eqs. (2.50) and (2.51), it is expected that the root of the

denominator in the expression for ω10 in Eq. (2.42) denotes the infinite discontinuity

in the stability diagram. Having the static energy density as

σ0 =−2
C′0
C0

√
A0, (2.52a)

and the static pressure as

p0 =

(
A′0
A0

+
C′0
C0

)√
A0, (2.52b)

one calculates for the roots of the denominator of ω10 in Eq. (2.42), to acquire aID.

Due to the relatively complicated forms of A(r) and C (r) in Eq. (2.50), the expression
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for aID is complicated and lengthy, too. For this reason, we refrain from bringing its

explicit form here. Instead, we summarize the results in Fig. 2.9. Considering five dif-

ferent values for b, the subfigures display aID, the event horizon (EH) associated with

r = M, and the inner horizon (IH) associated with r = Q, in diagrams of aID/m against

|q|/m. The results are in complete agreement with the ones in [31]. For instance, for

b = 0 in Fig. 2.9 a, there always exists an infinite discontinuity beyond horizons. In the

numerical examples, this discontinuity is aID+ = 3m for |q|/m = 0, and aID+ ' 2.485m

for |q|/m = 0.8, as expected. Note that |q|/m > 1 is not allowed due to the restricting

conditions on the bulk spacetime mentioned above. On the other hand, when b = 1,

there is no infinite discontinuity for |q|/m≥
√

2. Again, for the sake of comparison to

the results in [31], note that, for example, when |q|/m = 0.8 we obtain aID ' 2.594m,

and aID' 2.860m, when b= 0.5, and b= 1, respectively. Furthermore, remark that aID

is 3m in all cases, when |q|/m = 0, due to the simple fact that when q = 0, the metric

functions in Eq. (2.50) reduce to the Schwarzschild metric functions, regardless of the

value of b.

2.2.1 Variable EoS

In 2015, Varela demonstrated that the infinite discontinuity of a Schwarzschild TSW

can be removed by using the variable EoS [22]. As it was discussed, the variable

EoS grants the pressure an explicit radius-dependency. The mechanism of infinite

discontinuity removal by the variable EoS is simply to null the numerator of

ω10 =
p′0−ω20

−C′0
C0

(σ0 + p0)+
2A0A′′0−A′20

2A0A′0
σ0

(2.53)

at aID, where the discontinuity had happened when ω20 was zero. This means, if we
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Figure 2.9: The graphs show aID/m against |q|/m for a dilaton TSW for different
values of b. In the legend, aID+ and aID− correspond to the roots of the denominator of
β2

0, given by Eq. (30). Also, EH and IH correspond to the event horizon and the inner
horizon of the bulk universe.

34



set ω20 such that

ω20 = p′0, (2.54)

then lima0→aID ω10 =
0
0 is indefinite, and it becomes well-defined if the numerator ap-

proaches zero, at least, at the same rate as the denominator. As far as the unit con-

vention that is applied here concerns, ω10 is a dimensionless quantity (ω1/2
10 is of type

speed, with the SI dimension
[
LT−1], which becomes dimensionless here, since length

and time are looked at on an equal footing in general relativity). Hereupon, the numer-

ator and the denominator of ω10 have the same dimension (L−2), and in case the fine-

tuning ω20 = p′0 is exerted, ω10 can be well-defined. Note that Eq. (2.53) is somehow

a generalization to Eq. (2.42).

For the case of a symmetric Schwarzschild TSW one obtains

p′0
∣∣
a0=3m =−2

√
3

9m2 , (2.55)

by taking the first derivative of Eq. (2.17b) (with Bi = A−1
i ), applying Eq. (2.34) and

setting ε = 0. This means that by fine-tuning ω20 to −2
√

3/
(
9m2) we might be free

from infinite discontinuity in the stability diagram. This is particularly shown in Fig.

2.10 for ω10 against a0/m. As it is evident, there is no sign of the infinite discontinuity

anymore.

Applying the variable EoS to an ERN ATSW leads to the same result. In this case we

obtain

p′0
∣∣
a0=(ε+2)m =− 2

(ε+2)2 m2
, (2.56)
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Figure 2.10: The stability diagram for a symmetric Schwarzschild TSW with a) the
barotropic EoS and b) the variable EoS. It can be observed that the infinite discontinu-
ity is simply removed by virtue of the variable EoS.

as the derivative of the angular pressure at the radius of infinite discontinuity occur-

rence. Correspondingly, the choice ω20 =−2/
(
(ε+2)2 m2

)
is expected to remove the

infinite discontinuity. Fig. 2.11 shows how this happens for a symmetric ERN TSW,

for which ε= 0.

In the end, we turn our attention to the dilaton TSW. Here, we take a closer look at

three cases for which b = 0, b = 0.5, and b = 1. The first is selected because it defines

the RN spacetime, and the last is selected for its importance in string theory. The

choice b = 0.5 is rather random, as an intermediate value in the b-spectrum. Also, for

all three cases, without loss of generality, we have randomly chosen |q|/m = 0.5. Our

numerical analyses show that for the three cases we have
p′0
∣∣
a0=aID

'−0.4139864432/m2 when b = 0

p′0
∣∣
a0=aID

'−0.4146553639/m2 when b = 0.5

p′0
∣∣
a0=aID

'−0.4162095590/m2 when b = 1

, (2.57)

which denotes that if we fine-tune ω20 such that ω20|b=0 =−0.4139864432/m2, ω20|b=0.5 =
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Figure 2.11: The stability diagram for a symmetric ERN TSW with a) the barotropic
EoS and b) the variable EoS. As expected, the infinite discontinuity is removed due to
the fine-tuning of the variable EoS.

−0.4146553639/m2, and ω20|b=1 = −0.4162095590/m2, the existed discontinuities

will be removed. This can be seen clearly in Fig. 2.12, where the related mechanical

stability diagrams are plotted for the three cases, once when ω20 = 0 (barotropic EoS),

and once when it is fine-tuned to remove the discontinuity. In all the subfigures, the

horizontal axis starts at M/m, and the stable regions are marked with an “S”. Note that

a similar analysis can be applied to other admissible values of b and/or |q|/m.

In short, we identified the cause of the emergence of infinitely branching discontinuity,

resembling a phase transition: they arise from the vanishing of the denominator of ω10

at equilibrium radius (Eq. (2.42)). In consequence, ω10, which is expected to be finite,

diverges. We showed how such divergences could be removed applying a different

type of EoS. Finally, we have used asymmetric TSWs in the sense that the spacetimes

on different sides of the throat differ only parametrically. Undoubtedly, the spacetimes

that differ in r-dependence also can be considered within the range of application.
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Figure 2.12: The stability diagram for a symmetric dilaton TSW for a) b = 0 with a
barotropic EoS, b) b = 0 with a fine-tuned variable EoS, c) b = 0.5 with a barotropic
EoS, d) b = 0.5 with a fine-tuned variable EoS, e) b = 1 with a barotropic EoS, and f )
b = 1 with a fine-tuned variable EoS. The value of |q|/m is set half for all the cases.
The fine-tuned values of γ0 are given at the top of each diagram. The regions with “S”
are where the TSW is mechanically stable.
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2.3 Construction of a Cylindrical ATSW

In this section we study the ATSWs constructed from cylindrically symmetric bulk

spacetimes. The cylindrically symmetric spacetimes are one degree lower symmet-

ric systems in comparison with the spherically symmetric ones. This can easily be

visualized by comparing a cylinder and a sphere. In analogy, an axially symmetric

space can also be categorized in a less symmetric configuration in comparison with

the spherically symmetric ones. Rotation of a spherically symmetric spacetime is

known to lose its spherical symmetry and it transforms into a stationary symmetric

one. This is exactly how rotation transforms the Schwarzschild spacetime into the sta-

tionary Kerr spacetime. While cylindrically symmetric wormholes [109–116], cylin-

drically symmetric thin-shell wormholes (TSWs) [21, 24, 117–126] and asymmetric

wormholes [87–89] have been considered in the literature, the absence of asymmetric

thin-shell wormholes (ATSWs) was felt. Our aim in this section is to fill this void.

The main disadvantage of a cylindrical system is the occurrence of a non-compact di-

rection, i.e. the z−axis, so that we cannot mention of an asymptotic flatness in such

a spacetime. Only for a slice, say z =const., we can extend the radial coordinate to

spatial infinity and discuss the asymptotic flatness in a restricted sense. The singularity

structure of a cylindrically symmetric system is also different from a compact spheri-

cal system. Hereupon, one may face the question “with so much research on spherical

TSWs, why to study the cylindrical TSWs?” First of all, cylindrical symmetry is the

natural extension of spherical symmetry that we encounter in nature. For curiosity

we want to know about cylindrical objects which are topologically related also with

planar symmetric objects. Secondly, with their natural cylindrical symmetry, cosmic

strings are shown not only to be involved in astronomical phenomena such as gravi-
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tational lensing effect [127, 128], but also have roots in the foundation of large-scale

structure of the universe [129], and correlations with the cosmic background radia-

tion [130,131]. However, the validity of TSWs constructed by such spacetimes must be

examined by constrains due to cosmological observations [67]. Thirdly, much interest

arouse recently on collision of wormholes [132], in analogy with colliding black holes.

Recall that detection of strong gravitational wave pulses at LIGO and Virgo [133,134]

are believed to arise as a result of black holes’ mergers. Similar pulses are expected

to emerge also from colliding wormholes. The existence of event horizon acts as a

sink to absorb almost all radiation, leaving very little to escape and reach our planet

Earth for detection. Since wormholes have no horizon, in case they undergo mutual

collision/merger the resulting ring-down has more potential to reach us. Expectedly

rotating black holes/wormholes carry more information through the polarization con-

tent of the radiated gravitational pulses. Cylindrical wormholes also are expected to

yield ring-down, strong enough with its additional echo from the throat, that can be

detected as cylindrical gravitational waves. It is well-known that the prototype form of

cylindrical gravitational waves were proposed first by Einstein and Rosen [135]. Later

on, these waves were generalized to cover the second polarization mode as well [136].

Detection of such cylindrical pulses will provide ample proof that they originate from

cylindrically symmetric sources such as the surrounding of black holes and worm-

holes. Asymmetric TSWs considered in this dissertation will provide further feedback

for cylindrical ring-down. For this reason, further research becomes inevitable to study

the quasinormal modes (QNM) for the cylindrical TSW spacetimes. This particular

study, of course, lies beyond the scope of the present project.

In what follows we apply the same approach as the previous section to, first construct,
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and then study the stability of cylindrical ATSWs under a radial perturbation. Unlike

the stability analysis of a localized spherical system, in a cylindrical system pertur-

bation must be effective both in radial as well as in axial directions. In a simpler

approach, however, we suppress the z−dependence and consider the metric functions

depending only on the radial coordinate. This amounts to reflection symmetry in the

z−direction by choosing a slice of constant z−surface.

Although we will start by establishing a generic framework, the sources of our space-

times considered here will be a line source for the Levi-Civita (LC) metric with a

cosmological constant Λ [137], which with the right selection of parameters can be

reduced to a cosmic string (CS) [138] or a black string (BS) [139] metric. These are

chosen deliberately, simple enough to expose the role of asymmetry in a cylindrical

spacetime. Choosing different values of the parameters on different sides of the throat

gives rise to asymmetry in the TSW. The next step is to address the stability analysis

of an ATSW by assuming a generalized fluid EoS after the perturbation. Once a metric

is perturbed, a new energy-momentum arises to counterbalance the nonzero curvature

terms on the left-hand side of the Einstein equations. Similar to the previous section,

we mostly intend to employ a variable EoS. However, whenever needed, we may go

back to the barotropic EoS just by repealing the explicit radial-dependency of the pres-

sure (by setting ω20 = 0).

Although the steps to construct an ATSW out of cylindrically symmetric spacetimes is

quite similar to the ones in the previous section, we prefer to start from scratch. This

way, we ensure that small differences that naturally arise from the essential distinc-

tion between the cylindrical and spherical coordinates do not mislead. To establish
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a framework which the spacetimes with cylindrical geometry in general relativity fit

into, we begin by initiating the metrics of the two sides of the wormhole in their general

diagonal cylindrically symmetric form as

ds2
± =−A± (r±)dt2

±+B± (r±)dr2
±+C±(r±)dφ

2
±+D±(r±)dz2

±, (2.58)

where the metric functions A± (r±), B± (r±), C± (r±) and D± (r±) are all positive func-

tions of r±. To construct the TSW by Visser’s standard cut-and-paste procedure [7, 8],

from each spacetime we cut a submanifold (ϒ,g)± = {xµ
±|r± ≥ a(τ)> reh}, and bring

them together at H = {xµ
±|r± = a}, which is their common timelike hypersurface. By

this, we connect the two spacetimes at their common boundary H , the well-known

throat of the wormhole. In case of absence of any horizon, i.e. for the non-black

hole spacetimes, we excise out the singularity (if any) on the source of the string (both

cosmic and black), which topologically gives rise to deficit/surplus angle.

The time-dependent equation defining H is implicitly given by Eq. (2.2) where τ is the

proper time on the throat. Having the ATSW constructed, imposing the Darmois-Israel

junction conditions [92, 93] on the metric and the curvature of the throat will be the

next step. Firstly, these conditions give a unique metric on the TSW given by

ds2
H = habdξ

adξ
b =−dτ

2 +C(a(τ))dφ
2 +D(a(τ))dz2, (2.59)

where ξa = {τ,φ,z} are the local coordinates of the throat. Comparing Eq. (2.58) to

Eq.(2.59) amounts to the counterparts of Eqs. (2.4a - 2.4c) as

[
−A± (r±)dt2

±+B± (r±)dr2
±
]

r±=a(τ) =−dτ
2, (2.60a)
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
C± (r±) |r±=a(τ) =C (a(τ))

D± (r±) |r±=a(τ) = D(a(τ))
, (2.60b)

and

{φ±,z±}= {φ,z} . (2.60c)

At the throat, Eqs. (2.5a and 2.5b) hold, as well. Secondly, passing through the TSW

from one side to the other, there is a jump in the extrinsic curvature tensor which

indicates the presence of a matter field at the throat. This second condition is math-

ematically expressed by the Lanczos equations [91] given in Eq. (2.6). The energy-

momentum tensor Sa
b belonging to the fluid localized on the throat is given by

Sa
b = diag

(
−σ, pφ, pz

)
, (2.61)

where σ is the energy density, while pφ and pz are the lateral pressures of the fluid

along φ and z, respectively.

In order to establish Eq. (2.6) explicitly for our general metrics, we begin by the

definition of the components of the covariant extrinsic curvature tensor given in general

by Eq. (2.7), where xµ = {t,r,φ,z} are the coordinates of the bulk spacetimes, and

ξb = {τ,φ,z} are the coordinates of the TSW. Having considered all these and the

steps that amounted to Eqs. (2.17a and 2.17b), the Lanczos equations for the energy

density and the pressures along φ and z amount to

σ =−(CD)′

2CD

2

∑
i=+,−

√1+Biȧ2

Bi

 , (2.62a)

pφ = ∑
i=+,−

√
Bi

1+Biȧ2

[
ä+

(AiBiD)′

2AiBiD
ȧ2 +

(AiD)′

2AiBiD

]
, (2.62b)
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and

pz = ∑
i=+,−

√
Bi

1+Biȧ2

[
ä+

(AiBiC)′

2AiBiC
ȧ2 +

(AiC)′

2AiBiC

]
. (2.62c)

Herein, a prime and an overdot imply a total derivative with respect to the radius a and

to the proper time τ, respectively.

Readjusting Eq. (2.62a) leads to an energy equation of type Eq. (2.20), with the radius-

dependent effective potential being

V (a) =
1
2

(
1

B+
+

1
B−

)
−
[
(CD)′

4CDσ

(
1

B+
− 1

B−

)]2

−
[

CDσ

(CD)′

]2

. (2.63)

The potential is then expanded using Taylor series about a hypothetical static equilib-

rium radius a0 > reh to a quadratic term as in Eq. (2.22). In this equation, the first two

terms on the right-hand side are zero due to the static version of Eq. (2.20), and the as-

sumption that a0 is indeed the equilibrium radius, respectively. Therefore, in the very

vicinity of a0, the effective potential V (a) is approximated by the first non-zero term

on the right-hand side of Eq. (2.22), i.e. the third term which is proportional to V ′′ (a0).

If V ′′ (a0) > 0 (V ′′ (a0) < 0), the state of the ATSW is said to be mechanically stable

(unstable). In order to proceed with the stability analysis, V ′′ (a0) must be explicitly

calculated, and an EoS is required to do so. The three expressions in Eqs. (2.62a -

2.62c) are not independent of each other and in fact are related by two generic variable

EoSs pφ = pφ(σ,a) and pz = pz(σ,a). Finally, performing a covariant derivative on

the energy-momentum tensor Sab yields the counterpart of Eq. (2.18) as

σ
′+

[
(CD)′

CD
+

C′D′− (CD)′′

(CD)′

]
σ+

1
2

(
C′

C
pφ +

D′

D
pz

)

=
(CD)′

4CD

2

∑
i=+,−

(AiBi)
′

AiBi

√1+Biȧ2

Bi

 . (2.64)
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Given certain metrics, Eqs. ((2.62a - 2.62c) and their static counterparts, together with

Eqs. (2.63) and (2.64) will be employed to construct the ATSW. As the subject matter,

first we will have an overview on a rather general non-rotating metric in cylindrical

coordinates which is known by different names; while some authors call it the Levi-

Civita (LC) solutions with a non-zero cosmological constant (LCC or LCΛ) [140,141],

some others call it the Linet-Tian (LT) metric [142, 143]. We will refer to it as the

latter. If Ω > 0 is the conicity of the spacetime, this metric for a negative cosmological

constant has a general form of [144, 145]

ds2 = dr2 +Q(r)
2
3

[
−P(r)

2µ(λ)
3κ(λ) dt2 +

1
Ω2 P(r)

2ν(λ)
3κ(λ) dφ

2 +P(r)
2ξ(λ)
3κ(λ) dz2

]
, (2.65)

where the metric functions are given by
Q(r) =

sinh(
√
−3Λr)√
−3Λ

P(r) =
2tanh(

√
−3Λr/2)√
−3Λ

, (2.66a)

which comprise the cosmological constant Λ. The other parameters are defined by

κ(λ) = 4λ2−2λ+1

µ(λ) =−4λ2 +8λ−1

ν(λ) =−4λ2−4λ+2

ξ(λ) = 8λ2−4λ−1

, (2.66b)

as functions of λ, a parameter related to the linear mass density of the source [140],

satisfying the constraint µ(λ) + ν(λ) + ξ(λ) = 0. Due to the available symmetries

[142], the conicity characteristics of the spacetime and the behavior of geodesics [141],

the permitted domain of λ is [0,1/2] [143]. In order to have the LT metric with a

positive cosmological constant, however, one substitutes the hyperbolic functions with

their normal trigonometric counterparts, and −Λ with Λ [141]. The metrics for either
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positive or negative cosmological constant, recover the LC solution when Λ→ 0 [137].

Nevertheless, we intend to focus more on the LT metric with Λ< 0, because this metric

has similar properties to anti-de Sitter (AdS) spacetime as r→∞ when λ is set to zero.

This, however, does not mean that for λ = 0 we have exactly the AdS spacetime,

because AdS, when is implemented in cylindrical coordinates, is not static [146]. This

makes this case more realistic compared to either the LC solutions for Λ = 0 or the LT

solutions with Λ > 0. It is also worth mentioning that the solutions in Eq. (2.65) are

not singular anywhere in spacetime except at the axis r = 0. Note that even r = 0 is

non-singular when λ = 0 or λ = 1/2 [141].

When it comes to an ATSW made by two non-identical LT universes (an LT ATSW),

one must be sure that the conditions in Eq. (2.60b) are satisfied. In general, this

explicitly means that the highly non-linear relations

1
Ω2

1
Q(r,Λ1)

2
3 P(r,Λ1)

2ν(λ1)
3κ(λ1) =

1
Ω2

2
Q(r,Λ2)

2
3 P(r,Λ2)

2ν(λ2)
3κ(λ2) (2.67a)

and

Q(r,Λ1)
2
3 P(r,Λ1)

2ξ(λ1)
3κ(λ1) = Q(r,Λ2)

2
3 P(r,Λ2)

2ξ(λ2)
3κ(λ2) (2.67b)

must hold simultaneously. With the level of complexity the two equations above bring

into the calculations, the stability analysis of the ATSW will practically be so chal-

lenging. Instead, we will choose particular metrics which are generated from the

rather general LT metric under special conditions. Again, we emphasize that due to

the conditions in Eq. (2.60b), not all the metrics that the LT metric covers can be

subject to an ATSW study. For example, the LC metric itself cannot be examined

within the ATSW context, because when the conditions C+(r+)|r+=a = C−(r−)|r−=a
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and D+(r+)|r+=a = D−(r−)|r−=a are satisfied for such a metric, the TSW cannot be

asymmetric anymore. We now proceed with particular examples.

2.3.1 Stability of a Cosmic String ATSW

As it was discussed in the lines above, while Λ→ 0 in the LT metric evokes the LC

solutions, λ→ 0 gives rise to the so-called non-uniform AdS metric [146]. However,

combining these two limiting conditions leads to

ds2
± =−dt2

±+Ω
2
±dρ

2
±+ρ

2
±dφ

2
±+dz2

±, (2.68)

for the two joined spacetimes, which are reparametrized with

ρ± =
r±
Ω±

. (2.69)

This metric, which is a vacuum solution to the Einstein field equations, is identified

by many names; "the metric of a straight spinning string in cylindrical coordinates

with parameter a = 0" in [147], the cosmic string (CS) metric [138] or the Gott’s

solution [148]. A cosmic string geometry [149] is basically a spacetime warped by an

infinitely long, straight and static massless cosmic string [150]. The spacetime has a

conical singularity along the world sheet of the string, however, it is flat and smooth

everywhere else. Comparing Eqs. (2.58) and (2.68) and recalling the condition in

Eq.(2.60b), we see that on the throat it appoints

A± = 1

B± = Ω2
±

C = a2

D = 1

. (2.70)
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Besides, we redefine Ω± such that they are related to each other by an asymmetry

factor ε, so that we can investigate our results based on the degree of asymmetry i.e.

the value of ε. Hence, we set down Ω− ≡ Ω and Ω+ ≡ (1+ ε)Ω, where the domain

of ε is seemingly (−1,∞). However, it is important to note that while for Ω± > 1

the spacetime has a conical geometry at t =const. and z =const. with angular defect

δ± = 2π

(
Ω±−1

Ω±

)
, for Ω± < 1 there exists a surplus angle. Here we only consider

deficit angle which implies Ω > 1 and (1+ ε)Ω > 1. Hence, the admissible domain of

ε is instead [0,∞).

The energy conservation in Eq.(2.64) takes the following simple form

σ
′+

1
a

(
σ+ pφ

)
= 0, (2.71)

in which there is no wake of pz, because the metric in every plane with t =const. and

z =const. has the same geometry. Hence, the energy density and the angular pressure

given by Eqs. ((2.62a - 2.62c), and their static counterparts reduce to

σ =− 1
aΩ

[√
1+Ω2ȧ2 +

1
1+ ε

√
1+(1+ ε)2

Ω2ȧ2
]
, (2.72a)

pφ = äΩ

 1√
1+Ω2ȧ2

+
1+ ε√

1+(1+ ε)2
Ω2ȧ2

 , (2.72b)

and

σ0 =−
1

a0Ω

(
2+ ε

1+ ε

)
, (2.73a)

pφ0 = 0, (2.73b)

respectively at the throat. These are in complete agreement with the results in [151].
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Accordingly, for a CS ATSW, the expression for the effective potential in Eq. (2.63)

will be

V (a) =−
(

σa
2

)2
−

[
ε(2+ ε)

2σ(1+ ε)2
Ω2a

]2

+
1+(1+ ε)2

2(1+ ε)2
Ω2

, (2.74)

explicitly. To compute V ′′(a0), we need the first and the second derivatives of the

energy density with respect to the radius. Thus, wherever needed, for the first derivative

of the energy density σ′ we substitute from Eq. (2.71) and for the second derivative we

apply

σ
′′ =

1
a2

(
σ+ pφ

)
(2+ω1)−

ω2

a
, (2.75)

in which we have used ω1 ≡ ∂pφ (σ,a)/∂σ and ω2 ≡ ∂pφ (σ,a)/∂a in

p′φ =
∂pφ (σ,a)

∂a
+

∂pφ (σ,a)
∂σ

σ
′. (2.76)

Eventually, by replacing the radius a with a scaled radius x =
√

Ωa (and x0 =
√

Ωa0)

we calculate the second derivative of the potential at the equilibrium radius as

V ′′(x0) =
−2
Ω

[
ω10

(1+ ε)x2
0
+

ω20

2+ ε

]
. (2.77)

Solving V ′′(x0) = 0 for ω10 leads to

ω10 =−
(1+ ε)ω20x2

0
2+ ε

, (2.78)

which is subject to the final analysis. It is straightforward to observe, that the angular

pressure pφ is either a function of both the radius a and the energy density σ, or of

none. Therefore, a barotropic EoS cannot support a CS ATSW or a CS TSW, at least,

in cylindrical coordinates. Additionally, according to the minus sign on the right-hand

side of Eq. (2.78) the signs of ω10 and ω20 are reverse; a positive ω20 leads to a neg-
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ative ω10 and vice versa. As it has been discussed in the previous sections, in fluid

mechanics ω10 corresponds to the square of the speed of sound through the matter on

the throat, and therefore, is physically meaningful in the interval [0,1). However, due

to the unusual (and unknown) characteristics of the exotic matter, ω10 might be corre-

sponding to a whole different physical property and so exempted from the limitation

ω10 ∈ [0,1). Nonetheless, if we somehow think of ω10 as the square of the speed sound

in the exotic matter on the throat, then ω20 must firstly, be negative, and secondly, be

adjusted such that we always have ω10 < 1.

In Fig. 2.13, ω10 is plotted against ω20x2
0 for different values of ε and the stable regions

are marked. It is observed that by an increase in ε, the region of stability constantly

shrinks (expands) for ω20 > 0 (ω20 < 0), meaning that for less symmetric ATSWs

with higher asymmetry factors, there are less (more) pairs of
(
ω10,ω20x2

0
)

available

such that the ATSW is mechanically stable. However, note that for the common stable

regions, where the value of the second derivative of the effective potential at the throat

(V ′′(x0) in Eq. (2.77)) is positive for all the admissible values of ε, the numerical value

of V ′′(x0) is greater for a fixed ω10, ω20 and x0. To sum up, for positive (negative)

values of ω20, the more symmetric (asymmetric) the ATSW is, it has a better chance

to be stable, although the stability of the symmetric TSW, corresponding to ε = 0, is

always stronger than the stability of an ATSW counterpart.

2.3.2 Stability of a Black String ATSW

Another interesting geometry can be constructed by setting λ = 1
2 in Eq. (2.66b) [141].

In a set of new coordinates (T,ρ,ϕ,ζ), where
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Figure 2.13: Stability regions of the CS ATSW visualized by plotting ω10 against
ω20x2

0 for various values of ε ∈ [0,∞) . The symmetric TSW corresponds to ε= 0. For
positive values of ω20 the probability of being stable increases by ε and vice versa.



T = 2Ω

−Λ
t

ρ = 1
Ω

cosh
2
3

(√
−3Λr

2

)
ϕ = φ

ζ = Ωz

, (2.79)

the new line element, known by the name "The uncharged, static black string metric"

[139, 152, 153], is given by

ds2 =−Ψ(ρ)dT 2 +
dρ2

Ψ(ρ)
+ρ

2 (dϕ
2 +dζ

2) . (2.80a)

with the metric function

Ψ(ρ) = α
2
ρ

2− 4M
αρ

. (2.80b)

Herein, the parameter α2 ≡ −Λ

3 , is positive definite and M ≡ α3

4Ω3 is associated with the

linear mass density of the black string calculated at radial infinity [154]. This solution
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is non-singular and has a horizon at ρh =
3√4M

α
= 1

Ω
. The metric function in Eq. (2.80b)

could also be written as

Ψ(ρ) = α
2
ρ

2
(

1− 1
Ω3ρ3

)
. (2.80c)

To investigate the stability of a BS ATSW, we require that the two spacetimes possess

the same conicity (and so the same Ω) but different mass densities (and so different

cosmological constants α±). Our stability method and steps will be analogous to the

previous section.

Comparing Eqs. (2.58) and (2.80a), we observe that at the throat
A± = Ψ± (a,α±)

B± = Ψ
−1
± (a,α±)

C = D = a2

, (2.81)

where we require the cosmological constants to be related to each other by an asym-

metry factor ε ∈ (−1,∞), such that α− ≡ α and α+ ≡ (1+ ε)α. Calculating for the

energy conservation given in Eq. (2.64), one obtains

σ
′+

2
a
(σ+ p) = 0. (2.82)

in which we have considered the fact that, according to Eqs. (2.62b and 2.62c), the

angular and the axial pressures at the throat are equal, i.e. pϕ = pζ = p. By applying

Eqs. (2.62a, 2.62b) and (2.82), the energy density and the tangential pressure and their

static equivalents are

σ =−2
a

[√
α2a2

(
1− 1

Ω3a3

)
+ ȧ2 +

√
(1+ ε)2

α2a2
(

1− 1
Ω3a3

)
+ ȧ2

]
, (2.83a)
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p =
aä+ ȧ2 +2(1+ ε)2

α2a2
(

1− 1
4Ω3a3

)
a
√

(1+ ε)2
α2a2

(
1− 1

Ω3a3

)
+ ȧ2

+
aä+ ȧ2 +2α2a2

(
1− 1

4Ω3a3

)
a
√

α2a2
(

1− 1
Ω3a3

)
+ ȧ2

, (2.83b)

and

σ0 =−2(2+ ε)α

√
1− 1

Ω3a3 , (2.84a)

p0 =
2(2+ ε)α

(
1− 1

4Ω3a3

)
√

1− 1
Ω3a3

, (2.84b)

respectively, which in turn lead to the radial potential

V (a) =
1
2
(
ε2 +2ε+2

)
α

2a2
(

1− 1
Ω3a3

)
−
[

1
σ
ε(ε+2)α

2a
(

1− 1
Ω3a3

)]2

−
(

σa
4

)2
. (2.85)

Having this potential, one computes V ′′(x0), the second derivative of the potential at

the rescaled equilibrium radius x0 = Ωa0, and from there, solving for V ′′(x0) = 0 one

obtains an expression for ω10 in terms of x0, ε, Ω, α and ω20 as

ω10 =
2(ε+2)2 (x3

0−1
)

3Ω(ε+1)
+

3
2
(
x3

0−1
) − 2ε2 +3ε+3

2(ε+1)
+

2x2
0

√
x0
(
x3

0−1
)

3αΩ(ε+2)
ω20 (2.86)

Here ω10 and ω20 have the same definitions as in the previous section (Eq. (2.76)).

To proceed further with Eq.(2.86) let us do some simplifications. Firstly, by Ω→ 1

we assume that the deficit angle of both spacetimes is zero. Secondly, we consider a

barotropic fluid at the throat. i.e. ω20 = 0. The results for ω10 against x0 are plotted in

Fig. 2.14 for different values of ε. All the values on the x0−axis are beyond the rescaled

event horizon xeh = 1. To determine which value of ε maximizes the area of the stability

region, we took the following steps: Firstly, we calculated S =
´

κ

1 ω10dx0, where κ > 0

is arbitrary. Secondly, we worked out dS/dε = 0 to determine for which values of ε
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Figure 2.14: Stability region of the BS ATSW supported by a barotropic EoS with
ω20 = 0. The curves are drawn for various values of ε, including the symmetric TSW
with ε= 0 which has the most chance to be stable.

the surface area S is extremum. It is found out that the only extremum for admissible

domain of ε occurs at zero. Next, learning that d2S/dε2
∣∣
ε=0 > 0 we concluded that

ε = 0 indeed leads to a minimum surface area under the curve in Fig. 2.14. Since the

stability region is located above the curve, this means that when ε = 0, and therefore

the TSW is symmetric, the possibility of finding the TSW in a mechanically stable

status is the greatest. However, this does not mean that ε= 0 always leads to the most

stable state. This can be seen from the explicit form of

V ′′ (x0) =−
α2

2x3
0
(
x3

0−1
) [4(ε+2)2 x0

(
x3

0−1
)2

−3
(
2ε2 +2εω10 +2ω10 +3ε+3

)(
x3

0−1
)
+9(ε+1)

]
, (2.87)

which is calculated for a barotropic fluid when Ω→ 1. From Fig. 2.14 and Eq. (2.87) it

can be perceived that for a fixed x and ω10, V ′′ (x0) may or may not exhibit a maximum

for ε= 0.
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Chapter 3

ASYMMETRIC THIN-SHELL WORMHOLES IN NEW

MASSIVE GRAVITY

3.1 Introduction

The mass of the quantum gravity’s fundamental particle, the graviton, has been one

of the most disputable subjects of modern physics. In massive theories of gravity, the

spin-2 graviton is destined to move inside the local light cone, not on it. To point out the

importance of massive theories of gravity let us draw a rough analogy with the Standard

Model (SM) of particle physics by recalling that neutrino shared a similar history. In

the SM, neutrino was also thought to be massless for a long time. With the advent of

experimental neutrino physics, the picture has changed: neutrino has a very small but

non-zero mass [155]. This amounts to changing much of the rules in the SM, leading

even to revise a certain proportion of the textbooks. In analogy, with massive gravity,

a certain revision in the fundamental physics of gravitational waves is expected. To

prove the mass of a graviton, however, is more challenging than the neutrino. In the

gravity side, even at a classical level, we had to wait until very recently when LIGO and

Virgo detected gravitational waves from the merger of massive black holes in distant

past [133,134]. Assuming that the gravity waves are massive, their speed in the vacuum

will be less than the speed of light and this will naturally cause a delay in their arrival to

the Earth. Nonetheless, an observation by LIGO and Virgo in 2017 put a constraint on

this time delay, limiting the difference between the speed of gravitons and the speed of
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photons to the interval
(
−3×10−15,+7×10−16)-times the speed of light [134]. This

means, that there still is an uncertainty in the mass of gravitons, and until the time

the precision of our measurements lets us decisively confirm or reject the existence

of massive gravitons, theoretical physics will keep contributing to the concept. See

[156,157] as review studies, and references therein for more details on massive gravity.

In the literature, it was Fierz and Pauli who added a mass-dependent term to the gravity

action for the first time in 1939 [158]. Since then, there have been so many attempts to

establish a consistent quantum gravity theory, especially in 3+1 dimensions. However,

most of these theories suffer from a common disadvantage: the absence of renormal-

izable theory. While renormalization is a big problem in 3+1 dimensions, things are

different in 2+1. From simple power counting method of field theory, the lower di-

mension expectedly has natural advantages over the higher dimension [159]. Since

2+1-dimensional Weyl curvature vanishes identically, it is well-known that there are

no pure gravitational degrees of freedom. For this reason, to create a theory, the source

must be supplied in the lower dimension to make a gravitationally feasible theory. This

is done by different methods, among which, two received more endorsements.

In an attempt to construct such a theory in 2+1 dimensions, Deser et al. established

the theory of Topological Massive Gravity (TMG) in 1982 by adding a Chern-Simons

term to the 3-dimensional Einstein-Hilbert (EH) action [160,161]. In 2009, Bergshoeff

et al. suggested a different theory which later was known as New Massive Gravity

(NMG) [162, 163]. This theory, which at the linearized level is the 2+1 dimensional

equivalent of Pauli-Fierz theory, has the advantage over TMG that preserves parity

symmetry [162–164]. Furthermore, it is shown in [165] and [166] that the theory is
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unitary in tree level and renormalizable. However, it was shown later by Muneyuki

and Ohta that the claim is wrong, and the unitarity and renormalizability are incom-

patible with each other [167]. de Rham et al. [168] go further to indicate that NMG is

unitary even beyond the tree level. In [169] the authors prove that NMG at tree level

is actually the only 3-dimensional unitary system which can be constructed by adding

quadratic curvature terms to EH action. Add to all these remarkable characteristics, its

invariance under general coordinate transformations is also manifest. NMG, therefore,

gained much attention right after its introduction, for being a promising candidate for a

renormalizable theory of quantum gravity. The theory also exhibits features like grav-

itational time dilation and time delay which the usual 3-dimensional general relativity

is not subject to [169, 170]. Soon after the first publication, it was shown that NMG

admits exact black hole solutions. In [171] warped AdS3 black holes and AdS2×S1 so-

lutions, in [163] Bañados-Teitelboim-Zanelli (BTZ) [172], new type black holes, and

warped dS3 and dS2×S1 solutions, in [173] extreme BTZ and a family of massive ‘log’

black holes, and in [173] and [174] AdS waves are discussed. Another important con-

tribution is made by Oliva et al. who investigated exact black hole and non-black hole

solutions of a special case with negative, positive and vanishing cosmological constant

in [175]. Moreover, the Lifshitz metrics have been shown to be solutions of NMG for

generic values of the dynamical exponent z (with an exact - asymptotically Lifshitz -

black hole solution at z = 3) [176]. Ahmedov and Aliev, in a series of exquisite pa-

pers [177–179], discuss algebraic type D and type N solutions of NMG by employing

a first-order Dirac-type differential operator. They indicate that the NMG field equa-

tions can be considered as the square of TMG field equations, and accordingly, argue

the possibility of mapping all types D and N solutions of TMG into NMG. Besides,
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they find new types D and N solutions in NMG with no counterparts in TMG. The

stability of BTZ black holes in NMG are classically studied in [180]. Some of these

aforementioned solutions will be considered here in this chapter.

Among all these, AdS3 solutions are of greater importance for an obvious reason:

Where there is a quantum-gravity consistent theory along with AdS solutions, there

exists the AdS/CFT correspondence [181]. However, it was shown that on the bound-

ary of the dual CFT, the unitarity of the AdS vacuum connotes a negative central

charge [163,182]. Also, for logarithmic CFT correspondence (AdS3/LCFT2) see [183].

Setare and Kamali in [184] show that there is a perfect agreement between their results

using 2-dimensional Galilean conformal algebra on the boundary of NMG with the

Bekenstein-Hawking entropy (in the nonrelativistic limit) for warped AdS3 and con-

tracted BTZ black hole solutions of NMG. Phase transitions between BTZ black hole

solutions and thermal solitons within NMG are studied in [185–187]. It is also worth

mentioning that later, the new type black holes initially appeared in [163], came to the

attention of Kwon et al., who obtained their quasi-normal modes [188], and Gecim

and Sucu, who studied the properties of relativistic spin-1/2 and spin-0 particles in this

background [189]. NMG has also been generalized to 4th [190] and higher arbitrary

dimensions [191]. Although, it is summed up in [166] that the higher dimensional

generalizations are not unitary at the tree level.

Furthermore, there have been attempts to extend NMG. Among these, we point out

the novel works by Güllü et al. [192, 193], which extend NMG to a 3-dimensional

Born-Infeld theory of gravity (BI-NMG). There, the authors discuss that the cubic or-

der extension of their augmented action duplicates the deformation of the NMG gained
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from AdS/CFT correspondence. Exact black hole solutions of BI-NMG are discussed

in [194], where properties such as mass, angular momentum, entropy and CFT dual

central charges of the solutions are also determined. Extensions to higher curvature

theories (R3-NMG) and their exact solutions are considered in [195–198]. In [199]

even higher derivative kinetic terms are discussed. Algebraic type N spacetime so-

lutions to BI-NMG and their higher-order curvature corrections of NMG are studied

in [200]. An extension of the theory by scalar matter with Higgs-like self-interaction is

investigated in [201] with exact asymptotically dS3 solutions which qualify as an eter-

nally accelerated non-singular bounce-like 3D Universe. Another extension by scalar

matter is discussed in [202], where the authors study a family of flat static domain walls

as solutions. In [203], the NMG action is coupled to Maxwell’s electromagnetic and

Chern–Simons actions to give rise to charged black holes in both warped AdS3 and log

forms. Generalized Massive Gravity (GMG), whose action contains quadratic terms of

both TMG and NMG along with coupling constants, and all its homogeneous solutions

are studied in [204]. Exploiting the NMG action, a new bi-gravity model is constructed

in 3 dimensions in [205]. Finally, a novel work by Dereli and Yetişmişoğlu suggests

a model (new improved massive gravity (NIMG)) which includes TMG, NMG and

minimal massive gravity (MMG) as subclasses of the theory [206, 207]. In this dis-

sertation, we particularly consider the cosmological new massive gravity (CNMG) in

2+1-dimensions [163] and construct TSWs in such a theory.

In continuation, we choose a class of static solutions in CNMG and introduce the nec-

essary junction conditions apt for a higher-order theory. This amounts to a revision

of Darmois-Israel junction conditions that were designed for Einstein’s general rela-

tivity [92, 93]. The qualified junction conditions in quadratic gravity are mentioned
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in [208], and later in 2016, revised in [209]. It is worth mentioning that Eiroa et al.

successfully applied the latter junction conditions to establish TSWs with a double

layer [40], pure double-layer bubbles [210], and spherical thin-shells [211] in F (R)

theory of gravity.

3.2 Cosmological New Massive Gravity Solutions

The NMG theory is based on the 2+1-dimensional cosmological new massive gravity

(CNMG) action [163]

ICNMG =
1

2κ

ˆ
d3x
√
−g
(

ςR+
1

m2

(
RµνRµν− 3

8
R2
)
−2λm2

)
, (3.1)

in which κ−1 is the three dimensional reduced Planck mass, m is the mass of the

graviton, Rµν and R define the Ricci tensor and the Ricci scalar, respectively, and λ is a

dimensionless cosmological parameter. The factor ς in Einstein-Hilbert term is merely

a convention-dependent factor which takes on either 1 or −1.

In this study we consider the solutions of the theory which can be cast into the generic

circularly symmetric form

ds2 =− f (r)dt2 +
1

f (r)
dr2 +H2 (r)dθ

2, (3.2)

where

f (r) = c0 + c1r+
1
2

c2r2 (3.3)

and H (r) are functions of the radial coordinate r. Herein, c0 and c1 are integration

constants to be interpreted as the mass parameter and gravitational hair of the given

spacetime, respectively. The cosmological-like parameter c2 can be reparametrized by
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the cosmological parameter λ as

c2 = 4m2
(

ς±
√

1+λ

)
. (3.4)

Setting H (r) = r comprises BTZ, warped (A)dS3 and new type black hole solutions,

while setting H (r) = 1 recovers non-black hole (A)dS2×S1 solutions. These are ex-

plained below in more details. Note that, in general, for λ < −1 there is no solution,

and for λ = 0 the metric represents a flat spacetime.

H (r) = r: a) For λ > −1 we must have c1 = 0. These solutions for ς = 1 are locally

isometric to AdS3 and for ς = −1 are locally isometric to dS3. In the special case of

c0 = 1 one recovers (A)dS3 vacua. Furthermore, in AdS3 case c0 < 1 admits static

BTZ black holes with mass parameter µ =−c0. Also, for λ = 0 the solution is trivially

flat.

b) For λ = −1 the solutions are called new type black holes. These special vacuum

solutions for ς = 1 (c2 > 0) exhibit asymptotically AdS3 unique vacua, while they

are asymptotically dS3 for ς = −1 (c2 < 0). In this case, the metric function f (r) ,

provided c2
1−8ςm2c0 ≥ 0, has a real double root at

r1,2 =
1

4m2

(
−ςc1±

√
c2

1−8ςm2c0

)
. (3.5)

In AdS3 case, when r1 > 0 we have an asymptotically AdS black hole with its horizon

at r = r1. There will also be an inner horizon at r = r2 in case r2 > 0. For dS3, on

the other hand, there potentially exist two horizons. When r1 > 0, the surface r = r1

is similar to the cosmological horizon of dS spacetime. If also r2 > 0, we will have a

black hole with an event horizon at r = r2. In this case, the occurrence of double roots
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implies that in between the roots, i.e. r2 < r < r1, the static spacetime remains static,

whereas for r < r2 and r > r1 becomes dynamic with t←→ r.

H (r) = 1: For λ = −1 the metric is Kaluza-Klein (KK) type vacuum solution, i.e.

locally isometric to AdS2×S1 when ς = 1 (c2 > 0) [171], and to dS2×S1 when ς =−1

(c2 < 0) [163]. Let us note that c0 and c1 are parameters of the solution, while c2 is

related to the essential parameters of the theory, m and λ.

3.3 Junction Conditions

Since the construction procedure of TSWs has been given extensively in the previ-

ous chapter, we shall abstain from going over the details again. Merely, the reader

must bear in mind that although the cut-and-paste procedure works fine in NMG, the

junction conditions are absolutely different from the ones in general relativity. In this

section, we introduce two distinct sets of junction conditions, independently derived

in [208] and [209] qualified for quadratic theories of gravity in arbitrary dimensions.

In the latter, Reina, Senovilla and Vera (RSV) take advantage of the standard distribu-

tional analysis, while in the former, Deruelle, Sasaki and Sendouda (DSS) simplify the

problem by using Gaussian coordinates at the joint hypersurface. In [209], RSV argue

that using Gaussian coordinates often causes ignoring some important subtleties, and

therefore, the reliability extent of the method is ambiguous (specially, when it comes to

double layers). Nevertheless, since we are not considering double layers, for the sake

of curiosity, we will apply both methods, independently, and count similarities and dif-

ferences, if any. In what follows we particularly concentrate on timelike hypersurfaces

which make more physical sense.

The junction conditions in [209] are derived to be applied to thin-shells. However, they
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are also applicable to TSWs provided some slight modifications. The key difference

between a thin-shell and a TSW stems from the selection of the normal vectors at the

location of hypersurface. Each of the two spacetimes to be joined at the hypersurface

has its own normal vector at the hypersurface. In a thin-shell, only one of the normal

vectors is chosen (for instance the one going into (Σ,g)+ and out of (Σ,g)−), while for

a TSW both normals are considered independently. Therefore, passing across the shell,

the normal vector is continuous in thin-shells and discontinuous in TSWs. In TSWs,

this distinction between normals is transmitted through all the extrinsic properties of

the throat, since the normals play parts in them, by definition. Hence, one must be

careful to hold the (±) signs of the normals for a TSW, while they can be dropped

casually for the case of a thin-shell. For the intrinsic properties (such as Riemann or

Ricci tensors and Ricci scalar), of course, this does not apply.

3.3.1 TSW Construction with the RSV Junction Conditions

According to [209], a general quadratic Lagrangian density in n+ 1 dimensions has

the form

LRSV =
√
−g
(

R+a1R2 +a2RµνRµν +a3RαβµνRαβµν−2Λ

)
, (3.6)

where an and Λ are constants with physical dimensions of
[
L2]. A quick comparison

with the CNMG action given in Eq. (3.1), reveals that a1 =
−3ς

8m2 , a2 =
ς

m2 and a3 = 0.

Similar to the normal Israel junction conditions in general relativity, the diffeomor-

phism of the two spacetimes to be joined at the junction requires the first fundamental

form to be continuous at their common hypersurface. This is the first junction condi-

tion and guarantees the identification of a global metric in the sense of distributions.

To avoid non-physical distributional terms, in the case either a2 or a3 is nonzero, the

63



second junction conditions are identified as the continuity of the second fundamental

form at the junction. There are also other junction conditions which basically insure

that the other fundamental generalized functions are well-defined, as well. RSV also

introduce the parameters κ1 = 2a1+a2/2 and κ2 = 2a3+a2/2 and classify their junc-

tion conditions in the case of a “thin-shell without double layer” based on the values

of κ2 and nκ1+κ2. With regard to the coefficients a1, a2 and a3, the proper conditions

for 2+1-dimensional NMG are the ones for the case “κ2 6= 0 and nκ1 +κ2 = 0”. This

is very interesting in the sense that even RSV would not think of this case as a serious

one: “Nevertheless, the relevance of this exceptional case is probably marginal, as the

coupling constants satisfy a dimensionally dependent condition.” [209]

In the literature of TSWs, the two spacetimes on the sides of the throat are traditionally

considered to be exact copies of each other. However, it was shown in the previous

chapter that this mirror symmetry can be broken by assigning different spacetimes to

(Σ,g)±, and develop ATSWs. We then follow the idea that this mirror symmetry is not

a necessity in NMG, too. Therefore, the proper junction conditions for n = 2 are

[
gαβ

]+
− = 0; (3.7a)

[
Kαβ

]+
− = 0; (3.7b)

[
Rαβµν

]+
− =

[R]+−
4
(
nαnµhβν−nβnµhαν−nαnνhβµ−nβnνhαµ

)
; (3.7c)

[
Rαβ

]+
− =

[R]+−
2

(
1
2

hαβ +nαnβ

)
; (3.7d)
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[
∇µRαβ

]+
− =

[
nν

∇νRαβ

]+
− nµ

+
1
2

(
1
2

hαβ +nαnβ

)
∇µ [R]

+
−−

1
4
[R]+−

(
nαKβµ +nβKαµ

)
; (3.7e)

Sα
α = 0; (3.7f)

κ
[
Sαβ

]+
− =−(κ1 +κ2)

[
RKαβ

]+
−+κ1 [nν

∇νR]+−+2κ2δ
ρ

αδ
σ

β

[
nν

∇νRρσ

]+
− . (3.7g)

(From [209], compare these with the associated junction conditions for thin-shells).

Here, the Sα
α is the trace of the energy-momentum tensor of the shell, Sαβ, in its distri-

bution form. Also, ∇ and ∇ are the covariant derivatives compatible with the metric g

of the bulks and h of the shell, respectively. Furthermore, [Ψ]+− ≡ Ψ+−Ψ− denotes

a jump in the function Ψ, passing across the thin-shell. Remark that, although all the

indices are in Greek, for the quantities on the shell they only take on the coordinates

on the shell, i.e. {t,θ}. For the metric defined in Eq. (3.2) we calculate the nonzero

independent components of Riemann and Ricci tensors, and Ricci scalar as follows

Rtrtr =
1
2

f ′′; (3.8a)

Rtθtθ =
1
2

f f ′HH ′; (3.8b)

Rrθrθ =−
H
2 f

(
2 f H ′′+ f ′H ′

)
; (3.8c)

Rtt =
f

2H

(
f ′′H + f ′H ′

)
; (3.8d)

Rrr =−
1

2 f h

(
f ′′+2 f H ′′+ f ′H ′

)
; (3.8e)
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Rθθ =−H
(

f ′H ′+ f H ′′
)

; (3.8f)

R =− 1
H

(
f ′′H +2 f ′H ′+2 f H ′′

)
. (3.8g)

Herein, a prime (′) denotes a total derivative with respect to the radial coordinate r.

Imposing the first junction conditions (Eq. (3.7a)), necessitates
f+ (a) = f− (a) = fa

H+ (a) = H− (a) = Ha

. (3.9)

However, the second junction conditions (Eq. (3.7b)) compel a different result as
f+′ (a) =− f−′ (a)

H+′ (a) =−H−′ (a)
. (3.10)

The jump in the Ricci scalar is a degree of freedom and considering Eqs. (3.8g), (3.9)

and (3.10) is calculated as

[R]+− =
1

Ha

[
Ha
(

f−′′a − f+′′a
)
+2 f

(
H−′′a −H+′′

a
)]
. (3.11)

However, it is convenient to construct the ATSW with two spacetimes with the same

H (r) functions on the sides. Hence, we require H+ (r+) = H− (r−), which together

with Eq. (3.10) admits

H+ (r+) = H− (r−) = H0, (3.12)

where H0 is an arbitrary constant. Accordingly, the second condition in Eq. (3.9) is

also self-satisfied. With this assumption, exploiting Eq. (3.11) for [R]+− and the junction

conditions for Riemann tensor in Eq. (3.7c), result in

f+′′ (a) = f−′′ (a) = f ′′a , (3.13)
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and consequently

[R]+− = 0. (3.14)

While the junction conditions for the Ricci tensor components and their covariant

derivatives (Eqs. (3.7d) and (3.7e)) are automatically satisfied, the condition for the

trace of the energy-momentum tensor of the throat (Eq. (3.7f)) implies

σ = p. (3.15)

This, of course, is nothing but the static equation of state (EoS) of the matter on the

throat. Note that, for a perfect fluid on a 1+ 1-hypersurface, the energy-momentum

tensor is Sβ

α = diag(−σ, p), with σ and p being the circumferential energy density and

the angular pressure on the shell, respectively. Finally, the last of junction conditions

(Eq. (3.7g)) give explicit terms for energy density and tangential pressure as

σ =
3ς

4κm2

√
fa
(

f+′′′a + f−′′′a
)

(3.16)

and

p =− ς

4κm2

√
fa
(

f+′′′a + f−′′′a
)
, (3.17)

respectively. However, simultaneous consideration of Eqs. (3.15), (3.16) and (3.17)

suggests

f+′′′a =− f−′′′a , (3.18)

which in turn leads to the static EoS

σ = p = 0. (3.19)
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Considering all the results above, imposes conditions on the metric function coeffi-

cients c±1 and c±2 , as well as the radius of the ATSW, as follows

c+2 = c−2 , (3.20)

c−1 =−c+1 −2c+2 a, (3.21)

and

a =
−c+1 ±

√
c+2

1 −2c+2
(
c+0 − c−0

)
2c+2

=
−c−1 ±

√
c−2

1 −2c−2
(
c−0 − c+0

)
2c−2

, (3.22)

respectively. Obviously, the radius is real only for c+2
1 −2c+2

(
c+0 − c−0

)
≥ 0. The TSW

radius for the maximally symmetric case c+0 = c−0 amounts to the non-trivial result

a =−
c+1
c+2

=−
c−1
c−2

, (3.23)

which is positive only when c±1 and c±2 have different signs. Since c+2 = c−2 this alludes

c+1 = c−1 , and the TSW is symmetric. For H (r) = 1 and λ =−1 this explicitly becomes

a =− c1

4ςm2 . (3.24)

This is a strong condition which dictates on the radius of the TSW. Note that the signs

of the parameters included must eventually be set such that a > 0. Depending on the

sign of the quadratic term in the metric function f , this can be the maximum or the

minimum of f . Here we emphasize that one may consider both possibilities m2 > 0

and m2 < 0, because the plus sign behind the quadratic terms in the CNMG action in

Eq. (3.1) is more of a convention.

The above results imply, that firstly, the TSW is generally an asymmetric one, except
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for the maximally symmetric case where c+0 = c−0 , c+1 = c−1 and c+2 = c−2 , and secondly,

depending on the values of the metric coefficients, the TSW’s radius can actually be

real and positive. Providing the tuned up coefficients support the TSW’s existence, it

will have null energy density and pressure on its throat, providing a vacuum condition.

Unexpected as it is, now the TSW indeed satisfies all the energy conditions. This

represents a natural wormhole [212] with no matter on its throat. The two spacetimes

are joined smoothly and the result is a complete Riemannian manifold with no exotic

matter, no discontinuity or singularity of any sort.

3.3.2 TSW Construction with the DSS Junction Conditions

In [208] DSS have investigated the junction conditions for the quadratic Lagrangian

density

LDSS =
√
−g
(
R−2Λ−4βRµνRµν +αR2) , (3.25)

where α and β are two free parameters and Λ resembles a “bare” cosmological con-

stant. To do so, they considered the Gaussian-normal coordinates to express the bulk

metrics as

ds2 = dy2 +hi jdxidx j, (3.26)

in which there exists a thin-shell located at y = 0, and hi j represents the metric tensor

of the 2-dimensional sub-spacetime. The proper junction conditions are found to be

4
[
−βHi j +(α−β)hi jH

]+
− = Si j (3.27)

where

Hi j ≡−
1
2

∂3hi j

∂y3 , (3.28)
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H ≡ hi jHi j, (3.29)

and Si j is the total energy-momentum tensor on the shell.

With a brief comparison between the Lagrangian density of Eq. (3.25) and the action

of CNMG given in Eq. (3.1), one finds α =− 3ς

8m2 , β =− ς

4m2 , and of course Λ = ςλm2.

Therefore, the junction conditions for CNMG can be written as

ς

m2

[
H j

i −
1
2

δ
j
i H
]+
−
= S j

i . (3.30a)

However, note that prior to checking for the conditions in Eq. (3.30a) one must check

for the continuity of the metric, and its first and second derivatives with respect to the

normal coordinate y at the shell’s position; i.e. we must have

[
hi j
]+
− = 0, (3.30b)

[
∂hi j

∂y

]+
−
= 0, (3.30c)

and

[
∂2hi j

∂y2

]+
−
= 0. (3.30d)

The conditions in Eq. (3.30a) can explicitly be determined as

σ = p =
ς

2m2

[
H θ

θ
−H t

t

]+
−
. (3.31)

Comparing the bulk metrics in Eqs. (3.2) and (3.26) admits

dy2 =
1
f

dr2 (3.32)

70



and so

dr
dy

=
√

f . (3.33)

This also casts the metric of the TSW as

hi jdxidx j =− f dt2 +H2dθ
2. (3.34)

For a general ATSW at r = a (where r2 < a < r1 in case ς = −1, and r1 < a in case

ς = 1), the last three junction conditions give rise to the exact same results as the

previous section’s for the metric functions and their derivatives as

H+ (r+) = H− (r−) = H0, (3.35)

f+ (a) = f− (a) = fa , (3.36)

f+′ (a) =− f−′ (a) , (3.37)

and

f+′′ (a) = f−′′ (a) = f ′′a , (3.38)

if again the rather physical assumption H+ (r+) = H− (r−) holds. Note that, each

time that a derivative with respect to the Gaussian normal coordinate y is taken, the

discontinuity in the normal vector to the throat must be considered, which emerges

as the minus sign in the right-hand-side of Eq. (3.37). So far, it has been cleared

up that only for the special choice H(r) = 1 the TSW can be constructed, and the

circumstances and discussions after Eq. (3.24) in the previous section are also valid
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here. Finally, the original junction conditions in Eq. (3.30a) and the explicit form

Hi j =−
1
2

(((
∂hi j

∂r

)√
f
)′√

f
)′√

f (3.39)

impose

σ = p = 0, (3.40)

which is in full agreement with the previous results.

It appears to us, that using DSS junction conditions, the same analysis can be applied

to a wider range of massive quadratic Lagrangian densities and their solutions. To clear

things up, let us consider a massive Lagrangian density of the form

L =
√
−g
(

ςR+
1

m2

(
RµνRµν + γR2)−2Λ

)
. (3.41)

Any solution to this Lagrangian density with the form in Eq. (3.2) with H (r) = r, to

be used to construct a TSW, will suffer from a discontinuity in the first derivative of

the angular component of the TSW metric. Hence, the natural unsatisfactory behavior

of such solutions to the junction conditions affects the occurrence of TSW, as if it had

never existed.

On the contrary, solutions of the same type with H (r) = 1 satisfy all the boundary

conditions, but identically lead to

σ = p = 0. (3.42)

The same analysis, however, is not applicable to RSV junction conditions, since for

a general quadratic Lagrangian density such as the one in Eq. (3.41), the value of
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coefficient γ alters the junction conditions accordingly.

In conclusion, we found TSWs within CNMG which can be stable, but come to exist

only when are asymmetric, in the sense that the bulk spacetimes on the two sides are

different in geometry and nature. The tidbit is that for the cases we have studied here,

such ATSWs do not need matter (neither ordinary nor exotic) as support, and hence,

provide a smooth passage from one universe to the other.
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Chapter 4

CONCLUSION

Wormholes spacetimes were discovered in the early decades of general relativity as

exact solutions to the Einstein field equations. However, they suffered from two main

drawbacks: firstly they were not traversable, in general, and secondly they demanded

the existence of an unknown kind of matter. This so-called exotic matter does not

satisfy the known energy conditions such as the weak energy condition. It took some

decades until the late 1980s when Morris and Thorne addressed the first problem by

systematically discussing the traversability of such wormholes and introduced a practi-

cally traversable wormhole. Soon afterward, Visser moderated the second problem by

establishing the theory of thin-shell wormholes (TSWs). This new class of traversable

wormholes had this advantage that confined the exotic matter to a thin-shell, i.e. the

throat of the TSW. Furthermore, by applying Visser’s method, called cut-and-paste

technique, one is able to construct TSWs out of non-wormhole spacetimes such as

Minkowski, Schwarzschild, ERN, dS and AdS spacetimes. As another advantage, in

mid-1990s Poisson and Visser developed a method to study the stability of such worm-

holes by radially disturbing their throats. This linear stability analysis soon became so

popular that many articles were published in the next two decades using the same

method, with different spacetimes. The TSW studies also have found their way to

higher dimensions and modified theories of gravity. However, in almost all the studies

prior to this study, the structures of the TSWs had a mirror symmetry.
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By this study, we have broken this mirror symmetry for the first time, by assigning

to the side-spacetimes two geometries of a kind with different parameters (e.g. two

Schwarzschild spacetimes with different central masses), or two geometries of differ-

ent natures (e.g. a Schwarzschild spacetime and an ERN spacetime). This has been the

main target of this study: to introduce Asymmetric Thins-Shell Wormhole as a new

concept in the literature of traversable wormholes. Also, it was shown that the stability

of such peculiar objects can be studied in the context of linear stability analysis. In

chapter 2, we have worked this out for spherical and cylindrical solutions of general

relativity, within a generic framework. Particularly, after constructing the ATSW and

from the junction conditions, we derived the energy and pressure expressions, in ac-

cord with a variable EoS for a fluid at the throat. The radius of the throat is made

dynamic by a linear, radial perturbation to study the consequences. The effective po-

tential of the problem expectedly had a more intricate structure compared with the

symmetric TSWs. Two critical parameters, ω1 ≡ ∂p(σ,a)/∂σ and ω2 ≡ ∂p(σ,a)/∂a,

are introduced and analyzed for each given source in connection with the effective

potential.

In section 2.1, we studied special cases of a CoS ATSW with different geometrical pa-

rameters (section 2.1.1), a Schwarzschild ATSW with different masses (section 2.1.2),

an ERN ATSW (section 2.1.3), a Schwarzschild-ERN ATSW (section 2.1.4), and an

AdS-dS ATSW (section 2.1.5). We qualitatively examined their stabilities under var-

ious conditions, compared them with each other, and counted some similarities and

differences with the special cases of symmetric thin-shell wormholes. Most impor-

tantly, in general, asymmetric structures of TSWs are less likely to be stable compared

with the symmetric configurations. In fact, the more the asymmetry factor admits the
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less chance to be stable. By this, it is meant that the regions of stability tend to shrink

with the degree of asymmetry. Furthermore, for a barometric EoS, the stability dia-

grams maintain their generic shapes, consisting of a bowl-like branch followed by an

asymptotically zero-seeking branch.

In section 2.2, we addressed an anomaly which appeared in the stability diagram of

ATSWs with a barotropic fluid. The emergence of infinitely branching discontinuity,

resembling a phase transition, seemed peculiar enough to attract attention since the sta-

bility analyses for TSWs were incepted. The prototype example was the Schwarzschild

TSW, which had a similar discontinuity at the stability radius a0 = 3m, as pointed out

by Poisson and Visser [10]. In analogy, other TSWs also exhibited similar behavior.

We identified the cause of such type of discontinuities: they arise from the vanishing

of −
(
C′0/C0

)
(σ0 + p0)+

(
2C0C′′0 −C′20

)
σ0/2C0C′0 at equilibrium radius (Eq. (2.42)).

In consequence, the speed of sound ω10, which is inversely proportional to this expres-

sion, and is expected to be finite, subsequently diverges. In an attempt to resolve such

a discontinuity in the symmetric Schwarzschild TSW, Varela employs a more general,

modified EoS, i.e. the variable EoS, to replace its barotropic counterpart [22]. In this

rather general EoS, beside the energy density σ, the pressure p also depends on the ra-

dius of the shell which creates an extra degree of freedom to be used as an advantage.

We have precisely shown that such a generalization can be systematically applied to all

the TSWs, by pointing out to the reason of the emergence of the discontinuities. Our

investigation is generalized to all spherically symmetric spacetimes, with the generic

line element in Eq. (2.1), including non-asymptotically flat ones such as the dilaton

TSW. This shows that the method is applicable even to those TSWs which are strongly

coupled with the non-linear, non-asymptotically flat, dilatonic bulk spacetimes. In sec-
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tion 2.2.1, the logic was illustrated by representing three examples (see Fig. 2.9 for

the Schwarzschild TSW, Fig. 2.11 for ERN TSW and Fig. 2.12 for the dilaton TSW),

where consequently, the discontinuities in question have been eliminated. It is not dif-

ficult to anticipate that the same technique could be applied to other TSWs as well,

including the ones in alternative theories.

In section 2.3, Within the generic formalism, we have introduced classes of ATSWs in

cylindrical coordinates which are essentially less symmetric than their spherical coun-

terparts in previous sections. As a result, the equality of the spherical angular pressures,

pθ = pϕ, split into different components pϕ and pz in the cylindrical coordinates. The

occurrence of non-equal pressures naturally makes the problem more difficult, which

is simplified to certain extend by relying only on the radial type of perturbations in

the stability analysis. The founded generic formalism in section was applied to the

ATSW constructed by the LT bulk spacetime with three distinguishable parameters Ω,

Λ and λ. To find a way out of the high level of complexity caused by the nature of

the LT metric and the conditions the study is subject to, we narrowed down the case

studies to two special metrics generated by the LT metric under certain selections of

its parameters; the CS metric (section 2.3.1) and the BS metric (section 2.3.2). The

CS ATSW was established by imposing an asymmetry in the values of their joined

universes’ conicities Ω±. The BS ATSW, on the other hand, was constructed by re-

quiring an asymmetry in the values of the mass densities M± of the two spacetimes.

The mass density of a BS universe is directly related to the conicity and cosmological

constant of the universe through M± = (−Λ±/3)3/2 /(4Ω±). To avoid unnecessary

complication, we demanded the conicities of the two spacetimes to be the same, which

immediately results in an asymmetry in the cosmological constants. The overall effect
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is that, the real importance lies within the way the asymmetry is imposed; the value of

the asymmetric factor ε.

Both intuitively and from the experience we gained in sections 2.1 and 2.2 with the

spherical ATSWs, we expected the maximum probability of stability of cylindrical

ATSWs to coincide with their degree of symmetries, in proportion. Except for a

marginal case, it turned out that, this is also true for the cylindrical ATSWs we studied

here. More detailed, we observed that in a CS ATSW with ω20 > 0 (Fig. 2.12), and also

in a BS ATSW (Fig. 2.13), any diversion from ε= 0 decreases the chance of stability.

The only exception is when ω20 < 0 in a CS ATSW. We recall that the symmetric TSW

corresponds to ε = 0. Explaining this exceptional case demands a phenomenological

study over the microphysical properties of the exotic matter, which is beyond the scope

of this dissertation.

In chapter 3, we moved on to a modified theory of gravity, CNMG, to investigate the

construction of ATSWs there. Earlier, we mentioned that it has been a long-standing

challenge to obtain TSWs with physical, i.e. non-exotic matter in Einstein’s gen-

eral relativity. This was overcome in the past in particular models by changing the

topology of the shell from spherical (in 3+1-dimensions) [80] and from circular (2+1-

dimensions) forms [79,81]. Giving up those symmetric topologies, however, gave rise

to different problems in connection with their stability analysis. In chapter 3 we have

shown that the exotic matter problem is overcome for TSWs in CNMG. In the mean-

time, the junction conditions are modified and they are distinct from those of Einstein’s

general relativity, i.e. the Darmois-Israel junction conditions. The new junction con-

ditions are redefined and applied to some static solutions of CNMG. Our results show
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no indications of major difference between the two distinct sets of junction conditions

we have used independently. However, this is mostly for the quadratic nature of the

metric function f (r), and the specific selection of the gauge function H (r). This can

be seen the best in the structural differences between the expressions found for σ and

p in Eqs. (3.16) and (3.17) using RSV junction conditions, and Eq. (3.31) using DSS

junction conditions. More noticeably, the exotic matter nightmare gets resolved for

TSWs in this theory, in the sense that the energy density and lateral pressure on the

shell become zero (better than negative!), hence no known energy condition is violated

anymore. Nevertheless, these TSWs could only be constructed for the gauge selection

H (r) = 1. It was observed that for H (r) = r, which specifically comprises AdS solu-

tions, no TSWs can be established. The existed TSWs, however, could be symmetric

as well as asymmetric. We leave the profound question of "how these for AdS bulk

translates into its CFT correspondence" for further studies. As a next step, investigat-

ing TSWs’ constructions under naturally different geometries, such as Lifshitz black

holes [176], is in order. Studying thin-shells with double layers may also be of inter-

est, as for these ones demand some other junction conditions [209]. As another subject

for further studies one may have a look into extended theories of NMG and solutions

therein [192–207]

Three scientific articles are published from this dissertation [213–215]. In [213] spher-

ically symmetric ATSWs in general relativity, in [214] the infinite discontinuity prob-

lem, and in [215] TSWs as well as thin-shells in NMG are considered. Furthermore,

fate of an ATSW powered by a Morris-Thorne wormhole, and thermodynamic stabil-

ity of a Schwarzschild TSW are studied in [216] and [217], respectively. Although

the two latter papers are directly related to the topic of the thesis, we did not brought
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the results here. Moreover, an article regarding the cylindrically symmetric ATSWs

in general relativity [218] has been under review by a scientific journal at the time of

publication of this thesis. .
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