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ABSTRACT 

In this work, we have used the Friedmann equation of general relativity with 

quantum correction terms to the Newtonian potential to obtain the modified 

Friedmann equation with quantum correction. The behavior of the solution is 

examined with a sign of the correction being put into consideration. With the 

correction, the singular and non-singular universe is clearly spelled out. The results 

reveal that the quantum correction effect depends on the sign in the correction. 

Applying cosmological constant to the modified Friedmann Equation, we found out 

that the scale factor of the universe is given by the first order   in the expression of    

We also compare the Friedmann Equations with Loop Quantum Gravity (LQG) to 

the Friedmann Equation with quantum correction and found out that, for negative     

the critical density is not feasible but it is feasible for positive values   .    

Keywords: Cosmology, quantum cosmology, Cosmological constant, Quantum 

bounce, Radiation universe, Dust universe. 
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ÖZ 

Bu çalışmada, modifiye Friedmann denklemini kuantum düzeltmesi ile elde etmek 

için genel göreliliğin Friedmann denklemini kuantum düzeltme terimi ile Newton 

potansiyeline kullandık. Çözümün davranışı, dikkate alınan düzeltmenin işareti ile 

incelenir. Düzeltme ile, tekil ve tekil olmayan evren açıkça dile getirilir. Sonuçlar, 

kuantum düzeltme etkisinin düzeltme işaretine bağlı olduğunu göstermektedir. 

Modifiye edilmiş Friedmann Denklemine kozmolojik sabit uygulayarak, evrenin 

ölçek faktörünün τ ifadesinde ilk derece ϵ tarafından verildiğini öğrendik. Ayrıca, 

Döngü Kuantum Yerçekimi (LQG) ile Friedmann Denklemlerini kuantum 

düzeltmesi ile Friedmann Denklemi ile karşılaştırdık ve negatif     için kritik 

yoğunluğun mümkün olmadığını, ancak pozitif değerler için mümkün olduğunu 

öğrendik   . 

Anahtar Kelimeler: Kozmoloji, kuantum kozmolojisi, Kozmolojik sabit, Kuantum 

sıçraması, Radyasyon evreni, Toz evren. 
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Chapter 1 

1 INTRODUCTION 

 Our Universe is highly composed, consisting of components on larger scales which 

include; planets in an elliptic orbit, collection of stars into galaxies, planets orbit 

stars, stars collected into galaxies, galaxies are bounded together by gravitational 

force to form clusters and clusters are collectively held to form superclusters. An 

attempt to studying the whole universe as a single entity can be likened to 

megalomaniacs fairytale.  Amazingly, with cosmology, our universe can be studied 

as a single entity. Cosmology is the study of the cosmos or more generally, the 

universe as a whole.  The word Cosmology derived its origin from the Greek word 

“Kosmos”, meaning harmony or order.  That is why cosmologist tries to harmonize 

large and completed universe structures into a form that than be easily studied. On 

very small scales, there is a fluctuation in the density of the universe that ranges from 

subatomic quantum fluctuations to large superclusters and voids, approximately 

50Mpc across characterizing the distribution of galaxies in space [1]. 

Even though the universe is clearly inhomogeneous and anisotropic at local scales of 

stars and clusters of stars, it is argued that homogeneity and isotropic only at large 

enough scales. However, the Friedmann-Robertson-Walker (FRW) model asserts 

that our Universe is exactly homogeneous and isotropic around us. By homogeneity, 

we mean the universe is roughly the same at all points in space and matter is evenly 

distributed all the space. That is to say, no part of the universe can be distinguished 
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from the other. On the other hand, by isotropy, all directions are equal in the 

universe. However, there is no fundamental physical justification of homogeneity 

and isotropy at any epoch of time and region in space [2]. 

The evolution of the universe is described by the Friedmann equation given below 

 .
 ̇     

  /              (1.1) 

Where k is the curvature of the universe which is flat when k=0. In a compact form, 

equation (1.1) can be rewritten as 

    ( )  .
 ̇

 
/
 

 
   

 
  ( )       (1.2) 

Where  ( )  
 ̇

 
  is the Hubble parameter and   ( ) denotes the universe’s critical 

density at any given cosmic time.  For a curve universe, its entire density is greater or 

less than its critical value. For larger total density than the critical density, the 

universe is said to be closed and for that smaller than the critical density, the universe 

is opened and infinite hyperbolic space. At the present time, the critical density is 

    =   (  ). Another parameter of interest is the density parameter which is given as  

   ( )  
 ( )

  ( )
                                       (1.3) 

and      ( )  
    ( )

  ( )
   denotes a flat universe, if     ( )    the universe is 

opened and for      ( )   , it is a closed universe. 

Observations today reveal that the density of the universe is closer to the critical 

density at the recent time  

             (  )        or             (  )                (1.4) 
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Measurements indicate that the present value of the universe’s critical density 

is                       . The curvature of the universe is given in the 

diagram below 

 
Figure 1.1: various potential outcomes of the curvature of a homogeneous and 

isotropic universe. [www.images.app.goo.gl/HUpB3MaEjFr1MKSD8]. 

Cosmic theory of inflation asserts that the universe experienced an accelerated 

exponential expansion in its early stage just after the big bang at time t ∼ 10
-35

s. The 

cosmic inflationary theory was introduced to solve key problems associated with the 

ordinary big bang theory. According to [3], basic important problems with the big 

bang theory without inflation are: 

Flatness Problem, From the Friedmann equation, the critical density is    
   

 

   
  

shows that the universe is flat. A deviation of the density from its critical value also 

cause changes in the curvature of the universe as 

   ( )    
   

            (1.5) 

The deviation increases with the time the universe began and filled it with matter or 

radiation. Hence, the energy density of the early universe is closer to the critical 

density than its present value. The theory of inflation resolves this issue by driving 
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energy density to be closer to its critical value as the inflation ended and the universe 

grows rapidly from Planck scales: 

   
 (  )

 (  )
    (     )            (1.6) 

Where    and    denote the initial and final time of inflation, and  (  ) and  (  ) are 

scale factors at the time when inflation started and ended respectively. The theory of 

inflation solves problems of positive deviation of energy density for negative 

deviations.  

Horizon Problem, If the universe is isotropic and homogeneous, there should have 

been interactions between points with distances larger than the particle horizon in the 

past. This problem is resolved too by inflation theory. 

Monopole Problem, Particle Theorists are of the view that the universe has magnetic 

monopoles, but in reality there is no observation backing this claim. This is termed a 

monopole problem.  

Before the 1990s, cosmologists and astronomers were of the view that the expansion 

of the universe started by the Big Bang was decelerating that may turn into 

contraction in the future. Hubble however, measured the redshift from the supernova 

explosion and found out that the universe was expanding with an increasing rate 

( ̈   ) instead of decreasing due to gravitational pull [4].  

It is now concluded that the universe has gone into different phases of expansion 

after the Big Bang; from the Planck scale to inflationary astronomical scales after 

which radiation and matter became dominant. After inflation, the expansion slowed 
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down, but begins to speed up and in recent times; the expansion of the universe is 

accelerating [5]. 

 
Figure 1.2: History of the universe from the Huge explosion to the present day. 

[cosmotography.com]. 

 

The theories of the growing universe prompted the disclosure of dark energy. In 

1998, High-z Supernova Search Group and Supernova Cosmology Undertaking in 

1999 published their accurately estimated information of separations of supernovas 

and the comparative redshifts. The accelerating expansion is widely accepted as 

evidence of dark energy. However, recent Cosmologist formulates that dark energy is 

a field energy form of gravitation which balances the gravitational attraction to 

maintain stability and homogeneity of the Universe [6]. 

The first and most prominent clarification that was offered to clarify the obvious 

mass errors, was to expect that there exists some type of ' dark matter'. This issue has 

the property that it collaborates as ordinary matter in the gravitational sense; however  
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that doesn't cooperate with electro-magnetic radiation, making this issue 

imperceptible.  

 
Figure 1.3: Estimated matter-energy content of the universe [6] 

Notwithstanding the dark matter supposition, there is the suspicion of some type of 

dark energy. This energy should penetrate the whole universe and can clarify the 

acceleration rate at which the universe expands. According to figure 1.2, the dark 

energy and matter hypothesis generally 68.3% of the universe is dark energy, 26.8% 

is dark matter and just 4.9% of the universe is composed of obvious matter [7]. 

Newton's publication of his popular Philosophiae Naturalis Principia Mathematica in 

1687 brought to being the main hypothesis of gravity.  He used this theory to explain 

the empirical laws of Kepler. The early achievement of this hypothesis came up 

when Edmund Halley (1656-1742) effectively anticipated that the comet in 1456, 

1531, 1607 and 1682 would return in 1758. Today, Newton's hypothesis of gravity 

still gets the job done to depict planetary and satellite movement and establishes the 
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nonrelativistic furthest reaches of Einstein's relativistic hypothesis. Newton believed 

stars as suns to be similarly appropriated all through endless space in spite of the 

conspicuous convergence of stars in the Milky Way [8].    

Quantum cosmology depends on the possibility that quantum material science ought 

to apply to anything in nature, including the entire universe. quantizing the entire 

universe is a long way from being simple, as indicated by general relativity, not just 

matter but as well as space and time in existence. They are dependent upon 

dynamical laws and have excitations (gravitational waves) that interface with one 

another and with the matter. Quantum cosmology is along these lines firmly 

identified with quantum gravity, the quantum theory of the gravitational force and 

space-time. Without quantum gravity, the quantum cosmology is unclear.[9] 

Loop quantum gravity (LQG) expects to display the conduct of spacetime in 

circumstances where its atomic characteristic emerges. Among these circumstances, 

Loop quantum cosmology explained the universe is close to the Big Bang. The Big 

Bang singularity is the main point to be solved in the loop quantum cosmology since 

there is much probability that the general relativity initial singularity must be solved 

in the quantum gravity theory. (LQC) suggests that in the simple model the big bang 

singularity of classical general relativity is replaced by a quantum bounce.[10] 
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Chapter 2 

2 RELATIVISTIC COSMOLOGY 

Relativistic cosmology models are tractable when we make use of powerful 

simplifying assumptions known as cosmological principles. With these principles, 

large scale observations of our universe are studied as a whole. According to 

cosmological principles, at a given time and on a large scale, the universe is 

homogeneous and at the same time isotropic. The universe becomes inhomogeneous 

and anisotropic. The rotation of galaxies and galactic masses can be linked-to a 

somewhat non-luminous kind of matter known as dark matter. This kind of matter 

has nothing to do with the so-called dark energy. The Friedmann-Robertson-Walker 

universe is used to study relativistic cosmology. 

2.1 Friedmann-Robertson-Walker Universe 

The FRW approach is a solution march to a space-time foliate into even homogeneity 

and isotropic hypersurface using the scale factor to determine its expansion law.  The 

FRW model is the bedrock of relativistic cosmology due to its success in describing 

a real universe. In understanding the Newtonian cosmology, we will present the 

model in a way that relates to Newton’s universe. In the spherical coordinates, the 

line element of the FRW universe is given by:  

          ( )  ,     (     )                     - (2.1) 

t, here denotes the cosmic time, the scale factor is  ( ) that gives the expansion rate 

of the universe in an expansion law and   is related to the curvature of the universe. 
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Special Case: 

Hyperspheric,  If    , the FWR metric is said to be singular at     this type of 

singularity is termed coordinate singularity, it vanishes at the introduction of a new 

coordinate system defining    
 

        with 0 ≤ x ≤ π. Applying it to the equation, 

we  obtain 

          ( )    ,                            -  (2.3) 

which is the line element of a hypersphere that has a definite volume and the model 

of the universe is called closed. 

Hyperbolic,  For    , the coordinate singularity does not exist and  , the radial 

coordinate can move from zero to infinity and the universe is said to be opened. The 

coordinate transform as    
 

       on the range 0 ≤ x< 1. With equation (2.1) we 

see that the hyperbolic space becomes 

          ( ) | |  ,                               -   (2.4) 

Flat, when    , the metric of FRW will become 

         ,                      -  ( )       (2.5) 

Here, x denotes the radial coordinate which spans from 0 to infinity and the spatial 

part represents a Euclidean space that contracts or expands with the scale factor in 

the (x,y,z) plane  

          ,             -  ( )      (2.6) 

To obtain the generalized form of the matric, the curvature k for simplicity can be 

modeled for k(-1, 0, 1) for hyperbolic, flat and hypersphere  respectively. Hence, the 

three cases above can be rewritten as:   

            ( ) ,      ( )
       ( )

         -    (2.7) 
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Where 

  ( )  {
                                
                                  

                                
         (2.8) 

The line element (2.7) becomes meaningful when the isometries [11] of the FRW 

metrics are derived in the next session.  

2.2 Friedmann Equations 

By allowing the scale factor and the curvature of the Robertson-Walker (RW) space 

to vary with time, we can model the universe by taking each point in time a RW 

space. The generic metric is given  

         ,      ( )
      -  ( )     (2.9) 

The scale factor  ( ) explains the expansion or contraction of the universe and is 

normalized such that at present time  ( )   . Putting equation (2.9) into the 

Einstein equations, after much algebraic work we obtain two fundamental equations 

known as the Friedmann Equations 

 .
 ̇

 
/
 

 
    

 
 

   

   
 

 
         (2.10) 

 ̈

  
  

   

 
.  

  

  
/  

 

 
         (2.11)      

The first equation is obtained from the 00-component and the second from the    -

component of the Einstein equations. Combining the two Friedmann equations we 

obtain an adiabatic equation 

 

   
(     )   

 

  
(  )                                                                       (2.12) 

This is the first law of thermodynamics started in relativistic language; 

 TdS = dE+pdV = 0, which asserts that the entropy of the universe is constant.  
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2.3 The Newtonian derivation of the Friedmann equations 

The Friedmann equations can also be derived from the principles of Newtonian 

gravity. For a sphere of mass   
     

 
  and radius  , the total potential energy is 

          
   

 
 

 

 
        (2.13) 

If       and dividing by m yields 

  
 

 
  

      
   

 
 

 

 
  

  ̇       (2.14) 

After rearrangement we obtain  

.
 ̇

 
/
 

 
    

 
 

 

 
  

  ̇                    (2.15) 

Or 

   ( )  
    

 
 

   

         (2.16) 

Where          
   ⁄   and  ( ) is known as Hubble’s parameter which tells us 

the expansion rate of the universe. Equation (2.16) is the Friedman Equation which 

can be solved to obtain  ( ) in terms of other parameters. 

2.4 Friedmann equations with a cosmological constant 

Adding cosmological constant as proposed by Einstein, the acceleration equation 

takes the form 

 

 
 

    

 
  

   

 
                 (2.17) 

And also, the Friedmann equation  

 ( )  
    

 
 

   

  
  

   

 
        (2.18) 
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Where   is the speed of light taken to be 1 in a natural unit. It is worth noting that, 

even if Λ is assumed to be constant, normalized cosmological         ⁄  is time-

dependent. The figure below shows how the density parameter varies with cosmic 

age for the open, flat and closed universe. 

 
Figure 2.1: the density parameters with cosmic age for open, flat and closed universe. 
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Chapter 3 

3 NEWTONIAN COSMOLOGY BY LAGRANGIAN 

FORMALISM 

The theory of general relativity that formulates geometry is used to describe modern 

cosmology, so the cosmological effects are linked with space-time geometry. 

Differential manifolds; objects used to describe curved space-time are used in this 

description. On the other hand, mathematical tools like algebraic tensors or 

continuous group are also involved in the description.  

Milne and McCrea [12,13] used principles based on Newtonian Theory that is 

associated with gravitational phenomena to describe space-time curvature. Using this 

classical physics approach with the least mathematical difficulty the universe is 

studied just as with the Einstein Cosmology. The same results are obtained provided 

that the cosmological principle of homogeneity and isotropy is not violated. In this 

approach, the Universe's expansion is not dynamically inborn to the universe itself 

and it is known as a static universe. For this to be complete, Hubble’s observations 

pertaining to the expanding universe should be incorporated. [12-13] approach aimed 

towards admitting that the observed expansion of the universe is related to the 

motion of celestial bodies or galaxies in the universe. Hence, cosmic expansion was 

thought to be an effect of particle motion and therefore no need to introducing curved 

spacetime of general relativity. Initially, the formulation of the Newtonian 

Cosmology was done without considering pressure but was included after some 
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decade [14-15]. Also, the term containing cosmological constant can be included in 

the Newtonian approach.  

Cosmological equations in Newtonian cosmology are derived from the equation of 

motion of particles under the effect of gravitational interaction [16-17]. Hence, the 

formalism of Lagrange and Hamilton provides the necessary classical equation and 

integral of motion respectively.  

From the generalization of the Copernican principle, the principle of modern 

cosmology gets its simplification. It asserts that in each cosmological epoch, the 

universe is even in every point, aside by local irregularities. Thus for determined 

Newton time,    constant, the universe is isotropic and homogenous. 

3.1 The Equation of cosmology 

Equations of Cosmology in cosmic layers comprised a finite large volume of an 

expanding gas cloud. The galaxies formed the particles that formed this gas. We 

Expect that the pressure in the cloud is given by    ( ). For null pressure, we 

assumed that the cosmic gas is dust or matter. The expansion of the universe is 

governed by two basic equations. Like statements of energy, the total energy 

(potential and gravitational energy) for expanding galaxies is constant due to their 

relativistic motion. Hubble’s law describes the receding velocity of galaxies to 

behave a direct proportionality to a distant observer by 

  

  
  ̇             (3.1) 

Where   is the distance of the receding galaxies from an observer and  ( ) is the 

Hubble parameter. This theory is expected to be observed in anisotropic and 

uniformly expanding  Universe. 
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According to Newton, gravitational force attracts galaxies together and slows down 

the rate at which the universe expands. Due to homogeneity, distances   can be 

measured from a galaxy placed at any location; the gravitational force on a galaxy 

separated by distance   from a mass of the homogeneous mass of the universe 

embedded in a sphere is equivalent to that at the center of the sphere. Expressed in 

fixed rectangular coordinates, the kinetic energy is a function of velocity  ̇, is the 

motion of the galaxies is in a conservation field, the potential energy varies only with 

position a. This can be expressed thus: 

   ( ̇)         (3.2) 

   ( )         (3.3) 

Using the Lagrangian which is expressed by the sum of  ( ̇) and  ( ) for a system, 

the Lagrangian L, is a function of position and velocity L = L( ,  ̇). The expansion 

of a moving galaxy of mass   is  

 (   ̇)      
 

 
  ̇  

   

 
      (3.4) 

Here, we are using the usually generalized coordinates      and  ̇   ̇ that the 

total mass of the universe is denoted by   which is taken to be evenly spread around 

a sphere of radius    Assuming that there exists a cosmic force on the galaxy whose 

magnitude is  

    
 

 
             (3.5) 

Where Λ represents cosmological constant and there is an extra potential energy term 

given by 

    ∫     
  

 
  

 

 
            (3.6) 

From equation (3.4), the Lagrangian transforms to 

  (   ̇)                
 

 
  ̇  

   

 
 

 

 
      (3.7) 
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From the Euler-Lagrange equation  

 
  

  
 

 

  
.
  

  ̇
/            (3.8) 

We can deduce that 

        
  

  
  

   

   
 

 
           (3.9) 

        
  

  ̇
    ̇        

 

  
.
  

  ̇
/    ̈      (3.10) 

Putting equations (3.9) and (3.10) into equation (3.8), the equation of motion for the 

galaxy becomes 

  ̈   
  

   
 

 
           (3.11) 

If we consider a spherical mass of density   given by 

  
 

 
               (3.12) 

Then the equation of motion becomes 

 ̈   
 

 
     

 

 
             (3.13) 

Equation (3.13) is the Newtonian Cosmological form and   is the scale factor 

relating to the expansion of the Universe. This equation is similar to the Einstein 

equation derived in general relativity [18]. 

3.2 Cosmic Differential Equation in Newtonian Form 

From the cosmological principle, that time is homogenous, in the inertial frame of 

reference, the Lagrangian can be described in a closed system and do not explicitly 

depend on time. In this context, the Lagrangian is also time-independent since the 

system is influenced by some uniform force field.  Therefore, the Hamiltonian   is 

the only constant of motion defined by 

    .
  

  ̇
/   ̇          (3.14) 
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From equation (3.7), we get   

  (  ̇) ̇  
 

 
  ̇  

   

 
 

 

 
         (3.15) 

We have renamed the constant H by the total energy E, which is also a constant of 

motion. Equation (3.15) can be rewritten as  

 ̇  
 

 
 

 

 
            (3.16) 

Where          ⁄  and       ⁄  are constants. This is the cosmic 

differential equation that governs the expansion of the universe and   represents the 

scale factor. Equation (3.16) is the Friedmann equation in the Newtonian form [19]  
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Chapter 4 

4 MODIFIED NEWTONIAN DYNAMICS  

In 1983, the mass discrepancy was detected in stellar systems whenever gravitational 

acceleration decreases some threshold value [20]. A theory of the MOND was 

proposed by M. Milgrom to supplement non-baryonic dark matter [21]. According to 

this theory, for a body accelerating less than             
  

  
, gravitation does 

not agree with the predictions of the Newtonian dynamic [22]. Below this threshold, 

gravity changes and behave asymptotically as   √    , and    is Newton’s 

acceleration. As the strong field of the sun becomes dominant in all dynamic 

processes and accelerations are unnoticeable within the solar system, there is a 

transition from the Newtonian to the Modified Newtonian Dynamic. In other words, 

the Newtonian Dynamics becomes invalid below acceleration regimes typically, that 

of the galaxies.  

Aside from [21], there are few literatures showing that though revolutionary, the 

approach is simple and can explain most galactic features without needing non-

baryonic dark matter [22-23].  The dynamics of galactic groups and clusters can also 

be effectively described by the MOND [24], including gravitational lensings and 

some approximations [25-26]. 

4.1 Scales of the MOND Acceleration 

Distances between physical bodies to show by a universal dimensionless scale factor 

that fluctuates just with cosmological time are permitted by the cosmic principles of 
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homogeneity and isotropy. Newton’s equation of motion is a tool for deriving 

Friedmann Equation that gives the evolution of the universe scale factor. If we 

consider a uniform sphere of radius  , then  

 ̈   
  

  
           (4.1) 

Where   denotes gravitational mass. The static limit of the Einstein equation in the 

weak field is given by  

   
  

 
(    )          (4.2)                                                 

   is the density of the fluid and   its pressure. Combining equations (4.1) and (4.2) 

yields 

 ̈  
    

 
(    )        (4.3)      

By conservation of energy, equation (4.3) gives  

  

(   )
  

   

 
          (4.4) 

 It is obvious to write     , D denotes a constant length while   depends on the 

scale factor which is taken to be 1 at the present time. For matter with no pressure 

(   )    
 

 
   for radiation and the vacuum energy density is given by    

         
      upon performing integration on (4.3) the evolution of the scale 

factor is given by a dimensionless Friedmann equation as  

   .
 ̇

 
/
 

    
      

      (         )       (4.5) 

Here, λ is the cosmological constant which is a dimensionless quantity. The density 

parameter for non-relativistic matter with present density    is 

   
     

   
         (4.6) 

For CMB radiation, with a temperature of blackbody radiation   , the density 

parameter is 
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         (4.7) 

In equation (4.5), the integration constant is (         ) which is evaluated 

with the curvature of space-time and,   denotes the Hubble parameter.  

According to the theory of Modified Newton Dynamics, for accelerations below the 

threshold   , the actual gravitational acceleration    relates with Newton’s force of  

gravity     by   

   ( )            (4.8)  

Where   
 

  
  

     (   ⁄ )          (4.9) 

 ( ) is a function that is not specified and approaches unity whenever such that 

 ( )          also,  ( )    whenever    . The force of gravity tends to 

Newtonian force as acceleration increases and low acceleration limits are  √    . 

We assumed that change in  ( ) about the two limits that happen at    ,[27]. 

The MOND in low-acceleration is characterized by 

 ̈   0
     

 
(    ) 1

  ⁄

        (4.10) 

Considering the equation of state only for pressureless and non-relativistic matter 

only, the conservation equation says 

  
  

(   ⁄ ) 
           (4.11)                

 The region of the sphere has a comoving radius denoted by    and the acceleration 

equation (4.9) is given by 

 ̈   0
  

 
  

   
   1

  ⁄

              (4.12) 

Taking the integral of this equation gives the Friedmann equation in the form 
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 ̇    
  ,     

   
   -

  ⁄   (   ⁄ )      (4.13) 

with    taken as the initial radius of the sphere which expands with velocity   . 

Equation (4.12) reveals recollapsing region characterized by end of the expansion 

that the expansion at a maximum radius    given by 

      
 

⁄             (4.14) 

Where 

      
 (     

   
   )

   ⁄        (4.15) 

 [28] derived this expression. 

4.2 Physical Foundation of the MOND 

MOND is a modified Newton’s Dynamics which is not linked to a unified theoretical 

framework which is at present, it's the only shortcoming. Physical problems like non-

conserving linear momentum are usually the case when we try to apply Milgrom’s 

inertial idea to the N-body system [28]. Based on this ground, Bekenstein and 

Milgrom in 1984 proposed Lagrangian-based model as a modified theory of the 

Newtonian’s gravitational theory [29]. If   denotes a scalar potential, the field action 

is defined 

    ∫ 0   (   )    
  .

   

   
/1         (4.16)        

Assuming the concept of stationary action, the field equation takes the form 

  0 .
|  |

  
/   1              (4.17) 

 ( )       ⁄  is a function that behaves asymptotically for MOND description.  

Due to symmetry, this theory does not violate the law of conservation of angular 

momentum and energy. The motion stars and other compound objects do not depend 

on their internal acceleration in an external field [29]. Furthermore, in systems, its 

internal dynamics are independent of its external acceleration. 
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In general, most physical equations (for example, the Maxwellian equations) 

becomes invariantly transform as  

  {,(  ) -    ⁄   }            (4.18) 

Equation (4.18) becomes Poisson’s equation if    , and becomes an equation of 

the MOND when    . That is to say, in three-dimensional space, the Bekenstein-

Milgrom field equation is invariant in the MOND limit.  Although this modified 

theory is not covariant it can be founded on a theoretical basis. Also, some MOND 

phenomena such as the external field can be considered by this theory. This non-

linear equation is appearing to have no physical solution; however, due to symmetry, 

it can have a solution to a simple algorithm.  

The numerical method developed by Brada in 1997 was applied by Brada and 

Milgrom to solve an essential problem of stability of disk galaxies [30]. This method 

is now used in calculating different effects associated with the external field.  

Examples of such effect warp in the galactic plane that influences satellites. Brada 

and Milgrom have also considered how the acceleration field of a big galaxy affects 

a dwarf satellite. Due to the expansion caused by an external field as it approaches a 

parent galaxy, tides force the satellite to become vulnerable. As indicated by [31], 

this hypothesis drives itself to a covariant generalization as a non-linear scalar-tensor 

hypothesis of gravity. 

4.3 Modification of Newtonian Inertia - MOND  

In another approach [32], considered MOND analogous to modifying the particle’s 

inertia At levels that are not relativistic, usual particle action (∫    ⁄   ) is replaced 

by the somewhat complicated object    , ( )   -.    is associated with the mass 

of the particle while   is characterized by    is a function of a particle trajectory 
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 ( ). According to Milgrom, such action should have an accurate limiting property 

(Newtonian as       while the Modified Newtonian Dynamics has      ). That 

is, it is invariant under Galilean transformation. 

Cosmology does not have a direct impact of particle motion however, cosmic 

phenomena such as cosmological constant may impact both cosmology and 

dynamics of particles; for instance, the interaction of accelerating particles in a 

vacuum. Since the concept of the cosmological constant is a characteristic of a 

vacuum, a non-trivial effect of particle acceleration can be of the form,     √  . 

The Unruh radiation principle gives us a glimpse of how it happens. For a uniform 

accelerating observer in a Minkowski space, the vacuum field as a thermal bath with 

temperature T is described by 

   
  

   
          (4.19) 

The acceleration   is the gravitational acceleration at the event horizon and 

analogous to Hawking radiation. For an accelerating observer via de Sitter space, the 

modified thermal bath is now seen as [33] 

    
  

   
√   

   

 
          (4.20) 

Because Unruh’s radiation is too tiny, it may not have a direct impact on the field 

providing the inertia. Hence, the useful quantity for identifying inertia is       

 , and we can now write 

   

 
      (   ⁄ )        (4.21) 

 ( )  ,  (  )  -  ⁄  (  )         (4.22) 

where              .
 

 
/
  ⁄
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This is only a suggestive line of argument and may not be considered of MOND with 

modified inertia. Once more, this is not a hypothesis of MOND an alteration of 

inertia, however just an intriguing line of contention. The best theory of inertia would 

be the one derived from interaction with the vacuum field like in induced gravity in 

which spacetime curvature modified the vacuum field by providing the needed action 

the metric field [34]. 
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Chapter 5 

5 NEWTONIAN COSMOLOGY WITH QUANTUM 

BOUNCE 

It was a remarkable achievement when McCrea and Milne applied Newtonian 

mechanics to obtain the Friedmann equations in Cosmology [13]; something that was 

only feasible via general relativity. This evolution gave birth to attempts already in 

the literature to modify the Friedmann Equations. Such modifications could include 

Modified Friedmann Equations with Quantum Corrections to the Newtonian 

potential [35-44].   

5.1 Friedmann equation in the Newtonian Dynamics 

Different approaches have been taken to derive the cosmological Friedmann equation 

from Newtonian dynamics using different concepts; in the end, they all converge at 

the same Friedmann equation [37]. The simplest step is to start an original point of 

view that describes the expansion of the universe.  For instance, consider an object 

such as a galaxy of mass m, revolving around the earth of mass M, the total energy is  

  
 

 
    

   

 
        (5.1) 

The real equations of distance and velocity are                   ̇ . R(t) is a 

scale factor and the distance (x) between the center point and a galaxy is an equal 

one, then the total energy reads  

  
 

 
  ̇  

   

 
        (5.2) 

  

 
  ̇  

   

 
        (5.3) 
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Since E and m are constant then  
  

 
 . Writing the mass inside the sphere of radius 

R, as   
  

 
   , where    is the density of the universe the first Friedmann 

equation is obtained as 

.
 ̇

 
/
 

 
   

 
  

 

          (5.4) 

We assumed that the universe has volume ( ) and its expansion is triggered by the 

work done by pressure given by    . From the adiabatic      the first law of 

thermodynamic reads 

                   (5.5) 

Volume and energy for the spherical universe is  
  

 
( )  ,      . Taking the 

derivatives of these equations and put into an equation (5.5), the fluid equation 

becomes 

   ̇   
 ̇

 
(   )       (5.6) 

By taking a derivative of the first Friedman equation and plug the fluid equation in it, 

we get the Second Friedmann equation  

 ̈

 
  

   

 
(    )        (5.7) 

5.2 Friedmann equation with quantum bounce correction 

Taking gravity as a powerful hypothesis and performing a one-loop graviton 

calculation,   correction to the Newtonian potential has been obtained by a few 

authors and already formed parts of the literature [38-44]. This potential is of the 

form 

 ( )   
     

 
 

         

    
         (5.8) 



27 

 

In other cases, the consequence of the quantum correction to the Newtonian potential 

is given in an alternate structure by 

 ( )    
     

 
0   

 (     )

   
  ̃

  

    
  1   (5.9) 

Where   and  ̃ are constants whose values are taken at the author’s satisfaction. For 

uncertainty of this potential due to the coordinates are not evident some articles have 

discussed this issue [40-41]. They explained that a redefinition       (  

    ⁄ ) may change the parameter   without affecting the observable. Then we can 

use equation (5.8) for correction potential. Observations discovered different values 

for   with different signs such as .   
   

   
/  this value found by [42], but in 2015 

found it with a different sign as .   
   

  
/ by [43].  

Having introduced the quantum correction, we follow the same procedure afore to 

obtain the modified equations. The total energy gets another contribution because of 

the quantum rectification in the Newtonian potential [44] 

  
 

 
  ̇  

   

 
 

       

    
         (5.10) 

Taking    √
  

  
 (the plank length) and    equation (5.10) transformed into  

  

    
 ̇ 

   
    

 
 

      
   

         (5.11) 

Introducing the Hubble parameter and constant curvature (k) the first Friedmann 

equation with a ℏ-correction can be given as  

    
    

 
 

      
   

    
 

           (5.12) 

Again, take the derivative of the above equation, and plug it with the fluid equation, 

the second corrected Friedmann equation reads [44] 

 ̈

 
  

   

 
(    )       

   
(   )

  
      (5.13) 
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The equations (5.12) and (5.13) are the quantum corrected Friedmann equations 

derived within the framework of Newtonian mechanics. The cosmological constant 

( ) model and flat universe      is used to better understanding of similarities and 

differences between the two standards Friedmann equation. 

   
    

 
 

      
   

    
 

 
       (5.14) 

We note that it is adequate to put     to recover the Friedman equations from 

general relativity. Making use of the standard definition     ( )  
   

   
 and    

 

   
 

the First Friedman equation with the cosmological constant and the ℏ corrections is 

simply 

      .  
  
   

  /            (5.15) 

Dividing the energy density by the critical density (    ), we  introduce the density 

parameter    
  

    
 the above equation becomes  

    .  
  
   

  /             (5.16) 

Also, we defined another form of      by dividing .  
  
   

  / , where  ̃    
    

(  
  
   

  
)

 

and  ̃  
 

    
 then the first Friedmann equation will simply be  

   ̃             (5.17) 

The equation of state of radiation is 

  
 

   
 

  
          (5.18) 

With      ⁄  and      
     

 ⁄ ,  it is simple to get the first Friedmann equation 

   
    

 
.    

  
 

  /  
    

 
.    

 

  /  
    

 
(    .

 

  
/

 

 
)  (5.19) 

On account of positive    it allows to introduce a critical energy 



29 

 

 ̃    
  

(  ) 
 

    
 

  
   

                (5.20) 

For if    ̃    then   . Expressing in terms of loop quantum gravity we rewrite 

   
    

 
.  

 

   
/            (5.21) 

Going ahead, we discuss some standard solutions to the Friedmann equations via the 

tool of the classical-quantum universe without taking into account the effect of 

quantum corrections. Considering the case where     , Λ=0 and    , i.e the 

universe filled with radiation. We can show that the solution to the first Friedmann 

equation (5.12) for   
 

  
 is 

(    )

 
    √

     

 
(    ) with the two branches 

corresponding to 

  
   √                ⁄

   √               ⁄   
⌉       (5.22) 

In the matter case the first Friedmann equation (5.12) for   
 

  
 is 

(    )

 
    

√
     

 
(    ) where    

  ⁄    the two branches read as 

   (    )  ⁄

   (    )  ⁄
⌉         (5.23) 

Considering the case where    , Λ=0 and   , is a universe dominated with 

radiation. Since   
  can be zero which corresponds to a local minimum, the solution 

of the first friedmann equation (5.12) given by 

  ( )  √ 
   

       
  

  

  
 √  

  
   

 

     
  

  ( )  √ 
   

       
  

  

  
 √  

  
   

 

     
  

⌉
⌉
⌉
⌉
⌉
 

      (5.24) 
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Figure  5.1: cosmological solution for the scale factor from the standard Friedmann 

equations. 

The measure of the present distance   , is restricted within the limit    

.
 

     
/
  ⁄

 and the real distance R is       . Where       .
     

 
/
  ⁄

  
   

causing the Hubble Parameter to vanish. We obtain plots from equations (5.22), 

(5.23) and (5.24) as shown in figure 5.1.According to the graph showed that we have 

positive and negative proper time (  ), it denotes the cosmic time which before and 

after the Big Bang. It is observed that the universe is expanding in both the cases of 

radiation and matter with curvature k = 0. When the curvature increases to k = 1, the 

universe collapses for radiation dominated case.  

5.3 Newtonian Quantum Universe 

To discover the impact of the new term proportional ( ) in the Friedmann, equation 

let uses the first an equation of state from the energy conservation equation [44].  

              (5.25) 



31 

 

  is the number denoted by   (   ) and   is different from     , the standard 

solution for energy density ( )  in terms of  R is given 

 ( )  
  

   
        (5.26) 

When     ⁄  , and      the energy density  (  )    . Putting this into the 

First Friedmann equation with    , reads 

 ̇ 

  
 

   

 
 ( )  

     
   

   
 ( )      (5.27) 

If     
     and multiply through with   , we get  

 ̇  
       

  

    
,    -        (5.28) 

By taking integral form this reads 

      
  
    ⁄

√
     

 

∫
 ̅   ⁄

√ ̅   
  ̅

 

  
       (5.29) 

The solution of this integration strongly depends on the sign of the equation of state 

( ) and   which is the same sign of    . To discuss this solution needs some 

different cases separately. 

Case     : 

Radiation dominated (    ⁄ ).In this situation, the solution can be given by a 

function namely  

      
  
  

√
     

 

∫
  

√    
  

 

  
       (5.30) 

By taking integrate it becomes  

   
 

   
 [

   √  
  | |  

   .   √  
  | |/   √   | |     (  √   | |)

]    (5.31) 
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Where√
     

 
(    )   , and D takes care of the initial value  (  )    . If 

      
 ⁄  and put it into the above equation with the initial value, it reads 

   
 

 
[√   |  |  √  |  |]  

 

 
|  |   [

  √   |  |

  √  |  |
]   (5.32) 

 
Figure  5.2: cosmological solution for the scale factor from the modified Friedmann 

equation, for the radiation case whenβ´<0. 

 

Using equations (B.1, B.2, and B.3) as shown in the appendix, we obtain a solution 

as shown in figure (5.2) Due to the   signs in the equation, we obtain two different 

branches. As shown in the figure, they both converge at     and    .from 

present time      , the universe divided for two parts one being a mirror image of 

the other.  For values of the |  |   , we obtain a singular universe starting at     

and ending at some        . For |  |   ,we get always a non-singular universe , 
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the expanding universe starts at a non-zero value         and expanding universe. 

The universe has a Critical value at       after which it will either expand or 

collapse. 

Dust filled Universe (   ): 

The integral to solve reads 

      
  
  

√
     

 

∫
 ̅ 

√ ̅   
  ̅

 

  
      (5.33) 

The above equation can be rewritten in terms of (     ⁄ ) as  

√
     

 
(    )    ( )

 ( )  ∫ √
  

   |  |
  

 

 
                  

 ⁄        
⌉
⌉
⌉
 

     (5.34) 

To obtain a solution of the integral in the above equation, we change it to 

         ( )  ∫
  

√ (   |  |)
  

 

 
      (5.35) 

To integrate this equation look the equation (B.4) is calculated by some steps as 

shown in the appendix, then the above integration becomes as  

    
 √    |  |

 
  

 | |  ⁄ √
  (   √|  |)

√| |
(√ )√

 (   √|  |)

√|  |
(√

  

√|  |
)         (

  (   √|  |)

√|  |
 
√ 

 
)

 √    |  |
 

 √  |  |

 
 

 | |  ⁄ √
  (   √|  |)

√|  |
(√ )√

 (   √|  |)

√|  |
(√

 

√|  |
)         (

  (   √| |)

√|  |
 
√ 

 
)

 √  |  |
            (5.36) 

 

 

 



34 

 

After substitute the value of (       ) into the above equation the result given by 

   as determined in the appendix by equation B.5. 

  

 
 √       

 

 
 

√       
(

             √  (             )√ √ (               )√  

         (           √  (               ) 
√ 

 
)

)

               (                             )√   
 √       

 

 
 

√       
(

             √  (             )√ √ (               )√  

         (           √  (               ) 
√ 

 
)

)

               (                             )√  

For the value of (               ) in to the equation 5.36 , the result can be 

obtained as showed by the equations (B.6, and B.7) , then these two equations we 

explained details in the appendix, to get the solution for these elliptic integral, the 

MAPLE codes used for the plot these elliptic integral equations as experienced in the 

below figure (5.3).
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Figure  5.3: cosmological solution for the scale factor from the modified Friedmann 

equation, for the Dust case whenβ´<0. 

From figure (5.3), it is seen that for both  signs, all the branches start from zero. 

We, conclude that the all universe is singular as they start and end at zero. Then, the 

universe for this case of Dust dominated universe is singularity while all of them 

started from zero. To avoid singularity in the case of -    the equation of state is a 

need. 

Case     

Radiation (    ⁄ ).The integral form becomes 

      
  
  

√
     

 

∫
  

√    
  

 

  
        (5.37) 

By taking integral, it becomes  
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 0   √  

       .   √  
   /   √        (  

          √    )1          (5.38) 

C takes care of the initial value (  )    . If       
 ⁄  and put it into the above 

equation with the initial value, it reads 

   
 

 
[√      √    ]  

 

 
    [

  √     

  √    
]    (5.39) 

By putting the    value into the above equation the equations (B.8, B.9, and B.10) 

can be obtained and solve by the below figure. 

 
Figure  5.4: cosmological solution for the scale factor from the modified Friedmann 

equation, for the radiation case whenβ´>0. 

The case of generality is one in which we impose      such that      
       

or      . This is explicitly shown in figure 5.4. From equation (5.39), we obtain 

only if     , we infer that all universes either originate or terminate at      as 
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long as    is less than 1.  For            corresponds to a point of the local 

minimum that joins two branches with different signs at     to give a unique 

solution. As can be seen from the figure, the universe comes from infinity to a 

minimum point and expands to infinity. 

Dust (   ): 

For this case, the integral to solve reads 

      
  
  

√
     

 

∫
 ̅ 

√ ̅   
  ̅

 

  
        (5.40) 

The above equation can be written in terms of (     ⁄ ) as  

√
     

 
(    )    ( )

 ( )  ∫ √
  

     
  

 

 
                  

 ⁄        
⌉
⌉
⌉
 

      (5.41) 

So as to explain the necessary showing up in the above expression let change it as 

follow 

      ( )  ∫
  

√ (     )
  

 

 
       (5.42) 

To integrate this equation look the equation (B.11) is calculated by some steps as 

shown in the appendix, then the above integration becomes as  

    
 √     

 
 

   ⁄ √
(  √ )

√ 
√ 

(  √ )

√ 
(√

  

√ 
)         (√

(  √ )

√ 
 
√ 

 
)

 √    |  |
 

 √   

 
 

   ⁄ √
(  √ )

√ 
√
  (  √ )

√ 
(√

  

√ 
)         (√

(  √ )

√ 
 
√ 

 
)

 √   
       (5.43) 

After substitute, the    value into the above equation as showed in the equations 

(B.12, B.13, and B.14), then the solution of these elliptic integral equations showed 

in the below figure (5.5). 
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Figure  5.5: cosmological solution for the scale factor from the modified Friedmann 

equation, for the Dust case when β´>0. 

Figure 5.5 is the case where every value of     is positive.  As shown, the 

interpretation is similar to the radiation case in figure 5.4 when       was 

considered. Then, changing the equation of state doesn’t have effect on this case. 

5.4 The case with a cosmological constant 

The quantum correction of Friedmann equations has been calculated in the flat 

curvature [44]. Here, the first Friedmann equations with the cosmological constant 

read  

   
    

 
 

      
   

   
 

 

 
       (5.44) 

Put the energy density      
    when      ⁄   into the above Friedmann 

equations, the integral form reads 

      ∫
 

√       
  

    
(    ) 

    

 

  
 

  
     (5.45) 
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This integral form can be calculated in some cases: 

In the radiation case where (    ⁄ ): 

This is the case with non-zero cosmological constant and the integral becomes 

      
 

  
 ∫

  

√
     

 
(    ) 

    

   
 

  
 

  
     (5.46) 

If       
 ⁄  and           ⁄  , the integral can be rewritten in terms of  ( )  

 ( )  ∫  ( )   
 

 

            ( )  
  

√         

]        (5.47) 

Where √
     

 
(    )    ( ) and        ⁄ .  The function of  ( ) can be 

expanded in the very small parameter  . This series expansion calculated details in 

the appendix from equation (B.15). Thus, it becomes 

 ( )  
  

√     
 

  

√(     ) 
 
 

 
  (  )       (5.48) 

Taking the integrals for the first terms from the above equation, it reads 

  ( )  ∫
  

√     
   

 

 
 

 

 
[ √      √    ]  

 

 
    [

  √     

  √    
] (5.49) 

And the integral for the  second terms of the equation (5.48), it shows 

  ( )   
 

 
∫

  

√(     )  ⁄
   

 

 

  

  
(  )    

  √    

  √     
 0

  

 
 

     

  
 

  (  )   

  
 

  (  ) 

 
1 (

 

 √     
*  

 

 √    
0
  (  ) 

 
 

  (  ) 

  
 

   

  
 

 

 
1    (5.50)       

These two integrations calculated details in the appendix (B.16 and B.17).The 

integration function of  ( ) is given at the first order in    by the following 

expression 

 ( )   ,  ( )    ( ) -   (  )     (5.51) 
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 The case of dust (   ).In this case: 

 the integration of (5.45), it becomes 

      

          ( )  ∫  ( )   
 

 

              ( )  √
  

         

       ]      (5.52) 

Where √
     

 
(    )    ( ) and        ⁄ .  Expanding the function of  ( ) 

in the very small parameter  , reads 

 ( )  √
  

     
 

  

 (     )
 √

  

      

 

 
  (  )    (5.53) 

Integral in the first term of the  ( ) function reads 

∫ √
  

     
    

 

 
 ∫

  

√ (     )
   

 

 
   ( )     (5.54) 

And integral for the second terms is 

 
 

 
∫

  

(     )√ (     )
     ( ) 

 

 
     (5.55) 

The way to find   ( ) and    ( )  is long, then they integrated details in the 

appendix where they showed in the equations (B.18 and B.19). Then the solution 

becomes 

 ( )   ,  ( )    ( ) -   (  )     (5.56) 

5.5 Comparison of loop quantum gravity with Friedmann equation 

Consider the mini-superspace method to deal with classical general relativity for the 

flat case. The Ashtekar variables,        , are given by the poison bracket *   +  

 

 
     , when  G is Newton’s constant and     is the barber-Immirzi parameter, the 

gravitational Hamiltonian is 

    
    

   
 √| |         (5.57) 
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Where             ̇. The Hamiltonian constraint for a massless and free scalar 

field showed by 

   
     

 

√| | 
        (5.58) 

The Hubble parameter in this comparison is equal to    ̇   ⁄  and the matter 

density for the scale field as    
  | | ⁄  . From the usual Friedmann equation get 

the total Hamiltonian constraint as     (     )  

   
    

 
          (5.59) 

According to this equation the volume of the universe     at    , it suggests the 

usual big-bang singularity. The significant point is that the equation of motion 

determined from the Hamiltonian effective showed by  ̇  {      } , can be 

expressed as a modified Friedmann equation, in the form 

   
    

 
(  

 

   
   *       (5.60) 

The critical density is equal as 

             
    

 

      
   

          

            
    

√ 

        
   

         
]     (5.61) 

Where           , as expected by black hole physics.    is the Plank density. In 

the restriction     , which identity to     , the critical energy density reads 

singularity and the classical singularity appears.   

The interesting point is that there is a non-singular universe in the modified 

Friedmann equation. Therefore, the critical energy density does not denote  ̇ , it 

means that the universe bounces. 

   
    

 
.  

  

  /       (5.62) 
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Equation (5.60) calls it the LQG-corrected Friedmann equation with some 

similarities and differences are present. For positive   , as explained in the equation 

(5.19), with the radiation case the critical density can be gotten, but the critical 

density is different as obtained from the Friedmann equation. For negative   , the 

equation (5.62) it has given different sign which appears in it, let’s compare it with 

equation (5.60), directly there is not obvious between this comparison for the critical 

density [45-46].  
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Chapter 6 

6 CONCLUSION 

The rate at which our universe is expanding is studied with the Friedmann equation 

by determining the scale factor for a particular universe under consideration. Many 

authors in the works of literature have attempted to modify the Friedmann Equations, 

depending on their interest. Here, we applied the quantum correction to the 

Newtonian potential and used it to derived the Friedmann equations within the 

Newtonian formalism to obtain the corrected Friedmann equations [47]. As it is with 

other models of the quantum universe, the choice of the sign also plays an important 

role in this corrected model. As a matter of fact, a collapsing universe always 

bounces off a minimum length that varies directly with the Planck length then begins 

to expand again [44].  

To understand and describe the behavior of the universe under this modification, we 

plotted graphs of the invariant   with the scale factor of the universe for various 

values of   . We observed that the quantum correction effect depends on the sign in 

the correction. The MAPLE codes used for the plot are shown in the appendix.  
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Maple Codes 

in the Radiation case  (   ), After put the values of (                  )  
into equation (5.32), we get tau equations with positive and negative signs. 
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in the Dust case (   ) , by taking integrate for the equation (5.35), and  substitute 

the integral amplitude value of (         ) into the integration equation, it reads 

as  
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  (B.4) 

then put the value (                     ) into (B.4), three equations with 

different signs can be gotten as 
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(B.6) 
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(B.7) 

 

 

in the Radiation case  (   ), After put the values of (                )  into 

equation (5.38), we get tau equations with positive and negative signs. 
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in the Dust case  (   ), by taking integrate for the equation (5.35), and  substitute 

the integral amplitude value of (         ) into the integration equation, it reads 

as   
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(B.11) 

then put the value (                ) into (B.11), three equations with different 

signs can be gotten as 
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(B.13) 
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(B.14) 

 

 

 

 

 

 

Series expansion for equation (5.46) reads as  

 

 



64 

 

 

 

 

 

                 (B.15) 

 

 

By taking integration for each terms in the above equation , they read as  
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    ( ) and   ( )can be integrated such as 
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(B.18) 

 

for    ( ) is 
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