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ABSTRACT 

Theory of statistics and its application to data analysis in all fields of endeavor, forms 

the base of statistical analysis. While data collection and validation is not dealt with 

in this thesis, the importance of data on the analysis results is obvious. In general 

data are discrete observations in a continuous process. Number of variables involved 

is also very important. Hence, multivariate statistical analysis has gained importance, 

especially after computers could be used to process huge amounts of data. 

 

In this thesis, simple and multivariate regression techniques, principal component 

analysis are explained in detail, and also used in the analysis of a real life data. Since 

the matrix algebra is implemented in all computations, a brief introduction to certain 

concepts of matrix algebra is also given under Chapter 3. Chapter 4 introduces some 

important concepts of multivariate linear regression theory, while Chapter 5 gives 

basic theoretical background to principal component analysis. 

 

In the application section a data set consisting of 8 variables affecting the heating 

load of buildings is studied. Following careful examination of the variables and 

pairwise correlations, it was considered useful to reduce the number of variables to 5, 

all having a high correlation with the dependent variable. An attempt is made to 

estimate the predictor variables after the principal components were obtained. The 

methodology used proved to be a successful one as estimation errors were minimal.  

Keywords: Matrix algebra, regression analysis, estimation, predictors, response, 

regression coefficients, principal components analysis, eigenvector, eigenvalue. 
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ÖZ 

İstatistik teorisi ve her alandaki veri analizine olan uygulaması istatistiğin temelini 

oluşturur. Veri toplanması, temizlenmesi veya geçerliliğnin saptanması bu tezin 

kapsamına alınmadı. Ancak verilerin istatistik analizi ve analiz  sonuçları üzerindeki 

etkisi ortadadır. Veriler sürekli bir olayın ayrık ölçümlerinden elde edilen 

değerlerdir. Bu nedenle çok deişkenli istatistiksel analiz gittikçe önem kazanmakta 

ve özellikle bilgsayar yazılımlarının istatistik analizindeki kullanımı bu önemi 

dahada artırmaktadır. 

Bu tezde basit ve çok değişkenli regresyon teknikleri, temel bileşenler analizi detaylı 

olarak açıklanmıştır. Teorik kısmın uygulaması çok değişkenli gerçek bir  veri 

üzerinde yapılmıştır. Tüm uygulamalarda matris cebiri teorilerinden yararlanıldığı 

için, matris cebiri ile ilgili bazı temel kavramlar kısaca açıklanmıştır. Dördüncü 

kısımda çok değişkenli lineer regresyon teorisi ile ilgili kavramlar, beşinci kısımda 

ise temel bileşenler analizi konusunda bazı temel teorik detaylar verilmiştir. 

Uygulama alanında ise binaların ısı yüklenme kapasitelerini etkileyen 8 değişkenli 

bir işlemden elde edilen veriler incelenmiştir. Değişkenlerin titiz incelenmesi 

sonucunda ısı yükleme kapasinde en etkin olan 5 değişkenin analiz işlminde 

kullanılmasına karar verilmiştir. Elde edilen temel bileşenler kullanılarak etkin 

olduğu varsayılan 5 değişkenin tahmini yapılmıştır. Tahmin sonuçlarının geçerli 

olduğu tahmin hatalarının küçüklüğü ile kanıtlanmıştır. 

Anahtar Kelimeler: Matris cebiri, regresyon analizi, tahmin, tahmin edici, tahmin 

edilen, regresyon katsayıları, temel bileşenler analizi, özvektör, özdeğer. 
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Chapter 1 

INTRODUCTION 

In statistical analysis, regression has an important place. It involves a set of processes 

that establishes the relationship between dependent (response) and independent 

(predictor) variables. Regression analysis includes some techniques for modeling 

several variables, these techniques work on the relationship between dependent 

variable/s and one or more independent variables or predictors. 

More specifically, regression analysis helps to realize how the value of the dependent 

variable changes if any one of the independent variables is varied, while the other 

predictors may be fixed. 

 

In case the number of variables to be dealt with is very large, a technique known as 

Principal Component Analysis (PCA) can be used to reduce the number of variables 

to manageable levels, without much loss of the inherent characteristic of the process 

under study. The reduced number of variables or principal components that are made 

of linear combinations of the original variables can be used to obtain some idea about 

the process. They can also be associated with the original variables via linear 

regression. 

This thesis deals with the multiple linear regression.  Explains important parts of the 

multivariate regression, and explains how estimation is carried out, its accuracy and 

https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Independent_variable
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associated errors. It also gives a short review of the theory of PCA and attempts to 

integrate the PCA results to multivariate regression.   

Linear algebra plays a main role in multivariate statistics. Both in multivariate 

regression and the PCA application of algebraic concepts simplifies, otherwise 

tedious numeric computations. Hence a review of the matrix algebra is included in 

Chapter 3. Intense numeric computations necessitate the use of software such as 

SPSS and Matlab which are used in all computations in this thesis. 

Since the regression analysis is based on the relationship between dependent and 

independent variables, the correlation coefficient between the variables is a necessity 

to determine the value of the regression analysis to be undertaken.  

Theory related to linear simple and multivariate cases are explained in detail under 

Chapter 4. Derivation of the system that leads to the estimation of the regression 

parameters, and theorems proving some important properties of the regression 

process are given. The importance of the correlation coefficient between the response 

and explanatory variables is highlighted.  

Principal components analysis is focused on explaining the variance-covariance 

structure of a set of variables by some linear combinations of these variables. The 

first aim of the principle components is dimension reduction and interpretation of the 

new variables named as principal components. Chapter 5 explains the theory and 

ideas behind this matter. 



 

3 

In Chapter 6 the analysis of a multivariate data with a response and 8 independent 

variables are analyzed using multivariate regression and PCA. The relation between 

the ratio of each principle component of total variation in the data, and the 

correlation coefficient and sum squares of error in linear regression are investigated 

The obtained results are summarized using tables and graphs, and interpreted.
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Chapter 2 

LITERATURE REVIEW 

Work that relates to the technique of regression analysis can be traced back to the 

nineteenth century. The English mathematician Galton collected data of heights of 

individuals and the heights of their parents. After organizing frequency tables that 

classified these individuals, both by their height and by the average height of their 

parents, Galton came to the conclusion that tall parents usually had tall children and 

short parents usually had short children. He reached to the conclusion that the heights 

of children can be predicted by the heights of their parents [1]. 

In 1805 the idea of least-squares analysis was proposed by the French mathematician 

Adrien-Marie Legendre [2]. Similar ideas were also proposed by the American 

mathematician Robert Adrain in 1808, and by Gauss in 1809 [3]. In 1821 the theory 

of least squares was published by Guass. In addition, a version of the Gauss–Markov 

theorem was included with least of squares [4]. Udny Yule and Karl Pearson 

extended the work of Galton [1] and found that the response and explanatory 

variables represent  the joint distribution  that is assumed to be Gaussian [5] [6]. 

In 1922 and 1954 Fisher assumed that the conditional distribution of the response 

variable is Gaussian [7] [8], but the joint distribution was not. At this point the 

assumption of Fisher is close to the theory of Gauss in 1821 [4]. In the 1950s and 

1960s electromechanical desk calculators were used to compute the regression 
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parameters. In the early years of electronic computation, a long time (as long as 24 

hours) was needed to carry out simple regression analysis [9]. 

The problem of fitting a line when both X and Y variables have an error in 

measurement was mentioned by Karl Pearson. His solution to the regression problem 

in the presence of errors is named “major axis” of ellipse of data.  X and Y co-

variation was taken into account [10]. When the units of the X and Y variables were 

changed the major axis was not uniquely determined: The slope and intercept would 

differ if the scales are changed. That was mentioned by  Kermack and Haldane and 

suggested the use of  “reduced major axis” in case both X and Y were transformed to 

standardized variables where the mean 0   and the standard deviation 1   [11]. 

A method of weighing was developed by York [12]. This method was called the least 

squares cubic because the slope of the regression equation needs the solution of a 

cubic equation to determine the regression parameters. The geometric mean 

regression and the formulae for the asymmetrical confidence limits for the slope of 

the geometric mean regression was shown by Ricker [13].   

Sprint and Dolby gave some comments about the geometric mean regression, 

especially when the selection of the response and regressor variables is problematic. 

If the line splits the minor angle between the two models, Y-on-X and X-on-Y, this 

line is assumed as the least squares bisector While the geometric mean regression 

and the least squares bisector may have a small difference in slope that is probably 

not statistically significant [14]. 
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Sokal and Rohlf wrote in great details a textbook is named “Biometry”    about the 

issues of model-I (where Y is random and assumed to depend on X that can be 

random or fixed) versus model-II regression. Laws presented an extensive chapter 

about the techniques of model-II regression [15]. 

Regression analysis continues to be an area of active research. In recent decades, new 

methods have been developed for regression, regression involving correlated 

responses such as time series and growth curves, regression in which the predictor 

(independent variable) or response variables are curves, images, graphs, or other 

complex data objects, regression methods accommodating various types of missing 

data, nonparametric regression, Bayesian methods for regression, regression in which 

the predictor variables are measured with an error. 

Principal component analysis (PCA) is essential in multivariate data analysis field. 

Karl Pearson proposed the principle components analysis in 1901 as an analogue of 

the principal axis theorem in mechanics [16]. In 1923 Fisher and MacKenzie 

mentioned PCA as more suitable than analysis of variance for the modelling of the 

response in regression analysis [17]. Harold Hotelling developed (PCA) 

independently and named it in the 1930s depending on the field of application [18]. 

In 1966 Fisher and MacKen- zie also outlined the NIPALS algorithm (Nonlinear 

estimation by iterative least squares) [19]. It is the most commonly used methods for 

calculating the principal components of a data set. It gives more accurate results 

when compared with the SVD of the covariance matrix [21] [22], but is slower in 

computational aspects. 
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Starting in late 1970s PCA started taking place in many textbooks on statistical data 

analysis [20].  In his book Jolliffe (2002) discusses the differences between PCA and 

factor analysis [23]. In most cases (PCA) is used as a tool in exploratory data 

analysis and for providing predictive models. 

The terms of component scores or factor scores were usually used to discuss the 

results of the PCA. The variable values were transformed corresponding to a 

particular data point. Each standardized original variable should be multiplied to load  

the weight and get the component score [24]. 

PCA has a connection with canonical correlation analysis that is called (CCA). CCA 

defines coordinate systems that show the cross-covariance between two datasets 

whilst PCA defines a new orthogonal coordinate system that shows variance in a 

single dataset. [25] [26]. 
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Chapter 3 

 MATRIX ALGEBRA APPLIED IN STATISTICS 

The establishment of a relationship between the multivariate regression results, with 

those obtained after dimension reduction using principal component analysis is a 

challenging problem. While attempting to establish such a relationship, mathematical 

tools such as matrix algebra will simplify the otherwise long set of computations. 

Hence a review of matrix algebra as needed in this study is given. 

3.1 Matrix Algebra and Statistics 

When large volumes of data are to be processed, computer software packages such as 

Matlab and Mathematica are extensively used for the analysis of such data. The use 

of matrix operations in the design of algorithms for the analysis of such data is 

essential.  

3.1.1 Definition of Vector and Matrix 

Definition 3.1. The vector is an array of n real elements 1 2   nx , x , , x . Statistically, 

it represents the data values for a variable and is written as 

1

1n

n

x

x


 
   
  

x . It has n  rows and one column. 

Its transpose is  1 1 2n nx x x .
 x      

Definition 3.2. A matrix is made up of vectors of the same size, hence if p vectors of 

the same size are used the rectangular matrix of size n p is obtained. It means the 
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matrix has n rows and p columns. Statistically it is very convenient to represent a 

multivariate data set using a rectangular matrix n p .X   

11 12 1

21 22 2

1 2

1 2

p

p

p

n n np

x x x

x x x

x x x

 
 
       
 
  

X x x x  

3.1.2 Some Important Statistical Measures and their Representation by Vectors 

and Matrices  

a) The sample mean 

Given a set of observations 1 2   nx , x , , x , the sample mean is defined by  

1

n

ii
x

x
n


  

When p variables with n observations are available, then the mean vector x  can be 

represented in the given form 

1 11 12 1 1

2 21 22 2 2

1 2

1 2

1

j p

j p

i i i ij ip

p n n nj np

x x x x x

x x x x x

x x x x xn

x x x x x

   
   
   
   

    
   
   
   
      

x 1  Where 1n1  is the vector of 1s.   

b) Sample variance/covariance and variance-covariance matrix 

Theoretically the expectation of the squared deviation of a random variable from its 

mean is called variance and defined as  
22 .x   

 
 The single sample 

variance is given by
 

2

2 1

1

n

ii
x x

s
n








. 
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When there is more than one variable in question, the covariation between pairs of 

variables is to be considered.  In probability theory the covariance between p pairs of 

random variables is defined as: 

i j i ji j X X i X j XCov( X ,X ) E[( X )( X )]       Where 1 2i, j , , , p.  

It can be shown that ij  when i j,   and 0ij   When i j  

When  i=j  2 2

i i i i i ii i X X X i X i X i XCov( X ,X ) E[( X )( X )] E[( X ) ].            

[( )( ) ]E X X      

1 1

2 2

1 1 2 2, , , p p

p p

x

x
E x x x

x




  



  
            
      

 

       

       

       

2

1 1 1 1 2 2 1 1

2

2 2 1 1 2 2 2 2

2

1 1 2 2

P P

P P

P P P P P P

X X X X X

X X X X X
E

X X X X X

    

    

    

     
 
     

  
 
      

 

The result of the covariance computations can be expressed as the covariance matrix 

given below 

11 12 1

21 22 2

1 2

i j

p

p

X X

p p pp

  

  

  

 
 
  
 
 
  

σ σ  

This is a diagonal and symmetric matrix with elements of the diagonal representing 

the variances of the particular variable, i.e. 2
ii i .   It can also be shown that when 

two random variables  i jX , X  are independent, 0
i jX X ,   but the vice versa case is 

not always true. 
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Statistically the covariance between p pairs of variables with n observations is given 

by 

  
1S

1i j

n

ki i kj jk
X X

x x x x

n


 





 where  1 2i, j , , , p  

Variance–covariance matrix or covariance matrix  is a matrix where the elements in 

the j, k position are the covariances  jks   between the thj and thk  elements of a 

random vector, and the  elements in a j j position are the variances  .jjs  

Variance-covariance matrix maps a linear operator c of the random variables  X  onto 

a vector that is consisted of covariances for those variables.  

11 12 1

21 22 2

1 2

p

p

p p pp

s s s

s s s

s s s

 
 
 
 
 
  

S  

jk kjs s , since the covariance matrix is symmetric. In addition, it is positive-

semidefinite matrix which means that, the eigenvalues of this matrix are either 

positive or zero 

c) Correlation coefficient and correlation matrix 

Correlation coefficient plays an important role in regression analysis as it is used to 

measure the strength of the relationship between the variables. The range of   is 

located in the interval [-1:1].   A value close to -1 or 1 indicates  the very strong 

linear relation between the variables. As   approaches 0 the strength of linear 

correlation diminishes and   = 0 means no linear correlation between the two 

variables.   
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The coefficient of determination 
2 is the squared value of   and it indicates the 

rate of the total variation in the values of the dependent variable y that can be 

calculated by a linear relationship with the values of the random variable x  

The population correlation matrix is denoted as ρ   

i j

i i j j

x x

x x x x



 
ρ  

Where
i jx x  is the covariance between the variables  and i jX X , while  and 

i i j jx x x x 

are the variances of the thi  and thj  variables. 

The amount of a linear association between the random variables  ,i jX X  is 

measured by the elements of the matrix .ρ  

Let the population correlation matrix be a p p symmetric matrix.  

111 12

11 11 11 22 11

212 22

11 22 22 22 22

1 2

11 22

p

pp

p

pp

p p pp

pp pp pp pp

 

     

 

     

  

     

 
 
 
 
 
 
 
 
 
 
 
 

ρ  

12 1

12 2

1 2

1

1

1

p

p

p p

 

 

 

 
 
 
 
 
  

ρ  

The diagonal elements of the population correlation matrix indicate the correlations 

between the random variables with themselves, hence are 1ii .   The off-diagonal 
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elements of ρ  indicate the correlations between  ,i jX X where .i j  the matrix ρ

is symmetric, i.e. ij ji .   

The sample correlation matrix is denoted by .R It is obtained an analogous to the 

covariance matrix with correlations in place of covariances. Linear correlation 

between the ith and jth variables is computed by 

  

   
1

22

1

i j

i i j j

n

x x i i j ji
ij

n
x x x x

i i j ji

s x x x x
r

s s x x x x





 
 

 




 

 

12 1

21 2

1 2

1

1

1

p

p

jk

p p

r r

r r
R r

r r

 
 
  
 
 
  

 

Example 3.1 

 A data set consisting of 53 observations for each of the 5 variables is used for the 

computation and explanation of the relationship between the variables.  

1X : Average of death per 1000 residents. 

2X : Availability of doctors per 100,000 residents. 

3X : Hospitals availability per 100,000 residents. 

4X : Income per person each year in thousand dollars.  

5X : Population density per square mile. 

Data are given in Appendix, Table 3.1 (row data residents, income and density) 

Mean for each variable: 

1x  =9.3057, 2x = 116.0943,  3x =589.7925,   4x =9.4358,   5x =  110.6415. 

Standard deviation for each variable: 
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1s =1.6626     2s =37.8866     3s = 332.6183      4s =1.0754    5s =47.1797. 

Then to compare the coefficient of variation, ( s / x ) is calculated, the respective 

coefficients of the variation for the variables 1 2 3 4 5, , , ,x x x x x  are 0.18, 0.33, 0.56, 

0.11and 0.43. In general, the coefficient variation gives an idea about how the set of 

data points is distributed around the mean or it shows the measurement of the 

variation in points from the mean. 

For instance, the coefficient variation for the first variable 1CV = 0.18 that means the 

average of death per 1000 residents has variation 18% from its mean ( 1x  =9.3057), 

and the same for the other variables. As a result the experimenter would choose 4CV

that indicates the income per person each year in thousand dollars because it gives 

the lowest variation (0.11) from its mean ( 4x =9.4358) so that the minimize risk is the 

best to be chosen. The correlation matrix for the same data is computed as: 

1 0.1158 0.1106 0.1720 0.2776

0.1158 1 0.2956 0.4333 0.0199

0.1106 0.2956 1 0.0275 0.1866

0.1720 0.4333 0.0275 1 0.1287

0.2776 0.0199 0.1866 0.1287 1

  
  
 
 
 
   

R  

The highest correlation between 2x  and 4x  2,4r = 0.4333 that means there is a nearly 

strong positive relationship between the availability of the doctors and the rate of the 

income per person each year. The lowest correlation between 2x  and 5x

2,5 0.0199r   that means almost there is no relationship between the doctors and the       

availability of the population density per square mile. 
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The covariance matrix is obtained 

 

2.7640 7.2917 61.1550 0.3075 21.7749

7.2918 1435.4 3725.4 17.6542 35.6386

61.1550 3725.4 110630 9.8383 2928.5

0.3075 17.7645 9.8383 1.1566 6.5323

21.7749 35.6386 2928.5 6.5323 2225.9

  
  
 
 
 

   

S  

From the previous matrix, the variances between the variables with themselves are 

located in diagonal elements. For instance, 11s =2.7640.  The off-diagonal elements 

indicate the covariances between the variables  ,i jx x where .i j  Remembering the 

fact that the magnitude of the covariance value does not indicate the strength of the 

relationship between the concerned variables, is evident in the S matrix. For example 

the variables with the highest linear correlation 2,4r =0.4333 does not record the 

highest covariance value which is evident from the S matrix.  

3.2 Using Matrices in Statistics 

3.2.1 Regression Analysis 

Using matrices in regression analysis is essential to find the linear regression model 

in case the number of independent variables exceeds two. Matrix theory can simplify 

the mathematical operations in estimating the parameters of the multiple regression 

model. 

3.2.2 General Linear Model by Using Matrices 

The general linear model for a process governed by k variables is defined as 

0 1 1 2 2 ; 1,  2, ,i i k ki iY x x x i n                   3.1  

This regression model represents n equations, showing the dependent variable’s 

(response) relation to the independent variables via the coefficients  1 2j ; j , , ,k, 

Then, the  linear system given in equation (3.1) can be written in matrix format as  
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i , y x β ε  where 

1 11 21 1 0 1

2 12 22 2 1 2

1 2

1

1
, , , .

1

k

k

n n n kn k n

y x x x

y x x x

y x x x

 

 

 

       
       
          
       
       
       

y X β ε  

The vector y  represents the dependent variables  1 2iy ; i , , ,n.  Then any       

0 1 1i k ky x x         

The matrix X  must have 1’s in the first column, the other columns representing the 

observations for the independent variables, 

The vector β indicates the regression coefficients. 

The vector ε indicates the random errors. 

Using the data collected in the process under study, the coefficients 0 1, , , kb b b  are 

used to estimate the true but unknown coefficients β . In doing so, it is desired to 

minimize the sum of the square of the errors between the estimated value of the 

response variables and their true values. The error can be expressed as  

2 2
0 1 1 2 2

1 1

( )
n n

i i i i k ki
i i

SSE e y b b x b x b x
 

         

In matrix format the SSE becomes 

      

   

( )SSE        

          

y xb y xb y xb y xb

y y y xb xb y + xb xb y y -2b x y +b x xb

      

0      y y 2b xy b xxb  

0

0

 

 

 

-2Xy +2XXb =

-Xy +XXb =

XXb = Xy

 

Then the result reduces to the solution of the parameters b in the equation 
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  XX b = Xy             

Let A XX  and ,g Xy  then  

1 21 1 1

2
1 1 1 2 11 1 1 1

2
1 21 1 1 1

n n n

i i kii i i

n n n n

i i i i i kii i i i

n n n n

ki ki i ki i kii i i i

n x x x

x x x x x x

x x x x x x

  

   

   

 
 
 

   
 
 
  

  

   

   

A xx  

0 1

1 11

1

n

ii

n

i ii

n

k ki ii

g y

g x y

g x y







 
 
 

   
 
 

  







g Xy  

Then the estimators b of β are calculated from:    
-1-1b A g xx xy  

3.2.3 Some Properties of the Least Squares Method by Using Matrices 

 We obtain the estimators  0 1, , , kb b b  under the assumption on the random errors 

 0 1, , , ,k    if we assume those errors are distributed with mean 0 and variance

2, Then it is possible to show the parameters  0 1, , , kb b b as unbiased estimators 

to  0 1, , , k   respectively.  

The matrix 
21A represents the variance-covariance matrix of the estimators, where 

the main diagonal elements display the variances of the estimators  0 1, , , kb b b and 

the covariances of the off-diagonal elements. In case we have k independent 

variables (predictors), The inverse of the matrix A  gives 

00 01 0

10 11 1

0 1

( )

k

k

k k kk

c c c

c c c

c c c

 
 
  
 
 
 

A XX  
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Diagonal and off-diagonal elements can be defined as 

 

2 2

2

, 0,1,2, ,

, , .

bi ii

bibj i j ij

c i k

Cov b b c i j

 

 

 

  
 

2S Is unbiased estimator of 
2 that can be obtained by : 2 ,

1

SSE
s where

n k


 

 
2

2

1 1
ˆ .

n n

i i ii i
SSE e y y

 
    Where 0 1 1ı k kŷ b b x b x .     

3.2.4 Principal Components Analysis 

Principal components analysis (PCA) is the method used in dimension reduction for 

data sets with a large number of variables. This reduction is performed by employing 

various techniques provided by matrix algebra.  Particularly correlation or variance-

covariance matrix is used in determining the principal components. Eigenvalues and 

eigenvectors of these squares and symmetric matrices are computed and used in the 

process.  

3.2.5 Principal Components Analysis by Using Variance - Covariance Matrix   

Let the random vector 1 2, , , px x x   x represents a dataset with p variables, having 

a variance-covariance matrix denoted by .Σ   The eigenvalue - eigenvector pairs of 

Σare      1 1 2 2, , , , , ,p p  e e e  where 1 2 .p     The principal components 

 1 2, , , PY Y Y are then obtained as linear combinations initial variables as 

1 1 11 1 12 2 1

2 2 21 1 22 2 2

1 1 2 2

p P

p P

P p p p pp P

Y X e X e X e X

Y X e X e X e X

Y X e X e X e X

    

    

    

e

e

e

 

Then the variance and covariance of a principal component are computed as 

 

 

, 1,2, ,

, 0,

i i

i k k

Var Y i p

Cov Y Y i k

  

  

i i

i

e Σe

e Σe
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Chapter 4 

REGRESSION ANALYSIS 

4.1 General Linear Regression 

In statistics, the general linear model (GLM) provides the flexibility of generalizing 

the ordinary linear regression. This is achieved by permitting the linear model to be 

associated with the response variable via a link function and by permitting the 

magnitude of the variance of every measurement to be a function of its expected 

value. 

Regression analysis is a set of statistical operations to estimate the relationships 

between the dependent and independent variables. However, this should not be taken 

as to mean that the dependent variable is caused by the independent variable/s. The 

linear regression tries to calculate the intercept and slope/s of the linear line/s by 

minimizing the sum of the squares of the errors between each observation and its 

corresponding estimated value via the regression equation. If the scatter diagram of 

the data does not exhibit some kind of linearity, then the nonlinear regression model 

can be used. The independent variable/s can be either continuous or categorical.  

4.1.1 Some Assumptions in Linear Regression 

1. Linearity 

The concept of linearity means that the mean of the dependent (response) variable 

can be written as a linear combination of the independent variables their coefficients 

being computed by the regression model. 
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2. Constant variance 

This assumption leads to equality of the variances in the errors of the values of the 

dependent variable. 

3. Independence of errors 

This assumes that the errors of the dependent variables have no correlation with each 

other. 

4.1.2 General Linear Regression Model 

Let 
1 2, , , kx x x be predictor variables and 1 2, , , my y y  response variables, then we 

have the following general linear model 

1 01 11 1 1 1

2 02 12 1 2 2

0 1 1

                               

k k

k k

m m m km k m

Y x x

Y x x

Y x x

   

   

   

    

    



    

      

where: 0 1, , , k    are regression coefficients, 1 2, , , m   are random errors. 

4.1.3 Cases Where There is a Demand to Use the Linear Regression Analysis  

There are many applications that fall into one of the following cases: 

1.In case the target is prediction, forecasting or error reduction. 

2.If the goal is to explain the variation in the dependent variable (response). 

3.To measure the strength of the relationship between the response/s and predictor/s. 

4.1.4 Three Types of Linear Regression Analysis 

There are three types of the linear regression according to the number of variables 

(dependent and independent variable/s) 

1. Simple linear regression: It includes one dependent variable that is called 

response and one independent variable that is called regressor. 

2. Multiple linear regression: One dependent (response) variable and several 

independent (regressor) variables. 
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3. Multivariate multiple linear regression: Several dependent variables and several 

independent variables. 

4.2 Simple Linear Regression 

Definition: It is a statistical approach modeling the linear relationship between the 

response (y) and predictor (x) variables. Determination of the unknown parameters 

that establishes the linear function is crucial. However, simple linear regression can 

only determine the linear relationship between the response and one predictor 

variable.   

4.2.1 Simple Linear Regression Model 

0 1 ,Y x      

where 0 is the intercept, 1  is the slope,  is the random error, random error is 

assumed to be normally distributed with, ( ) 0E   , 2( ) ,Var    where 2,  are 

unknown parameters, 
2  is called  residual variance,   is called random error that 

has constant variance. The existence of the random error in the system ensures that 

the model is not a simple deterministic equation, but has a distribution function that 

is associated with. Figure 4.1 illustrates the relationship between the predictor and 

the response variables. 
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Figure 4.1: 0 is the Intercept, 1  is the Slope 

4.2.2 Estimated Regression Model 

While the true but unknown simple linear regression model is given by

0 1 ,Y x      its estimator is 

0 1 ,i iy b b x e    

where 0 1,  b b are regression coefficients, ie is the residual error. Using data collected 

from a certain process, then the estimated value of y and coefficients will be  

0 1  ˆ ˆŷ, b , b .Then, 0 1
ˆ ˆŷ b b x   can be written. As the residual error 

ˆ , 1,2, ,i i ie y y i n    has mean zero, it is omitted. 

The error i  also called total error is made up of two components. Namely the 

explained error ie  and unexplained or random parts that cannot be explained by the 

regression equation obtained from the data. When the squares of these are considered 
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Sum of the squares of the explained errors: 2 2

1 1
ˆ( ) .

n n

i i ii i
e SSE y y

 
     

Sum of the squares of the unexplained errors:  
1

ˆ .
n

ii
SSR y y


   

Sum of the squares of the total errors:  
2

1

n

ii
SST y y


  . 

Then the following can be written 

   
2 2

2

1 1 1
ˆ ˆ( )

n n n

i i i ii i i
SST y y SSE SSR y y y y

  
           

 

Figure 4.2: Illustrates the Difference between the Random and Residual Errors 

4.2.3 The Method of Least Squares 

Theorem 4.1  

The linear equation to be obtained from available data must ensure that SSE value is 

minimized 2

1
ˆ  ( ) .

n

i ii
Min SSE Min y y


   
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Proof  

 

 

The equations (4.4.1) are called the normal equations. Solution of the normal 

equations gives the 
0 1

ˆ ˆ,  values that minimize SSE. 

  

 
1

1 2

1

ˆ
n

i i xyi
n

xxii

x x y y S

Sx x
 



 
 






                                (4.1.2) 

xyS And xxS  can be rewritten as follows 

1 1

1 1

n n

n n i ii i
xy i i i ii i

x y
S x y nxy x y

n
 

 
   

 
        (4.1.3) 

2

2 2 21

1 1
( )

n

n nii
xx i ii i

x
S x x n x

n


 
   


                    (4.1.4) 

Then 

0 1
ˆ ˆy x  

                                                           (4.1.5) 

0 1
ˆ ˆˆ ,  1,2, ,i iy x i n                                           (4.1.6) 

 

 

 

/ 0 1

/

0 1

/ 0 1

2
2

0 11 1

0 11
0

0 11
1

0 1 1 1

2
0 11

, 1,2,3, ,

(SSE)
2 0

(SSE)
2 0

ˆ ˆ

ˆ ˆ

y x

i y x i

i i i

i i y x i i

n n

i i ii i

n

i iI

n

i i ii

n n

i ii i

n

i ii

x

y

y x i n

y y x

SSE y x

y x

x y x

Then

n x y

x x

  

 

  

   

  

 


 


 

 

 





 



 

 

   

    

   


    




    



 



 





 

  
1 1

                         4     . .  1 1
n n

i ii i
x y

 
 
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Also the residual error can be found for each value of the estimator y by 

ˆ , 1,2, ,i i ie y y i n        (4.1.7) 

Example 4.1 

The following data given in Table 4.1 represents the height in cm and weight in kg of 

12 people.  

     Table 4.1: Height, Weight Data for 12 Randomly Selected People. 

 1 2 3 4 5   6 7 8 9 10 11 12 

1Ŷ  150 150 150 155 155 155 155 160 160 175 175 175 

2Ŷ  50 61 54 54 63 59 61 68 65 77 82 72 

 

The following will be done:  

 Determination of the regression coefficients    0 1 0 1
ˆ ˆ, ,b b   respectively 

 The equation of the regression line. 

 Draw the line on a scatter plot. 

For the calculation of the parameters and simple linear regression equation see 

Appendix B, table 4.2 

63.92x   ,  159.58y  . 

We take the results from the Table (4.2), in Appendix and apply the following 

equations to determine the regression equation. 

  1915 767
123365 964.583

12
xyS          (4.1.3) 

 
2

1915
306675 1072.917

12
xxS                (4.1.4) 
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1

964.583ˆ 0.899
1072.917

                               (4.1.2) 

  0
ˆ 63.92 0.899 159.58 79.6             (4.1.5) 

0 1
ˆ ˆˆ

ˆ 79.6 0.899

y x

y x

  

 
                                     (4.1.6)  

Figure 4.3: Scatter Plot for Data 

4.2.4 Mean and Variance of Estimators 

Theorem 4.2 

Mean and variance of the estimators 
0 1

ˆ ˆ,   are 

  

 

 

 

 

 

0 11
1 21

1

2 2 2

2 2 2 1 1
1 2 21 2

1 1

ˆ

ˆ i i

n

n i ii
i i ni

ii

n n

n i Y i Yi i
i ii n n

i ii i

x x x
c

x x

x x x x
c

x x x x

 
 

 
  







 



 

 
 



 
  

    
   






 


 
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Proof  

If we have 1 2, , , nx x x  with a normal distribution with means 1 2, , . n   and 

variances, 2 2 2
1 2, , , n    respectively, then the random variable 

1 1 2 2 n nY a X a X a X     which is a linear combination of the random variables 

iX  has a normal distribution with, Mean, 1 1 2 2Y n na a a        

And variance, 2 2 2 2 2 2 2
1 1 2 2Y n na a a        

Since the estimator 

1 1
1 12 2

1 1

2

1

( )( ) ( )
  

( ) ( )

( )
 Where   ,     i=1,2,...,

( )

n n

ni i i ii i
in n i i

i ii i

i
i n

ii

x x y y x x Y
c Y

x x x x

x x
c n

x x

  



 



  
  

 






 


 



 

Based on the properties of linear combination of random variables, we can write

1 1 1 2 2 1
Since 

n

n n ii i
c y c y c y cY


      

And since Y follows the normal distribution  

1 1 1 2 2 1

2 2 2 2 2 2 2 2 2
1 1 1 2 2 1

n

n n i ii

n

n n i ii

c c c c

c c c c

    

    





    

     




 

Then 
1̂  has Ɲ  2

1 1
ˆ ˆ, ,    distribution parameters being 

  

 

 

 

2
0 1 21 1

1 1 2

1 1

ˆ ˆ;  .i

n n

i i i Yi i
n n

ii ii

x x x x x

x x x x

  
   

 

  
 

  
 

 
 

 

Following the same logic, it can be shown that 0 is normally distributed with 

parameters 

 

2

2 21
0 0 0 2

1

ˆ ˆ,  and 

n

ii
n

ii

x

n x x
    



 




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4.2.5 Correlation Coefficient 

This is denoted by  and in simple linear regression it is used to measure the strength 

of the linear relationship between the response and the predictor variables.  It also 

shows whether the relationship is positive or negative linear one.  

Sample correlation coefficient r can be found using the equation (3.10). 

4.3 Multiple Linear Regression 

Multiple linear regression analysis applies when there is more than one explanatory 

variable and one continuous dependent variable.  Each response variable in the linear 

regression equation has its own equation with coefficients i .  

4.3.1 The Classical Model of Multiple Linear Regression 

The general linear model is defined in (3.12). 

In matrix format 1 (k 1) (k 1) 1 1,n n n       y X β ε  

where β is the regression coefficients vector, y  represent the observations of the 

response variable, ε  is the vector residuals. 

In general, it is desired to have ( ).n k   

4.3.2 Estimation of the Regression Coefficients (Method of Least Squares) 

As we have mentioned before in chapter 3, it is not an easy job to estimate the 

parameters 0 1, , , kb b b  in multiple linear regression by using the method of least 

squares (4.2.3), which gives k number of equations as following 

0 1 1 2 21 1 1 1

2
0 1 1 1 2 1 2 1 1 11 1 1 1 1

2
0 1 1 2 21 1 1 1 1

n n n n

i i k ki ii i i i

n n n n n

i i i i i ki i ii i i i i

n n n n n

ki ki i ki i k ki ki ii i i i i

nb b x b x b x y

b x b x b x x b x x x y

b x b x x b x x b x x y

   

    

    

    

    

    

   

    

    
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To estimate the regression coefficients, the linear equations (4.3) have to be solved 

simultaneously. For a large number of variables the solution of the system becomes 

difficult. Hence the use of matrix algebra makes the solution easier, as it is explained 

in the following section.   

4.3.3 Least Square Estimation (by Using Matrices) 

The purpose is to determine the values of β  and error variance 
2σ  from available 

data. Assume bare the trail values for .β Let 0 1 1 2 2i i i k kiy b b x b x b x      be the 

expected difference if the values of the vector bare correct. However, this difference 

is not zero since the response value fluctuates about their expected value resulting in  

errors. The method that determines the coefficients vector b such that the sum of the 

squares of the errors is minimum is called the “least squares”.  

Theorem 4.3  

Let S (b) be the function representing the difference between the true and estimated 

values of a response variable in a multivariate linear regression problem.  

 
2

0 1 1 2 21
( )

n

i i i k iki
S y b b x b x b x


     b   

   ( )S   b y Xb y Xb  Can be written. Show that the least squares estimate b or 

β̂  of β  can be obtained when X has full rank 1k n   and is given by 

ˆ . -1β =(XX) Xy  

Proof 

The least square estimation of β in (4.4) can be given as ˆ  -1β =(XX) Xy     

Let ˆˆ ,y = Xβ = Hy where His the hat matrix.   -1H X(XX) X  

The residuals can then be expressed as ˆ ˆε = y y =(I-H)y  
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Satisfies ˆXε = 0  and ˆ ˆ . y ε 0  

Residual sum of squares   

 
2

0 1 1 2 21
ˆ

n

i i i k kii
y b b x b x b x


       ε ε  

= ˆ     -1y [I X(XX) X]y = y y y Xβ  

Let ˆ  -1β =(XX) Xy  

ˆˆ ˆ 

 satisfies 

1)      symmetric.

2) 

   = 

   = [ ]     ide

Then    



   

   

     

 

-1

-1

-1 -1

-1 -1

-1 -1 -1

-1

ε = y y = y Xβ [I X(XX) X]y

[I X(XX) X] 

[I X(XX) X] =[I X(XX) X]

[I X(XX) X][I X(XX) X]

I 2X(XX) X + X(XX) XX(XX) X

I X(XX) X mpotent

3)      -1X[I X(XX) X]= X X = 0

 

ˆˆ ˆ ˆ ˆ ˆ,  ,  then .

ˆ addition, 

ˆ.

ˆ explain the equation for ,  following can be written

So

In

To the

       

          

  



-1

-1 -1 -1

 Xε = X(y y) = X[I X(XX) X]y = 0  y ε = β Xε = 0

ε ε = y [I X(XX) X][I X(XX) X]y y [I X(XX) X]y

y y y Xβ

y Xb ˆ ˆ ˆ ˆ   = y Xβ+ Xβ Xb = y Xβ+ X(β b)

 

( )

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

S   

         

      

b (y Xb) (y Xb)

(y Xβ) (y Xβ)+(β b) XX(β b)+2(y Xβ) X(β b)

(y Xβ) (y Xβ)+(β b) XX(β b)

 

As ˆ  (y-Xb) X=ε X= 0  

The first part in ( )S b does not depend on b  while the second part represents 

ˆ .X(β b) Also ˆ ˆ  X(β b) 0 if β b  As X is full rank. This leads to the minimum 

sum of squares being unique and occurring for ˆ . -1b =β =(XX) Xy  QED 
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4.3.4 Sampling Properties of the Estimators in the Classical Least Squares 

1. In multiple linear regression the estimator 1ˆ ( ) β XX Xy has

2 1ˆ ˆ( ) ,  ( ) ( ) .E Var   β β β XX        

2. And the residual errors ie have 

2 1ˆ ˆ( ) ,cov( ) ( ( ) )E    ε 0 ε σ I X XX X .         

3. 2ˆ( ) ( 1)E n k   ε ε σ .          

Theorem 4.4 

Given   y X β ε  with 2ˆ ˆ( ) ,cov( ) .E  ε 0 ε σ I  And X has full rank k+1, then for 

any vector of constants h the estimator 0 0
ˆ ˆ ˆ

k kh h    h β  of h β  yields the 

minimum variance among all linear estimators of the form 

1 1 .n nhY h Y   h Y  

Proof 

Assume for any fixed c, c Yis an unbiased estimator of .h β This means 

( )E  c Y h β  regardless the value of .β  We can also write 

( )=E( )=E .   c Y c Xβ c ε c Xβ From these expectations, we can write 

= ( )     h β c Xβ h c X β 0 For all .β   

If ( )   β h c X  is taken, then  h c X for any unbiased estimator.  

Let 
1 1( )  where ( )* *ˆ        h β h XX XY c Y c X XX h  

From the unbiased condition ( )  hence *ˆ ˆE  β β h β c Y is an unbiased estimator of 

,h β This leads to any h satisfying the unbiased condition  h c X giving 

2( )=Var( )=Var( )=Var     c Y c Xβ c ε c ε c Iσ c  
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2 2( )( )= [( ) ( ) ]* * *      * * * *σ c c +c c c +c σ c c c c c c  

As ( ) =* *       c c X cX c X h h 0  we can write 

1( ) ( ) )* * * ( .     c c c c c X XX h 0  

Since 
*c is fixed and ( ) ( )>0* * c c c c  except when 

* ,c c  the variance of cY will 

be minimum when 
1( )* ˆ .     c Y h XX XY h β  QED. 

By substituting   for  β̂ β results in the best estimator of  h β  for any h. The estimator 

 ˆh β is named the minimum variance best linear unbiased estimator (BLUE). 

4.3.5 Multicollinearity 

Theoretically, each predictor in multiple linear regression has different effects on the 

response variable. It can be taken as each predictor having some degree of 

contribution in predicting the response variable’s value. However, if the data matrix 

X is not of full rank, that means some linear combinations satisfy ,aX 0  a being 

the vector of coefficients, then the columns of X  being collinear or there is a 

multicollinearity problem with the data, meaning XX  does not have an inverse. In 

case the linear combinations of the columns of Xbeing close to ,0  meaning large 

diagonal elements in 1( )XX  rendering the computation of 1( )XX  unstable.  

As a result, i̂ ’s will have large variance. To alleviate the effect of the collinearity 

1. If possible delete one pair of predictor variables that are strongly correlated. 

2. Use the matrix of the principal components F obtained from the matrix .X  

4.3.6 Inferences on Regression Parameters 

Determination of the sampling distribution of the regression parameters β̂  and error 

sum of squares ˆ ̂ε ε  is very important. This is necessary in the assessment of the 
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importance of variables in a multivariate regression process. Hence the following 

theorems are used to clarify this point.  

Theorem 4.5   

Given Y= Xβ ε  with full rank r+1 and ε  normally distributed with mean vector 0 

and variance vector 
2 . I  Then the maximum likelihood estimator of β  being equal 

to the least squares estimator of ˆ .β  Further 1( )ˆ  β XX XY  has a normal distribution 

with  mean β  and variance 2 1( ) . XX  This distribution is independent of the 

residuals, ˆˆ  ε Y Xβ. Also 
2ˆ ˆn  ε ε has distribution 2 2

1n r     where 
2̂  is the 

maximum likelihood estimator of 
2.  

Theorem 4.6  

Given Y= Xβ ε  with full rank r+1 and ε  normally distributed with mean vector 0 

and variance matrix
2 , I then 1   confidence area for β  being  

2
1, 1( )

ˆ ˆ( ) ( ) ( 1) ,r n rr s F   
    β β XX β β   

where 1, 1( ) r n rF    is the upper 
th percentile of the F distribution with degrees of 

freedom being r+1 and 1.n r   

This translates into 1   confidence interval for i  being 

1, 1( )
ˆ ˆ( ) ( 1) ,  1,2, ,  i i r n rVar r F i r         

Where ˆ( )iVar   represents the diagonal element of 2 1( )s XX  

Proof 

Assume we have the symmetric square-root matrix 
1

2( )XX  
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1

2

1 1

2 2

1 1
2 1 22 2

ˆ( ) ( ) where ( )  and 

ˆCov( ) ( ) Cov( )( )

             = ( ) ( ) (

 

)

e EL t

 

  

 

   

V XX β β V 0

V XX β XX

XX XX XX I

 

As V consists of a linear combination of the estimators ˆ 'i s  then V is normally 

distributed. Hence 

ˆ ˆ(

ˆ ˆ        ( )

     

   

1 1

2 2V V β β) (XX) (XX) (β β)

β β (XX)(β β)
 

Has a distribution that given as 2 2
1.r    According to Theorem 4.5 

2 ˆ ˆ( 1)n r s   ε ε  has a distribution 2 2
1,n r     independent of β̂  and V. 

As a result kk 

2 2 2
1 1[ / ( 1)]/[ / ( 1)] [ / ( 1)]/  r n rr n r r s   

    VV Has 1, 1  r n rF    distribution. 

From here the confidence ellipsoid for β can be obtained. 

Note that, projecting the confidence ellipsoid of β  for  ˆ( )β β  benefiting from 

theory given in Ref [27]  with 1 2 2
1, 1( ) / , ( 1) ( )r n rs c r F 
  

  A XX  and

 [0, ,0,1, ,0]. u  

Where (A) indicates the ellipsoid 1, 1( )
ˆ ˆ( ) ( 1) .i i i r n rVar r F         Here 

ˆ( ) iVar  is the diagonal element of 2 1 ( )  s XX corresponding to ˆ
i . 

The next important point is, being able to do inference from the estimated regression 

function.  That gives a set of predictor variables 0 01 0[1,   ]rx , x x  and ˆ ,β  then the 

regression function 0 1 01 0r rx x ,      and the value of Y at 0x can be estimated. 

In the classical regression model the expected value of 0 0 at Y x  is given by 

0 1 01 0 00 r rE(Y ) x x ,       x x β  while its least squares estimate is 0
ˆ .x β  
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Theorem 4.7  

For the linear regression model 1 (k 1) (k 1) 1 1,n n n       y X β ε 0
ˆx β is  the minimum 

variance unbiased linear estimator of ( ) E 0 0Y x with variance 

2ˆ Var( ) .   -1
0 0 0x β x (XX) x Then, the 1   confidence interval for 0

ˆ( ) =E 0 0Y x x  is 

given by 
2

0 1 0
ˆ ( )

2
n rt s


  

     
 

-1
0x x (XX) x  When the errors ε are normally 

distributed, with n-r-1 d.f. and / 2 upper percentile of the t-distribution. 

Proof 

When 0  x is fixed, then 0
ˆx β  is a linear combination of the regression coefficients 

' ,i s  as explained in Theorem 4.4 

Also under the linear regression model it is known that, 

2 1

1 2
0 0 0 0 0

ˆCov ( ) ( )  thus

ˆ ˆVar( ) ov ( )  C











    

β XX

x β x βx x XX x
 

According to Theorem 4.5 ε  is assumed to be normally distributed which confirm 

that 2 1 2 2 2
1 1

ˆ is N ( , ( ) ) independently of s /  that follows / ( 1)r n rx n r 
  

  β β XX  

So the linear combination ˆ
0x β is distributed normally as 2

0 0 0
ˆ ( , ) N    -1x β x (XX) x  

and 

2
0 0 0 0

2 2 2
0 0

ˆ ˆ( ) / ( )

/ ( )s s





     


 

-1
0 0

-1

x β x β x (Z Z) x x β x β

x (XX) x
 follows the t distributed with  

n-r-1 degrees of freedom. 

Then the confidence interval will be  2
0 1 0 0
ˆ ( ).

2
n rt s


 

     
 

-1x β x (XX) x  
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Theorem 4.8  

Let ( 1) ( ( 1)) (( 1) 1) ( 1)n n r r n     Y X β +ε  be the linear regression model. Then by using this 

model to predict the a future value 0Y can be achieved via the unbiased predictor 

given by  

0
ˆ ˆ ˆ ˆ

0 1 01 r 0rx β =β +β x +…+β x  

Then the variance of the prediction error  0 0
ˆ( )Y x β  is 

2
0 0 0 0

ˆVar( ) (1 )Y      -1x β x (XX) x   

Assuming the errors ε  are normally distributed, the 1-  prediction interval for 0Y  

will be 2
0 1 0 0
ˆ ( / 2) (1 ) n rt s 
    -1x β x (XX) x  

Proof: 

0
ˆx β  Can be used to estimate 0Y ,  resulting in the estimation 0 0( / )E Y z  

From Theorem 4.7 2
0 0 0 0
ˆ ˆ ˆ( )  and Var( ) .E        -1

0x β x β x x (XX) x  can be written. 

Then the prediction of error is 0 0 0 0 0 0 0
ˆ ˆ ˆ = ( ).Y          x β x β x β x β β    

Hence 
0 0 0 0

ˆ ˆE( ) ( ) ( ( )) 0Y E E     x β x β β  meaning the predictor is unbiased. Due 

to 0  and ˆε βbeing independent  

2 2 2
0 0 0 0 0 0 0

ˆ ˆ( ) ( ) ( ) (1 )Var Y Var Var              -1 -1
0x β x β x (XX) x x (XX) x can 

be written.  

β̂  Is normally distributed which gives the error ε  has a normal distribution. 

Therefore, the linear combination 0 0
ˆY x β  is also normally distributed. As a result 

2
0 0 0 0

ˆ( ) / (1 )  Y     -1x β x (XX) x     (4.1) 

has standard normal distribution  0 1N ,  
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Dividing the equation (4.1) by 2 2/ .s   Where, 2 2/s   having 

2
1 1/ ( )    n r n r  a distribution with n-r-1d.f. Yields 

2
0 0 0 0 0 0

2 2 2
0 0

ˆ ˆ( ) / (1 )

/ (1 )

Y Y

s s





    


 

-1

-1

x β x (XX) x x β

x (XX) x
 

that has t distribution with n-r-1 d.f.  

Then the prediction interval can be obtained as 

2
0 1 0 0
ˆ  (1 )

2
n rt s


 

     
 

-1x β x (XX) x  Q.E.D. 

4.4 Multivariate Multiple Regression 

It is an important concept in a regression analysis that represents the relationship 

between two or more dependent variables with two or more predictors (independent 

variables). In other words, in this model the behavior of many response variables is 

determined by several independent variables. 

4.4.1 Multivariate Multiple Linear Regression (MMLR) Model 

1 01 11 1 1 1

2 02 12 1 2 2

0 1 1

                   

Y

r r

r r

m m m rm r m

Y x x

Y x x

x x

   

   

   

    

    

    

                (4.11) 

The random error 1 2= [ , , , ] m  ε with properties 

( ) ,  Var( )=E ε 0 ε Σ  

Hence, the errors corresponding to different response variables may have some 

correlation to each other. 

The following notation will be used.  

1 2[ , , , ]j j j jmY Y Y Y : The response variables. 

 0 1, , , ,j j jkx x x  1,2, , .j n  The observations of the predictor variables. 
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1 2= [ , , , ] j j j jm  ε : Errors associated with each response variable. 

Then the design matrix is represented as in the single response regression model.   

10 11 1

20 21 2

( ( 1))

0 1

=

r

r

n k

n n nr

x x x

x x x

x x x

 

 
 
 
 
 
 

X                                                                   (4.12) 

Response variables, regression coefficients and the error matrices are represented 

respectively as follows: 

11 12 1

21 22 2

( ) (1) (2) ( )

1 2

m

m

n m m

n n nm

Y Y Y

Y Y Y

Y Y Y



 
 
       
 
 

Y Y Y Y                (4.13) 

01 02 0

11 12 1

((r 1) ) (1) (2) ( )

1 2

                     (4.14)

m

m

m m

r r rm

  

  

  

 

 
 
       
 
 

β β β β

2

1

11 12 1

2
21 22

( ) (1) (2) ( )

1 2

  m

m

n m m

n n nm

m

  

  

  



 
 
  
  
          
  
   
 
  

ε

ε

ε ε ε ε

ε

            (4.15) 

MMLR model is written as 

( ) ( ( 1)) (( 1) ) ( )n m n r r m n m      Y X β ε                                                                 (4.16)  

( ) ( ) ( )( ) 0 and   cov( , )    , =1,2, ,i i k ikE i k m  ε ε ε I  

4.4.2 Least Square Estimation Method 

Based on the single response regression concept, the least squares estimates of the 

regression coefficients are  
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1
( ) ( )

ˆ  ( )i i
 β XX Xy

 

Then by taking into account m set of regression coefficients we have  

1
(1) (2) ( )

1

ˆ ˆ ˆ ˆ[       ] ( ) [   ]

ˆ ( )

m

Or





  

 

(1) (2) (m)β β β β XX X y   y    y

β XX XY  

Obtained estimators β̂  are used in the prediction of the response values 

ˆˆ  =  = . -1Y Xβ X(XX) XY  Then the residuals can be computed by 

-1ˆˆ [     ε Y Y I X(XX) X]Y                                                                    (4.17) 

The residuals, predicted values, and the  columns of Z in MMLR satisfy the 

orthogonality condition which is also valid in classical linear regression. These 

become possible from the facts 

1[ ( ) ]=      X I X XX X X X 0  And 1[ ( ) ] =ˆ     Xε X I X XX X Y 0 This means the 

residuals (i)ε̂  as ˆ ˆ , Y Y ε  ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ          YY Y ε Y ε YY ε ε 0 0  or 

From this relationship we can also write 

Tot sum of squares residual sum of squarespredicted sum of square
and cross products and cross productsand cross products

ˆ ˆ ˆ ˆ    ε εY Y Y Y
 

 

4.4.3 Hypothesis Test in Multiple Linear Regression 

Individual regression coefficients follow a normal distribution. Hence, the 

confidence interval for these coefficients can be computed and tested via hypothesis 

testing. From section (3.2.3), , 1,2, ,jb j k are normally distributed with mean j

and variance 2.jjc  Where jjc is the diagonal elements of the matrix ( )XX   

 Note that 
2s is an unbiased estimator of 

2 which is given by 

2

1

SSE
s

n k


 
 

ˆ ˆˆ ˆˆ ̂        ε ε YY YY YY β xxβ
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Then the T statistic   
0j j

jj

b
t

s c


  has  ( 1)n k   degrees of freedom. Then the 

hypothesis test on j  can be written as 

0 0

1 0

:

:

j j

j j

H

H

 

 




 

Then,  if the test statistic t is 
2 2

t t t    , 0H is not rejected. It means 0j j   is 

acceptable. 

4.4.4 Confidence Interval for Mean Response Y 10 20 k0μ x ,x ,…,x  

The 1   confidence interval for the mean response Y 10 20 k0μ x ,x ,…,x is 

1 1
0 0 0 10 20 0 0 0 0

2 2

ˆ ˆ( ) , , , ( )Y ky t s x x x y t s 
       x XX x μ x XX x  

where 
2

t has ( 1),n k   degrees of freedom of the t-distribution. 

4.4.5 The Effect of Some Factors on the Width of the Confidence Interval 

The confidence interval for the mean response can be computed by using an 

appropriate software. It is considered necessary just to list some of the factors that 

affect this confidence interval. The width of the confidence interval decreases as the 

mean square error (MSE) decreases. 

 The width of the confidence interval decreases as the level of the confidence 

level decrease (since the t-multiplier decreases when the confidence interval 

decreases). 

 The width of the confidence interval decreases as the sample size (n) 

increases. 
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Chapter 5 

PRINCIPAL COMPONENTS ANALYSIS 

5.1 Introduction to Principal Components Analysis 
 

5.1.1 Definition of Principal Components 

When a process is governed by a large number of variables (p), the processing of 

data belonging to so many variables becomes a problem. One way of efficiently 

eliminating this handicap, is to find some linear combination of these variables in 

such a way that only a few of the linear combinations will be able to represent the 

process adequately. Given the p random variables 1 2, , , ,pX X X  their linear 

combination will be in a new coordinate system via the rotation of the original 

system. This new coordinate system points to the directions where maximum 

variable exists in the original data. These linear combinations are called Principal 

Components (PC). The covariance Σ  or correlation ρmatrices obtained from 

1 2, , , pX X X  are used in determining the coefficients of the PCs. 

In this chapter, the theoretical concepts of the principal components analysis (PCA) 

will be discussed and illustrated by some theorems and proofs. 

5.1.2 Computation of the Principal Components 

Let Σ  be the covariance matrix obtained from the data matrix 1 2[ , , , ].pX X X X

Let the eigenvalues of Σ  in descending order be 
1 2 0p .       
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Then the eigenvectors corresponding to the eigenvectors are  
1 2 p, , ,e e e

respectively. 

Using the elements of eigenvectors and the random variables forming the data 

matrix, the following linear combinations can be written for the population.   

1

2 2

2

                                        

Y e X e X e X

Y e X e X e X

Y e X e X e X

  

  

  

1 11 1 12 2 1p p

2 21 1 22 2p p

p p p1 1 p2 pp p

e X = +

e X = +

e X = +

                                             (5.1) 

These linear combinations (PCs) expressed as ;  1,2, ,i i iy i p =e x  expressed in 

complete form in (5.2). 

1 11 12 1 1

2 21 22 2 2

1 2 ( 1)( 1) ( )

                

p

p

p p p pp P pp p p

y e e e x

y e e e x

y e e e x
 

     
     
      
     
     
        

y         (5.2) 

The mean and covariance of the PCs can be written as in (5.3) 

( ) ( )

( , ) ( )

Y i i x

Y i k X

E E

Cov Y Y Cov

   

   

μ y e x e μ

Σ e x e Σ e
                                               (5.3)  

From equation (5.3) we can obtain 

( )          1,2, ,             

Cov( , ) =     1,2, ,      

i i

i k i i

Var Y i p

Y Y i p

  

  

ie Σe

e Σe 0
 

The PCs 1 2, , , pY Y Y  are uncorrelated linear combinations obtained by using the 

eigenvectors of the covariance matrix.  Each PC has maximum variance subject to 

the condition the eigenvectors are normal. That is  

( ) is max. if  =1i i iVar  e X e e
 And  

Cov( , ) 0     for ki k i   e X e X
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Theorem 5.1  

Given the random vector 1 2 3[ , , , ]px x x x X  with covariance matrix Σand the 

eigenvalue–eigenvector pairs 1 1 2 2( , ),( , ), ,( , ) p pe e e   where 
1 2 0p       

the PC can be written as 

1 1 2 2 ,      1,2, ,i i i ip pY e X e X e X i p      i e X  Where 

Var( )       1,2, ,

Cov( , ) 0     

i i i i

i k i k

Y i p

Y Y i k

   

  

e Σe

e Σe
 

Proof 

Given a positive definite pxp square matrix A with eigenvalues
1 2 0p       

and corresponding normalized eigenvectors 1 2, , ,  ,pe e e it is known that the 

maximization of quadratic forms with points on the unit sphere can be achieved via 

max ,i





x 0

x Ax

x x
when ix e and A is the covariance matrix .Σ Then 

max ( ).iVar Y



 

x 0

e Σe
e Σe

e e
 

Similarly 

, , ,1 2

1max
a e e ek

k









x Σx

x x
 Can be written. Setting 1, 1,2, , 1k k p  x e with 

1 0,for 1,2, ,  and 1,2, , 1k i i k k p
      e e  we get 

1 1 1 1 1/ ( )k k k k kVar Y    
  e Σe e e . 

However 1 1 1 1 1 1 1 1( )  so ( ) .k k k k k k k kVar Y         
   e Σe e e That means 

ie  And ke are perpendicular (orthogonal) which means 0, ,i k  i ke e  giving   

Cov( , ) 0i kY Y  . Then 

1. If all the eigenvalues 1 2 , , , p   are distinct, the eigenvectors of Σwill be 

orthogonal. 
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2. If the eigenvalues are not all distinct, the eigenvectors corresponding to 

common eigenvalues may be selected to be orthogonal. So, for any two 

eigenvectors i ke ,e where 0, .i k  i ke e  

kk kΣe λ e  Multiplying by 
ie giving 

( , ) 0i k i k k kCov Y Y      k ke Σe e λ e λ e e   

For any .i k  

Note: It must be stressed that some of the coefficient vectors ie and so iY  will not be 

unique, if some eigenvalues  i are equal. 

Theorem 5.2  

Given a random vector 1 2 3[ , , , , ]pX X X X X that has covariance matrix Σ  

With eigenvalues
1 2 0p        corresponding to the eigenvectors 

.1 2 pe ,e ,…,e  and PCs 1 1 2 2,  Y , , ,P PY Y    e X e X e X  it can be shown that 

11 22 1 2
1 1

( ) ( )          (5.2.1)
p p

pp i p i
i i

Var Var Y     
 

         X  

Proof 

It is known that 
1

( )
k

ii
i

tr a


A where { }ijaA indicates a k k square matrix. 

Applying this to the covariance matrix Σ  yields  

11 22 pp     = ( ),tr Σ  then by using 
( 1) (1 ) ( ) ( ) ( )

1
k k

k

i i i k k k k k k
i


    



  A e e P Λ P with 

A Σ 

Σ PΛP  Where Λ is a diagonal matrix of the eigenvalues and, 1 2[ , , , ]pe e eP   

Then  . PP = PP =I  
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( ) ( ) ( )tr tr tr  Σ PΛP ΛPP , Since ( ) ( ).tr AB tr BA  

Then, ( )tr ΛPP 1 2( ) .ptr       Λ  

Then, 
1 1

( ) ( ) ( ) ( ).
p p

i i
i i

Var tr tr Var
 

   X Σ Λ Y Q.E.D. 

Theorem 5.3  

Given principal components, 1 1 2 2,  , , ,P PY Y Y    e X e X e X  then the correlation 

coefficients between the variables kX  and the principal components iY  are  

,   1,2, , ,i

i k

ik

Y X

kk

e
i p





   

Proof 

[0, ,0,1,0, ,0]k
 a , is given, so  and Cov(X , ) ( , ).k k i iX Y Cov   k ka X a X e X Also 

( , )iCov  
ka X e X = i


ka Σe  based on the maximization of quadratic forms on the unit 

sphere concept.    

Remembering that ( , )k i i i ikCov X Y e ka λe  and ,i i iΣe e then  

( )i k iVar Y  ie Σe Yields ( )i iVar Y  and, ( )k kkVar X which gives 

,

( , )
 , 1,2, ,

( ) ( )i k

ik ii k i ik
Y X

i k i kk kk

eCov Y X e
i k p

Var Y Var X




  
     Q.E.D. 

5.2 Optimum Number of the Principal Components 

There are some important points that are used to judge on the optimum number of 

PCs which offer valuable information and summarize the data. 

The guidelines are explained as follows: 

1. Keeping enough principal components to account for a high proportion of 

the total variance. By using the following formula  
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1

1

k

ij

p

ii












      (5.1.1) 

Accepting a threshold value for this proportion the value of k can be determined.  

This will be illustrated in the example 5.1. 

2. Keeping the principal components that have eigenvalues which are greater 

than the average of the eigenvalues.  

3. Using the scree plot where i  (the eigenvalues) versus i (the number of the 

eigenvalues) starting with the largest towards the smallest i  are plotted. The 

optimum number of the PCs is taken to be those before the point where an 

elbow occurs in the graph including the elbow point.  Figure 5.1 shows the 

scree plot obtained in example 5.1. The optimum number of the principal 

components is considered 2 since the elbow occurs at point 2. 

 

Figure 5.1: Scree Plot to Determine the Number of PCs 
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5.3 Interpretation of the Principal Components 

5.3.1 Rotation 

Essentially, we obtain the principal components by doing a rotation of the axes 

orderly to line up with natural extension of the system, then the obtained variables 

are changed to be uncorrelated with making a reflection to the directions of the 

maximum variance. 

In case the interpretation of the new principal components was not satisfactory, then 

the angle of rotation can be changed and re-examine the variance direction relation. 

5.3.2 The Correlation between the Variables and the Principal Components 

It is recommended to use the correlation coefficient that is between the dependent 

variable and the principal components to get an interpretation of the components. 

While the magnitude of the coefficients of a PC indicates the contribution of that 

variable to the PC, the correlation between a variable and a PC may not be in direct 

association to the contribution of the variable to the PC. 

Example 5.1 

Source of Dataset 

The data were collected from the database of National Agency Savreio Devito, 

(saverio.devito’@’enea.it). 

Information about the Dataset  

The dataset consists of 48 observations and 5 variables indicate responses of an 

oxidizing chemical gas Multisensor device was installed in polluted area on the field 

in some city in Italy. The data were obtained in the period from March 2004 till 

February 2005. The variables used are as explained below.   
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1X : True hourly averaged concentration CO in 3mg / m  

2X : True hourly averaged overall Non Metanic Hydro Carbons concentration in 

3microgram/ m . 

3X : True hourly averaged Benzene concentration in 3microgram/ m  

4X : Temperature C
 

5X : Relative Humidity (%). 

See Appendix, Table 5.1: Raw Data for Responses of an Oxidizing Chemical Gas 

Multisensor Device 

To find the principle components, Σmatrix is calculated by Matlab as follows 

0.0014 0.0992 0.0066 0.0011 0.0022

0.0992 7.4434 0.4781 0.1057 0.2802

0.0066 0.4781 0.0325 0.0077 0.0208

0.0011 0.1057 0.0077 0.0087 0.0302

0.0022 0.2802 0.0208 0.0302 0.1383

 
  
  
 

 
     

Σ  

Eigenvalues and corresponding eigenvectors are: 

1 17487.8        [ 0.0133, 0.9970, 0.0641, 0.0143, 0.0383]      e  

2 2133              [0.0120, 0.0415, 0.0195, 0.2029, 0.9780]    e  

 

4 41.3              [ 0.1373, 0.0417, 0.6975, 0.6901, 0.1292]    e  

5 150.0215        [0.9883, 0.0049, 0.1430, 0.0530, 0.0037]     e  

Then by using equation (5.1) the five principal components are obtained. See 

Appendix, Table 5.2: Row Data PCs. To determine the optimum number of the 

principal components,  it is determined from the scree plot that 2 PCs are enough. It 

is also evident that the first two PCs represent 99% of total variation in the data 

3 32.1              [ 0.0643, 0.0496, 0.6990, 0.6925, 0.1589]      e
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according to equation  5.1.1, which strongly supports the result obtained from the 

scree plot. 

1Ŷ =0.98, 
2Ŷ =0.017 of the total variation, It means the five variables can be replaced 

by only first two principle components without much loss information since they 

explain approximately 0.99 of the total variation. Then the first 2 PCs will be 

1 1 2 3 4 50 0133 0 997 0 0641 0 0143 0 0383Y . X . X . X . X . X    

2 1 2 3 4 50 012 0 041 0 0195 0 2029 0 9780Y . X . X . X . X . X     . 

Here the first PC which represents about 99% of total variation is very important. It 

is also evident that the second variable with the highest negative coefficient, means 

true hourly averaged overall Non Metanic Hydro Carbons concentration has a major 

negative influence on the process in the direction where the biggest variation exists. 

On the second PC relative humidity seems to be the leading variable influencing the 

process in the second main direction with second larger variation occurs. Now the 

correlation coefficients between the first two principal components and the 

independent variables are calculated. 

Table 5.3: Correlation Coefficients between Variables 

 and PCs ,( )
i k

ik i
Y X

kk

e 



 . 

 1X
 2X

 3X
 4X

 5X
 

1Ŷ
 

-0.972 -1.000 -0.973 -0.421 0.281 

2Ŷ
 

0.117 0.006 -0.039 -0.796 0.959 

 

By checking table 5.3 it is obvious that the first principal component 
1Ŷ has high 

correlations with most of the variables since 98% of the total variation was explained 

by
1
ˆ ,Y  and the vice versa for the second one 

2Ŷ  which represents 0.017 of the total 

variation. 
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Chapter 6 

APPLICATIONS 

6.1 The Target of the Application 

Topics and theory explained in Chapter 4 regarding multivariate regression, and PCA 

as explained in Chapter 5 are used in the analysis of multivariate data. A study of the 

relationship between the linear regression and the PCA is undertaken. For this 

purpose the comparison of the MSE values obtained from multivariate regression, 

and MSE values obtained by treating each of the data variables as dependent variable 

and PCAs as the predictor variables. 

Some factors which have a functional impact on the linear regression performance:  

 The correlation coefficients between the dependent variable (response) and 

the independent variables (predictors). 

 The number of the independent variables. 

 Repeating the values in the independent variables. 

 The size of the selected samples of the data. 

6.2 Data Description 

The data is related to the variables that affects the heat retaining capacity of a 

building. Therefore the heat retaining capacity is considered as the dependent 

(response) variable, onto 8 independent (predictor) variables. 
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6.2.1 Source of the Data 

The dataset was created by Angeliki Xifara (angxifara '@' gmail.com, 

Civil/Structural Engineer) and was processed by Athanasios Tsanas (tsanasthanasis 

'@' gmail.com, Oxford Centre for Industrial and Applied Mathematics, Oxford 

University, UK). 

6.2.2 Information about the Data 

The dataset consists of eight independent variables or features 1 2 3 8( , , , , )X X X X

and a response variable 1( ).Y  In the original data the number of the observations was 

768 for each variable. Description of the variables is as follows. 

1 :X  Relative compactness 

2 :X  Surface area          

3 :X  Wall area 

4 :X  Roof area 

5 :X  Overall height 

6 :X  Orientation 

7 :X  Glazing area distribution 

8 :X  Glazing area distribution 

1 :Y  Heating load. 

6.2.3 Cleaning or Validating the Data 

A preliminary study of the data via simple linear regression and the linear correlation 

, ; 1,2, ,8
iY Xr i   between the response and each predictor variable was undertaken. 

Mean Square Errors (MSE) and 
, iY Xr  are given in Table 6.1. 
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       Table 6.1: Simple Linear Regression and the Linear Correlation between  

       the response and each predictor variable for the data in 6.2.2. 

Linear regression 

equation 

The correlation coefficient MSE 

1( / )E Y X  
1,Y Xr 0.4024 24.5755 

2( / )E Y X  
2,Y Xr 0.4529 49.4473 

3( / )E Y X  
3,Y Xr 0.1824 73.8964 

4( / )E Y X  
4,Y Xr 0.744 23.1398 

5( / )E Y X  
5,Y Xr 0.8024 17.8573 

6( / )E Y X  
6,Y Xr 0.0431 82.2517 

7( / )E Y X  
7,Y Xr 0.0431 76.1569 

8( / )E Y X  
8,Y Xr 0.0026 79.2872 

 

Based on the results given in Table 6.1, it was considered necessary to reduce the 

number of variables from 8 to 5, as the variables 6 7 8,  ,  and X X X  have very low 

correlation with the response variable and also resulted in high MSE values. 

Therefore, it was decided to discard these variables from the study, and using the 

data consisting of the following variables.   

1 :X  Relative compactness. 

2 :X  Surface area. 

3 :X  Wall area. 

4 :X  Roof area. 

5 :X  Overall height. 

1 :Y  Heating load. 

It was also observed that in the original data under most variables, data values were 

either repeating or missing. Hence, it was decided to select a subset or a pilot data set 

of 50 observations Where repeated or missing values did not exist. 

See Appendix, Table 6.2: Row Data about the Heating Load Process 
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6.2.4 Application of Simple and Multivariate Regression to Pilot Data 

As a first step the correlation matrix R for the pilot data is computed to identify the 

correlation level between the response and predictor variables. This is given below. 

1 2 3 4 5

1 1 1 1 2 1 3 1 4 1 5

2 2 1 2 2 2 3 2 4 2 5

3 3 1 3 2 3 3 3 4 3 5

4 4 1 4 2 4 3 4 4 4 5

5 5 1 5 2 5 3 5 4

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , ,

y y y x y x y x y x y x

x y x x x x x x x x x x

x y x x x x x x x x x x

x y x x x x x x x x x x

x y x x x x x x x x x x

x y x x x x x x x x

r r r r r r

r r r r r r

r r r r r r
R

r r r r r r

r r r r r r

r r r r r



5 5,x xr

 
 
 
 
  
 
 
 
 
  

 

1 0.6232 0.6704 0.3649 0.8365 0.8998

0.6323 1 0.9922 0.2437 0.8945 0.8410

0.6704 0.9922 1 0.2381 0.9048 0.8727

0.3649 0.2437 0.2381 1 0.1981 0.2011

0.8365 0.8945 0.9048 0.1981 1 0.9689

0.8998 0.8410 0.8727 0.2011 0.968

 

  

  

 

   

  9 1

 
 
 
 
 
 
 
 
 

 

The previous matrix was checked so that, from the first row (or first column) the 

correlation values between the response and predictors were obtained. 

The diagonal values indicate the correlation between the variables themselves.   

Simple linear regression values between the response and predictor variables  

( ); 1,2, ,5iE Y X i   are obtained (Table 6.3) from the pilot data have significantly 

improved. 

       Table 6.3: Simple linear Regression and the Linear Correlation between the 

       Response and Each Predictor Obtained from the Pilot Data. 

( )iE Y X  The correlation coefficient MSE 

1( )E Y X  1, 0.634Y Xr   52.14 

2( )E Y X  2, 0.678Y Xr   81.83 

3( )E Y X  3, 0.533Y Xr   73.89 

4( )E Y X  4, 0.841Y Xr   25.59 

5( )E Y X  5, 0.900Y Xr   16.22 
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It was then decided to check for multiple linear regression, initially using all possible 

2 predictor pairs to estimate the response variable ( , ); , 1,2, ,5; .i jE Y X X i j i j   

Then obtained MSE results from each pair of predictors, and correlation between 

these predictors and the response variable are presented in Table 6.4.  

 Table 6.4: MSE Results from Each Pair of predictors, and Correlation between  

 these Predictors and the Response Variable. 

( , )i jE Y X X  Correlation coefficient MSE 

2 4( , )E Y X X  
2,Y Xr =-0.678 

4,Y Xr = -0.841 25.73 

1 3( , )E Y X X  
1,Y Xr = 0.634 

3,Y Xr = 0.533 28.35 

1 5( , )E Y X X  
1,Y Xr = 0.634 

5,Y Xr =0.900 11.25 

3 5( , )E Y X X  
3,Y Xr = 0.533 

5,Y Xr =0.900 13.69 

1 4( , )E Y X X  
1,Y Xr = 0.634 

4,Y Xr = -0.841 19.32 

2 3( , )E Y X X  
2,Y Xr = -0.678 

3,Y Xr = 0.533 74.43 

2 5( , )E Y X X  
2,Y Xr =-0.678 

5,Y Xr =0.900 16.31 

3 4( , )E Y X X  
3,Y Xr = 0.533 

4,Y Xr = -0.841 22.54 

4 5( , )E Y X X  
4,Y Xr = -0.841 

5,Y Xr =0.900 14.79 

1 2( , )E Y X X  
1,Y Xr = 0.634 

2,Y Xr =-0.678 14.79 

 

 

Subsequently, multiple linear regression for all tuples with 3 predictors and the 

response variable is carried out ( , , ); , , 1,2, ,5; .i j kE Y X X X i j k i j k    MSE 

results from each triplet of predictors,  and correlation between these predictors and 

the response variable are presented in Table 6.5. 
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     Table 6.5: MSE Results from Each Triplet of Predictors, and Correlation  

     between these Predictors and the Response Variable. 

( , , )i j kE Y X X X

 
The correlation coefficient MSE 

1 2 3( , , )E Y X X X

 
1,Y Xr = 0.634 

2,Y Xr =-0.678 
3,Y Xr = 0.533 29.13 

1 2 4( , , )E Y X X X

 
1,Y Xr = 0.634 

2,Y Xr =-0.678 
4,Y Xr = -0.841 19.73 

1 2 5( , , )E Y X X X

 
1,Y Xr = 0.634 

2,Y Xr =-0.678 
5,Y Xr =0.900 11.48 

2 3 4( , , )E Y X X X

 
2,Y Xr =-0.678 

3,Y Xr = 0.533 
4,Y Xr = -0.841 22.9 

2 3 5( , , )E Y X X X

 
2,Y Xr =-0.678 

3,Y Xr = 0.533 
5,Y Xr =0.900 13.78 

3 4 5( , , )E Y X X X

 
3,Y Xr = 0.533 4,Y Xr = -

0.841 
5,Y Xr =0.900 11.91 

3 4 1( , , )E Y X X X

 
3,Y Xr = 0.533 4,Y Xr = -

0.841 
1,Y Xr = 0.634 14.79 

4 5 1( , , )E Y X X X

 
4,Y Xr = -0.841 

5,Y Xr =0.900 
1,Y Xr = 0.634 11.5 

5 4 2( , , )E Y X X X

 
5,Y Xr =0.900 4,Y Xr = -

0.841 
2,Y Xr =-0.678 14.85 

1 3 5( , , )E Y X X X

 
1,Y Xr = 0.634 

3,Y Xr = 0.533 
5,Y Xr =0.900 11.49 

 

As expected, an increase in the number of predictors with high correlation with the 

response variable results in a decrease in the MSE values. This is clearly evident 

from Tables 6.3, 6.4, and 6.5. 

Also in case four and five variables is shown in Tables 6.6 and 6.7 and have the 

result as same as previous Tables. 
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Table 6.6: MSE Results from Each Tuple of 4 Variables of Predictors, and   

Correlation between these Predictors and the Response Variable. 

( , , )i j kE Y X X X
 

The correlation coefficient MSE 

1 2 3 4( , , , )E Y X X X X

 

1,Y Xr = 

0.634 
2,Y Xr = 

-0.678 
3,Y Xr = 

0.533 
4,Y Xr = 

 -0.841 
14.87 

1 2 3 5( , , , )E Y X X X X
 

1,Y Xr = 

0.634 
2,Y Xr =   

-0.678 
3,Y Xr = 

0.533 
5,Y Xr =0.900 11.72 

1 2 4 5( , , , )E Y X X X X
 

1,Y Xr = 

0.634 
2,Y Xr = 

-0.678 
4,Y Xr =  

-0.841 
5,Y Xr =0.900 11.73 

1 3 4 5( , , , )E Y X X X X

 

2,Y Xr = 

-0.678 
3,Y Xr = 

0.533 
4,Y Xr =  

-0.841 
5,Y Xr =0.900 11.62 

2 3 4 5( , , , )E Y X X X X
 

2,Y Xr = 

-0.678 
3,Y Xr = 

0.533 
4,Y Xr =  

-0.841 
5,Y Xr =0.900 12.17 

 

        Table 6.7: Five Variables with the Response. 

( , , )i j kE Y X X X
 

The correlation coefficient MSE 

1 2 3 4 5( , , , , )E Y X X X X X
 

1,Y Xr = 

0.634 
2,Y Xr = 

-0.678 
3,Y Xr = 

0.533 
4,Y Xr =  

-0.841 
5,Y Xr

=0.900 
11.83 

 

6.2.5 Application of PCA to the Pilot Data 

As required by the PCA theory, the correlation matrix R for the 5 response variables 

is computed. Use of the R matrix is due to the facts explained under the relevant 

theory. That is a significant difference between the data values of different variables, 

and different units between the variables. 

Then the  obtained correlation matrix is given below. 

1.000 0.9922 0.2437 0.8945 0.8410

0.9922 1.000 0.2381 0.9048 0.8727

0.2437 0.2381 1.000 0.1981 0.2011

0.8945 0.9048 0.1981 1.000 0.9689

0.8410 0.8727 0.2011 0.9689 1.000

   
   
   
 
   
   

R  

The eigenvalues and corresponding eigenvectors are as follows, 
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1 3.7381,   1 [0.4998, 0.5054, 0.0159, 0.5030, 0.4914]    e   

2 1.1986,    2 [ 0.2036, 0.1916, 0.9109, 0.2059, 0.2229]   e  

3 0.0596,   3 [0.4968, 0.0835, 0.2761, 0.2053, 0.7924]    e  

4 0.0037,   4 [0.6796, 0.4901, 0.0828, 0.4583, 0.2846] e  

5 [ 0.000, 0.6788, 0.2948, 0.6726, 0.000]     e  

Subsequently the five principal components can be written as follows 

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 1 2 3 4 5

5

0 4998 0 5054 0 0159 0 5030 0 4914

0 2036 0 1916 0 9109 0 2059 0 2229

0 4968 0 0835 0 2761 0 2053 0 7924

0 6796 0 4901 0 0828 0 4583 0 2846

0 0000

Y . X . X . X . X . X

Y . X . X . X . X . X

Y . X . X . X . X . X

Y . X . X . X . X . X

Y . X

    

    

    

    

 1 2 3 4 50 6788 0 2948 0 6726 0 000. X . X . X . X   

 

Using these PCs and the pilot data, the obtained PC values are given in Appendix, 

Table: 6.8 

However, based on the eigenvalues it is observed that 99% of the total variation are 

represented by the first two eigenvalues. That is 1 2
5

1

4 9367
5 0 98734

ii

. . . 




  


This means 

the first two PCs ˆ ˆY Y1 2( , )  are enough to represent the data (Theorm 5.2). Since the 

PC’s are used to reduce the number of the variables, then those five independent 

variables can be represented by these two principal components.  

6.2.6 Linear Regression Using the PCs as Predictors 

Correlation coefficient values between the response and the PCs has surprisingly 

produced results in absolute terms, very close to the percent of variation each PC 

represents over the total variation in the data. Subsequently the linear regression 

between the response variable and each PC generated MSE results as given in Table 

5 0.00, 
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6.9. It is an expected result to observe higher MSE when correlation is low, as in 

ˆ( ).E Y Y2/  

           Table 6.9: Correlation and Regression Results between the Response and  

           the PCs. 

Linear regression 

equation 
The correlation coefficient 

Mean square 

of error 

ˆ( )E Y Y1/  1, 0.74Y Yr          38.614 

ˆ( )E Y Y2/  2, 0.224Y Yr   80.978 

 

6.2.7 Using the PCs as Predictors to Estimate X X X X X1 2 3 4 5, , , ,  

As the PCs are a linear combination of the variables, .X X X X X1 2 3 4 5, , , ,  And in the 

pilot data set the first two PCs represent 75% and 24% of total variation in the data 

respectively. Hence, it is logical to expect a dependence of each X variable onto each 

PC. In order to decide which X variables to be used as a response variable, and which 

PC to be used as a predictor, the correlations between each of the variables 

X X X X X1 2 3 4 5, , , ,  and the PCs 1 2( , )Y Y  are computed and presented in Table 6.10. 

     

                 Table 6.10: Correlation values between 1 2( , )Y Y  and each of       

.X X X X X1 2 3 4 5, , , ,  

,iY Xjr
 1X

 2X
 3X

 4X
 5X

 
Y1  0.981 -0.990 -0.102 -0.955 0.923 

Y2  -0.409 0.405 0.985 -0.023 0.033 

 

Based on the correlation coefficients between each PC and each variable

,X X X X X1 2 3 4 5, , , ,  linear regression models ( ); 1,2, ,5; 1,2i jE X Y i j / are 
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created for the five pairs with highest correlation. Obtained MSE results are given in 

Table 6.11. 

  Table 6.11: Correlation Coefficients and MSE Values Obtained from Using 

  Each  of X X X X X1 2 3 4 5, , , ,  as a Response and Each PC as a Predictor. 

( )i jE X Y  
The 

correlation 

coefficient 

MSE RMSE RMSED/ iX  

1 1( )E X Y  
1 1, 0.981X Yr   0.0005 0.022 0.029 

2 1( )E X Y  
2 1, 0.990X Yr   164.261 12.81 0.019 

4 1( )E X Y  
4 1, 0.955X Yr   186.137 13.64 0.079 

5 1( )E X Y  
5 1, 0.923X Yr   0.468 0.68 0.13 

3 2( )E X Y  
3 2, 0.74X Yr   49.875 7.06 0.022 

 

 

The first PC is 1 1 2 3 4 50 4998 0 5054 0 0159 0 5030 0 4914Y . X . X . X . X . X .     With 

the exception of 3X  the coefficients of other variables are very close to each other in 

absolute terms. That means the contribution of these variables to 1Y  are almost the 

same. Correlation values between 1Y  and each of the variables X X X X X1 2 3 4 5, , , ,  

are also very close to each other in absolute terms. However, MSE values are also 

reasonable, considering the fact that 1Y  represents 75% of total variation in the 

process. 

 

The root mean square deviation (RMSD) is expressed as a percentage of the average 

for the variables ( )iX  gives a good idea about the magnitude of the error committed 

in estimating data variables using PCs.  
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For instance, RMSED/ 1X =0.029 for the first model 1( / )E X Y1   in Table (6.11) 

which means the magnitude of the  error in the estimation of the response 1X by 

using the first PC is very small.  
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Chapter 7 

CONCLUSION 

The study concentrated on initially explaining the theoretical background on 

multivariate regression and PCA, together with some important theorems related to 

the topics. Establishing a relationship between the results of linear regression and 

PCA is attempted using a pilot data set. 

On the other hand, it is very useful to realize the factors that have an impact on the 

accuracy of the linear regression model and avoiding big errors in the prediction 

process.  Furthermore, focusing on the relationship between the PCs and the 

accuracy of the linear regression model is very functional. 

In application chapter, by studying group of data and analyze it by applying the 

linear regression model, whether is simple or multiple (with different numbers of the 

predictors), some results were obtained as given under Chapter 6. 

Some important factors that affect the linear regression model and the residuals are 

summarized as; 

1. The level of the correlation between the dependent and independent variables. 

2. Existence of missing observations in dataset. 

3. Existence of repeated values in the data set. 
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Existence of missing and/or repeated values is a separate topic of research and is not 

dealt with, in this thesis. However, in selecting the pilot data set from the large data, 

only observations with no missing data and/or not pronounced repeat cases were 

included. In the regression analysis of the data careful examination of the 

correlations between the predictor and response variables was carried out to avoid 

high error margins. 

In the application of PCA to the pilot data again the correlation matrix R between the 

variables used as predictor variables ,X X X X X1 2 3 4 5, , , , were used, since the use of 

covariance matrix will result in large discrepancies in estimation, due to big 

differences between the magnitude of the data under different variables.  Following 

the determination of the PCs based on the R it is clear that the first two PCs 

represents  99% of total variation in the pilot data. 

The main conclusion of this study was to use the idea of estimating the predictor 

variables ,X X X X X1 2 3 4 5, , , ,  now treated as response variables regressed on each 

PC. The correlation between each  1 2 5iX ; i , , ,  and the PCs is examined. Based 

on this the regression between each iX  and the first PC 1Y ,and the regression 3 2X Y  

are computed with very satisfactory error levels as given in Table 6.7.  
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               Table 3.1: Row Data Residents, Income and Density 

No 1x
 2x

 3x
 4x

 5x
 

1 8 78 284 9.1 109 

2 9.30000019 68 433 8.7 144 

3 7.5 70 739 7.2 113 

4 8.89999962 96 1792 8.9 97 

5 10.1999998 74 477 8.3 206 

6 8.30000019 111 362 10.9 124 

7 8.80000019 77 671 10 152 

8 8.80000019 168 636 9.1 162 

9 10.6999998 82 329 8.7 150 

10 11.6999998 89 634 7.6 134 

11 8.5 149 631 10.8 292 

12 8.30000019 60 257 9.5 108 

13 8.19999981 96 284 8.8 111 

14 7.9000001 83 603 9.5 182 

15 10.3000002 130 686 8.7 129 

16 7.4000001 145 345 11.2 158 

17 9.60000038 112 1357 9.7 186 

18 9.30000019 131 544 9.6 177 

19 10.6000004 80 205 9.1 127 

20 9.69999981 130 1264 9.2 179 

21 11.6000004 140 688 8.3 80 

22 8.10000038 154 354 8.4 103 

23 9.80000019 118 1632 9.4 101 

24 7.4000001 94 348 9.8 117 

25 9.39999962 119 370 10.4 88 

26 11.1999998 153 648 9.9 78 

27 9.10000038 116 366 9.2 102 

28 10.5 97 540 10.3 95 

29 11.8999996 176 680 8.9 80 

30 8.39999962 75 345 9.6 92 

31 5 134 525 10.3 126 

32 9.80000019 161 870 10.4 108 

33 9.80000019 111 669 9.7 77 

34 10.8000002 114 452 9.6 60 

35 10.1000004 142 430 10.7 71 

36 10.8999996 238 822 10.3 86 

37 9.19999981 78 190 10.7 93 

38 8.30000019 196 867 9.6 106 

39 7.30000019 125 969 10.5 162 

40 9.39999962 82 499 7.7 95 

41 9.39999962 125 925 10.2 91 

42 9.80000019 129 353 9.9 52 

43 3.59999991 84 288 8.4 110 

44 8.39999962 183 718 10.4 69 

45 10.8000002 119 540 9.2 57 

46 10.1000004 180 668 13 106 

47 9 82 347 8.8 40 

48 10 71 345 9.2 50 

49 11.3000002 118 463 7.8 35 

50 11.3000002 121 728 8.2 86 

51 12.8000002 68 383 7.4 57 

52 10 112 316 10.4 57 

53 6.69999981 109 388 8.9 94 
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             Table 4.2: Calculating the Parameters and Simple  Linear  Regression 

             Equation 

ix
 iy

 
2
ix

 
2
iy

 i ix y
 

150 50 22500 2500 7500 

150 61 22500 3721 9150 

150 54 22500 2916 8100 

155 54 24025 2916 8370 

155 63 24025 3969 8765 

155 59 24025 3481 9145 

155 61 24025 3721 9455 

160 68 25600 4624 10880 

160 65 25600 4225 10400 

175 77 30625 5929 13475 

175 83 30625 6889 14525 

175 72 30625 5184 12600 

12

1 ii
x


=1915 

12

1 ii
y


=767 

12 2

1 ii
x


=306675 

12 2

1 ii
y


=50075 

12

1 i ii
x y


=123365 
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             Table 5.1: Raw Data for Responses of an Oxidizing Chemical  

             Gas Multisensor Device   

No 
1x

 2x
 3x

 4x
 5x

 
1 2.6 150 11.9 13.6 48.9 

2 2 112 9.4 13.3 47.7 

3 2.2 88 9.0 11.9 54.0 

4 2.2 80 9.2 11.0 60.0 

5 1.6 51 6.5 11.2 59.6 

6 1.2 38 4.7 11.2 59.2 

7 1.2 31 3.6 11.3 56.8 

8 1 31 3.3 10.7 60.0 

9 0.9 24 2.3 10.7 59.7 

10 0.6 19 1.7 10.3 60.2 

11 1 14 1.3 10.1 60.5 

12 0.7 8 1.1 11.0 56.2 

13 0.7 16 1.6 10.5 58.1 

14 1.1 29 3.2 10.2 59.6 

15 2 64 8.0 10.8 57.4 

16 2.2 87 9.5 10.5 60.6 

17 1.7 77 6.3 10.8 58.4 

18 1.5 43 5.0 10.5 57.9 

19 1.6 61 5.2 9.5 66.8 

20 1.9 63 7.3 8.3 76.4 

21 2.9 164 11.5 8.0 81.1 

22 2.2 79 8.8 8.3 79.8 

23 2.2 95 8.3 9.7 71.2 

24 2.9 150 11.2 9.8 67.6 

25 4.8 307 20.8 10.3 64.2 

26 6.1 401 24.0 9.6 67.8 

27 3.9 197 12.8 9.1 64.0 

28 1.5 61 4.7 8.2 63.4 

29 1 26 2.6 8.2 60.8 

30 1.7 55 5.9 8.3 58.5 

31 1.9 53 6.4 7.7 59.7 

32 1.4 40 4.1 7.1 61.8 

33 0.8 21 1.9 7.0 62.3 

34 1 10 1.1 6.1 65.9 

35 0.6 7 1.0 6.3 65.0 

36 0.8 17 1.8 6.8 62.9 

37 1.4 33 4.4 6.4 65.1 

38 4.4 202 17.9 7.3 63.1 

39 3.1 208 14.0 13.2 41.7 

40 2.7 166 11.6 14.3 38.4 

41 2.1 114 10.2 15.0 36.5 

42 2.5 140 11.0 16.1 34.5 
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43 2.7 169 12.8 16.3 35.7 

44 2.9 185 14.2 15.8 37.0 

45 2.8 165 12.7 15.9 37.2 

46 2.4 133 11.7 16.9 34.3 

47 3.9 233 19.3 15.1 39.6 

48 3.7 242 18.2 14.4 43.4 



 

73 

          Table 5.2: PCs Obtained from the Data in Table 5.1 

No 
1Ŷ

 2Ŷ
 3Ŷ

 4Ŷ
 5Ŷ

 

1 -51.2958 -6.55886 -0.71852 0.486873 -0.07102 

2 -13.2883 -9.19938 -0.48149 0.286172 -0.14154 

3 10.92332 -3.76615 -1.44858 -0.61339 0.123353 

4 19.1301 1.972395 -2.32466 -0.92397 0.056385 

5 48.20622 0.367261 -1.86954 -0.11958 0.014408 

6 61.27249 -0.53828 -1.17857 0.610047 -0.04442 

7 68.22813 -3.18514 -0.47894 0.873281 0.172366 

8 68.38279 0.104629 -0.31623 1.075778 -0.02553 

9 75.41526 -0.48042 0.112678 1.432308 0.059821 

10 80.46869 -0.08528 0.498217 1.4733 -0.1452 

11 85.49178 0.0198 0.602083 1.450214 -0.02292 

12 91.30817 -4.61843 0.482642 1.418906 0.148377 

13 83.38254 -2.27696 0.601319 1.273893 0.000521 

14 70.37346 -0.27035 0.035788 0.665405 0.074105 

15 35.06707 -1.13928 -1.68892 -1.23481 0.110077 

16 12.16195 2.94574 -1.93635 -1.11286 -0.0484 

17 22.25349 0.326824 0.001645 0.671607 0.018008 

18 56.23252 -1.4166 -0.42989 0.002421 0.169158 

19 38.61827 8.180982 -0.47473 0.994041 0.057752 

20 36.87886 17.91423 -2.48843 0.055122 -0.06456 

21 -63.9237 26.72317 -1.0652 1.508279 -0.21049 

22 20.94877 21.84709 -3.38511 0.022975 -0.09596 

23 4.677818 13.78364 -1.80796 0.859323 0.017674 

24 -50.4828 12.56047 -0.56733 0.68511 0.057903 

25 -207.802 15.42761 0.486806 0.134771 -0.19429 

26 -301.597 22.92727 2.767571 1.587757 0.139016 

27 -97.5887 11.05685 1.612268 0.445571 0.57609 

28 38.5421 5.16245 1.344803 -0.02524 -0.02067 

29 73.47937 1.209124 1.460391 -0.22801 -0.02553 

30 44.26238 0.09448 0.921924 -1.58942 0.06085 

31 46.27435 1.249953 0.685031 -2.31366 0.154229 

32 59.47322 2.947638 1.695152 -1.40048 0.015653 

33 78.59231 2.691527 2.433926 -0.55224 -0.15028 
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34 89.7634 5.971768 2.480882 -0.57658 -0.13831 

35 92.71788 4.905603 2.363833 -0.68419 -0.21121 

36 82.60945 3.230938 2.281146 -0.7858 -0.14735 

37 66.57454 5.992453 1.14925 -1.8708 -0.03295 

38 -102.913 10.72592 -0.3985 -4.29991 0.173653 

39 -109.538 -11.09 2.00457 0.080806 -0.15887 

40 -67.6461 -16.2441 1.383758 0.401827 0.067493 

41 -15.7882 -20.4353 -0.36651 -0.45317 -0.0401 

42 -41.8603 -21.5636 -0.07351 0.492976 0.183013 

43 -70.8465 -19.204 -0.21888 0.700529 -0.01778 

44 -86.8285 -17.1995 -0.24299 0.289267 -0.11809 

45 -66.7921 -17.8679 -0.31095 0.50056 0.087007 

46 -34.9407 -22.1494 -1.42233 0.259372 0.047786 

47 -134.926 -12.6893 -1.50634 -1.60781 -0.18364 

48 -143.667 -8.35297 -0.36307 -0.46784 -0.3053 
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     Table 6.2: Row Data about the Heating Load Process 

No 1Y
 1X

 2X
 3X

 4X
 5X

 
1 21.33 0.98 514.50 294.00 110.25 7.00 

2 28.28 0.90 563.50 318.50 122.50 7.00 

3 27.30 0.86 588.00 294.00 147.00 7.00 

4 24.93 0.82 612.50 318.50 147.00 7.00 

5 37.73 0.79 637.00 343.00 147.00 7.00 

6 29.40 0.76 661.50 416.50 122.50 7.00 

7 10.90 0.74 68600 245.00 220.50 3.50 

8 11.67 0.71 710.50 269.50 220.50 3.50 

9 11.74 0.69 735.00 294.00 220.50 3.50 

10 12.14 0.66 759.50 318.50 220.50 3.50 

11 16.78 0.64 784.00 343.00 220.50 3.50 

12 12.04 0.62 808.50 367.50 220.50 3.50 

13 26.47 0.98 514.50 294.00 110.25 7.00 

14 34.33 0.90 563.50 318.50 122.50 7.00 

15 30.89 0.86 588.00 294.00 147.00 7.00 

16 28.51 0.82 612.50 318.50 147.00 7.00 

17 41.68 0.79 637.00 343.00 147.00 7.00 

18 33.67 0.76 661.50 416.50 122.50 7.00 

19 13.43 0.74 686.00 245.00 220.50 3.50 

20 14.27 0.71 710.50 269.50 220.50 3.50 

21 14.28 0.69 735.00 294.00 220.50 3.50 

22 13.65 0.66 759.50 318.50 220.50 3.50 

23 19.37 0.64 784.00 343.00 220.50 3.50 

24 14.27 0.62 808.50 367.50 220.50 3.50 

25 25.95 0.98 514.50 294.00 110.25 7.00 

26 34.20 0.90 563.50 318.50 122.50 7.00 

27 30.91 0.86 588.00 294.00 147.00 7.00 

28 28.79 0.82 612.50 318.50 147.00 7.00 

29 41.07 0.79 637.00 343.00 147.00 7.00 

30 14.11 0.71 710.50 269.50 220.50 3.50 

31 13.51 0.69 735.00 294.00 220.50 3.50 

32 14.86 0.66 759.50 318.50 220.50 3.50 

33 19.30 0.64 784.00 343.00 220.50 3.50 

34 14.37 0.62 808.50 367.50 220.50 3.50 

35 26.14 0.98 514.50 294.00 110.25 7.00 

36 34.14 0.90 563.50 318.50 122.50 7.00 

37 27.40 0.86 588.00 294.00 147.00 7.00 

38 28.68 0.82 612.50 318.50 147.00 7.00 

39 34.29 0.79 637.00 343.00 147.00 7.00 

40 33.85 0.76 661.50 416.50 122.50 7.00 

41 13.49 0.74 686.00 245.00 220.50 3.50 

42 14.14 0.71 710.50 269.50 220.50 3.50 
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43 14.40 0.69 735.00 294.00 220.50 3.50 

44 13.46 0.66 759.50 318.50 220.50 3.50 

45 19.29 0.64 784.00 343.00 220.50 3.50 

46 14.09 0.62 808.50 367.50 220.50 3.50 

47 25.87 0.98 514.50 294.00 110.25 7.00 

48 29.34 0.90 563.50 318.50 122.50 7.00 

49 25.81 0.86 588.00 294.00 147.00 7.00 

50 36.87 0.79 637.00 343.00 147.00 7.00 
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      Table 6.8: Row Data PCs 

No 1Ŷ  2Ŷ  3Ŷ  4Ŷ  5Ŷ  

1 -316.2185 345.047 10.509 329.697 188.382 

2 -347.573 374.247 10.627 361.302 206.178 

3 -371.908 351.588 -3.233 382.481 213.553 

4 -384.700 378.608 1.464 396.491 222.959 

5 -397.486 405.625 6.1683 410.508 232.365 

6 -398.729 482.322 29.430 417.354 243.801 

7 -459.406 309.841 -37.323 459.062 245.085 

8 -472.193 336.859 -32.620 473.078 254.490 

9 -484.974 363.875 -27.911 487.101 263.896 

10 -497.760 390.892 -23.208 501.118 273.302 

11 -510.542 417.908 -18.499 515.141 282.707 

12 -523.323 444.924 -13.791 529.165 292.113 

13 -316.218 345.047 10.509 329.697 188.382 

14 -347.573 374.247 10.627 361.302 206.178 

15 -371.908 351.588 -3.233 382.481 213.553 

16 -384.700 378.6081 1.464 396.491 222.959 

17 -397.486 405.625 6.168 410.508 232.365 

18 -398.729 482.322 29.430 417.354 243.801 

19 -459.406 309.8417 -37.323 459.062 245.085 

20 -472.193 336.859 -32.620 473.078 254.490 

21 -484.974 363.875 -27.911 487.101 263.896 

22 -497.760 390.892 -23.208 501.118 273.302 

23 -510.542 417.908 -18.499 515.141 282.707 

24 -523.323 444.924 -13.791 529.165 292.113 

25 -316.218 345.047 10.509 329.697 188.382 

26 -347.573 374.247 10.627 361.302 206.178 

27 -371.908 351.588 -3.233 382.481 213.553 

28 -384.700 378.608 1.464 396.491 222.959 

29 -397.486 405.625 6.168 410.508 232.365 

30 -472.193 336.859 -32.620 473.078 254.490 

31 -484.974 363.875 -27.911 487.101 263.896 

32 -497.760 390.892 -23.208 501.118 273.302 

33 -510.542 417.908 -18.499 515.141 282.707 

34 -523.323 444.924 -13.791 529.165 292.113 

35 -316.218 345.047 10.509 329.697 188.382 

36 -347.573 374.247 10.627 361.302 206.178 

37 -371.908 351.588 -3.233 382.481 213.553 

38 -384.700 378.608 1.464 396.491 222.959 

39 -397.486 405.625 6.168 410.508 232.365 

40 -398.729 482.322 29.430 417.354 243.801 

41 -459.406 309.841 -37.323 459.062 245.085 

42 -472.193 336.859 -32.620 473.078 254.490 

43 -484.974 363.875 -27.911 487.101 263.896 

44 -497.760 390.892 -23.208 501.118 273.302 
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45 -510.542 417.908 -18.499 515.141 282.707 

46 -523.323 444.924 -13.791 529.165 292.113 

47 -316.218 345.047 10.509 329.697 188.382 

48 -347.573 374.247 10.627 361.302 206.178 

49 -371.908 351.588 -3.233 382.481 213.553 

50 -397.486 405.625 6.168 410.508 232.365 

 

 


