
Vibroacoustic Optimization of Sandwich Structures 
with Auxetic Cores 

 

 

Mohammad Sadegh Mazloomi 

 

 

Submitted to the 
 Institute of Graduation Studies and Research 

 in partial fulfillment of the requirements for the degree of 
 

 

 

 
Doctor of Philosophy 

in 
Mechanical Engineering 

 

 
 

 

 
Eastern Mediterranean University 

December 2017 
Gazimağusa, North Cyprus  



Approval of the Institute of Graduate Studies and Research  
 
 
 
 
                                                          
                                                                               Assoc. Prof. Dr. Ali Hakan Ulusoy 

                                                                                                 Acting Director  
 
  
I certify that this thesis satisfies the requirements as a thesis for the degree of Doctor 
of Philosophy in Mechanical Engineering.  
 
 
 
 
 

Assoc. Prof. Dr. Hasan Hacışevki  
                                                         Chair, Department of Mechanical Engineering  

 
 
 
We certify that we have read this thesis and that in our opinion it is fully adequate in 
scope and quality as a thesis for the degree of Doctor of Philosophy in Mechanical 
Engineering.  
 
 
 
 
 
Assoc. Prof. Dr. Mostafa Ranjbar                             Asst. Prof. Dr. Neriman Özada 
            Co-Supervisor            Supervisor 
 
                                                                                                   

  Examining Committee  
 

1. Prof. Dr. Nizami Aktürk 

2. Prof. Dr. Fuat Egelioğlu   

3. Prof. Dr. Sadettin Orhan  

4. Assoc. Prof. Dr. Mostafa Ranjbar 

5. Assoc. Prof. Dr. Qasim Zeeshan 

6. Asst. Prof. Dr. Devrim Aydın  

7. Asst. Prof. Dr. Neriman Özada



iii 

  ABSTRACT 

This research describes the vibroacoustic behavior of sandwich structures with various 

core topologies. In the first part of this research a novel core topology made from 2-

Dimensionally gradient auxetic hexagonal honeycombs has been proposed. The 2D 

gradient core enables a tailoring of localized mechanical properties of the sandwich 

structure in different regions of the panel. A homogenized finite element modeling is 

used to determine the mechanical properties of the sandwich structures. The natural 

frequencies and the radiated sound power level of the sandwich plate with the 

homogenized properties have been calculated and verified with those obtained from a 

exact FE model of the sandwich structure. The geometry of the 2Dimensionally 

gradient auxetic core has been then optimized using two different techniques in order 

to minimize the radiated sound power level over the frequency range of 0 to 200 Hz. 

The optimized design of the 2D gradient core shows a remarkable reduction of the 

radiated sound power level for the sandwich structure when taking into account the 

mass of the structures. 

In the second part of this study this 2D gradient core topology concept is used in a 

sandwich structure with anti-tetrachiral cores. The same homogenized finite element 

approach is used to determine the mechanical properties of the anti-tetrachiral core and 

a multivariable optimization procedure is applied to minimize the radiated sound 

power level of the sandwich structure over the frequency range of 0 to 200 Hz. In this 

part a mass constrained optimization procedure is conducted. The maximum increase 

in the total mass is considered to be 10% of the mass of the base line configuration. 

The optimized structure shows a significant reduction in the radiated sound power 
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level accompanied by an increase in the natural frequencies of the sandwich 

structure.This study provides new insights about the vibroacoustic behavior of auxetic 

sandwich structures with complex core geometries. 

Keywords: auxetic, hexagonal, chiral, anti-tetrachiral, 2D gradient, sandwich 

structure, vibroacoustic, optimization, genetic algorithm, MMA 
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ÖZ 

Bu araştırmada, çeşitli temel topolojilere sahip sandviç yapıların vibroakustik 

davranışları incelenip analiz edilmiştir. Bu araştırmanın ilk bölümünde, 2 boyutlu (2D) 

auxetik altıgen peteklerden yapılmış yeni ve daha önce çalışılmamış bir temel topoloji 

önerisi yapılmıştır. 2D gradyan çekirdek, sandviç yapısının lokalize mekanik 

özelliklerini panelin farklı bölgelerinde tanımlamayı sağlamaktadır. Bu doktora 

tezinde, sandviç yapıların mekanik özelliklerini belirlemek için homojenize edilmiş 

bir sonlu elemanlar modellemesi kullanılmıstır.  

 

Bu çalışmada, homojenleştirilmiş özelliklere sahip sandviç plakanın doğal frekansları 

ve ses yayılım gücü seviyesi, sandviç yapının tam ölçekli ve ayrıntılı modeli 

yaratılarak çalışılmış, daha sonra elde edilen sonuçlar hesaplanmış ve doğrulanmıştır. 

Modellemeden sonra, 2D auxetik çekirdeğin geometrisi, 0 ile 200 Hz frekans aralığı 

boyunca yayılan ses gücü düzeyini en aza indirgemek için iki farklı yöntem 

kullanılarak optimize edilmiştir. 

 

2D çekirdeğin optimize tasarımında, panellerin kütlesi de dikkate alındığı zaman, 

yayılan ses gücü düzeyinde belirgin bir düşüş görülmüştür. Bu çalışmanın ikinci 

bölümünde, bu  2D gradyan çekirdek topolojisi, anti-tetrakiral çekirdek olarak sandviç 

yapıda kullanılmıştır. Bir sonraki adımda, aynı homojenize sonlu elemanlar yaklaşımı, 

anti-tetrakiral çekirdeğin mekanik özelliklerini belirlemek için de kullanılmıştır. Buna 

ek olarak, çok değişkenli optimizasyon prosedürü, 0 ile 200 Hz frekans aralığında 

sandviç yapının yayılan ses gücü düzeyini en aza indirmek için uygulanmıştır. 
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Optimizasyon sonucunda, toplam kütlenin maksimum artışı, orijinal kütlenin % 10'u 

olarak bulunmuştur.   

Optimize edilmiş yapı, yayılan ses gücü düzeyinde sandviç yapının doğal 

frekanslarındaki artışa eşlik eden belirgin bir azalmayı göstermektedir. Bu çalışma, 

kompleks çekirdek geometrili auxetik sandviç yapıların vibroakustik davranışıyla 

ilgili yeni bilgiler sunmakta ve bu alanda önemli bir katkı sağlamaktadır.  

 

Anahtar kelimeler: auxetik, altıgen, şiral, anti-tetrakiral, 2-D gradyan, sandviç panel, 

vibroakustik, optimizasyon, genetik algoritma 
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Chapter 1 

1 INTRODUCTION 

1.1 Background 

Since the beginning of the industrial revolution in 18th century, the environmental 

noise pollution has been a problem. Cars, trains, and airplanes have intensified this 

problem in the last 70 or 80 years. There always have been some concerns about the 

effect of radiating noise from industrial or transportation sources on people health. 

Environmental laws and regulations have been ratified to protect the people and the 

environment. Other than that some equipment such as noise barriers alongside 

railroads, highways and airports have been used to keep the harmful effect of noise 

pollution away from the people. New advances in car engines and tires, train wheels, 

airplane engines and industrial machines are beneficial in order to reduce the noise 

pollution. But there remain much to be done. 

On the other hand, there is a demand for lightweight designs, especially in aerospace 

and automotive industry in order to less energy consumption or the demand for 

designing faster machines in order to produce more parts per unit time or to shorten 

travel times. Unfortunately, these tendencies are somewhat contradictory to the 

demand of quiet products, since light structures tend to be noisier than heavy ones, and 

fast machines incline to be louder than slow ones. 
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In most of the cases, it is advisable to try to reduce the radiated noise in the design 

process rather than trying to reduce the radiated noise of designed structures and 

machines afterward by damping treatments and encapsulation [1]. Numerical 

modeling can be applied to achieve a better design in order to define problematic zones 

at an early stage and modify the design in order to radiate less noise. That is why 

structural-acoustic optimizations for reducing noise and vibration have been the focus 

of many research studies[2]. 

The focus of this study is to reduce radiated noise form sandwich structures. These 

structures have an extensive application in automotive and aerospace industry as they 

possess high stiffness-to-weight ratios [3], [4]. The core can be made of polymer, 

titanium, aluminum and etc. The core geometry can range from conventional 

hexagonal honeycombs to auxetic hexagonal honeycombs and chiral lattices. Each of 

this different types of cores has their own geometrical properties which can be 

designed in a specific way to provide desired mechanical properties. Moreover, this 

design can be optimized in order to minimize the radiated noise and improve the 

acoustical behavior.  

One of the mentioned types of the core in the sandwich structure was Auxetic 

hexagonal honeycomb core. Auxetic materials or negative Poisson’s ratio (NPR) 

materials, get bigger in the transverse direction when they are stretched longitudinally 

and become smaller when they are compressed. This type of materials have unique 

mechanical properties and have attracted the attention of some researchers in the past 

few decades. 
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Therefore, in this study the focus will be on reducing radiated sound power form a 

sandwich structure with auxetic core.  

1.2 Scope and Objective of the Study 

As mentioned before there is a growing demand for a reliable optimization method in 

order to design structures with better vibroacoustic behavior. In this thesis a 2D 

gradient topology is introduced for sandwich structures with auxetic cores and two 

different types of auxetic cores have been used as a case sample. The main objectives 

of current thesis are as follows: 

1. Develop a 2D gradient topology for auxetic sandwich structure 

2. Apply the homogenization approach for the 2D gradient topology  to determine the 

Root Mean Square of sound power Level (RMSL) in order to reduce computational 

time 

3. Develop an optimization scheme by integrating ANSYS with MATLAB to 

optimize the RMSL for the 2D gradient topology 

4. Optimize the RMSL for the 2D gradient topology by applying gradient base 

optimization method (Method of Moving Asymptotes, MMA) and direct search 

method (Genetic Algorithm, GA)  

5. Apply all aforementioned steps for two different class of sandwich structure's core 

geometries. Case 1, auxetic hexagonal honeycombs and case 2, anti-tetrachiral 

lattices. 

1.3 Organization of the Thesis 

Chapter 2 presents a thorough literature review on structural acoustic of gradient 

auxetic sandwich structures. Chapter 3 is dedicated to the development of 

homogenized modeling for two different core types of sandwich structures and verifies 
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the accuracy of the model. Chapter 4 provides theoretical analysis on the structural 

acoustics of sandwich structures. Some sets of analytical formulae are given in this 

chapter which later they will be used in order to calculate the radiated sound power 

from a sandwich structure. Consequently, Chapter 5 discusses vibroacoustic 

optimization of the sandwich structure with gradient auxetic hexagonal honeycomb 

core. Chapter 6 applies same optimization algorithm for the sandwich structures with 

gradient anti-tetrachiral core and finally, Chapter 7 concludes.  
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Chapter 2 

2 LITERATURE REVIEW 

2.1 Overview 

The widespread use of the sandwich structures is attributed to their outstanding out-

of-plane mechanical properties, which are directly related to their shape and topology 

[5]. Cellular solids with honeycomb structure can be used as a sandwich core materials 

in different engineering applications, such as automotive lightweight structures and 

biomedical as they possess low relative density and high stiffness and strength to mass 

ratio [6]–[8].  A typical example of a sandwich structure core is the conventional 

hexagonal honeycomb,  in which each unit cell is made of ribs with the same length 

and an internal cell angle of 30º [9]. 

The low density of the sandwich structure makes them an excellent candidate to be 

used in naval industry in which high stiffness and low buoyancy are required [9]. High 

specific strength is advantageous in the applications that high mechanical energy 

absorption is in need such as crashworthy materials or packaging materials for 

sensitive goods [9], [10]. 

However, the most application of the sandwich structure is when high specific bending 

stiffness is required. These panels were initially used in aeronautical industry [11]. 

Then as they become less expensive they have been used in automobile and naval 

industry as well as wind turbines and civil industry [9].  
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2.2 Auxetic Materials  

In the recent years, synthetic materials possessing negative Poisson’s ratio (auxetic) 

have been also proposed [12]–[15]. In contrast to conventional materials, these 

solids called “auxetic” expand in all direction when subjected to uniaxial loading 

[16]. Figure 1 shows a conventional hexagonal honeycomb and a typical auxetic 

material subjected to a uniaxial loading.  

 
Figure 1: Conventional and auxetic honeycomb subjected to a uniaxial loading 

This behavior is usually linked to specific microstructural deformation mechanisms 

and can be observed in several types of auxetic structures such as re-entrant, chiral, 

and rotating units structures [17]–[23].  

2.2.1 Auxetic Hexagonal Honeycombs 

One of the iconic examples of auxetic materials is the hexagonal center-symmetric re-

entrant configuration [24], [25] that provides an increase in anisotropic bending 

stiffness, which can be useful in vibration [26] as well as for enhanced flatwise 
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compressive strength in reinforced butterfly cores [27]. The out-of-plane deformation 

of regular honeycombs shows anticlastic or saddle-shaped curvature[28]–[31]. On the 

other hand, structures with negative Poisson's ratio behavior exhibit synclastic 

curvature when subjected to out-of-plane bending which makes them an excellent 

candidate to be used in a complex out-of-plane geometry [8], [28], [30], [32].  

2.2.2 Chiral Lattices 

Another types of auxetic cellular materials are chiral lattices. Prall and Lakes [23] first, 

carried out a theoretical and experimental investigation of this structures. They 

observed that chiral lattices also show auxetic behavior as the in-plane Poisson’s ratio 

is negative. in the case of chiral lattices, the negative Poisson’s ratio gives some unique 

features to these structures such as a dome-shaped or synclastic bending behavior in 

the out-of-plane direction [29] as opposed to the conventional hexagonal honeycomb 

structures which show anticlastic or saddle-shaped behavior. Another distinctive 

feature of chiral lattices is that they show enhanced in-plane shear modulus and 

increased indentation resistance [33]. Figure 2 shows several types of chiral lattices. 

Chiral lattices consist of circular nodes with same radii which are connected together 

by ligaments of equal length. The number of ligaments connected to each node is 

different in different types of this lattices. Three, four and six ligaments connected to 

each node in trichiral, tetrachiral and hexachiral lattices, respectively. In these cases, 

the ligaments are connected to the opposite sides of the nodes. However, in the anti-

trichiral and anti-tetrachiral lattices, the ligaments are connected to the same side of 

the nodes.  
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Figure 2: Different types of chiral lattices 

Alderson et al [7] investigated in-plane mechanical properties of different chiral 

lattices using finite element modeling and some sets of experiments. They showed that 

Young's moduli increases with an increase in the number of ligaments connected to 

each node. Moreover, they reported that the tetrachiral, anti-tetrachiral and hexahiral 

lattices always show auxetic behavior while the anti-trichiral possessing negative 

Poisson's ratio for the small ratio of the ligament to the nodes radius.  

    

Auxetic materials have been evaluated for various applications. Auxetic cellular 

structures have been used to prototype morphing wings [34], [35]. On the same topic, 

Airoldi et al. and Spadoni et al developed advanced applications of auxetic chiral 

structures in composite aerostructures designs [36], [37]. In another research, the wave 

propagation in sandwich panels with periodic auxetic core was investigated by 

Ruzzene et al. [38]. 
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2.3 Homogenized Modeling 

Representative unit cells have been widely used to model mechanical properties of 

composite materials and sandwich structures [9], [22], [39], [40]. Torquato et al [41] 

have applied homogenization modeling to investigate the elastic properties of regular 

honeycombs with triangular, square and hexagonal cells. In another study a 

homogenized micro-mechanical model have been used to investigate the material 

properties of smart composite sandwich structure with hexagonal honeycombs 

actuators [42]. The same concept can be applied in auxetic cellular configurations. The 

structure can be considered as a periodic repetition of the unit cell. The homogenized 

mechanical properties can also be defined by the geometrical parameters and the core 

properties of the repeating unit cells. Chekkal et al. [43] have used unit cell 

homogenization approach has to calculate the vibroacoustic behavior of auxetic 

structures. They showed that NPR foams perform better in acoustic absorption than 

the regular foams. Later Lira et al. have used homogenization approach to model an 

auxetic gradient cellular cores for an aero-engine fan blades [44]. Finally, Ranjbar et 

al. [45] have used same homogenization method to determine the mechanical 

properties of an auxetic hexagonal sandwich structure. 

2.4 Gradient Topology 

The microstructure configurations examined in the above-cited research tessellate 

periodically in the plane. The cellular structure is therefore made of cells having the 

same geometry in any part of the structure. It is, however, possible to produce this 

cellular structure with a gradient configuration. The configuration in this gradient 

topology is made of a continuous distribution of unit cells with compatible geometry, 

but having a single variable parameter (like the internal cell angle or internal thickness) 

[45]–[47]. In gradient configuration, varying distribution of stiffness and deformation 
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can be achieved by using a gradient cellular structure.  For center-symmetric 

configurations, Lim introduced a varying gradient cellular topology in which the 

internal cell angle at each row was changing [48]. Honeycomb structures made with 

thickness-gradient layouts have been modeled and tested by Lira and Scarpa [49]. In 

particular, the cellular structures made with gradient thickness have offered an 

increased specific shear stiffness compared to conventional configurations with same 

cell shape. The flexural properties and failure behavior of sandwich structures with 

auxetic angle gradient core have been explored by Hou et al. [50].  

Several papers have been devoted to the investigation of the vibrational and acoustic 

behavior of sandwich structures with normal or gradient cellular core. The vibrational 

characteristics of re-entrant auxetic honeycomb have been investigated by Scarpa and 

Tomlinson [26].  Lim [51] and Maruszewski et al. [52] have investigated the vibration 

of auxetic circular and rectangular plates. In another work, Shiyin et al. have studied 

the vibration transmission and isolation performance of trichiral structures with 

uniform and gradient geometry [53]. Lira et, al have used an auxetic gradient cellular 

as potential cores for aero-engine fan blades to reduce the dynamic response for the 

first three fundamental natural frequencies [44]. 

2.5 Structural Acoustic 

One of the key parts in the design of the passive noise control compliant structure is 

the optimization of the structures with respect to their acoustical and structural 

properties (including, radiated sound power and root mean square level of the 

structural particle velocity). Applications and methods of structural acoustic 

optimization with respect to passive noise control have been reviewed by Marburg 

[54]. Howell et al. compared sound absorption of NPR and regular foams and reported 
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that NPR foams perform better in case of sound absorption [55]. Radiated sound power 

from a vibrating compressor was minimized conducting an acoustic topology 

optimization by Zhang et al. [2]. The optimization procedure was applied by modifying 

the local stiffness at various locations on the surface of the structure. Ruzzene [56] 

proposed a new configuration for a sandwich beam with honeycomb core which shows 

an interesting acoustic and structural characteristics. He considered the honeycomb 

geometry to be laid out through the thickness of the beam as shown in Figure 3. Then, 

he used finite element modeling to analyze the acoustic performance of the beam with 

various core configurations. A comparison was carried out on sound transmission 

reduction of the beams with various cores. The results of this study have shown that 

auxetic honeycombs configuration are generally more effective for reducing the sound 

transmission. 

 
Figure 3: The proposed layout of honeycomb core [56] 

Chekkal et al. [43] have investigated the vibroacoustic behavior of auxetic structures 

from an experimental and a numerical point of view. They showed that NPR foams 

perform better in acoustic absorption than the regular foams. In a totally different case, 

Marburg et al. [57] have used experimental and finite element approach to a certain 

noised transfer function for a steel box of 1 1 1.5 m  having an external beam structure 
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welded to it. The objective was to minimize the sound pressure at some points inside 

the box as a result of a force excitation on the beam. Figure 4 shows the steel box and 

the positions of the 3 microphones inside the box to measure the sound pressure at 

point M1, M2 and M3. 

 
Figure 4: The steel box and the position of 3 microphones [57] 

Tinstten [58] investigated the numerical acoustic optimization of a closed cylinder. 

Both the bottom plate and the wall of the cylinder were considered to be rigid, i.e. top 

plate was the only vibrating part. An excitation force with constant frequency of 600 

Hz was applied on the center of the top plate. The design variables of the optimization 

problem were the thickness of the top plates at the different distances from the center 

and the objective function was sound intensity at the defined point above the top plate. 

Then, it was formulated as: minimized the sound intensity at the specified point when 

the mass of the top plate does not increase by more than 10%. The Method of Moving 

Asymptotes, (MMA), [59] was applied to conduct the optimization process. Figure 5 
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shows the point for sound intensity measurement and the initial and optimal thickness 

distribution. 

 
Figure 5: Initial and optimal thickness distribuation [58] 

 Droz et al. [3] have carried out vibroacoustic optimization of sandwich structure using 

a wave based finite element method. Their methodology did not require the 

homogenization method proposed by Gibson and Ashby [9]. They showed that auxetic 

periodic hexagonal honeycombs can be used to reduce the modal density in a given 

frequency range.  Ranjbar et al. applied different optimization methods to minimize 

the radiated sound power level (RSPL) of a rectangular steel plate [60]–[65]. The 

dimension of the plate was 1 1 m and the thickness of the plate was considered to be 

1 mm. Instead of considering a simple flat plate they defined 9 design points as shown 

in Figure 6 .The height of these design points can vary between - 1 and +1 mm. Having 
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these design points with various height leads to changing bending stiffness of the plate. 

They have applied a local excitation force as shown in Figure 6 and optimized the 

radiated sound power from the plate using a tabu search approach. 

 
Figure 6: Rectangular palte, the design points are shown with a circle and the dashed 

areas are the excitation force [60] 

Ranjbar et al. have also applied a combination of Artificial Neural Network (ANN) 

and Simulated Annealing (SA) optimization process in order to do minimize the RSPL 

from the mentioned rectangular plate [61]. They have also conducted the optimization 

process using Genetic Algorithm [62] , a controlled random search approach [63] and 

a hybrid simplex method optimization and design of experiments approach [64] and 

finally they have compared the results of all these various optimization techniques 

[65]. 

Geometrical parameters of normal and gradient auxetic cellular cores can be tailored 

to have desired mechanical and density properties. Therefore, they can be a suitable 

platform to design structural panels with optimized mechanical and vibroacoustic 

performance over a range of frequency bandwidths. In a different study, Ranjbar et al. 
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[45], studied the effect of geometrical parameters of the auxetic core on the RSPL of 

sandwich panel structures. Some simple optimization techniques (such as random and 

first order optimization method) have been used in particular to minimize the RSPL 

for a sandwich structure with a one-dimensional gradient auxetic core. 

2.6 Concluding Remarks 

Table 1 shows a tabular literature review of the most related researches in the field.  

Table 1: Tabular literature review of the most related researches 

No. Research Objective Case sample Optimization 
Method 

1 Spadoni et al., 
2006 [37] 

predict frequency response 
function to investigate 
localized deformation  

Sandwich 
beam, with 
hexachiral 
lattice core 

No 
optimization 

2 Howell et al., 
1991 [55] 

compare sound absorption 
of NPR and regular foams 

NPR and 
regular foams 

No 
optimization 

3 Marburg, 
2002, [54] 

measure Sound intensity 
on a defined point 

steel box of 
1 1 1.5 m   

No 
optimization 

4  Tinnsten, 
2000, [58] 

sound intensity at the 
defined point above the top 
plate 

closed 
cylinder 

MMA 

5 Ruzzene et al., 
2002, [38] 

Investigate wave 
propagation in sandwich 
structures 

NPR 
sandwich 
structure 

No 
optimization 

6 Droz, 2016, 
[3] 

Compare modal density of 
various core configuration  

honeycomb 
sandwich 
structure 

No 
optimization 

7 Chekkal et al., 
2010,  [43] 

Compare acoustic 
absorption of the NPR 
foams and the regular 
foams 

NPR and 
regular foams 

No 
optimization 

8 Ruzzene, 
2004,  

Comparing sound 
transmission reduction of 
the sandwich beams with 
various cores 

Sandwich 
beam with 
various core 
topologies 

No 
optimization 
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No. Research Objective Case sample Optimization 
Method 

9 Lira et al., 
2011, [44] 

Minimize modal mass 
displacement 

gradient 
aero-engine 
fan blade 

first order 

10 Lira & Scarpa, 
2010, [49] 

Determining transverse 
shear stiffness of thickness 
gradient honeycombs 

Thickness 
gradient 
hexagonal 
honeycombs 

No 
optimization 

11 Hou et al., 
2013, [50] 

bending and failure 
behavior of gradient  
honeycomb 

Ligament 
gradient 
hexagonal 
honeycombs  

No 
optimization 

12 Shiyin et al., 
2015, [53] 

Investigate isolation 
performance of the 
trichiral structures 

Uniform and 
gradient 
trichiral 
structures 

No 
optimization 

13 Zhang et al., 
2017, [2] minimizing RSPL compressor 

housing 
Not 
mentioned 

14 
Marburg & 
Ranjbar, 
2012, [62]  

minimizing RSPL rectangular 
steel plate 

Genetic 
Algorithm 

15 Ranjbar, 
2013, [61] minimizing RSPL rectangular 

steel plate 
ANN&SA 

16 
Ranjbar & 
Marburg, 
2012, [63] 

minimizing RSPL rectangular 
steel plate 

Random 
search 

17 Ranjbar et al., 
2011, [64] minimizing RSPL rectangular 

steel plate 

Hybrid 
simplex 
&DOE 

18 Ranjbar et al., 
2016, [45] minimizing RSPL 

1-D gradient 
hexagonal 
honeycomb 
sandwich 
structure 

Random& 
first order 

The extensive review of the literature shows that although there have been some sets 

of researches on the effect of topology optimization on the acoustical behavior of the 
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rectangular plates and effect of core topology of the sandwich structures on their 

vibrational behavior, there are still a number of gaps in acoustical behavior of 

sandwich structures with auxetic gradient cores. In the present research, we investigate 

the effect of the topology of a novel two-dimensional gradient auxetic honeycomb core 

on the RSPL. Moreover, two well-known and robust optimization methods, i.e. the 

genetic algorithm (GA) and the Method of Moving Asymptotes (MMA) [59], [66] are 

applied to minimize the RSPL from the sandwich structure. To perform this analysis a 

direct software coupling between MATLAB and ANSYS [67] (Finite Elements) 

software platforms has been developed. To the best of the Author’s knowledge, a 2D 

gradient cellular auxetic topology has not been thoroughly evaluated for vibroacoustic 

applications. Moreover, the use of a combined GA-MMA optimization approach is a 

first in the field of vibroacoustic. 
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Chapter 3 

3 STRUCTURAL MODELING  

3.1 Introduction 

This chapter describes the methodology used to model the sandwich structure core as 

an orthotropic material. An appropriate method which can be used to model the core 

material is homogenization method. In order to simulate the sandwich structure, one 

can model the detailed geometry of the core considering all the geometrical 

parameters. However, there will be a large number of elements in the exact FE 

modeling causing a big increase in the total computational time. As one of the 

objectives of this research is to implement optimization algorithms to minimize the 

RSPL and the optimization algorithms are iterative procedures, this large 

computational time will serve as a key obstacle. Therefore, the total computational 

time should be decreased. The homogenized FE modeling can be used to model the 

sandwich structure core as an orthotropic material with defined mechanical properties. 

In the section 3.2, the application of this homogenized modeling for the case 1 of this 

study which is auxetic hexagonal honeycomb have been proposed. Section 3.3 propose 

the same methodology for the case 2 of this study which is anti-tetrachiral lattices.  

3.2 Homogenization Modeling of the Auxetic Hexagonal Honeycomb 

Homogenized modeling have been used previously for the sandwich structures.  

Gibson and Ashby [9] have proposed some closed form formulae to predict the 

mechanical properties of center-symetric hexagonal honeycombs. These formulae 

later have been used by Lira et al. [44] to determine mechanical properties of an aero-
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engine fan blade with an auxetic hexagonal honeycomb core. In the following section, 

the mechanical properties of hexagonal honeycombs have been calculated.  

3.2.1 Mechanical Properties of the Hexagonal Honeycomb 

In these sets of formulae, the mechanical properties of the core have been defined with 

their geometrical parameter. Figure 7 shows a unit cell for the auxetic hexagonal 

honeycomb with its geometrical parameters. 

 
Figure 7: A Representative Unit Cell (RUC) of the auxetic hexagonal honeycomb 

Later, Lira et al. [44] and Ranjbar et al. [45] have used the same analytical method 

which defines mechanical properties of hexagonal honeycombs based on three non-

dimensional parameters , ,
h t b
l l l

      and the angle  . The In-plane and out of 

plane mechanical properties of the hexagonal honeycomb are defined as follows.  
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For the all above mentioned mechanical properties there is a unique value. However, 

the value of Gxz is bounded between the upper (Voigt) and the lower (Reuss) bound. 

The upper bound and lower bound are defined as follows: 
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Grediac [68] and later Scarpa and Tomlin [25] showed that the shear modulus Gxz 

depends  the width, b, of honeycomb and for the 1 10   Gxz can be defined as 

follows: 
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The mechanical properties of the honeycomb core plate are modeled by an equivalent 

orthotropic material. The compliance matrix [S] for an orthotropic material is defined 
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as below, in which the engineering constants Ex, Ey, Ez, Gxy, Gyz and Gxz can be found 

from the above formulae. Considering Cellular Material Theory [9], the out-of-plane 

Poisson’s ratios xz and yz  can be assumed approximately zero. Moreover, the other 

transverse Poisson’s ratios zx zy   are assumed to be equal to Poisson’s ratio of the 

core material, c [9], [44].  
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(12) 

The formulations given in [9] for calculation of the mechanical properties of hexagonal 

honeycombs are valid for honeycomb panels made of at least 12×12 unit cells [44]. 

However, for the structures made of periodic assemblies of fewer cells, the stiffness 

can be generally decreased compared to the theoretical infinite panel solution [48]. In 

this study, each region consists 10×6 unit cells. Honeycomb panels made of at least 

10×10 unit cell show substantially the same behavior of the theoretical solution under 

uniaxial tensile loading, while reducing the number of the unit cell to 10×6 will cause 

a slight reduction of stiffness Ex compared to the one predicted by the theoretic 

formula. However, Ranjbar et al. [45] showed that for a gradient topology, if the total 

number of unit cells in the whole structure is greater than 10×8, the theoretical value 

predicted for Ex can be considered as an adequate approximation. In this study the 

gradient sandwich structure is made of 18×30 unit cells; one can, therefore, infer that 
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the formula given by Gibson and Ashby [9] can still be used to calculate the 

mechanical properties of the sandwich structure core in each region. 

Figure 8 shows the variation of Ex/Ec and Ey/Ec with respect to the change in the 

internal angle . In this case, Ec is the Young’s modulus of the core material (ABS 

Plastic [49]). The figure shows that an increase in the negative angle   causes a slight 

increase in Ex; conversely, an increase in Ey is more significant than one present in Ex. 

It is worth mentioning that an increase in the angle   leads to a decrease of the out-

of-plane Young’s modulus Ez [9]. 

The transverse bending of the sandwich plates is mostly ruled by the out-of-plane 

transverse shear moduli Gxz and Gyz [10]. For center-symmetric hexagonal 

honeycombs, Gyz modulus has a unique value [9], while the Gxz is limited between an 

upper (Voigt) and a lower (Reuss) bound. The value of Gxz can be identified from the 

effect created by the through the thickness bending on the honeycomb walls [25]. 

Figure 9 illustrates the variation of Gxz and Gyz with the change of the cell angle. For 

negative angles, an increase in the magnitude of the cell angle causes a reduction on 

Gxz, while it has the opposite effect for Gyz. Moreover, it is worth noticing that Gxz is 

generally higher in negative angles than positive. As it can be seen in Figure 9, the in-

plane Young’s moduli of an auxetic hexagonal core have higher values when the cell 

angle is between -30 to -10 and the change in these moduli are more significant than 

the change in the range -50 to -30. However, for the out of plane transverse shear 

stiffness, a totally different trend can be observed. For a cell angle varying between -

50 to -30°, the change in the transverse shear moduli is more significant. These 

observations can be useful to design hexagonal auxetic structures for a specific loading 

case, such as torsion or bending. It also worth mentioning that the effect of the variation 
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of in-plane shear stiffness Gxy on the RSPL, which is the objective function of this 

study, is negligible [45]. 

 
Figure 8: Variation of the in-plane mechanical properties of an auxetic hexagonal 

honeycomb, cell wall aspect ratio for internal cell angle of -30º is 2. 

 

 
Figure 9: Variation of the out of plane mechanical properties of an auxetic hexagonal 

honeycomb core, cell wall aspect ratio for internal cell angle of -30º is 2. 
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3.2.2 Finite Element Modelling of the Hexagonal Sandwich Structure 

The modal analysis for the auxetic hexagonal honeycomb sandwich structure with the 

uniform (constant angle) cell distribution has been performed using the ANSYS Rel. 

14.0 commercial FE analysis package. 

An exact FE sandwich structure with a core made from 18×30 auxetic hexagonal 

honeycomb unit cells has been demonstrated in Figure 10. The geometrical parameters 

of the auxetic hexagonal honeycomb core are listed in Table 2. 

Table 2: Geometrical parameters of auxetic hexagonal honeycomb core 

h (mm) l (mm) t (mm) b (mm)  (degree) 

36.95 18.48 1 20 -30 

The core is covered with two 960×960×2 mm skins plates. Both core and skins are 

made of ABS plastic with elastic properties listed in [44]. 

 

 
Figure 10: Exact FE layout of the sandwich structure with auxetic hexagonal core 

The Unit cell homogenization approach has been previously applied to calculate the 

vibroacoustic behavior of auxetic structures by Chekkal et al. [43]. To perform the 

homogenization of the sandwich structure, two solid elements per gauge thickness 
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have been considered to represent the homogenized core of the auxetic hexagonal 

honeycomb and the skins have been modeled using shell elements. The mechanical 

properties of the skin are the same as the one of ABS plastics, while the mechanical 

properties of the homogenized core can be defined using the compliance matrix [S]. 

Figure 11 shows a homogenized model of a hexagonal honeycomb structure and an 

example of a single unit cell, with a core and two skins. The homogenized unit cell is 

then reproduced along both the x and y directions to make the sandwich structures with 

overall dimensions mentioned above. To determine the most appropriate element types 

to represent the homogenized auxetic sandwich structure, a sensitivity analysis with 

respect to the natural frequency of the full-homogenized model is done[44], [45]. 

Different element types are considered to model the skin and the core of auxetic 

sandwich structure, and Shell 63 and Solid 45 elements from the ANSYS Rel. 14.0 

commercial code have been considered to model the skin and the core, respectively. A 

brief introduction about properties of the mentioned element types can be found in 

Appendix A. 

 
Figure 11: FE model of a homogenized auxetic sandwich structure and a 

representative unit cell 
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3.2.3 Model Verification 

To verify the validity of the homogenized modeling, a modal analysis has been 

performed to compare the natural frequencies of the homogenized FE model and the 

exact FE model, which represents the detailed geometry of the core and the skin of the 

panel (Figure 10). For the exact FE model both core and skins are represented by 

SHELL63 elements, with constant elements size of b/4 in the exact FE model [45]. 

Simply supported boundary conditions (SSBC) are considered for the modal analysis. 

To apply SSBC the nodes located at the half-plane of the core in both the homogenized 

and exact FE models are fixed. The total number of elements for the exact FE model 

was 51721 elements while for the homogenized model this number was decreased to 

2304 elements. The Block Lanczos solver has been used to perform the modal analysis. 

Table 3 shows the result of modal analysis of the auxetic hexagonal honeycomb 

sandwich structure for both models. Figure 12 shows the first four mode shapes for 

both models. The first six mode shapes in both homogenized and exact FE model are 

similar. Moreover, the natural frequencies found by the homogenized model are in 

good agreement with the ones calculated by the exact FE model. This result confirms 

that the homogenized model represents an excellent approximation of the exact FE 

model, especially in frequency range 0-200 Hz. 
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Figure 12: The first four mode shapes for the homogenized FE model and the exact 

FE model 

Table 3: Modal analysis comparison of the homogenized and the exact FE models, 
case 1 

 Model 1st 2nd 3rd 4th 5th 6th 

Frequency 
(Hz) 

Homogenized 
FE 37.84 91.78 94.76 143.90 179.10 183.4 

Exact FE 34.80 83.84 87.31 133.17 160.88 170.9 

 

3.3 Homogenization Modeling of the Anti-tetrachiral Lattices 

There have been several pieces of research that aim to predict the mechanical 

properties of chiral lattices. Chen et al. [22] have used an analytical method to predict 

the mechanical properties of anti-tetrachiral lattices. In the following calculation of the 

mechanical properties of these lattices have been proposed. 

3.3.1 Mechanical Properties of the Anti-tetrachiral Lattices 

An analytical model has been used to calculate the mechanical properties of anti-

tetrachiral lattices. Figure 13 shows a typical panel with a Representative Unit Cell 

(RUC) of the anti-tetrachiral lattice.  
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Figure 13: Anti-tetrachiral plate and its representative unit cell 

Chen et al. [22] used an analytical approach based on strain energy methods to 

calculate mechanical properties of the anisotropic anti-tetrachiral lattice. Figure 14 

represents the RUC with all its geometrical parameters. The parameters Lx and Ly are 

ligaments length along the x and y-direction respectively, r is the radius of the node 

and tl represents the thickness of the ligaments. Four non-dimensional parameters 

,  ,  ,  lyx
x y

LL t b
r r r r

        have been defined. 

 
Figure 14: Representative Unit Cell (RUC) and the geometrical parameters 

The following equations show the analytical formulation used to represent the in-plane 

mechanical properties of the anisotropic anti-tetrachiral lattice. The-in plane 

mechanical properties can be derived as follows: 
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In Equations (14) and (15), Ex and Ey are the elastic moduli along the x and y directions. 

When the ligament lengths along the x and y-directions are equal ( x y   ), the 

following formula can be obtained for a transversely isotropic lattice: 
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The elastic modulus along the z-direction is represented by the following equation  

[ (2 )] 2[ (1 )sin ]x y
z c

x y

E E
      


 

     
  (17) 

In which  

j = cos-1(1-b)  (18) 

Theoretically, the transverse shear modulus of general honeycomb structures is limited 

within an upper (Voigt) and a lower (Reuss) bound. Those bounds can be obtained by 

using the theorems of the minimum potential and minimum complementary energies 

[22]. The expressions of the upper bounds are the following: 

x
xz c

x y
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If we consider equal ligament lengths along the x and - directions, i.e. x y   , then it 

is possible to obtain the upper bound for a transversely isotropic lattice as: 

2xz yz cG G G   


 (21) 

Lorato et al. [33] proposed another formula for the calculation of the lower bond for 

the transversely isotropic lattice when x y   .In which for anti-tetrachiral 

configuration 1k = 0.045 and 2k = 0.67: 

1

2
xz yz c

kG G G
k

   
  

(22) 

The transverse shear modulus can also be expressed as in [33], in which the coefficient 

K for the anti-tetrachiral lattice is equal to 1.57: 

( )uplow low
KG G G G  


 (23) 

The geometry of the exact detailed ATG plate configuration is replaced by an 

equivalent orthotropic material using a compliance matrix [S] defined in Equation 

(12), in which the engineering constants Ex, Ey, Ez, Gxy and Gxz can be derived from 

above formulae. The out-of-plane Poisson’s ratios xz and yz  are assumed to be near 

zero, consistently with the assumptions of the Cellular Material Theory [9], [44]. 

Similarly, the other transverse Poisson’s ratios are assumed to satisfy the relation 

zx zy c      where c  is the Poisson’s ratio of the core material [9], [44]. The 

transverse shear modulus (Gxy) of the anti-tetrachiral cell can be found from the 

formula 
2(1 )

x
xy

xy

EG





. This equation cannot be defined for xy = -1. Therefore, as 

indicated by Alderson et al. in anti-tetrachiral systems [7], [28], the in-plane Poisson’s 

ratio derived by FE modeling and experiment analyses can be considered equal to -
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0.98. Figure 15 shows the sensitivity of the in-plane modulus along the x-direction 

with respect to the radius of the unit cell. The Young’s modulus has been normalized 

against the tensile modulus of the core material, EC, which is represented by 

acrylonitrile butadiene styrene (ABS) [44]. As the radius of the nodes increases, the 

longitudinal stiffness has a decrement proportional to r-1, as it can be noticed by 

inspecting Equations (14-16). 

 
Figure 15: In-plane Young’s modulus Ex ratio with respect to ATG unit cell radius 

with Lx=Ly=40 mm, tl=1mm and b=20mm 

Figure 16 shows the out-of-plane stiffness Ez is linearly dependent on the radius of the 

nodes r, as expected when considering that the out-of-plane Young’s modulus scales 

as the density of the honeycomb structure [9], [22]. 
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Figure 16: Out of plane stiffness Ez with respect to the radius of the unit cell r 

Figure 17 demonstrates the variation of out-of-plane transverse shear stiffness Gxz or 

Gyz with respect to the r. in case of a transverse isotropic lattice. For increasing values 

of the radius of the nodes, the out-of-plane shear modulus has a nonlinear behavior, 

with an initial minima and a steep increase at higher values of r when considering the 

numerical values of the ligament lengths and thickness considered. 

 
Figure 17: Variation of out of plane ATG transverse shear stiffness Gxz or Gyz 

3.3.2 Finite Element Modelling of the Anti-Tetrachiral Sandwich Structure 

Figure 18 shows a full scale detailed model of the sandwich structure with a core made 

of 1212 auxetic anti-terachiral cell and the proposed homogenized model. As it has 
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mentioned before the exact FE model can be replaced with a homogenized model in 

which an orthotropic material is used to model core of the sandwich structure. The 

geometrical parameters of the core are listed in Table 4. 

Table 4: Geometrical parameters of anti-tetrachiral core 

r (mm)  Lx(mm) Ly(mm) tl (mm) b (mm) 

8 40 40 1 20 

The anti-tetrachiral core is covered with two 960×960×2 mm skins plates. Both core 

and skins are made of ABS plastic with elastic properties listed in [44].  

 
Figure 18: Exact FE layout of the sandwich structure with anti-tetrachiral core and 

the homogenized model 

Chekal et al. [43] have previously used the unit cell homogenization approach to 

analyse the vibroacoustic behavior of auxetic structures. In the homogenized model, 

two solid elements have been considered to represent the homogenized anti-tetrachiral 

core while the skins have been modeled using shell elements. The mechanical 

properties of the skin are the same as the one of ABS plastics, while the mechanical 

properties of the homogenized core can be defined using the compliance matrix [S]. 
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In Figure 19 a homogenized unit cell having a core and two skins is demonstrated. The 

homogenized unit cell is then reproduced along both the x and-y directions to make 

the sandwich structures with overall dimensions mentioned above.  The element 

selection for the core and the skins is performed in the same manner which has been 

carried out for the auxetic hexagonal honeycomb structure. 

 
Figure 19: FE model of a homogenized auxetic sandwich structure unit cell 

3.3.3 Model Verification 

To verify the validity of the homogenized modeling, a modals analysis has been 

performed to compare the natural frequencies of the exact FE homogenized model and 

the exact FE model. Table 5 shows the natural frequencies of the homogenized model 

and the exact FE model, which represents the detailed geometry of the core and the 

skin of the panel. Both the core cells and the skins are represented by SHELL63 

elements, with constant elements size of b/4 in the exact FE model. Simply supported 

boundary conditions (SSBC) are considered for the modal analysis. The total number 

of elements for the exact FE model was 49728 elements while for the homogenized 

model this number was decreased to 2304 elements. The Block Lanczos solver has 

been used to perform the modal analysis. Table 5 shows the result of modal analysis 

of the auxetic anti-tetrachiral honeycomb sandwich structure for both models. The first 

six mode shapes in both homogenized and exact FE model are similar. Moreover, the 
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natural frequencies found by the homogenized model are in good agreement with the 

ones calculated by the exact FE model. This result confirms that the homogenized 

model represents an excellent approximation of the exact FE model, especially in 

frequency range 0-200 Hz. 

Table 5: Modal Analysis comparison of the homogenized and the exact FE models, 
case 2  

 Model 1st 2nd 3rd 4th 5th 6th 

Frequency 
(Hz) 

Homogenized 
FE 39.10 95.44 95.44 146.05 182.53 182.53 

Exact FE 36.19 88.65 88.65 136.96 170.58 170.58 

Once the homogenized model has been validated, the analysis of the radiated sound 

power can be performed. In the next chapter, the analysis of radiated sound power for 

sandwich structures with auxetic hexagonal honeycomb core and anti-tetrachiral core 

has been carried out. 
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 Chapter 4 

4 STRUCTURAL ACOUSTIC OF THE SANDWICH 

STRUCTURE 

4.1 Introduction 

This chapter provides theoretical analysis on the structural acoustics. This analysis is 

required for the optimization calculations presented in the following chapters. In 

section 4.2 the analytical formula on the structural acoustic have been proposed while 

section 4.3 sheds light on the finite element modeling of the sandwich structure under 

different loading conditions. 

4.2 Radiated Sound Power  

The level of radiated sound power, ( )sL f , has been used as a reliable measure to 

determine the emitted noise emitted from structures [69]. Radiated sound power level 

(RSPL) or sound power level for short can be defined as a function of frequency: 

0

( )( ) 10 logs
P fL f dB

P
   (24) 

Where, ( )P f  is the radiated sound power, P0 is a standardized reference value which 

is equal to 10-12 W and f is the frequency in Hz. ( )P f  also can be defined as [69]: 

2 ( ) ( )
1( )
2 a a rms f fP f c Sv    (25) 

Where, 1( . )ac ms  and 3( . )a kg m  are the speed of sound in the surrounding fluid (air in 

this case) and the density, respectively, S is the area of the surface from which sound 
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is radiated (the surface of the sandwich structure), ( )f  is the radiation efficiency and 

2 ( )rmsv f  is the mean squared normal velocity of the surface which is averaged over 

the sound radiating surface.  

There are two ways to obtain the rms velocity vector, ( )rmsiv f , at point i on the sound 

radiating surface. First method is to do an experimental measurement using 

accelerometers or a laser vibrometer, while the second method is a numerical method 

using a dynamic FE analysis. Either way, the normal component of the rms velocity 

vector, ( )rmsiv f , is then calculated by  

( ) ( )rmsi rmsi iv f v f n    (26) 

Where, ni is the unit normal vector on that particular surface point.  

Once the ( )rmsiv f  at all the nodal points of meshed structure's surface is known, the 

mean squared rms normal velocity can be averaged over the radiating surface as 

follows: 

2 2

1

1( ) ( )
nn

rmsi rmsi
in

v f v f
n 



   (27) 

Where, nn is the number of the measurement points or the finite element nodes on the 

radiating surface of the structure. 

 Therefore, the radiated sound power level, LS, can be calculated using the above 

formulae. 

It is worth mentioning that in the present research the velocity vectors, ( )rmsiv f , are 

only calculated by means of the FEM using a modal superposition technique, which is 

admissible for lightly damped structures. This means that each FE analysis consists of 

the two consecutive steps: The first step is a numerical modal analysis, which 
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determines the natural frequencies and the mode shapes of the structure. In the second 

step, the velocity vectors, ( )rmsiv f , are obtained by superposition of the previously 

computed mode shapes using scalar mode participation factors [1]. The mode 

participation factors can be regarded as weighting factors, which show the proportions 

of each mode occurring [1]. The numerical modal analysis in the first step ensures that 

all natural frequencies and mode shapes in the frequency band of the interest are 

automatically taken into account and none can be missed when the vibrational response 

of the structure subject to some force excitation is calculated in the second step. 

Moreover, as it has been indicated by Fritze et al. [70] that considering the solution of 

the fluid part of the structural acoustic for the exterior acoustic problems is 

significantly time-consuming and it appears as a bottleneck in the optimization 

process. To avoid solving the acoustic boundary value problem related to the 

calculation of the radiated sound power Ls, an acceptable approximation is the use of 

the equivalent radiated sound power (ERP) [69]. In this case, the radiation efficiency 

is considered equal to 1.0. The ERP will not cause any local acoustic effect, as in all 

Finite element simulations same radiation efficiency of σ = 1 is adopted. The ERP will 

therefore usually overestimate the sound radiation, however, it will provide an 

adequate approximation for the structure-induced acoustical problems, especially as 

an upper bound estimation [65], [70]. 

Since acoustic power is determined by the surface velocity, one alternative and less 

computationally expensive objective function, is to only consider the vibrational 

efficiency of the structure as expressed by the mean square normal velocity [65]. The 

radiated sound power level, LS, in Equation 24 is a function of the frequency and it 



39 

includes a frequency spectrum. To obtain a single global measure of the vibrational 

behavior of the structure in a given frequency range, the root mean square level of the 

structure-borne sound over that frequency band, known hereafter as RMLS, is 

calculated as follows: 

max

min

2

max min

( )
f

f
Ls f df

RMSL dB
f f





 (28) 

In which, fmax and fmin are upper and lower bounds of the frequency range. RMSL can 

be considered a special quantity characterizing the vibrational energy contained in the 

given frequency range. It serves as the objective function of the optimization problem 

in this research. 

4.3. Finite Element Modeling  

As it was mentioned in Chapter 3, once the homogenized model of the sandwich is 

validated by the modal analysis results, the analysis of the radiated sound power can 

be performed. The sandwich structure is modeled by Shell 63 elements representing 

the skin and Solid 45 elements modeling the core. The boundary conditions is a simply 

supported boundary condition and it is applied simply by fixing all the nodes located 

on the on the mid-plane of the core. The excitation applied by harmonic pressure loads. 

There are two different loading conditions applied on the sandwich structure to excite 

different modes of the model.   

Figure 20 shows loading case ‘a’ which consists of three local pressure excitations, 

while in loading case ‘b’, (Figure 21) a full pressure exerted on the whole external skin 

surface. The magnitude of pressure is 2.5 kPa and it has been applied to the elements 

in the z-direction with a frequency range of 0-200 Hz. 
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Figure 20: Loading case ‘a’, local pressure excitation 

 
Figure 21: Loading Case ‘b’, full load pressure excitation 

Once the loading excitation has been defined, the harmonic analysis in ANSYS 

software will be performed to obtain radiated sound power level and RMSL. In order 

to do that a macro code has been developed to generate the geometry of the sandwich 

structure, define material properties and perform the modal and the harmonic analysis. 

This macro code includes Equations (24-28). Once the harmonic analysis is done, the 

rms normal velocity in z-direction, ( )rmsiv f , will be found for all the nodes on the 

radiating surface. Then, using Equation 27 the averaged mean squared rms normal 
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velocity can be found. Next, Equation 24 and 28 will be employed to define the 

radiated sound power level as a function of frequency and RMSL respectively.  

The results for the RSPL and RMSL for the sandwich structures with auxetic 

hexagonal honeycomb core and anti-tetrachiral core will be illustrated in detail in 

chapter 5 and 6. The overall flow chart of the modeling and optimization of the auxetic 

sandwich structures is shown in Figure 22. 

 

Figure 22: The Vibroacoustic optimization flowchart 
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Chapter 5 

5 VIBROACOUSTIC OPTIMIZATION OF THE 2D 

GRADIENT HEXAGONAL HONEYCOMB SANDWICH 

STRUCTURE  

5.1 Introduction 

This chapter describes the vibroacoustic behavior of sandwich structure with 

hexagonal honeycomb cores. First, in section 5.2 a comparison between sandwich 

structures and simple plates in terms of vibroacoustic behavior is shown. Next, the 

variation of the RMSL with respect to the change of the internal cell angle on the 

RMSL is demonstrated. Then, the effect of gradient topology of the core on the RMSL 

is investigated in section 5.3. In section 5.4, the RMSL optimization of the 2D gradient 

hexagonal honeycomb sandwich structure is studied. In section 5.5, the thickness 

optimization of these sandwich structure has been evaluated and finally in section 5.6 

the normalized RSPL is discussed.  

5.2 RMSL Comparison between Sandwich structure and a Simple 

Plate   

First, to show that the sandwich structures perform better than simple plates with 

respect to vibroacoustic behavior, three assorted configurations have been considered 

and the RMSL have been calculated for each of them. The first configuration is a 

996 960 20  mm sandwich structure with a uniform (non-gradient) conventional 

hexagonal honeycomb core with an internal angle of 30. The second configuration is 
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represented by a simple plate with the same mass of the previous configuration, i.e. 

5.221 kg. To possess the same mass the thickness of the plate is however reduced and 

the dimension is 996 960 5.25  mm. The third configuration is a simple plate with 

the same dimensions of the first configuration. In this configuration, the core and the 

skin material are similar. As this plate is not a sandwich structure the mass increases 

more than 3 times. The RMSL for all these configurations under the loading case ‘a’ 

shown in Figure 20 is illustrated in Table 6. 

Table 6: RMSL and mass for the sandwich structure and simple plate 

Configuration 
No. 

Dimension 
[mm] Core properties Mass 

[kg] 
RMSL 
[dB] 

1 996 960 20   

Core is a uniform 
conventional hexagonal 
topology with constant angle 
of 30o 

5.221 127.77 

2 996 960 5.25 
 

Core is filled with the same 
ABS material 

5.221 137.65 

3 996 960 20   
Core is filled with the same 
ABS material 

19.889 118.45 

The first configuration has a noticeably lower RMSL compared to the second 

configuration, which is a simple non-sandwich structure. The reason behind the lower 

RMSL is the increased flexural properties of the sandwich structure compared to the 

simple plate. This higher flexural properties of the sandwich structure is caused by its 

increased thickness compared to the simple plate. On the other hand, the third 

configuration shows a significant reduction in RMSL. This reduction in RMSL 

happens as in this case, the thickness of the plate is same as the sandwich structure and 
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the core is filled with the same ABS material. However, this reduction in RMSL is 

accompanied by a mass increase of 300%. 

In the next step, the change of the RMSL with respect to the variation of core internal 

angle for a non-gradient sandwich structure is shown in Figure 23. The RMSL in the 

sandwich structures with negative core angles (auxetic core) is generally lower than 

the RMSL in sandwich structures with positive core angles. This is because of the 

auxetic cores generally, have higher out of plane bending stiffness provided by the 

transverse shear Gxz (see Figure 9). The small discontinuity for =0o is due to the 

different interpolation coefficients used for the transverse shear Gxz for positive and 

negative internal cell angle which has been mentioned in Equation 11. It can also be 

noted that the sandwich structure with a core angle of -50o shows minimum RMSL. 

 
Figure 23: Change of the RMSL with respect to variation of core angle for a non-

gradient sandwich structure 

In the next section, a gradient topology for the core of the sandwich structure will be 

proposed and the effect of this topology on the vibroacoustic behavior of the sandwich 

structures will be investigated.  
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5.3 Gradient Topology 

The core geometry of the sandwich structure shown in Table 6 was a uniform core 

geometry. In another word, the core cellular structure was made of cells having the 

same geometry in any part of the structure. It is, however, possible to produce this 

cellular structure with a gradient configuration. The configuration in this gradient 

topology is made of a continuous distribution of unit cells with compatible geometry, 

but having a single variable parameter like the internal cell angle [45]. In gradient 

configuration, using a gradient cellular structure will lead to a varying distribution of 

stiffness and deformation. Therefore, different mechanical properties can be achieved 

in different areas of the structure. Having desired mechanical properties in the various 

regions of the core will lead to having better vibroacoustical behavior [45].  

Figure 24 shows an example of a 2D gradient hexagonal cellular configuration. As it 

can be seen in this figure the core geometries in different regions are different. The 2D 

gradient core consists of nine different regions with nine different internal angle .  

 
Figure 24: 2D gradient hexagonal honeycomb core having nine different regions 
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Figure 25 demonstrates a gradient geometry for a unit cell. To generate the 2D gradient 

core configuration, the unit cells with different internal angle   have been assembled 

next to each other. The length L1 and the position of six points 1-6 shown in the figure 

are fixed. Therefore, these unit cells can be simply assembled next to each other in x 

and y-direction to form the 2D gradient core. The geometry and mechanical properties 

of the unit cells will change with a change in angle   while the length L1 and points 

1-6 are fixed. The formula proposed in Chapter 3 can be used to determine the 

mechanical properties in each region. The geometrical parameters of the base line 

auxetic hexagonal unit cell have been shown in Table 2. 

 
Figure 25: Gradient geometry for a unit cell with changing angles and fixed points  

1-6 

Figure 26 shows the distribution of the homogenized auxetic hexagonal unit cells for 

the 2D gradient topology for the loading cases ‘a’ and ‘b’. The nine different regions 

with nine different angles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) are assembled next to 

each other to form the whole sandwich structure. Each region is shown with a distinct 
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color. The main objective of the optimization problem is to minimize the RMSL by 

modifying the geometry of the model in each of these 9 regions. 

 
Figure 26: Different external pressure loadings (dashed areas) on the homogenized 

finite element model of 2D gradient sandwich structure 

In the following section, the minimization of the radiated sound power level for the 

sandwich structures with 2D gradient core will be presented. 

5.4 Optimization of the 2D Gradient Core 

The minimization process of RSPL over the frequency range of 0 to 200 Hz is 

discussed in this section. The objective function for the optimization process is the root 

mean square level of radiated sound power level (RMSL) of sandwich structure. The 

design variables of this optimization problem are the angles of the unit cells in the 

different regions. The general optimization problem is, then defined as:  

Minimize RMSL  5 71 2 3 4 6 8 9, , , , , , , ,            

S. t. 150   , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 50   
(29) 
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To do the optimization process two different optimization methods have been 

considered. The Genetic Algorithm optimization method (GA) and the Method of 

Moving Asymptotes (MMA) [59], [66]. 

5.4.1 GA Optimization  

Genetic algorithm has been widely used in topology optimization problems. GA 

optimization method which was first formulated by Holland [71], is a probabilistic 

optimization method that is based on natural biological evolution. GA is consist of an 

iterative procedure including four main steps [72], [73]which are: 

1- Creation of an initial random population, 

2- Performance evaluation of each individual using the fitness function, 

3- Selecting individuals to reproduce the new population, applying GA operators, i.e. 

crossover and mutation 

4- Repeating steps 2–3 until a termination criterion is reached. 

In this section, GA optimization technique is used to minimize the radiated sound from 

a sandwich structure. The design variables in the optimization process are the internal 

cell angles in the different regions of the 2D gradient sandwich structure. The 2D 

gradient sandwich structure has been divided into nine different regions with nine 

different angles 5 71 2 3 4 6 8 9, , , , , , , , T         . The materials considered for the skin 

plate and the core are equal (ABS plastics). A fixed value of 20 mm is considered for 

the core thickness, while the skin thickness is 2 mm. The optimization process has 

been performed using genetic algorithm optimization method. A custom script has 

been set up in MATLAB environment. It will store nine design variables in a text file 

and call the Finite Element ANSYS batch file. The ANSYS software reads the text file 

as an input and generates the gradient homogenized model. Then, it will mesh the 
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sandwich structure. The element size for the homogenized FE model in the ANSYS 

software is 40 mm. In the next step, the ANSYS software performs the modal analysis 

using Block Lanczos method and the harmonic analysis using a mode superposition 

method. The objective function (RMSL or root mean square of the radiated sound 

power level) is calculated inside the FE script at each iteration. This objective function 

will be stored in a text file and in the next iteration, it will serve as an input for 

MATLAB. This loop continues until the convergence occurs. Figure 27 shows the 

flowchart of the optimization process and the interactive link between MATLAB and 

ANSYS software. The MATLAB codes for integrating MATLAB and ANSYS, 

calculating the objective function and the codes for Genetic Algorithm optimization 

can be found in Appendix B. 

 
Figure 27: The flowchart of the GA optimization process 
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As mentioned before, the problem is described by nine design variables. Therefore, 

selecting a proper population size is a challenge. In order to do that a sensitivity 

analysis on the order of population size has been performed and the initial population 

size of 50 is considered. For a better scoping of the feasible design envelope of this 

optimization problem, the first generation of the genetic algorithm has been created by 

using a Latin hypercube sampling (LHS) method. Figure 28 shows the plot matrix of 

the LHS design and the related objective function. The RMSL is calculated for loading 

case ‘a’. 

 



 

 

Figure 28: Plot matrix of Latin Hypercube Sampling for the GA initial population
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As it is shown in the figure the design variables created by LHS method are evenly 

distributed in the angles ranging between -50º and 50º. The tenth row and column show 

the RMSL which is the objective function of this optimization problem.  It can be 

observed that in the regions that the internal cell angle is closer to -50º the RMSL is 

lower. This finding has been previously observed in  

In the next step, the change of the RMSL with respect to the variation of core internal 

angle for a non-gradient sandwich structure is shown in Figure 23. The RMSL in the 

sandwich structures with negative core angles (auxetic core) is generally lower than 

the RMSL in sandwich structures with positive core angles. This is because of the 

auxetic cores generally, have higher out of plane bending stiffness provided by the 

transverse shear Gxz (see Figure 9). The small discontinuity for =0o is due to the 

different interpolation coefficients used for the transverse shear Gxz for positive and 

negative internal cell angle which has been mentioned in Equation 11. It can also be 

noted that the sandwich structure with a core angle of -50o shows minimum RMSL. 

 as well. This trend can be seen more specifically in region No. 5 in which it is clear 

that an increase in internal cell angle, 5 , will lead to an increase in RMSL. 

After having the initial population created by LHS design method, the objective 

function is then minimized over 100 generations. The crossover probability is 0.8 

(must be a number 1 ) and the mutation rate is 0.2 (must be a number 1 ).  Figure 

29 and Figure 30 show the variation of the best and the average of the objective 

function at each generation for the loading cases ‘a’ and ‘b’. For the two cases, 

convergence is observed after about 80 generations. Each function evaluation takes 
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about 4.5 CPU seconds on a 2.6 GHz Intel® Core™ i5 processor with 4 GB of RAM 

operating on a Windows 7 system. The total computation time using the GA method 

was about 6 hrs. and 15 minutes. 

 

 
Figure 29: Variation of RMSL per generation during the GA optimization for loading 

cases ‘a’ 

 
Figure 30: Variation of RMSL per generation during the GA optimization for loading 
cases ‘b’ 



54 

5.4.2 MMA Optimization  

The other method evaluated in this study for optimization purposes is the Method of 

Moving Asymptotes (MMA) [59], [66]. In each iteration of the MMA, the objective 

function is approximated with a strictly convex sub-problem. The generation of these 

sub-problems is controlled by the moving asymptotes, which may both stabilize and 

speed up the convergence of the general process [66].  For the first iteration, an initial 

guess of the design variables, k ,  is required. Then using the gradient information of 

the current iteration point (the initial guess), the objective function will be 

approximated. For the next iterations, this approximation is based not only on gradient 

information at the current iteration point but also implicitly on information from 

previous iteration points. The sub-problem is solved and the unique optimal solution 

becomes the next iteration point. Then a new sub-problem is generated and this 

procedure continues until a previously defined convergence criteria occurs. The initial 

guess of the design variables in this research for both loading cases is considered to be  

 30 , 30 , 30 , 30 , 30 , 30 , 30 , 30 , 30k
                   

The change of the objective function per iteration for the two loading cases are 

demonstrated in Figure 31 and Figure 32. It can be seen in both figures that the 

convergence observed after 8 iterations in this case. It should, however, be mentioned 

that, as the MMA is a gradient-based method, each iteration includes in this case 18 

function evaluations (sub-iterations). Nevertheless, the MMA features a decrease in 

computation time to 27 minutes. 
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Figure 31: Variation of RMSL per iteration in MMA optimization method, loading 

cases ‘a’ 

 
Figure 32: Variation of RMSL per iteration in MMA optimization method, loading 

cases ‘b’ 

5.4.3 Hybrid GA-MMA Optimization 

To exploit the advantages of both the GA and MMA methods, a hybrid GA-MMA 

optimization technique is used. In order to do that, the optimal result of the GA 

optimization has been used as an initial guess for the MMA method. The result of this 

hybrid optimization shows a slight decrease of the final value of the objective function 

for the loading case ‘a’. In the case of loading ‘b’ the results of the hybrid and MMA 

optimizations are alike. 



56 

5.5 Optimization Results  

In this section, the base line configuration and all optimal configurations of the 

hexagonal honeycomb sandwich structure have been compared. The base line 

configuration is a sandwich structure with a total dimensions of 996 960 20  mm. 

The core of this sandwich structure consists of 18 30  auxetic hexagonal unit cells 

with a negative internal angle of 30   . The core is covered with two 960×960×2 

mm skins plates. Both core and skins are made of ABS plastic with elastic properties 

listed in [44]. The geometrical parameters of the model are given in Table 2. All the 

optimized configurations have the same dimensions, material properties and 

geometrical parameters as the base line configuration. The only difference is that they 

have different internal cell angles,  5 71 2 3 4 6 8 9, , , , , , , ,         , in different regions 

of the core.  

5.5.1 RMSL Optimization Results 

Table 7 and Table 8 show the geometry, optimization variables and total mass of the 

sandwich panel for the base line and optimal configurations. Table 7 shows that for 

the load case ‘a’ the GA reduced the root mean square of sound power level to 126.50 

dB, the MMA reduced the objective function to 126.47 dB, while the hybrid GA-MMA 

gave a final very slight reduction to 126.46 dB. The mass of the sandwich structure 

after the GA and MMA optimizations has increased by 4.9% and 6.4% respectively, 

while the hybrid optimization gave a mass enhancement of 5.7%. The hybrid GA-

MMA method for the loading case ‘a’ results in a configuration with the minimum 

objective function and minimum mass increase.



 

Table 7: The optimization variables, loading case ‘a’ 

Configuration Set 1   2  3   4   5   6  7   8   9   RMSL (dB) Mass 
(Kg) 

Base Line Configuration -30 -30 -30 -30 -30 -30 -30 -30 -30 127.09 5.635 

GA Optimized Configuration -48.72 -49.31 46.33 -48.76 -48.42 -49.48 2.88 -46.64 -48.74 126.50 5.911 

MMA Optimized Configuration -50 -50 -30.68 -50 -50 -50 3.24 -50 -50 126.47 5.994 

Hybrid MMA-GA Optimized 
Configuration -50 -50 48.95 -50 -50 -50 0.01 -50 -50 126.46 5.956 

Table 8: The optimization variables, loading case ‘b’ 

Configuration Set 1   2  3   4   5   6  7   8   9   RMSL (dB) Mass 
(Kg) 

Base Line Configuration -30 -30 -30 -30 -30 -30 -30 -30 -30 143.59 5.635 

GA Optimized Configuration -49.3 -41.95 -49.72 -48.5 -48.64 -49.04 -47.93 -43.69 -49.14 143.07 6.060 

MMA Optimized Configuration -50 -40.39 -50 -50 -50 -50 -50 -40.39 -50 143.04 6.077 

Hybrid MMA-GA Optimized 
Configuration -50 -40.39 -50 -50 -50 -50 -50 -40.39 -50 143.04 6.077 
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It is clear from Table 8 that for loading case ‘b’ the root mean square of the sound 

power level is reduced to 143.07 dB using GA optimization method. Applying both 

MMA and hybrid optimizations the RMSL is reduced to 142.04 dB. For the loading 

case ‘b’ all the optimized configurations have higher weight than the base line 

configuration. The optimized GA configuration results in 7.5% mass increase, while 

the MMA and hybrid optimized configurations show a 7.8% increase in mass. In the 

MMA optimized configuration, all the angles in the 9 regions are either -50o or -40o. 

The objective function for a sandwich structure with a non-gradient core with an 

internal angle of -10 and -50 is 144.12 dB and 143.07 dB, respectively. These results 

show that the use of a gradient topology in the sandwich structure core enables the 

structure slightly decrease the sound radiated power, at the same time giving a 

distribution of varying mechanical properties. Figure 33 and Figure 34 illustrate the 

core geometries for the different configurations of Table 7 and Table 8, respectively. 

For both loading cases the proposed core geometries of the GA optimized 

configuration and Hybrid configuration seems to be similar with slight change in cell 

angles in some regions.   
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Figure 33: Core geometries of all configurations, loading case ‘a’ 

 
Figure 34: Core geometries of all configurations, loading case ‘b’ 
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5.5.2 RSPL vs Frequency  

Figure 35 shows the RSPL over the frequency range of 0-200 Hz for the four 

configuration sets under the loading case ‘a’. In these simulations, the thickness of the 

sandwich structure for all four cases is fixed in every part of the plate. For the loading 

case ‘a’ all optimum configurations show approximately similar RMSL-frequency 

curves. In the base line configuration, the peaks corresponding to all six natural 

frequencies within the considered bandwidth can be observed. On the contrary, in 

every optimum configuration, the peak corresponding to the 6th
 natural frequency is 

missing within the same band. The peaks amplitudes are also reduced by 6 dB and 4 

dB for the first and fourth natural frequency, respectively. It is also apparent that all 

the natural frequencies for the optimum configurations have shifted to lower values. 

 
Figure 35: Effect of different optimization methods on sound power level reduction, 

loading case ‘a’ 

Figure 36 shows the RSPLs in the frequency domain for the four unique final 

optimized configurations subjected to loading case ‘b’, this time. It is worth 

mentioning that in this loading case the pressure is applied to the whole surface, and 

only modes 1, 5 and 6 are significantly excited. In this loading case, the change in the 
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first natural frequency for the optimum configurations is not significant. The 5th natural 

frequency is however decreased, while the 6th is out of the 0-200 Hz frequency range. 

 
Figure 36: Effect of the different optimization methods on the sound power level 

reduction, loading case ‘b’ 

5.5.3 Harmonic Analysis Results Verification 

In chapter 3, the proposed homogenized model was validated comparing the result of 

the modal analysis for the homogenized model and the exact FE model. Here, the 

second model verification is done comparing the result of the harmonic analysis for 

the homogenized model and exact FE model. To verify the results corresponding to 

the loading case a, the frequency RSPL history related to the optimized Hybrid MMA-

GA optimized configuration is shown in Figure 37 against the same configuration 

represented this time by a exact FE model. The RSPL represented by the homogenized 

model is a good approximation of the one provided by the exact FE one within the 

frequency range of 0-100 Hz. The exact FE model tends to provide a softening of the 

natural frequencies, but also a lower RMSL response. At higher frequencies the 

discrepancy between the results from the asymptotic homogenization model and the 
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exact FE one becomes larger; the homogenized model shows a lower modal density 

compared to the exact FE one. 

 
Figure 37: RSPL for the exact FE and the homogenized model, loading case ‘a’ 

5.5.4 RMSL Results Comparison 

After result verification, in this section, the RMSL results of gradient sandwich 

structures is compared to the result of non-gradient sandwich structure. The loading 

condition for this comparison is considered to be the loading case ‘a’. Table 9 shows 

the RMSL and total mass for the five assorted configurations. The first configuration 

is a sandwich structure with a non-gradient conventional hexagonal honeycomb core 

with an internal angle of 30º. The second one is the base line configuration of this 

study which is related to a sandwich structure with a none-gradient auxetic core with 

internal an angle of -30º. The third configuration is the best configuration derived from 

Figure 23, i.e. a sandwich structure with a non-gradient auxetic core with internal an 

angle of -50º. The fourth configuration is a sandwich structure with 1-dimensional 

gradient core, similar to the one studied by Ranjbar et al. [45]. The fifth configuration 

is the Hybrid GA-MMA optimized configuration of this study (see Table 8) which is 

a sandwich structure with two-dimensional gradient core. 
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Table 9: Comparison of RMSL and mass for gradient and non-gradient topologies 
Config. 

No. 
Dimension 

[mm] Core properties Mass 
[kg] RMSL[dB] 

1 996 960 20   
The core is a uniform conventional 
hexagonal topology with constant 
angle of 30º 

5.221 127.77 

2 996 960 20   
The core is a uniform auxetic 
hexagonal topology with constant 
angle of -30º 

5.635 127.09 

3 996 960 20   
The core is a uniform auxetic 
hexagonal topology with constant 
angle of -50º 

6.143 126.51 

4 996 960 20   The core is a 1-D gradient auxetic 
hexagonal with 3 different angles[45] 6.015 126.49 

5 996 960 20   
The core is a 2D gradient auxetic 
hexagonal with 9 different angles (the 
proposed configuration of this study) 

5.956 126.46 

The RMSL for the first configuration which is a sandwich structure with a 

conventional hexagonal honeycomb core is 127.77 dB while the RMSL for the second 

configuration, a sandwich structure with uniform auxetic gradient core with an internal 

angle of -30º, is 127.09 dB. This decrease of 0.7dB is considered to be a noticeable 

reduction in the root mean square level of radiated sound power level (RMSL). The 

RMSL for the third configuration which is a non-gradient sandwich structure with an 

internal core angle of -50º the analogous sound level is 126.51 dB. By using a gradient 

topology one obtains a decrease of the RMSL with a slight increase in mass compared 

to base line configuration. Compared to configuration No. 3, the 2D gradient 

configuration (configuration No. 4) shows, however, a slight reduction in RMSL, 

accompanied by 3% reduction of the total mass. This confirms that the gradient 

topology features a better performance compared to non-gradient one since the desired 

mechanical properties can be available in different regions. Moreover, because in the 
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2D gradient the change in topology is applied in two dimensions the RMSL is reduced 

to a lower value compared to a correspondent 1-D gradient topology. Different areas 

of the core have different transverse shear properties that affect the out-of-plane 

response at different resonant acoustic radiating modes. 

5.5.5 Thickness Optimization of the Sandwich Structure  

In this section, the effect of the change of sandwich structure's thickness, b,  

(see Figure 7) on the RMSL and the RSPL of the sandwich structure is demonstrated. 

First, the effect of the change of the core thickness on the RMSL of the sandwich 

structure with a constant cell angle of -30o has been evaluated. Figure 38 shows the 

RMSL results for both loading cases ‘a’ and ‘b’. The increase of the thickness creates 

a reduction of the RMSL for both loading cases. This reduction in RMSL generally 

happens since the increase in the core thickness leads to increased flexural properties 

of the sandwich structure. The thickness of 30 mm (that corresponds to the maximum 

of the thickness range considered) is considered to be an optimum thickness for both 

loading cases. 

 
Figure 38: Variation of the RMSL with respect to the change of core thickness, 

constant internal cell angle of -30º is considered for all cases 
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Next, the variation of the RSPL over the frequency range of 0-200 Hz for three 

different configurations have been compared to each other. The first configuration is 

the base line configuration of the study (see Table 7), the second configuration is a 

configuration with the original angles and optimum thickness, and the third 

configuration is a sandwich structure which has optimum angles (see Table 7) and 

optimum thickness. For the optimum thickness configurations, all natural frequencies 

are moved to higher values. The variation of the RSPL with respect to the frequency 

for these three configurations have been demonstrated in Figure 39. As it can be seen 

in the figure, for the optimum thickness and angles configuration only the first four 

natural frequencies remain within the 0-200 Hz range, and the 5th and 6th natural 

frequencies are now shifted to 226 Hz and 238 Hz, respectively.  

 
Figure 39: Sound power level reduction for the optimum thickness configurations, 

loading case ‘a’ 

5.5.6 Normalized RSPL 

The various optimized configurations bring a decrease of the RSML, but also marked 

changes of the mass of the panels. To account for the change of weight,  a normalized 

acoustic sound power ( )P  should be evaluated, calculated as the ratio between the 
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radiated sound power Pacoustic and the power associated with the kinetic energy T of the 

structure [45]: 

acousticsPP T  (30) 

31
2 tT m S  (31) 

In Equation 31 the kinetic power is defined in term of the circular frequency of the 

harmonic excitation pressure loads, ω (in s−1), the total mass of the sandwich structure, 

mt (in kg), and the radiating area of sandwich structure S. The normalized frequency 

ωn is also defined in Equation 32, where ω1 is the first natural frequency of the base 

line configuration.       

1
n




  (32) 

 
Figure 40: Normalized radiated sound pressures at non-dimensional frequencies, 

loading case ‘a’ 
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Figure 41: Normalized radiated sound pressures at non-dimensional frequencies, 

loading case ‘b’ 

Figure 40 and Figure 41 show the reduction of the normalized radiated sound power 

with respect to the thickness and angle variation in the hexagonal honeycomb 

sandwich structure for loading cases ‘a’ and ‘b’, respectively. For the two loading 

cases, the optimum configurations feature a normalized fundamental frequency shifted 

to higher values by 32% and 37%. What is quite remarkable is the 91.1% reduction in 

the normalized radiated sound power for the configuration with optimum thickness 

and cell angles. For the original angles of -30o and the optimum thickness of 30 mm, 

the normalized radiated sound power is also decreased by 84.2%. In the loading case 

‘b’, the increase in normalized frequency for the original angles and optimum 

thickness configuration and the optimum thickness and cell angles configuration are 

37% and 32%, respectively. The optimized configuration show also, in this case, a 

remarkable decrease of the normalized radiated sound power of 84.2% and 87.2%. The 

normalized sound power level is significantly higher in the loading case ‘b’ than 

loading case ‘a’ since in this loading case the same pressure is applied to a larger area. 
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5.6 Concluding Remarks 

This study has shown that the variation of out-of-plane mechanical properties of 

auxetic hexagonal honeycombs in uniform and 2D gradient configurations lead to a 

reduction in the RSPL. The use of auxetic core increases, however, the total mass of 

the sandwich structure. To overcome this drawback, a gradient core can be used 

because of the capability of tailoring the mechanical properties. The radiated noise 

level of the structure is also significantly dependent upon the location of the 

excitations. The use of gradient core geometries can be instrumental to cover the 

excitations areas. 

A simple non-gradient sandwich structure radiates less sound compared to a simple 

plate with the same mass, and this is due to the increased flexural properties of the 

sandwich structure. The RMSL for a sandwich structure with a non-gradient core 

changes between 126.51 dB and 127.83 dB. The use of a gradient topology leads to a 

decrease of the RMSL, with a slight increase in mass compared to the base line non-

gradient configuration with an internal angle of -30o. Moreover, this optimized 

gradient sandwich structure shows a slight reduction in RMSL accompanied by a 3% 

reduction in mass compared to a non-gradient sandwich structure with an internal 

angle of -50o. This confirms that the gradient topology has an enhanced performance 

compared to the non-gradient one, as optimized mechanical properties can be available 

in different regions. The 2D gradient core appears to offer a reduced RMSL compared 

to the 1-D gradient topology. The reduction becomes however remarkable when the 

normalized RSPLs and frequencies are considered. In those cases, the 2D gradient with 

both thickness and optimized cell angles provide a very significant reduction (91%) of 

the normalized power of the radiated sound, compared to the base line configuration. 
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In this work the Genetic algorithm, the method of moving asymptotes and the hybrid 

GA-MMA optimizations methods have been used to optimize the root mean square of 

the sound power level. The computation time related to the MMA calculations was 

93% lower than the one needed for the GA optimization. In all loading cases, it has 

been noticed that the configuration proposed by the hybrid GA-MMA optimization 

method performs better in reducing the RSPL. This reduction in RMSL is 

accompanied by an increase in the total mass of the structure by 5.7 % and 7.8% for 

the loading cases ‘a’ and ‘b’, respectively. This configuration behaves significantly 

better than the base line one, both in low and higher frequency ranges. For the two 

loading cases, the GA optimized configuration has the smallest mass increment 

compared to the base line configurations, while the objective function is significantly 

reduced. This feature could be considered for structures applications for which weight 

reductions are paramount.  
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Chapter 6 

6 OPTIMIZATION OF THE 2D GRADIENT ANTI-

TETRACHIRAL SANDWICH STRUCTURE  

6.1 Introduction 

This chapter deals with vibroacoustic behavior of sandwich structure with anti-

tetrachiral core. Chiral lattices have attracted the attention of researchers as their 

unique topology brings outstanding features such as high strength, lightweight and 

excellent design flexibility [53]. Anti-tetrachiral lattices have been used previously as 

a core in sandwich structure to optimize the radiated sound from a sandwich structure 

[45]. In the study mentioned before the total mass of a sandwich structure was not 

considered as a constraint. However, in this study, a mass constrained optimization 

will be accomplished.  Section 6.2 introduces the gradient topology in anti-tetrachiral 

cores.  Section 6.3 and 6.4 explains the RMSL optimization result of the 2D gradient 

anti-tetrachiral sandwich structure and finally, in section 6.5, the normalized RSPL of 

these sandwich structure has been evaluated. 

6.2 Gradient Topology 

As it has been investigated before, using gradient topology in a sandwich structures 

core will lead to have desired mechanical properties in different areas of the core [45], 

[74]. Here, for the sandwich structure with anti-tetrachiral core using gradient 

geometry will lead to better vibroacoustical behavior. The same concept has been 

adopted in chapter 5 for the auxetic hexagonal honey comb cores.  
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6.2.1 Variation of RMSL with Respect to Change of Cell Radius 

Before introducing gradient topology for the core of the sandwich structure, the change 

of RMSL with respect to the change of cell radius should be investigated. Figure 42 

shows this variation. The homogenized modeling introduced in Chapter 3 is used to 

analyze the auxetic anti-tetrachiral sandwich structure. The geometrical parameters of 

the core have been given in Table 4 and the anti-tetrachiral core is covered with two 

960×960×2 mm skins plates. Both core and skins are made of ABS plastic with elastic 

properties listed in [44]. 

 
Figure 42: The variation of RMSL with respect to change in internal cell radius 

 The RMSL in the sandwich structures with higher core internal cell radii is generally 

lower than the RMSL in sandwich structures with lower internal cell radii. The 

Maximum RMSL happens at cell radius of 3.5 mm while it can be noted that the 

sandwich structure with a core internal cell radius of 16 mm shows the minimum 

RMSL. 

In the next section, a gradient topology for the anti-tetrachiral core of the sandwich 

structure will be proposed and the effect of this topology on the vibroacoustic behavior 

of the sandwich structures will be investigated.  
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6.2.2 Defining Gradient Geometry 

The core geometry of the sandwich structure in section 6.2.1 was a uniform core 

geometry. In another word, the core cellular structure was made of cells having the 

same geometry in any part of the structure. It is, however, possible to produce this 

cellular structure with a gradient configuration. The configuration in this gradient 

topology is made of a continuous distribution of unit cells with compatible geometry, 

but having a single variable parameter like the internal cell radius. In gradient 

configuration, using a gradient cellular structure will lead to a varying distribution of 

stiffness and deformation. Therefore, different mechanical properties can be achieved 

in different areas of the structure. Having desired mechanical properties in the various 

regions of the core will lead to having better vibroacoustical behavior [45].   

Figure 43 shows an example of a 2D gradient anti-tetrachiral core configuration. As it 

can be seen in this figure the core geometries in different regions are different. The 2D 

gradient core consists of nine different regions with nine different internal radii, r.  

 
Figure 43: Gradient anti-tetrachiral core with nine different regions 
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Figure 44 shows a gradient geometry for an anti-tetrachiral unit cell. To generate the 

2D gradient core configuration, the unit cells have been assembled next to each other. 

The ligament length, L shown in the figure is fixed. Therefore, these unit cells can be 

simply assembled next to each other in x and y-direction to form the 2D gradient core. 

The geometry and mechanical properties of the unit cells will change with a change in 

cell radius, r, while the length L1 is fixed. The formula proposed in Chapter 3 can be 

used to determine the mechanical properties in each region. The geometrical 

parameters of the base line anti-terachiral unit cell have been shown in Table 4. 

 
Figure 44: Gradient geometry for a unit cell with changing radii and fixed ligament 

length, L1 

The distribution of the homogenized anti-tetrachiral unit cells for the 2D gradient 

topology is same as the distribution of the hexagonal honeycomb core and it has been 

shown in Figure 26. The nine different regions with nine different cell radii (r1, r2, r3, 

r4, r5, r6, r7, r8, r9) are assembled next to each other to form the whole sandwich 

structure. Each region is shown with a distinct color. The main objective of the 

optimization problem is to minimize the RMSL by modifying the geometry of the 

model in each of these 9 regions. 

In the following section, the minimization of the RSPL for the sandwich structures 

with 2D gradient core will be presented. 
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6.3 RMSL Optimization of the 2D Gradient Sandwich Structure 

The minimization process of RSPL over the frequency range of 0 to 200 Hz is 

discussed in this section. The objective function for the optimization process is the root 

mean square level of radiated sound power level (RMSL) of sandwich structure. The 

design variables of this optimization problem in this section are the internal cell radii 

in the different regions as well as the core thickness, b, the ligament thickness, tl and 

the skin thickness, ts. The total number of design variables is 12 as there are 9 different 

cell radii in different regions and there are 3 different thicknesses. The geometrical 

parameters for base line configuration of the sandwich structure are given in Table 10. 

Table 10: Geometrical parameters of the base line anti-tetrachiral core 

r (mm)  Lx(mm) Ly(mm) tl (mm) b (mm) ts (mm) 

8 24 24 1 12 2 

The sandwich structure which is considered to be the base line configuration of this 

study consists of a uniform core with a constant cell radius of 8 mm. The total mass, 

mt, of this sandwich structure is 5.341 kg. The optimization process in this chapter is 

a mass constrained optimization. The maximum increase in the total mass of the 

optimized design of the sandwich structure is considered to be 10% increase in total 

mass of the base line configuration, mb. 

Therefore, the general optimization problem is, then defined as:  
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Minimize RMSL  5 71 2 3 4 6 8 9, , ,, , , , , , , , l st t br r r r r r r r r    

S. t. 

 5 71 2 3 4 6 8 93 16, , , , , , , ,mm mmr r r r r r r r r   

1 , 2 l smm t t mm   

0.9 1.1 b t bm m m   

(33) 

To do the optimization process two different optimization methods have been 

considered. The Genetic Algorithm optimization method (GA) and the Method of 

Moving Asymptotes (MMA) [59], [66]. 

6.3.1 GA Optimization 

Genetic algorithm has been widely used in topology optimization problems. In this 

section, GA optimization technique is used to minimize the radiated sound from a 

sandwich structure. The design variables have been defined in the previous section. 

Here, unlike the optimization process for hexagonal honeycomb sandwich structure in 

Chapter 5 the core thickness, ligament thickness and the skin thickness are not fixed 

and considered to be design variables of the optimization problem. The procedure to 

apply the Genetic algorithm optimization method is same as the one defined in Chapter 

5 and the flow chart this procedure has been demonstrated in Figure 27. 

As mentioned before, the optimization problem is described by twelve design 

variables. Therefore, selecting a proper population size is a challenge. In order to do 

that a sensitivity analysis on the order of population size has been performed and the 

initial population size of 50 is considered. For a better scoping of the feasible design 

envelope of this optimization problem, the first generation of the genetic algorithm has 

been created by using a Latin hypercube sampling (LHS) method. Figure 28 shows the 

plot matrix of the LHS design and the related objective function.  
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As it is shown in the figure the design variables created by LHS method are evenly 

distributed within their defined range. The thirteenth row and column show the RMSL 

which is the objective function of this optimization problem while the fourteenth row 

and column illustrate the total mass of the sandwich structure. It can be observed that 

the reduction in the RMSL generally is accompanied by an increase in the total mass. 

Moreover, an increase in ligament thickness, tl, leads to reducing the RMSL. Also, the 

core thickness, b, is an effective factor on RMSL and the increase in core thickness 

causes RMSL to decrease. Next, it should be mentioned that an increase in any of the 

thicknesses leads to increase in the total mass of the sandwich structure as the density 

of the sandwich structure increases.  

After having the initial population created by LHS design method, the objective 

function is then minimized over 100 generations. The crossover probability is 0.8 and 

the mutation rate is 0.2. Figure 46 shows the variation of the best and the average of 

the objective function at each generation for the loading case ‘a’. The convergence is 

observed after about 80 generations. Each function evaluation takes about 4.5 CPU 

seconds on a 2.6 GHz Intel® Core™ i5 processor with 4 GB of RAM operating on a 

Windows 7 system. The total computation time using the GA method was about 6 hrs. 

and 15 minutes. 



 

 
Figure 45: Plot matrix of Latin Hypercube Sampling for the GA initial population, The RMSL is calculated for load case ‘a’ 
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Figure 46: Variation RMSL per generation during the GA optimization for loading 

cases ‘a’ 

6.3.2 MMA Optimization 

The other method evaluated in this study for optimization purposes is the Method of 

Moving Asymptotes (MMA) [59], [66].  For the first iteration, an initial guess of the 

design variables, k ,  is required. The initial guess of the design variables in this 

research is considered to be:  

  8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,1 ,2 ,20k mm mm mm mm mm mm mm mm mm mm mm mm   

The change of the objective function per iteration is demonstrated in Figure 31. It can 

be observed that the convergence occurs after 8 iterations in this case. It should, 

however, be mentioned that, as the MMA is a gradient-based method, each iteration 

includes in this case 18 function evaluations (sub-iterations). Nevertheless, the MMA 

features a decrease in computation time to 27 minutes. 
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Figure 47: Variation of RMSL per iteration in MMA optimization method, loading 

cases ‘a’ 

6.4 Optimization Results 

In this section, the base line configuration and all optimal configurations of the anti-

tetrachiral sandwich structure have been compared. The base line configuration is a 

sandwich structure with total dimensions of 960 960 20  mm. The core of this 

sandwich structure consists of 12 12  anti-tetrachiral unit cells with an internal cell 

radius of 8r mm . The core is covered with two 960×960×2 mm skins plates. Both 

core and skins are made of ABS plastic with elastic properties listed in [44]. The 

geometrical parameters of the model are given in Table 10. All the optimized 

configurations have the same total dimensions, material properties as the base line 

configuration. The only difference is that they have different internal cell radii, {r1, r2, 

r3, r4, r5, r6, r7, r8, r9}, in different regions of the core. Moreover, they can have varied 

ligament thickness, tl, skin thickness, ts and core thickness, b. 

6.4.1 RMSL Optimization ResultsTable 11 shows the geometry, optimization 

variables and total mass of the sandwich structure for the base line and optimal 

configurations. The GA reduced the root mean square of sound power level to 123.66 

dB, while the MMA reduced the objective function to 126.29 dB. The mass of the 
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sandwich structure after the GA and MMA optimizations has increased by 10% which 

was the upper bound defined in the mass constrained optimization problem. In the 

MMA optimized configuration, the cell radii in regions 2, 5 and 6 are 16 mm which is 

the upper bound for the radii. It can also be noted that the core thickness, b, is at its 

maximum defined value which is 25mm. The skin thickness, ts, is 2 mm and the 

ligament thickness, tl, is 1mm. These results show that the use of a gradient topology 

in the sandwich structure core as well as enhanced core thickness enables the structure 

to decrease the sound radiated power, at the same time giving a distribution of varying 

mechanical properties. Figure 48 demonstrates the core geometry of the base line 

configuration and MMA optimized configuration. 

 
Figure 48: Core geometry of the base line configuration and the optimized 

configurations 



 

Table 11: The optimization variables for the anti-tetrachiral sandwich structure 

Configuration Set r1(mm) r2(mm) r3(mm) r4(mm) r5(mm) r6(mm) r7(mm) r8(mm) r9(mm) tl(mm) ts(mm) b(mm) RMSL (dB) Mass 
(Kg) 

Base line 
Configuration 8 8 8 8 8 8 8 8 8 1 2 20 126.87 5.341 

GA Optimized 
Configuration 5.7 10.6 14.4 9.3 15.4 16 12.6 14.1 14.6 0.91 1.96 25 123.66 5.875 

MMA Optimized 
Configuration 5.84 16 7.96 3 16 16 3 7.85 10.3 1 2 25 123.29 5.875 
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6.4.2 RSPL vs Frequency  

Figure 49 shows the RSPL over the frequency range of 0-200 Hz for the three 

configuration sets under the loading case ‘a’. Both optimum configurations show 

approximately similar RSPL-frequency curves. In the base line configuration, the 

peaks corresponding to all six natural frequencies within the considered bandwidth can 

be observed. It should be noted that as the anti-tetrachiral core is a transversely 

isotropic material, i.e. the core material properties in x and y-direction are same, the 

2nd and 3rd modes and also 5th and 6th modes happen at the same natural frequency. 

This is the reason that in this figure, four peaks can be observed instead of six peaks. 

For the optimum configurations, the peak corresponding to the 5th and 6th
 natural 

frequency is missing within the same band. The peaks amplitudes are also reduced by 

8 dB, 6 dB and 4 dB for the first, second and the third peaks, respectively. It is also 

apparent that all the natural frequencies for the optimum configurations have shifted 

to lower values. 

 
Figure 49: RSPL vs frequency, different anti-tetrachiral configurations 

6.4.3 Harmonic Analysis Results Verification 

In chapter 3, the proposed homogenized model was validated comparing the result of 

the modal analysis for the homogenized model and the exact FE model for the anti-
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tetrachiral sandwich structure. Here, the second model verification is done comparing 

the result of the harmonic analysis for the homogenized model and exact FE model. 

To verify the results corresponding to the loading case a, the frequency RSPL history 

related to the MMA optimized configuration is shown in Figure 50 against the same 

configuration represented this time by an exact FE model. The RSPL represented by 

the homogenized model is a good approximation of the one provided by the exact FE 

one within the frequency range of 0-200 Hz. The homogenized model tends to provide 

the same curve of the exact FE model with a small shift of the peaks to the higher 

natural frequencies. At higher frequencies the discrepancy between the results from 

the asymptotic homogenization model and the exact FE one becomes larger; the 

homogenized model shows a lower modal density compared to the exact FE one. 

 
Figure 50: RSPL for the exact FE and the homogenized model, loading case ‘a’ 

6.4.5 Normalized RSPL 

Figure 51 shows the reduction of the normalized radiated sound power with respect to 

the thickness and node radius variation in the anti-tetrachiral sandwich structure for 

loading cases ‘a’. The optimum configuration feature a normalized fundamental 

frequency shifted to higher value by 15%. What is quite remarkable is the 78.2% 
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reduction in the normalized radiated sound power for the configuration with optimum 

thickness and cell angles. 

 
Figure 51: Normalized radiated sound pressures at non-dimensional frequencies, 

loading case ‘a’ 

6.5 Concluding Remarks 

This study has shown that the variation of out-of-plane mechanical properties of anti-

tetrachiral sandwich structures in uniform and 2D gradient configurations lead to a 

reduction in the RSPL. The use of increased ligament thickness, skin thickness and 

core thickness will lead to a reduction in the RSPL of the sandwich structure, however, 

it will increase the total mass of the sandwich structure. To overcome this drawback, 

a gradient core can be used because of the capability of tailoring the mechanical 

properties. The radiated noise level of the structure is also significantly dependent 

upon the location of the excitations. The use of gradient core geometries can be 

instrumental to cover the excitations areas. 
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The RMSL for a sandwich structure with a non-gradient core changes between 125.9 

dB and 127.4 dB. The use of a gradient topology, as well as increased thicknesses, lead 

to a decrease of the RMSL, with a defined increase in the total mass compared to the 

base line non-gradient configuration with an internal cell radius of 8mm. This confirms 

that the gradient topology has an enhanced performance compared to the non-gradient 

one, as optimized mechanical properties can be available in different regions. The 

reduction becomes however remarkable when the normalized RSPLs and frequencies 

are considered. In those cases, the 2D gradient with both thickness and optimized cell 

angles provide a very significant reduction (91%) of the normalized power of the 

radiated sound, compared to the base line configuration. 

In this work, the Genetic algorithm and the method of moving asymptotes 

optimizations have been used to optimize the root mean square of the sound power 

level. The computation time related to the MMA calculations was 93% lower than the 

one needed for the GA optimization. The RMSL is reduced by 3.21 dB using GA 

optimization, while the MMA method reduces the RMSL by 3.58 dB. This reduction 

in RMSL is accompanied by an increase in the total mass of the structure by 10 % for 

both optimized configurations. The MMA optimized configuration behaves 

significantly better than the base line one, both in low and higher frequency ranges. 

The result of this study can be considered for structures applications in which the total 

mass of the structure plays an important role in the optimization process.  



86 

Chapter 7 

CONCLUSION 

In this study a 2D gradient topology for auxetic sandwich structure was developed and 

the homogenization approach was applied to determine the RMSL of this 2D gradient 

sandwich structure. Moreover, an optimization scheme was developed by integrating 

ANSYS with MATLAB to optimize the RMSL for the 2D gradient topology and 

finally, the RMSL was optimized by applying gradient base optimization method, 

Method of Moving Asymptotes and direct search method, Genetic Algorithm 

optimization. This procedure was applied for two different class of sandwich 

structure's core geometries. Case 1, Auxetic hexagonal honeycombs and case 2, Anti-

tetrachiral lattices. 

The result of this study has shown that the variation of out-of-plane mechanical 

properties of auxetic sandwich structures in uniform and 2D gradient configurations 

lead to a reduction in the RMSL. The use of auxetic core increases, however, the total 

mass of the sandwich structure. To overcome this drawback, a gradient core can be 

used because of the capability of tailoring the mechanical properties. The radiated 

noise level of the structure is also significantly dependent upon the location of the 

excitations. The use of gradient core geometries can be instrumental to cover the 

excitations areas. 
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In case 1, it was demonstrated that a simple non-gradient sandwich structure radiates 

less sound compared to a simple plate with the same mass, and this is due to the 

increased flexural properties of the sandwich structure. The RMSL for a sandwich 

structure with a non-gradient core changes between 126.51 dB and 127.83 dB. The use 

of a gradient topology leads to a decrease of the RMSL, with a slight increase in mass 

compared to the base line non-gradient configuration with an internal angle of -30o. 

Moreover, this optimized gradient sandwich structure shows a slight reduction in 

RMSL accompanied by a 3% reduction in mass compared to a non-gradient sandwich 

structure with an internal angle of -50o. This confirms that the gradient topology has 

an enhanced performance compared to the non-gradient one, as optimized mechanical 

properties can be available in different regions. The 2D gradient core appears to offer 

a reduced RMSL compared to the 1-D gradient topology. The reduction becomes 

however remarkable when the normalized RSPLs and frequencies are considered. In 

those cases, the 2D gradient with both thickness and optimized cell angles provide a 

very significant reduction (91%) of the normalized power of the radiated sound, 

compared to the base line configuration. 

Then, the Genetic algorithm, the method of moving asymptotes and the hybrid GA-

MMA optimizations methods have been used to optimize the root mean square of the 

sound power level. The computation time related to the MMA calculations was 93% 

lower than the one needed for the GA optimization. In all loading cases, it has been 

noticed that the configuration proposed by the hybrid GA-MMA optimization method 

performs better in reducing the RSPL. This reduction in RMSL is accompanied by an 

increase in the total mass of the structure by 5.7 % and 7.8% for the loading cases ‘a’ 

and ‘b’, respectively. This configuration behaves significantly better than the base line 

one, both in low and higher frequency ranges. For the two loading cases, the GA 
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optimized configuration has the smallest mass increment compared to the base line 

configurations, while the objective function is significantly reduced. This feature could 

be considered for structures applications for which weight reductions are paramount. 

In case 2 it was shown that the use of increased ligament thickness, skin thickness and 

core thickness will lead to a reduction in the RSPL of the sandwich structure, however, 

it will increase the total mass of the sandwich structure. To overcome this drawback, 

a gradient core can be used because of the capability of tailoring the mechanical 

properties.  

The RMSL for a sandwich structure with a non-gradient anti-tetrachiral core changes 

between 125.9 dB and 127.4 dB. The use of a gradient topology, as well as increased 

thicknesses, lead to a decrease of the RMSL, with a defined increase in the total mass 

compared to the base line non-gradient configuration with an internal cell radius of 

8mm. This confirms that the gradient topology has an enhanced performance 

compared to the non-gradient one, as optimized mechanical properties can be available 

in different regions. The reduction becomes however remarkable when the normalized 

RSPLs and frequencies are considered. In those cases, the 2D gradient with both 

thickness and optimized cell node radii provide a very significant reduction (78%) of 

the normalized power of the radiated sound, compared to the base line configuration. 

Moreover, genetic algorithm and the method of moving asymptotes optimizations have 

been used to optimize the root mean square of the sound power level. The computation 

time related to the MMA calculations was 93% lower than the one needed for the GA 

optimization. The RMSL is reduced by 3.21 dB using GA optimization, while the 

MMA method reduces the RMSL by 3.58 dB. This reduction in RMSL is accompanied 
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by an increase in the total mass of the structure by 10 % for both optimized 

configurations. The MMA optimized configuration behaves significantly better than 

the base line one, both in low and higher frequency ranges. The result of this study can 

be considered for structures applications in which the total mass of the structure plays 

an important role in the optimization process.  

7.1 Highlights 

 In the current literature, the gradient topology in the core geometry of the 

sandwich structure has always considered to be 1-D, i.e. the change in 

geometrical parameters were either in x or y-direction. In the current study, 

however, a novel 2D gradient toplogy in introduced in which the change in 

internal cell angle in the hexagonal honeycombs and the change in internal cell 

radii for the anti-tetrachiral lattices is in both x and y-directions. 

 In the previous studies effect of change of a single geometrical parameter on 

the RSPL had been investigated, while in this research, effect of all of the core 

geometrical parameters on the RSPL was investigated.  

  The optimization method which have been used to minimize the RSPL were 

to way simple. However in the present research, two powerful optimization 

methods have been implemented in order to obtain better results. 

 In case 2, which was the RMSL optimization of anti-tetrachiral sandwich 

structure, the design variables include almost all geometrical parameters of the 

sandwich structure were considered as design variables which lead to have 

better options in tailoring mechanical properties of the structure. Moreover, the 

total mass of the sandwich structure were considered to be a design constraint 

for the optimization problem.  
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7.2 Future Works 

 Further improvement on the RMSL can be achieved conducting the 

optimization on the exact FE model. In order to do that high computation 

efficiency is required. 

 Several types of auxetic cores are available in the literature. Same RMSL 

minimization approach can be carried out for other types of core geometries. 

 RMSL minimization approach can be used in different plate geometries such 

as circular sandwich structures. 
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Appendix A: Element Properties 

SHELL 63 Elements 

SHELL63 is an elastic shell elements which has both bending and membrane 

capabilities. Both in-plane and normal loads are permitted. The element has six degrees 

of freedom at each node: translations in the nodal x, y, and z directions and rotations 

about the nodal x, y, and z axes. Stress stiffening and large deflection capabilities are 

included. A consistent tangent stiffness matrix option is available for use in large 

deflection (finite rotation) analyses. See Section 14.63 of the ANSYS Theory 

Reference for more details about this element. Similar elements are SHELL43 and 

SHELL181 (plastic capability), and SHELL93 (mid-side node capability). The 

ETCHG command converts SHELL57 and SHELL157 elements to SHELL63 [67]. 

 
Figure 52: SHELL63 geometry and node locations [67] 

The geometry, node locations, and the coordinate system for this element are shown 

in Figure 52. The element is defined by four nodes, four thicknesses, an elastic 

foundation stiffness, and the orthotropic material properties. Orthotropic material 

directions correspond to the element coordinate directions. The element coordinate 
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system orientation is as described in Section 2.3. Properties not input default as 

described in Section 2.4. The element x-axis may be rotated by an angle THETA (in 

degrees). 

The thickness is assumed to vary smoothly over the area of the element, with the 

thickness input at the four nodes. If the element has a constant thickness, only TK(I) 

need be input. If the thickness is not constant, all four thicknesses must be input. 

SOLID45 Elements 

SOLID45 is a 3D structural solid elements which is used for the three-dimensional 

modeling of solid structures. The element is defined by eight nodes having three 

degrees of freedom at each node: translations in the nodal x, y, and z directions. 

The element has plasticity, creep, swelling, stress stiffening, large deflection, and large 

strain capabilities. A reduced integration option with hourglass control is available. 

See Section 14.45 of the ANSYS Theory Reference for more details about this 

element. A similar element with anisotropic properties (SOLID64) is described in 

Section 4.64. A higher-order version of the SOLID45 element (SOLID95) is described 

in Section 4.95. 
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Figure 53: SOLID45 geometry and node locations [67] 

The geometry, node locations, and the coordinate system for this element are shown 

in Figure 53The element is defined by eight nodes and the orthotropic material 

properties. Orthotropic material directions correspond to the element coordinate 

directions. The element coordinate system orientation is as described in Section 2.3. 

Properties not input default as described in Section 2.4. 

Element loads are described in Section 2.7. Pressures may be input as surface loads on 

the element faces as shown by the circled numbers on Figure 4.45-1. Positive pressures 

act into the element. Temperatures may be input as element body loads at the nodes 

[67].



106 

Appendix B: MATLAB Codes 

In this appendix the MATLAB codes for genetic algorithm are shown. The first part is 

the code for calculating the objective function which includes integrating MATLAB 

and ANSYS software. The second part is GA optimization code. 

Objective Function Calculation Code 

function sam=fitnessfunction3(teta) 

teta1=100*teta(1)-50; 

teta2=100*teta(2)-50; 

teta3=100*teta(3)-50; 

teta4=100*teta(4)-50; 

teta5=100*teta(5)-50; 

teta6=100*teta(6)-50; 

teta7=100*teta(7)-50; 

teta8=100*teta(8)-50; 

teta9=100*teta(9)-50; 

fid= fopen('parameters.inp','w+'); %4.2f !a \n 

fprintf(fid,'teta1=%f\n',teta1); 

fprintf(fid,'teta2=%f\n',teta2); 

fprintf(fid,'teta3=%f\n',teta3); 

fprintf(fid,'teta4=%f\n',teta4); 

fprintf(fid,'teta5=%f\n',teta5); 

fprintf(fid,'teta6=%f\n',teta6); 

fprintf(fid,'teta7=%f\n',teta7); 

fprintf(fid,'teta8=%f\n',teta8); 

fprintf(fid,'teta9=%f\n',teta9); 
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fclose(fid); 

!"C:\Program Files\ANSYS Inc\v150\ansys\bin\winx64\Ansys150.exe"  -b -i 

FEAinnR.txt -o FEAoutR.txt 

fid=fopen('objfun.txt','r'); 

FR=fscanf(fid,'%f',[1,1]); 

fclose(fid); 

 

sam=FR; 

end 

GA Optimization Code: 

clc;clear all;close all; 

%   DESIGN VARIABLES  

%    x1   x2 x3  x4  x5  x6  x7 x8  x9  

ub=[50 50 50 50 50 50 50 50 50]; 

lb=[-50 -50 -50 -50 -50 -50 -50 -50 -50]; 

xmin=lb; 

xmax=ub; 

nsample=50; 

p=9; 

eeen=ones(nsample,p); 

eeen1=50*eeen; 

x = lhsdesign(nsample,p) 

 

s = (x * 100)-eeen1; 
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plotmatrix (s); 

objfun = @fitnessfunction 

%options = gaoptimset('PopInitRange',[-10,-10,-10,-10;-50,-50,-50,-50], 

'Generations';10;'PopulationSize';10;) 

nvars=9; 

options = gaoptimset; 

%% Modify options setting 

options = gaoptimset(options,'PopulationSize', nsample); 

options = gaoptimset(options,'InitialPopulation', s) 

% options = gaoptimset(options,'PopInitRange' ,[lb;ub]); 

% % options = gaoptimset('InitialPop', InitPop); 

% options = gaoptimset(options,'InitialPopulation' ,[InitPop]); 

% % options = gaoptimset(options,'PopInitRange' ,[InitPop]); 

% % options = gaoptimset(options,'PopulationSize' ,100); 

options = gaoptimset(options,'Generations' ,100); 

options = gaoptimset(options,'StallGenLimit' ,100); 

% options = gaoptimset(options,'TolFun' ,1e-9); 

% options = gaoptimset(options,'TolCon' ,1e-9); 

% options = gaoptimset(options,'StallTimeLimit' ,200000000); 

options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint); 

options = gaoptimset(options,'CrossoverFraction' ,0.8); 

options = gaoptimset(options,'SelectionFcn' ,{ @selectiontournament 4  }); 

% options = gaoptimset(options,'CrossoverFcn' ,@crossovertwopoint); 

options = gaoptimset(options,'MutationFcn' ,{ @mutationuniform 0.254 }); 

options = gaoptimset(options,'Display' ,'iter'); 
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% options = gaoptimset(options,'Display', 'off') 

options = gaoptimset(options,'PlotFcns', { @gaplotbestf }) 

 

% LB=[-50 -50 -50 -50 -50 -50 -50 -50 -50]; 

% HB=[-10 -10 -10 -10 -10 -10 -10 -10 -10]; 

[x,fval]=ga(objfun,nvars,[],[],[],[],lb,ub,[],options); 


