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ABSTRACT

The current thesis investigates four different nonlinear systems of fractional
differential equations and deals with the existence, uniqueness, and stability of their
solutions. The first studied problem is a coupled system of fractional differential
equations with four-point integral boundary conditions. Existence and uniqueness of
solutions are established by applying the contraction mapping principle and Leray—
Schauder’s alternative theorem. Finding and results are demonstrated and supported

with numerical examples.

The second studied case is a boundary value problem for a coupled system of nonlinear
fractional differential equations, where the existence and uniqueness of solutions is
proven by using the Banach’s fixed point theorem and Schauder’s alternative.
Furthermore, the Hyers-Ulam stability of solutions is discussed, sufficient stability

conditions are drawn, and supporting numerical results are presented.

In the third problem, a coupled system of Caputo type sequential fractional differential
equations with integral boundary conditions is studied. Similarly, existence and
uniqueness of solutions are discussed and established by employing contraction
mapping principle and Leray—Schauder’s alternative theorem, and Hyers-Ulam

stability of the boundary value problem is investigated.

The last problem is a nonlinear Caputo type sequential fractional differential equation
with non-separated non-local integral fractional boundary conditions. Existence,
uniqueness, and Hyers-Ulam stability of solutions are discussed and established, and

theoretical findings are presented and supported by numerical examples.



Keywords: fractional differential equation, sequential, Caputo, integral boundary

conditions, stability, Hyers-Ulam stability, existence and uniqueness of solutions.



Oz

Bu tezde, dort farkli dogrusal olmayan kesirli diferensiyel denklem sistemi arastirilmig
ve ¢dziimlerinin varlig1, benzersizligi ve kararlilig1 ¢alisiimustir. Ilk calisilan problem,
dort noktali integral siir kosullarina sahip birlestirilmis kesirli diferansiyel denklem
sistemidir. Kasilma haritalama ilkesi ve Leray-Schauder’in alternatif teoremi
uygulanarak ¢oziimlerin varligi ve benzersizligi saglanmistir. Elde edilen ve sonuclar

sayisal orneklerle gosterilmis ve desteklenmistir.

Ikinci ¢alisilan durum, Banach sabit nokta teoremi ve Schauder alternatifi kullanilarak
¢coziimlerin varligi ve benzersizliginin kanitlandig1 birlestirilmis dogrusal olmayan
kesirli diferansiyel denklemler sistemi i¢in bir sinir deger problemidir. Ayrica,
coztimlerin Hyers-Ulam kararlilig: tartisilmis, yeterli kararlilik kosullari verilmis ve

sayisal sonuglar desteklenmistir.

Ucgiincii problemde integral simir kosullarina sahip eslesmis bir Caputo tipi ardisik
kesirli diferansiyel denklem sistemi incelenmistir. Benzer sekilde, daralma haritalama
prensibi ve Leray-Schauder alternatif teoremi kullanilarak ¢oziimlerin varligi ve
benzersizligi tartisilmis kurulmakta ve Sinir-Deger Probleminin Hyers-Ulam

kararlilig aragtirilmistir.

Son problem, ayrilmamis lokal olmayan integral kesirli sinir kosullariyla dogrusal
olmayan bir Caputo tipi sirali kesirli diferansiyel denklemdir. Cozlimlerin varligi,
tekligi ve Hyers-Ulam kararlilig1 tartigilmis ve sayisal 6rnekler ile elde edilen sonuglar

desteklenmistir.



Anahtar Kelimeler: kesirli diferansiyel denklem, sirali, Caputo, integral sinir sartlari,

kararlilik, Hyers-Ulam kararliligi, ¢6ziimlerin varligi ve benzersizligi.
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Chapter 1

INTRODUCTION

Fractional differential equations constitute a pivotal domain of theoretical research
with a wide range of applications in many fields of science and engineering. In fact,
the non-integer nature of differential orders in fractional calculus equips this field with
extensive flexibility in terms of modeling sophisticated nonlinear systems.
Applications of fractional differential equations in such nonlinear complex models
appear in numerous branches of science, including quantum physics, thermodynamics,
biology, biomedicine, genetics, evolutionary biology, dynamical systems, chemistry,

electronics, and more [1-6].

It’s worth mentioning that in majority of practical cases, boundary value problems of
coupled fractional differential equations must be solved and hence investigating the
existence, uniqueness, and stability of their solutions, is of great practical importance.
In this regard, numerous research studies have examined the existence and uniqueness
of solutions for coupled systems of differential equations with different boundary
conditions, mostly by employing the contraction mapping principle and Schauder’s

alternative theorem [7-28].

Furthermore, an important emphasis of many such studies have been on integral
boundary conditions as most of the practically important applications of fractional

differential equations involve integral boundaries. Examples of such applications



include computational fluid dynamics, differential thermal analysis, biochemistry, and
population dynamics [29-31]. Furthermore, movable integral boundary conditions
play a key role in several subfields of engineering, structural mechanics, physics, and
economics, as they can provide extensively more accurate models of the practical
problems as compared to local boundary conditions [32-36]. Another critical issue
related with applications of fractional differential equations is the stability of their
approximated solutions. In fact, due to the highly complex and nonlinear nature of
fractional systems, finding exact solutions is not generally liable and hence

numerically approximated solutions must be obtained.

In this regard, the stability of these approximated solutions must be carefully
investigated and established. One of the prominent methods for studying the stability
of solutions for fractional differential equations, is the Hyers—Ulam method. This
method has been used by many studies to establish the stability of their solutions for
coupled fractional differential systems and has also been employed in applied studies
in biology, physics, nonlinear optimization, and numerical analysis [37,38]. The rest
of this thesis is organized in five chapters that are briefly explained and reviewed as
follows:

Chapter 2 (Preliminaries and Definitions): This chapter provides basic required
definitions, properties and the terminology of fractional calculus, fractional differential
equations, and functional analysis, that will be used in subsequent chapters. This
chapter aims at providing key preliminary concepts that other chapters are built upon,
and can be skipped if the reader is familiar with the field of fractional differential

equations.



Chapter 3 (Stability, Existence and Uniqueness of Boundary Value Problem for a
Coupled System of Fractional Differential Equations): This chapter discusses a
coupled system of fractional differential equations with boundary conditions. The
existence and uniqueness of solutions for the given problem is established by applying
contraction mapping principle and Leray-Schauder’s alternative theorem, and
sufficient conditions for the Hyers-Ulam stability of solutions are found. Obtained

results are supported by examples and illustrated in the last section.

Chapter 4 (Existence and Stability of Coupled Sequential Fractional Differential
System Boundary Conditions): This chapter focuses on the existence and uniqueness
of solutions for a coupled system of Caputo type sequential fractional differential
equations with integral boundary conditions. The existence of solutions is derived by
applying Leray—Schauder’s alternative, while the uniqueness of solution is established
by Banach’s contraction principle. Moreover, some necessary conditions for the
Hyers-Ulam type stability of the solutions are developed and supporting examples are

presented.

Chapter 5 (Existence and Ulam-Stability of a Coupled Sequential Fractional
Differential Equations with Integral Boundary Conditions): This chapter studies the
existence and uniqueness of solutions for a sequential fractional differential equations
involving Caputo derivative of order 1 < @ < 2 with integral boundary conditions.
Moreover, the Hyers-Ulam stability of the solutions is discussed and supported by

numerical results.



Chapter 2

PRELIMINARIES AND DEFINITIONS

In this chapter we briefly review and explain the required mathematical tools including
definitions, properties, propositions, lemmas and theorems that will be used in later
chapters [1,2].

2.1 Special Functions of Fractional Calculus

Definition 2.1.1 The Gamma Function is given by

[0e]

I'(p) = f sh=le=s(s, Re(n) >0, uecC
0

Here s#~1 = -1in(s),
The domain of Gamma function can be extended to the left half plane with Re(u) <

0,u # 0,—1,-2, ..., by analytic continuation.

Definition 2.1.2 (Pochhammer Symbol:(y),,, m € N))

W =y9p@+1D..0p+m-1), () =1

Obviously, () = (=1)™(1 — ¥ — m),,, ,moreover, (¥)p, = F(;/’(;;”)_

The Gamma function satisfies the following properties, where ¢ € R:
i T@W+m)=Wnl@),

_ @) (Dm
@=—mm  0-¥)m

.. rp) = 1y _
. r(1-y)  sinmyp’ F(z)_\/E'

iii.  Legendre duplication formula:

r@-m) r@).




22¢—1
Vr

iv. T@+D)=yr@)=y@-Dr-1)=-=
Y —1)...(2QMWTA) = ¢! if Y €N.

r@y) = ——Tr@r(y+ %)

Definition 2.1.3 (Binomial Coefficients):

(D" (=Dm _ (D™ HT(m - §)
(§)-0e

m m T -orm+n  TENef€l

If ¢ =n € Nthen ( ) = D, o

n
m m! T (m-m)m!”

For complex n,y withyp = -1, -2, ...

<¢) B rY+1)
n) T+ DL —n+1)

Definition 2.1.4 (The Beta Function:B (¥, 1))
B(y,n) = [, m¥~ (1 — m)"""dm, Re(1p) > 0,Re(n7) > 0 where B(.,.) is called
the Beta Function .

For all »,n > 0, Beta function satisfy the following properties:
i.  B@,n) =B ).

i, B =Tl
iii.  The Incomplete Betta function is given by
B,(y,n) = fOS m¥1(1-m)"1dm,0<s < 1.
2.2 Function Spaces
Definition 2.2.1 A sequence {y,,} © (X, d) is said to be converge to y € X if

lim d(y,,,y) = 0ifand only if Ve > 0, AN (&) € N such that ym > N(¢),
m—oo

d(Ym, y) < .



Definition 2.2.2 {y,,} © (X,d) is called a Caushy sequence if Ve > 0,aN(¢) € N

such that vm,n > N (&), d (Vi Yn) < €.

Definition 2.2.3 A metric space (X, d) is said to be complete if every Cauchy sequence

in X is convergent to a point of X.

Definition 2.2.4 Let (X,d) be a metric space, F: X — X is said to be Lipschitzian if
36 = 0 with d(F(x), F(y)) < Bd(x,y),Vx,y € X. (1)

Note that Lipschitzian map is continuous, and the smallest number g for which (1)
holds and is said to be Lipschitz constant for F and is denoted by L. If L < 1, we say

that F is a contraction. Whereas, if L = 1, then F is a nonexpansive.

Theorem 2.2.5 (Banach’s Contraction mapping principle).

Let (X,d) be a complete metric space. Let M: X — X be a contraction(0 < L < 1),
then
i. M has aunique fixed pointt € X : M(t) = t.

ii.  Vu € X, we have Ilim M(u) = t with

d(M*kw),t) <

Lk
11 d(t, M(u)).

Where L is Lipschitz constant for F

Theorem 2.2.6 (Local version of Banach’s Contraction mapping principle).

Assume that:

i. (X, d) isacomplete metric space.



ii. M:B(ty,r) > X is a contraction on B(ty,r) ={t € X:d(t,ty) <r}t, €X
r > 0,with d(M(ty),ty) < (1 —L)r.Then M has a unique fixed point in

B(ty,1).

Theorem 2.2.7 Assume that:

i. (X,d) isacomplete metric space.
ii. d(M(x),M(y)) < yd(x,y),Vx,y € X, where :[0,00) - [0,00) is any

nondecreasing function with lim ¥™(s) = 0, for a fixed s > 0, then M has a
m-—oo

unique fixed point t € X with lim M™(t,) = ¢t,Vt, € X.
m-—oo

Theorem 2.2.8 (Schauder’s Theorem) Assume that:

i. C # ¢, convex, closed subset of a normed linear space E.
ii. M:C - C isnonexpansive.
iii.  M(C) is asubset of a compact subset of C.

Then M has a fixed point.

Theorem 2.2.9 (Nonlinear alternative of Leray-Shauder type for contractive map)
Suppose that Z is an open subset of a Banach space X, 0 € Z and M:Z - X a
contraction with M (Z) is bounded then either
i. M has afixed pointin Z,or

ii. 3ue(0,1)andz e dz with z=uM(z) holds.

Theorem 2.2.10 (Arzela-Ascoli Theorem)

M c C(X,R) is compact if and only if it is closed, bounded and equicontinuous.



STABI

BOUNDARY VALUE PROBLEM FOR A COUPLED

SYSTEM OF FRACTIONAL DIFFERENTIAL

In this chapter,

conditions will be discussed. Currently we present three main result of this study: first
the existence and uniqueness of solutions for the given problem is established by
applying contraction mapping principle, then Leray-Schauder’s alternative has been
used to obtain the existence of solutions, and finally the Hyers-Ulam stability of
solutions is discussed and sufficient conditions for the stability are developed.

Obtained results are supported by examples and illustrated in the last section.

The following coupled system of fractional differential equations was studied by

Ntouyas and Ob

<

Chapter 3

LITY, EXISTENCE AND UNIQUENESS OF

EQUATIONS

a coupled system of fractional differential equations with boundary

aid [42]

(‘D& u(t) = f(t,u(®),v(®)), t €[0,1],
DF v(t) = g(t,u(t), v(t)),t € [0,1],

n — q)p-1
w(© =yirue =y [ T2

u(s)ds,0 <n <1,
, Ty MmO

4 _ -1
v = 8110() = 5f €= ds0<7<1

0 I'(q)



Here °D§, and CDf+ are the Caputo fractional derivatives, 0 < a,f <1, f,g €

C([0,1] x R?,R) and p,q,¥,8 € R.

Ahmed and Ntouyas [43] employed Banach fixed point theorem and Schauder’s fixed
point theorem to prove the existence of the solutions of the following coupled
fractional differential equations with coupled and uncoupled slit-strips-type integral

boundary conditions:
{Cqu(t) = f(t,x@®),y(®), te[01], 1<gq<2
DPy(t) = g(t,x(0),y(1)), te[01], 1<q<2,

supplemented with coupled and uncoupled slit-strips-type integral boundary

conditions, respectively, given by

1

Ix(O)zO, x(()zafny(s)ds+bLy(s)ds, 0<np<{<éx],
0

1
x(s)ds+bf x(s)ds, 0<n<{<é<1,
¢

n

Y@ =0y =a j

0

and

1
x(s)ds+bf x(s)ds, 0<n<{<é<1,
¢

n

(
0) =0, =
x(0) x(9) afo
1

n
y(0) =0, y(()=af y(s)ds+bf y(s)ds, 0<n<{<é<1.
0 ¢

Furthermore, Alsulami et al. [44] investigated the following coupled fractional

differential equations with non-separated coupled boundary conditions:

{CD“x(t) = f(t,x(6),y(®),t€[0,T,1<a <2,
DFyt) = g(t,x(t), y(),t €[0,T],1 < B < 2,

subject to the following non-separated coupled boundary conditions:

{x(O) = 4y(T),x'(0) = A,y"(T),
y(0) = pyx(T), y"(0) = px' (7).



Note that°D® and °Df denote Caputo fractional derivatives of order a and P.
Moreover, A;, u;, i = 1,2, are real constants with A;u; # 1and f,g: [0, T] X RX R =

R are appropriately chosen functions.

We study a coupled system of nonlinear fractional differential equations in this chapter

{CD“x(t) = f(t,x(@®),y(®), te[0,T], 1<a<2, D

DPy(t) = g(t,x(®),y(®)), t€[0,T], 1<B<2,
supplemented with integral boundary conditions of the form:

x(T)=ny'(p), yT)='(w), x0)=0, y0)=0,pucl0T], (2)

where ©D* denote the Caputo fractional derivatives of order k,k = a,, and f, g €
C([0,T] x R?,R) are given continuous functions, and n, ¢ are real constants.

3.1 Preliminaries

Firstly, we recall definitions of fractional derivative and integral [1].

Definition3.1.1 The Riemann-Liouville fractional integral of order « for a

continuous function h is given by

1
Ih)(s) = r(a)fo pdna>0

provided that the integral exists on R*.

To define the solution for the problem (1) and (2), we prove the following auxiliary
lemma.
Lemma3.1.1 Let u,v € C(]0, T], R) then the unique solution for the problem

DAx(t) =u(t), te[0,T], 1<a<2,
DBy(t) =wv(t), t€[0,T], 1<B<2, 3)
x(T)=ny'(p), y(TM)=3¢'(w), x0)=0, y(0)=0,p,u€l[0,T]

10



— B2 T _ a-1 _ a2
x(t) ——< gl ) (s)ds—Tf &u(s) ds+n{fﬂ =) u(s)ds
0

r(g — I'(a) -1
_,,LT%U(S) ds) +f0t (t ;(2;_111(5)(15, (4)
and
() == (n( 0 %v(s)ds—cf%u(s)d +TZfH(M_ )a)zu( )ds
- TLT%U(S) ds> + f:%v(s)ds, (5)

where 4 = T? — n{ # 0.
Proof. General solutions of the fractional differential equations in (3) are known [41]

as

x(t)=at+b+—— f (t —s)* Tu(s)ds, (6)

I'(a)

y®)=ct+d+ Tﬁ).[ (t —s)B~1v(s)ds, 7

where a, b, ¢, d are arbitrary constants.
Apply conditions x(0) = 0 and y(0) = 0, and we obtain b =d = 0.

Here

! — 1 ‘ a—2 d
x(t)—a+mfo(t—s) u(s)ds,

y'®)=c+ f (t — 5)P~2 v(s)ds.

F(ﬂ

Considering boundary conditions

x(T) =ny'(p), y(T)=73x"(w)
we get

T - )t _ P (p—s5)F?
aT+J;) Wu(s)ds = nc+nj; TG = 1) v(s)ds,

and

11



T _ )B-1 _a=2
cT+f0 T F(;)) v(s)ds —a(+(f”%u( )ds,

SO

1 P (p—s)h? (T - 5)et )
== ds— | ———=——u(s)ds ),
T<nc + nfo v(s)ds J;) u(s)ds

rg—-1) I'(a)
g )“ i (T s)f !
( al + gf (s)ds —J;) ) v(s) ds).

Hence, by substituting the value of a into ¢, we obtain the final result for these

constants as

1(¢ P(p—s)F2 (T —s)*t ]
=== ds — d
c T(T [nc+nf0 v(s)ds L u(s)ds

rg—-1 I'la)
Hlu—s)*2 T(T —s)P1
+ZJO fa-1D) u(s)ds—fo TR v(s) d5>:

e gl T -9t
= < [ f (= (s)ds—f0 T@) u(s) ds]

_ a—2 T _ \B-1
+ZJ#(M ) u( )ds —f &v(s)ds)
0

r'(p)
—m\ _ 1/ (Plp—s)PF? (M@ =) ]
)— T(T [r]-]; TG-D v(s)ds -fo @) u(s)ds

_ a2 T m _ AB-1
+€J‘“(y ) u(s)ds — f &v(s) ds),
0

TZ
{

r®)

(p = )2 T -9t
(U( [ f (G = v(s)ds—_]; @) u(s) ds]

_ \a—2 T _ \B-1
+ (fﬂ & =s) u(s)ds — f —(T s) v(s) ds),
0

o a—1) r®)
Pp—s)F )B 2 (T —s)*1!
cn( ), T s ¢ ), v ds
Hu—s)*? (T —s)P?
+T{J; Ma—1) u(s)ds—TfO X0 v(s)ds)

12



— B2 T _ a-1 _ a2
< (fp (=) v(s)ds—(f &u(s) ds+T{fﬂuu(s)ds
0

r(g— I'(a) D
- T—LT%U(S) ds),

and

a= %(nT fop%v(s)ds - TLT%MS) ds + n(f“%u(s)ds
—nfoT%v(s) ds).

Substituting the values of a, b, ¢, d in (6), (7) we get (4) and (5).The converse follows

by direct computation. This completes the proof. ]
3.2 Existence Results

Let us consider the space

R={x(), =x@®) ec(o,T],

S={@®, y@®ec(oT
endowed with norm ||x|| = 22 |x(t)| and|ly|l = (22 |y (t)| respectively.
It is clear that both (R, || .||) and (S, || . ||) are Banach Spaces.

Consequently, the product space(R x S, ||[(x,y)|l) is a Banach Space as well

(endowed with [[Cx, )II = llxIl + Iyl ).

In view of Lemma (3.1.1), we define the operator G:R XS - R X § as:

G, Y@ = (G1(x Y @), G2 (x, )(®),

where

13



Pp—s)F-

T = g(s x(s), y(s))ds

G1(x,y)(0) = <77T
0

T T — a—1
—Tfo %f(s,x(s),y(s)) ds

na=2
+ {f (M ) f(s x(s),y(s))ds

B fT (T — 5)f1

X00) g(s, x(s),y(s)) ds)

t _ a—1
+f (t—5) f(s x(s), y(s))ds (8)
o TI'a)

and

Pp—s)F-

TG = g(s x(s), y(s))ds

Go(x,y)(t) = <n€
0

T(_)al
1| ey e x©.y) ds

_ a-2
+T(f uf(s x(s),y(s))ds

g(s, x(s),y(s)) ds>

T (T _ S)ﬂ—l
-7}, %

t (t — S)B—l
+L )

In the first result, we establish the existence and the uniqueness of the solutions of the

9(s,x(s),y(s))ds. (9

boundary value problem (1) and (2) by using Banach’s contraction mapping principle.

Theorem 3.2.1 Assume f,g:C([0,T] X R? - R are jointly continuous functions
and there exist constants ¢, € R ,such thatV x,, x,,y;, v, € R,Vt € [0,T], we have

|f (&, x1,%2) — f(&, ¥, ¥2)| < d(Ixz — x4 + [y2 — y1),
lg(t,x1,x2) — f(&, y1,¥2)| < Y(xy — x1| + |y2 — y1D-

d(Q1+Q3) +P(Q2 +Q4) <1,

14



then the BVP (1) and (2) has a unique solution on [0, T].

Where

T ( Tt InZI# N
“n\Te+D T T@ F(a+1)

T

1SIT* TICIM“ !
F(a + 1) I'(a)

InITpf~  |n|TF )
) (10)

I( NORCESY

In¢lpf~t  TA+? Tk
Q= |A|< T8) +F(ﬁ+1)>+F(b’+1)'

Proof. Define %P |f(t,0,0)] = f, < o, *P |g(t,0,0)] =gy <o and Q, =

0<t<T 0=<t<T

{(x,y) € RXS:||(x, )|l < &}, and € > 0, such that

Q1+ Q3)fo + (@2 + Q1) 9o
T 1-[p(Q1 +Q3) +¥(Q + Q]

Firstly, we show that GQ, € Q, .
By our assumption, for (x,y) € Q,,t € [0, T], we have
|f (£, x@®),y®)| < |f(t, x(®), y(®)) = £(£,0,0)] + |f(£,0,0)],
< o(x®1 + [y@®D + fo < olxll + llyID) + fo.

< ¢+ fo,
and
l9(6,x(©), )] < P(x(@®] + ly(©OD + go < plIxIl + lyID + go,
< Ye + go,
which lead to
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B D
161 O < 7| T |- sl + yID + go)

T T — a—1
o7 fo %dw(nxu FlyID + fo)

1% _ a-2
+ 2l f (" ) —ds(@(lxll + 1D + o)

T(T — p-1
it [ S ds Gl + Iyl + g@)

t (s _ Na-1
Sup f T i@l + Iy + £)

To<e<T), TT@

T Ta+1 |n(|'ua’—1 Ta
< (@lxll + [lylD + fo) [m(r(a 1) + T(a) > + T'(a+ 1)]

InIT;o/HJr In|T# )]
r'(B) rg+1)|

+ @ xll+ Iy + go) [%(

< (@Ulxl +1ylD + fo) @1 + @ dixIl + llylD + g0 Q2
< (¢e + f) Q1 + (Ye + go) Q.
In a like manner
1G> (x, )OI < (@lxll + lyID) + fo)@3 + @WIxIl + 1yl + go) Qs
< (¢ + f0)Qs + (Ye + go)Qa.
Hence
1G1Ce M < (e + fo)Q1 + (e + go) Q2
and
G2 (e, Wl < (P2 + f5)Q3 + (Ye + go) Qs
Consequently,

GG, I < (e + fo)(Q1 + Q3) + (Ye + go)(Q2 + Qu) < €.

Sowe get ||G(x, y)|| < e thatis GQ, € Q, .

Now let (xq,y1), (x2,¥,) € R X S,Vt € [0,T] then we get
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|G1 (x1, y1) () — G1(x2, y2) (B)]

R
< <| T | oy sl =l + e = il

T T — a—1
o7 [ T dsetin, — )l + s = i)

1% _ a—-2
+ 2l f (“ ) ey Al =l + vz = il)

T(T — B-1
it [ S dspi =l + Iy, - y1||)>

sup

t(t _ S)a—l
+OStSTj0 st~ xl

+ly2 = 10D,

1G1 (1, y1) — G1 Gz, y2)Il

Similarly

1G2(x1, 1) —

< Q10(lxz — x1 Il + llyz — y1ID + Q2 (llxz — x4l + ly2 — y11D- 11

G (x2, y2)II

< Q30lxz — xq |l + [lyz = y1ID + Qapllxz — x4 1l + lly2 — 11D (12)

From (11) and (12) we deduced that

1G(x1, ¥1) — G(x2, ¥l < (¢(Q1 +Q3) +¥(Q; + Q4))(||X2 = x|l + llyz = y1D.

Since ¢(Q; + Q3) + Y(Q, + Q,) < 1, therefore, the operator G is a contraction

operator. Hence, by Banach’s fixed-point theorem, the operator G is has unique fixed

point on, which is the unique solution of BVP (1) and (2) .This completes the proof.

The next result is based on the Leray-Schauder alternative.

Lemma 3.2.1 (Leray-Schauder alternative [45], p.4) Let F: E — E be a completely

continuous operator (i.e., a map restricted to any bounded set in E is compact). Let

17



E(F) ={x €E:x = AF(x) for some 0 < A < 1}. Then either the set E(F) is

unbounded or F has at least one fixed point).

Theorem 3.2.2 Assume f,g:C([0,T] X R? - R are continuous function and there
exist 6,,6,,4,,1, = 0 where 6,,6,,1,, 1, are real constants and 6,, 4, > 0 such that
Vx;,y; € R, (i =1,2),we have

|f(t, %1, x2)| < 6 + 61|x1] + 0,]x5],

lg(t, %1, %2)| < Ao + A1 ]x4| + A2 %2,

(Q1 +Q3)0; + (Q2 + QuA; < 1,

and
(Q1+03)0; + (Q2 + Q)1 < 1,
where Q;,i = 1,2,3,4 are defined in (10), then the problem (1) and (2) has at least one
solution.
Proof. The proof will be divided into two steps
Stepl: show that G: R X S = R x S is completely continuous .The continuity of the
operator G holds by the continuity of the functions f, g .
Let B € R X S be a bounded. Then there exists positive constants k;, k,such that
|F(t,x(©), y(®)| < ky, lg(t,x(©),y(®)| < k,, VEt€[0,T]

Then V(x,y) € B, we have

1G1 (e, ) ()] < Q1ky + Qzkz,
Which implies that

|G (e, Il < Q1kq + Qzk,

Similarly, we get

|GG, Y < @3k + Quky,

18



Thus, from the above inequalities, it follows that the operator G is uniformly bounded,
since
1GCe, W < (Q1 + Q3)ky + (Q2 + Qu)ks.
Further, we show that the operator G is equicontinuous.Let w;, w, € [0, T] with w; <
w,. This yields
1G1(x, y) (wz) — G1(x, y) (wq)]

Wy — Wq P(p—

< “’(HT
=T\ or(ﬁ

1) |g(s x(s),y(s))|ds

T(T— )a—l
+T-[0 Ti)|f(s,x(s),y(s))|ds

_ a—2
+n (|f (M ) |f(s x(s),y(s))|ds
T(T _S)B—l )
— , , d
+ |77|f0 ) lg(s, x(s), y(s))|ds

+ f(s,x(s),y(s)) ds

[l 5!
0 I'(a)

i
0 I'(a)

f(s,x(s),y(s))ds

Wy — Wy p (p — 5)5—2 T (T _ S)a—l
S—lAl <|U|Tk2_]; TG-D ds+Tk1J; —F(a) ds

Hp—s)*? T(T —s)B-1
+Indlh [ e ds + otk | st)
wq (032 _ S)a—l ((01 _ S)a_l
* fo < @ T@ )f(s"‘(s)'y(s))ds

o[z

o, T@)

f(s,x(5),¥())ds|,

< P2~ 0 <k2|77|TPB_1 4 ko T2 4 kilng|u*t 4 k2|71|TB>
- 4] r'B) Fa+1) I'(a) rg+1

k w1 0,
+ F(;’)( . ((wp = s)a’—l — (wg — s)a’—l) ds + ,Ll (0, — S)a—1 ds).

And we obtain
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|G1(x, ) (@2) = G1(x, y) (w1)]

< Wy — Wy <kz|77|T,0ﬁ_1 n leaH n k1|7lf|ﬂa_1 n k2|77|Tﬁ>
— 4] r'p) I'(a+1) I'(a) rg+1

ky

e+ D (w2 — w,*].

Hence we have ||G, (x, y) (w3) — G1(x, y)(w,)|| = 0 independent of x and y as w, —

w. Furthermore, we obtain

|G, (x, y)(w3) — Go(x, ¥) (wy)]

@2 =W <k2|n<|pﬁ—1 kalSIT® I TR Iu szB“)
© o lal [ T+ T@  TE+D

ks

TE+D

[wZB - wlﬁ]'

which implies that ||G,(x, y)(w3) — G, (x,y)(w4)|| = 0 independent of x and y as
Wy = W1q.

Therefore, operator G(x,y) is equicontinuous, and thus G(x,y) is completely
continuous.

Step 2: (Boundedness of operator)

Finally, show that Z = {(x,y) € R x S: (x,y) = hG(x,y),h € [0,1]} is bounded. Let
(x,y) € R, with (x,y) = hG(x,y) forany t € [0, T], we have

X(t) = hGl(xJ }’)(t); }’(t) = th(x, }’)(t)

Then
lx(@®)] < Q1(6o + O11x| + O21¥]) + Q2(Ao + A11x] + 421y 1),
and
ly(O] < Q3(8p + 01x| + 621y]) + Qu(Ao + A1 lx| + 22|y )).
So we get
llxll < Q1 (80 + B4 llx|l + 621l¥1D) + Q2 (A0 + A1 lIxIl + A:[I¥ID),
and
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lyll < Q3(8¢ + 041llxIl + 821y + Q4(Ao + Aqllx]l + A2 l¥1D),
which imply that
lxll + Iyl < (@1 + Q3)60 + (Q2 + Qu) Ao + ((Q1 + Q3)01 + (@2 + Qu) A1) llx|l
+ ((Q1 +Q3)0; + (Q; + Q4)/12)||3’||-

Therefore,

(Q1+Q3)6p + (Q2 + Qu)A
Qo ’

lCe, Il <
where @, = min{1 — (Q, + ;)8 — (¢, + @, )41, 1 — (@, + Q,)8, — (¢, + Q,) A2},
which proves that Z is bounded. By (Leray-Schauder theorem) the operator G has at
least one fixed point. Therefore, the BVP (1) and (2) has at least one solution on
[0, T].The proof is complete. ]
3.3 Hyers-Ulam Stability

In this section, we will discuss the Hyers-Ulam stability of the solutions for the BVP
(1) and (2) by means of integral representation of its solution given by

x(t) = G1(x, y)(8), y(t) = G2 (x, y)(8),
where G, and G, are defined by (8) and (9).
Define the following nonlinear operators N;,N, € C([0,T],R) x C([0,T],R) —
C([0,T], R);

D*x(t) — f(t, x(8), y(t)) = N, (x, y)(t), t€[0,T],
Dy (1) — g(t,x(1), y(t)) = No(x,¥)(t), t€[0,TI.

For some ¢, &, > 0, we consider the following inequality:

INyCe, I < &1, (IN20x, )| < e (13)

Definition 3.3.1 ([46,47]) The coupled system (1) and (2) is said to be Hyers-Ulam

stable, if there exist M;, M, > 0, such that for every solution(x*,y*) € C([0,T], R) X
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C([0,T],R) of the inequality (13)there exists a unique solution (x,y) €
C([0,T],R) x C([0,T],R) of problems (1) and (2) with

1, y) — (", ¥yl < Mygy + M,e,.

Theorem 3.3.1 Let the assumptions of Theorem 3.2.1 hold. Then the BVP (1) and (2)
Is Hyers-Ulam stable.

Proof. Let (x,y) € C([0,T],R) x C([0,T], R) be the solution of the problems (1) and
(2) satisfying (8) and (9). Let (x*, y*) be any solution satisfying (13):

D (t) = f(t,x* (1), y*(®)) + Ny (x*, y*)(t), t€[0,T],
DFy*(t) = g(t,x*(£),y* (1)) + Np(x",y")(®), t€[0,T].

So

x*(t) = Gy (x%, y")(0)

—5)B2
+ E(nTfp&Nz(x"‘.y"‘)(s)dS
0

A r-1)
T T — a—1 u _ a-2
-1 [ My @ g [ Sy e)s
T(T — p-1
o [ gty e
0

t(t _ S)a—l o
+f0 WM(X ,¥")(s)ds,

It follows that

G2 (x7, y") (&) — x*(0)]

T P(p—s)P-2 T(T —s)*1
< (I |Tf udsez+Tf ¥dssl
|A] 0 0

rp-1) I'(a)
By — T(T —s)B-1
+ | ﬂj (# d 1+|77|j ( F(;)) d552>
T(T_S)a—l
+J;) Wd&?l,
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ret gl T LT (TP niTf
|A| I'(a+ 1) ['(a) T+ )| 27 r'(B) rB+1))*
< Q18 + Qze;,

Similarly,

G2 (x", y") (@) — y* (O]

T [ 1IT* T|¢|u*t
= W(r(a T T )81

In¢lpF~t TP+
[|A| < r'B) F(ﬁ + 1)) + T3+ 1)] &, < Q381 + 048y,

where Q;,i = 1,2,3,4 are defined in (10).
Therefore, we deduce by the fixed-point property of operator G, that is given by (8)
and (9), which
lx(®) —x"(O)] = |x(8) = G1(x", y) () + G1(x7, y) () — x* ()]
< 16106 ) () = G (", y) (O] + 16 (7, y*) (8) — x*(0)]
< Qo+ PG y) — (7, ¥l + Qre1 + Q282 (14)
and similarly
ly(®) —y* (Ol = ly(@) = G2(x", y) (O + G (x7, y*) (&) — y* (O]
< G2, y)(©) = G (x7, y) (O] + G2 (x", y) () — y* (O]
< Q39 + QI y) — (7, ¥l + Qze1 + Qusy, (15)
From (14) and (15) it follows that
1Ce, ) — (%, y )
S Q19+ Q¥ + Q3¢ + QuP)lI(x, y) — (", ¥y + (Q1 + Q3)ey
+(Q2 + Qu)ez,

(Q1 + Q3)e1 + (Q2 + Qy)e,
1—-((Q1 4 Q)¢+ (Q2 + QY)

”(x'y) - (x*'y*)” <

S Mlgl + MZSZ'

with
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_ (Q1 + Q3)
1—((Q: + Q)¢ + (Q2 + Q)Y)’

_ (Q2+ Q4)
1—((Q: + Q)¢ + (Q2 + QY)

1

2

Thus sufficient conditions for the Hyers-Ulam stability of the solutions is obtained.

|
3.4 Examples
Example 3.4.1 consider the following system of fractional differential equation
()] ly(®)] >
D3/2x(t) = + ,
O = ETr e <3 1 T 5+ %)
1
cn7/4 — X 1 [
< D7y (t) PPN s (sm(x(t)) +sm(y(t))), (16)

1 1
f x'(s)ds = 2y’(1),f y'Ods = —x'(1/2),
0 0

x(0)=0, y(0)=0,

3 7 1
a—E,[)’—Z,T—l,n—Z,(——l,y—E,p_l.

Using the given data , we find that A = 3,Q; = 1.269,Q, = 1.1398,Q; = 0.5167,Q, =

1 1

1.554,¢ = 547_[,1,[) = o

It’s clear that

~ 1 |x(t)| ly ()]
flexy) = 6nm<3 (@] 5+ Ix(t)|>'

and

1 . .
glt,x,y) = m (sm(x(t)) + sm(y(t))),

are jointly continuous functions and ¢(Q; + Q3) + ¥(Q, + Q) < 1,

such that

1 1
—(1.269 + 0.5167) + ——(1.1398 + 1.554) = 0.0283 < 1,
54 481

Thus all the conditions of Theorem 3.2.1 are satisfied, then problem (16) has a unique

solution on [0,1].
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Example 4.4.2 consider the following system of fractional differential equation

| ()] 1
cDSBx(t) = + + e 3tcos(y(t)),t € [0,1
® =507 120(1 + y2(t)) 42500 + t2 b®).ecion
1 1 1
¢D6/5y(t) = ——=cost + —= e 3tsin(y(t)) + —=x(t),t € [0,1
J Doy () = s cost + ggzesin(y() + g5 (O, € [01]
1 1
f x’(s)ds=—3y’(1/3),f y'(s)ds = x'(1), 17)
0 0

x(0) =0, y(0) =0,

5 6
a=§’ﬁ =§,T= 1’1’] = —3’(: 1“u: 1’p = 1/3
Using the given data, we find that A = 3,0, = 1.269,Q, = 1.1398,Q5 = 0.5167, Q, =

1

1.554,(1):%,1/):@.

It is clear that
|If (¢ )|<1+1||+1||
FEx =g+ 120X+ 5501
lg(t )|<1+1||+1||
gL = 3T 150 ™ T 150

1 1 1 1 1 1
Thuseo_g’el_E’HZ_E’AO_Z’AZL_E’AZ_E'

We found (Q; + Q3)0; + (Q, + Q4)A; = 0.0298 < 1and (Q; + Q3)0, + (Q, + Q)A, =

0.0269 < 1, then by Theorem 3.2.2 the problem (17) has at least one solution on [0,1].
3.5 Conclusion

A coupled system of fractional differential equations with boundary conditions was
investigated in this chapter. The existence and uniqueness of solutions for the given
problem were discussed and proven by applying the contraction mapping principle and
Leray-Schauder’s alternative theorem. Furthermore, the stability of obtained solutions
was discussed using the Hyers-Ulam method and sufficient conditions for the Hyers-
Ulam stability were driven. Results of the study were successfully supported by

numerical examples that were presented in the last section.
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Chapter 4

EXISTENCE AND STABILITY OF COUPLED
SEQUENTIAL FRACTIONAL DIFFERENTIAL SYSTEM

BOUNDARY CONDITIONS

This chapter is concerned with the existence and uniqueness of solutions for a coupled
system of Caputo type sequential fractional differential equations supplemented with
integral boundary conditions. The existence of solutions is derived by applying Leray—
Schauder’s alternative, while the uniqueness of solution is established via Banach’s
contraction principle. Moreover, some necessary conditions for the Hyers-Ulam type
stability to the solutions of the boundary value problem (BVPs) are developed. Finally

the results are supported by example.

We study the following coupled system of Caputo type sequential fractional

differential
{cDa—l(D +k)x() = f(t,x(©),y®)), te[0,T], 1<a<2, k>0, D
‘DF1(D + k)y(t) = g(t,x(®),y(®)), te[0,T], 1<B<2, k>0,
supplemented with integral boundary conditions of the form:
T T
| x@ds=py@). [ #0sdds = oy @)
0 0 (2)

T T
kf Y(s)ds = ux(ny), f Y/($)ds = X' (M), T8 € 0,71,
0 0
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where °¢DF denote the Caputo fractional derivatives of order k,k = a,f, and
f,9:[0,T] x R? > R, are given continuous functions, and py, p,, 1y, 4, are real
constants .

4.1 Preliminaries

Definition 4.1.1 Due to Miller-Ross [2] the sequential fractional derivative for a
sufficiently smooth function h(t) is defined as
D°h(t) = D°1D® ...D"h(t), (%)
where o = (04, 03,...,0,)is a multi-index.
The operator D? in (*) can either be Caputo or Riemann-Liouville or any other kind

of integro-differential operator. For example

( )dm
¢DPh(s) = D~ (m-F ds_mh(s)' m—1<pB<m,

where D~(m=F) is the fractional integral operator of order (m — 8).0On emphasizing

that D~9h(s) = I9h(s), q = m — B; for more details, see [1](p. 87).

We prove the following auxiliary lemma to find the solution for the problem (1) and
().
Lemma4.1.1 Let ¥, ¢ € C([0,T], R) then the unique solution of the problem:

(DD +k)x(t) =yY(t), 1<a<2,
‘DEA(D+k)y(t) = (1), 1<B<2

T T
<jx®w=mﬂm, ff@w=my@) @3)
0 0

T T
fySMs=mﬂm) fy@mS=Mxmg,k>atemJL
0 0
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x(t) = Ae™* [liz I P)(2) — kpy J:Ze_k(nz_s) I M) (s)ds
T T rx
—f (Iﬁ‘1¢)(s)ds+kf f e~k(x=9) (Iﬁ‘lqb)(s)dsdx]
0 o Jo
¢
+ e~k [Pz(lﬂﬂ‘p)(fz) — kp, f e (6279 (Iﬁ_lfi))(s)ds
0

T T rx
— f (I*" 1) (s)ds + kf f e~k(x=9) (1“‘1lp)(s)dsdx]
0 0 Jo

1 A 2
S [% "7 1)(12) — Az f e k(2= (197 1) (s)ds
0
T T rx
- %f (1F-1¢)(s)ds + (A - pl)f f e~k(x=5) (1B-1¢)(s)dsdx
0 0 Y0
Bp, B-1 ¢ —k(Zy-s) (1B-1
t— (IP71¢)(32) — Bp, J;) e k(&= (1F~1¢)(s)ds
B (T T rx
- f (*19)(s)ds + (B —T) f f e~G=9) ([a=1yp) (5)dsdx
0 0 0

€1 M1
+Tpy [ e HED (1B19)()ds +upy [ e M (T (s)ds
0 0

t
+f e k=) (12=1y) (s)ds, 4)
0

and
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N2
y(t) = 6ekt [Mz(la_lll))(ﬂz) - klizfo e~Km2=5) (19=1y) (s)ds
T T rx
—f (1F-1¢)(s)ds +kf f e ~k(x=9) (Iﬁ‘lqb)(s)dsdx]
0 0 Jo
¢
+te K [Pz(lﬁ_ld’)((z) - kpzf e K(2=s) (IF=1¢)(s)ds
0
T T rx
—f (I“‘ll,b)(s)ds+kf f e ~k(x=s) (I“‘ltp)(s)dsdx]
0 0 Jo
1[c 2
+ 5[% I ) () — C.szo e~Km2=5) (19=1y) (s)ds
C T T rx
——f (1F=1¢)(s)ds + (C — T)f f e =) (1F~1¢)(s)dsdx
kJo o Jo
DpZ -1 G2 —k({,— -1
+ = (IF)6) ~ Dpy | e (181 ) (s)ds
0

_2 r a—1 _ T —k(x-s) (ra—1
- fo (1) (s)ds + (D — 1) fo fo e KG9 (1a=13) (5)dsdlx

{1 UEY
bpy [ KA (1719))ds + Tin [ e K (< (s)ds
0 0

t
+J e k(t=s) (1F=1¢)(s)ds, (5)

0

where
—kp,e k<2 e kT —1 ~
w="T?—pup; #0, A=T, A:T' o = Akp,e "2 — 1
M= (e kT -1 2 k2 —k(2+12) £ 6 = 9 - A
= (e =1)" = k’uypze * 0, T ekl _1’ TT kT _7

A= [0kTp e ™ + kg pyAe ™11 + (e7*T — 1)(AT + 6p,)],

B = [tkTp,e ™ 1 + kpypie ™M + (e7*T — 1) (AT + 7py)),

C = [AkTu e ™M + kpyp,0e %6 + (e %7 — 1) (6T + Awy)],

D = [AkTu e ¥ + kpypyte ™ + (7K — 1) (T + Awy)],

Proof. The general solutions of the sequential fractional differential equations [41] in

(3) is known as
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t

x(t) = cpe M + ¢, + f e k=) (1214 (s)ds, (6)
0

t

y(t) =doe ™ +d; + f ek=9) (1F=1¢)(s)ds, (7)
0

observe

t
x'(t) = —kcoe ™ ¥ + (1% 1) (t) — kf e~kE=9) (12=1y) (s)ds,
0

t
y'(t) = —kdoe " + (IP71¢)(t) — kf e k(=) (1B~1¢)(s)ds,
0

where ¢;,d; € R,i = 0,1 are arbitrary constants.

Apply the conditions

T T
f x'(s)ds = pzy’((z),f y'(s)ds = px'(n2)
0 0

then we obtain:

N2
=4 [;12(1“‘11,[))(172) - kllzfo e~K(12=5) (]2~14) (s)ds
T T rx
—f (13‘1¢)(s)ds+kf f e ~k(x=9) (Iﬁ‘lqb)(s)dsdx]
0 0 0
¢
+2 [Pz (IF~19)(32) — kp; f e k=9 (1B-1¢)(s)ds
0

T T rx
—f (I*1YP)(s)ds + kf f e~k(x=s) (I“‘ltp)(s)dsdx],
0 0 0

and

N2
do =6 [Hz I (2) — kpy f e~k2=9) (J% 1) (s)ds
0
T T x
—f (1F-1¢)(s)ds +kf f e ~k(x=s) (Iﬁ‘ltp)(s)dsdx]
0 0o Jo
02
t+7 [PZ(IB_1¢)(€2) - kpzf e K2=s) (1F~1¢)(s)ds
0

T T x
- _[ (I*" 1Y) (s)ds + kf f e ~k(x=s) (I“‘llp)(s)dsdx]
0 0 Jo
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In view of the conditions fOTx(s)ds = ply(cl),fOTy(s)ds =y x(ny),

we get
114 N2 AT
o == [% U= 1) () — Ay fo (=) (1) (s)ds — 7 fo (1P-1¢)(s)ds
+A—py) f f K= (11 ) (s)dsdx + 02 (1971 )(5,)
¢ B T
—B —k(G2—s) ([B-1 ds —— | (o1 d
pa | et (1819) s — [ @t @ds
T rx
+(B-T) fo fo e~G=9) ([a=1yp) () dsdx

01 M1
+Tpy [ e G (91g)(5)ds + upy | ek (1“—1w)(s)ds],
0 0

and

C M2 c (T
[“ =) ) = Ci f e KM= (1) (s)ds — o f (IF71¢)(s)ds
0 0

T rx
+(C-T) f f e~*G=9) (1810 (s)dsdx +%(1ﬂ—1¢)(g)
0 0
-D fzze‘k(fz‘s) (1F=1p)(s)ds — BJ.T(I“‘llp)(s)ds
P2 . k),
T rx
+ (- ) fo fo eC=9) (1€ 1) (5)dsdx

{1 UEY
bpy [ KA (1719)()ds + Ty [ e K (< (s)ds
0 0
Substituting the values of ¢y, ¢y, dg, d;in (6),(7) we obtain (4) and (5), which is
complete the proof. =
4.2 Existence of Results

Let the space Z = {x(t)|x(t) € C[0,T]} endowed with the norm |x|l =
max{|x(t)|,t € [0,T]} . It is clear that (Z,||. ||) is a Banach space. Also let S =

{y(®)|y(t) € C[0,T]} endowed with the norm [|y|| = max{|y(t)|,t € [0,T]}.The
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product space (Z x S, ||(x,y) |) is also Banach space with norm ||(x,y) || = [|x]|| +

I¥ll.

In view of lemma 4.1.1 we define the operator Q: Z X S — Z x S by

Q(X,J’)(t) = (Ql(x) y)(t), QZ(xl Y)(t)),

where
N2
Q1(x, y) (@) = Ae*t [I«lz(la_lf)(nz) - k#zj;) e~Km2=9) (191 ) (s)ds
T T rx
—f (Iﬁ‘lg)(s)ds+kf f e ~k(x=9) (Iﬁ‘lg)(s)dsdx]
0 o Jo
02
+ ekt [pz(lﬁ‘lg)(iz) - kpzf e KG9 (1F~1g)(s)ds
0
T T x
_ f (%1F)(s)ds + k f f ) (I“‘lf)(s)dsdx]
0 o Jo
114 N2
+— [% 1) 02) = Apy jo e K= (191 f)(s)ds
- é'[T(Iﬁ_lg)(s)ds + (4 —py1) fT fxe_k(x_s) (15_1g)(s)dsdx
kJo o Jo
Bps 54 e —k($2-5) (1B-1
+T(1B g)((z) —szf e ks (IB g)(s)ds
0
B T T rx
_Ef (I* 1)) (s)ds + (B — T)f f e k=9 (Ja-1£) (s)dsdx
0 o Jo

{1 UEY
+Tpy [ eHE (81 g))ds + papy [ KM (1< (s)ds
0 0

t
+f e k=9 (Ja=1£)(s)ds,
0

and
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N2
Q2(x, y) (&) = Be™* [Mz I () — kuy fo e KM2=9) (%71 ) (s)ds
T T rx
—f (Iﬁ‘lg)(s)ds+kf f e ~k(x=9) (Iﬁ‘lg)(s)dsdx]
0 o Jo
02
+ ek [pz(lﬁ‘lg)(fz) —kp, f e &9 (A1 g)(s)ds
0
T T rx
—f (I“‘lf)(s)ds+kf f e~k(x=s) (I“‘lf)(s)dsdx]
0 o Jo
11c N2
+= [% I () — Cy J; e K2=9) (271 ) (s)ds
- E."T(lﬁ_1 )(s)ds + (C—T) fT fxe_k(x_s) (1F-1g)(s)dsdx
kJo g 0o Jo g
02
+ 2R (1) @) = Dy [ €D (1P g) s
T T rx
-2 | aeip@ds + @ =) | e (ot (s)dsax

{1 M1
Hipy [ KA (1871 g)(s)ds + Ty [ KM (1< )(s)ds
0 0

t
+f e k=) (1F~1g)(s)ds,
0

Theorem 4.2.1 Assume f, g: C([0,T] X R?) -» R are jointly continuous functions
and there exist constants h¢, hy € R, such that V x;,x,,y,,y, € R,Vt € [0,T] we

have

|f(t,x1,x2) = f(&,y1,¥2)| < he(lxy — x4 ] + |y2 — y1D),

|g(t, %1, 25) = f(&,y1, )| < hy(lxz — x1| + |y2 — y1D-

he(Ny + N3) + hy(N, + N,) < 1,

then the boundary value problem (1),(2) has a unique solution on [0, T], where
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Ny

(a + D)|Auyle ™ n,%(an, ™ + k) + |Ale *TT*(a + 1 + kT) T®
_ 2
I'(a+2) ra+1)

N [IA#zlrlz“(Of + D(an, ™t + k) + T¥(IBl(a + 1) + kT|B = T|) + k(a + D)|p1p1|m,“
kI'(a + 2)IT? — py p1| '

N,

_[B+DTE(|Ale™T + kT) + Ap,le 73,7 (B + 1)(BS, ™" + k)
B [ rg+2) ]

+ [Tﬂ_l(ml(ﬁz +B) + klA = p|T?) + (B + DIBp, 13" (BS ™" + k) + k|T,01|(1'3]
k[ (B + 2)IT? — pypy '

N3

_[Ca+ DI6uzle ™ n* (an, ™ + k) + |t|le ™ T (a + 1 + kT)
B I'(a+2)

N [|C#2|772a(a + D(an, ™ + k) +T*(ID|(e + 1) + kT|D — py|) + k(e + 1)|#1T|Th“]
kI (a + 2)|T? — pyp4]| '

N,

(B + 1)Tﬂ(|9|e_kT + kT) + |TP2|€_RTZZB([3 + 1)(,352_1 + k) TF
r+2) ]+F(ﬁ+1)

+

[TE=L(ICI(B% + B) + kIC — TIT?) + (B + DIDp, 18P (B, ™" + k) + k|M1P1|513]
kI'(B + 2)|T? — uypl '

Proof. Define 2% f(t,0,0)=fy<oo, 22 g(t,00)=gy<o and Q,=
{(x,y) € ZxS:||(x, )|l <r},and r > 0, such that

- (N1 + N3)fo + (N + Nu) go
~ 1 —[h(Ny + N3) + hy(N, + N)|

Firstly, show that Q#, < 0,.
By our assumption, for (x,y) € 2,,t € [0,T], we have
£t x@®), y®)] < |£(t,x(®),y®) = £(£,0,0)] + £ (£,0,0),

< he(Ix(O1 + [y(OD + fo < he(llxll + HlyID + fo,
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< th + fo, (8)
and

lg(t,x(0), y(@®)| < hg (x| + ly(©OD + go < Ay (llxIl + lIy1D) + go,
< hyr + go, 9

which lead to
N2
101G (O] < |Ale™T [|u2|<1“-1|f|)<n2) T k| f e (a1 | (s)ds
0
’ B " k(x=s) (1B
-1 ds +k ~k(x=s) ([B-1 dsd
+f0( 191)(s)ds + fofoe (151 1g1)(s)ds x]
{2
+ Al [|p2|(1ﬂ-1|g|)(cz) + klp| f eKG=5) (161 g )(s)ds
0
T T X k( )
Ia'—l d k —-k(x-s Ia'—l d d

+f0( IFD(s)ds + fofoe A=) (s)ds x]
N ﬁ["‘ki' A= FD (1) + 1A | fo " e-k(n=5) (4111 (5)ds
+ﬂjT(Iﬁ_1|g|)(s)ds +]A—p |fT fxe_k(x_s) (1A=t g])(s)dsdx

k 0 ! 0 0

B ¢
222 (152191) () + 1Boal [ o6 (18 gl) (s

0

L8l f e ($)ds + 1B —T) f ' f ek (J-1| ) (s)dsdx

k 0 0 0

€
Tl f ekG=5) (16-1)])(s)ds
0

RS
+ 1zl f e km=s) (1“-1|f|)<s)ds]
0

sup
+OStST

t
f ek (E=9) (1a-1|£[) (5)ds.
0

Using (8) and (9) to get
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1Q: (e, ) ()] <

|Ale ™, ((1“‘11)(772) +k fnze'k(”z"s) (1“'11)(5)015)
0

T T rx
+ |Ale T (f (% 11)(s)ds + kf f e~k(x=s) (I“_ll)(s)dsdx>
0 o Jo

1 A N2
* m(' 22l et n) + g [ €707 G115
0

|B| T T rx
+ Tf (I%* 1) (s)ds + |B —T| f f e ~k&x=9) (J2=11)(s)dsdx
0 o Jo
M1 T
Hlupr] [ ek (1“-11>(s)ds> + [ e (1“-11)(s>ds] If
0 0

T T rx
+[|A|e‘kT<j (15_11)(s)ds+kf fe_k(x_s) (15_11)(s)dsdx>
0 o Jo
¢z
# We (Il 11)G) + Kipsl [ 7460 (183 )
0

+—('A' f (1F-11)(s)ds + |4 — p,| f f =9 (16-11) (s)dsdx

|l

R R I e O [P

- (a+ D|Auyle ™ n,%(an, ™t + k) + |Ale *TT*(a + 1 + kT) N T®
- I'(a+2) I'a+1)

IAuzlnz“(a + D (an, ™" + k) + T*(IBl(a + 1) + kT|B = T|) + k(a + 1)|u1p11n:°
kl'(a + 2)|w|

] Ifll

B+ DTE(|Ale™ T + kT) + [Aple ¥ P (B + 1)(BE, ™ + k)
+ [ rG+2)

N TE-1(AI(B% + B) + klA — p1IT?) + (B + DIBp2 137 (B! + k) + lepllclﬁ] gl
REDIE gl

Hence, by (8) we have
T
Q1 Ce, W < (th1 + thz)T + (N1fo + N2go) < 5 (10)

In similar way we get

(11)

N =

1Q2Cx, Il < (th3 + th4)T + (N3fo + Nago) <
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From (10) and (11) we obtain

eIl <,

Now show that Q is a contraction.
Let(xy, y1), (x5, ¥,) € Z X S,Vt € [0,T], then we get
1Q1 Cx1, y1) — Q1 (x2, ¥l

< heNo(llxy — 220l + llyy — 21D + hgNo(llxg — 220l + llys — y21D,  (12)
1Q2 (1, y1) — Q2(x2, )l

< heN3(lley = 220l + [lyy = y2l) + hgNa(llxy — %2l + llys — y21D. (13)
From (12) and (13) we deduced that

10Ger,¥1) — QG2 ¥l < (e (Ny + Na) + hg (N + Ny ) (llxy = 211 + llys = v

Since hg(N; + N3) + hy(N, + N,) < 1, therefore, @ is a contraction operator. So, by
Banach’s fixed point theorem, the operator Q has a unique fixed point on[0, T], which

is the unique solution of the problem (1) and (2) ,which is complete the proof. ]

The second result is based on the Leray-Schauder alternative.

Theorem 4.2.2 Assume f, g: C([0,T] x R?) —» R are continuous function and there

exists a positive real constants &;, ¢;(i = 0,1,2) such that Vx; € R, (i = 1,2)we have
|f(t,xq1, %) < &g + 81lx1| + 621x3],

lg(t, x1, X2)| < o + P1lx1]| + P2 |x2].

(Q1 +Q3)6; + (Q2 + Qu)d; <1,

and

(Q1 +Q3)6, + (Q2 + Q). < 1,

then the problem (1) and (2) has at least one solution.

Proof. The proof will be divided into several steps
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Stepl: Show that Q is completely continuous .The continuity of the operator holds
true because of continuity of the function £, g.
Let R be a bounded set in 2, = {(x,y) € Zx S:||(x,y)|| <}, then there exists
positive constants q, q, such that

If(tx@.y®)| < a1, |g(t.x@,y(®)| < q., Vte[0,T],
then for any(x, y) € R we have|Q,(x,y)(t)| < Nyq; + N,q,,
which implies that [|Q, (x, )|l < N,q; + Nyqs.
Similarly, we get |1Q,(x, Y)|| < N3q; + Nuqs.
Thus, it follows from the above inequalities that the operator Q is uniformly bounded,
since

1QCx, MII < (N1 + N3)gq1 + (Ny + Ny)qs,.

Next, we show that the operator is equicontinuous.
Let t;,t, € [0, T] with t; < t,., then we have

1Q1 (x, y)(t2) — Q1 (x, ¥) (t1)|

< |AleT*(tz7t) [|M2|(1a_1|f|)(772) + klp| fonze_k(nz_s) I HfD(s)ds
T T (x

+J; (IB‘llgl)(s)ds+kJ; J;) e~k(x=s) (15‘1|g|)(s)dsdx]

+ [A|e 7kt [|P2|(1B—1|g|)(fz) + klp| J:Zé_k((z_s) (I157*1g1)(s)ds
T T (x

+J; (I“_1|f|)(s)ds+k-]; J; e ~k(x=s) (1“_1|f|)(s)dsdx]

t
0

t, 1
+ f e~k(2=9) (1%=1|F|)(s)ds + f e KG9 (1%71|f)(s)ds.
0
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N2
< |Ale~(E~t) [|I«lzq1|(1a_11)(772) + k|#z‘h|f e K(12=9) (]9~ 11)(s)ds
0
T T x
+q; f (1F711)(s)ds + kq; f f e Hx=s) (15'11)(5)0156“]
0 o Jo
02
+ |AeK(E~t) [|P2‘h|(13_11)(52) + klp2q;| f e k(=9 (Iﬁ_ll)(s)ds
0
T T x
+qlf (1“‘11)(s)ds+kqlf f e ~k(x=s) (1“‘11)(s)dsdx]
0 o Jo
t
+q [(f g k(tz=s) _ e‘k(tl‘s)> (I*11)(s)ds
0

t
+ f e K(t2-9) (I“‘ll)(s)ds] .
t

1

Hence we have ||Q;(x, y)(t;) — Q1 (x, y)(t1)|| = 0 independent of x and y as t, — t;.
Similarly, [|Q,(x, y)(t;) — Q2 (x,¥)(t1)|l = 0 independent of x and y as t, — t;.
Therefore, the operator Q(x,y) is equicontinuous, and thus the operator Q(x,y) is
completely continuous.

Step 2: (Boundedness of operator)

Finally, show that ¢ = {(x,y) € Z x S: (x,y) = NQ(x,y),N € (0,1)} is bounded.

Let
x(t) =NQ1(x,y)(®),  y(©) = NQ2(x,y)(0),
then
[x(©)] < N1(8 + 611x[ + 821y D) + Na(po + ¢1lx| + ¢2lyD),
and
ly(©] < N3(8o + 81 |x] + 821y) + Nalpo + p1lx] + P2lyD.
So we get
x|l < N1 (8o + 611x| + 621yD) + N2 (o + Palx| + ¢2lyD, (14)
and
lyll < N3(8o + 81lx| + 821y 1) + Na(o + d11x| + P2lyD. (15)
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From (14), (15) we obtain
llll + Iyl < (Ny + N3)8o + (N + Ny)o + (N1 + N3)8; + (N + Ny)py ) Il
+ (N + N3)8, + (N, + Ny, Il
Therefore;

(N1 + N3)bg + (N3 + Ny
Ny ’

1Ce, Wl <

where N, = min{1 — (N; + N3)&; — (N, + Ny)¢1, 1 — (N; + N3)8, — (N, + N,)¢p,} that
is ¢ is bounded. by (Leray-Schauder theorem) the existence of solution of boundary

value problems holds true on [0, T].
4.3 Hyers-Ulam Stability of System (1)

This section is devoted to the investigation of Hyers-Ulam stability for our proposed
system. Consider the following inequality:

{CDa—l(D + k)x(t) —f(t,X(t),y(t)) < rn, tEe [0, T], (16)

‘DFY(D + k)y(®) — g(t,x(@®),y(®)) <my, t€0,T],

where r;, 7, are given two positive real numbers.

Definition 4.3.1 The boundary value problem (1) is Hyers-Ulam stable if there exist
N;,i = 1,2,3,4 such that for given r;,, > 0 and for each solution (x,y) € C([0,T] X
R?,R) of inequality(16), there exists a solution (x*,y*) € C([0,T] X R, R) of
problem (1) with

{|X(t) —x"()| <Ny + Ny, tE€[O,T],
ly(@®) —y* ()| < N3y + Ny, t€[0,T]

Remark 4.3.1 (x,y) is a solution of inequality (16) if there exist functions H; €
C([0,T],R), i = 1,2 which depend upon x, y respectively, such that

|Hi(O)| <7, [H ()| <7, te][0,T]

{CD“‘l(D + k)x(t) = f(t,x(0),y(®)) + H(t), t€[0,T],
‘DE-Y(D + k)y(t) = g(t,x(t),y()) + Ho(t), te€[0,TI.
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Remark 4.3.2 If (x,y) represent a solution of inequality (16), then (x, y) is a solution
of the following inequality

{Ix(t) —x"(t)| < N;ry + N1y, t€[O,T],
ly(©) =y (Ol < Nsry + Nyrp, t€[0,T]

—

As from Remark 4.3.1, we have

{CD“‘l(D +k)x(t) = f(t,x(0),y(®)) + H(t), t€[0,T],
‘DE-Y(D + k)y(t) = g(t,x(t),y()) + Ho(t), te€[0,TI.

With the help of Definition 4.3.1 and Remark 4.3.1 we verified Remark 4.3.2, in the

following lines

x(t) — Ae™*t [Mz I ) (2) — kuy ane_k("z_s) (I f)(s)ds
0
T T rx
—f (1F=1g)(s)ds +kf f e~k(x=s) (Iﬁ‘lg)(s)dsdx]
0 0 Jo
¢z
— ekt [pz(lﬁ‘lg)(iz) — kp, f e k&9 (181 g) (s)ds
0
T T rx
—j (I“_lf)(s)ds+kf f e~k(x=s) (I“_lf)(s)dsdx]
0 0 Jo
1 Auz a- "o (m2-s) (ja—
_TZ——MlPl[TU 1f)(772)—14#21; e K279 (J*=1f)(s)ds
T T rx
- %fo (1F=1g)(s)ds + (A — pl)f0 fo e~kx=9) (1F~1g)(s)dsdx
02
+ % (1719)($2) — Bpa f e k&= (1F~1g)(s)ds
0
_5 T(I“‘lf)(s)ds +(B-T) foxe‘k("‘s) (I*1f)(s)dsdx
k 0 0 0

€1
+ Tplj e ~*C1=9) (1B=1g)(s)ds
0

U t
+M1p1j e~k(1=9) (1“"1f)(5)d5] —j e k=) (1271 ) (s)ds|,
0 0

41



N2
< Jalekr [qul(l“‘llHl(t)I)(nz) #lps| [ e ) @D s
0
T T rx
+f (13‘1|H2(t)|)(s)ds+kf fe‘k(x‘s) (Iﬁ‘lle(t)l)(s)dsdx]
0 0 Y0
02
+ [Nk [|p2|(15-1|H2(t)|)(<2) +klps| [ e (P @) ()ds
0
T T rx
+f (I“_llHl(t)l)(S)ds+kf fe_k(x_s) (I“_llHl(t)l)(s)dsdx]
0 0 Y0
1 A N2
e [% (L OD 0 + 14 [ e 11 D )ds
T T rx
2 | @@ s +1a=pl [ [ e (11 @) (9dsdx
B ¢z
+ P (1B, 1) (6 + 1Boal [ o7 (1, 0]) ()i
0
T T rx
o [ @D+ 1811 [ [Te D g @D syasar
{1 M1
+Tlpr] [ e G (B, @) )ds +lmpr] [ €709 G OD(s)ds
0 0

T
+ f eKT=9) (11|, (0)])(s)ds, a7
0

42



n
<n
0

|Ale ™, ((1“‘11)(772) + kf e (1“'11)(5)015)

T T rx
+ |Ale kT <f (1% 11)(s)ds + kf f e ~k(x=s) (1“‘11)(s)dsdx>
0 o Jo

1 [|Au,|
+_
| |< k

2
(D0 + A | e 9 (<) s)ds
0
|B| T T rx
+7f (I*7'1)(s)ds + |B — Tlf f e~k(&x=s) (12=11)(s)dsdx
0 0 Jo
U T
+ |u1p1|f e k(1= (1“‘11)(s)ds> +f e~k(T=5) (Ja=11)(s)ds
0 0

T T rx
+r, [lAle‘kT <j (1F~11)(s)ds + kf f e ~k(x=s) (Iﬂ_ll)(s)dsdx>
0 o Jo
¢z
e (Il (1 1)G) + kil [ 7460 (19 1) ) )
0

1 |A| T ~ T rx e ~
+— —f (1F=11)(s)ds + |A—p1|f f e =) (1F=11)(s)dsdx
lw| \ k Jy 0 Yo

02
P (1611)(5) 4 1By [ eHm (1’3‘11)@‘“)]
0

= ryN; + rpN,.
By the same method we can obtain that
ly(@®) —y* ()| < N3y + Ny, (18)
where N;,i = 1,2,3,4 are mentioned before. Hence Remark 4.3.2 is verified, with the
help of (17) and (18). Thus the nonlinear sequential coupled system of Caputo
fractional differential equations is Hyers-Ulam stable and consequently, by the system
(1) is Hyers-Ulam —stable.

4.4 Example

Consider the following system of fractional differential equation
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°DY2(D + D)x(t) =

1 ( @l Siny(t)> n %, t €[0,1]

8mvV49 + 2 \1 + [x(0)]
1
<p3(D + 1)y(t) = m(sin(x(t)) + %) +1, te[o01]

1 1 (19
f x(s)ds = y(l/Z),f x'(s)ds = —=2y'(1/2),
0 0

1 1
f y(s)ds = —3x(1/3),f y'(s)ds = x'(1).
0 0

Here

3 4 1 1 1
k = 11“ =§'ﬁ :§JT = 1;,01 = 1!(1 :EJ,DZ = _2162 =Ehu1 = _3’771 =§'#2 = 1’

N =1
We found

1

1
N; = 4.5398,N, = 4.9766,N; = 2.7046, Ny = 5.872,hy = ——,hy = EvS

56m

It’s clear that f, g are jointly continuous functions where

Fltxy) = (it om©) 3
V) A + 2 \1+ (O v

1 . ©
9(txy) = s <S‘”("(t)) " #x(t)l) i

Now, check that hg(N; + N3) + hy(N, + N,) < 1.

Hence
L(7.2444) + i(10.8486) =0.149 < 1.
56m 32m
Thus all the conditions of Theorem 4.2.1 are satisfied, then problem (19) has a unique
solution on [0,1].
4.5 Conclusion

The current chapter studied a coupled system of Caputo type sequential fractional
differential equations with integral boundary conditions. Solutions of the system were

examined in details and their existence and uniqueness were established by employing
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Banach’s fixed-point theorem and Schauder’s alternative. The Hyers-Ulam stability of

solutions was also discussed and supporting numerical results were presented.
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Chapter 5

EXISTENCE AND ULAM-HYERS STABILITY OF
COUPLED SEQUENTIAL FRACTIONAL DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY

CONDITIONS

In this chapter we study the existence and uniqueness of solutions for sequential
fractional differential equations involving Caputo derivative of order 1 < a < 2 with
integral boundary conditions. Moreover, we discuss Hyers-Ulam stability for the

problem at hand. Finally, an example is provided to illustrate the theoretical results.

We study the following nonlinear sequential fractional differential equation subject to
non-separated non-local integral fractional boundary conditions

( (D% + AD* Hx(t) = f1(6,x(©),y()), 1 <a <2,0<t<T,
(DP + ADPV)y(t) = fo(t,x([®), (), 1<B<2,0<t<T,

T T
vax(n) + uyx(T) = f ha (x())ds, v1y(n) + uyy(T) = f by (y(s))ds, (1)
0 0

A

T T
o)+ 13’ (T) = [ ga(x)ds w2 ) + 1y’ (D) = [ g2(v(5))ds,
0 0

where D%, D# denote the Caputo derivative, 0 <71 < T,1 € R,, V1, Vs, i1, U2 € R.

In Section 1, we recall some basic concepts of fractional calculus and obtain the
integral solution for the linear variants of the given problems. Section 2 contains the

existence results for problem (1)obtained by applying Leray-Schauder's nonlinear

46



alternative, Banach's contraction mapping principle. In Section 3, Ulam-Hyers
stability for the problem (1) is studied. Finally, in Section 4, an example is provided

to illustrate the theoretical results.
5.1 Preliminaries

We begin this section with prove an auxiliary lemma, which plays a key role in

defining a fixed-point problem associated with the given problem.

Lemmab5.1.1[1] Let « > 0. Then the differential equation D§, f (t) = 0 has solutions
f() = co+ cit + cot®+. .+ t",
and
1§D f() = f(t) = co + 1t + cot®+... +cp 1 t" 7, 2

where ¢; E Randi=1,2,...,n=[a] + 1.

Let C([0,T]; R) denote the Banach space of all continuous functions from [0,T] to R
equipped with the sup-norm ||x||e = sup{|x(t)|:0 <t < T}. For computational
convenience, in what follows we use the following notations:

a1 = vie ™M + e, aqyr= 1/1% (1—e™ M) + #1%(1 — e~

AT AT

Az1 i= —Ave ™M — Qe ™, ayr = vee ™M + e T,

4 := Q11022 — A12021, 4 # 0,
pr(t) = (LeM —H2(1-eM)),

Ba(6) = (551 -7 = GreH),

Lemmab5.1.2 Let p,y4,¥2 € C([0, T]; R). Then following boundary value problem

D+ AD Vz(t) =p(t), 1<a<2, 0<t<T,
vaz(n) + inz(T) = g va(s)ds, ©)
v2z' () + u2z'(T) = fOT v2(s)ds,
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is equivalent to the fractional integral equation

t 2 n ,
20)= | (=9 B (-t = (s + ) vty (©) | (=) Brryos(Aim
=

2 T
= 0()s + D w0 | (T =9 Eyarys (AT = p()ds
=1

- ; ¢;(®) TV;(S)dS-
240,

Proof. Applying 1%~ to both sides of (3)and using (2) we get
171D 1(D + D)z(t) = 1% 1p(t),
(D + Dz(t) = co + 1% 1p(b).

We solve the above linear ordinary differential equation
z(t) = cie ™M + CO% — coie"“ + fote"l(t_s) 19717 (s)ds = cie ™ + Co%(l —e M)+
Jy =) E; o (—A t —T)p(r)dr (5)
It is clear that
Z'(t) = —Aciet + coe ™M + fot(t —1)* 2E g1 (A4t —1)p(r)dr (6)
The first boundary condition implies that
vaz(n) + puaz(T)

1 n
=v,ce M + vico (1= e~ M) + Vlf M =r)*"TE (A1
0

1
=1p()r + pacre ™ + pco 7 (1- )

T 3
Fi [ (=D B (AT = 1p@dr = [ ya)ds
0 0

It follows that
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1 1
(vie™ + e ey + (Vlz(l — ey + #11(1 — e ))co
3 n
- f yi(s)ds — vy f 0 = P Ey o (~Aim — P)p(r)dr
0 0

T
~ i [ (T =D (AT = P)p(dr
0
The second boundary condition with (6) implies that

v2z' (1) + 122" (T)

n
— vy(—Acre M + coe=M) + v, f 1 = 12 Ey s (~Xin — P)p(r)dr
0

T
+ Uz (—Acie ™ + coe ™) + sz (T—1)*"2E g 1(—4T —1r)p(r)dr
0

T

=J;_y2 (s)ds.

Thus
T n
a11C1 + a12C9 = f y1(s)ds — vlf M —1r)* T E (=4 —1r)p(r)dr
0 0
T
— i [ T =P By (AT = rp(rdr,
0
T n
A21C1 + A2C0 = f y2(s)ds — vzf M —1)*"2E1q_1(—A4n—1)p(r)dr
0 0
T
~ 1t [ (T =12 By s (<A T = P)p(dr
0
Solving the above system of equations for ¢y and ¢4, we get
T _ T
co =2 (Jy va(o)ds = v [0 = 1) 2 By gy (<250 = 1)p(r)dr — iy [ (T —
N B 1 (FAT = D)p@)dr) =2 () va(s)ds = va [0 = 1) Eya(=2im =

A

p)dr = i [y (T = 1) Eyo (AT = r)p(r)dr)
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C1 = aAZZ <f yl(S)dS _Vlf (T] _r)a 1E1a( A; n —r)p(r)dr

T
— f (T =) Epo(-4T - r)p(r)df>
0
-5 fT (s)ds —v fn( =12 Ey g1 (=4 —1)p(r)dr
4 \Jy & “Jo ! pan ’

T
~ k2 fo (T —1)* 2 Ey g (~4T - r)p(r)dr)

Inserting co and ¢, in (5) we obtain the desired formula (4).
Conversely, assume that u satisfies (4). By a direct computation, it follows that the

solution given by (4)satisfies (3). |

Lemmab5.1.3 Forany g,h € C([0,T]; R),y > 0, we have

t
fo (t = )YV Ey, (—25 £ — $)(g(5) — h(s))ds| < 7By ys1 (=2 O)1g = hlleo

Proof. Indeed,

t
t =S Ey (=24t —5)(g(s) — h(s))ds
0

szk T f (t = )71 g(s) ~ h(s)lds

*© Akpk+y
< E rary 3D = B (AE0llg =~ hlles "
k=0

5.2 Main Results
By Lemma 5.1.2, we introduce a fixed point problem associated with the problem as

follows:
(xy) =T, T2)(xy) =T, y):C([0, T R) X C([0, T]; R) = C([0,T; R) X C([0,T]; R),

where
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t
T1(x,y)(8) = fo (t =1 Ea(=At =) f1(r, x(r), y(r)dr

2
n .
£ 50 [ 1= Brarya (Aim = 220D,y (e
j=1 0
2 T
# D w® [ (=9 Eyrja (AT = Dfa(rx(), v
=1

2 T
: h;(r, , dr. 6
+;¢,(t) fo (X (), y(r))dr ©)
t
Ty (6, y)() = fo (t = 1YL Ey (=i t — Do (rx(r), y(P)dr

2 n
# O [ 1= Eugaya (im0 2,y
=1
2 T
b (0 | (=) By (AT = A0, Y0
j=1

2 T
36,0 [ g2, ym)ar. ™
j=1 0

Evidently, the existence of fixed points of the operator T is equivalent to the

existence of solutions for problem (1) fory = «a, B, let

; (T Eyyar (125 T) + Z24 vy |, (0] 077 By jma (121)
=max .
+ 32 || 8,0 T By s QAL T, Qlpall + 1 2IDT

Here, we prove the existence and uniqueness of solutions for problem(1). We apply

a fixed-point theorem due to Banach.

Theorem 5.2.1 Let f;, h;, g;:[0,T] X R X R — R be continuous functions such that
the following conditions hold:

(A;) There exists Lg, Ly, Ly, > 0 such that

fi(t, 1, 1) = fi(t, X2, y2)| < Lp(|x1 = X2| + |y1 = y2l),
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|hi(t, X1, ¥1) — hi(8, %2, ¥2)| < Lp(|x1 — x2| + [y1 — y2),
19:(t, x1, y1) — 9i(t, x2,¥2)| < Lg(|x1 — x2| + [y1 — y2|),
V(t,x1,y1), (t, x2,¥2) €[0,T] x Rx R.
(4,) 1—2(Lg + Lp)R* > 0,1 —2(Ls + LR > 0.
Then problem (1) has a unique solution in C([0,T], R) x C([0, T], R).
Proof. Consider a ball
Byi=u € C([0,T],R): lullos < T

with radius

(Mg + Mp)R® ((My + My)RFP }

>
r=max {1 —2(L; + Ly)R®' T — 2(Ly + Ly)RP

where

My: = max(||f1(¢, 0,0)|eo, Il f2(¢, 0,0) |l e0),
Mp: = max(||h1(t, 0,0)[|e, [[h2(¢, 0,0) |0,
Mg: = max(”gl(t' 0'0)”00' ”gz(t, 0,0)”00).

Itis clear that forall x,y € R
Ifi(t,x, ¥)1 < Le(Ix| + [y]) + My,
|hi(t, %, Y)| < Lp(lx| + [y]) + Mp,

l9:(t, x,Y)| < Lg(Ix] + |y]) + M.

Using this inequality and Lemma 5.1.3, from (6) it follows that

2
IT3C6 O] < 2By aia (2 OIAHCEO, YO+ ) []165 O 17T By a1 (21 i€
j=1
2
22O YO+ D 65O TEIEs g1 (2B DIACEO, YO e
j=1

2 T
+Z|¢’j(t)|L |hi(r, x(1), y(r))|dr.
j=1
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2
<| tYEp g (4 0) + Z|vj||¢j(t)|n“_jE1,a+j_1(|/1|; n)
=1

2
£ |gl16y O Ty g ja (21T | X (el + IyD + Mp) + (lgh
j=1

+ 192DT Lr (x| + 1yD + Mp) < ((Lg + Lp)r + My + Mp)R®

r
<5 (8)
In the like manner we have
IT2(6,Y) (O] < ((Ly + Ly)r + My + My)RE < — 9)

5
From (8) and (9) it follows that TB,. c B,.. Next, using condition (4;), we obtain
IT1(x1, y1) () = T1(x2, ¥2) (O] < R*||f1(x1(), ¥1()) = f1(, x2(), ¥2()) oo

< (Lp + LR (1, y1) = (22, Y2) |l o (10)
Similarly,
|T2(x1,¥1) () = T2(x2,¥2) ()] < RF|If2(x1(), y1()) = f2(5 x2(), y2()) |0

< (Ly + LoRP||(x1,¥1) = (X2, ¥2)llo- (11)
It follows from (10) and (11) that

T (x1,¥1) — T(x2, y2)Il < [(Lg + Lp)R® + (Lf + Lg)R3]||(x1,y1) — (%2, Y2) || o-

By (A.) the operator T is a contraction. Thus by the Banach fixed point theorem T has

a unique fixed point in C ([0, T], R) x C([0, T], R). This completes the proof. [ ]

In the next result, we prove the existence of solutions for problem(1) by applying the
Leray-Schauder alternative.
Theorem 5.2.2 Let f.[0,T] X R x R = R be a continuous function such that the

following condition holds:
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(As) There exists y¢, vn, ¥4 € C([0, T], R,) and a nondecreasing function ¢: R, - R,
such that

fi(t, %, )| < ve(OYr(Ix] + |y]), V(t,u) € [0,T] X R.

|hi(t, %, Y)| < yr(O)Yn(lx] + [¥D,

19:(t, x, )| < v (O)Pg(|x] + |¥D.
(A,) There exists M > 0 such that

Il G, ¥ leo
Uy lleowr AN G 2 Meo) + Yalloor (1CE M 0)IR® + ¥ llootr (1 M lloo) + Vg lloog (1C Y 10 )IRF))

<1
Then BVP (1) has at least one solution.
Proof. Step 1: Show that T: C([0,T], R) x C([0,T],R) — C([0,T],R) x C([0,T], R)
maps bounded sets into bounded sets and is continuous.
Let B,be a bounded set in C([0,T], R) x C([0,T], R).Then

|f1(&x(0), y (O] < vellor (), [f2(8 x (@), y(O)| < [lvllbe (r),

and by Lemma 5.1.3,

IT106 )] < t9E1 qua (1AL O 1Cx Gy O

2
+ e,
j=1

2
+Z |“j| |¢j(t)

j=1

N VE1 s UL IIfi G x (), y (DI

T*VE 4 (I DI 2y () loo

+ Z |,0) LTlhi(nx(r)'y(r)Nd’”

54



2
<{ B (0 + ) [y] 0,0 1By 121D
j=1

T*VE qyja (1AL T) | X (v (O (x| + YD) + Mp)

2
+ 2 Jul 1@
j=1

+ ([Pall + lp2DT Ln(Ix] + [y]) + Mp)

< (lvellr Al Ce D + lyalln U1 Y IDIR®.
Similarly

T2 ) (O] < UYellr UG I + vg g (1 Ce ») IDIRE.

It follows that T'(B,.) is bounded.
Step 2: Next we show that T maps bounded sets into equicontinuous sets of
C([0,T], R).
Let t4,t, € [0,T] with t; < t, and (x,y) € B,. Then we obtain

IT1(x, ¥)(t1) — T1(x, y)(t2)|

21

(t1 =) E o (=4t — 1) f1(r, x(r), y(r))dr
0

<

itz

— | (=) Eg (At = 1) f1(r, x(1), y(r))dr
0

£ [0 = 85| 1B aasr QLM i XC), YO
j=1

2
+ 3 [ 165060 = )T Er s (DI O, YOl

j=1

2 T
+ 2 | (t1) — ¢;(t2)] fo |hi(r, x(r), y(r)) |dr. (12)
j=1

It is clear that the last three terms approach to zero independently of (x,y) € B, as

t; = t,. Now, we estimate the first term of (12)
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ty t2

(ts = 1) By o(= 25 ts = f1(r,x(0), y(r))dr — | (2= 1)% 1 By (25t
0 0

= 1)f1(r,x(r), y(r))dr

t

= At-9) 10 x(), y()))(s)ds

f A0S (171 f (4 x (), y () (8)ds — f
0 0

<

ft T e A (a1 fL (L x(), y())(s)ds

1

+

fo l[e'mz's) — e MO A1, x (), y()))(s)ds

Obviously, the right-hand side of the above inequality tends to zero independently of (x,y) €
B, as t; = t,. A Similar result is true for T,(x,y). As T is uniformly bounded and
equicontinuous, therefore it follows by the Arzela-Ascoli theorem that T:C([0,T], R) %
C([0,T],R) = C([0,T],R) x C([0,T], R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once we have proved the
boundedness of the set of all solutions to equations u = 8Tu for 0 < 6 < 1.

Let (x, y) be a solution. Then, using the computations employed in proving that T is bounded,

we have

16, IO = 81T (x, ) ()]
< (el AL IID + NyallPn G MIDIRE + Ayl Ul CGe 21D
+ 11yl (1 Ce WINRE.

Consequently, we have

Il G, ¥) leo
Uy lleor AN G 2 Meo) + Yalloo®r (1CE M 0)IR® + (¥ Lot (106 Y lloo) + 1¥glloog (11C 2 10 )IRF))

<L
In view of (A,4), there exists M such that ||u||c # M. Let us set

U = {u € C(0,T],R): |[ullc < M}.
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Note that the operator T: U — C([0, T], R) is continuous and completely continuous. From the
choice of U, there is no u € dU such that u = 6Tu for some 0 < 6 < 1. Consequently, by the
nonlinear alternative of Leray-Schauder type, we deduce that T has a fixed point u € U which

is a solution of problem (1). This completes the proof. |

5.3 Ulam -Stability

In this section, we discuss the Ulam stability for problem (1) by means of integral
representation of its solution given by
x(t) =T1(x,y)(®),  y(@) =T2x,y)(1),
where T, and T, are defined by (6) and (7).
Define the following nonlinear operators Q4, Q,: C([0,T],R) x C([0,T],R) = C([0,T], R):
Q1 (%, ¥)(t): = (D% + AD* Hx(t) — f1(t, x (1), ¥ (1)),
Q2(x, ¥)(£): = (DF + ADF~N)x(t) = f2(t, x(£), ¥ (1))

For some &4, £, > 0, we consider the following inequality:

{101, VI < €, 1Q2(x, V)| < e (13)

Definition 5.3.1 The coupled system (1) is said to be Ulam-Hyers stable, if there exist
V1, V2 > 0such that for every solution (x*,y*) € C([0,T],R) x C([0, T], R) of the inequality
(13), there exists a unique solution (x,y) € C([0,T],R) x C([0,T], R) of problem (1) with

106 Y) = (7 ¥ leo < Vier + Vaeo. (14)

Theorem 5.3.1 Let the assumptions of Theorem 5.2.1 hold. Then problem (1) is
Ulam-Hyers stable.
Proof. Let (x,y) € C([0,T],R) x C([0,T],R) be the solution of problem (1)
satisfying (6)and (7). Let (x*,y*) be any solution satisfying(13):

(D + AD ™ H)x*(£) = f1(t,x* (1), y*(£)) + Q2.(x", y) (D),

(DB + ADP=VYx*(t) = fo(t, x* (1), y* (£)) + Q2(x*, ¥ ) (D).
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So

t
x*(t) = Ta(x", y)() + fo (t =) E (=4t = 1)Q1(x", y") (r)dr

2
n .
4 50 [ 1= 9 Brarya (Ain =G Y@
j=1 0

2 T
+ Z ujp;(t) f (T —$)*7 Eygij-1Erasjor (4T —1)Q1(x*, y*)(r)dr.
j=1 0

It follows that

IT:(x% y)() —x* (V)]

t
< f (t—1)*TEL (Al t — r)dres
0

2
17 .
+ ) ulle@l f N =) Eyaejoa (120 = r)dre;
j=1 0

2 T
£ il O | (7= Brya QAT = rydres
j=1 0

2
< T 0 (AT + ) [yl O n% T Byerja (121 )
=1

2
+ 3 |l O T By jos (T | 2 =2 U,
j=1

Similarly,

IT2(x", y)(®) = y* (D)

2
< (TBELBHUM;T) £ [l @ Es pasa(ali )

j=1

2
+ Zlﬂj|”¢j(t)” TBjE1,ﬁ+j—1(|/1|;T)> g, =:UPe,.

j=1

Therefore, we deduce by the fixed-point property of the operator T,given by (6)and (7), that
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[x(8) = x"(O)] = |x(8) = T2(x", y")(©) + T1(x", y)() — x" ()]
< |T1(x, y)(0) = Ta(x" y ) (O] + T2 (x", y) (@) — x" (D)
< (Ly + LR N0 y) — (27, y )0 + Uey, (15)
and similarly
ly(®) —y* @] = [y(©) = T2(x" y) (@) + T2(x", y)(©) — y* (D)
< (Ly + LORPIC6y) — (¥ )l + UPes. (16)
From (15) and (16) it follows that
106 y) = (5 ¥y leo

< ((Lg + LR + (Ly + LeRAII (6, ) = (¢, ¥l + Ues + UP ey,

and
1) = e < Urent Ule, Vies+V
X, — (X, w0 = = & &>,
y y 1— ((Ly + L))R™ + (Ly + LRF ~ 117 722
with
Ua’
V= )
YT 1= ((Ls + LR+ (L + LyRP
UB
V,= .
71— ((Lf + Lp)R* + (Lf + Ly)RP
Thus, we obtain the Ulam-Hyers stability condition. [

5.4 Application

We consider the following fractional order coupled system:

(D* + AD* V)x(¢) =Lf%, 1<a<2 0<t<T,
(DP + ADF~V)y(t) = Ls(sinx(t) + (cost)x(t)), 1<p<2, 0<t<T,
< vix(m) + ux(T) =L fT&ds viy(m) + (M) =1L fT(sin (t) + cosy(t))ds
1X\N) T Ha h o 11+ x(0)] ™ 1Y) ~ 1y h . y y ’
vox'(m) + pax'(T) =L IT&ds voy'(m) + ey’ (T) = L fT(sin (t) + cosy(t))ds
(V2 () + iz o) T oy VYO0 + ey o) (siny y :
Here
fai(t, x )=LLf(tx )=L(sinx+(cost)x)h(x)=L¢
WO Y=y AV = i P11+ x|
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|x]

m,gz(y) = Lg(siny + cosy)

h2(y) = Lp(siny + cosy), g1(x) = Ly
As
If1(t, x1,¥1) = f1(t, x2, y2)| < Lelys — yal, [f2(t, 20, y1) — f2(t, X2, ¥2)| < Lg|xs — X2,
|h1(t, x1) = ha(t, x2)| < Lp|x1 — xz|, |h2(t, y1) — ha(8, ¥2)| < Lplys — yal,
191(t, x1) = 91(8, x2)| < Lglx1 — x2|, [92(t, y1) — 92(t, y2)| < Lg|y1 — y2l,
therefore (A,) is satisfied. It is obvious that Lg, L, Ly > 0 can be chosen so that condition

(Ay) is satisfied. Therefore, coupled system (1) has a unique solution and Ulam-Hyers stable.
5.5 Conclusion

Here we have studied the existence and uniqueness of the solutions as well as the Ulam-Hyers
stability for a coupled sequential fractional system with integral boundary conditions. As a
future work, one can generalize a different concepts of stability and existence results to an
impulsive fractional system, a neutral time-delay system/inclusion, and a time-delay
system/inclusion with finite delay. neutral time-delay system/inclusion, and a time-delay with

finite delay.
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