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ABSTRACT

In this thesis, we study the existence and uniqueness of a nonlinear impulsive sequential

fractional differential equations of order o e(1,2] involving Liouville-Caputo fractional

derivative supplemented with the separate boundary value conditions. The subject of
boundary value problem and fractional differential equations are very important in many
fields of science and engineering. In fact, both sequential fractional differential equations
and Impulsive fractional differential equations are studied individually from various
perspectives. However, this topic combining both of them to produce a wider case
namely, impulsive sequential fractional differential equations. By doing so, a new

existence and uniqueness results of solutions are provided for the problems.

Keywords: Nonlinear impulsive sequential fractional differential equations, Caputo

fractional derivative, Banach fixed point theorem.



Oz

Bu tezde, ayr1 smir-deger kosullariyla desleklenmis, Liouville-Caputo kesirli tirevi
iceren, a € (1,2] mertebeli dogrusal olmayan  Impilsif sirali kesirli diferansiyel
denklemlerin varlik ve tekligi calisilacaktir. Simir-deger problemleri ve kesirli
diferansiyel denklemler, temel bilimler ve miihendisligin birgok alaninda ¢ok biiyiik
Oonem tasimaktadir. Hem sirali kesirli diferansiyel denklemler hem de impulsif kesirli
diferansiyel denklemler ayr1 ayr1 farkli perspektiflerden ¢alisilmistir. Ancak, bu iki tip
diferansiyel denklemin birlestirilmesiyle elde edilen ve daha genis bir simif olusturan
impulsif sirali kesirli diferansiyel denklemler sadece bu tezde ¢alisilmistir. Bu caligmada,
bu 6zel tipteki diferansiyel denklemlerin ¢6zlimii i¢in yeni varlik ve teklik sonuclar1 elde

edilmistir.

Anahtar Kelimeler: dogrusal olmayan impulsif sirali kesirli diferansiyel denklemler,

Caputo kesirli tlirevi, Banach Sabit nokta teoremi.
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Chapter 1

INTRODUCTION

The 1695 curiosity of L’Hopital in response to a letter by Leibniz’s regarding the
meaning of derivatives with integer order being generalizing to derivatives with non-
integers has been an old but developed topic FC as a sect of calculus is a process of

investigation as well as application of integrals and derivatives into a relative order [1],

[2].

Recent work on BVP with FDE’s have successfully been adopted and implemented in
various scientific and engineering fields. The results and impact of BVP and FDE’s have
led to continuous interest and further research works on the field. BVP and FDE’S
including the R-L fractional derivative or the Caputo fractional derivative have been
gaining much importance to see [3]- [28].

On the other hand, the subjects of impulsive-FDR's and sequential -FDE's have been
recently addressed by many researchers and it is paid more and more attention [29]- [40].
However, this thesis ties both of them to produce a wider case namely, impulsive

sequential fractional differential equations.

A couple of FPT, which are Leray-Schauder’s and Altman's were used, in 2011 [29], to
find the existence of the solutions of the problem which is given as follows:
*Diu(t) = f (t,u(t))te[0,1]1<q <2,
au ( ) u'(0)=x, cu(1)+du'(1):x1,
)=u(t)-u(t)=Qc(u(w)).
Au'(tk):u (t )—u(t) =1, (u(t, )) k=12,..,p,



with °D? Caputo derivative of order q<(1,2].

In [30], Liu and Haibo studied the following problem of nonlocal BVP with IFDE’s:

“Diu(t) = f(t u(t),u’ (t)),te[O,l],l<q£2,
au(0)+pBu'(0)=g,(u), au(l)+pu'(1)=g,(u),
Au(t) =1 (u(t)), Au'(t) =3, (u(t)). t, €(0.1) k=12,.,p,

where J =[0,1] F:JxRxR — R is a continuous function.

In [31], Jianxin and Haibo studied the problem of nonlinear IFDE’s with BC’s that

consider as follows:

“Dlu(t) = f(tu(t),u(m(t))).ted"
u(t)=0te[-r.0]

Aul =1 (u(t)), Aule, =17 (u(t)), k=12...m

subject to the nonlinear BC’s as follows:
9o (u(t),u(T))=0,g,(u'(t),u’(T))=0

with “D? Caputo derivative of order( .

In [32], Xiaoping, Fulai & Xuezhu studied the following anti-periodic BVP of IFDE’s:
“Dgu(t)=f(tu(t)),ted =J\{t,t,,...t },3 =[0.1],
au(0)+bu(1)=0, au'(0 )+bu ( )=02,
Au(t)=1,, Au'(t)=J,, k=12,

where °D the Caputo fractional derivative of order q e (1, 2].

In [33], Peiluan & Youlin studied the following impulsive-FDE with nonlocal BVP’s:

ch f(t,u( )tGJ 01]\{1’ 21 ’p}

au() bu(1) =g, (u), au’(1)+bu’(1)=g,(u),
Au((t, )—Iku( ) Au'(t,)= Ju( )k=1,2,...,p,

where °D the Caputo fractional derivative of order g e (1, 2].


https://www.sciencedirect.com/science/article/pii/S0895717711004638#!
https://www.sciencedirect.com/science/article/pii/S0895717711004638#!
https://www.sciencedirect.com/science/article/pii/S1007570412002766#!
https://www.sciencedirect.com/science/article/pii/S1007570412002766#!
https://www.sciencedirect.com/science/article/pii/S1007570412002766#!

In 2016 [34], Shuai & Shugin, discussed a IFDE’s with BVP. They transferred the BVP
into the equivalent integral equation. Banach- FPT and Schauder- FPT. They are used to

acquire the existence of the solutions of the following problem:

“Dx(t)=f (t,x(t)).a e(L2],te I =[0,1] ,t =
x(0)=h(x).x(1)=9(x)
AX| =1 (x(t)), Al =15 (x(t ), k=12,..,m;t, =(0,1)

G e PE
‘9() Jﬂ_’_‘x(éj)"

where gj <1 O<§j, g“j #t, J=12,...,n, and «, Aare given positive constants.

h(x)_mln
K‘+‘

In [35], Nazim and Unul provided existence of solutions for the following IFDE’s of
order qwith mixed BVP:
"Dyx(t) = f(t,x(t)).te[0,1],1<q<2,
( )+,ulx (1) (o X( )—i-,u2 (1)=0'2,
=x(t)-x(t ) (t),

Ax‘(tk)zx( ) x'(t,)=1J  k=12,..,0q
with ‘D Caputo derivative of order q<(1,2], f e(J xR,R), ¢.,l, eR—>Risa

continuous function, , 0=t, <t <..<t, <..<t <t , =1

In 2013 [36], Bashir & Juan FPT used to establish the existence results for a sequential
integro-differential equation of fractional order with some BC’s, which is given as:

(°D*+A°D“*)u(t) = pf (tu(t))+ql“g(tu(t)),t[0,1],

u(t)=0,u(1)=0,

where ° D” denotes the Caputo fractional derivative of order c.

In [37], Bashir & Sotiris obtained a new existence result by using standard FPT:



where ° D is the Caputo fractional derivatives, f :[0,1]xR — F(R)is a multivalued

map, F (R) is the family of all subsets of R.

In [38], the standard FPT has been used to obtain some existence results of the solutions
for following problem:
(°D“+k°D“H)x(t) = f (t,x(t)),te[0,1],2<x <3

x(t):O,x'(O):0,x(§):aj:%

where ° D” denotes the Caputo fractional derivative of ordera. 0<7 < ¢ <1.

x(s)ds, 8>0,

In [39], B, Ahmad analyzed the existence and uniqueness results of three-BVP and
sequential fractional integral-differential, given as the following:

(°DY+A°DY)x(t) = f (£,°D”x(t),17x(t)),0 €(2,3],t =[0,1],k >0,y <1,
x(0)=0,x'(1)=0,

Zaix(gi)=/1.7|l(77_—s)x(s)ds,521,0<77<§<..<§<1,

r(s)

Here D(.) is the Caputo derivatives of fractional order(.), f :[0,1]xR® — Ris a given

continuous function.

In [40], Alsaed, et al used Banach-FPT to develop the existence theory for the following

problem:
(°DT+k°D ! )u(t) = f (tu(t)),1<q<2te[0,T],

alu(0)+§aiu(77i)+7/1u(T):,Bl,

a,u '(0)+Zbiu (17,)+7,u'(T) = B,

i=1

a0"(0)+ > cu" (1) + 7,u"(T) = 5,

i=1

with“D Caputo fractional derivative.



Moreover, in chapter 2 we will consider some concept of FC and FDE’s and in chapter
3 we will consider the problems involving an Impulsive (SFDE’s) with different BCs.
The existence and uniqueness results of the solution of an Impulsive- SFDEs with BC’s
are obtained by using some theorems such as FPT, contraction mapping and
Krasnoselskii’s-FPT as we will see that in chapter 4. Next, we demonstrate the result of

the existence and uniqueness by introducing some examples.



Chapter 2

GENERAL CONCEPTS OF FC AND FDE

This chapter consists of fundamental concepts, definitions and some theories of FC and
FDE’s that were employed to provide a solution to the upcoming problem in the next

chapters.
2.1 Preliminaries of FC

In this section, we will review the definitions and properties of FC [1], [2].

2.1.1GF

The GF is the one of basic mathematical function and it is used in many fields in applied
sciences.

Theorem 2.1 1 If Re(z)>0, then

I'(z)= I: e 't dt. (2.1)

Definition 2.2 Let z> 0,ne N, define:
(n-1)In’
2(z+1)(z+2)..(z+n-1)

F(Z) = Limn—>oo

= Lim,___ (2.2)

Definition 2.3 The Euler Maschoroni Constant (EMC)

The constant y defined by

y:Iim(Zp:%Iog pj, (2.3)

r=1

which is equal to 0.5772.



Properties 2.4 Some properties of the GF .

Letz=0,ne N,we have

()r(n+1)=n,

(2) T(z)=TI(z +1)%,for negative value of z,

(6) r(2)=2"T (1+ljz (1+5j1,

n=1 n n

©) =il T2+

By using the above equations, we have

@ r(3)-=
)

o (332222

2.1.2 R-L Fractional Integration

Fractional integration can be defined in [29]:

Definition 2.5
We define the RHS of R-L Fractional integrals 17 of order « >0 of a function
f :[a,+0) >R by

1

I;ﬁf(t)::mif(r)(t—r)a_ldr, a>0,te(a,b], (2.4)



provided that the R-HS is point-wise defined on|[a,), where I'(.)denotes GF.

2.1.3 R-L Fractional Derivative
Let us the fractional derivative as follows:
Definition 2.6

The RHS of R-L Fractional derivative of order & >0, n—1<a <n, ne N, is defined as

D f (t):=ﬁ(%jn j f(r)(t=r)""dr, t>0, (25)

where the function f has absolutely continuous derivative up to the order n—1.
Definition 2.7

The CD of order « for a function f :[O,oo) — R can be written as

x=0

m-1 fX
cD“f( ( t* ] t>0,m-1<a<m.t>0. (2.6)
Remark If f eCm[O,oo), then

CDaf(). j-rzm(r) (t— )a+m1dr

m-a)
=1 f"(t),m-1<a <m,t>0.
Lemma 2.8

Fora >0, the general solution of the FDE’s °D“v(t) =0is given by
X(t)=a, +at+at’ +..+a, t"",
where a; R, j=0,1,2,...,.n-Ln=—[-a].

In view of Lemma 2.8, it follows that
15 (°Dgv)(t) = x(t) = a, +at +a,t* +...+a, ,t"",
where a; €R, j=0,1,2,..,n-Ln=[-a].

Definition 2.9

The sequential derivative for a sufficiently smooth function due to Miller-Ross is defined

as



D’f (t)=D*D*..D* f (t), t>0, 2.7)

where & =(6,,....8, ), is a multi-index.

In general, the operator D° at (2.7) can either be R-L or Caputo or any other kind of
integro-differential operator. For instance,

‘D f (t)= D" (%) f(t)n-l<a<n,

where D" is a fractional integral operator of order »-«. Here we emphasize that
D®f(t)=1°f(t),b=n-c.
2.2 Reviews of the FDE’s

In this section we will consider the basic definitions and theorems for the FDE’s
necessary for use in the subsequence chapters.

2.2.1 Contraction Mapping

Definition 2.10

Let (X,d) be a metric space. A mapping T : X — X is a contraction mapping, or

contraction, if there exist a constant ¢, with 0 <c¢ <1, such that

d ((T(x),T(y)))SCd (X,¥);x yeX.
Theorem 2.11
If T: X— X is a contraction mapping on a complete metric space (X,d), then there is

exactly one solution xe X .
222 FPT

Definition 2.12 Given aset E and a functionf : E— E, yxeE isaFPof f ifand

onlyif f(y) =y .

Theorem 2.131f E= [a, b]JcR and f : E — E is continuous then f has a FP.



2.2.3 Banach- FPT

Let (E,d) be a non-empty complete metric space with a contraction mapping f : E— E
.Then f admitsaUFP y " in E (i.e)) f(y) = Yy . Furthermore, X can be found as

follows: start with an arbitrary element Y, in X and define a sequence {y, } by

V=T (Vn1), theny, = y".

2.2.4 Krasnoselskii’s-FPT

Let E be a closed convex and a nonempty subset of a Banach space X . Let Ty, T be the
operators such that:

1- T.x+T,y € E whenever X,y e E ;

2- T4 is compact and continuous;

3- T, is a contraction mapping.

Then there exists z € Esuch thatz =T.x+T,y.

2.2.5 Schauder’s-FPT

If B is a non-empty, convex and compact subset Banach space x and T:B-—>Ba
continuous function, then T hasa FP inB.

2.2.6 Leary Shauder’s-FPT

If Bisanon-empty, convex, bounded and closed subset of Banach space x and

T :B — B compact and continuous map, then T hasaFP inB.

Lemma 2.14

Theset F < PC ([0,1], R") is relatively compact if and only if
1— F isbounded, thatis I x IKC foreach xe F and some C >0:

2 — F is quasi-equicontinuous in [O,T]. That is to say that for any & >0 there exist

y >0 such that if x e F;k € N; sy, 82 € (t, 4,8, ], and| =Sz 1< 7, | X(s) - X(52) < & .

10



Chapter 3

SOLUTIONS OF NONLINEAR IMPULSIVE- SFDEs

Now, this chapter examine the solution of the nonlinear impulsive- SFDE’s with diverse
BC’s. Using the BC’s on nonlinear impulsive- SFDE’s we reached the solution in section
3.1.1. Furthermore, we arrived at the solutions of section 3.1.2 using the BC’s (3.4) on
nonlinear impulsive- SFDE’s (3.1) and section 3.1.3 using the BC’s (3.5) on nonlinear
impulsive- SFDE’s (3.2) .

3.1 Methods of Solving ISFDE’s with Separated BC’s.

We will consider different BC’s and L-C type nonlinear impulsive- SFDE’s as follows:

(‘D +A°D*H)v(t) = f (t,v(t)), 1<a<2,0<t<], (3.1)

(D +2°Dl v(t) = T (tv(t)), 0<t<L 1<f, <2 (3.2)
The first BC’s can expressed as

zv(0)+wy(0)=y,, Z,v(1)+wy(1)=y,. (3.3)

The second BC’s can expressed as:

cv(0)+°D*v(0)=x, dv(1)+ D v(1)=x,, (3.4)
and the third BC’s can expressed as:
2/1 17v(n7), v'(0)=0, (3.5)

Supplemented with IC’s

AV(t,) =v(t;)-v(t)=Q, (v(t,)), Av'(t,)=v'(t;)-Vv'(t,)=Qx (v(t,)),
m=1,2,..., pwhere °D*and ‘D’ are the CD of order «(1,2] and B <(1,2]; and
f e[0,1]xRxR, @ A2, 2), W, Wy, X, %Y. Y, €R 2 e R, 2, €R,Q,Q"C(R,R)
t,=0t,,=13=[01] ,J,=[0t], I, =(t,t,]...d, =[t,,1], I'=3\{t,..t},
0=ty <t <.<t, <t,, =1 Av(t,)=v(t;)-v(t,), Av'(t,)=v'(t;)-V'(t,).
v(t,) and v(t, )represent the R and L —HL’S of the function v(t)at t=t.

11



The Banach space can be written as:

m

PC(J)={v:J >R|veC(J’), and v(t;),v(t,) exist,and v(t,)=v(t,) , 1<m< p}
and the norm can be written as
IVl = suplv (1))

3.1.1 Results of Nonlinear Impulsive- SFDE’s

We use the Lemma 2.8 associated with the nonlinear different type of equations (3.1)-
(3.3), (3.1)-(3.4), (3.2)-(3.5).

Lemma 3.1 Fora € (1, 2] and the continuous function f :J — R, the solution of the

following problem:

(‘D“+A°D“M)v(t)=f(tv(t)),1<a<2,0<t<],
zv(0)+wy(0) =y, z,v'(1)+wV'(1)=y,,

Av(t,)=v(th)-v(t, ) =Q, (v(t)). Av'(t, ) =v'(t;)-v'(t, ) =Q", (v(t))
can be formulated
v t):j.em(”)l"‘l rydr+h(t) j'e O ey (r)dr +h, (8) 1w (1)

p p p

£, (1) 200 (v(t)) + 1 () 207 (v(1))+ 2 Ne,Qu (v(1)
+i N, Q: (v(t,))- nzimlq;; (v(t,))+ Ny 1),

teft, t,.). m=01..p,
where

ze ™ -z, + AW, )(w, — Az
A:(zl—/iwl)zz_em(zz—/Iwz)zl;tO,hl(t)z( 1 1 1)( 2 2)’

Z,2,e e "z, (z, — AW )w.

e
7,2, e — AW, )W,
(1) Azm (Am ! ’

12



AL AL

-t et —we ™ -t _
N3(t)(e Zl_(z A )Jyl_[e zl_(zl ﬂwl)Jyz.

ete Mz (z.—Aw,) e™e*(z,—Aw, )(z, — Aw e 1
N, (t)=- (=) (2,2 2w)(2, 1),N2n(t):( j

A A A A

Proof: The equation (3.1) has a solution von teJ,
(‘D* +A°DHv(t) = w(t).
Applying the operator 1“** on both sides of the above equation, we get
I (°D* + A°D“ Mv(t) = 1“'w(t),
(D+A)V(t) =c, + 17 w(t),
which can be expressed as
D(e"v(t)) = (¢, + 1" "w(t))e™.

Integrating both sides from 0tot, we have

t t t
f De'v(r)dr = .[ c.e’dr +J‘e“1“’1w(r)dr,
0 0 0
t
at _ Co (ant _ Arpa-1
e™v(t) —v(0)+7(e 1)+Ie 1“w(r)dr,

v(t) = o (V(O) +2 + je“ ‘lw(r)dr],

0

v(O) C,

v(t) = [1 e’“]+Ie e 1% w(r)dr,

vit)=e | v(0) =2 [+ 22+ [e e T*  w(r)dr,
() (()ﬁ}f! (r)

t
c.) ¢ e
vt =e | v(0)= =2 |+ 22 4 [e 1 w(rdr,
(t) (() /J n ! (r)

where
C

A :(v(O)—%Oj, B, =~
The general solution vof (3.1) on each interval (t ,t. ,], m=0,1,..., p, can be written as
v(t)=e "A +B_+ j; e I w(r)dr , for te J. (3.6)
Next, solving the obtained linear equation (3.6) on J,,, we get
v(t)=e A +B, + J'; e I w(r)dr,t e J,,. (3.7)
where Ajand B, are arbitrary constants. Taking the derivative to (3.7), we get
vit)=-e A -4 .f;e‘“t‘”la‘lw(r)dr +177w(t),

(3.8)
Now, applying the BCs zv(0)+wyv(0)=y,, we have

zv(0)=17,(A +B,),

13



WV '(0) = —Aw, A,
then

(z,—AW,) A +2,B; = y,.
In general, for te(t,,t,.], we find that

m? "m+l

v({t)=e A, + B, + [ e * 1 w(r)dr,

V(1) =—2e A, - A[ e MO1 () ds + 17 w(t),

Now, applying the BCs z,v'(1)+z,v'(1)=Vy,,at t,,, =1, we have

1
v()=e A +B_ + _[0 e 1" w(r)dr,

v(l) =-2e*A - lJ‘:e‘w‘”I“‘lw(r)dr +177w(R),

(267" —Awe ) A +2,B, =y, — (2, - Aw, )Iole’m”)l”"lw(r)dr
—W,I1°7z(2).
Next, we have to find the current IC’s as follows:
From Av'(t,)=v'(t;)-v'(t;)=Qx (v(t,)), we have

m m

*

m

*

Qu(v(t,))=—Ae " A, + e A,
A —AL= —%eﬂ‘mQ; (v(t,)).m=12,.,p.
Similarly, from Av(t,)=v(t;)-v(t,)=Q, (v(t,)), we get
Qm (V (tm )) = e*/ﬂm Aﬂ - eilum_l An—l + Bm - Bm—l
B —B ,-Q (v(tm))+%Q; (v(t,))m=12,....p.
Next, it follows from (3.11) and (3.12)

1 .
A=A =7 2 Q) (v(t))m=12.... p-L

B,-B,= Y. Q,(v(t)+5 X Qi(v(t,)hm=12...p-1

n=m+1 n m+1

It follows that from m=0, from (z, —Aw; ) A +2,B, =y, , that

(z,—Aw) A +(z, AW)A\)_—— —Aw,) Ze‘t S(v(t
Bo=zlnz"len(v(tn>>+ﬁniQm(v<tm>>,

~

then
P

1 N
(z,—Aw)A +2B, =y, —z(z1 —aw) > e™Q; (v(tn))

n=1

+zlnzp;Qn (v(tn))+%nzp;Q: (v(t,))

Solving the last equation together (3.10), for A and B, we get

14

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



l Aar) @ty W, aly
!e N tw(r)dr+ 22 =217 (1)
+ﬁZQn(V(tn )+ ZZZZQ (v(t,))
p
Z € Q ( ) A yz’

n=m+1
and
l
Bp——(Zl J‘e/11r|a1
0
- Aw, . ez, (z,—Aw,) &
m A) (1) 30 (utt)
e "z, (

N O T

n=m+1
e’ (z, - Aw Z, — AW
(2 2)y1+(l 1)y2a
A A
where A=(z,—Aw,)z, —e™*(z, —Aw, )z, # 0. Now, from the equation (3.13) and (3.14)
it follows that

A = Ap+% i e Qy(v(t,))m=12..,p-1.
n=m+1

B, =8,— Y Q,(v(t,))-7 X Q(v(t,)hm=12....p-1

n=m-+1 n m+1

So

€72 (Z, AW, ) & . .
~ (M )nZ_;,Qn(V(tn)) (3.15)

)e " (z,— AW, ) &
Mf D IRALTS)

and

15



e’z W,) &
z>an( )
(e ) § - (3.6
’ A Z ()
p
Tabw); Eane)
e (z,-Aw,) +(zl—iwl)
A ' A g
Multiplying the equation (4.15) bye ™, we get
ef/uAﬂ:_e%t(A AW, j’eu— Ial
0
_ e (Zl — lwl)wz | a—lW(l)
A
—Atn-A P
ele’z (z2 ;Qn( )
—Atn-A P
e’e z( ZQ( )
e ™ (z,—Aw, P .
" ( 1 lA)m ( 2 n%leann( )
At p . N4 —ﬂ, -t —ﬂ,
+97 z eM”Qn(V(tn)) e-e (22 Wz)yl+e (ZlA Wl)yz-

n=m+1

Combining the last two equations, we get

16



1
A 4B, = . [ w(e)ar
e (z,—Aw,)w, (1)
A
e ez (z,-Aw,) &
_ t
: 20 (v(1))
e ez (z, - Aw,) & .
_ t
v 2.9 (v(t))
L (m—Aw)e (2, - Aw,) > et Qr(v(t,))
A/I n=m+1
g At s e e (z,—Aw,)
c : t
= n;‘ile Q; (v(t,)) A Yy
- it _ _ 1
L8 (zlA ﬂwl)yz—(zl ﬂbwl)A(z2 /Iwz)jez(lr)la_lw(r)dr
0
(z,-Aw)w, ez, (z,—Aw,) &
_ 1w (1) — t
. ) 2R (v(t)
ez, (2, AW,) & -
_ t
Aﬂ, ;Qn (V( n))
(Zl B iwl)e% (22 J“WZ) At
t))-— t
A E o) Sa)
1 & . e (z,-Aw,)  (z,—Aw)
—zn:znlen(V(tn)) 2A 2 A 1 A 1 :
Therefore,

e™A +B_=h (t)je‘ﬂ(l")l “w(r)dr+h,(t)1“ w(1)

+h, (1) 2,Q, (v(t:))+he () 2Q: (v(t)

n=1 n=1
p

F3NLQ,(u(t) > N,.Q;(v(t,)

n n=m+1

- Zp: Q; (v(t,))+ N, (t). (3.17)

n=m+1

Inserting (3.17) into (3.6), we get

17



1

v(t)= .t[el(”)l ““w(r)dr+h, (t)j e 01w (r)dr

n=1 n=1
p p
+ 20 NooQr(v(t)) = 22 Qu(v(ty))+ Ny (1)
n=m+1 n=m+1
te tm,tm+1), m= Oalv---v p1

(3.18)
The reverse (other side) of the Lemma follows by explicit computation. Prove of the

Lemma is completed.
Lemma 3.2 for a € (1, 2] and the continuous function f :J — R, the solution of the
following problem:

(‘D7 +A°D ! )v(t)=w(t), l<a<2,0<t <],
cv(0)+°D*v(0) =x,, dv(1)+°D*v(1)=Xx,,

AV(t,)=v(tr)=v(t) = Qq, (v(1)). Av'(t,) =v'(t; ) -v'(t;) =Q", (v(1)),

IS given by

(3.19)
where

18



and

Il
—
—~
N
I =
K
~—"
O'—.H O'—.l—\ m'—.~
—~
[N
|
(7]
~—"
T
N
7~ N\

M, (

=
|
~
=
—_~
|
~
o
B

Il
O ey

1 —
Y= [de‘i -y} Me‘“ds}

I(2-a)

Proof: The general solution of (3.1) and (3.4) on each interval ( mﬂ]
(m=0,1,2,..., p), can be written as
v(t) =& “a, +b, + [ e 1 w(s)ds , for te (ty L], (3.20)

where &, and b, are arbitrary constants. Now, consider (3.20) on t €[t,,t,]and take the

Caputo derivative by using (3.20) on t e[t,,t, ], we get that

v(t) =e "a, +b, + J e ey (g)ds, t e I, (3.21)
2, l-a
‘D Mv(t) = e (t—-s) "ds
®) (2 a) -[ )
(3.22)
m t l-a “A(s-7)ya-1
- t—s e I““w(r)dz (ds
r(z—aﬂo( [
+I I”‘_l )ds,teJO.
Next, for t. ., =1 we can write equatlon (3.20) as following
v(t)=e"a +b, + .[:e‘]”(l‘s)l"‘lw(s)ds. (3.23)

To find the Caputo derivative by using equation (3.23), we can get
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c D a—lv (1)

(2 a)
jrl ) )ﬁe Hona lW(r)dr]ds

I“ “w(s)ds,ted,.

1
Ie“s (1- s -
0
—a

(3.24)

I[(2-«a
Now, solving the first BC’s, cv(0)+ ‘D“7'v(0)=x,, dv(1)+°D**v(1)=x,, by using the

following equations, we have

N—"

cv(0) =c(a, +by),
cD=ly(0) =0,
dv(l) =dea, +db, + dj.le’“l’s)l"’lw(s)ds,

1 (04
°D“‘1v(1):— j e (1-s) “ds —zj —) U e A ’)I“‘lW(r)dr]
0
1_3)1—0! .
I” ds,
+-£F(2—a) w(s)ds
then the BC’s of (3.4) can be formulated as follows

C(a0+b0)=X1

Ya, +db, =X, —d_l[Ml(l,r)w(r)dr
o . (3.25)
+/1J.M2 (l,r)w(r)dr—.[w(r)dr

Furthermore, at this point we find the 1C’s by using the obtained linear equation (3.20).

For first IC’s Av'(t,,) =v'(t; ) -v'(t, ) =Q; (v(t)), we have that

m m

V(t) =—Aea, — A[ e 0 I1  tw(s)ds + wit, )1,

Vit ) =-de " - /IJ: e " tw(s)ds + 1wt ).
Next, we have

AV'(t))=-2e"a, +de M ma =Q) (v(t,)).

Aty

e *
a, —a, =~ P Qm (V(tm ))'

“a,.-2 Y ehQ;(v(t,).

n m+1

20



a, =a, +% Zp: e Q, (v(t,)),m=1...p.

n=m+1
In the same process we find the second IC’s Av(t, ) =v(t; )-v(t, ) =Q, (v(t)), we have
B = b1+ Qy V(1)) + 5 Q% (v(t))

b,=b,~ 3 Q, (v(tn))—% > Q(v(t,))m=1..p.

n=m+1 n=m+1

By the above equations the IC’s can be written as follows

a,=a, +% Zp: e Q) (v(t,)).m=1..,p, (3.26)
p p
b,=b,- > Q, (v(tn))—% > Qi(v(t,))m=1L...p. (3.27)

If m=_0then from c(a, +b, ) = x,, we get that

cla, +,) =% +63Q, (v(t,))+ 7 20; (v(1,))~ 5 26" (v(1,).

Now, from last equation and (3.25), we have

b, =—~-8, += X, ~ [ M, (L T)w(r)dﬂ—jw(f)mz(1,T)df-%jw(r)dr.
P, 18

_ap+_X1+§Qn (V(tn))"'_len (V(tn))_zzle "Q (V(t”))
Yo+ - M) w(e)de+ 2 fw(e)M, (17)de - L [w(r)dr

d ’ ’ 0 ' 0 2 d 0 ’

then for a andb,, we can get
d 1 d |
a, [ —Y)CX:L_(d y X2+(d —Y)!Ml(l r)w(7)dr

(@) (@)
; * T (3.28)
@S M) G T Z e )

21



(d-Y)c™ (d=Y)* (d-Y)
eI, L) w(F)dr - [w(r)dr
(d;)! p (de{ )
S S ()
;e _Yy),ng:(v(t )
Now, by (3.26) and (3.28), we get
o d 1
"Td-Y)et ([d-1) "
T fmiml(l o)w(r)de
A7 17
_(d —Y)'([Mz(l r)W(r)dr+(d —Y)'([W(T)dr 630
a2 )
oSO ) T el
also from (3.27) and (3.29), we get
b,=- T + L
") (do)
—(de)l‘Ml(l,r)W(r)dr
" i’Y)iMz(l,r)W(r)dr—(d iY):[W(r)dr
s ﬂ(dY_ 5 geith: (v(tn ))— d TY) nZZQn (v(tn )) (3.31)
_i(dY—Y)ilQ:(V(tn))._ Z:ilQ (v(t,))

Multiplying equation (3.30) by (e *), we get
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ST (do)
+(;’e_1)iml(1 r)w(z)dz
_(d—Y)‘([MZ(l T)W(r)dr+(d_Y).!W(z')dr 62
a0 o 2 v
+ﬁgq(v(tn))+ 3 enaiu)
We can find from (3.31) and (3.32) that
a de ™ e ™ de™™ ¢
e*a, +b_ :(d—Y)cxl_(d—Y) X2+(d—Y ;[Ml(l,r)w(r)dr
_(je_i)iw(f)mza z‘)dr+(d_ﬂ;‘)j:w(r)dr
) o e )
M) 3 )
Y 1 d |
[@-7)c X, [@-7) X, — @ _Y)_([W(T)Ml(l,’[)df
+(d fY)iMz(l,r)W(r)dr—(d iY)i‘W(T)dr
e S ) e )
AT ) T vt)F X i)
Hence
ea +b :.([Ml(t T)W(r)dr+d2(t)_!M2(t r)w(7)dz
+ 3(t)jw(f)df+d4(t)jq (v(t,))
Op ; n=t (3.33)
4,030 (V) + 37, (v(t)
' i 0,.Q; (vt ))_n_iMQ (v(t,))+ds (1)

Now, taking (3.33) into (3.20), we can get
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+d4(t)nZ:Qn(v(tn))+d5(t)gQ:(v(tn)) (3.34)
0 V(L) 3 Pe,Qi(v(1,)
_n_imlqg(v(tn))me(t),

Where teft,,t...),m=01,..,p.

Proofe of the Lemma is completed.
Lemma 3.3 For a given « € (1,2]and a continuous function f :J — R, the solution of

the following problem:
(°D{’m+/1°D{3m*1)v(t)=w(t), O<t<l 1< pB <2,
Zz 12v(1),v'(0)=0, v'(0) =0,

AV(tm)=Qm( ()), AQ(m):Q;](V(t)),mZLZ,...,p

IS given by
Ie (=) 1727w (s)ds + g,

J't o A(t=s) Itﬁtmfw(r)dr_'_ze—m(tftn)

v(t)=1x| [ e’w”’s)ltﬁ“’l’lw S dr—ihﬂ"’flw H-2Q'(v b
=i e i -5
+Ze%“ |: |ﬂ 1_1W( )+Q(V(tn))+%Q*(V(tn)):|+p’

teJ,m=12,..p (3.35

where

_+_
M'c
NgE

§.}
Ei
TR

3
4]
=3
=
3
—
—
|
D\
N
AR
L
|
N
—_
N—

o

%)

+

=
L
—~~

—

=]
N
rO*
—~
<
—~~

—
=]

N—
N—
L 1

33l e () Q)+ 39 1)
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Proof: Assume that v is a solution of (3.2)-(3.5). For any t € J,, we have

v(t)= J; e N A w(s)ds +e e +a, te d,, (3.36)
where @ and a, € R. Differentiating the obtained linear equation (3.36) on J,, leads to
v'(t)= —ﬂj; e N A w(s)ds+ 12 w(t) - Ae My t e U, (3.37)
If teJq, then

v(t)= : g H() 127 w(s)ds + e " +b,,

v(t)=-2| e “NAw(s)ds+ 1A w(t) - Ae
for some b,and b, eR. Thus

r g L (s)ds+ea +a,,
and
v'(t)= —EJ‘; e AN Aw(s)ds + 147 w(t,) - A Ha,
v(t)=b, +b,,
v'(tf) =-Ab,.
Now, by using the IC’s Av(t; )= v(tf)—(t;) =Q(v(t,))we have
Av(t)=b,+b, J'l e A w(s)ds +e e, +a, =Q (v(t,))
b, =-b, +Io g M) Itf"‘lw(s)ds —e"a, —a,+Q (v(tl)) (3.38)
also by using the IC’s Av'(t*):v'(t;)—v'(t;):Q’l*(v(tl)),we have
AV'(t)=-2by +/1J.1 e 1w (s)ds + 15w (t ) - Ae e, = Q) (v(t,))
b, = [le ds—%lﬂO w(t)+e"a, - >Q (v() (3.39)

Now, taking (3.39) into (3.38) we can get
_ 1 —ltl _1 So-1 —/1’(1 -
b—(f W(s)as =312 () e - (v(e) |
+J'1 g s s)ds—e*a, —a,+Q (v(t,))
b, :% Ith‘lw(tl)+Ql(v(tl))+%Qf (v(t))+a,,

Consequently,
v(t)= ; e I A w(s)ds +e

b At s _ 1 _ *
XUO e /o 1w(s)ds—zlt’f 1W(tl)—zQl (v(tl))}

+BItf°‘lw(t1)+Ql(V(t1))+%Qf (V(tl))}e%‘laﬁaz’

tel,.
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If tel,, then

v(t)= : e N w(s)ds+e e+,
v(t)=-4] e N w(s)ds+ 17 w(t) — e e
For some C,,C, € R, thus

v(t Ie =N A w(s)ds +e ), +b,,
v(t)=-2 t: e I A w(s) ds+ 1A w(t, ) — de 4,

v(t;)=c, +c,,

In the same way we have to find the following IC’s

av(ts)=v(t;)-v(t)=Q. (v(t.)),
AV'(5)=v' () v (5 )=Q (v(t,)).

We can obtain

L _ t,—s 1 1 -1 At—4)
6= [ e A w(s) ds = 1 w(t,) +e e, - 207 (v(1,))

_ 1 1
CZ_;LI% W(t2)+Q2(v(t2))+in(v(tz))+b2.

Consequently,
v(t)=[ e I w(s)dr +e
bt —s _ 1 _ *
x{ . a At )|f1 1w(s)ds—z|tfﬁ 1w(t2)—zQ2 (V(tz))}
1 5 1 . At
+Zlfl 1w(t2)+Q2 (v(tz))+zQ2 (V(tz))+e At tl)b1+b2,

v(t)= :2 e I A w(s)ds +e )
b Alt-9) AL L an Lo
x| ] e 1/ w(s)ds—zlt1 W(tz)—zQz(v(tz))
1., 1 . At
+Z 177 w(t,)+Q, (v(tz))+ZQ2 (V(tz))+e A(t-)
L a(t-s)y f— 1,,. .
x[J'; g M b lw(s)ds—zlth 1W(tl)—zQl (v(tl))}

i fo-1 l * _at
+/1|t0 W(t1)+Q1(v(tl))+in(v(tl))+e a +a,,

Where t € J,. Repeating the process in this way, we get
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v(t)= j: g M) It':‘m *lw(s) ds + ie—i(t—tn)
x[jt:"le—z(rn—s)hf"rl ()ds— 1w (t)_%Q*(v(tn))} (3.40)
T <>+Q<v<tn>)+1Q*(v<tn>>}'

A
Applyinh the BC’s, V(O =0, implies a, =0. ForteJ,, we have

I“mv(t)_l"m(j e ™A w(s ds) +Zm:e’“t 1

n=1

n _m(t.—s _ 1 _ 1 .
XU: g™ )Itf_";1 1W(s)ds—alf_";1 1W(t)—aQ (v(tn))}

n-1

Sl e[ i (v 20 (1)

[(a,+1) *
P p p_m
3 A0 - 3 e [ &N w(s)as) )+ 3 40
m=0 " m=0 m=0 n=1 "

DY lmltzme‘ﬂ(ﬂm—tn){r“ e‘ﬂ(tn—s)|tﬁfl—1flw(s)ds+ Itﬁ“lw(tn)_lQ*(v(tn))}

g n n-1 ﬂ.
A %(ﬂm—tm)am[l ot 1. }
o o1 | 7 e Wit t,))+=Q (v(t,)) |-
+mzzonzz;‘ I(e,+1) [4 ™ w(t,)+Q(v( n))+/1Q (v(t))
Substituting the value of a;,(j =1,2) in (3.36) and (3.40), we obtain (3.35).

Conversely, assume that v is a solution of the impulsive sequential fractional integral
equation (3.35), then by a direct computation, it follows that the solution given by (3.35)

satisfies (3.5). The proof is completed.
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Chapter 4

EXISTENCE AND UNIQUENESS

This chapter answers the existence & uniqueness of the equations (3.1)-(3.3), (3.1)-(3.4)

and (3.2)-(3.5) by using some theories such as Banach-FPT and Krasnoselskii’s- FPT.
4.1 Existence and Uniqueness Results

We are going to show the solution of problems (3.1)-(3.3), (3.1)-(3.4) and (3.2)-(3.5) by
using the existence and uniqueness theorem. To start, we will state and prove the main

results using the following hypotheses.

(H)) f: J x R—> R is ajointly continuous function.
(H,) 3 aconstantL, >0 such that
| f(tv)-f(tu)lv-ulL,, v,ueR, tel.
(H;) 3 apositive constants K, KQ*, Lo LQ*, such that
Q5 (V)= Q; (u) [ Ly [v=ul, 1Q, (v)~Q, (u)[< Ly [v-ul,
Qu (V)] < Koy [ Q5 (V)] < Ky
From (H,)-(H;) we have that
| f(tv)[<K,+L,|v], veR, ted, K, ::sup{|f(t,0):0<t£1|},
Qn (V)] < Lo- M+ Kyps [Qu (V)] < Lo M+ Ky,

1

(H,) [ f(t,v)[<®(t), for (t,v)e I xR where ®e L;(J),p(o,a—l).

(Hs) 3 $ ePC(J,R) and W:R — R continuous and nondecreasing such that
| f(t,v)[<8(t)u(v]), forall (t,v)edxR,

(H;)3 an a number N >0 such that
N

— >1.
NEMON

(H;) 3 anonnegative function a(t)eC(0,1) such that

| f(t,v)l<a(t)+&lv]”, o>0.
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4.1.1 Existence results of the problem (3.1)-(3.2)

In view of the lemma 3.1, we can reconstruct the problem (3.1)-(3.3) as a FP problem.
Consider the operator T : PC(J,R)— PC(J,R) defined by
1

je M) e 2 (rv( ))dr+hl(t)je‘1(1‘r)la’1f (r,v(r))dr

0

Ay (0174 (Ly(D)+h () 20, (v(1,))+h, (1) 2Q; (v(1,)

F3NLQL (V) + X N Q(V(t)- D Q(v(t,)) N (1),
teft,.t,.).m=01..,p, (4.1)

It is clear that T is well defined due to (H,) and PC(J,R)into itself.

Theorem 4.1 Suppose that (H,), (H,) and (H;) are holds. If
_[(@-e)
L= [ a )( +h )+ ( )Ilhzll L+ (1) (L)

(Il + N, ) p(LQ*)+||N3||.
Then the equation (3.1)-(3.3) has a unique solution on J .
Proof: Stepl: T maps B, ={vePC([0,1],R),|v|<r} into itself for some r >0.

L) [(jrf ))<1+||m||)+ﬂrta)nhzn}f
+(1+[hy) p(Lor + KQ)+(||h4||+HN1’n )
p(Ly T +Kg )+ Ny

ForteJ, m=0.1..,p, wehave

(4.2)
+[Nz.

+[Nas

1

= _t[e‘(”)l “f(r,v(r))dr+ hl(t)je"(l’r)l “Lf (r,v(r))dr

0

o, (1 (LV(D)+ (1) 20, (v() +h, ()20 (v(1,))

[Tv(t)

+nzpl N,.Q, (vi(t,)) + z N, Q: (v(t,))+ éﬂqg (v(t,))+ N, (1)),
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\Tv(t)\sje‘“t‘”l”“l‘ ‘drﬂh1 Ue ‘ (r, v(r))‘dr
o 01 (@) O 200 (w6 e (D] ()

+HZ::‘ N, , ‘ ‘Qn (V(tn ))‘ + nil‘ NZ,nHQ; (V(tn ))‘ + nil‘Q: (V (tn ))‘ n ‘ N, (t)‘
and then

() sje“”)l‘“\f (1))~ £ (r.0)+f (r,0)dr
() He 2 (rv(r)= £ (r,0) £ (r.0)dr
AR 1 @v@) - (R0 £ (1,0)+ (0] 20, (v(1)
A 1IN () 3 N v10)
- 3 01 (v N o)

thus

a-1 a-1

(1 )(Ler+K,)+|h () ﬂ;(a)

a-1
(LK )+ (0] p(Lor + Ko )+ (1) p(Ly T +Ky |

L

[N, (1) p(LQ*r+ NQ*)+‘NZVH (t) p(LQ*r+ NQ*)+‘N3(t)‘.

MO < — (1-e?)(Lir+K,)

A (a)

+‘h2 (1)

We use the following estimation in what follows

t (a-1)

, o) tle )
r(jl)Je“t”[ﬁr—r) v(r)dr}dr ey

AT (a)

(1-e™)
= /Il"(a) ||V||PC Ve PC(‘]’R)'

0 0

We obtain that

v (1-e™) + +‘h2tJ r+
(WIOE { () O+ ey (LK)
+(1+‘h3 t)\)p(LQr+KQ)+(\h4(t)‘+‘Nl‘n (6)] [N (t)‘)

p(LQ*r+ KQ*)+‘N3(t)‘,

which implies that Tve B,. Thus TB, € B,.
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Step2. T is a contraction operator on PC(J,R). Let v,ueB.. ThenV teJ, we have

Tv(t)-

Thus

Ie “H (v dr+h1(t)j'e‘“l")la1f(r,v(r))dr

‘Tv(t)—Tu(t)‘sz[e“(“r)l"‘1‘f (rv(r))-f (r,u(r))‘dr

(o] \ (1)1 (ru(r) o
+‘h2 (t)‘l ‘ Lv(1))-f(1 u(l))‘
Pl <v<tn>)—Qn (v(t,)

An (00 (v6,)) - u(t)
N[ (v(1) - (v(6,)

(1+\h()\)p( (0 (O] + Ny (D] 4[N, (1))
( N ) v vl

=Ly [v—ul
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Thus, T is a contraction mapping on PC(J,R) due to condition (4.2). By applying the

well-known Banach-contraction mapping principle we see that the operator T has a
unique- FP on. Therefore, the problem (3.1)-(3.3) has a unique solution.

Theorem 4.2 Suppose that (H,),(H3) and (H,) holds. If

(1 e (O) P (o )+ ([ (O] [Ny (O N2 (0)]) P (L )+ N (1)) <2

Then the equation (3.1)-(3.3) has a unique solution on J .

Proof: LetB, ={ve PC(J,R),llvll,.<r}. We can choose

(1-e)1er 1L
o

,, ma)(“‘ _1j(1+||hl||)+mllhzll

p-1
+HN2vn ) pLy +[[N,-

+(1+]h,]) pLg +(||h4||+HNl,n

The operators T, and T, on B, are defined as:

1

(Tlv)(t):j;e)"(”)l"“lf (rov(r))dr+h(t )j et (rv(r))dr

+h, (1) 17 F (Lv (1)), 0

(T =h (0 20, (v(t)+ . (O Q4 (1)) + 2N, Q, (v(0,)
+nzm;-1N2nQ( ) nilQ( ) 3(t).

SteplTv+T,ueB,. For v,ueB,.

Forany v,ue B andteJ_, using Holder is inequality with the assumption (H, ) we get

j \e-“t D1t (r, v(r))‘dr < j

Ry 1) j (r=2)""f (z.v(z))d7dr

a-e?yr, <) o | <L A N]e]: )
{m =) ] (j( (r»} a_p_ljl_p-

w%m_

j 1-r)*2|f(r,v(r))|dr

“Ta —1)0 e’ [for

o) )
1—




1“7t (1-e
1)
M) [alpJ

e 700 j oDt evtendspr <

I

Therefore,
-1

|, () 11— ; 1" ;
||T1V+T2u||pC < ], 7 + . L |"1(t)+—1L1_phz (t)
zr(a)(“‘p‘ j zr(a)(“‘p‘ j (“‘p‘ ]
1-p 1-p 1-p

+(1+”h3”) pLy +(||h4||+||N1,n +”Nz,n ) pL- +[|NS|-

1

+(1+ ”hsn) pLq + (||h4||+ ||N1,n

——— o hy(t)
a—-p-1
( 1-p j

)pLQ* +[IN-

[Tx+ T,y <[@]

—+(1+h(t))+

+||N2,n

Thus,
Tv+Tul,. <a, Tv+TueB.

Step 2. T, is compact and continuous. The continuity of f implies that T, is continuous,

also T, is uniformly bounded on B, as

Li : lp+(1+h1(t))+—l_fo‘h2(t) <
T 7

For equicontinuity on[0,t;], let ve B, and for any $;,S, €[0,11], S1 < Sz, we have

[Tl <

|(TV)(s,) - (TV)(s)|= j e ”[j Uinda e v(r))dr|}dr
iy je ““)U (r= T) |f(r V(r))dz‘|}1

j (L=r) [ (r,v(r))|dr

j s >[j (r- T) T v(r))dr|Jdr

ey j g - >(j (5= T) |f(r v(r))dr@dr

h,
_|_
[(a-1)q

J.(l r)“2|f (r,v(r))|dr,
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I'a-1)

J'e—m(sz—n U (1':_(_02 5 erdr

S

RO Ue-““’(f <;(;)1) fr

1 a-

[(Tv)(s,) — (Tv)(s,)| < (e‘m(sz) o) J- o (J. (r—7)*2 }1

It tends to zero ass; — s,. This implies that T, is equicontinuous on the interval [0,t;]. In
general, for the time(tm,tml] , similarly one can obtain the same inequality, which yields
that T, is equicontinuous on(t,.t,.,|. Together with the PC-type Arzela-Ascoli (Lemma
3.14) theorem, we can conclude that T, : B, = B, , T is continuous and compact.

Step 3. It is clear that T, is contraction mapping. Thus, all the assumptions of the

Krasnoselskii’s theorem are satisfied. In consequence, the Krasnoselskii’s theorem is

applied and hence the problem (3.1)-(3.3) has at least one solution on J.

Theorem 4.3 Suppose that (H;) and ( Hy) holds. Then our BVP (3.1)-(3.3) has at least
one solution onJ .

Proof: Consider the operator T : PC(J,R) — PC(J,R) defined by (4.1). Clearly, it is

obvious that T is continuous and compact.
T maps bounded sets into bounded sets in PC(J, R) . Repeating the same process in

Step2 Theorem 4.2 , we get

t 1

‘Tv(t)‘: J'e’;“(t’r)l"’lf(r, (r ))ds+h1( )I M) | e 2 (r, (r))dr

(01 (LY(D) (0 20 (V) (D2 QL (v(8,)
MO () 2 N Q)+ D) Q)+ M)
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1

f (r,v(r))‘dr+‘h1(t)‘_([e‘l(1‘r)l“‘1 f(r,v(r))|dr
0 @) (O (v (0201 (v(4,)
DIALS) [T

: > Qv ))Naul+ 3 5 (v(1)

[Tv(t) < je‘“”) |ot
0

+[N, (1),

‘N2,n

1

[Tv(t) < je‘”“') 1% 9pu(|v])dr +|h, (t)Ue‘i(l")l “*9u(|v])dr
by (0] 128 (M) |, (t)\nz: Q. (v(t,))|+|h, (t)\nzi Q:(v(t,))
+HZ:‘NM Q. (v(t,)) +niml"\'2'" Q(v(t,)) +p Q; (v(t))]+[Ns (1)),
||T1v+T2u|| < 1a_p_l(1_e_l) N 1a_p_l(1_e_i)19ﬂ(|v|) hl(t)+ 1a_p_l‘9/u(|v|) h (t)

ﬂF(a)(al_p_lj ’ /’tl“(a)(al_p_lj ’ (a_p_l] ’

- -p 1-p
+(1+||h3||) Plo +(||h4||+HN1,n +HN2,n ) pLy: + [Ny
[T+ Tl < () (L () (1)
() a—-p-1 a—p-1 Now,
1-p 1-p
+(1+||h3||) PLo +(||h4||+HN1,n +HN2,n ) pLy +[Ng].

construct the set A={ve PC(J,R):|v|]<N}. The operator T:A—PC(J,R)

continuous and completely continuous. From the choice of A, there is no v € 0A such that

v=ATv,0<A<1. As a consequence of the nonlinear alternative of Leray-Schauder

type, we deduce that T has a FP v € A, which concludes that the problem (3.1)-(3.3) has

at least one solution.
4.1.2 Existence results of the problem (3.1)-(3.3)

In view of the Lemma 3.2, we can transform the problem (3.1)-(3.4) into a FP problem.

Consider the operator T : PC(J,R)— PC(J,R) defined by
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1

+3 pQi(v(L)- 3 QI(v(t)) o, )

n=m+1 n=m+1 (43)

where te[t,,t,.,),m=0,1,...,n. Itis obvious that T is well defined due to (H,) and sends
PC(J,R)into itself.

Theorem 4.4 Suppose that (H,),(H,) and ( H;)hold. If

:I.—(i‘_}L 1 )
o (;Lr(a)) (L) - (4e -2)ld] ) L

+(1+”d4”) Plo +(”d5”+‘ Py +H P2 ) pLy + ]
<1 (4.9)

then the problem (3.1)-(3.4) has a unique solutionon J.

Proof: Stepl: T maps B, = {v e PC([0,1],R).|v]| < r} into itself for some r > 0.

1

r>(1-L, )lbr—w)(l—e*)(1+||d1||)+%(/1+e-1 —1)||d2||+||d3||J L,

+(1+”d4”) p(LQr + KQ)+(||d5||+‘ Pin

+|p... )p(LQ*r+KQ*)+||d6||.

ForteJ, ,m=0,1..p, we have

‘(TV)(t)‘ = :[Ml(t,z') f (Z' V(T))dr+dl(t)iMl(t r) f (2' V(z‘))dr
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1

J:: ‘ )‘dr+‘d u: (t T)‘f(T,V(Z‘))‘dT

+[d, (1) \g M, w)\f(nv<r>>\dr+\d3<t>\g [f(zv(e))]dz
D10 () + o O 201 (46 ) Zleufl v(8)
o [pallor (v 3[04 (v(t)) + o 1)
and ther
i o)~ (z,0)+ f (z,v(z))| +|f (z,0)|dz

[ M, (t.2)|-F (z,0)+ f (z,v(z))|+|f (z,0)|dz

t) Mz(t,r)‘f (r,X(r))— f (7,0)‘+‘f (r,O)‘dz‘

t
o
(»J
-
—_~
N
<

, (z‘))— f (1,0)‘+‘f (T,O)‘dl’

=+
o
N
—~~
f—P
o'—.»—‘ O e O'—o'—‘

mﬁ
E

+]d, (1)

2, n))‘+‘d5(t)‘g‘Q;(v(tn))‘
+Z‘P1 HQ )‘+H_Zp:ml\pz,nHQ§ (V(tn))‘
- 30100 (v(t) +[ec 1)

1a—1 1— -4
(Tv)(t)| < A(r(;) )(Lfr+Kf)+‘dl(t)‘

1 (A+e -
I (a)

1 (1-e7)
A (@)

(Lir+K,)

+|d, (1)) 1)(LferKf)+|d3(t)|p(LQr+KQ)

+[d, (1) p(LQ*r+ KQ*)+‘p1’n(t)‘ p(LQ*r+KQ*)+‘p21n‘ p(LQ*r+ KQ*)
+p(Lor +Kg ) +|ds (1)

<r,

| D o e -l (LK, )

Al (a)

+(1+]dy]) p(Lor +Kq )+ (1] + ] pua+ | ) p(LQ*r + Ky )+

Then
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1o (1—e“) (/1 +e —1)
(TV)(t)| < T(0!)(1+||o|1||)+ ~ o, |+ | (Lfr+Kf)

+(1+]d, ) p(Lgr + Ko )+ (lds] + ] punf+] 2] p(LQ*r + KQ*)+||d6||

<T.

This implies that Tve B,.. Thus TB, €B,.

Step2: T is a contraction operator on LetV,u € B, . Then for each t € J, we have
t 1
‘(Tv)(t)—(Tu) t = IM t, 7 f(r,v(r))dr+d t _[M t, 7 f(r,v(r))dr

1 1
+d, ( J-Mz tr)f(rv dz'+d If
0 0

+ PR V(L) >+n:zmen <v )+da()
- j;Ml(t,T) f (T,U(Z'))dl’-f-dl(t)j;l\/ll(t,z') f (T,u(f))dr

+d, (t).:[Mz(t,z') f (T,u(r))dr+d3 (t) f (r,u(r))dr

4,120, (u(1,))+ 4 (1) 205 (u(t,

N o t—
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t

(M) = (Ty)(B)]= [ M. (¢

0

—
|

)‘f (r,v(r))— f (r,u(r))‘dr

+d, (1)

Ml(t,r)‘f (z.v(7))-f (Z',U(Z'))‘d’[

=+
o

o ()] Mz(t,r)‘f (z.v(7))-f (‘[,U(Z‘))‘df

=+
o

O] (= (2) = 1 () oe
(DR ()~ (u(1,)
(D101 (1)~ (1)
2o, . (v0)-0, ut)
+ 3 P (v(t)) - (u(t,)

Ot Ot O

=+
o

£
o

P,

+ :21 Q; (v(t,))—-Qs (u(t,)) +‘d6(t)‘.
Therefore
1-e™* A+et -1
|<Tv><t>—<Tu><t>|<[((ﬂ(a))(1+||d1||>+%ndzwndsn (Lrek,)

(L)) p(Ler +Kg )+ (o] +[ Py, )p(Lyr+ KQ*))||v—u||PC

~ Lyl

+| ..,

Thus, T is a contraction mapping on PC(J,R)due to condition (4.4). By applying the

well-known Banach-contraction mapping we see that the operator T has a unique -FP on

PC(J,R). Therefore, the problem (3.1)-(3.4) has a unigue solution.

The second result is based on Krasnoselskii’s- FPT. We state a known result due to
Krasnoselskii’s which is needed to prove the existence of at least one solution of (3.1)-
(3.4).

Theorem 4.5 Assume that (H,), (H;) and (H,)hold. If
(1+]d.])) pLo +(ds] +[ ps.

+[p,.) PLy- <1

then the BVP (3.1)-(3.3) has at least one solution on J.
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Proof: Let B, ={ve PC(J,R),|v|.. <r}. We choose

1 (1-e ) Freer ),

L% _ _1 1-p
mxa{“ L J

p-1

1a-p-1

+—(“1)nd3n (Lol o + (1o

p-1

+[pos) Pl +d -

The operators T, and T, on B, are defined as:
t 1
IMl )dr+d ( )I (t,r)f(r,v(r))dr
0 0

f (f,v(f))dr.

M, (t (z))dz+d,(t)

O ey

l
(o)) =4, ()3Q, <v<tn>)+d5<t>zQs<v<tn>>+nz;pl,nQn (v(t,))
£ P Qi (v(L) D Q) (v(t,)+ du (t).

n=m+1 n=m+1
Step 1. Forany v,ueB, and teJ_, using the assumption (H,)with the Holder
inequality we get

17t (1-e)
afa-p-1 ot
p-1

< J.;‘e*’””) 1 (1, v(r))| dr

<

IMZ(l,Z')W(Z')dT

(/1 +e* —1),

et r)(j(r 0 f(r,v(z))dz)|dr

T(a-1)

“If
e—/lt) 111:5 r s %
(rm 1)j( ) ] [ymw»J

@-e)|o|; ()
ﬂl“(a—l)(al_p—lj

Therefore,
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197t (1-e™* 1“7t (1-e™ i
B Y
/11”(0:)(0[_’0_ j ll“(a)[a_p_ ] a(“‘p‘ j
1-p 1-p 1-p
1a-p-l
+W”%”Jf(14F||0'4||) pLg + (ds |+ [ oo+ [ P2a]) PLo:
( 1-p J

<1,

1“7t (1-e* 1“7 A+e -1
e Y
H(a)( 1—pp j ﬂ( 1—pp j

IS o) ol
e s [ oo
( 1-p j

Tv+Tul,. <r, so Tv+T,ueB,.

[Tv + T <[

1
LP

+H Py ) pL, +]|de |

Thus,

Step 2. T, is compact and continuous. The continuity of f impliesT, is continuous, also T,

is uniformly bounded on B, as

1“7 (1-e 1" A+e” -1
1) (g Y

o) L) sy

For equicontinuity on [0,t;], let v e B, and for any $;,S, €[0,t1], S1 < Sz, we have

|(Tlv)(sz)—(T1V)(Sl)| = IMl(SZ,T) f (T,V(T))dr+]g M, (s,,7) f (r,v(r))dr

1a—p—l

[T <[

1
LP

+d, (t) Ml(t,r) f (r,v(r))dr

Ot O

+d, (t) | M, (t,7) f (T,V(Z'))dl’+d3 (1)

J.Ml(sl,r) f (r,v(r))dz'erl(t)J.Ml(t,r) f (T,V(Z'))dl’

0 0

+d, (t)i M, (t,7) f (z,v(7))d7 +d,(t)

f (T,V(T))dl’

O e

O Ly

f (z‘,v(r))dr ,
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|(T1V)(Sz )= (TlV)(51)| <

M, (s,,7) =M, (s, 7)| f (z.v(7))dz

+[M,(s,.7) f(z.v(7))dr

P O

1

+‘d1(t)—dl(t)UMl(t,r) f (T,V(T))d‘l'

o

+[d, (t)—d, ()| | M, (t,7) f (z,v(7))dz

+|d3 (t)-d, (t)| f(z,v(r))dz.

Ot O

It tends to zero ass; — s.

This implies that T, is equicontinuous on the interval [0,t;]. In general, for the time
(t,.t,..], we similarly obtain the same inequality, which yields that T, is equicontinuous
on the interval (tm,tml]. Together with the PC-type Arzela-Ascoli (Lemma 3.14)
theorem, we can conclude thatT, : B, — B, , T, is continuous and compact.

Step 3. It is clear that T, is a contraction mapping. Thus, all the assumptions of the

Krasnoselskii’s theorem are satisfied. In consequence, the Krasnoselskii’s theorem is
applied and hence the problem (3.1)-(3.4) has at least one solution onJ .
Theorem 4.6 Suppose that (Hs) and (He) hold. Then the BVP (3.1)-(3.4) has at least

one solutionon J .

Proof: Consider the operator T : PC(J,R) — PC(J,R) defined by (4.3). Clearly, it is
obvious that T is continuous and compact. T Maps bounded sets into bounded sets in
PC(J,R) . Repeating the same process in Step2 theorem 4.6.

For a positive numberr, let B, ={ve PC(J, R),||v||pC <r} be bounded sets in PC(J,R) .
Then
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t

‘(Tv)(t)‘: IM (t,7) f (r,v(r))dr+d t)j.l\/l (t.z f(r,v(r))dr

0

=

t
j tT 9,u ||V|| dr+‘d U (t T)S,U(”V”)dr
0

wqunmwwmewawwr
o (O [Qu (vtt ) O30 () + Dl (6,)
© 3 [l (vt )+ 3 [ (ve ) (1)

1 (e )Sae() | 1 (e )l (M)
r(a )(“ - 1) il“(a)(a_pl_lj

P p-

()<

|d

105-0-1 19 10:-0’-1 19

A+e” =1)|d
+ [a—p-1 ( +e )” a a—p—1) I
p-1 p-1

+(1+d]]) PR + (I |+ 2y + [Pz ]) PR + ]

17 (A+e” -1)
ala-r —1jp_l
p-1

[0 ([vl) + (2] ]}) pK

B ST
/11"(05)( pfl ]

1a-p-1

a—p-1Y"
p-1
+ (I 1+ pen] + Pz PR + 1]
Now, construct the set A ={vePC(J,R):|lv|<N}.The operator T:A —PC(J,R) is

+d

continuous and completely continuous. From the choice of A, there is no ve dAsuch
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that v=ATv,0< A <1. As a consequence of the nonlinear alternative of Leray-Schauder

type, we deduce that T has a FPv € 6A , which concludes that the problem (3.1)-(3.4) has

at least one solution.
4.1.3 Existence results of the problem (3.2)-(3.5)
In view of the Lemma 3.3, we can transform the problem (3.2)-(3.5) into a FP problem.

Define an operator T : PC(J)— PC(J)by

TV(t) — J‘: efl(t—s)hﬁtm‘lf (S,V(S))ds " Zm:e—/l(t—tn)
" n=1

XU e M (S,V(S))ds—% It f (S’V(S))—%Q*(v(tn))}
+me—4<t-tn>D|ﬂ1—lf(t V(1)) +Q(v(t,))+ %Q*(v(tn))}

T {Zﬂ 5 (I"“ N (s,v(s))ds )

=}

+ +
VR
MU [N
M= sy
=l
N g
3 Y
- 3
3 SQ ’—J
@D NS
S 3
=
3
i
1
L —
i
('D
U)
h
H|
IR
—_
—~
o+
<
_
\-/
N—
o
w
_l’_
h
H|
IR
—
—~
—
<
—~
r—!-
\-/
N——
N —

(4.6)
Theorem 4.7 Suppose that(H,), (H;)and (H,) hold. If
anax(t ~t,)
L, <L, W+AO+A1+A2+A3+A4<1 4.7)
<m<p

then the problem (3.2)-(3.5) has a unique solution on J.

Proof: Show that T : PC(J)— PC(J) is a completely continuous operator
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(O] =]} (s o+ e
" n=1

b ﬂ'(tn 5) Paa-1
n-1
X .[t e Itn71
n-1

I Pra-l
n-1

f(S,v(s))‘ds+% ;
f(t,.v(t,))

f(s,v(s))+=

W]

| it

+Zm:e‘/1(t—tn) ‘% B +‘Q(V(t )) . 1
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n1£2211“(/3 )
0 (-t )ﬁ 1-1 mo (t _t )ﬁm—l 18,
L l(tt)(n n-1 e/l(ttn) n n-l + = e/l(tt)L
I p Ar(B,4) p AC(,4) 3 °

F(/Bn—l) m=1 n=0 ﬂ“r(am +l)r(18n—l)

)
+%iiwl_ . } + LfAii ﬂ‘m (nm _tm )am (tn _tn,l)ﬁn71_1

m=1 n=1 j’1—‘(am +1)r(18n—1)

p m ﬂ“m nm_tm)“m A p m ﬂ“m nm_tm)am
A - L
D R R bk ]
thus
1r<nmeix(t—tm
|Tv(t)|£LfW+AO+A1+AZ+A3+A4=Q,
<m<p
where

B & ﬂ‘m (nm _tm )am (tn _tn—l)ﬂn o SR T (nm - m)am
A, =| LA +A +
‘ {f D T PAEIT  R 30 Da o T
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which implies that Tve B. Thus TB € B.. On the other hand, forany teJ_ , 0<m< p,we

have

f (s,v(s))‘ ds + :m %‘ i (s,v(s))‘ ds

ljt" (t“_—s)l)‘f (s,v(s))‘ds

ﬂ‘ tha 1_‘(ﬂn—l -

o feaf e

(s,v(s))‘ds+

+Z{j |/t

o]l e o | o

t . 1 t, ( N —S) n ‘1 :|
L o ds +|=|L, | " 22—~ ds+|=|L. |,
+;{ f J‘tw1 tn—1 + l f tn,l F (ﬁﬂ—l —1) + /1 Q

Hence, fors;,s, € J,, with s, <s,and 0<m< p, we have

(M) (s)=(Tv)(s;)| <[ (Tv) (s)ds < £(s, -s,).

S
This implies that Tv is equicontinuous on all J,, m=0,1,.., p. Consequently, Arzela-
Ascoli theorem ensures that the operator T:PC(J)—>PC(J) is a completely

continuous operator. Next show that the operator mapsBintoB. For that, let us choos

1

RZmax{Z,u,(ZLa)l—a} and define a ball B={ve PC(J,R):|v|<R}. For any veB,

by the conditions (H,) and (H,),we have

47



[Tv(t) <
.[; e Nt a(s)+€v(s)| |ds+ nie‘ﬁ(”")

){ , e_z(tn_s)hf_nlll[a(s)+§|v(s)|]ds+%

thy

()]

1 [als)+ev(s))+ 5

A
vm»}

|ﬂ rl[ (tn)+g|v(tn)|]+\q(v(t )+E

x{f” g Hh- )If_l’l[a (s)+¢&v(s) Hds+It'f_“l-l’l[a(tn)+§‘v(tn)J+

(] +Q(v(t))+/>

o)

1 rl[ (t,)+&v

+Zp:iimr(; i ; Hﬂ

<la(s)+&|v(s {-t,) £ e
O] a(e)+ (]l S
x|l als)+EIv(s M_,_ a(s)+E&Iv(s —(t” _t”‘l)ﬂH_l_F i
[I: ( ) §| ( )H ﬂr(ﬂn,l) [ ( ) ‘§| ( )|j| ll“(ﬁnfl) LQ, /1}

5y [a(s)+§|v(5)l](trﬁ_rt(n—ﬂln)_:)r+ ot ﬂ

[ evo 2t S S el

m=0

Fa(s)+ (o))l (s« af(sy) i)y *1}

X
1

This implies T : B — B . Hence, we conclude that T : B— B is completely continuous. It

is follows from the Schauder-FPT that the operatorT has at least one fixed point. That is

problem (3.2)-(3.5) has at least one solution in B
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Theorem 4.8 Assume that there exist a nonnegative function W e C(J,R") and

nonnegative constants M, Z such that

|f(t,v)— f(tu)<W(t)v-u|,ted,v,ueR,
Qn (V)=Q, (u)[ <M |v—u], ‘Q; (v)-Q, (u)‘£Z|v—u|,

for teJ,v,ueRand m=12,..., p. Furthermore, the assumption u(W)<1 holds. Then the

problem (3.2)-(3.5) has a unique solution on J.

Proof: For v,u € Band for each t € J we have
Tv(O)-Tu(t)< [, e (s.v(s) - F (su(s))os+ Do
[ N (s (s) = T (s (s) s
2t (s(s)- f (su(e))| 3 (v(8)) - (utt)
e B ) - 1 (u)
ou))-0u(t))+ " (v(t) -0 (u(w)

1
b A (nm —tm)am
1N Zolm m)
_{ mZ:;‘) I'(a,+1) J

-1
+ I tﬂn—l
n-1

|

I Baa-l
tnfl

+

As u(W)<1, we have|Tv(t)—-Tu(t) <Q|v—ul|. Therefore,T is a contraction mapping

on PC(J,R) due to condition (4.5). By applying the well-known Banach's contraction

mapping we see that the operator T has a unique FP onPC(J,R). Therefore, the

problem (3.2)-(3.5) has a unique solution.
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4.2 Examples

4.2.1 Example of the problem (3.1)-(3.3)

Consider the problem (3.1)-(3.2):

3 1
[ch +2°D2]v(t)= L(t*+sint+1+tanv), 0<t<l, 1<gs 2,

2 2

(0)+v(0)=0, v'(1)+Vv'(1)=0,

v v(
Av 1 :V(i’ AV'(t,) = v(i}
/)

4 2
1+ v(l)
4

Here te[O,l], let z,=172=1w=1w,=1 a:(3/2), A=2,¥1,Y,=0,

2
1+

Lo Ly Ly =0.01, f (tv(t))= L(t2 +sint+1+tan‘lv) and Since0.88<1"(gj <0.89.

Solution:
1-1+2)(1-2)
= — — 2 _ -2 = —U. O = ( = 2312,
A=(1-2)-(e”-2e?)=-0.865, h (0) 0865
_ e’ —2e”
h2(0)=(1 1+2):_2_312, h,(0)= 1| ):1.312,
—0.865 —0.865 —0.865
e’ —2e” — 1-2)(e?-2e?
h4(0)=i—g:0.656, Nln(0)=—(1 2)+( I ):0.656,
2A 2A ’ 2A 2A
11 1 (e7-27)) (1 (1-2)
N =|=—=|=0, 0)=| —- ———=10=0,
and
e’ -1+2)(1-2 e’ —1+2
()=( -2 ) 1135 hz(l)—( )=1.312,
—-0,865
e? (e?-2e7) e? (e°-2¢7)
1)=—~- =-0.33, h =—= =0.156,
%2(1-2) e*(1-2)(e*-2e”
N T o I e ) 115
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[ (tv)—f (L)< L‘v—u +tan’lv—tan’lu‘ <Llv-ul.

)
+(1+||h3||) p(LQ)+(||h4||+HN1’n ) p(LQ) Ly AR

+[Nas

L, = L(l—e-z)(1+2.312)+L2.312 0.01

) )

+(1+1.312)0.01+(0.656+1.152+0.002)0.01,
L, =0.042+0.248<1.

Therefore, by (4.2), Impulsive (SFDE’s) with (BVP’S)has a unique solution on [0,1].
4.2.2 Example of the problem (3.1)-(3.3)

Consider the problem (3.1)-(3.3):

5 2 t
(°D3+E°D3Jv(t): 1 . ‘V( )‘ +tan’1v(t), O<t<], 1<§£2,
3 (t+121): 1+ (1) 3

v(0)+v(0)=0, v(1)+v(1)=0,
a o2
Av@j=—(2j Av@jgé) 2
Herete[0,1], letzi=1z,=1Lw =1 w, =1, a=(8/3), /1=§,y1, y.=0,

Gl
1

(t+121)2 LV (D)

2

1+ 1+

Lo Lys Ly =0.02, f(t,v(t))= +tan"v(t).

Solution:
[ (tx)—f(ty)< ‘tan’lx —tan’ly‘ <|x-yl.

| e
+(2+[hy) p(LQ)+(||v4||+Hlen ) p(LQ)LQ* +[Ng|

N2,
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1 -2 0.570
L = —— (1+0.190) +
‘;’(1_5)( J (15)

+(1+0.709)0.02+(1.155+0.358+0.002)0.02,

2.312 |0.02

L. =0.019+0.034+0.038=0.397<1.

Therefore, by (4.2), Impulsive -SFDE’s with BVP has a unique solution on [0,1].
4.2.3 Example of the problem (3.1)-(3.4)

Consider the problem (3.1)-(3.4):
[‘:Di+2°Dé]v(t)=L(t2+sint+1+tan‘lv), O<t<], 1<gs2,
v(0)+°ng(0) v(1)+ °D2v() 0,
Gl G
V — _
(Ll v 2
2 1
(3) 268

Here te[0,1], letzi=12z,=1w=Lw,=1 a=(3/2), 1=2,y;,¥.=0,

1+|v

Lo Ly Ly =0.01, f (tv(t))= L(t2 +sint+1+tan‘lv) and Since0.88<1"(gj <0.89.

Solution:
| (t.v)— f (tu)|<[v—u+tan’v—tanu|< L, v—u].

; :(%{jﬂ(unmu%@—‘”nw||d3||] ;

+(1+”d4”) plo + (”dsn +H Pyn

1
L, = 1-0.135)(1+)0.471 1 - 0.135)|1.277|+|(0.471
[ sromag0esloary+ b - oaspzmedoary o

+ (1 + |[1.652])0.02+(]|0.826] +[|6.054] +]|0.002] ) 0.02+])0]

+[ e} P + 1]

L, =0.224<1,

Therefore, by (4.4), Impulsive- SFDE’s with BVP has a unique solution on [0.1].
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4.2.4 Example of the problem (3.2)- (3.5)

Consider the problem (3.2)-(3.5):

v +e®vm e'
{3 ® } cos(2t+5)

CDO!m cDam—l t) = t o
( t +m t )V() 2+V4(t) + 3+V(t) ‘V()

(4.8)

,0<t£1,t¢§,m:1,2,..., p

2/1 Ly (7 ; Av'(0)=0,

where te[0,1], 4, =(5/4), 4, =1 =(8/5),a, =(1/2),as=(5/3),m, =(2/5),
my=(3/7),m=(112),7=(4/5).

{BV(t)+e@V(t)}et (245
[f(tv.u) 2+V*(t) ’ 3+v(t) ‘v(t)"

e 1, .

§?+—3|v|

Clearly, a(t)= = J_ L, =1L L, :%, and the conditions of Theorem 4.8 hold.

e_
2"

Thus, by Theorem 4.7 impulsive- SFDE’s with BVP (4.7) has at least one solution [0,1].
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Chapter 5

CONCLUSION

In this thesis, the existence (and uniqueness) results of a nonlinear impulsive sequential

fractional differential equations of order « e(l, 2] involving Liouville-Caputo fractional

derivative supplemented with the separate boundary value conditions are studied. Both
sequential fractional differential equations and impulsive fractional differential equations
are studied individually from various perspectives. A new result on the existence of a
solution is established by using different fixed point theorems. An example is presented
to illustrate the result. Using the technique based on the concept of measure of
noncompactness and the fixed point theory a new existence results will be established in

future works.
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