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ABSTRACT

The objective of this study is to develop an Artificial Neural Network (ANN) based
system for output power estimation and fault detection in PV modules in a minute by
minute basis. Such system, after being trained on sample data paths in a supervised
manner, is ought to be capable of real-time output power estimation and fault detection
in PV modules. The process of data acquisition is carried out during a three-month
interval, from Nov. 1%, 2015 to Jan. 31%, 2016 using sensitive measurement equipment
and precise mathematical formulas. Resultantly, around 30,000 healthy and faulty per-
minute accurate data paths containing the solar altitude and azimuth angles, incident
angle, irradiance level (W/m?), PV module output power (W/min) and PV module
surface temperature (°C) are acquired and normalized in the range 0 to 1 in order to be
fed as input to different ANNSs. In order to simulate the faulty operation conditions, the

PV module is coated with glasses of different shades of gray color.

Two different ANNs of Multi-Layer Perceptron type, namely being the Estimation
Artificial Neural Network (EANN) and Detection Artificial Neural Network (DANN)
are developed for PV power estimation and fault detection purposes, respectively.
Both ANNSs are of three-layer fully-connected feed-forward architecture, with input,
hidden and output layers. Log-sigmoid activation function is deployed in both ANNs’
hidden layers, while softmax transfer function is utilized in the DANN output layer to
solve binary classification problems which lead to fault detections in a PV module.
The training process of the ANNs is carried out based on Bayesian Regularization
(BR) back-propagation algorithm, using the mentioned collected data paths in a

supervised way by providing the ANNs with training output targets in each training

i1



epoch. After the training goal for both ANNSs is satisfied, the ANNs go through a
rigorous testing process with new and unseen input data and no more output targets in
order to measure their generalization capabilities. At the end of the testing process, the

ANNSs are ready to be implemented in real life situations.

The ANNs’ implementation is carried out during a 15-day interval from Feb. 1%, to
Feb. 15", 2016. The mentioned interval contains highly meteorologically fluctuating
wintry days, providing context for a rigorous performance examinations of the
mentioned ANNs. During the implementation period, six different fault simulations
namely being the lightgray, dimgray and darkslategray shadings as well as the light,
moderate and heavy dirt and dust coverings are homogeneously applied to the surface
of the PV module. The first two of the mentioned fault simulations had been used
during the ANNs training data acquisition process, but the rest four faults are only
demonstrated in the implementation period in order to measure the generalization
capabilities of the ANNs for unseen situations. Expectedly, the lightgray shading —
light dirt and dust covering, the dimgray shading — moderate dirt and dust covering
and the darkslategray shading — heavy dirt and dust covering fault simulation pairs led
to almost similar amounts of drops in the PV module output power, whilst the
homogeneous fault application technique made the power drops independent of the

internal architecture of the PV module.

The 15-day per-minute implementation period resulted in 6222 PV module power
estimation and fault detection acts carried out by the EANN and DANN. The overall
EANN average MAPE between the estimated and the measured PV module output
power values is 4.44%, and the DANN sensitivity, specificity, and overall accuracy

rates are 97.6%, 99.7%, and 98.6%, respectively. The results are promising and the
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developed and verified PV module-level output power estimation and fault detection
system is expected to be deployed in broader PV fleets after taking the developmental
requirements into consideration, thus increasing the efficiency and decreasing the

support and maintenance costs of the PV systems in long term.

Keywords: Renewable Energy, Solar Energy, Photovoltaic, Artificial Intelligence,

Artificial Neural Network, Output Estimation, Fault Detection
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Bu tez calismasinda, giines panellerinde dakikadaki ¢ikis giicliniin tahmini ve hata
tespiti i¢in Yapay Sinir Ag1 (YSA)’ na dayal1 bir sistemin gelistirilmesi amaglanmaistir.
Boyle bir sistem, denetimli bir sekilde 6rnek veriler kullanilarak egitildikten sonra,
giines panellerinde gercek zamanli c¢ikis giici tahmini ve hata tespiti yapma
kabiliyetine sahip olmalidir. Tez ¢alismasi i¢in toplanan veriler 01/Ekim/2015 -
31/0cak/2016 tarihleri arasindaki ii¢ aylik bir zaman dilimi icerisinde hassas olarak
Olciilmilis ve matematiksel bagmtilar kullanilarak tespit edilmistir. Sonug¢ olarak,
YSA’n1 egitmek iizere girdi olarak giines yiikseklik ve azimut agilari, giines 1s1nlarinin
gelis agis1, giines radyasyon diizeyi (W/m?), giines paneli ¢ikig giicii (W/dakika) ve
giines paneli yiizey sicaklik (°C) verilerini igeren yaklasik olarak 30,000 veri elde
edilip toplanan veriler 0 — 1 deger araliginda normallestirilmistir. Hatali ¢alisma
kosullarinin simiilasyonu i¢in giines panelinin yiizeyi, gri renginin ¢esitli tonlarina

sahip camlar ile kaplanmistir.

Giines paneli ¢ikis giicli tahmini ve hata tespiti amaglari igin sirasiyla Tahmin Yapay
Sinir Ag1 (TYSA) ve Saptama Yapay Sinir Ag1 (SYSA) olmak iizere Cok Katmanli
algilayicr tipi iki farkli YSA gelistirilmistir. Her iki YSA ¢ok katmanli ileri beslemeli
mimariye ve girdi, gizli ve ¢ikt1 katmani olmak iizere {i¢ katmana sahiptir. Her iki
YSA’nm gizli katmanlarinda log-sigmoid aktivasyon fonksiyonundan yararlanilmis
olup ayn1 zamanda bir giines panelinde hata tespiti ile sonug¢lanan ikili siniflandirma
problemlerinin ¢dziilmesi i¢cin SYSA’nin ¢iktt katmaninda softmax transfer
fonksiyonu kullanilmistir. YSA’nin egitme siireci, Bayes Diizenleme (BD) geri

yayilimli algoritma esas alinmak suretiyle daha 6nce bahsedilen toplanan veri yollari
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kullanilarak her bir egitim devresinde YSA’ya egitimin ¢ikti hedefleri sunularak
denetimli bir sekilde gerceklestirilmektedir. Her iki YSA icin egitim amaclarina
ulasildiginda, genelleme kabiliyetleri dlgiilmek lizere YSA’lar yeni ve daha dnce
kullanilmamis olan girdi verileri kullanilarak herhangi bir ¢ikt1 hedefi sunulmadan ¢ok
sik1 bir test siirecine tabi tutulmaktadir. Test siirecinin sonunda YSA’lar gercek

kosullar altinda uygulanmaya hazir hale gelmis bulunmaktadir.

YSA’nin uygulama asamast 01/Subat/2016 — 15/Subat/2016 tarihleri arasinda 15
giinliik bir zaman aralig1 igerisinde gerceklestirilmistir. Bahsi gecen zaman aralif
meteorolojik agidan yiiksek oranda degiskenlik gosteren kis giinlerini kapsamakta olup
belirtilen YSA i¢in karmasik bir performans incelemesi imkanini saglamaktadir.
Uygulama zaman aralig1 icerisinde acik gri, koyu gri ve koyu barut grisi gélgelemeler
ile birlikte hafif, orta ve yogun derecelerdeki toz ve toprak kaplamalari olmak iizere
altt farkli hata simiilasyonu giines panelinin yiizeyi iizerinde homojen bir sekilde
uygulanmistir. Bahsi gecen hata simiilasyonlarindan ilk ikisi YSA’nin egitim i¢in veri
toplama siireci igerisinde kullanilmis olup geriye kalan diger dort hata gesidi ise
YSA’nmn goriilmemis kosullar altindaki genelleme kabiliyetinin 6l¢iilmesi amaciyla
yalnizca uygulama donemi igerisinde kullanilmistir. Homojen hata uygulama teknigi,
¢ikis gliciindeki azalmalarin gilines panelinin i¢ mimarisinden bagimsiz olmasini saglar
iken, beklendigi gibi acik gri golgeleme — hafif toz ve toprak kaplamasi, koyu gri
golgeleme — orta yogunluk derecesine sahip toz ve toprak kaplamasi ve koyu barut
grisi golgeleme — yogun toz ve toprak kaplamasi hata simiilasyon ciftleri giines

panelinin ¢ikis gliciinde neredeyse benzer oranlarda azalmaya yol agmistir.

15 giinliik dakika bazli uygulama siiresi TYSA ve SYSA tarafindan gergeklestirilen

toplam 6222 giines paneli ¢ikis giicii tahmin ve hata tespit eylemi ile sonuglanmustir.
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TYSA icin tahmin edilen ile olgiilen glines paneli ¢ikis giic degerleri arasindaki
ortalama mutlak yiizdesel hata (OMYH) oram1 toplam %@4.44 olup SYSA’nin
hassasiyet, 6zgiilliikk ve toplam dogruluk oranlari ise sirastyla %97.6, %99.7 ve %98.6
olmaktadir. Elde edilen sonuglar ileriki uygulamalar agisindan iimit verici olup
gelistirilen ve dogrulanan giines paneli diizeyli ¢ikis giicii tahmin ve hata tespit
sisteminin, gelisimsel gereksinimlerin dikkate alinmasmin ardindan, sayisal acgidan
daha fazla giines panelinden olusan giines enerji sistemlerinde kullanilmasi ve
dolaysiyla uzun vadede giines enerjisi sistemlerinin verimlerini yiikseltmesi ve destek

ve bakim masraflarini azaltmasi beklenmektedir.

Anahtar Kelimeler: Yenilenebilir Enerji, Giines Enerjisi, Yapay Zeka, Yapay Sinir

Aglari, Cikis Giicli Tahmini, Hata Tespiti
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Chapter 1

INTRODUCTION

Solar energy emerges as a promising renewable resource to meet the modern world
energy requirements. The world is currently consuming about 17 terawatts (TW) of
energy annually and this number is expected to increase to 30 TW by 2050. This means
that there will be a demand of >10 TW renewable energy to stabilize the CO> in the

atmosphere by mid-century [1].

Solar radiation is converted to Direct Current (DC) electricity in solar cells by the
Photovoltaic (PV) effect which was discovered in 1839 by Becquerel. The PV effect
is described as the potential difference generation between junctions of different
materials. Such potential difference is caused as a response to a visible or non-visible
radiation. What happens by the PV effect can roughly be defined as follows; Photons
are absorbed in semiconductor material and generate charge carriers which are
separated in the junctions and are collected at the terminals of the junctions. The solar
spectrum consists of different wavelengths and the photons in each wavelength have
different amounts of energy. The photons in the sunlight hitting the surface of a solar
cell may be absorbed, reflected back or passed through. The PV effect is caused by the
absorbed photons, which transfer their energy to the electrons in the solar cell material.
This energy transfer excites the electrons from the valence band into the conduction
band of energy and lets them move freely through the semiconductor material. What

makes the photo-generation possible is the fact that most of the photons existing in



solar radiation hitting the earth have energies higher than the semiconductor material
band gap and can excite the electrons in the material (from valence band to conduction

band). Figure 1.1 demonstrates the energy bands structure of a semiconductor material.

>

Conduction band

Electron energy

Valence band

—
Density of states

Figure 1.1: Energy Bands Structure of a Semiconductor Material

As previously mentioned, the PV effect was discovered in late 19" century but it took
a long time for solar cells made of crystalline Silicon (c-Si) to achieve a relatively
sufficient efficiency of 6-10% and serve the space programs and satellites in the 1950s
[1]. The first solid state photovoltaic cell made of semiconductor selenium and coated
by a very thin gold layer to form the junctions was introduced by Charles Fritts in
1883. Russian physicist Aleksander Stoletov made the first photoelectric cell based on
outer photoelectric effect. The underlying mechanism of light instigated carrier
excitation was defined by Albert Einstein in 1905, granting him the physics Nobel
Prize in 1921. Russel Ohl presented the modern junction semiconductor solar cell in
1946. The first practical photovoltaic cells were developed in Bell Laboratories in

1954 and were appended to Vanguard I satellite in 1958.



It was after the 1970s energy crisis that the PV research and development (R&D) was
accelerated. Elliot Barmen’s researches that led to produce solar cells with lower costs
in 1973 is one of these R&D efforts. Crystalline Silicon (c-Si) is the most common
semiconductor material used in solar cell production. These cells are mostly shaped as
Si wafers and ribbons. However, the reliability and stability of the Si cells comes at a
high production price. The complexity of module assembly and cell manufacturing
and the demand for highly purified silicon, as well as limited number of manufacturing
units all lead to high production cost. The Si material is separated into the following
classes based on crystallinity and crystal size;

e Monocrystalline Silicon (c-Si)

e Poly-crystalline Silicon or Multi-crystalline Silicon (pc-Si or mc-Si)

e Ribbon Silicon

e Mono-like-multi-silicon

Thin film is the second commonly used material in solar cell manufacturing. Thin film
solar cells are heavier, less efficient and more area per watt production occupying
compared to crystalline cells, but have the advantage of lower material usage. The thin
film solar cells are generally made of Cadmium Telluride (CdTe), Copper Indium

Gallium Selenide (CIGS) and Amorphous Silicon (A-Si).

There are also other solar cell technologies, like organic cells, dye-sensitized cells and
light-concentration based Gallium Arsenide (GaAs) cell which are not very popular
due to several disadvantages. For example the GaAs solar cells are not preferred due
to their very high manufacturing costs, even though they have been reported to exhibit

more than 40% efficiency under concentrated sunlight.



As a result of the mentioned trade-offs, the compound semiconductor and
polycrystalline Si (pc-Si) solar cells were developed to meet the desirable efficiency
and costs for high production capacities and large-scale terrestrial installations. The
PV technology is currently at a “tipping point” taking that the “energy security and
independence, environment, electrical grid integrity and protection have brought us to
the threshold [2]”. The PV R&D activities with research-device scope is presented in

Figures 1.2-a and 1.2-b.

Multi-megawatt PV power generation plants triggered the rapid growth of the PV
market in the 1980s. Currently Si technologies lead by 94% of global market sales [2],
the research on Si is of first priority and several Si cell designs have reached >20%
efficiencies. The Si PV cell efficiency advancements can be categorized into four
stages, based on technology solutions and cell structures. The first advancement of Si
PV cells belongs to the “semiconductor-era” (1950s) which led to production of cells
with 15% efficiency. The second advancement occurred in the 1970s due to the
attainments in microelectronics which allowed Si PV cell fabrication with 17%
efficiency. Nevertheless, the greatest achievement in high efficiency Si solar cell
production belongs to the third (1980s) and fourth (2000+) stages where the
technology almost earned 25% efficiency. The last advancements were achieved due
to the cell structure improvements described in [3]. Further advancements are required
to close the performance gaps between the research and the manufactured cells and
also to create appropriate R&D basis for next-generation Si PV cells as well as other

PV technologies.
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Figure 1.2: Evolution of Research Solar Cell Efficiencies; (a) Thin-Film
Technologies; (b) Si and Concentrators, Comparing Them to the Thin Films [2]

The electronic characteristics of a solar cell can be defined as a mathematical model

which is equivalent to the electronic circuit shown in Figure 1.3.
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Figure 1.3: Equivalent Electronic Circuit of a Solar Cell

The above circuit would model the solar cell as a current source only connected to a
diode in parallel as a demonstration of an ideal situation, while the real-life
experiments suggest that the solar cells are not practically ideal. To overcome this
matter, the solar cell electronic circuit is modified by the addition of a shunt and a

series resistor.

The proposed electronic circuit determines the electrical current generated by a solar
cell as the subtraction of the current passing through the diode and the shunt resistor
from the current generated by the current source. The current equation of a solar cell

is described in the following equation;

I =1, —Ip—Isy (1.1)
where,
1 : Total output current (A)
I : The photogenerated current (A)
Ip : The current passing through the diode
Isy : The current passing through the shunt resistor

The solar cell voltage equation is described as follows;

Vi =V + IR (1.2)



where,

V; : The voltage across the diode and the shunt resistor
%4 : The voltage at the output terminals
I : The output current

The current passing through the diode is given by;

A {exp [q(V + st)l B 1} (13)
nKT
where,
Iy : The reverse saturation current (A)
n : Diode ideality factor
q : Elementary charge (the electric charge carried by a single proton)
k : Boltzman's constant
T : The absolute temperature

Finally, the current passing through the shunt resistor is defined as;

V + IR (1.4)
Iy =

RSH

As the overall combination of the above equations, the solar cell characteristic

equation is defined by;

q(V +IRy)] }_V+IRS (1.5)

I=1 -1 {exp[ KT

RSH

Various characteristic factors and limitations are to be considered during solar cell
design process. Some of these characteristic factors are short circuit current (/s), open
circuit voltage (Voc) and fill factor, which are briefly explained as follows;
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Isc 1s defined as the maximum current a solar cell with shorted terminals can generate.
As previously described by the PV effect, the energy of photons existing in the sunlight
hitting the surface of a solar cell, excites the electrons and makes them freely move
through the semiconductor material. As a matter of fact, the maximum /s is generated
by each photon of the sunlight contributing to one electron flow to the load. Again as
previously mentioned, the photon energy must be bigger than the band gap of the
semiconductor material (the gap between the valence and the conduction bands) so
that it can excite electrons to move through this band. This fact implies that the band
gap of the semiconductor material determines the /. of a solar cell. A solar cell made
of some semiconductor material with a large band gap absorbs less photons and
generates less /sc while a solar cell made of small band gap semiconductor material

absorbs more photon and produces higher amount of /.

Voc 1s given as the maximum voltage acquired from a solar cell with open circuited
terminals. Photons with higher energies than the band gap of the solar cell
semiconductor material are absorbed and excite the electrons from the valence to the
conduction band, thus increasing their potential. Therefore, the maximum Vo of a solar
cell is defined by the band gap energy of the compounding material. The higher the

material band gap energy, the greater the generated Vo and vice versa.

The fill factor of a solar cell is an extent of the squareness of the cell I-V curve and is
described as;

VOC - ln(VOC + 0,72) (16)

FF =
Voc‘l‘l




where,

Voc = nqﬂln(j—L + 1) : Normalized open circuit voltage
0
Different interconnections of PV cells form PV modules, which can be organized to

form PV arrays and systems in several ways. A simple illustration of PV cell, module

and array structures is given in Figure 1.4.

Cell

Module

Figure 1.4: PV Cell, Module and Array Structures

Different PV systems are designed and implemented for various applications to meet
part or all of the electrical energy requirements. The PV systems may or may not be
connected to a power utility and are categorized as stand-alone and grid-connected
systems. The stand-alone PV systems operate independently and usually are directly
connected to a DC load. Since these systems are not connected to any power utility,
they can only supply electricity under direct sunshine. However, it is also possible to
equip a stand-alone PV system with battery backups so the batteries are charged during

clear daylight hours and supply the load during night or overcast sky situation.



As mentioned, the other PV system category refers to PV systems that are connected
to some electrical power utility. Such PV systems are connected together with an
electrical utility to the applications so that in cases when all the required electrical
energy cannot be produced by the PV system, the shortcoming is removed by the main

utility supply.

The grid-interactive PV system designs can be classified in two general categories:
The systems with and without battery backups. The grid-interactive PV systems
without battery backup are commonly connected to main power facility. In such
systems the energy is supplied to the users from PV facility during clear daylight hours
while the energy demands during night or overcast hours are met by the main power

facility. Figure 1.5 demonstrates the general view of such system.

PV Array PV Array Ground Main Service Panel

ik o DC/AC Inverter

i Utility
Combiner DC Fused AC Fused .
protector Switch aiich Switch
> > — — <= Utility

Figure 1.5: Grid-Interactive PV System without Battery Backup

The principal parts of the system demonstrated above are PV Arrays, Balance of
System Equipment (BOS), DC-AC inverters, Meters and Switches. As mentioned
earlier, a composition of PV modules (or panels) with various interconnection types
form a PV array. The BOS includes parts like mounting and wiring systems that are
utilized in connecting the PV modules and arrays to the other parts of the application
ground. Some wiring system components are disconnected for DC-AC sides of the
inverter, ground-fault protection elements and over current protection elements. Again

as mentioned earlier, the PV modules produce DC electricity. This energy needs to be
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converted into Alternative Current (AC) electricity in order to be used in various
applications. This conversion is performed by the DC-AC converters. The metering
and measurement equipment are deployed for system performance monitoring
purposes. Finally some switching equipment are used in order to facilitate the

exchange between the PV system and the power facility in certain situations.

The other general category corresponds to grid-interactive PV systems with battery
backup which utilize backup battery banks to handle critical load circuits in tense
situations of grid power outage. In such situations, the system automatically
disconnects from the electrical grid and connects to the battery assembly in order to
supply the critical load circuits. The batteries are charged during the clear sunlight
hours. In situations of grid power outage the critical load circuits are fed by both the
PV system and battery bank in daylight clear sky or only by the previously charged
battery bank during night or overcast sky hours. The energy consumption rate of the
critical load circuits and the backup battery bank capacity determines the duration of
the critical load supply. Such PV systems with battery backups contain extra
component like batteries and battery enclosures, battery charge controllers and
separate subpanels for critical loads as compared to the first category PV systems
(systems without battery backup). The general view of a grid-interactive PV system

with battery backup is given below.
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Figure 1.6: Grid-Interactive PV System with Battery Backup

While the PV module output power generation depends on the intensity of sunlight
received on the module surface, this intensity varies based on factors like date and
time, along with cloudiness index as an obstacle. There are also several extra factors
that affect the power generation of a PV module, the most important of which may be
named as the Standard Test Conditions (STC), temperature, dirt and dust, mismatch

and wiring losses and DC-AC conversion losses.

The STC refers to condition in which PV module can produce the upmost output
power. The STC for PV operation is defined as solar cell temperature being 25°C, solar
irradiance being 1000 W/m? and solar spectrum being filtered by passing through
atmosphere of Air Mass (AM) =1.5. While it is possible to maintain the STC for indoor
PV applications, most of the outdoor PV applications are running in non-STC
condition due to existence of usual losses. The losses are reportedly around 5% [4],

causing the rated solar cell output decreasing to 95%.
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The PV module surface temperature increases under direct sunlight and the PV module
power generation tendency decreases with increasing surface temperature. This issue
will be explained comprehensively in section 2. The highest PV output drop caused by

increasing module surface temperature is reported to be around 89% [4].

Dirt and dust accumulation on PV modules is another factor decreasing the PV output
power. The details of dirt and dust accumulation on PV module surface is described
thoroughly in section 4 and also may be investigated in [5], [6]. The upmost PV power

reduction by dirt and dust accumulation on PV surface is reported to be around 93%

[4].

Although a PV array is constructed by connecting several PV modules, the output
power generated by a PV array is not the summation of the output power generated by
each contributing PV module in real-life practical applications. One reason is the
performance differences of the contributing PV modules which is called module
mismatch. In general the module mismatch cause no more than 2% reduction to a PV
array [4] while some other drops may occur in the array due to connection resistances

and wiring losses which lead to power drops around 3% [4].

As previously described, the PV module generates DC power which needs to be
converted into AC power for most of the applications. This conversion is carried out
by DC-AC inverters. Not surprisingly, the inverter operations and the wiring
connections of the PV array to the inverters are also sources of some output losses.

The inverter losses are around 10% of the total generated power [4].
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Taking all of the above opposing factors into consideration, a PV module with rated
power output of 100 Watts may face a power drop of 33 Watts on a clear day under

direct sunshine due to several possible losses.

Despite significant growth of the PV industry in order to meet the rapidly growing
modern world energy demand, the supervision techniques for PV systems have not
received sufficient consideration. This issue is highlighted taking that the PV systems
in lower output levels are mostly operating without appropriate monitoring
mechanisms [7]. Considering the above, developing supervision techniques for low

output PV systems is highly emphasized.

Artificial Intelligence (AI) techniques are diversely deployed in real-life applications
due to their strong reasoning, fault tolerance, flexibility and generalization capabilities.
Al can be described as the demonstration of human intelligence on a machine and
consists of various branches which are given in Figure 1.7, as well as several
combinations of the mentioned branches called Hybrid Systems (HSs). Al techniques

may be further reviewed in [8-13].

Artificial Intelligence Branches
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Figure 1.7: Artificial Intelligence Branches
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Artificial Neural Network (ANN), which is one of the most popular branches of Al, is
a mathematical paradigm simulating the behavior of biological neural network. The
Nucleus (neuron center) which is the main part of a biological neuron is interconnected
with other neuron centers to form a biological neural network. The Synaptic
connection between the nuclei is maintained via Dendrites and Axons. The architecture

of a biological neuron is demonstrated in Figure 1.8.

Dendrite Axon from another cell

Synapse

M @ ] | =
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/
7 k Axon =

Synapses

Figure 1.8: Biological Neuron Architecture

The biological neuron demonstrated in Figure 1.8 can receive electrical pulses fired by
other neurons through its synapses. When the electrical pulses (signals) received on a
neuron exceed a certain threshold, the neuron is activated and emits an electrical pulse

through its axon. Other neurons can receive the emitted pulse.

The synaptic connections between neurons and the required thresholds for neuron
activations may change during the life time of neurons. A sequence of changing
synaptic connections and activation thresholds enables the process of learning. A

simplified illustration of biological neuron is given in Figure 1.9.
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Figure 1.9: Simplified Biological Neuron Architecture

Although it is far from reality to create an artificial brain, ANN as a collection of
individually interconnected artificial neurons (which are inspired by biological
neurons) is developed to solve many real-life practical problems in various fields. Each
artificial neuron has associated inputs (xj), weights (wi) and threshold () as

demonstrated in Figure 1.10.

-
Xy

Figure 1.10: Artificial Neuron

The information traverses through these processing units and the activation function
(of the layer to which the unit belongs) determines the output based on the input-weight
summation. The most commonly used activation functions are given in equation 1.7

and equation 1.8, respectively.
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Linear: z = YN jwx; + 6 (1.7)

Sigmoid: f(z) = . (1.8)

1+e~ 2

ANNS are not programmed to carry out specific tasks, but they are trained with data
sets and learn the patterns of the training inputs presented to them. The most common
ANN architecture is the multi-layer feed-forward (Figure 1.11) with back-propagation
training algorithm. In this architecture, the training data is traversed in forward
direction through the network to reach the output layer and the training error is
calculated as the comparison of the estimated output and the target output which is
presented to the network to investigate the learning process. The calculated error is
back-propagated in the network and the weights (which are set to random small values
at the beginning of the training process) are re-adjusted. This procedure is repeated

until the training error falls below a pre-set threshold.

Input Layer Hidden Layer Output Layer

Figure 1.11: Multi-Layer Feed-Forward ANN Architecture
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ANNs, as human brain-inspired simplified mathematical models, can learn from
examples and make generalizations for new and unseen inputs, thus remove the need
for sophisticated mathematical formulas and expensive physical models. ANNs being
robust in terms of fault tolerance, dealing with noisy data and making high-speed
generalizations, are widely utilized in several PV system modeling, estimation and
prediction applications. A review of some ANN-based PV system estimation

applications is given below.

The minimum and maximum air temperature, precipitation, day-length and clear-sky
radiation are used as inputs to develop an ANN for daily solar radiation estimation in
[14]. The authors report the Root Mean Square Error (RMSE) of the proposed system
to be averagely 3.28 MJ/m? and claim that the system can be deployed in diverse
locations in existence of the temperature and precipitation information. Another ANN
similar to the one mentioned above with one additional input, day of the year is
developed in [15]. The issue that the direct measurement equipment are not available
everywhere is pointed and an ANN for global solar radiation estimation in such
locations is designed in [16]. The average values of pressure, temperature, humidity,
wind speed and sunshine duration along with the geographical location and month of
year are fed to the proposed ANN, yielding an accuracy of 93% reportedly. A similar
approach is proposed in [17] where solar radiation data collected from 13 different
locations across India is used for developing an ANN for global solar radiation
estimation. The author indicate that the developed ANN shows promising estimation
ability for locations without direct measurement and monitoring equipment. The
global solar radiation is also modeled in [ 18] using a Recurrent Neural Network (RNN)
for various Spanish locations with satisfying precision. RNN specifications may be

surveyed in [19,20].
18



Radial Basis Function (RBF) networks are utilized in [21] and [22] for daily and
monthly mean daily solar radiation values, respectively. The latter presents location
information (latitude, longitude and altitude) and sunshine duration to the network and
claims high generalization capability for new locations not included in the network
training data sets. Comprehensive details of the RBF neural network structures may

be investigated in [23,24].

ANN and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques for hourly
solar radiation estimation with previously mentioned common meteorological
parameters as inputs are compared in [25]. The authors report the ANN with
Levenberg-Marquardt (LM) algorithm as the best estimation model. Also it is
indicated that the overall performances of both the ANN and ANFIS models are
boosted when the information of wind speed is available as input. RNN and Multi-
Layer Perceptron (MLP) techniques for solar radiation synthetic series generation are
compared in [26,27] where the MLP technique is reportedly outperformed RNN in
terms of estimation accuracy. ANFIS and MLP features may be extensively reviewed

in [28-35].

ANN-based solar potential estimation in Turkey is carried out in [36,37]. Similar to
previous examples, the inputs to the developed ANN are raw geographical (latitude,
longitude and altitude) and meteorological (sunshine duration and temperature)
information, alongside with the month of year. Figure 1.12 demonstrates the proposed
ANN architecture. The data has been collected from 17 stations across Turkey during
a two-year interval, with the data of 11 stations being used for training of the ANN.
After the training phase, the developed ANN is tested by the data collected from the

rest 6 stations. The results are reportedly promising (MAPE < 6.7%) and the study
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provides the possibility of deciding the location and the appropriate technology for

solar system installations in Turkey.

A solar radiation map for clearness index estimation in Spain is developed in [38]
using MLP. As shown in Figure 1.13 the inputs to the proposed MLP are the irradiation
history, clearness index and the hour order of the clearness index (K; ). While the
classical methods remain insufficient for generating maps in locations where no solar
information is available, the proposed MLP is claimed to be able to draw maps in

existence of the hourly solar radiations as the only required input.
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Alr Solar radiation
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|

Input layer hidden layer output layer
Figure 1.12: ANN Architecture for Solar Radiation Estimation [36]
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Figure 1.13: MLP Architecture for Clearness Index Estimation [38]

ANN and linear regression models for hourly and daily diffuse fraction estimation in
Egypt are compared in [39]. According to the authors, the ANN model outperforms
linear regression models with estimations precision of 95%, 93% and 96% for infrared,
ultraviolet and global insolation, respectively, in flat areas. Also the ANN model is
utilized to estimate the above mentioned parameters in Aswan and the results are
reported to be very promising. Taking that the data of Aswan was not included in the
ANN training sets, highlights the robostness of the proposed ANN model in

generalization of unseen data.

An ANN model for beam solar radiation estimation which is defined as Reference
Clearness Index (RCI) is proposed in [40]. The monthly mean daily beam solar

radiation estimation is carried out in India and the RMSE between the ANN model and
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the measured results are reported to be averagely 2.22%. Figure 1.14 shows the

proposed ANN architecture.

Summarizing the above, Al techniques are widely utilized in diverse PV and
meteorological applications as robust and promising alternatives to classical methods
and approaches of overcoming the problems and shortcomings when dealing with
missing or noisy data, modeling and predicting data in locations without measurement
and monitoring equipment, generalizing and extending the estimations to new
locations with previously unseen data, etc. According to [41] the number of
applications of each Al branch in the PV and meorological fields are given in Table 1.
Obviously it can be noted the the majority of the applications are accociated with

ANNE.

Lat

Lon

Alt

Reference K,

Monthly of vear

Mean duration of
sunshine per hour

Rainfall ratio

Relative humidity
ratio

Figure 1.14: ANN Architecture for Beam Solar Radiation Prediction [40]
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Several ANNs are developed for monthly, daily and hourly global solar radiation
modeling and estimation, clearness index prediction, temperature and humidity
forecasting, etc. Some of these applications are mentioned in this section. A

comprehensive list of these applications may be investigated in [41].

RBF neural network is used to predict the output characteristics of a commercial PV
module. The proposed RBF neural networks (shown in Figure 1.15-a and 1.15-b) are
aimed to enhance the estimation accuracy of the output I-V and P-V curves by

receiving the solar irradiation and temperature data as inputs [42].

Table 1.1: Summary of the numbers of applications presented in PV and
meteorological data [41]

Al technique Area Nlln.lbﬂ.' of
applications
Modeling and prediction of solar radiation
Wind speed forecasting
Neural Temperature forecasting 43
networks Weather forecasting (temperature, humidity, etc.)
Clearness index forecasting
Insolation modeling and prediction
Fuzzy logic Modeling and prediction of solar radiation 3
Neuro-fuzzy L .
(ANFIS) Prediction of clearness index K; 3
Wavelet and Forecasting of solar radiation (for missing data)
neural . . 5
Generation of hourly wind speed
network
ANN with oy . oy
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voltage

Figure 1.15: RBF Neural Networks for PV Module Output Characteristics Estimation
[42]

Different ANN architectures are developed for PV output power estimation [43]. In
the mentioned study, the output power of two PV modules using different ANN
topologies with inputs given in Figure 1.16 are estimated. According to the authors,

the MLP topology outperforms other ANNs in terms of estimation accuracy.

Air Temperature [OC]

Solar Irradiance [W/mz]

Wind Speed [m/s]

Or

Output Vector

Cell Absolute Temperature [OC]

Short Circuit Current [A]

Open Circuit Current [A]

Input Vector
Figure 1.16: Input and Output Vector Definitions of the Developed ANNs [44]
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A similar study is carried out in [45] where again different ANN topologies with
minimum temperature, maximum temperature, mean temperature and solar irradiance
as inputs are utilized for output power estimation of a PV module. The authors indicate
that the feed-forward MLP topology with back-propagation shows the best

performance in PV module output power estimation.

As described in the above examples, ANNs are being widely utilized in PV systems,
mostly for irradiance estimations and rarely for PV output power predictions.
Nevertheless, in most of the cases the inputs to the developed ANNs are raw location,
time and meteorolocial data like latitude, longitude, altitude, month and day of year,
etc. In this study, more definitive functions of the mentioned parameters namely being
the solar altitude, azimuth and incidence angles, which precisely indicate the Sun’s
position in the sky, alongside with real-time and synchronous measurements of
irradiance (W/m?) and PV module output power (W/min) as well as the calculated PV

module surface temperature values are presented to the proposed ANNS.

In this study, calibrated and sensitive measurement equipment are utilized for well-
detailed and highly accurate data acquisition which will be comprehensively described
in the next section. Nevertheless, regardless of how well-detailed, accurate and
straight-forward-looking the inputs are, the PV module output power cannot be
precisely described based on first physical principles. Especially the effect of the PV
module surface temperature highly complicates the PV module output power
estimation process. The PV module output power increases with increasing irradiance,
while the PV power generation tendency decreases with increasing module
temperature, which is again directly caused by increasing irradiance received on the

module surface. Although a fine analytical or physical model can be employed for PV
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power estimation and fault detection at an adequate accuracy level, the need for a
qualified and eligible machine learning technique for highly-precise PV module output
power estimation and fault detection is emphasized by taking the above issues into
consideration. The focus of this study is to give insight of competency of the well-
recognized MLP machine learning technique with appropriate back-propagation
algorithm for PV power estimation and fault detection applications in existence of

sufficient amount of input data sets.

A general review of various PV system faults and corresponding fault detection and
mitigation approaches is provided in [46]. Several simulation-based fault detection
models for small PV systems are developed in [47,48]. PV system fault detection
approaches based on climate data retrieved from satellite observations are introduced
in [49,50]. Other approaches such as data-driven, graph-based and wireless sensor-
based fault detection, represented in [51-53], also address the PV system monitoring

challenge.

Online fault detection of PV systems using a one-equation model with irradiance and
PV module surface temperature is developed in [54]. In order to examine the accuracy
of the model, the authors compare it with feed-forward ANN models and conclude that
although ANNs perform better, the performance of the one-equation model is also

satisfactory.

In this study, two ANNs for PV module output power estimation and fault detection
are developed. The details regarding data acquisition and ANN training, testing and

implementation processes are comprehensively presented in the following sections.
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1.1 Thesis Contribution

As previously discussed, ANNs are widely being deployed in solar system supervision
and monitoring, but in most cases the inputs to the mentioned ANNs are raw data such
as latitude, longitude, altitude, month, day, and time values. In this study, instead of
directly feeding raw input data to the ANNs, the input data is processed and parameters
like the solar altitude and azimuth angle as well as the angle of incidence which are
functions of latitude, longitude, altitude, month, day, and time are provided to the
ANNSs as inputs. Most ANN practitioners agree on the fact that the ANNs perform
better when provided by more definitive input paths and functions rather than just

random and raw values.

On the other hand, the per-minute measurements of PV module output power (W/min),
irradiance (W/m?) and PV module surface temperature are other inputs to the system
developed in this study. Calibrated and sensitive measurement equipment are utilized
for highly precise data acquisition, but regardless of how well-detailed, precise and
straight-forward-looking the inputs are, the PV module output power generation
cannot be described by the first physical principles. The PV module surface
temperature highly complicates the PV module output power estimation. The PV
module output power increases by increasing irradiance level, but in parallel the PV
module power generation tendency decreases with increasing PV module surface
temperature which is a direct result of increasing irradiance level. In other words, the
irradiance level plays both positive and negative effect in PV module output power
generation at the same time which cannot be thoroughly described using an analytical
or physical model. The need for a highly qualified and eligible machine learning

technique that can handle all the possible contradictions is highlighted by taking the
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above into consideration. The aim of this study is to provide a comprehensive analysis
of the well-recognized MLP (Multi-Layer Perceptron) machine learning technique
with the robust Bayesian Regularization (BR) backpropagation approach in PV
module output power estimation and fault detection. The measured PV module output
power is fed to an ANN in order to detect any possible fault on PV module surface,
for the first time, in this study. The full versions of our previously published studies

that led to achieve the goals of this work are presented in the Appendices section.

Such PV module-level approach may be deployed in broader PV fleets by taking
developmental requirements into consideration. The utilization of the PV output power
estimation and fault detection system expectedly yields higher efficiency and lower

support and maintenance costs for PV systems in long term.
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Chapter 2

DATA ACQUISITION

The data sets used in this study consist of highly accurate experimental measurements
and synchronized calculations collected during a three-month period from Nov. 1%,
2015 to Jan. 31%, 2016. A South oriented, 45° tilted monocrystalline silicon solar panel
(Pmax: 40 W, Voc: 21.6 V, Isc: 2.56 A) located at 35° 8' 51" N, 33° 53' 58" E, with 1
meter elevation from the sea level and a pyranometer at same location with same tilt
and alignment are used for real-time measurement purposes. The Sun’s position in the
sky, the solar angle of incidence and the solar panel surface temperature are also
calculated synchronously. Before proceeding to the data acquisition process, a
preliminary review of solar energy characteristics and principals are beneficial to

readers.
2.1 Solar Energy Characteristics

It is always desirable for anyone dealing with solar energy applications in any
geographical location to be able to estimate the solar radiation intensity that is received
on the Earth surface and is converted into energy by the solar systems. The spectral
form of the solar energy determines the direction of sunlight beams (in terms of
directly or diffusely emitted beams), as well as the geographical and time distribution
of solar energy. Any estimation regarding the solar energy intensity should be made
by considering the mentioned spectral form. There are several objects contained in the
Earth atmosphere such as natural and artificial aerosols, cloud layers, etc. The

interference of such factors make the estimation of solar radiation intensity at the
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Earth’s surface much more difficult as compared to the same estimation at the outer

edge of the atmosphere.

The solar radiation estimation process can be explained in three main parts which are
the position of the Earth and the Sun in our solar system, time systems and also the
manner by which solar radiation passes through the atmosphere and reach the Earth’s
surface. The first part which deals with determination of the Earth’s and the Sun’s
position in the solar system or more simply the Sun’s position in the sky will be
comprehensively explained due to its significant importance in solar radiation
estimations. The latter two parts, time systems and solar beam behavior, will also be
described briefly through this section. However, before proceeding to further
definitions, a solar terminology overview is useful for readers.

2.1.1 Terminology

Some of the most common solar energy terms are briefly described as follows;

e Solar Radiation: The complete spectrum of solar electromagnetic radiation
emission.

e Insolation: A quantitative rate which determines the amount of solar radiation
received on a given surface area. The insolation (also called solar irradiation)
may be measured in unit of Watts hour per meter square (Wh/m?).

e Solar constant. There is a significant difference in solar radiation intensity
before and after entering the Earth’s atmosphere due to the previously
mentioned factors. The irradiance level of 1366 W/m? measured at the outer
edge of the Earth’s atmosphere (the solar constant) is reduced when received

at the Earth’s surface due to several interactions with different particles in the
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atmosphere. The amount of 1000 W/m? is considered as the solar irradiance

under Standard Test Condition (STC).

Annual Mean Insolation: As the name suggest, it is a measure of average solar power
received on the Earth’s surface in one year. The annual mean insolation maps of the

World, Europe and Cyprus are given in Figures 2.1, 2.2 and 2.3, respectively.
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Figure 2.1: Annual Mean Insolation in the World [55]
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Figure 2.3: Annual Mean Insolation in Cyprus [55]
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2.1.2 Solar Irradiance Spectrum

The range and intensity of the solar radiation wavelengths is rummaged via the solar
irradiance spectrum. The solar radiation wavelengths range from 0.2 um to 2.0 um,
while the wavelengths visible by human eye range between 0.4-0.8 um (which
correspond to colors violet and red). Figure 2.4 illustrates the solar irradiance spectrum
and the human eye visible part within it. As obvious in the figure, the solar irradiance

peaks around 0.5 pum.
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Figure 2.4: Spectrum of Solar Irradiance
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2.1.3 Time Systems

Time systems are of significant importance in solar radiation estimation taking that the
Sun’s movement can be described as a function of time. Various time systems are
characterized, the most significant of which are the Civil Time (CT), the Local

Apparent Time (LAT), and the Universal Time (UT).

The CT is generally defined by latitude and longitude, by which the wavelength and
the sunrise/sunset times are, respectively, determined. The time system also called the
Local Mean Time (LMT) is introduced to ease the calculation for vast geographical
area coverage. The LAT, also called the solar time, is mostly deployed in solar
applications as an alternative to the CT. In LAT the solar noon is defined as the time
at which the Sun passes the South axis which corresponds the highest elevation of the
Sun in the sky. In this system, the sunrise/sunset times are independent of the
longitude, oppositely to the CT. In UT, the Greenwich longitude (defined as zero) is
the reference longitude. At longitude zero (Greenwich) there are differences between
CT and LAT, as a consequence of the Earth’s motion about its North axis, which is
described by time equations. The time equation value varies based on the Julian day,

which is illustrated in Figure 2.5.
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Figure 2.5: The Equation of Time Values [56]

The Julian day factor is comprehensively described further on in the Sun’s position

calculations. If Greenwich Mean Time (GMT) is taken as the observation point time

zone, each degree of the longitude towards West refers to -4 minutes. The Central

Europe Time (CET) leads the GMT by one hour. The relationship between the

mentioned time zones is given by;

LAT = LMT + w — C (decimal hours)
where,
EoT : The equation of time
A : Longitude (East Positive)
Ar : Time Zone Longitude (East Positive)
C : The summer time improvement parameter (normally set to 1 for the countries

in which the summer time is applied)
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2.1.4 Extraterrestrial Solar Radiation

As previously described, the solar radiation intensity at the outer edge of the Earth’s
atmosphere is 1366 W/m?. The Northern hemisphere is closer and further to the Sun
in winter and summer, respectively, as a consequence of the Earth turning around the
Sun in an elliptical orbit. ‘Perihelion’ happens on January 2" and refers to the Earth’s
closest position to the Sun and Aphelion’ happens on July 2" when the Earth is in the
furthest position to the Sun. The mentioned movement pattern is illustrated in Figure

2.6.

Perihelion
2. January

Aphelion
2. July

Figure 2.6: The Earth-Sun Movement Pattern

The distance between the Earth and the Sun may vary by +1.7%. The solar constant
value also changes by 1 W/m? in 11.2 years. The intensity of the irradiance hitting a
horizontal surface outside the Earth’s atmosphere is indicated by Go and calculated as
follows;

Go = 1367¢ sin(8s) W/m? (2.2)
where,
¢ : The improvement parameter for solar range

0, : Altitude Angle of the sun
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The following equation gives the correction factor to the mean solar range, ¢;

£ =1+ 0.0334cos(j' — 2.80") (2.3)
where,
j':  The day angle
God is described as the daily irradiation from sunrise to sunset measured in Wh/m?.
Figure 2.7 illustrates the God against latitude and Julian day number and Figure 2.8

shows the average solar irradiation received at the Earth’s atmosphere.
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Figure 2.7: The Variations in Goq as a Function of the Julian Day Number and
Latitude [56]
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Figure 2.8: The Average Irradiance Hitting the Earth’s Atmosphere
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2.1.5 Behavior of Sunlight Beams at the Earth’s Surface

The solar beams go through several interactions while passing the atmosphere and
reaching at the Earth’s surface. The solar radiation intensity that is received on the
Earth’s surface after all those interactions is called the global irradiance. The most
important fact for the solar practitioners is that the sunlight beams are decomposed
into three components after passing the atmosphere. These are namely direct, diffuse
and albedo components. The solar cells installed on the Earth’s surface are interacting

with all the mentioned solar radiation components.

The diffuse portion of solar radiation, as the name suggests, is the fraction of solar
beams diffused (or scattered) by clouds, aerosols or other particles existing in the
Earth’s atmosphere. It can be easily predicted that on a cloudy day the solar cells that
are installed in places without direct sunlight, are dominantly affected by the diffuse
portion of the solar beams, while the cells that see the sunlight directly are mostly
affected by the direct beams as a matter of fact. As previously mentioned, the last
significant portion of the solar radiation corresponds to the beams that are reflected
from the Earth’s surface or from the objects on the Earth’s surface. This last
component, called the albedo component, generally has a minor effect on the solar cell
performance but its effect becomes significant in locations near seashores or snowy
mountains (like the Swiss Alps) due to the remarkable reflection of the solar beams
from the sea or snow. The three solar radiation components are demonstrated in Figure

2.9.
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Figure 2.9: The Direct, Diffuse and Albedo Components of Solar Radiation

The solar beams go through several interactions with particles existing in the Earth’s
atmosphere which makes it difficult to estimate the global solar radiation received on
the Earth’s surface, especially on cloudy days. Particles like aerosols, water vapor, etc.
in the atmosphere have different effects on solar beams, as some of these particles

absorb and the others scatter the beams.

Generally, out of 100% of the solar beams entering the Earth’s atmosphere;
. %20 are absorbed within the atmosphere.
. %23 diffused back to the space.

. %357 pass the atmosphere and reach the Earth's surface.

The 57% of the solar beams reaching the Earth’s surface is shared as 49% being

absorbed and the rest 8% being reflected by the ground albedo effect.
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2.2 The Sun’s Position in the SKky

It is much needed to calculate the Sun’s position in several solar energy research and
application processes. The Sun’s position in the sky is defined by the solar altitude and
azimuth angles [55]. A general illustration of the Sun’s position from the point of view

of an observer on the Earth is given in Figure 2.10.

place of ecliptic, plane of
Earth’s orbit around sun

solstice rotation axis N
21 June

declination s

equatorial orbit

solstice
22 December

vernal equinox ecliptic

S

Figure 2.10: The Sun’s Position as Observed from the Earth

The Sun’s position estimation for every geographical location at any time instant is of
crucial importance for solar researchers and practitioners. The main parameter used in

such calculation are listed as follows;

. The latitude of the observation point
. The Julian day number
. The hour angle corresponding to the specific time instant

Each day of a year can be indicated by a number. Such enumeration can be carried out

by the Julian day number according to Table 2.1.
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Table 2.1: The Julian day number of the i day in a year

Month Julian Day Number Leap Year
January i
February 31+i
March 59+i (+1)
April 90+i (+1)
May 120+i (+1)
June 151+ +1)
July 181+i (+1)
August 212+i +1)
September 243+i +1)
October 273+i +1)
November 304+i (+1)
December 334+ (+1)

The hour angle, w, is used to define the time of day in degrees. It is set to zero for solar
noon and shifted by 15° cycles for each hour. The hour angle can be calculated as;

w = 15(LST — 12) 2.2.1)

The Local Solar Time (LST) slightly varies from the Local Time (LT) due to the
atypicality of the Earth’s orbit and the human regulations (such as time zone settings

and daylight saving applications). The LST is expressed as;

TC (2.2.2)
LST = LT + —
S + 0
TC = 4(Longitude — LSTM) + EoT (2.2.3)
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EoT = 9.87sin(2B) — 7.53 cos(B) — 1.5sin(B) (2.2.4)

= 360 225
B=—=(j-8) (2.25)
LSTM = 15°. AT ;pr (2.2.6)
where,
TC : Time Correction factor
EoT : Equation of Time
LSTM : Local Standard Time Meridian
ATemr : The difference of local time from Greenwich Mean Time (GMT)

2.2.1 The Declination Angle

One of the most significant factors in calculation of the Sun-Earth relationship is the
declination angle which is represented by 6. The Sun’s declination is a continually
varying function of time. The declination measure changes throughout a day, but since
it is a very small value, the daily declination rate is accepted as a constant. In order to
calculate the solar declination for an instance, the only required parameter is the
number of day in a year which is expressed by the Julian day number as previously

discussed. Equation (2.2.7) is simply used for solar declination angle calculation.

& = sin™*{0.3978sin(j — 80.2° + 1.92(sin(j — 2.80°)))} 22.7)
j =j x365.25 (2.2.8)
where,
J : The Julian day number
j : The Julian day angle
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2.2.2 The Solar Altitude Angle
The solar altitude angle which determines the Sun’s height or elevation in the sky is

expressed as;

¥s = sin~1(singsind + cos@cosdcosw) (2.2.9)
where,
[ : The latitude of the observation point
6 : The solar declination angle, degrees
w : The solar hour angle

The solar zenith angle is the complement of the solar altitude angle and is represented
as;

Zs =90 — s (2.2.10)

zenith

—— ——— —— —— —— — — — — — —

elevation or
:_\ altitude

Figure 2.11: The Solar Altitude and Zenith Angles
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The angle values which are calculated minute by minute on each data acquisition day
are normalized in the range of 0-1 in order to be configured as appropriate inputs to
the proposed ANNs. The normalization process yields data close to 1 for angle values
that have the utmost effect on PV module power generation and data close to 0 vice
versa. The normalized solar altitude angle values calculated minute by minute on Nov.

12%h 2015 as a typical data acquisition period are demonstrated in Figure 2.12.

As demonstrated in Figure 2.12, the normalized solar altitude angle takes on its highest

values (indicating the Sun being in highest elevation in the sky) around solar noon.
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Figure 2.12: The Normalized Solar Altitude Angle Values Calculated on Nov. 12,
2015
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2.2.3 The Solar Azimuth Angle
The solar azimuth angle, which determines the Sun’s deviation from North axis, is
another important parameter in calculating the Sun’s position in the sky. The solar

azimuth angle is represented by the following equations;

{as =180 — cos !(cos ay) If sinag < 0 (2.2.11)
a; = 180 + cos™(cos a;) If sinag >0
where,
cosag = (sin@ siny; — sin &)/ cos ¢ cosy; (2.2.12)
sin a; = cos a, sin w/ cos ¥ (2.2.13)

The solar azimuth angle is illustrated in Figure 2.13.

*_ zenith

Figure 2.13: The Solar Azimuth Angle

Likewise the solar altitude angle, the solar azimuth angle values are also calculated on
a minute by minute basis during the data acquisition period and the calculated angle
values are normalized between 0 and 1 in order to be shaped as desirable ANN inputs.
The normalization process is again carried out based on the effect of the angle value

on the PV module power output (since the PV module is South oriented, the
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normalized value takes on 1 when the Sun is exactly in South direction corresponding
to the solar azimuth angle 180° and the normalized value takes on 0 when the Sun is

in North direction with azimuth angle 0°).

The normalized solar azimuth angle values calculated minute by minute on Nov. 12",
2015 as a typical data acquisition period are demonstrated in Figure 2.14. As
demonstrated in the figure, the normalized solar azimuth angle peaks at solar noon

indicating that the Sun is exactly in South direction.
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Figure 2.14: The Normalized Solar Azimuth Angle Values Calculated on Nov. 12,
2015

2.2.4 Solar Angle of Incidence
The angle of incidence is defined as the angle between the emitted solar beams and a

perpendicular vector on a PV module surface that receive the radiation. The accurate
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calculation of this angle is of significant importance for the solar energy researchers
and practitioners since the maximum power a PV module can produce is directly
related to the cosine of this angle. The angle of incidence can be calculated by the
following equation;

0 = cos™[cos(B) cos(Z) + sin(B) sin(Z,) cos(as — ay)] (2.2.14)
where,
B : Tilt angle of the solar collector (Horizontal: 07)
Zs : Zenith Angle of the Sun

@, :Module azimuth angle (North: 0°, East: 90°)

A demonstration of the angle of incidence with respect to the Sun’s position in the sky

and the module azimuth angle is given in Figure 2.15.

Zenith

Normal Vector

_North

Sun

East

Figure 2.15: The angle of Incidence

The normalization of this last angle is carried out in the same manner of the previous

angle value normalizations. Since the utmost effect of the Sun’s position in the sky
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corresponds to the solar beams hitting the surface of a PV module perpendicularly, the
normalized incidence angle takes on value 1 when the incidence angle value is 0° and
decreases to 0 as the angle between solar beams and PV module perpendicular vector
increases. The normalized solar azimuth angle values calculated minute by minute on
Nov. 12", 2015 as a typical data acquisition period are demonstrated in Figure 2.16.
The figure shows that the normalized incidence angle is at its highest position around

solar noon when to solar beams hit the PV module surface perpendicularly.
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Figure 2.16: The Normalized Solar Azimuth Angle Values Calculated on Nov. 12,
2015.

2.2.5 PV Module Output Power
The generated power of a South oriented 45° tilted PV module directly feeding a
constant resistive load is measured (in W) during the mentioned three-month interval

on per-minute basis and logged after being normalized in the range 0-1. The
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normalized PV module output power is used as ANN target output and ANN input for
estimation and fault detection purposes, respectively. The normalized PV module
output values logged on Nov. 12", 2015, Dec. 17", 2015 and Jan. 12", 2016
corresponding to typical clear, overcast and partly cloudy data acquisition periods are

given in Figure 2.17.
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Figure 2.17: The Normalized PV Module Output Power Values, Measured per-
minute in (W) on Nov. 12", 2015, Dec. 17" and Jan. 12, 2015

2.2.6 The Irradiance Level

A pyranometer at same location with same tilt and alignment of the PV module is used
for minute by minute measurement of irradiance level (in W/m?) during the three-
month data acquisition period. The collected data is normalized in the range 0-1 to be

prepaid as proper ANN input. The normalized irradiance values logged on Nov. 12",
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2015, Dec. 17", 2015 and Jan. 12", 2016 corresponding to typical clear, overcast and

partly cloudy data acquisition periods are given in Figure 2.18.
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Figure 2.18: The Normalized Irradiance Values, Measured Minute by Minute in
(W/m?) on Nov. 12" 2015, Dec. 17" and Jan. 12%, 2015

2.2.7 PV Module Surface Temperature

Another important parameter in determination of a PV module output power is the PV
module surface temperature. As discussed earlier, electrical power is generated as solar
beams hit the surface of a PV module by the PV effect. However, another effect of
solar beams hitting the surface of a PV module is the increment of the PV module
surface (and PV cell) temperature. Taking the fact that the power generation trend of
a PV module decreases with increasing cell temperature, the temperature issue gains
significant importance in PV power estimation. There are several ways of PV module

surface temperature measurement, the most straight forward one being the direct usage
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of surface temperature sensors. Nevertheless, alternative methods of surface
temperature prediction or calculation suggest less sensor dependent systems. For
example the ANN based PV module surface temperature estimation is carried out in

[57].

Another method for PV module surface temperature determination is suggested in
[58], where the PV module surface temperature can be calculated as a function of the
Nominal Operating Cell Temperature (NOCT), ambient temperature and irradiance
level (Eto) using the following formula;

T = Tympient + (NOCT — 20°C) (Eo /800 Wm™2)) (2.17)

As previously mentioned, the PV power generation tendency decreses with increasing
cell temperature. Therefore, the normalization process of this parameter in the range
0-1 is performed accordingly, yielding values close to 1 for lower surface temperatures
and valuess close to 0 for higher temperature (in other words, higher normalized values

for higher PV power generation and vice versa).

The meteorological information obtained real-timely from the Larnaca international
airport (LCLK) and the synchronizedly measured irradiance values are used for the
PV module surface temperature calculation. The normalized PV module surface
temperature values calculated on Nov. 12, 2015, Dec. 17%, 2015 and Jan. 12, 2016
corresponding to clear, overcast and partly cloudy days, respectively, are given in

Figure 2.19.
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Figure 2.19: The Normalized PV Module Surface Temperature Values, Calculated
Minute by Minute in (°C) on Nov. 121, 2015, Dec. 17% and Jan. 12, 2015

Summarizing the above, the PV module output power (W) and the irradiance rate
(W/m?) are measured minute by minute while the Sun’s position in the sky, the
incidence angle and the PV module surface temperature values are calculated real-
timely and synchronously during the three-month data acquisition interval from Nov.

1, 2015 to Jan. 31%, 2016.

The collected data is normalized in the range 0-1 in order to be formed as suitable
input/output data for the ANNs. The details of ANN development with the above
mentioned input/outputs for PV module power estimation and fault detection will be

comprehensively described in the following chapter.
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Chapter 3

INVESTIGATION OF THE APPROPRIATE ANN

The scope of this study is to develop an artificial neural network-based method for PV
module output power estimation and fault detection. It is intended to investigate the
competency of the well-known Multi-Layer Perceptrons (MLPs) with appropriate
back-propagation techniques and sufficient input amount. In this regard, two ANNs
are eventually evolved for PV power estimation and fault detection objectives after
preliminary research and development stages. The comprehensive details of creation

and validation of the proposed ANNs are given in this section.

The competency of the Levenberg-Marquardt (LM) and the Bayesian Regularization
(BR) back-propagation algorithms are investigated for PV module power estimation.
The normalized values of the solar altitude angle, the solar azimuth angle, the angle of
incidence, the irradiance level and the PV module surface temperature collected during
Nov. 1%, to Nov. 25", 2015 are fed to the ANNs as input values. While the input data
set corresponds to severe meteorologically fluctuating intervals, the noise in data is
tolerable due to the sensitivity of the utilized measurement equipment and accuracy of
the calculations. The target output presented to the ANNs during the learning phase is
the normalized PV module output power collected during the mentioned interval. All
input/output data sets are consisting per-minute accurate measurements and

calculations. The two ANNs are both of feed-forward MLP architectures with one
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hidden layer consisting of 15 neurons. The ANN architecture shown in Figure 3.1 is

constructed for further analysis.

AN

Y . ‘ YA
7RO
SN

Zees hi\l
\\\Q\'\-‘é

Figure 3.1: The Proposed ANN Architecture. (x1: Normalized ys, x2: Normalized as,
x3: Normalized 6, x4: Normalized Eor, x5: Normalized 7, y: Normalized PV Module
Output Power, IL: Input Layer, HL: Hidden Layer, OL: Output Layer

The reason that 15 is decided to be the size of the proposed ANNs’ hidden layer is that
it is experimentally validated that a lesser size lacks the desirable estimation accuracy
while a larger size is highly computational time and memory consuming with no more
contribution to the estimation accuracy. The transfer or activation functions are log-

sigmoid and purelin in hidden and output layers, respectively. The mentioned
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activation functions are formulated in equations (3.1) and (3.2) and illustrated in Figure

3.2.

logsig(n) = 1T o (3.1

purelin(n) = n (3.2)

5.
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5 0 5
n 1 n
Figure 3.2: ANN Hidden and Output Layer Activation Functions

Random small values are assigned to the network weights and the inputs are fed to the
input layer at the beginning of the ANN training process. Since the network is of feed-
forward architecture, the input data only propagates in one direction through the
network layers until it reaches the output layer. At this stage, the error is calculated
based on the specified error function to compare the resultant output and the target
output. The target output is used to supervise the learning process of the ANN.
Furthermore, the calculated error is back-propagated in the network and the weights
are adjusted according to the weight update rules. Both error functions and network
weight update rules are specified by the selected training algorithm. This process is
repeated until the training error falls below a pre-set threshold. The training error
threshold should neither be too loose nor too tight, and should be set appropriately in

order to save the network from either being under-fitted or over-fitted. An under-fitted
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network lacks precision while an over-fitted network accustoms to the training inputs

and fails in generalizing outputs for new and unseen inputs.

The effectiveness of the BR algorithm is better expressed by the fact that the algorithm
eliminates the redundant network weights (weights that do not affect the problem
solution) and performs better in passing the local minima obstacles. Also the BR
algorithm does not require cross validation (as opposed to the LM algorithm) which
saves a significant part of data from being reserved for validation process. Also the BR

algorithm saves the ANNs from being over-trained or over-fitted.

As mentioned before, the ANN training, testing and validation data sets were acquired
during Nov.1% to Nov. 25™, 2015 and the ANN implementation period is selected as
Nov. 26", to Dec. 7, 2015. 10695 combinations of data, each consisting of 5 inputs
and 1 output, are presented to the ANNs as training input and target output during the
supervised ANN training, testing and validation processes. The 5 training inputs being
the normalized values of the solar altitude and azimuth angles, angle of incidence,
irradiance and PV module surface temperature are presented at the input layer in each
iteration. The normalized input values are processed through the hidden layer by log-
sigmoid activation function and are passed to the output layer containing a single
neuron with linear transfer function. At this stage, the resultant output is compared to
the target output (which is in the range 0-1) and after the error is calculated by the
corresponding error or cost function, it is back-propagated in the network and the
corresponding update rule is applied to the network weights in order to decrease the
error for the next iteration. After several epochs of error back-propagation and network
weight adjustments the pre-set training error threshold is satisfied and the network

becomes ready to make generalization for new inputs without any target output
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presented. As previously described, the objective is to save the ANNs from being
under-fitted or over-fitted. The training goal is very significant in this case. A loose
training goal develops a weak network incapable of making accurate estimations and
a tight training goal forces the network to produce outputs highly similar to the training
targets and results in development of a network incapable of making generalization for
new inputs. In this regard, the minimum gradient of 1.0e-10 is set as the training goal
for both ANNSs in order to obtain both precision and generalization capabilities at the

same time.

The first ANN is created and 70% (7487 paths) of the data collected during data
acquisition period is allocated to the ANN training phase. Inputs and targets are
presented to the network in this phase and the network weights are adjusted based on
the LM algorithm. In order to measure the generalization capabilities of the ANN,
another 15% (1604 paths) of data is presented to the network during the validation
phase. At this point, the network is supposed to be ready to make estimations and
generalization. Therefore, the testing phase is initiated independently than the training
and validation phases with the remaining 15% (1604 paths) of data in order to measure
the performance of the network. In this last phase, no output targets are presented to
the network in order to rate the network estimation and generalization capabilities.
This whole process ends when the validation procedure stops making more

generalizations.

The same procedure is followed for development of the second ANN. As mentioned
before, the BR algorithm does not require validation processes, thus 85% (9091 paths)
and 15% (1604 paths) of the collected data are allotted to the second ANN training

and testing processes, respectively. It is clear that the BR algorithm has saved 1604
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paths of data from being reserved for validation purposes. The mentioned paths are
also added to the training data sets and the whole process stops at the pre-set 1000
back-propagation epochs limit. Figure 3.3 shows the regression plots of the two ANNs
with different training algorithms.

: R=0.99922 : R=0.99947

)

L¢]

i o Data 9 7 © Data
Best Fit Best Fit o

o
©

o o o o = o

w s @ @ ~ @
e}

(=]

Output ~= 1*Target + 0.00062

Output ~= 1*Target + 0.00034

o
)
o
o

o
o

0 01 02 03 04 05 06 07 08 09 0 01 02 03 04 0.5 08 0.7 08 0.9 1

Target Target
(a) (b)
Figure 3.3: The Regression Plots of (a) Levenberg-Marquardt and (b) Bayesian
Regularization Training Backpropagation Algorithms

The performance details of the ANN training, testing and validation processes for LM
and BR are given in Table 3.1. The Mean Absolute Error (MAE) and the Mean
Absolute Percentage Error (MAPE) values between the ANN predicted and the
measured PV module output power values for the ANNs implementation period from
Nov. 26", to Dec. 7™, 2015 are given in Table 3.2. In order to have reasonable and
robust MAPE calculations, the overcast sky days are excluded from Table 3.2. (In an
overcast sky day when almost no electrical power is generated by a PV module, a
measured power value of ‘0 W’ and an estimated power value of ‘0.001 W’ yield 100%

MAPE, which makes no sense in terms of statistical analysis).
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Table 3.1: Performance metrics of the Levenberg-Marquardt (LM) and the Bayesian
Regularization (BR) training backpropagation algorithms

Performance Levenberg- Bayesian Regularization
Metrics Marquardt (BR) Algorithm
(LM) Algorithm
Best Training Performance 1.2549¢-04 1.0211e-04
Best Validation Performance 1.3365e-04 Not applied in BR
Best Testing Performance 1.0787e-04 1.0418e-04
No. of Training Epochs 162 1000
Best Training Epoch 154 1000
Minimum Gradient 6.2957e-06 1.2496e-08
Training Time (in Seconds) 16.27 114.53

Table 3.2: The Mean Absolute Error (MAE) and the Mean Absolute Percentage Error
(MAPE) between the Estimated and the Measured PV Module Output Power Values
for Different ANN Implementation Periods

ANN Mean Mean Mean Mean

) Absolute Absolute Absolute Absolute

Implementation Error(LM) |Error(BR)| Percentage | Percentage

Period (mW) (mW) Error (LM) | Error (BR)
November 26", 2015 1.45 1.42 7.05% 5.87%
November 27%, 2015 1.12 0.94 5.62% 5.43%
November 28%, 2015 1.58 1.04 5.74% 4.54%
November 29%, 2015 1.82 1.29 9.74% 6.28%
December 2", 2015 1.7 0.93 7.33% 4.77%
December 71, 2015 2.16 0.71 3.18% 2.06%
Average 1.64 1.05 6.44% 4.83%
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The developed ANNs with LM and BR algorithms are implemented from Nov.26", to
Dec. 7™, 2015. The meteorological conditions during the mentioned period varies from
smooth clear to highly fluctuating partly cloudy conditions. The aim is to investigate
the PV module output power estimation capabilities of the ANNs with different
training algorithms. For better expression of the ANN performances, scatter graphs of
ANN-estimated vs. real-timely measured PV module output power for sample
implementation days, Nov. 26", Nov. 28", and Dec. 7, 2015, with highly fluctuating
partly cloudy, partly cloudy and clear sky weather conditions, respectively, are given
in Figure 3.4-a, 3.4-b and 3.4-c. Also the plots of the BR-based ANN-estimated and
the measured PV output power for the same days are given in Figure 3.5-a, 3.5-b and

3.5-c.
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ANN Implemented by BR Algorithm on (a) November 26™, 2015, (b) November
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It is obviously expressed by the scatter graphs of Figure 3.4 that the BR algorithm
outperforms the LM algorithm in terms of ANN development for PV module output
power estimation. The results were expectable taking that the BR training back-
propagation algorithm is known to work well with relatively large-sized, noisy and
rigid data as previously mentioned. Although the indicated performance improvement
for a single PV module output power estimation may appear to be relatively small,
such improvement gains significant importance when the application is expanded to
broader PV fleets after taking necessary developmental considerations. The average
MAE and MAPE between the estimated and the measured PV module generated power
for the ANN implementation period (Nov.26™, to Dec.7%, 2015) are calculated as 1.64
(mW) and 6.44%, respectively, for the ANN with the LM algorithm, while these values
are decreased to 1.05 (mW) and 4.83% by utilizing the BR as the training algorithm
for the ANN. Taking the above accuracy metrics into consideration, it is concluded
that the BR back-propagation algorithm is the right choice for ANN-based PV module

output power estimation applications.
3.1 Development of a Preliminary Artificial Neural Network

At this stage, a possible approach would be directly proceeding to develop the final
ANNSs for PV module output power estimation and fault detection. However, it is
intended to launch a preliminary ANN (hereinafter called ‘PANN’) using a portion of
collected data in order to investigate any possible deficiency or difficulty as well as to
have statistical measures of ANN implementations with different data sizes. The latter
would determine either increasing the data size beyond a certain point provides
significant improvement to the ANN performance or some convergence is achieved in

terms of ANN estimation accuracy with sufficiently-sized data.
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In this part, over 20,000 paths of data collected during a two-month period from Nov.
1%, to Dec. 31%, 2015 is used as a fraction of total data, in order to train, test and
implement an ANN for PV module output power estimation. The developed ANN is
of the same architecture demonstrated in figure 3.1, with the previously described and
examined BR back-propagation training algorithms and the same input/output data of
the normalized values of per-minute measurements and calculations utilized for ANNs

developed in this section.

After the three-layer ANN with log-sigmoid and purelin activation functions in the
hidden and the output layer is launched, 85% (17581 paths) of data collected during
the mentioned two-month period is fed as training inputs to the ANN input layer and
the training process is carried out based on BR back-propagation algorithm. Minimum
gradient of 1.0e-12 is set as the training performance goal. A more rigorous training
goal is set for this ANN compared to the previously developed ANNs, and also the
training data size is increased to more than double, therefore it is of no surprise that
the network went through a tougher training process and satisfied the desired training
goal in 1169 back-propagation epochs. As previously mentioned the BR algorithm
does not require cross validation process so the rest 15% (3103 paths) of data is allotted
to the testing phase. In the testing phase no target output is presented to the network in
order to examine the generalization capabilities and precision of the ANN. The
performance plot of the ANN training and testing process showing the best training
performance (3.4032e-04) achieved at epoch 1169 is given in Figure 3.6. The
regression plot of the ANN training and testing processes is given in Figure 3.7, and
the performance metrics of the ANN training and testing processes is given in Table

3.3.
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Best Training Performance is 0.00034032 at epoch 1169
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Figure 3.7: The Regression Plot of the ANN Training and Testing Processes
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Table 3.3: Performance metrics of the ANN training and testing processes

Training Function 'trainbr’
Best Training Performance 3.4032e-04
Best Testing Performance 3.3219¢-04
No. of Training Epochs 1300
Best Training Epoch 1169
Minimum Gradient 9.0682¢-09
Training Time (in Seconds) 277.16

3.2 Implementation of the PANN

The developed PANN is implemented in a 15-day period from Jan 1%, to Jan. 15%,
2016 corresponding to highly various meteorological conditions ranging from clear to
overcast sky situations. The measured and the PANN-estimated PV module output
values are compared during this interval, while the monitoring results for highly
meteorologically similar consecutive days are excluded from further analysis. In order
to proceed to analytical results, on each day of the PANN implementation during 5:30
to 17:30 the previously mentioned normalized input values are collected minute by
minute and fed to the PANN and the ANN output is derived, while the PV module
output power is also measured and logged synchronously. After reconstructing the
ANN output from its normalized form, at the end of each day 721 pairs of data
consisting of ANN-estimated and experimentally measured PV module output power
are established. In order to better represent the ANN performance, a scatter graph of
per-minute comparisons of the estimated vs. the measured PV module output power

values during Jan 1%, to Jan 15™ 2016 is given in Figure 3.8.
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different ANN implementation days

The PANN-estimated and the measured PV module output power values for Jan. 1%,
Jan. 10™, and Jan. 15", 2016, corresponding to various meteorological conditions are
demonstrated in Figure 3.9-a, 3.9-b, 3.9-c, and hourly averages of irradiance level,
measured and estimated PV power, Mean Absolute Error (MAE) and Mean Absolute
Percentage Error (MAPE) between the measured and the estimated power values for
the same interval are given in Table 3.4. For this analysis, the mean of each mentioned
parameter for each hour from 5:30 to 17:30 on each PANN implementation day is
calculated. In order to obtain statistically reasonable values, the MAPE calculations
for solar altitude angle below 5.5° which correspond to almost zero output power are
omitted. The MAE and the MAPE between the measured and the estimated PV module

output power values for PANN implementation days are given in Table 3.5.
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Figure 3.9: The Measured vs. the Estimated PV Module Output Power Values for
ANN Implementations on (a) Jan. 1%, (b) Jan. 10", and (c) Jan. 15 2016
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Table 3.4: Hourly averages of irradiance level, measured and estimated PV power, Mean Absolute Error (MAE) and Mean Absolute Percentage

Error (MAPE) between the measured and the estimated power values for the ANN implementation days during Jan. 1% to Jan 15", 2016

Error (MAPE)

a (=) (=) =) =) (=) (=) (—]
(=) (=) (=) (=) N (g\] (g\] o o (g\] (g\] en
S S S S < = & R < B N RS
3 I % S = n n n n - - n
[—] [—] [—] [—] c' [—] [—] [—) [—) (—] (—] (—]
A * S = = S 2 i 5 | g
Ir(r";‘v‘}izi‘)ce 1.94 | 3696 | 273.50 | 53225 | 76134 | 809.12 | 857.30 | 901.38 | 79142 | 518.07 | 260.66 | 15.35
Measured PV » ~
Power (W) (=0) | 027 7.66 2601 | 51.02 | 6270 | 70.19 | 7268 | 56.17 | 2643 6.96 (=0)
Estimated PV - -
Power (mW) (=0) | 0.19 8.04 2671 | 5218 | 62.88 | 69.87 | 7191 | 5521 | 25.60 6.69 (= 0)
Mean Absolute
Error (mW) (=0) | 0.10 0.38 0.71 1.15 0.71 0.69 1.52 121 0.84 0.27 (=0)
(MAE)
Mean Absolute
Percentage %5.17 | %2.84 | %220 | %1.14 | %1.02 | %2.10 | %2.10 | %3.34 | %6.28




Table 3.5: The MAE and the MAPE between the measured and the estimated PV
module output power values

Mean Absolute Error Mean Absolute
(mW) (MAE) Percentage Error
(MAPE)
Jan. 1%, 2016 1.32 4.76%
Jan. 37,2016 0.86 3.43%
Jan 6, 2016 0.97 4.00%
Jan 9™ 2016 0.66 2.78%
Jan 10", 2016 1.22 3.70%
Jan 12,2016 0.68 5.16%
Jan 14™, 2016 1.29 4.56%
Jan 15", 2016 0.98 4.01%
Average 0.9975 4.05%

The PANN implementation during Jan 1%, to Jan 15", 2016, corresponding to highly
fluctuating meteorological conditions, yields an average MAE and average MAPE
between the measured and the estimated PV module output power values of 0.9975
(mW) and 4.05%, respectively. The performance of the PANN with BR training
algorithm is expectedly promising and provides conceivability for development of the
final ANNs with full training data to be utilized for the PV module output power

estimation and fault detection.
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Chapter 4

DEVELOPMENT OF THE ULTIMATE ANNS

In this final section, the development process of the ultimate ANNs for PV module
output power estimation and fault detection is comprehensively described. The details
of suitable ANN input/output measurements and calculations, as well as the
appropriate ANN architecture and algorithms are thoroughly reviewed in previous
sections. Also a preliminary ANN is developed and implemented in order to figure out
any possible inconvenience prior to proceeding to final ANN designs. The final ANNs
are developed considering all the mentioned investigations, with training data
collected in a per-minute basis during a three-month period from Nov. 1%, 2015 to Jan
31%, 2016, corresponding to highly variable winter meteorological conditions. Around
30,000 paths of healthy and faulty data are rigorously acquired during the mentioned
time interval in order to be fed to different ANNs for estimation and detection
purposes. The details of artificial fault applications on PV module, as well as the
development and implementation processes of the ANNs are given through this

section.
4.1 Artificial Fault Application on PV Module

Around 30,000 paths of healthy and faulty data are collected during data acquisition
period. Healthy data, which refers to the data collected during normal operation
periods of the PV module is used for development of an ANN (similar to the PANN,
described in sub-section 3.2.1) for PV module output power estimation. Faulty data,

which correspond to data collected during faulty PV module operation intervals is
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mixed with the healthy data in order to develop an ANN for PV module fault detection.
There are several possible sources of fault associating with PV module operation
which are reviewed in the introduction section with corresponding references. In this
study coating glasses of different shades of gray color are used in the data acquisition
phase in order to simulate faulty PV module operation conditions. Other faults are also
applied to the PV module in the ANN implementation period in order to test the

generalization capability of the system for unseen faults.

The two coating glasses used to simulate faulty PV module operation conditions, are
of two different shades of gray color. The glasses hereinafter called ‘lightgray’ and
‘dimgray’ to express their transparency levels, are used to cover the PV module surface
and simulate faulty operation situations caused by shading effects and dirt/dust
accumulation on panel surface. In order to better express the PV module output power
degradation by each artificial fault (lightgray and dimgray coating glasses), a
comparison is carried out based on the faulty PV module output values and the
expected fault-free PV module output values. The expected fault-free PV module
output power values are obtained using the ultimate ANN developed for PV power
estimation (to be described in next sub-section). In this regard the inputs corresponding
to the faulty PV module operation period is fed to an ANN only trained on healthy
data and the ANN output, which is expectedly higher than the measured PV output
power is logged as the expected fault-free operation output power. The performance
analysis of the measured and the expected PV module output power, obtained by
averaging the mentioned values acquired during the fault application intervals, is given
in Table 4.1, the plots of the measured and the expected PV module output power for

sample fault application days are given in Figure 4.1, and a scatter graph of the
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measured vs. the estimated PV module output power for overall faulty operation

intervals is given in Figure 4.2.

Table 4.1: The performance analysis of the PV module output power during the overall
faulty operation intervals

Maximum Maximum Mean Mean
Measured Expected Power Absolute Absolute
Power (mW) (mW) Error (MAE) Percentage
(mW) Error
(MAPE)
Lightgray 114.52 140.74 13.72 ~25%
Dimgray 54.95 128.87 24.82 =~ 55%
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Figure 4.1: The Measured vs. the Expected PV Module Output Power for Sample
Days of Faulty Operation Under Lightgray (Day 1 and Day 3) and Dimgray (Day 2

and Day 4) Shading Conditions

73



[
™
=]

====100% Fault-free Operation

,_
5]
=]
T
|

Lightgray Faulty Operation
© Dimgray Faulty Operation

-

o

=)
|
1

o
=)
T

o
a
I

s
=)
T

MAPE-= 80%

Measured PV Module Output Power {(mW)
T

100 120 140

60 80
Expected PV Module QOutput Power (mW)

Figure 4.2: The Measured vs. the Estimated PV Module Output Power for Overall
Faulty Operation Intervals

The mentioned coating glasses cover the entire PV module surface homogenously. The
homogeneous fault application to a PV module surface makes the resulting output
power degradation independent of the internal PV module architecture. As discussed
in [59], PV modules are formed by a collection of PV cells interconnected in series
and/or parallel in order to meet eligible voltage and current requirements. PV arrays
are also formed by different interconnections of PV modules. Further analysis of
various interconnection architecture effects on PV output characteristics may be
investigated in [60,62]. The series-parallel, bridge-link and total-cross-tied, illustrated
in Figure 4.3, are the most commonly utilized configurations in PV application.
Considering that all of the mentioned architectures are expanded versions of series and
parallel interconnections, behavioral investigation of the series and parallel
interconnected PV cell/modules gains significant importance in PV power generation

analysis.
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Configurations of PV Cells/Modules

Series Connection of PV Cells
A series connection of PV cells is maintained in order to meet eligible voltage
requirements. The voltage, current and power produced by series connected

PV cells is expressed as follows;

n (4.1.1)
Voutput = Z Vi
i=1
Lowtput = h =L =-=1 (4.1.2)

Vi X[
1

Poutput = Voutput X Ioutput =

L

n (4.1.3)

The series connected cells produce higher amount of voltage values, but even
if one cell in the configuration is subjected to damage, shading effects, etc. and
lacks in producing the same current amount as other normal operating cells,
the whole string current is limited to the current produced by the faulty
operating cell. Therefore, the total power output generation of a series cell
configuration is dependent to the operation of each contributing cell.

Parallel Connection of PV Cells

Parallel connected PV cells/modules are configured in order to meet desirable
current values. The voltage, current and power characteristics of parallel
connected PV cells are given as;
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Voutput =V=V=-=V (4.1.4)
n

Ioutput = Z Ij
j=1

n
Poutput = Voutput X Ioutput = z Vi X Ij
j=1

(4.1.5)

(4.1.6)

The parallel connected PV cells/modules are not as sensitive to faults as the
series connected cells/modules. In essence, the faulty operation of one
cell/module in a parallel connected configuration yields lesser overall output

power loss comparing to series configuration.

As briefly described, the reaction of a PV module to non-homogenous fault condition,
such as one or more shaded/damaged cell(s), depends on the internal PV module
configuration in terms of PV cell interconnections. The ideal situation, which is far
from reality, is that there be a bypass diode connected to each cell in a PV module, so
that the faulty operation of each cell being bypassed and the overall PV module output
power degrade only by the proportion of faulty operating cells to the total number of
cells containing in the module. However, this is not applicable and faulty operation of
one or more cells results in higher output power degradations in commercial PV

modules compared to the imaginary ideal PV module.

Also besides making the PV module output power independent of the internal
architecture, the homogeneous fault application investigated in this study provides the
possibility of expanding the proposed PV module-level fault detection to broader

levels after taking necessary developmental observations.
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4.2 Development of ANN for PV Module Qutput Power Estimation

A three-layer fully-connected feed-forward neural network with log-sigmoid and
purelin transfer functions in hidden and output layers is developed for PV module
output power estimation purposes. The ultimate network illustrated in Figure 4.4 will

be called the EANN (Estimation Artificial Neural Network) hereinafter.

A -"d‘
::03 ';". :\\-

Figure 4.4: The Proposed EANN Architecture. (x1: Normalized ys, x2: Normalized os,
x3: Normalized 6, x4: Normalized Eiot, x5: Normalized 7, yg: Normalized PV Module
Output Power, IL: Input Layer, HL: Hidden Layer, OL: Output Layer
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As illustrated in Figure 4.4, there is a bias neuron in input and hidden layers of ANN.
A bias neuron emitting +1 is connected to all the next layer neurons to shift the
activation function curve to left or right. The effect of a bias neuron expressed as z§ is
associated with a weight w{ (I indicates the layer in which the bias neuron exists) is
that the weighted sum is equivalent to the bias when all the previous layer neurons

have zero reaction. The phenomenon is explained in equations 4.2.1-4.2.2 and Figure

4.2.2. Further details about the effect of bias neuron may be investigated in [63]-[65].

N1 (4.2.1)
Vil = Z Wilj Zjl !
j=0
| R -1 _ -1 _ |, _— l—1:0 (422)
Yi = Wio, if 23 Z2 ZNy 4 L

Figure 4.5: A Typical i Hidden Neuron of i Layer with Additional Weight
Parameter Called Bias [63]
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As previously mentioned, ultimate data to be fed to the ANNs is collected within a
three-month period from Nov. 1%, 2015 to Jan 31%, 2016. During this period, the data
corresponding to healthy and faulty operation intervals of the PV module is acquired.
The healthy data collected during the mentioned period, represented as 22272 paths of
the normalized values of the solar altitude and azimuth angles, solar incidence angle,
irradiance and PV module surface temperature as training inputs and the normalized
values of the PV module output power as training target outputs are presented to the

EANN during the training and testing processes.

85% (18931 paths) of the healthy data is fed to the EANN during the training phase,
which is performed by the BR back-propagation training algorithm. As discussed
earlier, the BR algorithm performs well with noisy and rigid data in existence of
adequate amounts of training data and also the algorithm does not require validation
process and saves the network from being over-fitted. The EANN is trained with a
performance gradient goal of 1.0e-12. The testing process is carried out independently
on 15% (3341 paths) of the healthy data where the target outputs are no more presented
to the network in order to measure the estimation and generalization capabilities of the
network. The overall training and testing performance of the EANN may be

investigated in Figures 4.6 and 4.7.

The developed EANN is implemented during a 15-day period from Feb 1%, to Feb 15%,
2016. During this period the PV module is operated both under normal and faulty
conditions. The details of faulty operation intervals of the PV module is given in the
next sub-section where the development of an ANN for fault detection in the PV

modules is explained. So far, the result of per-minute implementation of the EANN in
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healthy intervals of the implementation period (2962 points) is given in figure 4.8 as a

graph of the measured vs. the estimated PV module output power.

Best Training Performance is 0.00044124 at epoch 1404
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Figure 4.6: The Performance Plot of the EANN Training and Testing Processes
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Figure 4.7: The Regression Plot of the ANN Training and Testing Processes
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4.3 Development of ANN for PV Module Fault Detection

A three-layer fully-connected feed-forward ANN with log-sigmoid and softmax
transfer functions in the hidden and output layers is developed for PV module fault
detection purposes. The ANN illustrated in Figure 4.3.1 will be called the DANN

(Detection Artificial Neural Network) hereinafter.

WY
A0 B IR
R ;k{i\h:\y

Figure 4.9: The Proposed DANN Architecture. (x1: normalized ys, x2: Normalized as,
x3: Normalized 6, x4: Normalized Eiot, x5: Normalized 7T, x¢: Normalized Pout, yD1:
First Classification Output, yp2: Second Classification Output, IL: Input Layer, HL:
Hidden Layer, OL: Output Layer)
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As demonstrated in figure 4.9, the DANN output layer consists of two neurons with
softmax transfer function. The softmax function in the output layer acts as a classifier
by squashing the inputs coming from the hidden layer neurons into two real values. As
the result of the classification, the output neurons are assigned two values in the range
0-1 that always add up to 1. The mentioned softmax transfer/activation function is

represented in equation 4.3.1 and Figure 4.10.

n;
softmax(n;) = ]e_en] fori=0..J (4.3.1)

j=1

1 0.6
E
0.5 o 0.4}
c £
[=]
0 @ g2} -
n
I . I i :
05 S— - 0
1 2 3 &

1 2 3 4

Figure 4.10: The Softmax Transfer Function

The complete data acquired within the data collection period (Nov. 1%, 2015 to Jan.
31%, 2016) consisting 22272 healthy and 7344 faulty paths corresponding to normal
and faulty PV module operation intervals are presented to the DANN during the
training and testing period. The classification network has two outputs, therefore the
training target needs to be two dimensional. The vectors [1 0] and [0 1] representing
healthy and faulty training target outputs are provided to the DANN in order to
supervise the classification training process. 85% (25174 paths) of the healthy and
faulty data are presented to the DANN during the training process which is carried on
by the BR algorithm and the network is evolved to solve the binary classification

problem with classes ‘10’ and ‘01’ corresponding to the normal and faulty PV module
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operation conditions, respectively. The DANN is trained with a performance gradient
goal of 1.0e-12. The rest 15% (4442 paths) of data is allotted to the testing process
where the target vectors are no more provided to the DANN in order to measure the
classification capabilities of the developed network. As given in the confusion matrix
in figure 4.11, the developed DANN achieved an overall training and testing

classification precision of 99.9%.

Confusion Matrix

Output Class
[

1 2
Target Class

Figure 4.11: The DANN Training and Testing Classification Confusion Matrix

The green blocks in the figure correspond to the true positive and true negative points
and the red blocks correspond to the false positive and false negative points. The details
about classification confusion matrix will be comprehensively given through this

section.
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4.4 Implementation of the Ultimate ANNs

The proposed PV module output power estimation and fault detection method is
implemented by deploying the developed EANN and DANN during a 15-day interval
from Feb. 1% to Feb. 15", 2016. On the first day of February 2016, the EANN and
DANN started their synchronized performance for PV power estimation and fault
detection. Everyday starting at solar altitude angle value 0° (almost corresponding to
sunrise instance), the EANN starts its operation and when the solar altitude angle
reaches 10°, the DANN also starts operating synchronously. The reason that the
DANN is not deployed for the solar altitude angle values below 10° is the fact that the
input data corresponding to the mentioned angle values below 10° have a very noisy
and uncertain nature (not surprisingly for twilight moments) and performing fault
detection operation in these periods is pointless. During the operation of the ANNS,
the normalized values of the solar altitude, azimuth and incidence angles, the
irradiance level and the PV module surface temperature are provided as inputs to the
EANN, while the mentioned input values alongside with the normalized measured PV
module output power are fed to the DANN as inputs, all in a minute by minute basis.
The estimated PV module output power is reconstructed from the normalized EANN
output yg and is logged in per-minute foundation. On the other hand, the two outputs

of the DANN are saved in parallel as yp; and ypa.

As discussed earlier, the PV module fault detection is performed based on a binary
classification approach. The softmax activation function in the output layer of the
DANN squashes the incoming inputs from the hidden layer into two real numbers
which are logged as yp1 and ypo. In the implementation phase, the decision for fault

detection is made with respect to the value of yp = yp1 — yp2. Since the training target

85



vectors [1 0] and [0 1] were presented to the DANN during its training process, the yp
parameter takes on values close to 1 for normal PV module operation and values close
to -1 for PV module faulty operation intervals. At this point a threshold is applied to
the yp and the positive and negative yp values are set as indicators of normal and faulty

PV module operation conditions, respectively.

At this stage an important notice is necessary for the reader in order to prevent a
possible confusion. In the standard estimation and detection theory terminology,
positive/negative status indicates the presence/absence of fault. In our approach, the
decision parameter yp takes on positive values within normal PV module operation
intervals and negative values during faulty PV module operation intervals (i.e., for
absence and presence of fault, respectively). It is of significant importance to note that
the yp is just a local parameter indicating the operation condition of the PV module
and the estimation and detection theory terminology is continued to be used hereinafter

without any conversions.
e A Brief Introduction to the Estimation and Detection Theory:

In terms of estimation and detection theory, a fault detection algorithm can be

simplified to the form that is expressed in Table 4.2.

Table 4.2: A simple fault detection algorithm

Respond ‘Present’ Respond ‘Absent’
Fault ‘Present’ Hit Miss
Fault ‘Absent’ False Alarm Correct Rejection

Further parameters are introduced in order to express the simple approach suggested

in Table 4.2 in terms of the estimation and detection terminology.
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True Positive Rate (Hit): TPR = r__T (4.4.1)
P~ TP+FN
True Negative Rate (Correct Rejection): TNR = L L (4.4.2)
N~ FP+TN
False Positive Rate (False Alarm): FPR = = = -~ =1 — TNR (4.4.3)
N ~ FP+TN

False Negative Rate (Miss): FNR = = = —~ _ =1 — TPR (4.4.4)

P~ TP+FN
Accuracy: ACC = 221V (4.4.5)

P+N

where,

TP:  True Positive (Corresponding to ‘Hit”)

TN:  True Negative (Corresponding to ‘Correct Rejection”)

FP:  False Positive (Corresponding to ‘False Alarm’ or ‘Type I Error’)
FN:  False Negative (Corresponding to ‘Miss’ or ‘Type II Error’)

P: The number of healthy points in data (Condition Positive)

N: The number of faulty points in data (Condition Negative)

The TPR and the TNR are also referred to as the sensitivity and the specificity (of the
system/method), respectively. A confusion matrix with different fields is given in
Figure 4.12 in order to better express the estimation and detection theory terminology

described in this chapter.
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Figure 4.12: The Estimation and Detection Theory Confusion Matrix

After the previous brief introductory part, proceeding to the proposed PV module
estimation and detection method is continued. As discussed earlier, a well-trained
ANN should be neither under-fitted nor over-fitted. Also it was mentioned that one of
the most significant features of the BR training algorithm is that it saves the network

from being over-fitted and lacking generalization for new and unseen inputs.

Two coating glasses with different transparency levels for PV fault simulation
purposes (referred to as the ‘lightgray’ and the ‘dimgray’ shading faults) have been
utilized during the faulty data acquisition periods for training the DANN. In order to
examine the generalization capabilities of the DANN, a darker coating glass

(hereinafter called ‘darkslategray’) for shading fault simulation as well as real dirt and



dust covering applications to the surface of the PV module in three different intensities
(henceforth called the ‘light’, ‘moderate’ and ‘heavy’ dirt and dust coverings) are used

during the ANNs implementation period.

Not surprisingly, it is observed that the amount of the PV module output power
degradation caused by the homogeneous light, moderate and heavy dirt and dust
accumulation on PV module surface is adequately analogous to that caused by the

homogeneous lightgray, dimgray and darkslategray shading applications, respectively.

Before proceeding to the general performance overview of the developed estimation
and detection method, it is intended to rigorously investigate the performance of the
proposed method under a highly fluctuating meteorological condition in order to
obtain a precise insight of its sensitivity and specificity levels. For this purpose, an
interval at about 14:30 to 15:30 in the afternoon Feb. 1%, 2016 with extremely
oscillating partly cloudy weather condition is selected and homogeneous ‘lightgray’
and ‘dimgray’ shadings are applied to the PV module surface in 1-minute, 3-minute

and 5-minute terms during the mentioned interval.

Figure 4.4.2 demonstrates the outcome of the experiment. The EANN and DANN are
utilized synchronously for solar altitude angle values above 10° on Feb. 1%, 2016 (as
the first day of the ANNs implementation period). The measured and the estimated PV
module output power values for the entire day is given in Figure 4.13-a and the
previously described detailed sensitivity and specificity experiment for the mentioned

afternoon interval is given in Figure 4.13-b.
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Figure 4.13: The Measured and the Estimated PV Module Output Power Collected During the Fault Detection System Implementation Period on
Feb. 1%, 2016



As demonstrated in Figure 4.13-b, all the faulty points caused by the ‘dimgray’ shading
application are accurately detected, whilst a few faulty points corresponding to the
‘lightgray’ shading application are missed. The missed points, which are all liaise with
irradiance levels lower than 150 W/m?, are marked by whitish highlighting color in

Figure 4.13-b.

The experiment well-satisfies its initial objective, which was exploring the essence of
situations leading to a missed point (also referred to as the false negative or the type II
error point) in the developed PV module fault detection system. The experiment results
suggest that such missed faulty points as well as possible false alarmed healthy points
are most likely occurring under extremely fluctuating partly cloudy weather conditions

with irradiance levels lower than 150 W/m?.

For the next 14 days of the ANNs implementation period (Feb. 2™, to Feb. 15 2016),
different artificial fault states are applied to the PV module in the following manner.
For each day, one fault type is applied to the module at a time around solar noon (for
instance, one fault type is enforced to a normal performing PV module around solar
noon, or an existing fault on a faulty operating PV module is removed around solar
noon and the module continues to operate normally for the rest of the day). Such fault
application method yields almost equal normal and faulty PV module operation
intervals for each implementation day (starting and ending by the solar altitude angle
value 10°) with a certain fault type under variable meteorological conditions. There
are two motives behind the mentioned fault application method. Firstly, having almost
equal amount of healthy and faulty data with one certain fault type for each
implementation day is more convenient in terms of further statistical analysis, and

secondly, the collected data during the implementation period becomes suitable for
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possible future studies where these healthy and faulty data may be used to train future
ANNs without the risk of confusing the fault types or even mixing the faulty and the

healthy data.

The EANN and DANN implementation performances can be investigated by
comparing the measured and the estimated PV module output power values and also
by monitoring the detection confusion matrices for each implementation day. The
estimation and detection verification results for three sample implementation days
(Feb. 7™, Feb. 9™ and Feb 12, 2016) are given in Figure 4.14, 4.15 and 4.16 where
the measured and the EANN-estimated PV module output power values alongside the

DANN confusion matrices for each day are presented.

As suggested by the examination results for the mentioned days, the ‘moderate dirt
and dust’ covering fault application to the PV module on Feb. 7, 2016 yields 100%
detection accuracy (Figure 4.14), while the ‘lightgray’ shading and the ‘heavy dirt and
dust covering’ faults, applied to the PV module on Feb. 9™ and Feb. 12% 2016,
respectively, do not sustain such excellent detection rate due to some false alarmed or
missed points (type I and type II detection errors). However, the detection rate
degradations for the mentioned sample days are not significant and the PV module
fault detection examination results in these days are well satisfying with accuracy rates
of 97.7% and 99.8%, respectively. The sensitivity and specificity experiment
performed on Feb. 1%, 2016 was suggesting the temper of the situations leading to the
missed and the false alarmed points. As it is obvious from the Figures 4.15 and 4.16,
the false negative and false positive points correspond to extremely fluctuating weather
conditions causing immediate and significant power drops, as well as low irradiance

conditions causing uncertainty of data.
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Figure 4.14: (a) The Measured and the EANN-Estimated PV Module Output Power

Values (mW) and Fault Detection by DANN and (b) the Corresponding Confusion

Matrices Recorded During Fault Detection System Implementation Period on Feb.
7% 2016 with ‘Moderate and Dust” Covering Fault Type
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Figure 4.15: (a) The Measured and the EANN-Estimated PV Module Output Power
Values (mW) and Fault Detection by DANN and (b) the Corresponding Confusion
Matrices Recorded During Fault Detection System Implementation Period on Feb.

9t 2016 with ‘Lightgray Shading’ Fault Type
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Figure 4.16: (a) The Measured and the EANN-Estimated PV Module Output Power

Values (mW) and Fault Detection by DANN and (b) the Corresponding Confusion

Matrices Recorded During Fault Detection System Implementation Period on Feb.
12" 2016 with ‘Heavy Dirt and Dust’ Covering Fault Type
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As mentioned earlier, the PV module output power estimation and fault detection
system, powered by the EANN and DANN, is implemented during a 15-day interval
from Feb. 1%, to Feb. 15", 2016. In the mentioned interval, the PV module is operated
under heathy and faulty conditions and the ANNs outputs are acquired minute by
minute. The per-minute outputs of the ANNs yield overall 6222 values, out of which
2962 values correspond to the healthy operation periods and 3260 values correspond

to faulty performance periods of the PV module.

The faulty PV module performance intervals are simulated using six different fault
applications being the ‘lightgray’, ‘dimgray’ and ‘darkslategray’ shading applications,
alongside the ‘light’, ‘moderate’ and ‘heavy’ dirt and dust coverings. The first two of
the mentioned fault types were used during the trainging phase of the ANNs, but the
rest four were only deployed during the ANNs implementation phase in order to

achieve a measure of generalization capabilities of the networks.

Before proceeding to a general overview of the EANN and DANN performances, an
interesting yet not surprising matter is presented to the readers. Out of the six different
fault types applied to the PV module, the ‘lightgray shading - light dirt and dust
covering’, the ‘dimgray shading- moderate dirt and dust covering’ and the
‘darkslategray shading- heavy dirt and dust covering’ fault application pairs are almost

causing equal degradation amounts to the PV module output power, as expected.

To better express the similar effects of the mentioned fault application pairs, the scatter
graphs of the EANN-estimated vs. the measured PV module output power values for
the operation intervals under each mentioned fault application pair is given separately
in Figure 4.17-a, b and c.
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At this point, the general performance overview of the EANN and DANN performance
during the implementation period Feb. 1%, to Feb. 15" 2016 is investigated. As
discussed earlier, during this period each day is divided into two parts and one the
previously mentioned fault applications is performed to the PV module either before
or after an instance around solar noon, yielding nearly equal amounts of healthy and

faulty data (2962 and 3260 healthy and faulty values), respectively.

The performance of the EANN in terms of the PV module output power estimation
accuracy under both normal and faulty operation conditions is given as a scatter graph
in Figure 4.18, containing all the 6222 values (each corresponding to a data acquisition
minute) of the healthy and faulty points. It is obvious from the figure that the healthy
points corresponding to the normal PV module operation intervals during the
mentioned 15-day period settle around the ‘best fit” line, while the faulty points fall
under this line. Also as illustrated in Figures 4.17-a, b and c, it can be observed that
the PV power degradation values due to the mentioned fault applications can
heuristically be categorized into three parts. The points corresponding to the ‘lightgray
shading - light dirt and dust covering’ fault application pair fall immediately under the
healthy points and the best fit line. The next points to fall lower than the mentioned
points are related to the ‘dimgray shading- moderate dirt and dust covering’ fault
application pair and finally the points located close to the bottom of the scatter graph,
lower than all other points, correspond to the ‘darkslategray shading- heavy dirt and

dust covering’ fault application pair.

The daily mean MAE and MAPE between the EANN-estimated and the measured PV
module output power, the DANN accuracy, the fault application type and the applied

fault transmissivity for each implementation day is given in Table 4.3.
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Table 4.3: The Average MAE and MAPE between the measured and the estimated PV module output power, the DANN accuracy, the applied fault
types and different fault transmissivity values during the fault detection system implementation period

EANN Mean EANN Mean Applied Fault
Absolute Error Absolute Percentage DANN Accuracy Applied Fault Type Trl;[l)lsmissivi ¢
(MAE) (mW) Error (MAPE) y

Feb. 2", 2016 1.71 2.25% 99.4% Lightgray Shading 77%

Feb. 374, 2016 2.33 4.54% 100% Dimgray Shading 48%

Feb. 4™, 2016 2.51 5.31% 100% Lightgray Shading 77%

Feb. 5%, 2016 0.96 2.53% 88.8% Ligh Dirt and Dust ~ 75-80%
Covering

Feb. 6™, 2016 1.69 5.82% 100% Dimgray Shading 48%

Feb. 7%, 2016 1.99 427% 100% Moderate Dirt and ~ 50-55%

Dust Covering

Feb. 8™, 2016 2.73 4.87% 99.8% Lightgray Shading T7%

Feb. 9, 2016 2.20 6.90% 97.7% Lightgray Shading 77%

Feb. 10, 2016 2.22 5.77% 99.8% Darkslategray 27%
Shading

Feb. 11%, 2016 224 4.73% 97.6% Moderate Dirt and ~ 50-55%

Dust Covering

Feb. 12, 2016 2.03 3.06% 99.8% Heavy Dirt and Dust ~25-30%
Covering

Feb. 14, 2016 1.40 5.44% 100% Dimgray Shading 48%

Feb. 15", 2016 1.39 2.23% 98.8% Lightgray Shading 77%

Average 1.95 4.44% 98.6%




In order to analyze the performance results of the DANN, an ultimate confusion matrix
containing all the true and false positive and negative points alongside other estimation

and detection theory parameters is given in Figure 4.19.
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Figure 4.19: The Ultimate Confusion Matrix Representing the DANN Performance

As represented in Figure 4.19, out of overall 6222 DANN implementation points, 6134
points are corresponding to true decisions (3182 true positive/hit and 2952 true
negative/correct rejection points), while only 88 points are related to false decisions
(10 false positive/false alarm/ type I error and 78 false negative/miss/type Il error).
The fact that the number of missed points are higher than the number of false alarmed

points causes the sensitivity of the DANN being slightly lower than its specificity. An
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overall evaluation represents the DANN performance by sensitivity, specificity and

accuracy rates of 97.6%, 99.7% and 98.6%, respectively.
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Chapter 5

CONCLUSIONS

In this thesis, we have developed an ANN-based intelligent system for PV module
output power estimation and fault detection. The required data for training and testing
the proposed ANNSs, being irradiance level, PV module output power, solar altitude
angle, solar azimuth angle, incidence angle and PV module surface temperature, are
either measured by highly sensitive measurement equipment or calculated rigorously
in a minute by minute basis during a three-month period from Nov. 1%, 2015 to Jan.
31%,2016. The resulting data sets acquired under normal and faulty operation intervals
of the PV module are normalized in the range 0-1 and presented to the ANNs as

input/outputs.

Investigation for the most appropriate ANN architectures and training algorithms are
also carried out. As a comprehensive comparison between the Levenberg-Marquardt
(LM) and the Bayesian Regularization (BR) back-propagation algorithms as the two
most widely utilized ANN training methods, the BR algorithm is selected to be utilized
in the ANNSs training and testing phases due to its robustness in dealing with noisy and
rigid data and avoiding network over-fitting and local minima problems, as well as the
fact that the BR algorithm does not require validation process which allows all the data
to be allotted to the ANNs training and testing processes. Furthermore, the feed-
forward Multi-Layer Perceptron (MLP) architecture with three layers as the input,

hidden and output layers is selected as the ultimate ANN architecture to be developed
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and the number of hidden neurons are set to 15, as it is observed experimentally that a
smaller layer size lacks in estimation and detection capabilities, while a larger layer
size does not contribute to networks accuracies anymore and consumes much more

amounts of time and memory for training and testing processes.

Moreover, before proceeding to the development of the ultimate ANNs for PV module
output power estimation and fault detection, a preliminary ANN called PANN is
constructed with part of data only for estimation purposes in order to monitor the
performance of the mentioned network architecture and the BR training algorithm, and
also to detect any shortcomings or problems regarding the performance of the network.
Whilst no inconveniences observed, the PANN performance results also gave insight

regarding the appropriate data size for the ultimate ANNs to be developed.

Finally, two ANNs namely being the Estimation Artificial Neural Network (EANN)
and the Detection Artificial Neural Network (DANN) are developed with the
mentioned architecture and algorithm. The log-sigmoid and purelin activation
functions are assigned to the EANN hidden and output layers, respectively, and the
EANN is trained and tested only on the healthy data acquired during the normal
operation intervals of the PV module during the three-month data acquisition period,
in order to become capable of estimating the PV module output power under normal

operation conditions.

On the other hand, the log-sigmoid and softmax transfer functions are assigned to the
DANN hidden and output layers, respectively, and the DANN is trained and tested on
both healthy and faulty data acquired during the normal and faulty PV module

operation intervals during data acquisition period. Six different fault types, namely
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being the ‘lightgray’, ‘dimgray’ and ‘darkslategray’ shadings as well as the ‘light’,
‘moderate’ and ‘heavy’ dirt and dust coverings, are applied to the PV module to
simulate faulty operation situations. The first two of the mentioned fault types are
presented to the DANN during the training and testing process, while the rest four are
kept for the ANNs implementation period in order to measure the generalization

capabilities of the DANN for new and unseen fault types.

The EANN and DANN are implemented during a 15-day period from Feb. 1%, to Feb.
15 2016. On each day, per-minute measured and calculated values of the mentioned
input/output data are presented to the ANNs and the networks are operated
synchronously for solar altitude angle values above 10°. The results of implementing
the ANNs in the mentioned period yields overall 6222 points (each corresponding to
an implementation minute) with DANN performance accuracy rate of 98.6% and

EANN average MAPE between the estimated and the measured values of 4.44% level.

Considering the mentioned metrics, the performance analysis results of the EANN and
DANN for the implementation period from Feb. 1 to Feb. 15", 2016 are highly
satisfying and much promising considering further possible expansion of the proposed

method to broader PV fleets in the future.
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Appendix A: Artificial Neural Network-Based All-Sky Power

Estimation and Fault Detection in Photovoltaic Modules

Kian Jazayeri, Moein Jazayeri, Sener Uysal, “Artificial neural network-based all-sky
power estimation and fault detection in photovoltaic modules,” Journal of Photonics

for Energy, vol. 7, no. 2, 2017.

Abstraet. The development of a system for output power estimation and fault detection in pho-
tovoltaic (PV) modules using an artificial neural network (ANN} is presented. Over 30,000
healthy and faulty data sets containing per-minute measurements of PV module output
power (W) and irradiance (W/m?) along with real-time calculations of the Sun’s position in
the sky and the PV module surface temperature, collected during a three-month period,.are fed
to different ANNs as training paths. The first ANN being trained on healthy data is used for PV
module output power estimation and the second ANN, which is trained on both healthy and
faulty data, is utilized for PV module fault detection. The proposed PV module-levelTault detec-
tion algorithm can expectedly be deployed in broader PV fleets by taking developmental con-
siderations. The machine-learning-based automated system provides the possibility of all-sky
real-time monitoring and fault detection of PV modules under any meteorological condition.
Utilizing the proposed system, any power loss caused by damaged cells, shading conditions,
accumulated dirt and dust on module surface, etc., is detected and reported immediately, poten-
tially yielding increased reliability and efficiency of the PV systems and decreased support and
maintenance costs. @ 2017 Society of Photo-Optical Instrumesntation Engineers (SPIE) [DOL 10.1117/1.
JPE.7.025501]

Keywords: artificial intelligence; artificial neural networks; fault detection; renewable energy
sources; solar energy; sustainable development.
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healthy and faulty data sets containing per-minute measurements of PV module output
power (W) and irradiance (W/m?) along with real-time calculations of the Sun’s positiof in
the sky and the PV module surface temperature, collected during a three-month period,.are fed
to different ANNSs as training paths. The first ANN being trained on healthy data is used for PV
module output power estimation and the second ANN, which is trained on both healthy and
faulty data, is utilized for PV module fault detection. The proposed PV module-level fault detec-
tion algorithm can expectedly be deployed in broader PV fleets by taking developmental con-
siderations. The machine-learning-based automated system provides the possibility of all-sky
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1 Introduction

Solar energy is a renewable and sustainable resource that emerges to meet the modern world’s
growing energy requirements. The Sun’s radiations transform to direct current (DC} electricity
by the photovoltaic{PV) effect. PV cells are interconnected to form PV modules (solar panels)
and the PV modules are organized to build PV arrays and systems. The importance of developing
supervision and monitoring techniques for PV systems is highlighted considering the amplifying
world energy demands and the limitations and threats associated with the traditional energy
resources.. However, despite the significant growth of PV industry in the modern world, the
supervision and fault detection of PV systems have not received the same consideration.
Especially, PV systems in lower output levels are mostly running without a proper monitoring
mechanism.

Artificial intelligence (Al) techniques are deployed in diverse applications due to their strong
reasoning, fault tolerance, flexibility, and generalization capabilities. As one of the most popular
branches of (Al), artificial neural network (ANN}, which is a mathematical paradigm imitating
the behavior of a biological neural network, is being utilized to solve many practical problems n
different fields. ANNs being a collection of individually interconnected processing units act as
parallel-distributed computing networks. Despite conventional computers that are programmed
to carry out specific functions, ANNs, which can be considered as human brain-like mathemati-
cal models, can learn from examples and remove the need to use complex mathematical formulas

*Address all correspondence to: Kian Jazayer?, B-mail: kian jazayeri@cc.emuedu.t
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or expensive physical models. ANNs are fault tolerant, can work with noisy data, and provide
high-speed generalization capabilities for unseen inputs. ANNs are widely deployed in various
PV system modeling, estimation, and prediction applications. Some of the ANN applications for
estimation purposes in PV systems are given as follows.

ANNs are developed for predicting hourly, daily, and monthly solar radiation.'™* An ANN
with geographical and meteorological data (latitude, longitude, altitude, month, mean sunshine
duration, and mean temperature) as inputs is developed,"* for the estimation of solar potential
in Tukey. A solar radiation map for Spain is developed using a multilayer perceptron (MLP).1
The inputs are solar irradiance and clearness index, and the methodology is extendable to other
locations only with the irradiance information of the corresponding zone where the map is going
to be prepared. A comparison of ANN and linear regression models for prediction of hourly and
daily diffuse fraction in Egypt is proposed in Ref. 16. According to the authors, the ANN model
outperformed the linear regression model with prediction accuracies of 95%, 93%, and 96% for
infrared, ultraviolet, and global insolation, respectively.

A radial basis function neural network is developed to predict the output characteristics of 4
commercial PV module by reading the data of solar irradiance and temperature.’” Different
topologies of ANNs are utilized for the output power forecasting of PV modules.'® The output
power of two PV test modules is estimated using ANNs trained on ambient temperature, solar
irradiance, and wind speed data in the above-mentioned study. The authors conclude that MLP
topology provides the best performance in terms of the prediction error. A similar study is carried
out in Ref. 19, where different ANN architectures with inputs of minimum temperature, maxi-
mum temperature, mean temperature, and solar irradiance are emaployed for output power esti-
mation of a solar panel. The authors indicate that the feed-forward MLP with a backpropagation
training algorithm has shown the best performance in PV _module power estimation.

As expressed in the above examples, ANNs have widely been employed in PV systems
mostly for irradiance estimations and rarely for PV output power estimations. However, in most
of the cases, the raw data of latitude, longitude, altitude, month, day, and time values are pro-
vided to the ANNs. It was demonstrated that with the aim of physical parameters the PV output
power forecast by means of hybrid modelsis enhanced.™?* In our study, the per-minute cal-
culations of the Sun’s position in the sky, expressed by the solar altitude, azimuth and incidence
angles, which are more expressive functions of the above-mentioned parameters, alongside with
the synchronous measurements of the solar irradiance (W /m?) and the PV module output power
are presented to the ANNs as inputs. ANN experts and practitioners have always been agreed
on the fact that ANNs learn and ‘perform more robustly when provided with preprocessed and
meaningful data rather than raw and unprocessed data.

In this study, well-detailed and highly accurate data are acquired using appropriate and highly
sensitive measurement equipment. The details of the data acquisition process will be described in
Sec. 2. However,nomatter how well-detailed and straight-forward-looking the inputs are, the
PV performance cannot be accurately modeled based on first physical principles. Especially, the
effect of the PV module surface temperature complicates the relation between the solar irradi-
ance and the PV output power as the PV power generation tendency decreases with increasing
PV.module surface temperature, which is caused by increasing irradiance. Even though a com-
petent:analytical or physical model can be utilized for PV power estimation and fault detection to
an adequate level, the need for using a qualified machine leaming technique for highly accurate
PV module output power estimation and fault detection is highlighted by taking the above into
consideration. The scope of this study is to give insight of the competency of the well-known
MLP approach with an eligible backpropagation algorithm in PV power estimation and fault
detection applications in existence of sufficient inputs. Although it may seem a straight-forward
approach, this is the first time that the PV module output power and the irradiance level (along-
side other inputs} are being presented together to a classifier ANN to determine any fault or
power drop in the PV performance accurately and immediately. Furthermore, this study gains
robustness by utilizing an appropriate ANN backpropagation training algorithm as the result of
our earlier study,”® which comprehensively compares the effect of using the Bayesian regulari-
zation (BR) and the Levenberg—Marquardt (M) backpropagation algorithms and concludes
that the BR algorithm outperforms the LM algorithm in ANN-based PV module output power
estimation applications, as the average mean absolute error (MAE) and the mean absolute
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percentage error (MAPE) between the estimated and the measured PV module output power
values for ANN implementation period from November 26 to December 7, 2015, are respec-
tively 1.64 (mW) and 6.44%, for the LM algorithm, which are reduced to 1.05 (mW) and 4.83%
by the BR algorithm. The estimation improvement of the BR algorithm is highlighted by the fact
that the proposed PV power estimation algorithm can be extended to broader PV fleets after
taking necessary developmental considerations.

A comprehensive review of several PV system faults and the corresponding detection and
mitigation techniques is given mn Ref. 24. Different fault detection methods for small PV systems
are developed based on simulation models.”>*” Climate data retrieved from satellite observations
are also used in modeling PV system fault detection methods.”*” Data-driven, graph-based, and
wireless sensor-based fault detection methods are other approaches that address PV system
supervision issue 0

A simple one-equation model using solar irradiance and PV module surface temperature
as inputs is developed for online fault detection in PV systems.*® The model is implemented
by 10-min measurements and hourly averages. According to the authors, the models based
on houtly averages are more accurate than the models using 10-min measurements, and at certain
irradiance intervals, a fault detection rate of 90% is achieved. To determine theaccuracy level of
the above-mentioned one-equation model, the authors compare it with feed-forward ANN mod-
els and conclude that although the ANNs are better, the accuracy of the one-equation model is
satisfactory.

In this study, two ANNSs for output power estimation and fault detection of PV modules are
developed. The comprehensive details of the data acquisition and.the ANN ftraining, testing, and
implementation processes are presented in the following sections.

2 Data Acquisition Process

The data sets used in this study contain per-mminute accurate experimental measurements and
real-time calculations. A south oriented, 43-deg tilted monocrystalline silicon solar panel
(P 40 W, V01216 'V, and Iy :2.56 A)located at 35°8'51" N, 33°53'58” E, with 1-m
elevation from the sea level and a pyranometer at the same location with the same tilt and align-
ment are used for field measurement purposes. The Sun’s position in the sky, the solar angle of
incidence, and the solar panel surface temperature are also calculated in real time. The details of
data acquirement and storage are given as follows.

As described in Ref. 34, the Sun’s position in the sky is expressed by the solar altitude angle
and the solar azimuth angle. The solar altilnde angle indicates the Sun’s elevation in the sky and
is expressed as

¥, = sin~!(sin @ sin § + cos ¢ cos 8§ cos @), (1)

where @ is the selar hour angle and & is the solar declination angle.
The solar azimuth angle indicates the Sun’s deviation from the north axis and is rep-
resented as

a, = 180 —cos {cos ;) If sine, <0 2)
a, = 180 +cos~ (cos ;) If sin e, >0’
where
cos oy = (sin @ sin y, — sin §)/ cos ¢ cos y;, 3)
sin @, = cos ¢, sin @/ cos y;, “)

where e, is the solar azimuth angle and y, is the solar altitude angle.
The angle of incidence, which is the angle between the sunlight beams and a vector
perpendicular to the surface of a solar panel, is given as

_1 | cos(f) cos(Z, )+

B=C8™ wnie)snl v sosta: — 5] | ©

where /7 1s the module tilt angle, Z, is the solar zemith angle, and «,, is the module azimuth angle.
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Fig. 1 The PV module { — V characteristics for different temperatures and irradiances,

The minute-by-minute calculations of the above-mentioned parameters are done based on the
local solar time, and the resulting data are normalized in the range of 0 to 1 to be fed as inputs to
the propesed neural networks. The normalization process, which is done based on‘the minimum
and maximum cof the data, vields data close to 1 for the values of each input having higher impact
on the PV medule output power generation, and data close to {, viee versa. The calibration of
all the inputs is camied cut based on the case-specific experimental values.

The output power of a scuth oriented, 45-deg tilted “Euro Plug Solar”™ made monecrystalline
siicon PV module (P, 140 W, Vae:21.6 V, and Ig0:2056 A) located at 35°8'51" N,
33°53/58" E, directly feeding a constant resistive DC load (17-W,4.7 21}, is measured (mW)
per minute and logged after being normalized between 0 and 1. The PV module J — V character-
istics for different temperatures and irradiances are given m Fig. 1.

The irradiznce level is also measured (W/m?),fiormalized in the range of O to 1, and logged
once a minute using the pyranometer. The last leg of the data collection process is the acquisition
of the PV module surface temperature data thatis calculated based on the per-minute ambient
temperature (7, ;. values (°C) obtained from the Larnaca International Airport weather sta-
tion. As described in Ref. 35, the PV module surface temperature can be calculated as a function
of the nominal operating cell temperature (NOCT) and the ambient temperature using

T — Tapieat + [(NOCT — 20°C)(Ey /800 Wn )], (6)

where E ., 1s the global solar irradiance.

Since the PV module output power generation tendency reduces with increasing PV module
surface temperature, the normalization process of this last parameter i¢ done accerdingly before
being fed to the ANN, vielding values close to 1 and values close to 0 for lower and higher PV
module stface temperatures, respectively. In other words, the normalized PV module output
temperatire 18 close to 1 during moming and afternoon hours when the surface temperature
is low and close to { around noon when the surface temperature is high.

Summarizing the above, the PV module output power and the irradiznce level are measured,
and the Sun’s position in the sky, the solar incidence angle, and the PV module surface temper-
ature values are caleulated in real time on a per-minute basis and are logged after all being
normalized in the range of O to 1, yielding desirable data for the ANNs training procedure.
The normalized values of solar iradiance, PV module surface temperature, and PV module
output power for three sample data acquisition days are given in Fig. 2.

It is intended to use the above-mentioned data for training two ANNs for output power
estimation and fault detection of PV modules. The first ANN, which is used for PV power
estimation, is trained on healthy data collected during the normal operation intervals of the
PV module, but the second ANN utilized for PV module fault detection needs to be trammed
on both healthy and faulty data collected during normal and faulty operation perieds of the
PV module, respectively. To simulate the faulty operation conditions of PV medules, coating
glasses with different shades of gray color are used. Two coating glasses, heremafter referred to
as lightgray and dimgray to represent their tramsparence levels, are used to simulate the faulty PV
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Fig. 2 The nomalized values of the {(a) sclar irradiance, (b) PV medule surface temperature, and
{c) PV module output power collected on three sample data acquisition periods (Novemberi2,
2015, December 17, 2015, and January 12, 2016).

Table 1 The performance analysis of the PV module output power during the overallfaulty oper-
ation intervals.

IMaximum measured power (M) Maximum expected power (MW MAE (myW) MAPE (%e)

Lightgray 114.52 140.74 13.72 =25

Dimgray 54.85 128.87 24.82 55

module operation conditions caused by shading effects;dirt or dust accumulation on the module
surface, etc.

To express the PV module output power/degradation caused by each above-mentioned fault
condition, the performance analysis of the PV module cutput power during the overall faulty
operation intervals is camied out in terms of comparing the measured and the expected PV
medule cutput power values, which is represented in Table 1.

The expected power values are values that would be obtained by fault removal and are
estimated using the ANN“described in Sec. 3.1.

The hemogenously distributed fault application to the PV module makes the output power
degradaticn independent of the PV module internal architecture. The response of different PV
modules to nonhomegeneous faults, such as one or several damaged cell(s), varies based on the
module’s mtemal arehitecture in terms of the number of bypass diodes in the module. The ideal
situation is that there be a bypass diode for each cell in a PV module so that the effect of any
shaded or damaged cell can be overpassed immediately and the overall module output decreases
only by'the fraction of one to the nurmber of cells n the module. However, this is not the case in
redl-life situations where the shading of one cell may result in significantly higher cutput power
losses'm a commercial PV module. The principal motive of homogensous artificial fault apph-
cation is for generalization and extension of the approach to be a promising PV module fault
detection methed, independent of the type, characteristics, and internal architecture of the PV
medules on which the methed is applied.

On the other hand, applying uniferm fault conditions to the PV medule utilized in this study
expectedly provides the possibility of extending the propesed fault detection algorithm to
broader PV fleets after taking developmental considerations.

3 Development of the Artificial Neural Networks

Two ANNs are developed in this study for PV medule power estimation and fault detection
purposes. The evolvement processes of the proposed ANNs are explained comprehensively
as follows.
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3.1 Artificial Neural Network Development for Photovoltaic Module Power
Estimation

A three-layer fully connected feed-forward ANN with log-sigmoid activation function in the
hidden layer and linear activation function (purelin) in the output layer is created for PV module
output power estimation. The above-mentioned network will be addressed as the estimation arti-
ficial neural network (EANN) throughout the text. The number of hidden neurons is decided as
15, which grants the EANN desirable estimation accuracy while not exceeding reasonable com-
putation time and memory allocation limits. The ANN hidden layer size (15 hidden neurons} is
decided experimentally as it is observed that a smaller hidden layer lacks in maintaining the
desired ANN output accuracy and a larger hidden layer lacks in performance (in temms of
lower calculation speed and higher memory allocation) while not contributing much to the
ANN output accuracy anymore. The healthy data collected within the normal operation intervals
of the PV module during November 1, 2015, to January 31, 2016, period are fed to the EANN in
training and testing phases. The EANN is aimed to be utilized in the PV module fault detection
period from February 1 to February 15, 2016, which contains nommal and faulty PV module
operation intervals. 30,778 data paths containing the nommalized values of the solar altitude
and azimuth angles, solar angle of incidence, irradiance, and PV module surface temperature
as training inputs and the normalized values of the PV module output power as thetraining target
outputs are provided to the EANN at these phases.

The training process of the EANN is carried out on 85% (26, 161 paths) of the healthy data
by the BR backpropagation algorithm. The BR algorithm provides robust performance in han-
dling noisy and difficult data in existence of sufficient training inputs. The algorithm effectively
eliminates the network weights that have lower impact on the problem solution and offers sig-
nificant performance in avoiding local minima obstacles. The algorithm does not require cross-
validation, which prevents part of the data to be reserved for validation purposes. Also the BR
algorithm prevents the network from overtraming and overfitting. Comprehensive details regard-
ing the BR backpropagation algorithm principles and axioms may be investigated in Refs. 36 and
37. The performance gradient goal is set to 1:0% 10712 for the EANN training procedure. The
testing procedure is performed independently-on 15% (4617 paths) of the healthy data. In the
testing phase, the target outputs are not presented to the EANN to measure the estimation and
generalization abilities of the network. The overall training and testing regression performance of
99.78% 1is achieved by the EANN.

3.2 Artificial Neural Network Development for Photovoltaic Module Fault
Detection

A three-layer fully connected feed-forward ANN with log-sigmoid activation function in the
hidden layer and softmax activation function in the output layer is developed for PV module
fault detection. The above-mentioned network will be called the detection artificial neural net-
work (DANN) throughout the text. The number of hidden neurons is again set to 15 (for the same
reason explained in Sec. 3.1). The output layer consists of two neurons with softmax activation
funetions as classifiers that squash the inputs from the hidden layer into a real value in the range
of O0'to 1. The values of the output neurons always add up to 1. The healthy and faulty data
collected within the normal and the faulty PV module operation periods, respectively, during
November 1, 2015, to January 31, 2016, interval are fed to the DANN as training and testing
data.

22,272 healthy and 7344 faulty data paths containing the normalized values of the solar
altitude and azimuth angles, solar angle of incidence, irradiance, PV module surface temperature,
and PV module output power are fed to the DANN as training and testing inputs, and vectors
[10] and [0 1] are provided to the DANN as the healthy and faulty target outputs, respectively.
The neural network is trained by the BR algorithm on 85% (25,174 paths} of the healthy and
faulty data to solve the binary classification problem with the class 10 indicating normal oper-
ation and the class 01 indicating faulty operation of the PV module. The performance gradient
goal is set to 1.0 x 10712 for the DANN training procedure. The testing procedure is performed
independently on 15% (4442 paths) of the healthy and faulty data. In the testing phase, the target

Journal of Photonics for Energy 025501-6 Api—Jun 2017 = Vol. 7(2)

123



Jazayeii, Jazayeri, and Uysal: Artificial neural network-based all-sky power estimation. . .

vectors are not presented to the DANN to measure the classification abilities of the network.
The overall training and testing classification accuracy of 99.8% is achieved by the DANN.

4 Implementation of the Photovoltaic Module Power Estimation and
Fault Detection System

The proposed PV module output power estimation and fault detection system is implemented
during February 1 to February 15, 2016. The range of power drops caused by the artificially
applied deficiencies is wide enough (“20% to 75%” corresponding to deficiencies transmissivity
range “80% to 25%"} to be called a fault. The EANN and the DANN developed and described in
Sec. 3 are utilized in the proposed system. Starting from February 1, 2016, the PV module is
operated under normal and faulty conditions and the EANN and DANN are employed in parallel
for estimation and detection purposes. On each day starting as the solar altinde angle reaches
0 deg (which approximately refers to the sunrise moment), the normalized values of the solar
altitude, azimuth and incidence angles, the irradiance level, and the PV module surface temper-
ature are fed to the EANN and the estimated PV module output power is reconstructed from the
normalized EANN output (v} on a per-minute basis. Also starting when the solar altitude angle
reaches 10 deg, the DANN is utilized synchronously. The DANN utilization for solar altitude
angles lower than 10 deg is prevented due to the uncertainty of data on these intervals. The
nommalized values of the solar altitude, azimuth and incidence angles, the irradiance level,
the PV module surface temperature, and the measured PV module output power are fed to
the DANN and the two outputs of the DANN are calculated and logged as yp; and yp,.

As described in Sec. 3, the PV module fault detection is‘carried out based on a binary clas-
sification approach. The output target vectors [1 0] and [0 1] are provided to the DANN during
the training phase with 10 and 01 states being representatives for nonmal and faulty PV module
operation conditions, respectively. During the DANN iImplementation, the decision is made
based on the value of y, = yp; — ¥p,. The parameter y, takes on values 1 —e to 1 dunng
the normal PV module operation periods and —1 to —1 4 ewithin the faulty PV module oper-
ation periods. A threshold is applied to the parameter y;, to specify the positive and the negative
values of ¥ as the indicators of the nommal and the faulty PV module operation conditions,
respectively.

At this point, a note is necessary to avoid possible confusion. In detection and estimation
theory terminology, positive state corresponds to existence of fault and negative state refers to
absence of fault. In our system, vy, parameter takes on positive values during normal PV oper-
ation (absence of faulty and negative values vice versa. The y, varlable is just an indicator of
the PV module operation‘condition and the detection and estimation theory terminology will be
used hereinafter witheut any changes.

To simulate faulty PV module operation, in addition to the lightgray and dimgray coating
glasses described 1n Sec. 2, a darker coating glass called darkslategray to indicate its transparence
level, as well as real dirt and dust coverings, are used during the fault detection system imple-
mentation period to examine the system performance with new and unseen fault conditions. It is
observed that the effect of homogeneous light, moderate and heavy dirt, and dust accumulation
on the PV module surface is very similar to the effect of homogeneous lightgray, dimgray, and
darkslategray shading conditions, respectively. To better demonstrate the sensitivity of the sys-
tem, the lightgray and dimgray shading conditions are applied homogeneously to the PV module
in 1-, 3-, and 5-min intervals during a fluctuating partly cloudy weather condition interval at
about 14:30 to 15:30 in the afternocon February 1, 2016. The result of the above-mentioned
experiment is shown in Fig. 3 where the measured and the estimated PV module output
power for solar altitude angles above 10 deg for February 1, 2016, are given in Fig. 3(a) and
the above-mentioned afternoon interval when the sensitivity experiment was carried out is
selected and shown in Fig. 3(b).

As it is obvious from Fig. 3(b), all the faulty points corresponding to the dimgray shading
condition are detected correctly while some of the faulty points regarding the lightgray shadings
are missed. These missed points, which are highlighted by whitish color in Fig. 3(b), correspond
to irradiance levels lower than 150 W/m?,
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Fig. 3 The measured and the estimated PV module output power collected du@%té&ﬁun detec-
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implementation day can be further used as training data for the neural netwerks in future studies
without the risk of mixing the fault types or even mixing the faulty and healthy data.

A confusion matrix consisting of different fields containing the carresponding detection and
estimation terminclogy for each field is givenin Fig. 4. The terminology used in this matrix will
be further referred to for statistical analysis purposes throughout this paper.

The measured and the estimated PV module cutput power values (mW) recorded on three
sample fault detection system implementation days (Febmary 7, February 9, and February 12,
2016) and the confusion matrices fer the above-mentioned periods are given in Figs. 5(z), 5(b),
and 5(c). The applied fault on the above-mentioned sample days are moderate dirt and dust
covering, lightgray shading, and heavy dirt and dust covering, respectively.
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Fig. 5 The measured and the estimated PV module output power values (m¥Y) and fault detection
by DANN (left side) and the corresponding confusion matrices (right side) recorded during fault
detection system implementation periods on (a) February 7, (b) February 9, and (¢} February 12,
20186, with {a) moderate dirt and dust covering, {b) lightgray shading, and (¢} heavy dirt and dust
covering fault types, respectively.
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Fig. 6 The measured and the estimated PV module output power recorded on all;;m d&gfault
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As it is obvious from the figures, the moderate dirt and dust covwg fault apphcatlon to the
PV module on February 7, 2016 [Fig. 5(a)] results in 100% fault det accuracy while the
lightgray and heavy dirt and dust covering fault applications cn tl@’ sample days [Figs. 5(b)
and 5(c}] lack in maintzining such excellent accuracy due to the ence of some missed faulty
or false alarmed healthy points. However, the performances of bove-mentioned sample days
with accuracy rates of 97.7% and 99.8% are satisfying. gs i@ls apparent in Figs. 5(b) and 5(c),
the misses and false alarms ocour during highty ﬂﬁg@hng weather conditions, which cause
significant power drops. Also in low irradiance levels dnaccuracies may ocour due to the uncer-
tainty of data. The scatter graph of the measurg%‘gﬁd the estimated PV module output power
(m\?\«’) for a]l the 1mplementatlon moments d Februa_ry 2 to February 15, 2016 (6222 points)
\éﬁ nearly half of each day in the above-mentioned
period is specﬂled to normal PV mod ile operation (2962 points), while the other half is
distinguished for the application of different fault types on the PV module {3260 points).
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Fig. 7 The overall confusion matrix for the PV module fault detection system.
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Table 2 The average MAE and MAPE between the measured and the estimated PV module
output power, the DANN accuracy, the applied fault types, and different fault transmissivity values
during the fault detection system implementation period.

EANN EANN DANN Applied fault

{MAE) MAPE accuracy transmissivity

(mW) (%) (%) Applied fault type (%)
February 2, 2016 1.71 2.25 99.4 Lightgray shading 77
February 3, 2016 2.33 4.54 100 Dimgray shading 48
February 4, 2016 251 5.31 100 Lightgray shading 77
February 5, 2016 0.96 2.53 88.8 Light dirt and dust covering =75 to 80
February 6, 2016 1.69 5.82 100 Dimgray shading 48
February 7, 2016 1.99 4.27 100 Moderate dirt and dust covering =50 10 55
February 8, 2016 273 4.87 99.8 Lightgray shading 77
February 9, 2016 2.20 6.90 97.7 Lightgray shading 77
February 10,2016 222 5.77 99.8 Darkslategray shading 27
February 11, 2016 2.24 4.73 97.6 Moderate dirt and dust covering =50 to 55
February 12, 2016 2.03 3.06 99.8 Heavy dirt and dust covering =~25 to 30
February 14,2016  1.40 5.44 100 Dimgray shading 48
February 15, 2016 1.38 2.23 98.8 Lightgray.shading 77
Average 1.95 4.44 98.6

Six different fault types, namely, being lightgray, dimgray, and darkslategray shadings as
well as light, moderate, and heavy dirt and dust coverings, are applied to the PV module during
the implementation peried. The first two of the above-mentioned fault types were used during the
DANN ftraining data collection and the remaining four fault types are completely new and unseen
for the fault detection system. A1t was expected, the nonmal PV module operation points lie
near the best-fit line on the scatter graph while the faulty points fall below this line. The effect of
applying each fault type onthe PV module and also the similarity levels of different fault types
may be investigated in ig. 7.

The daily.average MAE and MAPE between the measured and the estimated PV module
output power values during February 2 to February 15, 2016, are given in Table 2 and the overall
confusion matrix, indicating the total number of hits, correct rejections, misses and false alarms,
as well as other performance metrics of the PV module fault detection system is shown in Fig. 7.

5 Conclusions

The development of an ANN-based fault detection system for PV modules is described in this
study. The above-mentioned system uses two ANNs (EANN and DANN} for PV module power
estimation and fault detection purposes. The inputs to the system are per-minute measurements
of the PV module output power (mW) and the irradiance level (W /m?) along with the real-time
calculations of the solar altitude, azimuth and incidence angles, and the PV module surface tem-
perature (°C). The ANNs are trained and tested on data collected during a three-month interval
from November 1, 2015, to January 31, 2016, and the PV module fault detection system is
implemented during the February 1 to February 15, 2016, period. The results of implementation
of the fault detection system show sensitivity, specificity, and overall accuracy rates of 97.6%,
99.7%, and 98.6%, respectively. The PV module fault detection system is prepared and imple-
mented using homogeneous fault conditions, which makes the fault detection independent of
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the internal PV module architecture. This paper mainly contributes to introduce a fault detection
approach for PV systems that is already tested on a small scale PV application and conceivably
can be deployed in broader PV fleets with maximum power point tracking after taking necessary
developmental considerations. The way the PV module fault detection system is independent of
internal module architecture, expectedly leads to further PV array configuration independency
without loss of generality and yields sustainability promises. Utilizing the PV module fault
detection system, any power loss due to damaged cells, shading conditions, dirt or dust accu-
mulations on panel surface, etc., is detected and reported immediately under any meteorological
condition, supposedly yielding increased PV system efficiency and decreased maintenance and
support costs in the long term.
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ABSTRACT

Clouds, being complex components of the atmaosphere, have significant effects on power generation by photo-
voltaic (PV) systems. For example, shadows caused by the cloud coverage over a geopraphically disaributed PV
power plant may cause significant fluctuations in power genemation by leaving a number of PV panels unable to
generate power and contribute to power generation by the plant at each time instant. Thus, investigation of the
mentioned effects on PV power generation requires realistie spatial irradiance information. Such information
should be evaluated based on the existing real cloud coverage and its light transmission characteristics. This also
provides the opportunity to select appropriate coping strategies against the mentioned negative effects of partial
shading on PV plant’s power cutput. This paper presents a modeling approach which generates Spatially
Dispersed Irradiance Profiles (SDIPs) for PV amrays based on existing cloud patterms derived from local sky
images taken at the application sites. Themodel pets the direct, diffuse and global iradiance values incidenton a
horizental surface, which are primarily obtained utilizing a solar irradiance model (the Morf (2013) model),
along with local sky images captured at the application sites and cleud tansmittance values, as mput data and
yields site-specific Spatially Dispersed Irmadiance Profiles (SDIPs) incident on the surface of inclined PV panels
within PV application areag, as a result of process of the inputs. Utilization of local sky images and cloud
transmittance values for different cloud types creates the opportunity for precise smalysis of interactions of
sunlight with the existing cloud type and hence, obtaining unique and site-specific irradiance profiles according
to the existing cloud type and distribution in the sky. The model firstly detects the cloudy and clear-sky parts in
the sky image and then instantly utilizes the most appropriate ellipse on the cloud layer associated with each
solar panel through which the beam irradiance is received by the panel. The model alse considers the light
transmission characteristics of different cloud types as the parameter affecting the beam irradiance. The diffuse
and greund-reflected radiance compenents are assumed to be spatially constant and thus identical for all solar
panels. Cloud base heights, as provided n the Intermational Cloud Atlas (1987), are also utilized to caleulate the
ground area covered by each sky image. Daily imadiance sequences for different observation points in a PV array
are simulated under partly cloudy sky conditions using a set of sky images and utilized for validation purpose of
the proposed algorithm. It is demonstrated that instantaneous iradiance values, as well as daily irradiance
sequences, differ from point to point in a geographically distributed PV application site depending on the dis-
tribution of clouds in the sky. The mentioned variable characteristic of the irmadiance sequences received at
different observation points, as well as the model’s capability to reflect the mentioned variabilities, i verified
using irradiance data derived from satellite observations. The performance of the proposed model is validated
using variability index (VI) metric as a measure of iradisnce variability during a day. The modeled VI values are
validated against the measured VI values for a reference point located at the center point of the generated
irmadiance profiles. Daily VI values calculated for both measured and simulated 1-min global horizontal ira-
diance (GHI} data are compared for a population of totally 117 days during April - August time period. The
results of comparison show statistics of mean biag error (MBE) of 0.16, root mean square error (RMSE) of 2.394,
correlation coefficient of 0.94 and mean absolute error (MAE) of 1.91. The validation results demomstrate
capability and accuracy of the proposed model for estimation of imadiance values under cloudy sky conditions.
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Clouds, being complex components of the atmosphere, have significant effects on power generation by photo-
voltaic (PV) systems. For example, shadows caused by the cloud coverage over a geographically distributed PV
power plant may cause significant fluctuations in power generation by leaving a number of PV panels unable to
generate power and contribute to power generation by the plant at each time instant. Thus, investigation of the
mentioned effects on PV power generation requires realistic spatial irradiance information. Such information
should be evaluated based on the existing real cloud coverage and its light transmission characteristics. This also
provides the opportunity to select appropriate coping strategies against the mentioned negative effects of partial
shading on PV plant’s power cutput. This paper presents 2 modeling approach which generates Spatislly
Dispersed Irradiance Profiles (SDIPs) for PV armays based on existing cloud patterns derived from local sky
images taken at the application sites. The model gets the direct, diffuse and global irradiance values incident on a
horizontal surface, which are primarily obtained utilizing a solar imradiance model (the Morf (2013) model),
along with local sky images captured at the application sites and cloud transmittance values, as input data and
yields site-gpecific Spatially Dispersed Irradiance Profiles (SDIPs) incident on the surface of inclined PV panels
within PV application areas, as a result of process of the inputs. Utilization of local sky images and cloud
trangmittance values for different cloud types creates the opportunity for precise analysis of interactions of
sunlight with the existing cloud type and hence, obtaining unique and site-specific irradiance profiles according
to the existing cloud type and distribution in the sky. The model firstly detects the cloudy and clear-sky parts in
the sky image and then mstantly utilizes the most appropriate ellipse on the cloud layer associated with each
solar panel through which the beam irradiance is received by the panel. The model also considers the light
transmission characteristics of different cloud types as the parameter affecting the beam irradiance. The diffuse
and‘ground-reflected iradiance components are assumed to be spatially constant and thus identical for all solar
panels. Cloud base heights, as provided in the International Cloud Atlas (1987), are also utilized to calculate the
ground area covered by each sky image. Daily irradiance sequences for different observation points in a PV array
are simulated under partly cloudy sky conditions using a set of sky images and utilized for validation purpose of
the proposed algorithm. It is demonstrated that instantaneous irradiance values, as well as daily imradiance
sequences, differ from point to point in a geographically distributed PV application site depending on the dis-
tribution of clouds in the sky. The mentivned variable characteristic of the irmadiance sequences received at
different observation points, as well as the model’s capability to reflect the mentioned variabilities, is verified
using irradiance data derived from satellite observations. The performance of the proposed model is validated
using variability index (VI) metric as a measure of irradiance variability during a day. The modeled VI values are
validated against the measured VI values for a reference point located at the center point of the generated
imadiance profiles. Daily VI values calculated for both measured and simulated 1-min global horizental irra-
diance (GHI} data are compared for a population of totally 117 days during April - August time period. The
results of comparison show statistics of mean bias error (MBE) of 0.16, root mean square error (RMSE) of 2,394,
correlation coefficient of 0.94 and mean absolute error (MAE) of 1.91. The validation results demonstrate
capability and accuracy of the proposed model for estimation of imadiance values under cloudy sky conditions.
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Nomenclature
AM Air mass
ab Angstrém-Prescott regression coefficients

ce(t) Cloud cover [Oktas, tenths]

o Average cloud cover [Oktas, tenths]

cc, () Ellipse enclosed cloud cover (EECC) [Oktas, tenths]
C.(1) Coordinate of ellipse center on X axis

@) Coordinate of ellipse center on Y axis

97 Mean daily clear-sky diffuse fraction

Dy (t) Major axis of ellipse

by (®) Minor axis of ellipse

e Eccentricity of ellipse

G Cloudy sky horizontal irradiance [W/m?]

Gy(t) Clear-sky horizontal beam irradiance [W/m?]

Gy (L) Clear-sky inclined beam irradiance [W/m?]

Gyg(t) Clear-sky inclined diffuse irradiance [W/m?]

G, (1) Array point cloudy sky horizontal irradiance [W/m?]

Gy (1) Array point cloudy sky inclined irradiance [W/m?]

G, (1) Clear-sky hotizontal irradiance [W/m?]

Gog(t) Clear-sky inclined irradiance [W/m?]

Gyy(t) Clear-sky ground reflected irradiance [W/m?]

Gry(t) Trradiance at point (x,y) [W/m?]

Gylt) Cloudy sky inclined irradiance [W/m?]

Gy(t) Extraterrestrial solar irradiance [W/m?]

AG Irradiance increment [W/m?]

h Elevation above sea level

H Daily horizontal global irradiation [J/m?]

H Mean daily clear-sky horizontal global irradiation [J/m?]
H, Daily irradiation outside the earth's atmosphere [J/m?]
H, Mean daily clear-sky horizontal beam irradiation [J/m?]
K Mean daily clear-sky diffuse clearness index

BT Local time

LST Local solar time

m Image size for cloud pattern

Ry Ratio between beam irradiance on inclined and horizontal
surface

R Range of cloud cover [Oktas, tenths]

Ry, Range of EECC [Oktas, tenths]

Ry Ratio between diffuse irradiance on inclined and hor-
izontal surface

R Range of array point irradiance values [W/m?]

SIF(t)  Stochastic insolation function

b:n Mean daily clear-sky horizontal Diffuse irradiation [J/m?]

kI PV array size

K Mean daily clear-sky clearness index

X, Mean daily clear-sky beam clearness index

SS Sunset

@ Latitude

x'y Cloud transmittance coefficient

@ Solar azimuth angle [degrees]

¥ PV module tilt angle [degrees]

¥ Solar altitude angle [degrees]

) Solar declination angle[degrees]

& Solar incidence angle [degrees]

&, Solar zenith angle [degrees]

M Mean of array irradiance values

Gy () Clear-sky hotizontal diffuse solar irradiance [W/m?]

¥l Ground reflectivity

T Cloud Transmission factor

T Cloud transmittance

T Time interval between irradiance measurements

) Hour angle

&y Pixel zenith angle [degrees]

dap Pixel azimuth angle [degrees]

1. Intreduction

High dependency of solar energy applications on the incident solar
irradiance causes a vital need to obtain precise knowledge regarding
solar irradiance levels received by each individual PV module within
the application areas to create the opportunity for appropriate design
and management of PV systems. Large-scale centralized PV power
plants or PV plants distributed on a wide geographical area can be
considered as examples of such applications. Power generation in such
plants is also highly dependent on the non-identical irradiance levels
incident on the surface of PV panels within the PV power plant, that are
caused by cloud passages. Dependence of power generation in PV
power plants on the received non-identical irradiance values caused by
the real-time passing clouds is one of the main reasons for the need to
the site-specific irradiance data. Unavailability of instantaneous data or
limitations associated with the measurement stations have led to de-
velopment of solar radiation estimation and/or simulation models.
Numerous models have successfully been developed for clear-sky solar
irradiance where the main emphasis is put on modeling of the beam
component of the irradiance due to its importance for solar energy
systems.

Clouds, at the same time, as some complex elements of the climate,
have significant impacts on the incident irradiance. Thus, a good model,
from PV system’s point of view, should necessarily account for cloud
properties to include the effects of interactions of the existing clouds
with the incoming solar irradiance. The output of such a model being
capable of estimation of solar irradiance under cloudy sky conditions
can be considered as a reliable input for the desired PV applications.

The goal of this paper is to develop a model to generate spatially
dispersed irradiance profiles incident on PV power plants extended in a
wide geographical area or distributed PV power plants, raking into

978

account the existing cloud coverage at the intended application sites. In
this way, precise information on the amount of solar irradiance re-
ceived by each individual solar panel within the PV power plant can be
obtained at each desired instant of time. Consequently, estimation of
power production and taking necessary actions to cope with negative
effects caused by non-identical irradiance levels received by different
solar panels in a PV plant is facilitated. As it is discussed in the further
parts of the paper, the developed model mainly utilizes clear-sky global
irradiance as well as the direct and diffuse irradiance components and
accounts for light transmission characteristics of the existing cloud
coverage to generate the mentioned irradiance profiles.

As mentioned previously, since the beam or direct irradiance com-
ponent is more important from solar energy employing system design
point of view, emphasis is mostly put on estimation of the mentioned
irradiance component. Models introduced in the literature for estima-
tion of direct or beam component of solar irradiance are mainly cate-
gorized under two groups as {Wong and Chow, 2001);

(1) Parametric Models
(2) Decomposition Models

{ASHRAE, 1999; Igbal, 1983; Davies and McKay, 1989; Gueymard,
1993) are some of widely utilized parametric models while (Liu and
Jordan, 1960; Erbs et al., 1982; Reindl et al., 1990a; Skartveit and
Olseth, 1987; Louche et al.,, 1991) are provided as examples of de-
composition models in the literature. Parametric models require de-
tailed information regarding the atmospheric conditions such as cloud
type, cloud coverage and distribution in the sky, sunshine duration,
etc., while decomposition models only utilize global irradiance to es-
timate direct and diffuse irradiance components. The ASHRAE model is
widely utilized due to its simplicity over the other models while a
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review by Gueymard (2012) has shown that the Igbal model is the most
accurate model compared to the other parametric models. Evaluation
results reported by Wong and Chow (2001) show that ASHRAE model
provides lower accuracy in diffuse irradiance predictions compared to
the Igbal model as it does not include the ground reflected irradiance
and aerosol-generated diffuse irradiance. As discussed in detail in fur-
ther parts of the paper, this study primarily employs a model which
utilizes various parameters such as cloud coverage, sunshine duration
and cloud transmittance in order to estimate direct, diffuse and global
irradiance components on a horizontal surface. At the second stage, the
mentioned irradiance components are utilized, as inputs, by the model
which is proposed in order to develop spatially dispersed irradiance
profiles for PV application areas.

Cloud coverage dramatically affects atmospheric light transmission
and is most often expressed in Oktas describing the amount of the sky
which is covered by clouds (Jones, 1992). Cloud cover data is readily
available for many meteorological stations being generally provided as
hourly or 3-houtly observations, where ¢ and 8 Oktas correspond re-
spectively to totally clear and overcast sky dome. The mentioned con-
siderations require the measurements of cloud cover and its properties
to be dealt with by solar radiation models. Cloud properties can be
analyzed under two main aspects; Dynamic and Radiometric properties
(Harris, 2003). The importance of cloud dynamic properties for PV
applications is due to the fact that cloud motion is the main reason for
PV power fluctuations whereas the radiometric properties of clouds,
including light scattering and optical properties, govern the interactions
of solar irradiance with water droplets creating the clouds.
Kokhanovsky {2004) provides a comprehensive review of cloud optical
properties. Cloud detection and classification methods utilize either
ground-based measurements or satellite images. Tapakis and
Charalambides (2013) extensively review cloud detection and classifi-
cation methods and equipment utilized in the literature. In addition to
the mentioned cloud detection techniques, various studies have been
conducted to model the cloud coverage. Models introduced by Cai and
Aliprantis {2013), Morf (2011) and Jones (1992) are example of these
models.

Several irradiance models in the literature consider cloud coverage
and sunshine duration for irradiance estimation under cloudy sky
conditions. See for example (Schiiepp, 1966; Ehnberg and Bollen, 2005;
Biga and Rosa, 1979; Biga and Rosa 1980; Motf; 1998; Morf, 2013;
Badescu, 2002a). Such models generate time-series of global solar ir-
radiance on horizontal surfaces with respect to the geographical loca-
tion of the application sites. The achieved sequences of solar irradiance
on horizontal surfaces should then be converted to irradiance incident
on inclined PV module surfaces for output power estimation purposes
(Padovan and Del Col, 2010; Nijmeh and Mamlook, 2000; Reindl et al.,
1990b).

In parallel, non-identical solar irradiance received by different PV
panels in a PV array, which is mostly caused by cloud passages, is
known as one of the most challenging issues during estimation and
analysis of PV power generation. Since cloud shadows dramatically
decrease PV power generation, precise estimation and development of
an appropriate model for cloud shadows and the resulting irradiance
profiles on PV arrays would ease estimation of power generation or
selection of proper strategies to combat the negative effects. During the
past years, numerous research studies have been conducted to model
partial shading effects on PV power generation. Examples of these
studies are provided by Villalva et al. (2009), Ishaque et al. (2011a,
2011b, 2011c), Wang and Hsu (2010, 2011). However, most of the
models consider shadow patterns on PV arrays that are generated
without consideration of a real cloud coverage and its characteristics
during their analyses. On the other hand, most of solar radiation models
consider the total cloud coverage existing in the sky, as a whole, which
does not provide the opportunity for generation of shadow patterns on
PV arrays based on the existing cloud shape and its distribution in the
sky.

979

Solar Energy 158 (2017) 977-994

Currently most of solar radiation forecasting methods rely on two
main approaches being Numerical Weather Prediction (NWP) and
forecasting methods based on real-time measurements of satellites or
ground-based instruments (Yang et al., 2014). However, the mentioned
ground-based measurement equipment are typically point sensors
which do not provide spatial irradiance information {Chow et al.,
2011). Satellite-based data outperform data generated by NWP models
in determining the exact position of the clouds while NWP forecasts are
found to outperform satellite forecasts for longer forecast horizon times
(Perez et al.,, 2010). However, as previously mentioned, these models
are presently unable to predict the exact position of clouds and their
effects on solar radiation over a specific location of interest. On the
other hand, satellite based forecasts are not optimal for very short-term
and high resolution forecasts due to sparse update cyeles, coarse spatial
resolution and long lasting data transfer and process times. Therefore,
by taking the above into consideration, development of a better short-
term measurement-based forecast with high spatial and temporal re-
solutions is needed {Yang et al., 2014). Sky imagers are relatively more
economical and reliable passive devices that also can be benefited for
unattended operations (Allmen and Kegelmeyer, 1996). They provide
various features, making them desirable for cloud studies. They provide
possibility of visual measurement of the whole sky dome providing high
temporal and spatial resolution. A charge coupled device {CCD)
camera, a fisheye lens, an environmental housing and a CCD sensor and
application dependent solar occultor are the typical components of a
sky imager (Chow et al., 2011). Sky images have been used in various
research studies to retrieve atmospheric properties such as aerosol op-
tical depth, cloud optical depth, cloud coverage, cloud type and Cloud
Base Height (CBH) (Heinle et al., 2010; Huo and Lu, 2009,2010;
Kassianov et al., 2005; Long et al., 2006; Pfister et al., 2003; Seiz et al.,
2007)..Moreover, Nguyen and Kleissl (2014) have used sky images for
determination of cloud base height {CBH) to overcome the low tem-
poral resolution and high cost drawbacks of the existing CBH mea-
surement technologies such as radiosonde, ceilometer, Droppler LIDAR
and cloud radar. Sky imagers have also been utilized in (Yang et al.,
2014) for solar irradiance forecasting and Chow et al. (2011) have
deployed sky imager data for intra-hour, sub-kilometer cloud fore-
casting and solar irradiance nowcasting purpose.

Nguyen et al. {2016) propose a method which utilizes sky imager
data to generate irradiance profiles with high spatial and temporal re-
solution on different geographically distributed PV systems. The study
determines irradiance profiles on five different PV sites in San Diego,
CA, USA. The structure of the utilized method in the mentioned study
can briefly be summarized as follows; Sky images taken every 30 s. by a
fisheye lens sky camera are processed using a cloud detection algorithm
to determine cloudy and clear pixels of the images and hence determine
the location of clouds within the image. Each image covers a circular
region in the sky where the radius of the coverage area depends on the
cloud base height, obtained utilizing a specific cloud base height cal-
culation method. The images are then mapped into 2D sky grids. Ray
tracing method is then utilized to generate cloud shadow maps on the
desired PV application areas and hence, to determine if any individual
PV generator in the application area is shadowed by the clouds. Cloud
conditions are classified under three different cloud categories namely
being; no cloud {clear-sky), thin clouds {partly cloudy) and thick clouds
(overcast sky) conditions. These cloud classes are then utilized to obtain
irradiance profiles. For this purpose, a histogram of the measured ir-
radiance values is formed. The measured irradiance values using a
network of pyranometers are then normalized by the expected clear-sky
irradiance values calculated based on a clear-sky model for the areas of
interest to form clear-sky indices corresponding to the mentioned three
cloudiness conditions. The horizontal irradiance incident on each PV
panel is then calculated by multiplying the global horizontal clear-sky
irradiance by the clear-sky index for the desired PV panel. The obtained
irradiance values are then converted to irradiance values incident on
inclined solar panel surfaces. However, limitation of the existing cloud
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coverage by the mentioned 3 categories can be considered as one of the
main drawbacks of this method. Whereas in contrast, consideration of
various cloud types and their specific light transmission coefficients,
discussed throughout the further parts of the paper, allows for a more
realistic analysis of effects of the existing clouds during generation of
irradiance profiles. Another weak aspect of the method introduced in
(Nguyen et al., 2016) is the dependency on pyranometer measurements
to form the irradiance histograms and obtain clear-sky indices, which
makes the model sensor dependent. Unavailability of pyranometer
measurements for each area of interest due to lack of equipment and/or
irregular data recordings may cause undesired obstacles against use of
the mentioned method for some locations. The mentioned disadvantage
is overcome in this paper by calculation of the irradiance values using
an irradiance estimation model, as discussed in the further parts, which
enables calculation of solar irradiance under cloudy sky conditions.
Hence, the model is not dependent on pyranometer measurements and
is applicable to almost any desired geographical location. The men-
tioned two factors may be considered as the main added values by this
work to the study by Nguyen et al. (2016).

In a recent study, Lohmann et al. {2017) have used a fractal cloud
model in order to simulate clear-sky index increment correlations under
mixed sky conditions. They have utilized an extensive set of sky camera
and satellite images along with data from two pyranometer networks and
CBH estimations from a ceilometer. The mentioned data are utilized for
estimation of cloud edge fractal dimensions under partly cloudy sky con-
ditions, generation of cloud shadow patterns on the ground and evaluation
of suitability of the generated artificial fractal cloud shapes for modeling of
the previously mentioned autocorrelation structures. For this purpose,
firstly, measured clear-sky index time-series, K,, are calculated using
pyranometer meastrements and a clear-sky irradiance model for each
individual pyranometer. Red-Blue Ratio {(RBR) values together with CBH
estimations, as discussed also in further parts of this study, are utilized for
cloud detection in sky camera images and determination of the area
covered on the ground. Cloud index maps and cloud motion vectors are
also obtained based on quarter-hourly satellite images. Cloud shadow
maps are obtained by generation of fractal cloud images and then virtually
moving them in the direction of the wind over a set of virtual pyranometer
networks where cloud speeds are derived from satellite data. Finally, the
modeled cloud index values are converted to clear-sky index time-series
using an empirical relationship. However, comparison results present both
differences and similarities between the modeled and measured clear-sky
index values. In one hand, it is shown that the modeled field statistics are
similar to the measured values and the variable characters of the mean of
the modeled and measured sensors are in a very good agreement. On the
other hand, incompatibiliry of the large-scale satellite observations with
the utilized empirical relationship in order to convert cloud index values to
clear-sky index time-series is provided to be the main reason for the
mentioned differences. Results of the study by Lohmann et al. (2017),
showing that satellite observations are not suitable for short-term fore-
casts, once again approves the previous discussions of this paper. Also it is
provided that satellite approximations of cloud edge dimensions are higher
than sky imager data and the authors concluded that sky imagers are more
suitable for cloud analyses, where the mentioned conclusion also supports
the previous discussions of this paper. A drawback of the model utilized by
Lohinann.et al.- {2017), similar to the one utilized in (Nguyen et al., 2016),
is that different cloud types are all combined within one category without
consideration of the light interaction characteristics of each specific cloud
type. This issue caused a higher dispersion range of the observation-de-
rived spatial autocorrelation structures of clear-sky index values compared
with the modeled ones, around the medians. The utilized fractal cloud
model does not include light interaction characteristics of different cloud
classes that cause it being not necessarily applicable to different geo-
graphical locations than those analyzed in the paper. Another drawback of
the work by Lohmann et al. {2017) is its high dependency on instrumental
observations (e.g. pyranometer and ceilometer measurements, satellite
and sky camera images) which makes its application difficult where the
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mentioned data are not readily accessible due to lack of equipment and/or
irregular or incompatible data recordings. As previously discussed and in
order to overcome the mentioned issue, this paper proposes a global model
with minimum requirements to instrument measured data which is ap-
plicable to any desired geographical location, by considering different
cloud types and their effects on the received solar irradiance.

As mentioned earlier, this paper proposes a modeling approach which
mainly focuses on generation of spatially dispersed irradiance profiles on
desired PV application areas. The mentioned profiles are generated based
on cloud shadow patterns induced on the area by the existing real clouds
in the sky. The method presents the opportunity to obtain instantaneous
site-specific Spatially Dispersed Irradiance Profiles (SDIPs) considering
the instant position of the Sun in the sky with respect to each individual
observation point, existing cloud patterns and their light transmission
characteristics. Therefore, since the method provides instantaneous ir-
radiance values incident on the surface of each solar panel within the PV
plant based on the existing cloud coverage in the sky, it could be thought
of as a prerequisite for PV system performance investigation models by
providing the required solar irradiance data for the mentioned in-
vestigations. Utilization of the proposed model offers the possibility for
creation of unique, site-specific irradiance profiles under any type or
amount of cloudiness based on real cloud shadow patterns for desired
geographical locations at‘any given desired time instant. Also utilization
of the proposed model together with consecutive local sky images pro-
vides the opportunity to obtain irradiance time-series for desired ob-
servation points during a day. The highlighted feature makes the model
useful to be utilized for realistic and precise analysis of PV power gen-
eration and its fluctuations and also for selection of proper improving
strategies under cloudy sky conditions.

The remaining parts of the paper are organized as follows; Different
data parameters utilized throughout the paper are explained in Section
2 while Section 3 presents the proposed modeling approach to generate
SDIPs on PV fleets with respect to existing real-time cloud pattern and
its interactions with solar irradiance. Results obtained with the pro-
posed modeling approach are discussed through Section 4. Appendices
A and B present details of the utilized model for estimation of daily
global irradiance time-series on a horizontal surface and the conversion
procedure for irradiance sequences on horizontal surface to irradiance
incident on inclined PV module surface, respectively.

2. Data

This part of the paper includes various data utilized throughout the
paper. The data consist of measured solar irradiance, solar irradiance
values derived from satellite observations, sky images and observed
cloud coverage for desired geographical locations.

Since irradiance measurements incident on an inclined surface were
not available for Berlin, Germany, where the main focus area of this
paper is, the irradiance data measured using a pyranometer for
Famagusta, North Cyprus (Latitude: 35°8'18", Longitude: 33°5545") are
utilized in Appendix B for validation purposes. Per-minute irradiance
measurements on an inclined surface in Famagusta, North Cyprus
(Latitude: 35°818", Longitude: 33°5545") are conducted using a 45°
inclined irradiance sensor (pyranometer). These data are used in order
to verify the accuracy and effectiveness of the selected clear-sky model
and the conversion method of the horizontal irradiance to irradiance
incident on inclined surfaces.

However, as previously stated and since not all of the required
parameters are recorded and readily available for Famagusta city, it is
preferred to apply the general model on Berlin, Germany (Latitude:
52°33'56%, Longitude: 13°18'39") as a well-known location with easy
access to the required data. Therefore, measured per-minute horizontal
irradiance data for Lindenberg, Germany (Latitude: 52°12367,
Longitude: 14°7'19") is utilized as another source of data in the paper.
The mentioned irradiance measurements are retrieved from WRMC-
BSRN (World Radiation Monitoring Center — Baseline Surface Radiation
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Network) website (WRMC-BSRN, 2016). These data are used for ver-
ification purposes as described in Section 4.1.

Hourly mean global irradiance values for an cbservation point in
Berlin, Germany (Latitude: 52°3356”, Longitude: 13°18'39") along with
its four surrounding geographical locations are retrieved from
METEOSAT observations data set provided by the Satellite Application
Facility on Climate Monitoring {CMSAF) with 0.03 x .03 degrees spatial
resolution (Posselt et al., 2011). The mentioned irradiance observations
are used for verification purposes as described in Section 4.2.4.

Sky images form another source of data utilized in this paper in order
to obtain cloud patterns over application areas. Local sky images are taken
with 1-min. time resolution both in Lindenberg and Berlin, Germany, by a
commercial camera providing 720 x 576 RGB images. These local sky
images are assumed as two dimensional cloud maps projected on latitude-
longitude from whole sky images, as detailed in Section 3.

Observed cloud coverage for Lindenberg, Germany (Latitude:
52°12'36”, Longitude: 14°7'19") provided by Behrens (2016) is another
source of data which is utilized in this paper during model verification
procedure, as described in Section 4.1. Table 1 provides brief in-
formation regarding different data utilized in the paper along with the
location and purpose of utilization of the data.

3. Generation of Spatially Dispersed Irradiance Profile (SDIP)
based on existing cloud patterns

Following the earlier discussions, a detailed knowledge of the in-
cident irradiance on inclined PV module surfaces is of paramount im-
portance for PV system design and management purposes. Such values
can readily be obtained using irradiance models under absence of
clouds since they do not vary over the extent of PV array. However,
under cloudy sky conditions, presence of clouds, their shapes, dis-
tribution and light scattering characteristics cause significant variations
in the incident irradiance on PV module surfaces distributed within an
array. As the power generation in PY modules is directly affected by the
incident irradiance, effects of non-identical irradiance valuescaused by
the mentioned variations give rise to significant fluctuations in PV
power generation. Thus, realistic estimations of the incident non-
identical irradiance values present the opportunity for precise analysis
and consideration of appropriate coping strategies in PV arrays.
Generation of such reliable estimations requires realistic site-specific
cloud shadow patterns to be integrated into irradiance models. A
modeling approach for generation of site-specific spatially dispersed
irradiance profiles on PV arrays which utilizes the Sun’s position in the
sky along with the distribution and characteristics of the existing cloud
coverage is proposed in this paper. The proposed model in this paper
utilizes clear-sky irradiance components along with the existing local
cloud coverage and its light interaction characteristics to generate the
irradiance profiles. The Motf (2013) model, as described in Appendix A,
is utilized to generate clear-sky direct, diffuse and global irradiance
values as well as the cloud transmission factor, T, which are then uti-
lized by the proposed model to generate SDIPs. The Morf (2013) model
is selected due to its simplicity and compatibility with the goals of this
paper. The mentioned model, in general, assumes the incident global

Table 1
Summary of the data utilized in the paper.
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horizontal irradiance as a combination of the beam irradiance, the
diffuse irradiance coming from the cloudy part of the sky and the dif-
fuse irradiance from the clear-sky.

The model proposed in this paper basically considers the instant po-
sition of the Sun in the sky with respect to each observation point, as well
as the existing cloud type and their light transmittance characteristics.
The Sun’s disk is viewed by each observer as the base of a cone with
opening angle of 0.5° (Duffie and Beckman, 2006). For each PV module,
the cut of the cone by the cloud layer forms a circle when 87 = 0°. These
circles then transform to ellipses in parallel with the variations of solar
zenith angle during a day and each PV module receives the beam irra-
diance through the mentioned ellipses. In fact, the Sun’s disk may only be
partly obscured by the existing clouds at a given time instant. Thus, the
beam irradiance is only affected by the cloud cover which is enclosed by
the ellipse, not the total cloud cover existing in the sky. On the other
hand, the diffuse irradiance received from the cloudy part of the sky re-
mains unchanged as well as the diffuse irradiance incident from the clear-
sky portion. As the position of the Sun in the sky varies continuously, the
determinarive task is now to obtain the most appropriate ellipse asso-
ciated with each observer at-each time instant. Determination of the
mentioned ellipses is discussed in detail in Section 3.1.5.

Once the proper ellipse for each observer at each time instant is
obtained, the incident irradiance value is achieved using Eq. (1) which
is a modified version of the Morf {2013) model provided by Eq. (A.1).
The incoming beam irradiance is divided into two components; the
beam irradiance directly coming from the clear-sky portion and the
attenuated beam irradiance from the cloud covered portion of the sky
enclosed by the mentioned ellipses. The magnitude of the attenuation of
the beam irradiance depends on the cloud transmittance, 7., which
varies based on the cloud type. For each individual observation point,
the instantaneous global irradiance falling on a horizontal surface is
determined as;

Gg(t) = [((A—cce (1))-Gy(8)) + cee(t) T Go)] + (1—ce () Gy )
+ ec(t)T-G,(t) 1)

As discussed earlier, Nguyen et al. (2016) in their model categorize
the existing cloud conditions into three different classes: no cloud
{clear-sky), thin and thick cloud and use this categorization to convert
cloud shadow maps into irradiance profiles. This is achieved by cal-
culation of the clear-sky indices corresponding to each cloud condition
by utilizing a histogram of measured global irradiance values provided
by pyranometers and modeled values of clear-sky global irradiance.
Instead of the method proposed in (Nguyen et al., 2016), this paper
obtains the incident global irradiance at each observation point through
an irradiance model, providing the opportunity to separately obtain
each irradiance component {beam, diffuse and ground-reflected) and
reducing the dependency on irradiance sensors or pyranometers, as the
mentioned devices may not be available for each application area. Since
higher number and more detailed cloud classes are considered, utili-
zation of transmission coefficients for different cloud types in this paper
also provides possibility to increase the accuracy during analysis of the
interactions of solar irradiance with the existing clouds.

Different steps of the proposed modeling method in this paper are

Data Type Location

Purpose of Utilization

Meastred Global Solar Irradiance Time-Series Famagusta, North Cyprus
Lindenberg, Germany

Hourly Mean Global Solar Irradiance Values Derfved  Berlin, Germany
from Satellite Observations
Sky Images Lindenberg and Berlin,
Germany

Verification of the selected clear-sky irradlance model and the conversion method of
horizontal irradiance to irradiance incident on inclined panel surface (Appendix B)
Verification of the model proposed to generate spatially dispersed irradiance profiles
(Section 4.1}

Verification of the capability of the proposed model to reflect the variable characteristic of
the incident irradiance at different observation points (Section 4.2.4)

Generation of cloud patterns over the application areas (Section 3 and Section 4)
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explained in a flow chart as shown in Fig. 1 for easier follow up of the
flow of the contents. The developed model is provided as a global medel
which is applicable to either online or historical sky images or cloud
maps of any spatial resolution containing any class of clouds regardless
of their base heights in the sky.

3.1. Sirmdation procedure

This part of the paper provides details en the simulation of each
single step of the proposed modeling method, as shown in Fig. 1, which
finally leads o generaticn of spatially dispersed irradiance prefiles for
desired application areas. Several research studies have proposed
models or estimations for cleud coverage and/cr shadow patterns.
However, it is believed that the existing lecal shadow pattern over a
geographical area at each time instant can best be represented by the
existing real clouds in the sky at the corresponding instant of time.
Nguyen et al. (2016) preposes cleud shadew maps on application areas
that are generated using images taken by total sky imagers (TSI). It is
provided that the fisheye nature of the sky imagers causes the spatial
resclution of different areas of shadow maps being dependent on their
distance from the center of the sky image. For this purpose, a geometic
transformaticn with details provided in (Yang et al., 2014) similar te
the Pseude-Cartesian transformation intreduced by Allmen and
Kegelmeyer (1995) is utilized to cbtain a two dimensicnal latitude-
lengitude grid representing the “cloud map” centered at the sky imager
position above the application area. The proposed approach in this
paper utilizes real-time captured local sky images, as described in
Sectien 2, to obtain instantaneous shadow patterns over the application
areas. The mentioned sky images are assumed as two dimensional la-
titude-longitude cloud maps obtained from whele sky images over the
application areas. The Sun’s positicn in the sky at each desired time
instant is calculated and the Sun is virtually located on the mentioned
sky images. This approach provides possibility for simulation of inter-
actions of solar irradiance and couds, under any type of cloud dis-
tributien and for any desired time instant.

3.1.1. Cloud decision

This part specifically provides information regarding the method
utilized to cassify the cloudy or clear pixels of the sky image. Once the
two dimensional sky images are obtained, the first task is to identify
cloudy and clear parts of the sky in the-mentioned images. An image
processing method similar to the ene which is widely utilized in cleud
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cover estimation studies is utilized to decide if each pixel of the sky
image s cloudy or not. This method relies on the concept of the rato of
the scattered red light te the blue light which was firstly developed at
the Scripps Institution of Oceanography (Johnsen et al., 198%; Johnson
et al., 1991; Shields et al., 2007). In general, the amount of the scat-
tered blue light is higher compared to the red light under clear-sky
conditions while clouds scatter more red light in contrast. Hence, the
method considers the differences between the scattered blue and red
lights and examines the Red/Blue Ratio (RBR) for each pixel. A
threshold value based on the atmospheric conditions and the capturing
equipment Is set and pixels with RBR values exceeding this threshold
are assumed as “cloudy” pixels.

3.1.2. Cloud pattern

Cloud patterns are generated following the cleud decision that is
made as a result of the method provided in Section 3.1.1 by assignment
of 1's and @'s to doudy and dear pixels, respectively. In order te
maintain uniformity and facilitate application of the model to sky
images with different resolutions, the obtained cloud pattern image is
resized to an #1 X M image to assist further analyses. It should be no-
ticed that as well as the cloud maps, the resulting cloud pattemns are
also 2D latitude-longitude images. The image size, (), may arbitrarily
be chosen according te the application requirements. There always
exists a tradecff between the higher accuracies achieved with higher
image sizes against increases in computational time and memeory usage.

8.1.3. Cloud transmittance

As disoussed earlier, the beam irradiance is affected by the deud
transmittance, 7,. Cloud transmittance is a parameter governing the
interactiens of solar irradiance with clouds and its magnitude depends
on different cloud types. Cloud transmittance in this paper is calculated
using the methed introduced by Jewell and Ramakumar (1387) using
Egs. (2), (3) based on a list of cloud transmissien coefficients, x’ and 3,
as given in Table 2. Cloud types are manually evaluated frem the uti-
lized sky images based cn their shape in accordance with the classifi-
cation provided in the Internaticnal Cloud Atlas (1987).
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Table 2
List of cloud transmittance coefficients.

Cloud Type el ¥y

Fog 0.163 0.005
Stratus Nimbostratus 0.268 0.101
Stratocumulus 0.366 0.015
Cumulus 0.366 0.015
Cumulonimbus 0.236 0.015
Altostratus 0.413 0.001
Altocumulus 0.546 0.024
Cirrostratus 0.905 0.064
Clrrug 0.872 0.018

3.1.4. Cloud base height

As discussed in Section 3.1.3, cloud types and base heights in this
paper are manually evaluated based on their shapes according to the
cloud classification introduced in the International Cloud Atlas (1987).
The mentioned cloud base heights are used to obtain the ground area
covered by the utilized sky images. As an example, the minimum and
maximum base height values, as provided in Table 3, are utilized to
approximately calculate the lower and upper limits of the ground area
that may be covered by each cloud type in Fig. 8. Information regarding
the considered cloud types, their corresponding classes and height
ranges are summarized in Table 3. It should be noticed that Table 3
only includes information regarding cloud types that are utilized during
analyses of this paper. These cloud types are manually selected as re-
presentatives of low, middle and high level cloud classes defined by the
International Cloud Atlas {1987) while each mentioned class may also
include some other cloud types. Some examples of the mentioned cloud
types are provided in Table 2.

3.1.5. Determination of appropriate eilipses

The next step is to determine appropriate ellipses for each in-
dividual solar module within the array or each “array observer’” on the
cloud layer, through which the beam irradiance is received by the ob-
server. This is accomplished by considering the virtually located in-
stantaneous positions of the Sun in the local sky images during ‘a day,
from sunrise to sunset. PV modules within the PV power plant are as-
sumed to be south oriented in the northern hemisphere. The geo-
graphical extent of the PV array is then considered as an k x [ area on
the ground with 0 < k< m, 0 < 1 < m. A'size of 100 (m = k= [ = 100)
is utilized in this paper so that the cloudy and clear parts of sky as well
as the areas of PV array subject to the resulting irradiance profiles are
assumed to be represented as percentage areas. Approximate values for
the actual ground coordinates of the PV array covered by the utilized
sky image vary according to the cloud base height and are discussed
throughout the rest of the paper. Eqs. (4)—(7) are utilized to determine
the corresponding ellipse for each array observer and project it on the
cloud layer at each time instant. Fig. 2 shows the position of the Sun in
the sky with respect to a solar panel on the ground at two different time
instant and the resulting circles/ellipses through which the solar panel
receives the beam irradiance. As previously mentioned, each solar
panel within the PV power plant sees the Sun’s disk as the base of a cone
with opening angle of 0.5% and receives the beam irradiance through
circles when these cones cut the cloud layer exactly at solar noon
(87 = B°). The mentioned circles then transform to ellipses in parallel
with the movement of the Sun in the sky and variations of the solar
zenith angle towards sunset or sunrise during a day (Morf, 2013). Thus,
the beam irradiance received by each observer is affected by the cloud
coverage falling within the mentioned circles/ellipses. This fact is the
motivation to develop a model to determine the most appropriate el-
lipse (in terms of the ellipse thickness and coordinates of the ellipse
center) at each time instant for each individual observer and to detect
the cloud coverage within the ellipse as the factor affecting the mag-
nitude of the received beam irradiance by each observer.
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Obviously the position and thickness of ellipses, through which the
beam irradiance is received, depend on the instantanecus positions of
the Sun in the sky. Since the position of the Sun in the sky is defined by
two different angles being solar zenith angle and solar azimuth angle,
the thickness and location of these ellipses are also assumed to be
controlled by and adjusted on the mentioned two angles. As discussed
earlier, changes in ellipse thickness are considered proportional to the
changes of the solar zenith angle considering at the same time the
opening angle of the cone, (0.5°), which forms the ellipse by cutting the
cloud layer, as provided by Eq. {4). Thus, at solar noon (87 = 0°) the
thickness of the ellipse has its maximum value and the major axis of the
ellipse takes the smallest value forming the closest ellipse to a circle
while the thinnest ellipse is formed when the solar zenith angle takes its
maximum value towards sunset or sunrise. At the same time, the minor
axis of the ellipse is geometrically defined based on the major axis as
demonstrated by Eq. (5). Here also the instantaneous positions of the
ellipse centers on the utilized sky image should be determined for
adequate location of the ellipses on the image. For this purpose,
changes of the position of the ellipse center along the x-axis are con-
sidered to be proportional to the Sun’s movement in the sky from east to
west during a day which is defined by solar azimuth angle, as provided
by Eq. (6). Hence, the ellipse center is assumed to be located at the
center {directly above each PV panel) at solar noon (o = 0°) and at the
outmost positions at sunrise and sunset. Movement of the ellipse center
along y-axis is considered to be proportional to the solar zenith angle as
demonstrated by Eq. (7). In this way, generation of the thickest ellipses
located exactly above each PV module at solar noon is made possible
while the ellipses get thinner and further towards sunrise and sunset
proportional to the Sun’s movement in the sky.

Dyft) = 2[((6, () + 0.25)/(90°)) x 1] (@
Dy = 2D (O01=¢%) ®)
) = {[a(t)/a(tmm)] xm, <12 LST

[ ()t (founser)] X 1, &2 12 LST ®)
Oy () = [6,)/90°] x m @)

C,(t) and C, (t) represent the coordinates of the ellipse center projected
on the cloud layer, for each observer. The ellipse centers locate on east
and west sides of each observer before and after solar noon, respec-
tively.

3.1.6. Modeling of solar irradiance

Once the most appropriate ellipse for each observer is determined
and projected on the utilized local sky image at each time instant, the
cloudy and clear pixels of the portion of the sky image enclosed by the
mentioned ellipse are determined as discussed in Section 3.1.1. The
ellipse enclosed cloud cover (EECC) is then identified by dividing the
number of cloudy pixels by the total pixel number enclosed within the
ellipse. The horizontal irradiance received at each observation point is
then obtained through Eqs. (1)-(3) and Table 2. A procedure similar to
the one in Appendix B is followed to convert the obtained horizontal
irradiance into irradiance incident on inclined surfaces as;

G (8) = [(1—cc (1) Gop8) + e ()7 G (] + (- (1) Gy ()

+ cc(D)TRG,(t) + pR, G, (t) 8)

Table 3
Information regarding the utilized cloud types.

Cloud type Cloud class Cloud height (ft)
Cumulus Low Clouds 2000-3000
Stratocumulus Low Clouds 20006500
Altocumulus Middle Clouds 6500-18000
Cirrus High Clouds 16500-45000
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3.1.7. Ground coverage a@ea

Asmentioned in Section 2.1.4, cloud base height plays a key role for
precise determinaticn of the area covered by each utilized local sky
image cn the ground. However, lack of precise data regarding cloud
base height, which may be due to unavailability of proper equipment,
etc., may cause errors in calculation of the exact area covered by the
utilized sky images on the ground. In order to overcome this issue and
make the medel applicable te any sky image, even when precise cloud
base height information data are not available, the area on the ground
covered by the sky image, and hence the resulting irradiance profile,
are presented by percentage values instead of exact ground coordinates
in meters, etc. For example, the whele area on the ground covered by
each sky image is presented as 100% area instead of exact coordinates
in meters, which may not be accurate in cases where precise cloud base
height data are not available. As it was previously mentioned in Section
3.1.2, cloud patterns in this paper are resized to an m x m image in
order to maintain uniformity and the resulting irradiance prefiles on
the ground are presented by percentage values in a k » ! 2D latitude-
lengitude grid as diseussed previously in Section 2.1.5. In this way,
regardless of the cloud type and its height in the sky, the model pre-
sented in this paper can be applied to any sky image containing any
class of clouds with different heights in the sky, even in cases when
precise cloud base height walues are not readily available. In addition to
the above mentioned presentation of the ground area covered by imra-
diance profiles, the methed introduced by Chow et al. (2011) is alse
used in further parts of the paper. The menticned method is utilized in
order to approximately calculate the coordinates of the ground area
covered by each utilized sky image by considering the min. and max.
cloud base height values defined for each cloud type according to
Table 2. Chow et al. (2011) define the coordinates of the ground area
covered by each sky image as a function of the cloud base height from
the ground level as;

{;} = AHpang, {Kﬁ}

where, AH represents the cloud base height from the ground level, 8p
and ap represent the pixel zenith and azimuth angles in the sky image,
respectively. Cbviously, according to Eq. (9), higher clouds result in
wider ground areas covered by the sky image.

&)
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Cloud Cover (EECC) |
\

Irradiance

ag4
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Fig. 2. Podition of the Sun in the sky and the reculting
circle/ellipse with respect to a ground -mounted solar panel
at (a) solar noon, (b) a time instant towards the sunset or
Sunrise.

4. Results and discussion

The proposed approach provides the oppermunity to obtain irra-
diance profiles on PV arrays based on the existing real cloud patterns
and their characteristics and hence provides the possibility for accurate
analysis of the effects of the incident non-identical irradiance values
caused by cloud passages. This part of the paper includes validation ef
the developed model aleng with some examples and results of appli-
catien of the model. The medel is successfully verified using measured
itradiance data and presented high accuracy in medeling irradiance
variability during the validation time period.

4.1. Model verification

The propesed model for generation of SDIPs en PV arays based cn
local real sky images is validated using the Variability Index (VI) me-
tric, defined as a measure of irradiance variability over a specified time
perioed, as propesed by Stein et al. (2012) and also utilized by Nguyen
et al. (2016). The metric is defined as;

JEUO—GU—1)7 + &
2
VG (-G (=1) 1 + A2

2 (1o

[ =

VI =

[+

t

The propesed model in this paper is presented as a global model
which is capable of irradiance estimation for different geographical
locations, where appropriate input data are available. Thus, it is as-
sumed that ence the model {5 validated it can generate reliable irra-
diance profiles for desired application areas. Therefore, although the
meodel itself is applied and sample results are provided for Berlin,
Gemmany, measured irradiance data provided by WRMC-BSRN for
Lindenberg Station (Latitude: 52"12'36”, Longitude: 14“7'19”), as the
closest station providing the required data, are utilized for model va-
lidation. Modeled VI values are validated against the measured VI data
for Lindenberg, Germany. This is accomplished by calculating the V1
metric values for measured and medeled daily global horizental irra-
diance sequences with 1 min. rescluticn for a time period including a
total number 0f 117 days from April to August, while the days for which
measured data are not provided by the weather station are excluded.
This time period is chosen for validation purposes due to the highly
variable cloudiness amounts reported by the weather station at the

139



M. Jarayeri et al.

mentioned geographical location. Distributien of the cloud coverage
during the validation time pericd is presented as a histogram in Fig. 2.
Daily VI values caleulated using both measured and simulated 1-min.
global herizental irradiance (GHI) data for the array ebserver located at
the center of the obtained irradiance profile are compared during the
mentioned time period. For this purpose, the global irradiance se-
quences between 07:00 - 19:08 at the mentioned geographical lacation
are simulated utilizing a set of local sky images, as described in Section
2, providing the same average cloudiness for each day as the cbserved
values during the validatien time period provided in (Behrens, 2016).
Clear-sky global irradiance values are calculated according to Appendix
A. Aspreviously mentioned, calculaticns of the VImetric are performed
for the center point of the simulated irradiance prefiles as the reference
point since the irradiance measurements repeorted by the weather sta-
tion are also measured using a single pyrancmeter located at the center
point of the ground area covered by the local sky image at the mea-
surement station. Cumulus cloud, as a common cloud type at the geo-
graphical lecation and time peried of interest, is considered as the cloud
type during the simulations. The comparisen results of the measured
and the modeled VI values present statistics of mean bias errer (MBE) of
0.16, root mean square error (RMSE) of 2.39, comrelation coefficient of
0.94 and mean absolute error (MAE) of 1.91.

The autocorrelation function and irradiance incements are two
other measures that are utilized for validation purpeses in this paper.
The mentioned two facters are used in order to analyze both the si-
mulated and ground-measured frradiance time-series and prove their
statistical closeness to each sther. An irradiance increment, AG, as
defined by Eq. (11) (Lehmann et al., 2017), is considered as the dif-
ference between irradiance values at two different time instants;
AG = Gt + 1)-G(!) (11}

The lag-1 autocorrelation function, as preposed by Skartvelt and
Olseth (1992), and the magnitude of consecutive irradiance increments
(T = Lmin.) are calculated for both the ground-measured and simulated
irradiance time-series for Lindenberg, Germany, for the above-men-
tioned validatien time peried. Fig. 4 shows the comparison results be-
tween the measured and modeled lag-1 autocerrelation coefficients and
probability of irradiance increments during the validation time period.
The results approve a good conformity between the measured and
medeled irradiance time-series during the validation period in terms of
autocarrelation coefficients and iiradianeces increments. It is chserved
that both the autocorrelation coefficients and irradiance increments, as
well as the variability index, vary together with the variaticns of the
amount of cleud cover in the sky. While the extremely overcast and
clear days are represented by the lowest values of V1, lowest irradiance
increments and highest values of autecerrelation coefficients, it is ob-
served that magnitude of irradiance increments increase and auto-
correlation coefficient values detrease together with increasing values
of VI as a result of wariations in the amount of cloud coverage.

40 &
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35
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Expectedly better results, altheugh slightly, could be obtained if precise
infermation regarding the cloud type and its distributicn at the mea-
surement station during the verification time period were available.

Moreover, measured irradiance data gathered from an extensive set
of adequately positioned ground-mounted pyranometers within the
application area of the model would definitely enrich the validation of
the proposed SDIPs in this paper. Such data would create the oppor-
tunity for peint-to-point validation of the generated spatial irradiance
time-series for different observation points within the application area
of the proposed maodel as well as a comprehensive analysis of correla-
tion structures between irradiance time-series at the mentioned ob-
servation points. However, unavailability of such data is censidered asa
limitation in this paper. In the absence of the above-mentioned set of
measured irradiance data frem multiple ground-meunted imadiance
sensors, analyses and model validation in this ‘paper are conducted
based on the readily available single-point measured irradiance time-
series for Lindenberg, Germany, in terms of VI, autocorrelation coeffi-
cients and frradiance increments. Taking the mentioned limitations and
constraints into consideration, a comprehensive analysis on the spatial
preoperties and correlation structures as well as the peint-to-point
comparisen between the measured and modeled irradiance time-series
for different observation points within the application area of the madel
can be considered as a future work in light of the measured irradiance
time-series obtained from a set of ground-mounted pyranometers po-
sitioned within the model's application area.

4.2. Examples of application of the model

Examples of different applications of the developed model are
previded and discussed in this part of the paper. The model has firstly
heen utilized to generate daily iradiance sequences for observers with
different locations within the ground coverage area of a specific un-
changed cloud map during a day. It is observed that despite the un-
changed cloud conditions, different irradiance sequences are obtained
at different locations as a result of mevement of the Sun in the sky
during the day. The model’s capability for generation of instantaneous
irradiance prefiles under different eloud coverage and types is alse
presented, where different cloud distributions, types and their light
interaction characteristics yield different imradiance profiles for the
same instant of time. Finally, the model is utilized along with a setof1-
min. captured local sky images to generate daily irradiance sequences
for different locations within the ground coverage area of the sky
images, where comparison results provide significant differences be-
tween the obtained irradiance sequences as a result of the geagraphical
location of the observer as well as the cleud distibution in the sky.

A.2.1. Daily irradiance sequences for different array observers with
unchanged cloud coverage
This part of the paper presents daily irradiance sequences obtained

' Fig. 3. Distribution of doud eoverage during
validation period.

140



Measured Values - - - Simulated Values

Solar Energy 158 (2017 977-994

Fig. 4. Comparison between (a) lag-l autocorrelation

costfivients and (b) probability of iradiance inerements
of the measured and modeled iradiance time-geries for
Lindenberg, Germany.
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with the proposed model for different array observers while the cloud
coverage is assumed to be identical during the day. Thus, the model’s
capability to simulate shadow patterns and daily irradiance sequences
as a result of variations of the Sun's positien in the sky (while the cloud
coverage remains unchanged) is presented.

Fig. 5 shows a sample of a whole sky image, a two dimensional
cloud map and the cbtained cloud pattern. The whole sky image is
reconstructed frem the two dimensienal sky image (or cloud map)
based on the earlier discussions.

Cumulus cloud is considered as the cdoud type. The clond pattern is
kept unchanged and the achieved irradiance profiles with the pattern at
different time instants during a typical day in July for Berlin, Germany
are presented in Fig. b. The idea here is to highlight the impacts of the

(a)

Fig. 5. (a) Allcky image, (b) loud map and () the obtained cloud pattern with a Cumulus cloud. ee = 45%, m = 100,

(b)

B4

Sun’s movement in the sky, which is virtaally located cn the image at
the desired time instants, on irradiance profiles received on the ground,
under identical cloud distributicn during a day.

The achieved different profiles of EECC for array observers dearly
demenstrate the influences of the Sun's movement in the sky during a
day. Although the total cloud coverage and its shape remain un-
changed, cbservers at different areas of the array experience irradiance
attenuations caused by the existing cloud as a result of the movement of
the Sun in the sky during the day. The magnitude of the attenuation of
the beam irradiance is directly dependent en the EECC, (e (f)).

Daily global irradiance sequences achieved with the cloud pattern of
Fig. 5 for observers at three different locations are presented in Fig. 7. The
irradiance sequences demonstrate the effects of the variations in the Sun’s

: ]
(e)
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Fig. 6. EECC for array observers and corresponding generated SDIP on 45° inclined south oviented PV arvay at (a) 1:00, [HH:MM LT], (b) 13:00, [HH:MM LT] and (] 16:00, [HH:MM
LT] for Berlin, Germany (Latitude: 52°33'56”, Longitade: 13718387 in July. (% = [ = m = 1o0).

positicn in the sky during the day. Obviously, the observer located at the
east side of the array is affected by the incident nen-identical irradiance
values before solar noon while the observers at the center and the west
sides experience the irradiance degradation at later hours, respectively.
As previously discussed, higher couds in the sky result in wider
ground coverage areas. Cumulus clouds are low level clouds usually
existing at maximum 1000 m above the ground. On the other hand,
cocrdinate transformation for zenith angles near the horizon is not
valid. Therefore, consideration of the upper limit of cloud base height
for Cumulus cloud and & < 85° yield a maximum ground coverage area
of approximately 4 km® with the sky imager heing located at the
center. Hence, the coordinates of the menticned shservers in Fig. 7

corresponds to  the  points approximately  located  at
a = (500 m,500 m), b = (1000 m,1000 m) and ¢ = (1500 m, 500 m), 1e-
spectively.

4.2.2. Instantaneous irradiance profiles based on different cloud

distribution and characteristics
Capability of the model to generate and simulate instantaneous

— G({25,25)(1)

—G{50,50){t})

irradiance prefiles on PV array surfaces according to various cleud
distributions and classes is presented in this part of the paper. As
mentioned in the earlier parts of the paper, in additien to the cloud
pattern, the light transmission characteristics of the clouds should
also be considered during analyses of the effects of non-identical ir-
radianee levels. The preposed model considers the influences of dif-
ferent cloud types aleng with their distribution in the sky in order te
achieve mere accurate results. Fig. 8 presents irradiance profiles
generated with four different cloud types and distributions. The range
of the area that each sky image may cover on the ground, according to
the existing cloud type and its minimum and maximum height in the
sky as mentioned in Table 3, is also provided. The time instant of the
simulations is kept constant to provide the oppertunity of comparisen
between the results.

In addition to the major dependency of the obtained irradiance
profiles on the cloud distributions, the magnitude of irradiance de-
gradation, specially the beam compenent, varies according te the type
of the existing clouds. According to the results, the Cirrus cloud pre-
sents the smallest influence cn the incident irradiance values and the

— G{75,25){t)

800 800 800
o — —
g 500 NE 500 NE 600
o E £
S 400 8 400 g 400
a2 5 5
e k=1 k=]
£ 200 £ 200 £ 200
O P PP P PP SR OP PP PP RP P TP PP PP PPP
$FE N EE T S E P @A NN g

Time, [HH:MM LT]
(2

Time, [HH:MM LT]

Time, [HH:MM LT]

{h) {c)

Fig. 7. Daily global radiance on 45° indined PV module surface for three different arvay observers with unchanged doud eoverage for Berlin, Germany (Latitude: 52°33'56”, Longitude:

1318397 in July, ¢c = 45%.
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irradiance profiles show similar dispersion characteristics under
Stratocumulus and Cumulus clouds.

4.2.3. Dadly irradimnce sequences for different array observers based on
variable cloud coverage

This part of the study intends to present the model’s capability to
simulate daily irradiance sequences on the surface of solar madules
with different gecgraphical lecations on the ground, based on variable
cloud coverage and the Sun’s position in the sky during a day. Sample
sequences of daily global irradiance for different observation points
under partly cloudy sky are simulated based on the presented approach.
A set of captured local sky images with 1 min. time resolution from

07:00 to 19:00; as described in Section 2, is utilized for this purpose.
Fig. 9 presents the total cloud coverage for the mentioned set of sky
images along with a sample of EECC for a selected observation point,
retrieved frem the above mentioned set of sky images using the pro-
posed method. Cumulus cloud is selected to represent the cloud type for
simulations due to its convenience with the image database. The si-
mulated irradiance sequences at five different points located on the
diagonals of the array are presented in Fig. 10.

As determined in Section 4.2.1, the maximum ground area covered
by the mentioned sky images is approximately 4 km® and the ob-
servation points are located at ground cocrdinates of
{500 m,1500 m), (1500 m,500 ), (1000 m,1000 m), (500 m,500 m)  and
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Fig. 9. (a) Total doud cover, ce(t) and (b)
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image set, At = 60 ser.
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Fig. 10. simulated daily global irradiance sequences on 45° tilted PV module surfaces located at five different locations within the array for Berlin, Germany (Latitude: 52°33'56%,

Longitude: 13°1839") in July. Af = 60 sec.

(1500 m, 1500 m), respectively. The obtained irradiance sequences ob-
viously exhibit the influences of cloud distribution on the irradiance
values received by array observers. Same clouds during the day have
created non-identical irradiance sequences at different locations within
the array. Instant fluctuations of the irradiance sequences are directly
dependent on the EECC for each observer, as well as the fluctuations in
the diffuse irradiance from cloudy sky portion. Since the location of the
ellipses on the cloud layer varies with respect to the geographical lo-
cation of the observers at each time instant, EECC differs from point to
point with respect to the cloud distribution in the sky.

4.2.4. Variable characteristic of irradiance sequences at different locations

It is expected that the daily irradiance sequences received at dif-
ferent observation points within an application area differ from each
other as a result of the distribution of clouds in the sky. This part of the
study is allocated to a comparison between the daily irradiance se-
quences as well as examination of the model’s capability to reflect the
variable characteristic of the daily irradiance sequences incident on
different observation points within a PV array. For a better illustration
of the influence of the cloud distribution on the incident irradiance
values, scatter graphs are used to compare the modeled daily irradiance
sequences for five different array observers. The comparison results are
presented in Fig. 11. The irradiance sequences are simulated using the
previously described local sky image set, defined in Section 4.2.3., and
the same cloud type. In order to facilitate the comparison, the observers
are particularly selected on the diagonals of the application area cov-
ering the area from north to south and east to west. It is observed that
though the irradiance sequences incident on geographically closer ob-
servers present less amount of dispersion, daily irradiance sequences
received by different array observers are not identical during the day.
The results demonstrate the variable characteristic of the daily irra-
diance sequences received by different PV array observers during a day.
Obviously, the mentioned non-identical irradiance sequences, as well as
the dispersion range of the incident instantaneous irradiance values, are
caused by the existing cloud coverage and its distribution in the sky.

Instantaneous irradiance values received by the observation points
show relatively high dispersion as a direct result of the existing irra-
diance profile. The range of the mentioned dispersion also differs from
point to point since the EECC for each observer varies according to the
observer’s geographical location. The selected observation points are
assumed to be representatives of the whole application area. Similar to
the presented results, non-identical daily irradiance sequences have
also been obtained for the rest of array observers during the simula-
tions. It is assumed that the relatively less amount of variation in the
daily irradiance sequences in some cases is a result of relative closeness
of the corresponding observation points to each other.

Differences between the instantaneous irradiance values received by

989

different observers within the application area are caused by the at-
tenuating effect of the EECC corresponding to the individual observers
on the beam irradiance component.

Satellite-observed irradiance values are utilized in order to verify
the model’s capability to simulate the daily irradiance sequences for
different observation pointswithin an application area and reflect their
variable characteristic. For this purpose, the ground coordinates of the
observation points utilized in Fig. 11 are used to virtually locate them
on the ground within the application area. A sample day in July with
the same cloud coverage as the one defined in Section 4.2.3 and utilized
in Fig. 11 is selected and the hourly mean irradiance values for each
observation point, as specified in Section 2, are derived from satellite
observations. The scatter plots provided in Fig. 12 present comparison
results between the mentioned hourly mean irradiance values for dif-
ferent observation points within the application area. The comparison
results obviously show that the observed hourly mean irradiance values
differ from point to point during the day. The dispersion range of the
hourly mean irradiance values, as expected, are relatively less than
those of the instantaneous values. However, the comparison results
clearly show the dispersed characteristics of the received irradiance
values by different observation points during a day and confirm the
results obtained by the model. Obviously, the incident irradiance values
and their dispersion range are directly affected by the existing cloud
coverage and its distribution in the sky. Different cloud distributions
during a day may cause different results and dispersion ranges for
different observation points, even for days with the same amount of
cloudiness.

5. Conclusion

This paper proposes a modeling approach to generate Spatially
Dispersed Irradiance Profiles (SDIPs) on the surface of inclined PV panels
assembled within a PV power plant based on the existing cloud coverage
and its light transmission characteristics. Real sky images are utilized to
identify the existing cloud coverage, its distribution and light transmission
characteristics. Different cloud classes are considered for analysis purposes
in the paper where the cloud types and their heights in the sky are eval-
uated based on the classification provided in the International Cloud Atlas
{1987). The limits of the application area of the PV power plant is assumed
to be defined by the ground coverage area of the utilized sky images. The
minimum and maximum cloud base height values for each cloud type are
utilized to obtain the approximate coordinates of the ground coverage area
(the application area) of each utilized sky image. The diffuse and ground
reflected components of solar irradiance are assumed to be affected by the
existing total cloud coverage in the sky and hence are identical for each
individual observer within the application area. However, the beam irra-
diance component is received by each observer through cones with 0.5%
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Fig. 12. Seatter plots of the observed hourly mean irvadiance values for different observation points within the PV array for Berlin, Gevmany (Latitude: 52°33'56”, Longitade: 13°18359 7 in
July.
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opening angles. Consequently, it is assumed that the incident beam irra-
diance is not affected by the total sky cloud coverage. The beam compo-
nent is only affected by the portions enclosed by ellipses formed when the
cones are cut by the cloud layer. From this point of view the cloud shape
and distribution earn extra significance because observers, according to
their geographical location within the application area, receive the beam
irradiance at each time instant through different ellipses containing dif-
ferent amounts of clouds. The shape of the mentioned ellipses also vary in
parallel with the movement of the Sun in the sky. The ellipses get narrower
during a day with increasing solar zenith angle values and transform to a
circle exactly at solar noon. The proposed model firstly obtains the in-
cident irradiance on inclined module swrfaces under clear-sky conditions
for each observer within the area of the PV array. It is then followed by
consideration of the most appropriate ellipse for each individual observer
at each time instant and generation of Spatially Dispersed Irradiance
Profiles on horizontal surface by taking into account the attenuating effect
of the ellipse enclosed cloud coverage on the beam irradiance received by

Appendix A. Solar irradiance on horizontal surface

Solar Energy 158 (2017) 977-904

each observer through the ellipses. The obtained horizontal irradiance
profiles are then converted into irradiance profiles on inclined PV panel
surfaces. It is shown that the incident instantaneous irradiance values re-
ceived by different observers are widely dispersed and vary from point to
point based on the cloud type and distributions. Relatively wide dispersion
range of the instantaneous irradiance values received by different array
observers is a result of the attenuating effects of cloud coverage enclosed
by the corresponding different ellipses on the beam irradiance and clearly
highlights the significance of utilization of such a modeling approach to
investigate the effects of the incident non-identical irradiance values on PV’
arrays. Influences of cloud coverage and its distribution are reflected on
daily irradiance sequences, derived for different array observers, as in-
stantaneous flucruations. The differences between the mentioned daily
irradiance sequences also approve the significance of site-specific irra-
diance profiles based on the existing clouds for desired analyses of PV
systems.

Calculation of the incident irradiance on a horizontal surface is the first building block of the proposed model. To serve the purpose of the study,
the utilized irradiance model should consider the cloud coverage and sunshine duration to model time-series of solar irradiance on horizontal
surfaces. Due to its simplicity and eligibility to the goals of the study, the model proposed by Merf (2013) is chosen. The general lines of the
mentioned model are briefly presented here. Detailed information regarding calculation of different parameters utilized by this model, such as 7, K,
and T, can be found in (Morf, 2013).

A.1. Model structure

The model obtains time-series of global solar irradiance on a horizontal surface using Angstrém-Prescott regression. The original model has firstly
been developed by Schilepp (1966) and then refined by Biga and Rosa (1980), The model obtains global irradiance on a horizontal surface at a given
time instant using the following pair of equations’;

G(t) = SIF()Gy (1) + (1—ce(t))Galt) + cc(t)TG, A1)
Golt) = Gi(t) + Gy (A.2)

The terms on the right hand side of Eq. (A.1) respectively stand for;

a. The beam irradiance received from the clear patt of the sky. SIF () (Stochastic Insolation Function) takes the values of 0 or 1 cotresponding to the
cases that the Sun is covered by the clouds or it is shining, respectively.

b. The diffuse irradiance incident from the clear pact of the sky.

c. The diffuse irradiance received from the cloudy patt of the sky.

According to Eq. (A.2), the clear-sky global irradiance on a horizontal surface is composed of two main components; the beam and the diffuse
irradiances. The irradiance above the clouds is assumed to be equivalent to clear-sky irradiance.

A.1.1. The clear-sky model

According to Eq. (A.2) a clear-sky model should be able to determine the clear-sky global irradiance on horizontal surfaces. The model of Biga
and Rosa (1980) is considered for the mentioned purpose due to its convenience with the Berland formula {Kondratyev, 1969) which has been
reported to outperform the other popular clear-sky models {(Lanetz et al., 2007). The clear-sky model is utilized to determine appropriate expressions
for Gq(t) and G (t). The cleat-sky beam, diffuse and global irradiance values on a horizontal surface are obtained as;

Go(t) = Golyesprs

%6 (E) (A.3)
Ga(t) = e(Golt)—Gu(1)) = Go(t)c[l il (t)J (A.4)
Golty = Go(t)(c+ (- c)expm@ (t)) (A.5)
e= % = K‘ is an adjustment constant and « is set to a value that ensures the following equation;

% (a+b-D;) = —0 f Goep s (t) (A6)

1 The expectations of beam, (G (£)), diffuse, (Tz(£)) and global irradiance, (G, (£)), on a horizontal surface at a given hour, (£), are used by Morf (2013} since variations in the clear-sky
irradiance during an hour are very little.
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Appendix B. Solar irradiance on inclined surface

In order to be utilized in power generation analyses in PV systems, the global irradiance on horizontal surface should be converted to irradiance
on inclined PV module surface. The conversion procedure is presented together with a sample of the results and the model’s reliability is verified
using measured global irradiance data throughout this part of the paper.

B.1. Model structure

Global irradiance on an inclined surface, for cloudy and clear-sky conditions, is determined as;

G (t) = SIF () Gyg(t) + (1—ce ())Gyg(t) + cc(1)TR4G, (1) + pRG (1) (B.1)

Gog (1) = Gplt) + Gy (1) + Gra(t) (B.2)

B.1.1. The beam irradiance
The cleat-sky beam irradiance, Gy (£), is obtained by multiplying the beam component of the global irradiance on herizontal surface by the ratio
between the beam irradiance on inclined plane and the beam irradiance on horizontal plane, R,, as;

cosOs (1)

Gig(8) = Go()Ry = G () cosbz (1) h

The incidence angle of the solar irradiance on an inclined surface, 85, and the solar zenith angle, &z, are obtained as;

cosds = sindsingcosg—sindcosgsingcosa + cosdcospcospeosw + cosdsingsinfeosacosw + cosdsinasinwsing
(South: a = 0°) (B.4)

cos@y = sindsing + coSSCOSECosw = sinyy (B.5)

B.1.2. The diffuse frradiance

The models developed for estimation of diffuse irradiance on inclined surfaces are categorized under two groups; Isotropic and Anisotropic
models. The isotropic models (Badescu, 2002b; Koronakis, 1986) consider a uniform distribution for diffuse sky radiation over the sky dome while
anisotropic models (Reindl et al., 1990b; Skartveit and Olseth, 1986; Steven and Unsworth, 1980; Hay, 1979; Temps and Coulson, 1977) consider
anisotropic diffuse sky radiation for circumsolar region (the region near the solar disk) and isotropic distribution of diffuse radiation for the other
regions of the sky. The disadvantage of isotropic models against their simplicity is the underestimation of the diffuse irradiance on surfaces which are
tilted towards the equator. The anisotropic model presented by Reindl ef al. (1990b) is utilized in this paper to obtain the diffuse irradiance on
inclined module surfaces. The model defines the ratio between the diffiise irradiance on inclined surface and the diffuse irradiance on horizontal
surface, Ry, as;

By 20 4 (1—%}[(1 + cosf)/211 + T, sin*(8/2)]
o

H, (B.6)

Gyp(t) = Gy (t) Ry (B.7)

B.1.3. The ground reflected irradiance

Due to the low reflectivity of the ground, the ground-reflected irradiance has a small effect on PV module surfaces. Most of the models assume the
ground to be horizontal and isotropically reflecting the solar irradiance. Hence, the ground-reflected irradiance is defined as;
1—cosp

Gy = G ()pR, = G, (E)PT (B.8)

The value of p varies with the ground type and it is commonly utilized as p = 0.2 for the cases where the exact value is unknown {Lorenzo, 2003).
B.2. Sample Sequence of global solar irradiance on inclined surface

The accuracy of the model is initially examined using measured irradiance data during a typical clear November day on a 45° inclined module
surface in Famagusta, North Cyprus (Latitude: 35°8'18", Longitude: 33°5545 ), where the experiment was conducted. The irradiance on a horizontal
surface is first derived through Eqs. {(A.3)-(A.5) and then converted to irradiance on inclined surface by Eqs. (B.2)-(B.8). The measured and simulated
global irradiance values are compared through Fig. B.1. A threshold of 50W /m? is applied and irradiance values lower than this threshold are omitted
to avoid data uncertainty effects as suggested by Padovan and Del Col {(2010). The figure also presents the results obtained with four different
anisotropic diffuse irradiance estimation models. Details regarding the mentioned models are provided in Table B.1. Performance metrics (Appendix
() regarding the mentioned methods are provided in Table B.2.

According to the results, in one hand, the models introduced by Steven and Unsworth (1980) and Temps and Coulson (1977) generally over-
estimate the irradiance values while providing slightly better estimation performance for high zenith angles. On the other hand, the models re-
commended by Reindl et al. {1990b), Hay (1979), and Skartveit and Olseth {1986) show almost the same estimation performance providing the best
estimations for low zenith angles. The relatively low estimation error achieved by the model presented by Reindl et al. (1990b) is within acceptable
limits which confirms the reliability of the mentioned model for further analysis.
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—Best Fit Fig. B.1. Measured vs. simulated global irradiance on 45°
1200 T - T T T inclined surface for a typical clear day in November in
Famagusta, North Cyprus (Latitude: 35°818", Longitude:
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Table B.1
List of the compared anisotropic diffuse {rradiance models.
Reference Model Type Ry
Reindl et al. (1990b) Anisotropic %Rb I (17%)[(1 + cosBy2]T1 + Jm_msmj(ﬂfl)]
Skartveit and Olseth {1986} Anisotropic %Rb + o S (1—%—@)[1 + cosfl2
Steven and Unsworth (1980} Anisotropic 0.51R + ([1 + €088/ 2)—1.74/1 26w X [sinf—(§ x 7/180) cosf—rsin(8/2)]
Hay (1979) Anisotropic %Rb v (17%)[1 + cosgl2

T max{o,(o 372)5}_
Hy

Table B.2

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Percentage Error (RMSPE) for five anisotropic diffuse

irradiance model.

Model MAE RMSE MAPE (%} RMSPE (%)
(W /m?) (Wim?)

Hay (1979} 33.0062 43.1067 10.2670 18.7669

Reindl et al. (1990b) 32.4287, 42.1637 9.9690 18.1157

Skartveit and Olseth 33.3397 43.7528 10.3217 18.6814
(1986)

Steven and Unsworth 53.2710 62.6140 8.1557 13.7442
(1980}

Temps and Coulson 40.7762 45.1770 10.0820 17.2402
(1977}

Appendix C

The performance of estimation systems can be examined using different metrics. The metrics utilized in this paper to analyze and compare the

petformance of different solar irradiance models are given as;

=1
Mean Absolute Error (MAE) = 4 Z M—E
n
W

Root Mean Square Error (RMSE) =

i=1
Mean Absolute Percentage Eiror (MAPE) = l[z M-E X 100]
n

Root Mean Square Percentuge Ervor (RMSPE) =

M;: ith value of the measured data, E: ith value of the estimated data.
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Appendix C: Adaptive Photovoltaic Array Reconfiguration Based on
Real Cloud Patterns to Mitigate Effects of Non-Uniform Spatial

Irradiance Profiles

Moein Jazayeri, Kian Jazayeri, Sener Uysal, “Adaptive photovoltaic array

reconfiguration based on real cloud patterns to mitigate effects of non-uniform spatial

irradiance profiles”, Elsevier Solar Energy Journal, vol. 155, 2017.

ABSTRACT

This paper proposes a simple and dynamic reconfiguration algorithm for photovoltaic (PV) arrays in order
to mitigate negative effects of non-uniform spatial irradiance profiles on PV power production. Spatially
dispersed irradiance profiles incident on inclined PV mwodule surfaces at each application site are gener-
ated based on real sky images. Models of PV modules are constructed in MATLAB /Simulink based on one-
diode mathematical model of a PV cell. The proposed dynamic reconfiguration algorithm operates based
on irradiance equalization principle aiming for creation of balanced-irradiance series-connected rows of
PV modules. The proposed algorithm utilizes an-irradiance threshold to obtain near-optimal configura-
tions in terms of irradiance equalization and number of switching actions under any type of non-
uniform spatial irradiance profile. The algorithm provides no limits on the number of PY modules within
the array. The reconfiguration algorithm is examined with different irradiance profiles and significant
improvements, almost equivalent to the ideal case corresponding to equal irradiance for all panels, are
achieved for each shading pattern. The advantages of the algorithm are simplicity and providing signif-
icant improvements in array’s power generation alongside with reduced number of switching actions.
2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Solar energy due to its clean and renewable nature outperforms
many conventional energy resources and its application areas have
significantly been growing during the recent years. The non-linear
nature and dependency of this energy source to the incident solar
irradiance is one of its main disadvantages. Non-uniform irradi-
ance levels incident on the surface of photovoltaic (PV) modules
within a PV power plant, mostly caused by passing clouds, reduce
their performance. Therefore, proper management and operation
of PV systems requires reliable knowledge of solar irradiance val-
ues at the application areas. Large-scale centralized PV power
plants or distributed PV generators on wide geographical areas
are examples of such systems and applications with precise and
site-specific high resolution irradiance data requirement. However
unavailability or incompatibility of data provided by measurement
stations with the analysis requirements (unavailability of data for
desired application areas or incompatibility of the resolution of
data with the analysis purposes) and other limitations associated
writh the mentioned stations and equipment cause problems from
PV analyses point of view.

*+ Comesponding author.
E-mauil addresses: moein jazayen@ccemuedutr (M. Jazayen), ldanjazayen@cc.
emu.edutr (K. Jazayen), sener.uysal@emu.edu.tr (5. Uysal).
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The mentioned problems have motivated research studies to
develop models for estimation of solar radiation and several mod-
els are proposed to estimate clear-sky radiation as well as radiation
under cloudy sly to be utilized for PV analyses purposes. lrradiance
data generated by irradiance estimation models forms the required
input data for PY analyses purposes. Thus, an adequate irradiance
model from PV research point of view should be able to consider
interactions of sunlight with clouds and take into account cloud
properties to provide reliable irradiance data for desired applica-
tion areas. Such a model should be capable of generating high res-
olution spatial irradiance data incident on PV module surfaces
within a PV array. Reliable analyses of PV system performance
become possible once the required high resolution spatial irradi-
ance data for the desired PV application areas is obtained by the
mentioned irradiance models and/or measurement equipment.

Mathematical modeling of PV systems has been widely consid-
ered for investigation of system performance under variable envi-
ronmental conditions. One-diode and two-diode mathematical
models of a solar cell have been widely utilized for the mentioned
purpose (Liu and Dougal, 2004; Villalva et al., 2009; Ishaque et al.,
2011a, 2011b). These models generally estimate PV system charac-
teristics utilizing datasheet parameters provided by PV manufac-
turers along with environmental parameters such as solar
irradiance and temperature.
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Nomenclature

cc cloud cover [%]

LT local time

Npy number of PV modules in the array
Ny number of switching actions

Lon photo-current [A]

Iy diode saturation current [A]

n diode ideality factor

Rs series resistance [Ohms]

Rey shunt resistance [Ohms]

G average irradiance of the ith row [W/m?]

Gy incident irradiance on the jth PV module of the ith row
[W/m’]

G array's average irradiance [W/m?]

AG irradiance threshold [W/m?]

1 number of PV modules in a row

P array's non-reconfigured maximum power [W]

Popr. array's maximum power under ideal conditions [W]

Taking proper precautions and application of efficient strategies
to mitigate the negative effects of non-uniform spatial irradiance
profiles are significantly important for PV system planning and
management. Utilization of bypass diodes or different PV array
architectures are examples of such strategies (Silvestre et al,
2009; Carannante et al, 2009). Series-Parallel (SP), Bridge-Link
(BL) and Total-Cross-Tied (TCT) are the most widely utilized array
configurations while the TCT topology provides higher efficiency in
reducing losses caused by non-uniform spatial irradiance profiles
(Ramaprabha and Mathur, 2012; Kaushika and Gautam, 2003).

Dynamic reconfiguration of PV module interconnections within
a PV array is another leading-edge research area. Velasco-Quesada
et al. {2009) proposes an optimization algerithm based on irradi-
ance equalization index, aiming for creation of series connected
rows of parallel connected PV modules with average irradiances
equivalent to the array’s average irradiance. The algorithm exami-
nes all possible array configurations and selects the most proper
configuration. The reconfiguration of PV modules is considered as
a mixed integer quadratic programming problem in {Shams El-
Dein et al, 2013) with capability of utilization with nen-equal
module number per row. Wilson et al. (2013) propose an iterative
and hierarchical sorting algorithm based on irradiance equalization
methed in order to achieve near-optimal configuration considering
number of switching actiens, Nsw. Connection of an adaptive bank
of modules to a fixed part of the PV array through a switching
matrix, based on a model-based control algorithm is considered
in {Nguyen and Lehman, 2008). Alahmad et al-{Z012) propose a
flexible switch array matrix topology for real-time power genera-
tion improvement.

The irradiance value incident on the surface of each individual
PV module should be known for reliable analysis of the effects of
non-uniform spatial irradiance profiles on PV power production.
This paper utilizes a modeling technique which generates spatially
dispersed irradiance profiles incident on PV module surfaces at the
application sites. The model utilizes real sky images and accounts
for light interaction properties of different cloud types to generate
irradiance profiles based on the existing cloud patterns and their
sunlight interaction properties. A simple reconfiguration algorithm
which is based on irradiance equalization method is proposed to
reduce losses caused by non-uniform spatial irradiance profiles
on PV systems. The algorithm aims for providing near-optimal
array reconfiguration in terms of irradiance equalization and Ngy.
The contributions of this paper are mainly to the utilization of
site-specific irradiance profiles based on existing cloud distribu-
tions for analyses of the effects of non-uniform spatial irradiance
profiles and the dynamic and simple reconfiguration algorithm
which offers no limits on the number of PV modules included
within the array and shading profiles alongside with the significant
improvements in power generation. This paper addresses the need
to a simple dynamic reconfiguration algorithm to mitigate negative
effects of non-uniform spatial irradiance profiles induced on the
extent of PV plants, mainly caused by the existing clouds. The inno-

vation of this work is the design of an algorithm capable of
dynamic reconfiguration of the interconnections of PV modules
within a PV plant according to the spatially dispersed irradiance
profiles incident on the PV plant area at any instance. The algo-
rithm, which operates based on irradiance equalization principle,
provides near optimal PV array configurations in order to generate
approximately the maximum possible power under non-uniform
spatial irradiance profiles at any instance. The algorithm also con-
siders reduction of number of switching actions in order to pre-
serve the lifetime of switching devices. For this purpose,
unnecessary switching actions which do not provide significant
contribution to power generation are eliminated. In this way,
yielding ‘approximately maximum possible power generation
alongside with minimum reconfiguration and switching numbers
are ensured under non-uniform spatial irradiance profiles.

The remaining parts of the paper are organized as follows. The
model utilized for generation of Spatially Dispersed Irradiance Pro-
files {SDIPs) for the application sites is briefly presented in Sec-
tion 2. Section 3 provides a brief review on mathematical
modeling of PV systems and different PV array architectures and
presents the proposed PV array reconfiguration algorithm and its
application through a dynamic switching matrix.

2. Model of spatially dispersed irradiance profile

Significant analysis of the effects of non-uniform spatial irradi-
ance profiles on PV arrays requires high resolution spatial irradi-
ance data incident on PV module surfaces. This study utilizes a
modeling technique developed to generate Spatially Dispersed
Irradiance Profiles {SDIPs) at the application sites based on existing
clouds and their properties. The model deploys 2D latitude-
longitude sky images serving as cloud coverage drivers and pro-
cesses them to generate SDIPs. The utilized sky images are
720 x 576 RGB images taken by a commercial camera on per-
minute time basis. SKy images are particularly selected to repre-
sent samples of different sky conditions (from partly cloudy sky
conditions with different cloud coverages up to overcast sky).
The criterion for selection has been representation of different
cloudiness amounts and cloud distributiens. The provided irradi-
ance profiles are generated based on 4 independent samples of
sky images. The model is explained here with its general lines
while detailed information regarding the model can be found in
our previous study. Fig. 1 briefly presents different steps of the
model. The irradiance model considers different cloud types and
their sunlight interaction characteristics {cloud transmittivity) to
generate irradiance profiles incident on PV arrays. Cumulus cloud
is utilized in this paper as a common cloud type that is also consis-
tent with the utilized sky images. The ground coverage area of each
irradiance profile depends on Cloud Base Height {CBH) values as
defined by Chow et al. (2011). As the precise coordinates of the
ground coverage area of irradiance profiles {e.g. in meters) may
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Fig 1. Flow chart of the model for generztion of SDIPs.

not be accurately calculated due to lack of information regarding
precise values of the cloud base heights, the coverage areas of irra-
diance profiles as well as the location of PV modules within the
mentioned profiles in this paper are represented as percentage val-
ues. The intention here is to present the effectiveness of the pro-
posed reconfizuration algorithm regardless of the distance
between PV modules in different geographical distributions, How-
ever, due to the fish eye nature of the slky camera lenses, spatial
resolution of the irradiance profiles on the surface of PV plants
depends on the distance of each pixel to the center of the sky
image. This resolution varies between the pixels at the center to
pixels at the edges of the sky image and changes depending on
two main factors being CBH and resolution of the sky image
(Nguyen and Kleissl, 2014}, Hence, the required high spatial reso-
lutions for applications with closely located FY modules can also
be achieved with the proposed model by utilizing sufficiently high
resolution slky images and considering also the existing CBH
values.

Samples of generated SDIPs are presented in Fig. 2 and referred
to as shading scenarios in the next parts of the paper. As it is dis-
cussed in the next parts of the study, the 1st shading scenario rep-
resenting overcast sky conditions is not found appropriate for the
proposed reconfizuration operation. The proposed array reconfizu-
ration algorithm provides improved power generation under the
2nd, 3rd and 4th shading scenarios.

3. Photovoltaic array reconfiguration

As previously discussed, the one-diode mathematical model ofa
solar cell is utilized for PV modeling in this paper due to its sim-
plicity and reliable performance and results. 'V modules are mod-
eled as a number of series andfor parallel connected PV cells and
PV arrays are made as combinations of specific numbers of PV

modules with different architectures. The equivalent electrical cir-
cuit of a solar cell based on one-diode mathematical model of a
solar cell is presented in Fig. 3. According to this model the rela-
tionship between the cell’s current and voltage {s expressed as;

Tl (equ(V+RSI)71) _(V+Ed)

kT R (T3

According to Eq. (1}, Ly, I, n, R, and E;; should be known to
obtain the cell's current value depending on the voltage values
according to the one-diode mathematical model.

Considering the direct relationship between the incident solar
irradiance and power generation in PV modules, power generation
in PV arrays consisting of large numbers of PV modules is-highly
affected by variation of the incident irradiance values. Power pro-
duction of the array is limited by the modules receiving less
amount of solar irradiance and generating less power accordingly.
Obviously variation of power production in PV arrays, particularly
in parallel with extension of their size, is directly proportional to
the range of variation of selar irradiance values incident on PV
module surfaces. The amount of degradation of power generation
also depends on different interconnection types between PV mod-
ules within a PV array. The mentioned interconnection types help
to increase power generation under non-uniform irradiance pro-
files. For this purpose, several architectures of PV arrays are recom-
mended to mitigate the negative effects of non-uniform spatial
irradiance profiles on power generation. Series-Parallel [SP}
Bridge-Link [BL} and Total-Cross-Tied [TCT} are the most widely
utilized PV array architectures. SP interconnection is formed by
parallel connection of series-connected module strings. TCT inter-
connection is the most complex array architecture with PV mod-
ules connected in series and parallel with each other at the same
time. Number of switching elements are increased in this architec-
ture. The number of switching elements in BL configuration is
reduced to half with respect to TCT configuration. Fig. 4 presents
samples of different PV array architectures.

As discussed earlier, reconfiguration of PV module interconnec-
tions, in order to reduce negative effects of non-uniform spatial
irradiance profiles, has been considered in several research studies.
However, complex structures and/or limitations associated with
the algorithms are the main disadvantages of the proposed recon-
figuration algorithms. This study proposes a simple and adaptive
dynamic reconfiguration algorithm applicable for PV arrays with
large number of PY modules.

3.1. Method

The working principle of the proposed reconfiguration algo-
rithm relies on the Irradiance Equalization method introduced by
Velasco-Quesada et al. (2009}, The concept of lrradiance Equaliza-
tion basically aims to form series connected rows of parallel con-
nected PV modules in a manner that yields balanced average row
irradiance values in a TCT configuration. This implies that PV mod-
ules with either different or similar irradiance levels, depending on
the existing irradiance profile, are connected in parallel in such a
manner that results in forming rows with average irradiance val-
ues similar or close enough to each other to prevent limitation of
power production by less current generating rows. This is made
possible by relocating 'V modules with different irradiance levels
within the array until the desired balanced-irradiance rows are
achieved. Thus, the mentioned approach ensures that none of the
series connected rows inside the TCT architecture provides higher
current generation and therefore limits the current produced by
the other rows in a series connection. This method improves power
generation under any type of non-uniform spatial irradiance pro-
file. Cbviously the ideal case is when the array’s average irradiance
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Fig 2. Cloud pattems and SDIPs (shading scenarios) generated by the irradiance model at 13:00 Local Time (LT) considering Cumulus clouds, (3] Shading scenario 1,
cc — 98%, (b) Shading Scenario 2, partly cloudy sk, cc — 44%, [c) Shading scenario 3, cc — 34%, (d) Shading scenanio 4, cc — 50%, for Berlin, Germany (Latitude: 52°33/56" N,
Longitude: 13°18'35" E) in July. %" and ‘y" denote sides of the application area on the ground shown as percentage values.

and the average irradiance on each row are exactly equal. Hence, tion of PV modules within different rows of the array is made
accurate knowledee of the incident irradiance on each individual possible using a flexible Switching Matrix controlled by the Recon-
module surface plays a key role from this point of view. The alloca- figuration Algorithm. The flowchart of the proposed reconfigura-
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D Regr v

Fig. 3. Equivalent electrical circuit of a solar cell based on one-diode mathe matical
model.

tion system for PV arrays is presented in Fig. 5. The data acquisition
task involves gathering of the irradiance data incident on each PV
module surface. The ideal way to achieve this in a PV plant is to uti-
lize one pyranometer for each individual PV module. However, fea-
sibility considerations, instrumental limitations, etc. prevent
realization of the mentioned scenario. Alternatively, estimation of
irradiance values based on measurements of module voltage, cur-
rent and temperature is proposed in several studies (Nguyen and
Lehman, 2008; Patnaik et al., 2012). This significant task is carried
out in this paper utilizing the previously defined shading scenarios.
On the other hand, the previously mentioned models of PV mod-
ules are utilized for the analyses.

3.1.1. Reconfiguration algorithm

As mentioned earlier, the module relocation basically considers
the irradiance equalization criterfa. Average irradiance incident on
parallel connected PV modules in a row, G, is expressed as;

t
_ G
6, ZLG o

As it was previously discussed, the goal of Irradiance Equaliza-
tion is to form balanced-irradiance rows of parallel connected PV
modules in a TCT interconnection. The goal here is to avoid current
limitation effect of the rows producing less current in a series con-
nection within the array. Therefore, according to Eq. (2}, this goal is

achieved when eguzl G's are obtained for different rows of the
array architecture as a result of the array reconfiguration. In this
wray all series connected rows produce the same current and hence
the array's power generation is not affected or limited by less cur-
rent generating rows.

3.1.1.1. Working principle. As discussed earlier, the ideal case from
Irradiance Equalization point of view is when the average irradi-
ance incident on parallel connected PV modules of each individual
row is equal to the average irradiance value incident on the surface
of all PV modules within the array (G, = G). Since reaching this goal
under real world conditions may not always be possible due to
highly variable spatial distribution of the incident irradiance val-
ues, forcing the algorithm to find the ideal configuration may put
it in an infinite loop. To overcome this problem, the proposed algo-
rithm in this paper aims for finding the near-optimal array config-
uration which yields reduction of the reconfizured row numbers,
decreases the iterations of the algorithm and increases the algo-
rithm's operation speed. Thus, the algorithm prevents unnecessary
row reconfigurations which do not provide significant improve-
ment on array's output pewer production. As mentioned in the
previous discussions, the geal of the algorithm is to find the
near-optimal array eonfiguration in terms of irradiance equaliza-
tion by forming rows with average irradiance levels falling within
2 tolerable interval of the arrays average irradiance value. For this
purpose, anirradiance threshold, (AG), is set which is in fact a tol-
erance shown.against current limitation effects of rows generating
smaller current values. For example AG = 0.05G implies 50 W/m?
reconfisuration tolerance under STC. The algorithm determines
the rows to be reconfigured if (G, > G+ AG) or (G < G+AG).
Although the average row irradiance values may not be exactly
equal to each other in the proposed near-optimal array configura-
tion, they remain within a tolerable difference limit. Therefore by
application of this algorithm, the current values generated by all
rows remain within tolerable limits and rows with less irradiance
levels do not provide significant effects on array’s power genera-
tion or the limiting effects of those rows remain within tolerable
limits while the number of iterations of the algorithm and the
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Fig 4. PV array configurations: (23] 4 x4 Series-Parallel (SP), (b] 4 x 4 Bridge-Link (BL), (c] 4 x 4 Total-Cross-Tied [TCT).
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Fig. 5. PV array reconfiguration system flowchart.
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required row reconfigurations are reduced. Here an important
point is that the mentioned irradiance threshold, (AG), should
accurately be chosen according to the conditions and requirements
of the application. Obviously, in one hand, a low threshold causes
higher number of module reconfigurations and consequently,
increases the necessary switching actions to be further executed
by the switching matrix as described in Section 3.1.2. On the other
hand, proper selection of the threshold value prevents reconfigura-
tions that do not provide significant effect on array’s power gener-
ation and resultantly, avoids unnecessary switching actions by the
switching matrix and saves switching equipment lifetime. For
example, determination of AG = 100 W/m? prevents reconfigura-
tion of the rows with average irradiances within 0—100 W/m?
range below or above the array’'s average irradiance. Therefore
the switching matrix does not execute any switching action for
PV modules in the mentioned non-reconfigured rows. It should
be noticed that since the spatial irradiance data forms the input
of the proposed reconfiguration algorithm, switching actions are
done as the last step by the switching matrix once the reconfigura-
tion algorithm converges and the new reconfisured PV module
positions are determined within the array as a result of application
of the algorithm. In fact each switching action corresponds to a PV
module reconfiguration determined by the reconfiguration algo-
rithm. The algorithm firstly removes the non-configured rows for
which the average row irradiance falls within the tolerable limits
(irradiance threshold) of the array’s average irradiance value. The
algorithm then forms a new matrix including the rows to be recon-
figured. Elements of this matrix are PV medules connected in rows
with average row irradiance values falling out of the tolerable lim-
its of the array’s average irradiance value. PV modules of the new
matrix, according to the incident irradiance on their surface, are
then sorted column-wise in ascending order which implies that
the first element of each column contains the remaining unsorted
PV module having the lowest irradiance. This sorted matrix is then
divided into two sub-matrices of size k x 1/2. While the elements of
the first sub-matrix remain unchanged, the elements of the second
sub-matrix are sorted in descending order assigning the remaining
highest unsorted irradiance value to the first element of each col-
umn of the second sub-matrix. The sub-matrices are concatenated
in the next step and the reconfigured PV module matrix is created
after integration of the non-reconfigired rows to the new matrix.
Working principle of the algorithm can be somehow thought of
as a queue. Each time, the remaining PV modules to be reconfig-
ured having the highest and the lowest irradiance levels in the
queue are assigned consecutively to the elements of each row of
the matrix. This method ensures formation of balanced-
irradiance reconfigured rows which also complies with the goals
of irradiance equalization. Taking into account that average irradi-
ance of the non-reconfigured rows already falls within the tolera-
ble interval, AG, the goals of irradiance equalization are achieved
in terms of obtaining optimal array configuration. Since the order
of the parallel connected PV modules in a row does not affect the
current production, there is no need to specifically determine the
location of each module in a row.

A sample diagram of the reconfiguration algorithm for a 4 x 4
array with G, < Gz < ... < Gys is presented in Fig. 6. The irradiance
values incident on each PV module are shown and the effect of
module relocation on average row irradiance values is demon-
strated in the figure.

As shown in the figure, the 2nd and 3rd rows in the provided
example are not reconfigured by the algorithm since their average
irradiance values lie within the tolerable limits (AG = 40 W/m?) of
the array’s average irradiance value (G = 801.56 W/m?). These
rows are extracted and replaced by the algorithm as shown in
Fig. 6(a) and (e), respectively. The average irradiance values of

the 1st and 4th rows exceed the specified threshold value and
these rows are reconfigured as shown in Fig. 6(b)-{d). It is shown
that the average irradiance values of the reconfigured rows lie
within the tolerable limits of the array’s average irradiance as a
result of the array reconfiguration. It is also worth mentioning that
the reconfiguration algorithm preserves the row numbers yielding
the initial voltage of series connected rows in order to meet the
application requirements.

3.1.1.2. Reduction of switching actions. This part of the study con-
tains information of the way the unnecessary switching actions
are avoided by the proposed algorithm in order to save the life-
times of the switching devices. As it was previously mentioned,
the input of the proposed reconfiguration algorithm is the spatial
irradiance data, provided as different shading scenarios described
in Section 2. The switching actions corresponding to module recon-
figurations are performed as the last step by the switching matrix
in order to place the reconfigured PV modules at their new loca-
tions within the array once the reconfiguration algorithm con-
verges and the resulting new reconfigured PV module positions
are determined. As the result of application of the reconfiguration
algorithm and during the irradiance sorting procedure, the location
of some PV modules may be changed by other modules having the
same irradiance values from different rows of the array. In fact
such reconfigurations do not affect the average row irradiance val-
ues and only change the position of PV medules with the same
irradiance level within the array, requiring unnecessary switching
actions to be performed by the switching matrix. At this stage, once
the algorithm converges and before performing the switching
actions, the algorithm tries to reduce the number of reconfigura-
tions by searching for medule reconfigurations (if any) which actu-
ally change the locations of modules having the same irradiance
levels within a specific row or between different rows. As men-
tioned before, such reconfigurations are unnecessary since they
do not affect average row irradiances and hence do not have any
impact on array's power generation. This way, the reconfiguration
algorithm reduces the number of module reconfigurations and
thus the number of switching actions te be performed by the
switching matrix through elimination of the unnecessary reconfig-
urations. Obviously the number of switching actions depends on
the size of the array and the existing spatial irradiance profile.

3.1.2. Switching matrix

The switching matrix indicates the necessary switching actions
in order to execute the reconfiguration plan formed by the recon-
figuration algorithm. A switching action, corresponding to a PV
module reconfiguration, is the action performed to disconnect a
PV module from its initial non-reconfigured row position and con-
nect it to its new position within the reconfigured PV array which
is determined as a result of application of the reconfiguration algo-
rithm. This action is performed by switching devices and switching
control mechanism. This part of the study presents brief explana-
tions regarding the structure and control method of the switching
matrix performing the desired array reconfiguration.

3.1.2.1. Matrix structure. The structure of the switching matrix is
explained briefly in this part. A sample of the switching matrix
configuration is provided in Fig. 7. The matrix structure is based
on utilization of electrical buses and provides the capability of par-
allel interconnection of each PV module to each row. The flexible
dynamic interconnections are made possible by using 2 x Npy
single-pole k-throw switches (Velasco-Quesada et al., 2009).

3.1.2.2. Matrix control. The controlling method of the switching
matrix is presented in this part. The input to the matrix control
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Gy = 793.75 W/m?, |G — G,| = 8 W/m?

(e) Final Array Configuration

Fig. 6. Sample diagram of the reconfiguradon algoeithm for a4 x 4 PV ary (G, < G « ... = G) where G — 801.56 W/m?, AC — 0.05G = 40 W/m?.

Table 1

Control |

Fig. 7. Switching matnx structure.

P, Popr, Ponge (18] and Mgy associated with different icradiance threshelds for shading scenarios.

AG 2nd Shading Scenario 3rd Shading Scenario 4th Shading Scenario

[Pyr = 3.695, Popr. = 3.871, Poprf (Prr = 4.448, Popr. =4.737, Poprf [Pryg = 4.286, Porr. = 44086, Popr.|

P =1.047) Py = 1.063) Py, = 1.027)

Maw P P P Ny Fra: P /Pig Ny P Proeef Prig
01% 17 3740 laoiz 42 4689 1.053 ] 4.286 1
0.075G 54 3805 1.028 47 4686 1.055 8 4.286 1
0.05G 68 3860 1044 57 4724 1.081 66 4.398 1025
0.025G 83 3868 1.046 57 4724 1.061 76 4.404 1.027

algorithm is the reconfiguration plan produced by the reconfigura-
tion algorithm. The matrix control algorithm then sends the
required switching instructions (or trigeering signals} to the afore-
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3.2. Results and discussion

The system is simulated in MATLAB/Simulink, utilizing 100
Solarex MSX60 (P, = 60 W, Vo= 21.1 V, I, = 3.8 A) type PV mod-
ules in a 10 x 10 PV array. PV modules are assumed to be located
with equal distances implying that one PV module is located per
each 10% area of the array as discussed in Section 2. Different AG
values are examined and the results are compared. It is empirically
observed that for all shading scenarios AG > 0.1G provides almost
no contribution to the maximum power point (Png) value. There-
fore totally four different values between 0 and 0.1G are examined
utilizing equivalent increments. According to the observations,
AG > 0.075G and AG < 0.025G also do not provide significant con-
tribution to P, contrary to the associated relatively low and high
number of switching actions performed by the switching matrix to
form the reconfigured PV array, respectively, for the 4th and 3rd
shading scenarios. Under the 2nd shading scenario, the existing
irradiance profile causes significant contributions to Py, to be
achieved with AG = 0.1C. At the same time, due to the almost uni-
form illumination, reconfiguration of PV modules under overcast
sky {1st shading scenaric) is not applicable. For a better compar-
ison, Table 1 provides information regarding Pug, Popr, number of
switching actions performed by the switching matrix to form the
reconfigured array {Nsw), and obtained P values after reconfigu-
ration, associated with each irradiance threshold for the mentioned
shading scenarios. The non-reconfigured PV array performances
under the 2nd, 3rd and 4th shading scenarios are considered as
the reference cases for which the array’s output power values
before reconfiguration are shown by Py in the table. Also the opti-
mum output power production, in terms of irradiance equalization,
for each case is provided as Pgpr.. The table presents the obtained
maximum output power values together with the number of
switching actions after reconfiguration considering various AG val-
ues. The results show that the reconfiguration algorithm has been
able to improve power generation by 4.7%, 6.1% and 2.7% respec-
tively under the 2nd, 3rd and 4th shading scenarios, considering
AG = 0.025G. Changes in PV array’s power generation and the
number of switching actions alongside with AG for different shad-
ing scenarios are presented in Fig. 8.

The results show that almost for.all shading scenarios in this
paper, AG = 0.05G would be a proper selection in terms of the
reconfiguration numbers and contribution to Py, Obviously the
threshold value and improvements in power generation strongly
depend on the existing spatial irradiance profile based on
the existing cloud patterns and their sunlight interaction
characteristics.

Fig. 9 presents array P-V characteristic curves for different shad-
ing scenarios, before and after reconfiguration. The contribution of
array reconfiguration to power generation is ohvious for shading
scenarios where the reconfiguration is applicable. Also the smooth-
ing effect of AG on the characteristic curves worths mentioning. It
is shown that smaller threshold values result in smoother charac-
teristic curves and higher Ppq, to the cost of higher reconfiguration
numbers. Characteristic curves for the ideal case are also provided
for each shading scenario. Obviously there is almost no difference
between Ppg, values obtained by the proposed method and the
ideal case for each shading scenario.

It should also be taken into consideration that analyses in this
paper are carried out and presented only for a single time step
and a single geographical location. The sample results are provided
as representatives for the model’'s performance and its ability to
improve power generation under non-uniform spatial irradiance
profiles. However, the model is applicable to any geographical
location and irradiance profile, whilst the performance of the
model depends on the incident irradiance profiles. The model is

expected to provide better performances as the range of irradiance
variations within an existing irradiance profile increases.

As previously discussed, the total number of switches required
for development of the proposed reconfiguration system is 2 x Npy.
However it should be taken into consideration that all the switches
may not necessarily perform at the same time during reconfigura-
tion of PV array under an existing spatial irradiance profile. This
also preserves the lifetime of the switching devices. According to
the results provided in Table 1, it is obvious that the total number
of switching actions, (Ngy), corresponding to PV module reconfig-
urations during dynamic reconfiguration of PV array totally
depends on the existing spatial irradiance profile and the selected
irradiance threshold, AG. The number of module reconfigurations
and therefore switching actions increase according to the
Popr/Pyr ratio while smaller irradiance thresholds also lead to
increases in module reconfiguration and the number of switching
actions during dynamic reconfiguration of PV array, resultantly.
As an example it is observed that although there are a total number
of 200 switches utilized in the array, only 83 of the switches have
performed to apply the reconfiguration under the 2nd shading sce-
nario with AG = 0.025G.

4. Conclusion

Various solutions have been introduced to cope with factors
limiting the use of solar energy rescurces such as electrical mis-
matches, variable weather conditions, etc. Obviously the ideal case
to prevent mismatch losses is to form PV arrays by connecting
electrically identical PV modules in different configurations. How-
ever, all PY modules included in a PV array may not have identical
electrical characteristics due to differences in materials and vari-
abilities of manufacturing processes. Variable electrical character-
istics between PV modules caused by the mentioned differences
and variabilities is referred to as module mismatch. In this case,
the optimal operating peint of the PY modules may differ from
one to another in a PV array, yielding reductions in array’s power
production. Thus, under module mismatch conditions, the practical
maximum output power of a PV array is always less than the sum
of the maximum output powers of P¥ modules forming the array.
Utilizaticn of appropriately rated by-pass diodes and blocking
diodes are examples of measures taken to cope with mismatch
losses in PV arrays. Dynamic reconfiguration of PV arrays is also
one of the leading edge research areas to mitigate negative effects
of non-uniform irradiance profiles incident on PV application areas.
Various reconfiguration strategies and control algorithms are
developed for this purpose. While improvements in power gener-
ation is the most significant common advantage of all developed
strategies, each individual strategy has ceratin specific drawbacks
and limitations. Adaptive Bank strategy utilizing bubble-sort
model-based control algorithm is one of the mentioned strategies
where the main disadvantage of this method is the need for a fixed
adaptive bank of solar cells which potentially increases the number
of required cells, switching devices and complexity of the connec-
tions. Elastic Photovoltaic Structure (EPVS), Solar Irradiance Level
Categories and Rough Set Theory are other examples of reconfigu-
ration algorithms developed to be applicable to SP array architec-
ture. Non-conformity with TCT interconnection, high number of
required switching devices and complexity of the control algo-
rithms form the main disadvantages of the mentioned methods.
Irradiance Equalization as a widely utilized strategy has been
deployed together with various control algorithms such as Deter-
ministic Random Search Algorithm and Best-Worst Sorting for
TCT interconnection. Here also the complexity of the control algo-
rithms and the required high number of switching devices form the
main disadvantages of these methods. Taking the complexity of the
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system into consideration, from both hardware and software
peints of view, the proposed strategy in this paper is sensitive to
the size of the application and best fits large scale rooftop, Building
Integrated Photovoltaic Systems (BIPV) and groeund mounted PV
plants rather than small scale residential PV applications. Obvi-
cusly, implementation of a reconfigurable PV system comes with
additional costs (wiring, switching devices, etc.) for PV developers.
Therefore a tradeoff between extra costs and the expected
improvements in power generation will always exist. However,
the mentioned costs may be reduced by means of taking appropri-
ate measures such as utilization of proper system topologies,
switching devices and control algorithms which minimize the
required switching devices and switching numbers. The utilized
DC/AC conversion devices (inverters) and Maximum Power Point
Tracking (MPPT) algorithms controlling them also may negatively
affect power generation of PV arrays under non-uniform irradiance
profiles. MPPT algorithms may consider a local Maximum Power
Peint (MPP) as the array’s absolute MPP. Also the utilized inverter
number and their configurations may significantly affect the
array's power generation. Smart MPPT strategies and proper selec-
tion of the conversion groups (e.g. Central-inverter, string-inverter,
multi-string inverter and micro-inverter architecture) are exam-
ples of the measures to be taken to reduce the negative effects
through power conversicn procedure.

This paper firstly utilizes a modeling approach to generate irra-
diance profiles on PV arrays based on real sky images as cloud cov-
erage drivers. The generated irradiance profiles vary in parallel to
the variations of the existing cloud coverage in the sky. The study
then proposes a PV array reconfiguration algorithm which seeks to
find near-optimal array configurations and provides a simple
structure based on irradiance equalization approach. This is
accomplished by utilizing an irradiance threshold where smaller
thresholds provide smoother curves contrary to higher reconfigu-
ration numbers. The algorithm alse considers minimization of
the number of switching actions by eliminating the unnecessary
reconfigurations and therefore saves the lifetimes of switching
devices. Reconfiguration of modules is made possible through a
flexible dynamic switching matrix allowing for parallel intercon-
nection of each module to any row of the array. Application of
the proposed reconfiguration method results in significant
improvements in array’s power generation. Although magnitude
of the improvements totally depends on the existing spatial irradi-
ance profile, the proposed algorithm has successfully managed to
improve array’s power generation as much as it would be possible
under ideal conditions, for each shading scenario. The system’s
performance results are presented and analyzed for a single time
step and a single geographical location, however the system can
cbviously be utilized to improve power generation for any geo-
graphical location with any irradiance profile. It should be taken
into consideration that high resolution spatial irradiance data is
needed to implement the proposed reconfiguration methodology

where PV modules are closely located within the PV application
area. The system’s perfermance increases in parallel with the
increases in the range of variation of irradiance levels available
within an existing irradiance profile. Also it should be noticed that
PV modules in this paper are assumed to have identical electrical
characteristics and therefore array level losses such as module mis-
match and wiring resistance are not considered. The advantages of
the proposed algorithm are high performance, dynamic and simple
structure, relatively low number of the required switching actions
and switching devices, conformity with TCT array topology and
applicability to arrays consisting of large numbers of P¥ modules.
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Appendix D: Comparative Analysis of Levenberg-Marquardt and
Bayesian  Regularization = Backpropagation  Algorithms in

Photovoltaic Power Estimation Using Artificial Neural Network

Kian Jazayeri, Moein Jazayeri, Sener Uysal, “Comparative analysis of levenberg-
marquardt and bayesian regularization backpropagation algorithms in photovoltaic
power estimation using artificial neural network”™, in Proceedings - Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 9728, New York City, NY, USA 2016.

Abstract. This paper presents a comparative analysis of Levenberg-Marquardt
(LM) and Bayesian Regularization (BR) backpropagation algorithms in
development of different Artificial Neural Networks {(ANNs) to estimate the
output power of a Photovoltaic (PV) module. The proposed ANNs undergo
training, validation and testing phases on 10000+ combinations of data including
the real-time measurements of irradiance level (W/m?) and PV output power (W)
as well as the calculations of the Sun’s position in the sky and the PV module
surface temperature (°C). The overall performance of the LM and the BR
algorithms are analyzed during the development phases of the ANNs, and also
the results of implementation of each ANN in different time intervals with
different input types are compared. The comparative study presents the trade-offs
of utilizing LM and BR algorithms in order to develop the best ANN architecture
for PV output power estimation.
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Abstract. This paper presents a comparative analysis of Levenberg-Marquardt
(LM) and Bayesian Regularization (BR) backpropagation algorithms in
development of different Artificial Neural Networks (ANNs) to estimate the
output power of a Photovoltaic (PV) module. The proposed ANNs undergo
trainming, validation and testing phases on 10000+ combinations of data including
the real-time measurements of irradiance level (W/m?) and PV output power (W)
as well as the calculations of the Sun’s position in the sky and the PV module
surface temperature (°C). The overall performance of the LM and the BR
algorithms are analyzed during the development phases of the ANNs, and also
the results of implementation of each ANN in different time intervals with
different input types are compared. The comparative study presents the trade-offs
of utilizing LM and BR algorithms in order to develop the best ANN architecture
for PV output power estimation.

1 Introduction

Solar energy is a renewable and sustainable resource that emerges to meet the energy
requirements of today’s modern world. The solar energy is converted to direct current
(DC) electricity by the Photovoltaic (PV) effect. PV cells are connected to form a PV
module (solar panel), which can be connected to other PV modules to construct PV
arrays and systems. The importance of developing handling techniques of PV systems
is highlighted considering the growing world energy demands and the limitations and
threats associated with the traditional energy resources. Artificial Intelligence (AI)
techniques are deployed in various applications as an alternative to conventional
techniques due to their capabilities in solving complicated practical problems. Artificial
Neural Network (ANN) is one of the most popular branches of Al. ANNs are
mathematical models that imitate the behavior of biological Neural Systems. An ANN,
which 1s a collection of interconnected computation units, 1s able to generalize outputs
for new inputs after being trained on patterns of training data. ANNSs are deployed in
many practical applications due to their fault tolerance, flexibility and robustness in
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handling noisy data. Some of the ANN application examples in PV systems are given
as follows.

Estimation of the daily solar radiation using ANNs is proposed by Elizondo et Al
[1] and Williams and Zazueta [2]. Golabl solar radiation prediction using ANN is
suggested by Alawi and Hinai [3] and monthly mean daily values of global solar
radiation on horizontal surfaces are modeled by Mohandes et al. [4] using Radial Basis
Function (RBF) networks. An ANN based total solar radiation time-series simulation
model 1s offered by Mihalakakou et al. [5] and RBF networks are used for estimating
total daily solar radiation by Mellit et al. [6].

The right choice of network types and algorithms 1s essential in order to attain
desirable modeling, estimation and prediction outputs using ANNs. Different ANN
architectures are employed for PV power estimation purposes by Lo Brano et al [7].
The ambient temperature, solar irradiance and wind speed data are provided to the
ANNSs in the mentioned study to estimate the output power of two PV test modules.
The authors conclude that the Multi-layer Perceptron (MLP) architecture provides the
best performance in terms of the estimation error. A similar study is carried out by
Saberian et al. [8] and the minimum temperature, maximum temperature, mean
temperature and solar irradiance data are fed to different ANN topologies in order to
estimate the output power of a PV module. The authors indicate that the feed-forward
MLP with backpropagation training algorithm provides the best performance in PV
module power estimation. A comparison of Levenberg-Marquardt (LM) and Bayesian
Regularization (BR) backpropagation algorithms for efficient localization in wireless
sensor network is presented by Payval et al. [9], a comparison of BR and Cross-Validated
Early-Stopping (CVES) backpropagation algorithms for streamflow forecasting is
carried out by Wang et al. [8] and a comparative study of backpropagation algorithms
in ANN based identification of power system 1s proposed by Tiwarietal. [11].

In this study, well-detailed and highly accurate data is acquired using appropriate
and highly-sensitive measurement equipment to be described in section 2. However no
matter how well-detailed and straight-forward-looking the inputs be, the PV power
generation relationships are non-linear and cannot be expressed by simple analytical or
physical approaches. Especially the effect of the PV module surface temperature highly
complicate the relation between the solar irradiance and the PV output power as the PV
power generation tendency decreases with increasing PV module surface temperature,
which is caused by increasing irradiance. In other words, the solar irradiance has a very
complex effect (compliant and opposite effects at the same time) on the PV power
generation which cannot be expressed by simple equations or analytical models. The
need for using a qualified machine learning technique for PV module output power
estimation is highlighted by taking the above into consideration. The scope of this study
1s to give insight of the competency of the well-known MLP approach with eligible
backpropagation algorithm in PV power estimation applications in existence of
sufficient inputs. A comparative analysis of LM and BR backpropagation training
algorithms in estimation of PV module output power using MLP approach 1s proposed
and the trade-offs of utilizing each algorithm is represented in terms of training error,
time, speed, etc. Finally the performances of applying different ANNs trained by LM
and BR algorithms for PV power estimation in several ANN implementation intervals
with different input types are analyzed.
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2 Data Collection

It is aimed to provide the calculated values of the Sun’s position in the sky, the angle
of incidence and the PV module surface temperature as well as the 1rradiance level
measurements to the Artificial Neural Networks (ANNs) as the input data, and the
measurements of the PV module output power as the target data, during the training,
testing and validation phases. The only preprocessing applied to the mentioned data is
the normalization process which is described in the following sub-sections. Nov. 1% to
Nov. 25t 2015 is selected as the data acquisition interval due to the highly variable
meteorological conditions during daylight hours in this period in Cyprus Island where
the experiments took place. The ANNSs receive highly variable training and testing data
in this relatively short time interval. The noise is negligible due to the sensitivity of the
measurement equipment utilized for this study. The acquired data for development of
the ANNSs 1s described comprehensively in this section.

2.1 The Sun’s Position Data

The Sun’s position in the sky is defined by the solar altitude and the solar azimuth
angles [12]. The solar altitude angle indicates the Sun’s elevation from Earth’s surface
and is expressed as:

¥, = sin~ ! (singsind + cos@cosdcosw) 1)
s=sin" {0.3987 sin (/80:2°+1.92(sin(/-2.80°)) )} @
J* = j x (360/365.25) )
@ = 15(L5T — 12) 4)
Where,
@ - latitude of the observation point
) - solar declination angle
j : Julian day number
@+ hour angle

Because of the irregularity of Earth’s orbit as well as human adjustments (time zones
and daylight saving application), Local Solar Time (LST) 1s slightly different than Local
Time (LT) and is represented as:

TC s
LST = LT + w0
TC = 4(Longitude — LSTM) + EoT (6)
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EoT =9.87sin(2B) — 7.53 cos(B) — 1.5sin(B)

360 ..

=8l

365

B =

LSTM = 15°. ATspr

Where,

T : Time correction factor

EoT : Equation of time

LSTAS : Local standard time meridian

AT aner : The difference of local time from Greenwich Mean Time

(M

t)

)

The solar azimuth angle indicates the Sun’s deviation from the north axis and is

expressed by:

If sina, < 0

{as = 180 — cos {cos a,)
If sine@, > 0

@ = 180 + cos™(cos a;)

Where,

cos @, = (sing siny, — sin )/ cos @ cos ¥,

sina, = cos @, sinw/ cos ¥,

a0

(1D

(12)

The mentioned values are normalized between 0 and 1, vielding data close to 1 for
the values that have the most impact on the PV module output power and data close to
0 vice versa. The normalized values of the solar altitude and the solar azimuth angles
calculated in minutely basis during daylight time interval on Nov. 16% 2015, as a

typical data acquisition period, are shown in Fig. 1.
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Fig. 1. The normalized values of the solar alfitude and azimuth angles and the angle of incidence,

calculated on Nov. 16t 2015.
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2.2 The Angle of Incidence

The angle of incidence is the angle between the Sun’s beams and a vector
perpendicular to the surface of a solar panel and is represented as:

— cos(f#)cos(Z,) + (13)
9=cos™ [sin(ﬂ) sin(Z,) cos(a’s—afm)]

Zs =90 — ¥s (14)

Where,

b : Tilt angle of the solar panel (45° in this case)

7, : Zenith sngle of the Sun

a : Module azimuth angle (in this case: south = 180°)

The normalized values of the angle of incidence, calculated minutely on Nov. 16%,
2015, are shown in Fig. 1. The normalized value takes on 1 when the Sun’s beams are
perpendicularly received on the solar panel surface and as the Sun’s beams deviate from
the perpendicular axis, the normalized value decreases downto 0.

2.3 Irradiance Level

The density of the solar radiation power received on a given surface is defined as the
irradiace and is measured in Watts per meter square. In this study a south oriented, 45°
tilted pyranometer is used for field measurements. The measured irradiance values are
normalized between 0 and 1. The normalized irradiance values measured minutely on
Nov. 16%, 2015 as a typical data acquisition period are shown in Fig. 2.
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Fig. 2. The normalized irradiance values, measured in (W/m?) on Nov. 16, 2015.
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2.4 PV Module Surface Temperature

The PV Module Surface Temperature has a reverse impact on the PV module
performance efficiency since the PV power generation tendency is reduced as the
surface temperature increases. According to [13], the PV module surface temperature
can be calculated as a function of NOCT and the ambient temperature using the
following equation:

T = Tomprene T ((NOCT = 20°C)(Ey,, /800 Win™2)) (15)

Where,

T'=PV Module surface temperature

Tonbice = Ambient temperature

NOCT =Nominal operating cell temperature
E.; = Irradiance level (W/m?)

The minutely temperature (Tomer) values in (°C) obtained from the Larnaca
International Airport (LCLK) weather station and the measurements of irradiance levels
are used for PV module surface temperature calculations. The calculated values are
normalized between 0 and 1, yielding values close to 1 for the lower surface
temperatures and values close to O conversely. The normalized values of the PV module
temperature calculated minutely on Nov. 16", 2015 are shown in Fig. 3.
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Fig. 3. The normalized PV module surface temperature values, calculated in (°C) on Nov. 16%,
2015,

2.5 Photovoltaic Module Output Power

A south oriented, 45° tilted monocrystalline silicon solar panel (Pow: 40 W, Voc:
21.6V, Iz 2.50 A) located at 35° 8 51" N, 33° 53' 58" E, with 1 meters elevation from
the sea level is used for the field measurement purposes. The output power of the PV
module directly feeding a constant resistive DC load, is measured (mW) minute by
minute and logged after being normalized between 0 and 1. The normalized values of
the PV module output power measured in minutely basis on Nov. 16", 2015, is shown
in Fig. 4.
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Fig. 4. The normalized PV output power values, measured in (mW) on November 16%, 2015,

3 Development of Artificial Neural Network {ANN) Architectures

It is intended to develop Artificial Neural Networks (ANNs) that are capable of
deriving the appropriate relations defining the output power of a PV module, after being
trained and tested on the data collected during the acquisition period. In this section,
the comprehensive analysis of the training, testing and validation phases of the ANNs
with Levenberg-Marquardt (L.M) and Bayesian Regularization (BR) backpropagation
algorithms are presented. As described in detail in the data collection part, the inputs to
the proposed ANNs are the normalized values of the solar altitude angle, the solar
azimuth angle, the angle of incidence, the irradiance level and the PV module surface
temperature and the output of the ANN is the PV module output power which is
reconstructed from the normalized value. The developed ANNs are three-layer fully
connected feed-forward networks with Tan-Sigmoid activation function in hidden layer
and linear activation function in output layer. The number of hidden neurons are
decided such that the network maintains the required accuracy while the computation
time and memory does not exceed certain limits. It is observed the estimation accuracy
of the ANN does not show significant improvement for more than 10 neuron sized
hidden Tayers, while the computation time and memory allocation raise significantly
with larger hidden lavers. Therefore the number of hidden neurons are set to 10. The
mentioned ANN architecture is illustrated in Fig. 5. Random small values are assigned
to the network weights at the beginning of the training process and the training inputs
are fed to the network through the input layer. The training data propagate through the
network to reach the output layer. At this point the training error is calculated by
comparing the estimated output and the target output which is presented to the network
to supervise the learming process. The error is back-propagated in the network to adjust
the weights. The training error threshold is set such that the network is kept from being
either under-fitted or over-fitted. An under-fitted ANN lacks accuracy in estimation
while an over-fitted ANN fails in generalization for new inputs.
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Backpropagation is used to obtain the first and the second derivatives of the error
function E(w) with respect to the network weight vector, w=[w; w2 ... wx] .

First derivative of the error function with respect to the weight vector is called the
Gradient of E(w) and is expressed by Eq. 16. Second derivative of E(w) is the Hessian
of E(w) given in Eq.17. The Levenberg-Marquardt (ILM) algorithm developed by
Kenneth Levenberg and Donald Marquardt is suitable for ANNs dealing with
moderate-sized problems. Wilamowski and Yu [12] introduce the approximation to
Hessian matrix indicated in Eq. 18. The update tule of the LM algorithm is presented
as Eq. 19. Further mathematical details regarding the LM backpropagation algorithm
can be investigated in [14], [15] and [16].

The BR backpropagation algorithm provides robust estimation for noisy and difficult
inputs in the existence of sufficient amount of training data. The algorithm works
effectively by eliminating network weights that do not have much impact on the
problem solution and shows better performance in avoiding the local minima
difficulties. Cross validation is not necessary in BR algorithm, which avoids part of
training data from being reserved for validation purposes. Also BR algorithm prevents
the ANN from over-training and over-fitting problems. Comprehensive details about
BR backpropagation algorithm can be foundin [17] and [18].

Fig. 5. The proposed ANN architecture (x1: normalized solar altitude angle, x2: normalized solar
azimuth angle, x3: normalized angle of incidence, x4: normalized irradiance, x5: normalized PV
module surface temperature, v: normalized PV module output power, IL: Input Layer, HL:
Hidden Layer, OL: QOutput Layer).
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Where,
¥ - Jacobian matrix (matrix of first derivatives with respect to weight vector)
U : Combination coefficient
and,
2 - Identity matrix.

The training, testing and validation processes of the ANNs are performed on 10695
combinations of data, each combination containing 5 inputs and 1 target output. The
normalized values of the solar altitude and azimuth angles, angle of incidence,
rradiance and PV module surface temperature are fed to the network through the input
layer. The inputs pass through the hidden layer consisting of 10 hidden neurons each
having a Tan-Sigmoid transter function and reach the output layer which contains one
neuron with linear transfer function. The estimated output which is in range of Oto 1 1s
compared to the learning target output and the error is back-propagated through the
network, After several epoch of backpropagation and weight adjustment the training
goal is achieved and the network becomes ready to generalize new outputs for unseen
mnputs.

As mentioned earlier, it is aimed to develop ANNs which are neither under-fitted
nor over-fitted. A loose training goal results in a weak network that is not capable of
making precise estimations while a very tight training goal will force the network to
adjust its weights in order to achieve outputs almost similar to learning targets. Such an
over-fitted network provides very accurate results for training inputs but lacks in
making generalizations for new and unseen inputs. The Minimum Gradient is set to
1.0e-10 for both ANNs as the training goal in order to achieve accuracy and
generalization capabilities at the same time.
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In order to create the first ANN, 70% (7487 paths) of the mentioned data collection
is allotted to the training process in which the inputs and the output are presented to the
ANN and the weight adjustments between the neurons are done based on the LM back-
propagation algorithm. Another 15% (1604 paths) of the collected data is presented to
the ANN as the validation data to determine the generalization abilities of the network.
The rest 15% (1604 paths) of the collected data is given to the network during the
testing process, which is carried out independently from the training and validation
processes and gives a measure of the network performance. In the testing process,
output targets are not presented to the network in order to measure the estimation and
generalization abilities of the ANN. The training stops when the validation process
show no more generalization.

The same procedure is repeated for construction of the second ANN with BR training
backpropagation algorithm. 85% (9091 paths) and 15% (1604 paths) of the collected
data is presented to this ANN during the training and testing phases respectively. As
mentioned before, validation 1s unnecessary in the BR algorithm which allows further
1604 paths to be added to the training data. The training stops at a pre-set limit of 1000
cpochs.

The regression plots and the performance metrics of the ANNs for the training,
validation and testing processes are given in Fig.6 and Table.1 respectively. The
performance details of the LM and the BR backpropagation algorithms during the
training, testing and validation processes are given in Table. 1 and the Mean Absolute
Error (MAE) and the Mean Absolute Percentage Error (MAPE) ! between the estimated
and the measured PV module output power values for ANN implementations from Nov.
26 to Dec 7", 2015 are given in Table. 2.
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Fig. 6. The regression plots of (a) Levenberg-Marquardt and (b) Bayesian Regularization training
backpropagation algorithms.

! The noisy data is filtered out in order to maintain reasonable and robust (MAPE) values.
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Table 1.

Regularization (BR) training backpropagation algorithms.

Performance metrics of the Levenberg-Marquardt (LM) and the Bayesian

Performance Levenberg-Marquardt Bayesian Regularization
Metrics (LM) Algorithm (BR) Algorithm
Best Trainming 1.2549¢-04 1.0211e-04
Performance

Best Validation 1.3365e-04 Not applied in BR
Performance

Best Testing 1.0787e-04 1.0418e-04
Performance

No. of Training 162 1000
Epochs

Best Trainming 154 1000
Epoch

Minimum 6.2957e-00 1.2496¢-08
Gradient

Training Time 16.27 114.53

{in Seconds)

Table 2. The Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE)
between the estimated and the measured PV module output power values for different ANN

implementation periods.

ANN Mean Mean Mean Mean
Implementation Absolute Absolute Absolute Absolute
Period Ermror{LM) Error(BR) Percentage Percentage
(mW) (mW) Error (LM) Error (BR)
November 26t 2015 1.45 1.42 7.05% 5.87%
Novernber 272 2015 1.12 0.94 5.62% 5.43%
November 281, 2015 1.58 1.04 5.74% 4.54%
November 29t 2015 1.82 1.29 9.74% 6.28%
December 2 2015 1.7 0.93 7.33% 4.77%
December 7, 2015 2.16 0.71 3.18% 2.06%

4  Implementation of the Developed Artificial Neural Networks

(ANNs)

The ANNs created during the development processes described in section-3 are
implemented in a period from Nov. 26% 2015 to Dec. 7%, 2015. During this period the
performances of the ANNs for estimation of PV module output power in different
meteorological situations varying from highly fluctuating partly cloudy to smooth clear
sky conditions are monitored. In order to better express the performance of each ANN,
a scatter graph of the measured vs. the estimated PV module output power values for
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each ANN implementation in three different weather conditions on Nov. 26 Nov. 28
and Dec. 7% 2015 are given in Fig. 7. As it is obvious from the figures, the ANN trained
by the Bayesian Regularization (BR) backpropagation algorithm shows a better
performance than the ANN trained by the Levenberg-Marquardt (LM) backpropagation
algorithm especially in higher output values. This performance difference was expected
since the BR algorithm 1s known to work well with noisy and difficult data as described
in section-3. Although the estimation performance improvements of the BR algorithm
may appear to be relatively small for a single PV module application, the improvement
becomes definitely significant when the application is extended to broader PV arrays
after taking developmental considerations. On the other hand, the higher performance
of the BR algorithm comes with a cost. As it is obvious from Table. 2, the training time
of the BR algorithm 1s significantly higher than that of the LM algorithm. The training
time of the BR algorithm increases more and more by setting the maximum epoch
number to higher limits in order to maintain lower training error. The BR algorithm
may not be deployed in time-constrained situations. The PV module output power
estimated by the ANN with BR algorithm vs. the measured PV module output power
for Nov. 26® Nov. 28" and Dec. 7%, 2015 are plotted in Fig. 8.

5 Conclusions

The performances of Artificial Neural Networks (ANNs) developed by the
Levenberg-Marquardt (ILM) and the Bayesian Regularization (BR) training
backpropagation algorithms for PV module power estimation are analyzed in this paper.
The results show that the BR algorithm provides a better performance than the LM
algorithm in PV power estimation, to the cost of higher computation time. The average
Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE)
between the estimated and the measured PV module output power values for ANN
implementation period from Nov. 26% to Dec. 7% 2015 are 1.64 (mW) and 6.44%
respectively for the LM algorithm, which are reduced to 1.05 (mW) and 4.83% by the
BR algorithm. The estimation improvement of BR algorithm 1s highlighted by the fact
that the proposed PV power estimation algorithm can be extended to broader PV fleets
after taking necessary developmental considerations. On the other hand the training
time of the LM algorithm is 16.27 (s), which 1s increased to 114.53 (s) by the BR
algorithm. The training time of the BR algorithm further increases in order to maintain
higher accuracy. Consequently it can be concluded that the BR training
backpropagation algorithm presents better performance in ANN based PV power
estimation purposes and is the right choice where high accuracy is required but this
algorithm 1s significantly time-consuming and may not be utilized where the training
speed 1s of major concern. The LM algorithm is the proper choice in time-constrained
situations.
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Fig. 7. The measured vs. the estimated PV module output values for ANNs implemented by the
LM and the BR algorithms on (a) November 26% 2015, (b) November 28% 2015 and (c)
December 7t 2015.
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Appendix E: A Comparative Study on Different Photovoltaic Array

Topologies under Partial Shading Conditions

Moein Jazayeri, Sener Uysal, Kian Jazayeri, “A comparative study on different
photovoltaic array topologies under partial shading conditions”, in Proceedings - IEEE

PES T&D Conference and Exposition, Chicago, IL, USA, 2014.

Abstract—This paper mainly analyzes the performance of
different photovoltaic array configurations under various
shading patterns. A Matlab/Simulink based simulation model of
a PV module is utilized as the smallest building block of the
mentioned topologies. The model is validated using the datasheet
parameters of the "SOLAREX MSX-60" PV module. The
performance and output characteristics of ‘Series-Parallel’,
"Total-Cross-Tied” and ‘Bridge-Link’ array topologies are
analyzed and compared using a 6x6 PV array under 6 different
shading scenarios. The effects of bypass diodes during partial
shading conditions are considered and the analysis results are
presented and compared with and without bypass diodes. The
mentioned shading scenarios are defined in such a way to
simulate the passage of a cloud in different patterns. The results
show that all the mentioned topologies have similar performances
under identical illuminations while the "Total-Cross-Tied' (TCT)
configuration, despite the high complexity of the system,
outperforms both "Series-Parallel’ (SP) and "Bridge-Link™ (BL)}
structures under partial shading conditions. "Bridge-Link™ and
*Series-Parallel’ configurations stand on the 2" and 3"
performance stages respectively while a Series-Parallel
connection presents the least system complexity. The analyses
and results provide detailed information on the characteristics of
different array topologies which can be utilized by system
designers to estimate the power yield and choose the most
appropriate system configuration with respect to the existing
environmental conditions to improve the overall efficiency.

Keywords—array configuration, bridge-link, module

characteristics, series-parallel simulink, solar cell, solar energy,
solar module, total-cross-tied,
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L INTRODUCTION

The infinite, renewable, clean and noiseless nature of the
solar energy makes it one of the most preferred sources of
renewable energies which is increasingly finding application
areas in today's human life. However, despite of the mentioned
advantages, this clean energy source has some disadvantages
which should be evércome for an efficient use. Relatively high
production costs of PV panels, unavailability of economically
efficient' energy storage devices and high dependency of energy
production-on the environmental conditions are some of the
main disadvantages. As one of the main factors, the amount of
energy produced by solar panels strongly depends on the
incident solar irradiance on the panel surface. The amount of
energy production is subjected to variations as the received
solar irradiance is not constant at any time instance. Thig

978-1-4799-3656-4/14/$31.00 ©2014 IEEE

variation may be caused by the variations of the position of the
sun in the sky during a day or shading effects caused by
passing clouds, neighboring houses, ete. Partial or full shading
of solar modules caused by any reagson hag a direct effect on
their output power. When it is extended to large-scale PV
plants, these kinds of effects may cause big amounts of
economic losses and reduce the overall efficiency of the
systems. Therefore, estimation of the power yield under
different environmental conditions and finding methods to
overcome the negative effects of the mentioned conditions and
finally improving the efficiency of the PV generation systems
has been considered by many researchers during the recent
years.

Estimation of power yield under various shading conditions
and developing methods to prevent power losses or decrease
the negative effects of shading are the most important two
stages, which should be taken into consideration to improve the
system efficiency.

Mathematical modeling of solar cells has been one of the
maost preferred methods to investigate the characteristics of PV
systems under different environmental conditions. Solar cells
are the smallest building blocks of any PV generation system
and hence a cell based analysis can be extended to the desired
system applications.

Various meodels have been proposed by researchers to
investigate the characteristics of solar cells. Single-Diode
model [1-2], Remodel [3-4], Rp-model [5-6] and two-diode
models [7-9] of a solar cell have been the most widely utilized
models to investigate the behaviors of a solar cell. The one-
diode model of a solar cell is the simplest model which has
been utilized by many researchers and also forms the basis of
the analyses in this study.

As it was mentioned earlier, the second stage to improve
the efficiency of a system is to find methods to decrease the
negative effects of the environmental factors. Appropriate
design of PV array configurations has shown significant
improvements on the overall system performance. In this
manner, “Series-Parallel’, “Total-Cross-Tied and “Bridge-
Link’ configurations are the most preferred array topologies
[10-12].

The characteristics of PV arrays with the mentioned
configurations are analyzed and compared under 6 different
shading scenarios. Each of the mentioned scenarios represents
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a passing cloud with different characteristics. A
Matlab/Simulink based simulation model of a solar cell is
utilized to construct each of the mentioned array
configurations. Also the use of bypass diodes is considered in
order to take the effects of partial shading on arrays
performances into account.

II. MODELING OF THE PV ARRAY

OCutput characteristics of PV arrays with Series-Parallel,
Total-Cross-Tied and Bridge-Link configurations are analyzed
and compared in this paper. The mentioned arrays consist of 36
PV modules in a 6x6 array configuration and the one-diode
mathematical model of a solar cell is utilized to simulate each
module. This model is used due to its simplicity and wide
application area. The equivalent electrical circuit of the one-
diode model of a solar cell is illustrated in Fig. 1. As it is
obvious from the figure, the model consists of a current source,
a diode, a parallel resistance expressing the leakage current and
a series resistance representing the internal resistance of a solar
cell.

I, |ID

)

le]
~J
e
=

Fig. 1. Equivalent One-Diode Circuit of a Solar Cell

The one-diode model of a solar cell defines the voltage —
current relationship of the cell using the following equation,

Pl (exp a (Vn“,::" s ) _¥ ;Sf" ) ¥y
Where;
Ln : Photocurrent (A)
Is : Diode Saturation Current (A)
q : Electron Charge(1.60217646 % 107 C)
- : Diode Ideality Factor
k : Boltzmann Constant (1.3806503 x 10 J/K)
T : Tenipetature of the p-n Junction (K)

Rs : Series Resistance (€2)
Ren

The open-circuit voltage, (V,.), short-circuit current, (I),
maximum power point, (P..J). current and voltage at the
maximum power point, (V) and (L), are generally provided
in the manufacturer’s datasheet under Standard Test Conditions
(STC). According to (1), Ly, Is, n, Rs and Ry, are the 5 unknown
parameters to be determined by the simulation model.

. Shunt Resistance (£2)

A Matlab/Simulink based simulation model of a solar
module forms the basis for the analyses of this paper. The
model is validated using datasheet parameters of SOLAREX
MSX-60 solar panel. The simulated [-V and P-V curves, under
STC, are illustrated in Fig. 2 and the numerical results are
tabulated and commpared in Table I. The characteristic curves
and provided numerical data clearly show that the sinulation
model has the capability for accurate modeling of the module
characteristics. The sfructures of the simulation models for the
mentioned three topologies are presented in Fig. 3. The block
diagram of each individual module is shown in Fig. 4 where
the inputs to each individual module are datasheet parameter
values along with the temperature, irradiance and number of
series and parallel connected cells in the module.

TABLE L SOLAREX MSX-60 MODULE SIMULATED PARAMETERS
Parameter Simulated Datasheet

Value Value

Py 60 W 60 W

Ve 2093V 211V

Le 38A 38A

Vip 17.09 v 170V

L 351A 35A

|==1-V Characteristics
== P-V Characteristics

Current (A)

|~

Fig. 2. Simulated I-V and P-V Cwrves for SOLAREX MSX-60 Panel

Voltage (V)
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Fig. 3. PV amay simulation medel for a)Series-Parallel b)Total-Cross-Tied c)
Bridge-Link configurations

It is obvious that Total-Cross-Tied and Bridge-Link
configurations include some additional connections . with
respect to the Series-Parallel case. In a Series-Parallel
structure, the series connected module strings are connected in
parallel to form a Series-Parallel configuration. The Total-
Cross-Tied configuration, as the most complex structure type,
connects each individual module in series and parallel with the
other one at the same time. The number of connections is
reduced to half of the TCT configuration in a Bridge-Link
structure. The simulated I-V and P-V characteristics for the
mentioned topologies under identical illumination conditions
are illustrated in Fig. 5.

Fig. 4. Block diagrams of a solar cell simulation model
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IIl. MODELING OF PARTIAL SHADING EFFECST

The main focus of this paper is to analyze and investigate
the performance of different array topologies under variable
shading scenarios. Six different shading patterns, as shown in
Fig. 6 are defined to represent the passage of a cloud over the
PV array. Each pattern consists of three different irradiance
levels, namely 200 W/m’, 600 W/m’ and 1000 W/m® to
represent the most darkness cloud center, more clear cloud
edge and full illumination conditions, respectively. The
mentioned shading scenarios can be described as follows,

e 1% Shading Scenario: The cloud center is located over
the comer of the PV array and covers 4 modules-while
there are 12 modules illuminated with 600°W/m" and
16 modules fully illuminated with 1000 W/m?>.

o 2™ Shading Scenario: The cloud enters the array from
the bottom. The cloud center covers two rows (12
modules) while two rows are partially shaded with
600 W/m® and the remaining two rows are fully
illuminated.

« 3™ Shading Scenario: The cloud enters from the left
side of the array. The eloud center covers two columns
(12 modules) while two columns are illuminated with
600 W/m® and the remaining two columns are fully
illuminated.

e 4™ Shading Scenario: The cloud enters from top of the
array, The first two rows (12 modules) are covered by
the cloud center, two rows are illuminated with 600

/m* and the remaimig two rows are fully
illuminated with 1000 W/m’.

e 5™ Shading Scenario: The cloud center covers 4
modules at the middle of the array while 12 modules
are illuminated with 600 W/m® and 20 modules are
fully illuminated with 1000 W/m®.

Array IV Characiristics

o

Currant (A)

"

@ -
Veltage (V)
]

Fig. 5. Simulated array a) I-V and b) P-V characteristiscs under identical
illumination
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Fig. 6. Different array shading scenarios

o 6" Shading Scenario: The 4 modules at the center of
the array are fully illuminated while 12 surrounding
modules are illuminated with 600 W/m” and the outer
20 modules are fully illuminated with 1000 W/,

Iv.

The output characteristics of the mentioned three atray
topologies under identical illumination are illustrated in Fig. 5.
The results show that all the mentioned configurations have
similar output characteristics under identical illumination. The
P-V characteristics of the mentioned array topologies under 6
predefined partial shading patterns are illustrated in Fig. 7.
The characteristics are obtained considering the effeets of
bypass diodes. According to the results, the mentioned
topologies represent similar characteristics in the presence of
the same number of modules receiving the same values of
solar irradiance (Scenarios No.2,3&4). At the same it is

SIMULATION RESULTS

—Series FaralelContguraton

“ "
Veltage V)
r

observed that in the 3™ scenario the bypass diodes have not
affected the P-V characteristics due to the presence of
complete columns illuminated with identical solar irradiance
values. The effects. of the bypass diodes are cleatly visible in
the P-V curves of the artay under the 1%, 5™ and 6™ shading
scenarios. These effects are caused by modules with different
irradiance values in the same column of the array. It is also
observed that the Total-Cross-Tied topology outperforms the
Series-Parallel and Bridge-Link configurations under the
mentioned shading scenarios. It is obvious that the Bridge-
Link configuration has the second higher performance after
the TCT topology. The disadvatnge of the TCT topology with
respect to the Series-Parallel configuration is the high number
of switching devices and complex wiring while the number of
connections in the Bridge-Link topology has been reduced to
the half of the TCT design. A comparison of the P, values of
the three topologies, with and without bypass diodes, under
the mentioned shading scenarios is presented in Fig. 8.

[ ]
Velage V)
o

Fig. 7. Array P-V characteristics under a} 1% shading scenario, b} 2™ shading scenario, ¢} 3 shading scenario, d) 4 shading scenario, &) 5% shading scenario, f)
6" shading scenario
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Na.l No.2 No.3 No.d No.5 No.6
(@)

| mSeries-Parallel Topology ® Total-Cross-Tied Topology ® Bridge Link Topology

STC  Shading Shading Shading Shading Shading Shading
Nal No.2 No3  Nod No5  Noé

(L))

Fig. 8. P-¥ characteristics for three different ammay topologies a} with bypass
diodes b} without bypass diodes

The graphics clearly highlight the effects of application of
bypass diodes. It is observed that bypass diodes have a great
improvement, specially in the 2", 4% and 6™ shading scenarios
where application of bypass diodes have increasing effects in
the Py values up to 93.41% and 61.60% under the 2™ (the
same as the 4%) and the 6™ shading scenarios. According to the
results the Total-Cross-Tied and Bridge-Link configurations
have improved the amount of P, by 5.84% and 2.8%
compared with the Series-Parallel topology under the 1% and
5% shading scenarios, respectively. It is also observed that, in
the absence of bypass diodes, the amount of Py, has been
increased by 10% and 9% in TCT and BL topologies
respectively. The P, values of the mentioned topologies
under the 2", 3" and 4" shading scenarios are almost sirmlar
due to the existence of the same number of identically
illuminated modules.

According to the results; the TCT configuration has
presented the best performance under non-identical partial
shading conditions and it can be estimated that, beside its
design complexities, it will be advantageous in the presence of
more complex shading patterns under real environmental
conditions.

V. CONCLUSIONS

Different system topologies are utilized in PV generation
plants to improve the overall system efficiency. Series-
Parallel, Total-Cross-Tied and Bridge-Link configurations are
the most widely used PV array topologies in order to reduce
the negative effects of partial shadings mostly caused by
passing clouds. A Matlab/SIMULINK based simulation model

of a solar module has been utilized to analyze and compare the
performances of each configuration type in a 6x6 sized PV
array. Six different shading scenarios are defined to present a
cloud passage and also the use of bypass diodes is considered
and the results are analyzed with and without the mentioned
bypass diodes.

The results indicate that the TCT configuration
outperforms the other two system topologies under all partial
shading conditions. The mentioned topology has been able to
increase the array’s P, value up to 5.84% with bypass diodes
and up to 10% without application of bypass diodes: The
amount of improvement obtained using a Bridge-Link
topology has been 2.58% and 9% respectively with and without
application of bypass diodes. It is also observed that all the
mentioned system topologies have similar performances under
identical illumination conditions.

The results provide usefil and reliable information on the
performance of array topologies under changing shading
conditions and can be utilized during system design 1o
improve the overall efficiency of the PV system.
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Appendix F: Evaluation of Maximum Power Point Tracking

Techniques in PV Systems Using MATLAB/Simulink
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Abstract— This paper mainly focuses on the performance
evaluation of “Perturb&Observe” and “Incremental
Conductance” algorithms as the most commonly utilized two
Maximum Power Point Tracking (MPPT) technigues for
photovoltaic systems. Matlab/SIMULINK platform is used to
model and simulate the entire system. The simulation model of
a PV module is constructed based on the one-diode
mathematical model of a solar cell and the model is validated
using the mapufacturer’'s datasheet parameters for a
commercially available PV module. A boost type DC/DC
converter topology is utillized and modeled and simulation
models for “P&0O” and “IncCond” algorithms are constructed.
According to the results, both of the algorithms have shown
almost similar performances under identical test conditions.
Despite its relatively high complexity, the IncCond algorithm
has been slightly more efficient and has reached to the MPP in
a shorter time period, while most probably the simple
structure of the P&O algorithm has caused it to be the most
preferred MPPT algorithm. The paper provides reliable
information on the performance and characteristics of the
mentioned two MPPT techniques which can be used by system
designers to improve the overall efficiency and reduce the cost
of PV system applications.

Keywords- DCDC converter, boost converter, incremental

conductance, MPPT, perturb & observe, PV module, solar energy,
solar cell.
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Abstract— This paper mainly focuses on the performance
evaluation of “Pertnrb&Observe” and “Incremental
Conductance” algorithms as the most commonly atilized two
Maximum Power Point Tracking (MPPT) techniques for
photovoltaic systems. Matlab/SIMULINK platform is used to
model and simulate the entire system. The simulation model of
a PV module is constructed based on the one-diode
mathematical model of a solar cell and the model is validated
using the manufacturer's datasheet parameters for a
commercially available PV module. A boost type DC/DC
converter topology is utilized and modeled and simulation
models for “P&0” and “IncCond” algorithms are constructed.
According to the results, both of the algorithms have shown
almost similar performances nnder identical test conditions.
Despite its relatively high complexity, the IncCond algorithm
has been slightly more efficient and has reached to the MPP in
a shorter time period, while most probably the simple
structure of the P&O algorithm has caused it to be the most
preferred MPPT algorithm. The paper provides reliable
information oo the performance and characteristics of the
mentioned two MPPT techniques which can be used by system
designers to improve the overall efficiency and reduce the cost
of PV system applications.

Keywords- DC/DC converter, Boost converter, incremental
conductance, MPPT, perturb&observe;, PV module, solar energy,
solar cell.

L INTRODUCTION

Solar cells first entered human’s life in 1883 [1] and the
clean nature of this huge energy sowee in parallel with the
noiscless opération and long lifetime of the systems have all
been forming the reasons for imvestments in this field.
However, despite the mentioned advantages, there are still
some disadvantages which form barriers for a wide use of
this clean and sustainable energy source. Relatively high
production and installation costs, leakage of economically
efficient energy storage devices and relatively low energy
production efficiency are all the disadvantages that should be
overcome for a wide and efficient use of this energy source.
Fortunately, due to the mass production technigues in the
recent years, the cost trend has become downward and the
researches show that PV energy is becoming cost

54

competitive and will be available for a wider use in the near
future.

In general, the energy production in PV modules,
regardless their manufacturing technology, energy
conversion efficiency, ete., highly depends on  the
environmental ¢onditions. The flucmations in the amount of
received solar irradiance, mostly caused by passing clouds,
dramatically affect the module characteristics and change the
amowtt of elestrical current production by the module. The
mentioned variations in the amount of electrical power
generated by PV systems cause their efficiencies to be
reduced and therefore larger systems are required to produce
the desired amounts of electrical power. Taking the
mentioned mnegative effects into  the consideration,
development and application of appropriate methods 1o
enhance the energy production by the systems earns a great
importance for an efficient use of solar energy generation
systems. MPPT as one of the mentioned methods has been
subjected to many research projects and various techniques
have been proposed by researchers [2-4]. Despite the
differences in their performance and working principles, the
common purpose of the mentioned techniques is to extract
the maximum power from PV modules under variable
environmentzl conditions by operating them at their
maximum power point.

Pertwb and Observe (P&O) methods are most widely
preferred MPPT techniques due to their simplicity and
effectiveness. The algorithm basically compares the PV
power before and after perturbation of the control parameter
and decides on the next perturbation. However, the fixed
perturbation step size in the conmventional P&C method
causes these methods to suffer from oscillations around
MPP. Larger perhubation steps increase oscillations while
smaller perturbation steps decrease the MPPT speed.
Utilization of variable perturbation steps have proposed by
many researchers [5,6] to reduce the oscillation problem and
hence improve the MPPT efficiency. Also various
approaches have been infroduced to handle the oscillation
problem around the MPP [7-9] while smoother steady-state
conditions are obtained in [10].

Also utilization of artificial intelligence approaches such
as fiizzy logic controller [11] and newal networks [12] has
been considered by many researchers. The mentioned
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methods have also shown high performances while extensive
computation requirements are the main disadvantages of
these techniques. As an example, dealing with the
fuzzification, rule base storage, inference mechanism and
difuzzification operations is the main disadvantage of FLC
while the requirement of neural network based techniques to
large amount of training data is known to be their main
handicap [7]. Unlike the modified or adaptive P&O
techniques, the mentioned disadvantages cause artificial
intelligence approaches to be nappropriate for use in low-
power applications [13].

DC/DC converters are the means by which in many
MPPT applications the maximum power point tracker
maintains the module at its maximum power point voltage,
(Vip), to extract the maximum power. Buck, Boost and
Buck-Boost converters are mostly used in photovoltaic
MPPT systems [14].

The maximum power available from the panels varies
with respect to the amount of the received solar irradiance on
the panel surface. Therefore, the power yield from the panels
should be estimated or calculated for an appropriate system
design. Mathematical modeling of solar panels is a method
which is widely utilized by researchers to estimate the power
yield of the modules. Various numbers of models have been
proposed to estimate the module characteristics under
different environmental conditions. Single-Diode model
[15,16], R,-model [17,18], Rp-model [19,20] and two-diode
models [21,22] of a solar cell have mostly been utilized by
researchers.

This paper evaluates the performance of P&QO and
IncCond MPPT algorithms as the two most commonly used
techniques. The one-diode mathematical model of a solar
cell is used to simulate the characteristics of the PV module
due to its simplicity and a boost type DC/DC converter is
utilized where the main criteria on the selection of this
topology has been the suitability of this converter for grid
connected applications.

II.

As previously mentioned, development of methods for
efficiency improvement has been considered by many
researchers and various numbers of MPPT techniques have
been proposed. The common working principle of these
techniques is that all of them improve the system efficiency
by operating the PV system at its maximum power point
(Pa). P&O and IncCond have the greatest application area
among the mentioned methods. The operation prineiple of
these two techniques Is briefly presented in this part of the
study.

A. Perturb & Observe Method

Perturb&Observe method is one of the “Hill-Climbing”
MPPT techniques. This technique tracks the module's
maximum power point with respect to the sign of dP/dV. The
sign of dP/dV on module’s P-V curve is illustrated in Fig. 1.
As it is obvious from the figure, dP/dV>0 for operating
points on the left side of the maximum power point and
dP/dV<0 for the operating points on the right side. The
algorithm perturbs the voltage by a constant value and

MAXIMUM POWER POINT TRACKING
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observes the wvariations in dP/dV. If dP/dV=0, the
perturbation is in a correct direction and it continues to reach
the maximum power point. If dP/dV<0, it means that the
operation point is getting far from the maximum power point
and hence the next perturbation will be in the reverse
direction. The procedure continues until the maximum power
point is reached, meaning that the module operates at Vi,
point. This method is most probably the most preferred
MPPT technique in the literature due to its simplicity and
high tracking efficiency while oscillations around the
maximum power point and low tracking efficiency under
rapidly changing solar irradiance conditions are the most
well-known disadvantages of this technique [2]. The
reported efficiency for this technique in the literature has
been over 90%. The flowchart of the P&Q algorithm is
shown in Fig. 2.
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Figure 2. Flowchart of the P&O MPPT algorithm
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B. Incremental Conductance Method

The Incremental Conductance method is another
Hill-Climbing method which is introduced as an
improvement to the P&O algorithm. This algorithm tracks
the maximum power point by comparing the module's
instantaneous 1-V  characteristics and its incremental
conductances (dI/dV) using the following equations,

E:@:Viﬂ' (1)
v dv ar

Fi
L —os | __tm @)
AV | =l avli=t.. ~ ¥,
V=V Vel B

This algorithm has the ability to determine the distance to
the maximum power point and hence stop the perturbation
and fracking procedure after reaching the MPP [23].

Because of the mentioned property this algorithm
theoretically reduces the oscillations around the MPP.
Practically it is observed that still oscillations exist around
the MPP as (2) is not always completely achieved. Though
higher accuracies are reported with respect to the P&O
algorithm [3], this algorithm still has low tracking efficiency
under fast changing environmental conditions. The flowchart
of the IncCond algorithm is illustrated in Fig. 3.

1.  MODELING OF SYSTEM COMPONENTS

Different components of the constructed simulation
model for MPPT algorithm performance evaluation. are
described in this part of the study. A general overview of the
simulation model is illustrated in Fig. 4. As it is seen from
the figure, the PV medule, MPPT algorithm, PWM
generator and DC/DC converter are the main components of
the system.

A. Modeling of the PV Module

The one-dicde mathematical model of a solar cell is used
to simulate the PV module. The model is preferred due to its
simplicity and wide application area. The equivalent
electrical circuit of the one-diode model of a solar cell is
presented in Fig. 5. The one-diode model of a solar cell
defines the voltage — current relationship of the cell using
the following equation,

1=y _I{GXP 9(V+Rsl)71} (+Rrsl) 5
nkl’ Ry
‘Where;
Iop : Photocurrent (A)
Is : Diode Saturation Current (A)
n : Diode Ideality Factor
k : Boltzmann Constant (13806503 x 107 J/K)
T : Temperature of the p-n Junction (K}
Rs : Series Resistance (Q)
Rapr : Shunt Resistance (£2)
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Figure 3. Flowchart of the Incremental Conductance MPPT algorithm

The open-circuit voltage, (V,), short-circuit current,
(Ii.), maximum power point, (P}, current and voltage at
the maximum power point, (V) and (I.,), are generally
provided in the manufacturer's datasheet under Standard
Test Conditions (STC}. According to (1}, L, Ig, n, R, and
Ry, are the 5 unknown parameters to be determined by the
simulation model.

The PV module is simulated in Matlab/SIMULINK
platform. The simulation model is validated using datasheet
parameters of a commercially available PV module. The
simulated module I-V and P-V curves, under STC, are
illustrated in Fig. 6 and the numerical results are tabulated
and compared in Table L

Voodute Fioait
DCDC
PV
POWER Vh,,dI LOAD
MODULE i CONVERTER

MPPT PWM
ALGORITHM GENERATOR

Figure 4. A general overview of the simulation model
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Figure 5. Equivalent One-Diode circuit of a solar cell
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Figure 6. Simulated I-V and P-V characteristics of the PV module

The characteristic curves and provided numerical data
clearly show that the simulation model is capable of an
accurate modeling of the module characteristics. A
comparison between the simulation results and the module
datasheet values show that the simulated curves are in.a
good agreement with the real-world module characteristic
data provided by the manufacturer. The inputs to the model
are datasheet parameter values along with the temperature,
irradiance and number of series and parallel connected cells
in the module.

TABLE 1. PV MODULE SIMULATED PARAMETERS Figure 8 Simulation model of the IncCond MPPT algorithm
Parameter Simulated Datasheet
Value Value C. Modeling of DC/DC Converter
P & 4l The boost converter topology is utilized in this paper due
Vo 214 216 to its grid connection suitability. The electrical circuit
(i 257 257 diagram of a simple boost converter is presented in  Fig. 9.
As it is clear from the figure, this converter topology
Vinp 1727 173 5 4 5 P i
consists of an inductor, a switch, a capacitor and a diode.
! 231 a3

B. Modeling of MPPT Algorithm m b 3, o > l 3
The simulation models of the P&O and IncCond MPPT SWITCH Ao
algorithms are constructed based on the flowcharts of the VIN 7\% C 8’5—: vouT
mentioned algorithms as illustrated in Fig. 2 and Fig. 3, ‘ c R
respectively. The simulation models are presented in Fig, 7 " B

and Fig. 8, respectively.

Tigure 9. Circuit diagram of a boost DC/DC converter

57

188



The boost converter has two operation modes. The 1%
mode begins when the switch is tumed on (t = T,,). During
this mode the rising input current flows through the inductor
and switch and the energy is stored in the inductor. The 2*
mode beging when the switch is turned off (t = Tug). The
current flows through the inductor, diode, capacitor and the
load. The inductor current falls wntil the beginning of the
next cycle and the enerzy is transferred to the load. The
relationship between the input and output voltage values can
be described by the following equation,

%V &

1
out =

1-D

v,

Where,
D : Duty Cycle
N

The system simulation results, with both P&O and
IncCond MPPT algorithms, are presented and discussed
during this part of the paper. In order to highlight the
importance and improving effects of MPPT application, the
mentioned results are compared with the results obtained
from the systermn simulation without any maximum power
point tracker. The simulation model executed for 0.1 second
under STC {G = 1000 W/m’, Ambient Temperature = 25°C).
A general overview of the constructed simulation model for
the entire system is presented in Fig. 10.

According to the results, both of the algorithms have
delivered almost the same amount of power to the load
while the output power of the Incremental Conductance
algorithm has been slightly higher than the P&O algorithm.
The simulated system output power values are presented in
Fig. 11.

SIMULATION RESULTS

The results also show that the output power of the
IncCond algorithm has reached the maximum value in a
shorter time period compared with the P&O algorithm. The
results clearly highlight the importance and improving role
of the MPPT application. It is obvious that the power
delivered to the load is less than 10 W without application
of MPPT while after MPPT application this value is higher
than 35 W.

The results regarding the efficiencies of the MPPT
algorithms are also presented in Fig. 11. Several approaches
have been introduced to calculate and evaluate the
efficiency of the MPPT algorithms. The efficiency
evaluation and comparison in this paper is performed
according to the following equation,

P
e )
real
Where,
Poscy . The available maximum power under the test
conditions

According to the results, the recorded efficiency for both
of the algorithms is greater than 90% which is quite
satisfactory. At the same time it is observed that the
efficiency of the IncCond algorithm is slightly greater than
P&O algorithm and has reached to the maximum value in a
shorter time period. The consistency between the similar
MPPT simulation results and the real-time measured
module outputs under identical solar insolation conditions is
also confirmed in literature [2]. Table II contains detailed
numerical results regarding different parameters of the
system.
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Figure 10. General overview of the system simulation model

58

189



— Parturb&Observe Algorifhm
30— — Incremental Conductance Algorithm \—
= NO MPPT

Power (W)

= Purturb&Observe Algorithm
~— Incremental Conductance Algorithm

0 [ 00 003 004 005 0.06 007 008 009 [}
Time (5)
)

Figure 11. a) System output power with and without MPPT, b) Efficiency
of MPPT algorithms

According to the results, the operation point of the
module with P&O algorithm locates at the left side of the
MPP while the IncCond algorithm operates the module at
the right side of the MPP. Also it is observed that the
operation point is near the open-circuit without application
of maximum power point trackers. It is ebserved that
MPPT algorithms have improved the overall efficiency of
the system by more than 70%.

TABLE IL. NUMERICAL SIMULATION RESULTS
Parameter P&O IncCond NO MPPT
Algorithm Algorithm
Vi (V) 15.8 18.16 21.03
Vo (V) 4321 43.34 21.03
Lin (A) 246 2.14 042
Tae(A) 0.86 0.86 042
Poon (W) 37.24 37.60 8.84
n (%) 93.56 94.47 2272

Considering the results together with the advantages and
drawbacks of P&O and IncCond techniques, a tracking
system which simultancously tracks the MPP of the
modules using both P&O and IncCond techniques may be
suggested as a practical solution. The MPPT system may
monitor and compare the outputs of the mentioned
techniques and chose the most appropriate MPPT technique
according to the existing environmental conditions and
application/load requirements. Hence more efficient/reliable
control may be provided to take the advantage of each
individual MPPT technique under existing environmental
conditions/application requiremerts.

V. CONCLUSIONS

The P&O algorithm is the simplest MPPT algorithm
while the IncCond algerithm, propesed as an improvement
to the P&O algorithm, has a relatively more complex
structure. The simulation results presented in this paper
show that both of the algorithms have almost the same
efficiencies  (1>90%) under identical illumination
conditions. According to the results, the IncCond algorithm
has shown a slightly better performance in tracking the
maximum power point of the module. It is also observed
that the output power of the IncCond algorithm reaches to
the maximum point in a shorter time period compared with
the P&O algorithm. The simple structure and its high
tracking efficiency make the P&O algorithm to be the most
preferred and utilized maximum power point tracker for PV
systems. The results clearly highlight the improving role of
the MPPT in PV systems where application of maximum
power point trackers has increased the total system output
power by more than 70%. The simulation results provide
useful information which can be used by system planners
for power yield and performance estimation of PV energy
generation systems.
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Appendix G: MATLAB/Simulink Based Simulation of Solar
Incidence Angle and the Sun's Position in the Sky with Respect to

Observation Points on the Earth

Kian Jazayeri, Sener Uysal, Moein Jazayeri, “MATLAB/simulink based simulation of
solar incidence angle and the sun's position in the sky with respect to observation
points on the Earth”, in Proceedings of 2013 International Conference on Renewable

Energy Research and Applications, ICRERA, Madrid, Spain, 2013.

Abstract— This paper proposes a simulation model for
calculation of the sun's position in the sky and the incidence
angle of sunlight beams on the surface of solar modules with any
tilt angle, located at any geographical location on the Earth's
surface. The electrical power generated by a solar panel directly
depends on the amount of the received solar irradiance on panel
surface where the received irradiance is directly proportional to
the sun’s position in the sky. Therefore, it is of great importance
for solar energy researchers and system designers to have a
precise knowledge about the movement and position of the sun in
the sky with respect to any specific observation point on the
earth. A simple and practical simulation model of the sun’s
position in the sky is designed using MATLAB/Simulink
platform. The model simulates the sun's position in the sky and
solar angle of incidence based on the latitude and longitude of the
observation point, solar module s azimuth and tilt angle values,
the Julian day number and the local clock time. The proposed
model provides the possibility of instantaneous or continuous
determination and tracking of the sun’s position in the sky for
any geographical location on earth and can be considered as a
helpful tool for sun tracking and other system planning purposes.

Keywords— photovoltaic, photeveltaic simulation, solar altitude,

solar angle of incidence, solar azimuth, solar energy, sun's position
in the sky, sun tracking,
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Abstract— This paper proposes a simulation model for
calculation of the sun's position in the sky and the incidence
angle of sunlight beams on the surface of solar modules with any
tilt angle, located at any geographical location on the Earth's
surface. The electrical power generated by a solar panel directly
depends on the amount of the received solar irradiance on panel
surface where the received irradiance is directly proportional to
the sun’s position in the sky. Therefore, it is of great importance
for solar energy researchers and system designers to have a
precise knowledge about the movement and position of the sun in
the sky with respect to any specific observation point on the
earth. A simple and practical simulation model of the sun's
position in the sky is designed using MATLAB/Simulink
platform. The model simulates the sun's position in the sky and
solar angle of incidence based on the latitude and longitude of the
observation point, solar module s azimuth and tilt angle values,
the Julian day number and the local clock time. The proposed
model provides the possibility of instantaneous or continuous
tion and tracking of the sun’s position in the sky for
any geographical location on earth and can be considered as a
helpful tool for sun tracking and other system planning purposes.
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Keywords— photovoltaic, photovoltaic simulation, selar alfitude,
solar angle of incidence, solar azimuth, solar energy, sun’s position
in the sky, sun tracking,

L INTRORUETION

The alternative clean /@nd sustainable energy resources
have been the subject of many scientific researches in the
recent decades with respect to the limitations and threats
associated with the traditional energy resources. The solar
energy is one'ef the most competitive and rapidly growing
energy resourcesithat emerge to meet the modern world’s
energy requirements without causing any damage to the planet
earth. The,importance of this energy source can better be
realizéd.considering that the amount of energy generated by
the sun dn just one hour can satisfy the world energy
requirements for one year [1].

The amount of power generated by solar panels is
determined by the amount of the energy carried by the sun’s
radiation that is received on the panel surface. The solar
irradiance incidence on any given point on the earth is directly
proportional to the sun’s position in the sky with respect to the
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specified observation point. Due to the mentioned dependency
of the power generation to the received insolation by solar
panels, the amount of power/generation by a solar panel
during any specific dayis not'constant and shows variations in
parallel with changing position of the sun in the sky. The
mentioned variations cause the overall system efficiencies to
be reduced and the cost of energy production to be increased.
Therefore itwis ©of major significance to put effort on
developing techmques of determination and tracking of the
sun's position‘in the sky and the matter has been considered in
many research projects [2-6]. Determination of the sun's
positionin the sky is also considered in [7] from solar
radiation data processing point of view. However the study
does not contain information on determination of solar angle
of incidence.

This paper specifically focuses on designing a simple and
practical simulation model for calculation of the sun’s position
in the sky together with the values of the solar angle of
incidence using MATLAB/Simulink. The model is also
capable of calculation of the incidence angle of the sunlight
beams on panel surfaces. The values of the latitude and
longitude of the observation point, solar panel’s azimuth and
tilt angle, Julian day number and the local clock time are the
inputs of the model and the model calculates the sun’s position
in the sky and solar incidence angle values for a specified time
instant or interval. Detailed information on calculating the
sun’s position in the sky is reviewed in the next parts of the
study and then followed by the designing procedure of the
proposed simulation model and the obtained simulation results
for specified sample dates.

1. SUN’S POSITION IN THE SKY
As described in [8], the sun’s position in the sky is
determined by two different factors, namely being the Solar
Altitude Angle, the Solar Azimuth Angle and the Solar Angle
of Incidence determined the angles between a perpendicular
line on panel surface and the incoming sunlight rays. The
mentioned parameters are used by the proposed simulation
model to calculate the position of the sun in the sky for any

specified geographical location and time interval.
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A. Solar Altitude Angle

The solar altitude angle, (), represents the sun’s elevation
from the Earth’s surface and is expressed by (1), as follows,

¥, = sin”'(singsind + cos@cosdcosw)

0]

5=sin? {0.3987 sin (80.2°+1.92(sin(j-2.80)))} @

w=15(t—12) 3)
Where,
@ : The latitude of the observation point
) : The solar declination angle (Degrees)
@ : The solar hour angle (Degrees)
t : Decimal hours on the 24 hour clock

The solar altitude angle value increases during momning
hours and reaches its peak at solar noon which corresponds to
the sun’s highest elevation in the sky with respect to any
observation point on the ground.

B. Solar Azimuth Angie

The solar azimuth angle, (a,), represents the sun’s
deviation from the North axis and is expressed by (4), as
follows,

{a, =180 — cos Y(cos a,) If sina, <0 @
a, = 180 + cos™*(cos a,) If sinag, >0
Where,
cosa; = (sin g siny, — sin §)/ cos @ cos y, (5)
sin @ = cos i sin @/ cosy; (6)

For an observation point located.in northemn hemisphere,
the solar azimuth angle reaches 180° at solar noon which
represents the sun’s least deviation from the south oriented
solar panels.

C. Solar Incidence Angle

The solar ieidence angle, (). which is represented by (7),
is the angle between the sun’s radiations and a vector
perpendicular to the surface of a solar panel on the earth.

ey cos(f) cos(Z,) + .
p-cos sin(5) sin(Z) cos(a,-cty) ™
Where,
B : Tilt angle of the solar panel (45° In this case)
L, : Zenith Angle of the Sun (Degrees)
ICRERA 2013

am
and,

: Module azimuth angle (In this case: South = 180°)

Zs =90- ¥s (8)

For a specified observation point on the earth, the value of
the solar incidence angle decreases during morning hours and
takes on its mimimum at solar noon which indicates that the
sun’s radiations are received with lowest deviation from a
perpendicular vector on a solar panel surface at the specified
point.

I MODELING OF THE SYSTEM COMPONENTS

The desing procedure of the proposed simulation model is
described in this part of the study. Aimask implementation of
the simulation model constructed in MATLAB/Simulink
environment is shown in Fig. 1. Asiit.is obvioud from the
figure, the model accepts the values of the latitude and the
longitude of the observation point, the Julian day number and
the panel tilt and azimuth angles along with the time settings
as inputs. The sun’s position in the sky is then calculated and
simulated based on mathematical descriptions through the
model sub-systems.The model contains five main sub-systems
that are designed for calculations of the hour angle, the
declination angle; the solar altitude angle. the solar azimuth
angle and the solar angle of incidence. The local clock time
instant or interval which is set in the time settings of the model
is processed to turn out as the desirable solar time instant or
incremental solar time interval.

Erep—

Madrid, Spain, 20-23 October 2013
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Fig. 1. A mask implementation of the simulation model of the sun’s position
in the sky
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A.  Simulation of Hour Angle

The structure of the sub-system used for simulation of the
hour angle is illustrated in Fig. 2. As it is obvious from the
figure, the inputs to the model are the local time, the longitude
of the observation point, the time difference from GMT, the
Julian day number and the daylight saving time. The
simulation model first converts the input Local Time to Local
Solar Time, through the Time Subsystem, and then calculates
the hour angle based on (3).

1) Calculation of the Local Solar Time (LSTM) : The
local time of an observation point on the earth's surface is
determined by the longitude of the point. But the sun’s
movement in the sky is independent of any geographical
divisions on the earth and is only specified by the solar time
[9]. In instance, the sun’s highest elevation in the sky which
exactly corresponds to the solar noon may not necessarily be
observed at the exact noon in different observation points on
the earth. The reason is the difference between the local solar
time and the local clock time of the observation points.

The proposed simulation model converts the local clock
time of any observation point on the earth's surface to the
Local Solar Time which is the time format used for
determination of the sun’s position in the sky. The structure of
the simulation model utilized to convert the Local Time (LT)
to the Local Solar Time (LST) is shown in Fig. 3. The local
solar time is calculated based on the following equations,

T 9
LST =LT +a

TC = 4 X (LSTM — Longitude) + EOT

EOT = 9.87 sin(2B) — 7.53 cos(B) — 1.5sin(B)  (11)

360 e (12)
B= ﬁ(d - !_31)
(13)
Where,
LST
LT

TC . TimeCorrection Factor

LS@LM ocal Solar Time Meridian

EO "quualion of Time

ATaur : Difference from Greenwich MeanTtime
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B. Simulation of Declination Angle

Madrid, Spain, 20-23 October 2013

The structure of the simulation model utilized to calculate
the declination angle is illustrated in Fig. 4. The model accepts
the Julian day number as input and returns the declination
angle for the specified day in degrees based on (2).

C.  Simulation of the Solar Altitude Angle

The solar altitude angle is calculated using the values of
the hour angle and the solar declination angle which were
calculated in the previous sub-systems together with the
latitude of the observation point. the simulation model
calculates the value of the solar altitude angle based on (1).
The structure of the utilized sub-system for calculation of the
solar altitude angle is illustrated in Fig. 5.

Fig. 4. The structur of the decli

angle simulati ib-syst
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Fig. 5. The structur of the the solar altitude angle sub-system

D.  Simulation of the Solar Azimuth Angle

The sub-system which is used to simulate the solar
azimuth angle takes the values of the hour angle and the solar
declination angle from the corresponding sub-systems along
with the latitude and the altitude of the observation point to
calculate the solar azimuth angle based on (4)-(6). The
structure of the mentioned sub-system is shown in Fig. 6.

E.  Simulation of the Solar Angle of Incidence

The solar angel of incidence is calculated based on (7),
using the latitude of the observation point and the panel tilt
and azimuth angle values together with the solar azimuth
angle value which was calculated in the corresponding sub-
system. The structure of the sub-system utilized for the
simulation of the solar angle of incidence is shown in Fig. 7. A
general overview of the enfire proposed simulation model is
shown in Fig. 8.

Fig. 7. The structur of the the solar angle of incidence simulation sub-system
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Fig. 8. A general overview of the proposed simulation model
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Iv. SIMULATION RESULTS

The simulation results of the solar altitude, azimuth and
incidence angles for January 1%, April 1%, July 1" and October
1% corresponding to Julian day numbers 1, 91, 182 and 274,
respectively are shown in Fig. 9.

As it is obvious from the figures, for each sample day,
highest value of the solar altitude angle occurs at solar noon
(12:00 LST). It is also obvious that the sun is due South at the
same time instant. (Solar Azimuth Angle = 180°). This is
exactly the time at which the lowest value of the solar
incidence angle happens, meaning that the sunlight beams hit
the panel surface with the closest angle to 90,
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Fig. 9: ﬁulﬂim results for a)Solar Altitude Angle, b)Solar Azimuth angle,
c)Solar Angle of Incidence
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V. CONCLUSIONS

Estimation of solar panel output power carries a great
importance considering the rapid growth of the solar power
utilization. The amount of power produced by a solar panel is
directly proportional to the amount of solar irradiance falling
on the panel surface which is subjected to variations with
respect to the movement of the sun in the sky. Hence tracking
and determination of the sun's position in the sky has been the
subject of many research projects.

A comprehenswe and pracucal simulation deeI of the
sun’s position in the sky is proposed in this' paper. The
simulation model is constructed in MATI.MmuﬁnL
platform and is capable of calculating the sun’s position in the
sky and the solar angle of incidence for any. specified time
instant and geographical location on the earth's surface. The
calculation and simulations are based on the values of latitude
and longitude of the observation point, solar panel’s azimuth
and tilt angle, Julian day number and the local clock time. The
results show that, at solar nigon, the sun is due South with the
highest altitude in the sky, or observation points in the
northern hemisphere «This i§ exactly the time at which the
sunlight beams hit the module surface with the closest angle to
90" and cause the umodule to produce the maximum output
power. The simulation model provides the researchers and
system designers with reliable and precise information on the
sun’s posﬁ_on in the sky.
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Abstract — This paper mainly focuses on experimental
performance analysis of solar modules under different irradiance
values. Also effects of interconnection types and bypass diode
application on module output characteristics under variable
shading patterns are analyzed. The mentioned analyses are based
on and supported by real-time measurement data and the results
confirm the direct relationship between the power generation by
solar modules and the incident solar irradiance. According to the
results, although higher voltage values are obtained, series
strings of solar cells/modules, without bypass diodes, show a
higher sensitivity to shading effects and string output power is
subjected to higher amounts of reduction compared with the
parallel connection conditions. On the other hand, parallel
connected solar cells/modules provide higher values of generated
current amounts while the output voltages are equivalent to that
of each individual cell/module. Experimental results also show
that application of bypass diodes in series connected module
strings has a great improving effect on power production by the
string. The significance of the results arises during design and
planning procedures of solar energy systems, where detailed
knowledge of system characteristics under different shading
patterns creates the opportunity to take the required measures
and obtain optimum system performance.
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Abstract — This paper mainly focuses on experimental
performance analysis of solar modules under different irradiance
values. Also effects of interconnection types and bypass diode
application on module output characteristics under variable
shading patterns are analyzed. The mentioned analyses are based
on and supported by real-time measurement data and the results
confirm the direct relationship between the power generation by
solar modules and the incident solar irradiance. According to the
results, although higher voltage values are obtained, series
strings of solar cells/'modules, without bypass diodes, show a
higher sensitivity to shading effects and string output power is
subjected to higher its of reducti pared with the
parallel connection conditions. On the other hand, parallel
connected solar cells‘fmodules provide higher values of generated
current amounts while the output voltages are equivalent to that
of each individual celVmodule. Experimental results also show
that application of bypass diodes in series connected module
strings has a great improving effect on power production by the
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patterns creates the opportunity to take the required measures
and obtain optimum system performance.
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1. INTRODUCTION

The rising energy requirements for almost all application
areas and disadvantages of the conventional energy sources
like pollution, limited amount, etc. in today's world have
attracted the attentions to the renewable energy resources and
meeting the energy requirements using solar energy as one of
the mentioned renewable energy sources has been considered
by many researchers during the recent years. However
relatively high installation costs, lack of economically
efficient energy storage devices and relatively low efficiencies
have formed the disadvantages of this huge energy source.

However, for an efficient use of solar energy, having a
precise knowledge of the amount of power yield of each
individual photovoltaic generator under different conditions
carries a great importance during system design procedures.
The output characteristics of solar cells strongly depends on
the changing environmental conditions (e.g. irradiance,

978-1-4799-1464-7/13/$31.00 ©2013 IEEE
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temperature etc.) and the cell/module interconnection types in
a solar module/array also affects the output characteristics of
the module/array.

The I-V and P-V characteristics of solar cells/modules
provide the most useful and reliable information regarding the
operation of each cell/module under specific environmental
condition and various models and approaches have been
mtroduced by researchers to study and analyze the
characteristics and behavior of solar cells under different
environmental conditions

In this paper the output characteristics of solar modules
under changing illumination levels have been analyzed and the
effects of different interconnection types on power generation
by modules are investigated under various shading patterns.
Also as'a method of efficiency improvement, the effects of
application of bypass diodes in solar energy systems is
considered and analyzed. The mentioned analyses are based on
and supported by real-time measurement data collected from a
small-scale experimental test setup. The results demonstrate the
relationships between the environmental conditions, system
configuration and power generation by solar modules and can
be extended to large-scale photovoltaic power plants.

The experimental results of the study provide reliable and
useful information regarding the behavior of solar energy
generator systems which can be considered for model
validation and system design purposes for further research
projects.

II. SOLAR CELL CHARACTERISTICS

Output characteristics of solar cells/modules/arrays provide
the most reliable and useful information during analyze and
design procedures of the systems. Thus various approaches
and methods have been utilized by researchers to investigate
the mentioned characteristics. As an example, mathematical
modeling of a solar cell is a common method used by many
researchers to simulate and analyze the system characteristics.
In this regard, the single-diode model, based on a linear
independent current source in parallel to a diode [1-2] is the
simplest model while R,-models including a series connected
resistance are introduced in [3-4]. The models referred to as
Ry-models are improved versions of the single-diode model by
adding a parallel connected resistance, (Rq), to the models
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[5-7]. Two-diode model of solar cells also include an
additional diode and is utilized by many researchers [8-10].
R,-models or simply the one-diode model and the two-diode
model as shown in Fig.1 are the most widely used models in
the literature. Performances of these models also have been
analyzed and compared by many researchers [11]. One-diode
model of a solar cell has been used in many research studies
due to its simplicity while the two-diode model is known to
show a better accuracy at lower irradiance levels [12].

The output characteristics of a solar cell strongly depend
on the environmental conditions (irradiance. temperature,
ete.). The one-diode mathematical model of a solar cell
defines the relationship between the cell’s output current and
voltage using the following equation [13],

V + Rgl V + Rgl
q( +s)_1)_( + Rgl) o

I=1ln=Is (exp

nkT Rsy
Where:
Ln : Photocurrent (A)
Is : Diode Saturation Current (A)
q : Electron Charge (160217646 < 1077 C)
n : Diode Ideality Factor
k : Boltzmann Constant (1.3806503 < 10 J/K)
T : Temperature of the p-n Junction (K)
Ry : Series Resistance (£2)
Rey :Shunt Resistance (£2)

In (1), the photocurrent, I, directly depends on the
received solar irradiance and the diode saturation current, I,
varies with ambient temperature and the diode ideality factor:
The output characteristics of solar cells are generally
represented as I-V and P-V curves. An identical solar cell
I-V curve is illustrated in Fig. 2.

Fig. 1. a) One-Diode, b) Twe-Diode model of a solar cell
I
.
Tpmax Bua
Cl
0 M= dV/dl
! -—

0 Vomax  Voe v

Fig. 2. Identical I-V curve of a solar cell
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As it is obvious from the figure, while the output current
varies between 0-I,, the voltage ranges between 0-V, in a
solar cell/module. The characteristic curves and produced
power amounts highly depend on solar insolation and
temperature while the series and parallel resistance values as
well as diode ideality factors have significant effects on the
output characteristics.

III. DIFFERENT INTERCONNECTION TYPES AND THEIR EFFECTS
ON MODULE OUTPUT CHARACTERISTICS

As far as the values of output voltage and current of a
single solar cell are not high enough to meet the desired
application requirements, generally a number of cells are
interconnected in series and/or parallel to form a solar module
and obtain the desired voltage and current requirements. The
modules are also connected in different combinations to form
solar arrays. The effects of different interconnection types on
array output characteristics have been analyzed by many
researchers [14-17]. Therefore, for an efficient use, it is of a
great importance to  estimate/calculate  the  output
characteristics of interconnected cells/modules with different
interconnection types, Some of the most commonly used
interconnection types for solar modules are shown in Fig. 3, It
is clear that all of the mentioned configurations are extended
combinations of series and parallel interconnections of solar
cells/modules.” Therefore studying the behavior of series
and/or parallel connected solar modules, as the basic building
blocks of bigger systems, helps for better understanding and
analyses of large-scale power generation plant characteristics.

A Series Connection of Solar Cells

The terminal voltage of a typical solar cell is not high
enough (=0.6 V) to meet the desired voltage requirements.
Therefore a series connection of solar cells is preferred to
produce the desired voltage values. The string output voltage,
current and power values can be defined by the following
equations,

(2

n
Vuuumr - Z Vi
=1

’uurput =h=hL=-=] (3)

n
Poufpu{ = Vnunmt X j'ourput = Z Vi x f,i
=1

(4
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Fig. 3. Most common solar array configuration types

The advantage of a series connected cell string is the
increased voltage values but the problem arises when one or
more cells in a string are subjected to full or partial shading due
to passing clouds, neighboring houses. etc. In the case of partial
or full shading, the shaded cell/cells will not be able to produce
the same amount of current and the string output current will
be limited to the smallest current produced by the most shaded
cell. The shaded cell/cells will be producing a negative power
meaning that the power produced by the fully illuminated cells
will be dissipated in shaded cell/cells and the total output
power will be decreased.

B. Parallel Connection of Selar Cells

Different from the series strings, parallel connected solar
cells/modules are preferred in the applications where there is a
need to increase the amount of output current. The output
voltage, current and power relationships in parallel connected
solar modules can be defined by the following equations,

Voutpue =Vh =V ==V (5)
n
loutput - z ’j (6)
j=1
n
Pnuqm: = Vuutpur X qu{put i Z Vi x IJ (N

J=1

The experimental test results show that parallel connected
solar cells are not as sensitive to partial or full shading effects
as the series connected.cell strings. The amount of power loss
due to partial or full shading effects in parallel connected
modules is smaller than the mentioned amount in series
connected strings,

TV, ANALYSIS OF MEASURED MODULE OUTPUT
CHARACTERISTIC DATA
This part of the paper includes analyses of the collected
real-time experimental measurement results. The mentioned
analyses can be divided into 4 main groups as follows,
- Analysis of single module output characteristics under
different irradiance levels

ICRERA 2013

- Analysis of series connected module string output
characteristics under different shading conditions
- Analysis of parallel connected ‘module output
characteristics under different shading conditions
- Analysis of effects of bypass diode application on
string output power
The circuit diagram constructed for the mentioned
measurements is shown in Fig. 4. It should be noticed that the
measured data regardings cach of the above mentioned
analyses are collected in different days and so the analyses
results are not related and should be considered individually.

A. Analysis of Single Module Characteristics under Different

Irradiance levels

The IV and P-V characteristics of a commercially
available solar module are analyzed and compared under
different irradiance levels. The module specifications are
presented in Table I. The module is south aligned and tilted
45", mounted at 17 m from sea level on top of the Electrical
and  Electronic  Engineering  Department,  Eastern
Mediterranean University (35° 8' 51" N, 33° 53' 58" E). The
module I-V and P-V characteristics for different irradiance
levels are shown in Fig. 5. The numerical results are also
tabulated in Table II.

TABLE L. SPECIFICATIONS OF THE UTILIZED SOLAR MODULE
Parameter Value
Pax 40w
Ve 216V
L 25TA
Vs 173V
L 231A

According to the results, the module is not able to produce
the same amount of current output when it is subjected to
lower solar irradiance values.

s

(\v]

T

PV
MODULE

(oppay 3y qeeA)
avo'

Fig. 4. Expenmental measurement set-up
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Fig. 5. Measured module a) I-V, b) P-V characteristics

The results show that the module short-circuit current,
(L), 1s subjected to a reduction of 47.63%, 54.72% and
83.47% in parallel with the reduction of the irradiance value
to 575 W/m?, 400 W/m* and 100 W/m® respectively. At the
same time, the reduction amount of the maximum output
power of the module, (Ppy), has been 46.21%, 53.93% and
81.65% respectively for the same amounts of reduction in the
irradiance levels. The measurement results clearly show that
any change or reduction in the amount of irradiance
immediately affects the module output characteristics.
Therefore detailed and precise analysis of module behavior
under different shading conditions earns a great importance
from photovoltaic system design point of view.

TABLE II. SINGLE MODULE MEASUREMENT RESULTS
Trradiance (W/m-) 1000 575 400 100
Maximum Power (P ua) 3488 18.76 © 16.06 6.40
Short-Circuit Current (1<) 2.54 133 s 042
Open-Circuit Voltage (V. 20.3 19.65 19.55 19.24

B. Analysis of Series Connected Module String Characteristics
under Different Shading Conditions

This part of the study includes the analysis of the results of
experimental measurements made on a series connected solar
module string output characteristics. The string consists of
three identical commercially available solar modules as
indicated m Table L

The I-V and P-V characteristics of the string are obtained
and compared for two different shading conditions as shown
in Fig:6. At the first stage all of the modules were subjected to
identical irradiance and in the second case, one of the modules
in the string was partially shaded and the remaining two
modules were identically illuminated. The output
characteristics of the string were measured for each case and
the results are illustrated in Fig, 7.

ICRERA 2013
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Fig. 6. Series connected string of solar modules
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Fig. 7. Measured a) I-V, b) P-V characteristics of a series module string

According to the results, series connection of the modules
has created the opportunity to obtain higher voltage values
while the output current of the string is limited to the output
current of each individual module. It is also obvious that
partial shading of one module in a series string has limited the
current output to the smallest current value produced by the
shaded module while there is a small voltage drop in the
string. The results show that partial shading of a single module
in a series string including 3 identical modules has led to a
60.4% (23 W) reduction in the maximum output power. It is
observed that existing of one fully shaded module in the string
makes the string unable to deliver power to the load.

C. Analysis  of Parallel Connected Module
Characteristics under Different Shading Conditions
Three identical solar modules (as described in Table 1.)

were connected in parallel and their output characteristics

were measured and compared. The measurements were
conducted for two different shading conditions as shown in

Fig. 8. For the first set of measurements all of the three panels

were subjected to identical illumination and in the second

case, one of the modules was fully shaded while the remaining
two panels were identically illuminated. The results of the

measurements are presented in Fig. 9.

Quiput
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Fig. 8. Parallel connected solar panels

According to the results, in the case of parallel connected
modules under identical irradiance values, the output voltage
has been equivalent to the output voltage of each individual
module. Also it is observed that the output current of parallel
connected modules has been equivalent to the sum of output
currents of parallel connected individual panels. In the case of
parallel connection of one fully shaded module with two
identically illuminated ones, the short-circuit current of the
system has been decreased to almost 60% of the initial
condition while there is no reduction in the open-circuit
voltage value. It is also observed that fully shading of one
module has caused a reduction of 31.7% (10.94 W) in the
maximum output power of the system. The numerical
measurement results obtained with series and parallel
interconnections are presented and compared in Table III.

D. Analysis of Effects of Bypass Diode Application on String

Power Output

As indicated by the experimental measurement results
from the previous parts of the study, the received irradiance
values and shading conditions have direct effects on the
current produced by a series connected module string and
hence the string output power is very sensitive to the shading
effects.
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Fig. 9. Measured a} [-V, b) P-V characteristics of paralle]l connected panels
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When modules of a series connected string are shaded,
they are not able to produce the same current as the
illuminated modules. Considering a series connection, the
current produced by the illuminated modules has to pass
through the shaded cells and hence forces them to work in the
negative voltage region. This effect causes the shaded modules
to dissipate power and work as a load which leads to
reductions in the output power and hotspot problems. Many
researchers have been working on methods to increase the
efficiency and decrease the negative effects of shading on
power production by solar systems. Application of bypass
diodes is considered as one of the most common methods
which is widely utilized in solar power . generation
applications. The bypass diodes connected to PV modules
become forward biased when the module is.shaded and the
current of the illuminated modules 1s bypassed through these
diodes. Bypass diodes lead to a small amount-of voltage drop
(=0.6 V) in the bypassed modules and hence limit the
reduction in the output power. In orderto analyze the effects
of bypass diodes on the output power of a series string, a
bypass diode is connected'in parallel to one of the modules in
the string including three identical solar modules as indicated
in Table I. The circuit:diagram of the string is illustrated in
Fig.10. The bypassed module was fully covered and the
remaining two imodules were identically illuminated. The
experimental measurement results are presented in Fig, 11.

”
J = |
Bl
=

Vi Va
Bypass Diode

Fig. 10. Series connected panel string with bypass diode application
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Fig. 11. Measured a) -V, b) P-V characteristics of series string with bypass
diodes
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TABLE III. QUTPUT CHARACTERISTICS OF SERIES & PARALLEL CONNECTED MODULES
Identical Ilumination Partial Shading
Ve (V) Ic(A)  Puax VulV) Is (A) Pinar (W) Power Loss (%)
Series Connected Module String 59.6 0.9 38.08 56.5 032 158 60.4
Parallel Connected Modules 203 2.65 345 20.1 1.8 23.56 31.7
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The measurement results clearly show that application of the
bypass diode has caused the current produced by the
illuminated modules to pass through the bypass diode which
creates the opportunity to deliver power to the load while as
discussed in the previous parts, the results obtained from
similar measurements without bypass diodes illustrated that the
string was not capable of delivering power to the load in the
case of existence of a fully shaded panel in the string

V. CONCLUSIONS

Solar modules are interconnected with different
configurations to meet the desired application requirements.
The results of the experimental analyses confirm the direct
relationship between power generation in solar modules and
the amount of received irradiance values. According to the
experimental measurement results, it is observed that although
higher voltage values are obtained, series connected module
strings are more sensitive to the shading effects compared
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even partial shading of a module in a series string leads to
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Appendix I: A Case Study on Solar Data Collection and Effects of the
Sun's Position in the Sky on Solar Panel Output Characteristics in

Northern Cyprus

Moein Jazayeri, Sener Uysal, Kian Jazayeri, “A case study on solar data collection and
effects of the sun's position in the sky on solar panel output characteristics in Northern
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Abstract—This paper mainly focuses on methods of
calculations of sun’s position in the sky and analyses of its effects
on solar panel output characteristics collected during a case
study. Methods for calculations of sun's position in the sky and
measurement of solar panel output characteristics are reviewed
and then followed by a case study on an experimental data
collection system in Northern Cyprus. During the case study, the
collected ground measured data are analysed and the results are
compared. The solar angle of incidence and the sun’s position in
the sky are calculated and compared for different time intervals
along with panel output characteristics. The short-term data sets
belong to three sample days representing sunny, rainy and
cloudy conditions in May-2012. The results highlight the effects
of sun’ s position in the sky and the incidence angles of sunlight,
during different time intervals and dates, on module output
characteristics, The results provide helpful information for
researchers and system designers for system yield estimation
purposes.

Keywords— pheotovoltaics, selar angle of incidence, solar

energy, solar data collection, solar radiation, sun’s position in the
sky
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and then followed by a case study on an experimental data
collection system in Northern Cyprus. During the case study, the
collected ground measured data are analysed and the results are
compared. The solar angle of incidence and the sun’s position in
the sky are calculated and compared for different time intervals
along with panel output characteristics. The short-term data sets
belong to three ple days repr ing sunny, rainy and
cloudy conditions in May-2012. The results highlight the effects
of sun’s position in the sky and the incidence angles of sunlight,
during different time intervals and dates, on module output
characteristics. The results provide helpful information for
researchers and system designers for system yield estimation
purposes.

Keywords— photovoltaics, solar angle of incidence, solar
energy, solar data collection, solar radiation, sun’s posifion in the
sky

1. INTRODUCTION

The need for energy in today's world'is a well-known
matter for almost all applicatiohs. Considering some
disadvantages of traditional energy sources like limitations,
high expenses and pollution fcaused by these sources,
producing clean and unlimited energy 1s the subject of many
of current researches in the*field of renewable energy. Solar
energy as one of the renewable energy sources has shown a
rapid growth during the recent vears. The amount of solar
energy provided by the sun in just one hour can meet the
energy requirements of the entire world for one year [1].

Producing” energy without any moving parts, noiseless
operation ‘and low maintenance costs are some of the
advantages of PV systems. Also as PV systems can be
mounted. in unused spaces on rooftops there is no need for
additional space to mount PV systems for residential and
medium scale applications. Additionally, PV technology
provides the required power supply for remotely operated
systems where traditional energy transmission and distribution
is not feasible. Furthermore, solar panels are portable and can

978-1-4799-1464-7/13/831.00 ©2013 TEEE
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be placed or mounted anywhere depending on the required
power supply. Beside these advantages, high energy
production cost is the major disadvantage of PV energy at the
moment. Together with high energy production costs, some
materials used in the produetion procedure of PV modules or
solar panels like arsenic, cadmium and even silicon could
create health problemsfor workers.

Fortunately due to development of mass production
techniques and faeilities for PV module and components, the
cost trend of PV systems has become downward and the
researches show that PV produced electricity is becoming cost
competitive and is able to match the conventional energy costs
in near future.

The amount of output power generated by a solar energy
system is directly related to the incoming solar irradiance and
henee having a detailed and precise knowledge of the amount
of available solar energy is one of the main requirements
during the design and planning procedure of any solar energy
related application. Calculation and/or estimation of the
amount of incoming solar energy have been the subject of
many researches in the literature. A few examples of such
studies have been reviewed in [2-5]. The amount of incoming
solar energy to the earth's surface and as a result, the output
power generated by solar systems directly depends on the
position and the movement of the sun in the sky. In this paper
the position of the sun in the sky is simulated as the main
factor and its effects on solar panel output powers are
analyzed.

1. SUN'S POSITION IN THE SKY

There is a need to calculate the position of the sun as it is
seen from the earth when information about solar radiation for
a specific time and location is required. The Latitude of the
Observation Point, The Julian Day Number and The Time of
the Day, which 1s represented as hour angle from solar noon,
are the most important three factors used during calculations
of the position of the sun in the sky. In this paper all the
calculations regarding the Sun's position in the sky are
presented based on the method and equations described in [6].

The relation between the Julian day, j, and the i* day of a
month 1s described in Table L.
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IARLE]. RELATIONEHIP BET WERH THE TULLAH DAY A HD

THE " DAY OF AMONTH
Tomth Thri™ dry Leap Year
of the
muomndh
Ty i
Februery 31+1
Tolarch 3941 (+13
April G0+1 [+1)
Tola 130+1 (+13
o 151+1 (+1)
Juby 121+1 (+13
Laiznst 213+1 (+11
Septerrber 245341 (+1)
Qetober 27341 (+1}
Homrenrther 30d+1 +13
Dz cemmber 33441 [+13

The tine of the day or local solar time 5 representzd by
hour angle, ¢, and is set to Zero at solar noow (12:000 which s
the time that the sun is exactly dus south. The concept of solar
fire is based on the gecgraphical location (Jongitnde) of the
obeervation point and i differert from local clock time. The
pastage of every ore hour repesent a 15 degmwes rotation
The hour angls, in degwes, 5 obfmined using the following
equation;

w =150t —12] (13

A Dechnadtion Angle

The dechinationangle, (6), i defined as the angls hetween
the Equatorial Flane and the line joining the cemer of the
Earths sphewr to the center of the Solar disk [6]. Ihe
declination of the sun varies with tirme but a cors fart vahe for
each day canbe nsed as the rate of change for any specific day
is very swmll. The declination angle can be defired for amy
specific time interval using just ome parameter, the day
mimber. The decliration angle can be defired using the
following equation;

5=sin0.39 78sin(j -80.2"+ 192 (sin(j-2.80" ) [2)

Wher = jx(—t=| & the Julion day momber

exprssed a8 adayangle indegrees [5].
B The Solae Altitude Anple
The solav altinde angle or the Sun® height, (), as

descrbed in [B], simply canbe defined as,
(3

¥, = sin~t{singsind + cespeosfoosw)

: The latitnde of the observation point
: The solar declimtion angle indegiees
: The solar hour angle

E":O'Eg

ICEERA 2013

C The Sblar Ammuth Angle

The solar Aminmth angle, (o), which is defired as the
angle betwreen the sun and the Sonthasds (0 = Souch, 90 =
West ) 15 obteined using (4)47)as follows [6];

cos g=Cdn g siny,-dnd)f cosgeosy,  (4)
dng, = 08, Anw, tosy, 5

Hsin oy = 0 g, = —cos Yoose,) ]
Ifsingg =0 s = cos~Hoos s (T

The position of the sunat a s pecific time of a day s s hown
inFig. 1.
D Solar Angle of Tncidence

Solar angle of mcidence, (6), & defired as the angle
betreen sunlight rays and a notmal vector on the solar
module, as shown in Fig. 20 The maxinum output power of a
solar panel directly depends onthe cosing of the solar angle of
incidence and hence the knowlsdge wgarding this parametsr
carte @ great impormnce dwing solar system design
procedures. The Solardngls of Incidence 15 defined nsing the
followring equation;

Az=cos ! [eos(E) coslZ,) + anlf 5nlZ.) coslo-w, )] (8]
Where;
a : Hiltangle of the solar collector (Horizoncol = EIDJ
Zg : Zenith Angle of the Sun
e : Moduls azirmthangle {Noreh = 0, Eagt = 907
and,
Zg= 90 —yg @
zenith
east
west
Fig.1. Thepoition o the am et g ipecific time o 8 doy
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Fig. 2. Solar angle of incidence

III. CASE STUDY : GROUND MEASUREMENT OF SOLAR
PANEL OUTPUT DATA IN NORTHERN CYPRUS AND
EXPERIMENTAL ANALYSIS OF COLLECTED DATA

In this part of the paper, the geographical characteristics,
energy production and consumption profile of Northern
Cyprus are explained in brief. This brief data is then followed
by a short description of experimental system setup used for
site measurements and data collection. The collected data is

then analyzed and the results are discussed.

A. Geographical Characteristics, Energy Profile and Solar
Energy Development in Northern Cyprus

Cyprus as the 3™ largest island in the Mediterrancan is
located at 33° cast of Greenwich and 35° north of the equator.
At the same time Cyprus is one of the best places for solar
energy tesearch and applications due to its geographical
position. Cyprus has a Mediterrancan climate with hot dry

summers and mild winters [7].
1) Energy  Production and Consumption Prafile
Northern Cyprus:

A

from the graphics the largest amount of energy, (32%), is used
in houses. The most of the energy is consumed in houses for

space and water heating applications.

Due to a forecast made by [8], the growth rate of PV
energy production in Northern Cyprus is 20% in 2010 which
is followed by 13% up to 2020, 6% up to 2030 and 3% up to

2040.

Traffic
2%

Defense
P9%
ower
Stations
4%
Business
15%
17% Industry
8%

Irrigation
6%

Fig. 3. Energy consumption profile in Northem Cyprus
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in
The energy consumption profile of
Northern Cyprus is presented in Fig. 3. As it is clearly visible

B. Experimental Site Measurement and Data Collection
System

The data used for analyses are measured and collected
using a system consisting of software and hardware parts. The
system which is constructed for data collection and
measurements is somehow similar to the one introduced in
[9].

The hardware part of the system consists of 6
commercially available crystalline silicon solar panels (P, =
15 W, I, =0.96 A, V,, = 21.6 V) which are mounted at 17 m
height from sea level on top of the Electrical and Electronic
Eng. Dept. and an electronic circuit which is designed to
transfer the collected solar data to a computer, The solar
panels are aligned toward 6 different directions with a ‘tlt
angle of 45", The main idea behind aligning solar panels in 6
different directions is to create the opportunity to follow,
compare and analyze the effects of ¢hanges of sun's position
in the sky on the output characteristics of solar panels aligned
in different directions.

The alignments used for solar panels are given in Table II.
The angles are specified in degrees where “0° = South, 90" =
West”. The mentioned solar panels are shown in Fig. 4.

TABLE II. ANGULAR ORIENTATIONS OF SOLAR PANELS

Panel Alignment Position
South 355°
SouthEast 285°
SouthWest 65"
North 185°
NorthEast 227°
NorthWest 140°

An electronic circuit, as shown in Fig. 5, is responsible of
converting the analog input data collected from solar panels to
digital and send them to a PC using serial port.

The terminals of each individual solar panel are connected
in parallel to a constant valued power resistor, (load), to
record the variation in panel output characteristics caused by
changes in the sun’s position in the sky.

Measurements and data monitoring tasks are held using a
visual basic based computer software. The software presents
the opportunity for real-time monitoring of output voltage,
current and power of ecach solar panel sent by the
microcontroller and saves this data for further analyses.

B
| — .
Fig. 4. Six solar panels in different alignements mounted at 17 m height

from sea level on top of Electrical and Electronic Eng. Dept., Eastern
Mediterranean University, used for ground measurement of solar data
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C. Analysis of Collected Data

During this part of the study the collected ground
measured solar panel output power data for three sample days
are analyzed and the results are discussed and compared. The
first set of data is collected on 08.05.2012 which is
representing a sunny day. The second data set belongs to
16.05.2012 which 1s representing cloudy sky conditions and
the last sample solar data set belongs to 21.05.2012 which 1s
representing a day with heavy rain. The data are measured and
logged every 15 mm. along 24 hours. The main goal during
the above mentioned analyses is to analyze the effects of
movement of the sun in the sky during a full day on solar
panel output characteristics and to show that the output power
of each solar panel reaches to its maximum value as the
incidence angle of sunlight beams reach to the closest value to
90°. The reason of selecting the instant output power of solar
panels at every 15 min is to create the opportunity of
monitoring the fluctuations in output power due to changing
environmental and atmospheric conditions. These kinds of
effects can best be analyzed in cloudy days when panels are
subjected to variable amounts of solar irradiance caused by
passing clouds.

1) Sun’s Position: The Sun’s position and its movement in
the sky is analyzed and simulated. The latitude of the
observation point is 35°8'22". The Julian day numbers
required for the calculations are obtained using Table I. Also
declination angle, altitude angle and azimuth angles required
for the calculations are calculated according to (13-(7). As a
result of the calculations, the sun's position in the sky is
obtained at different times for the specified three sample days.
The sun's pesitions for the 1% sample day is presented in
Fig. 6, as an example. The mentioned data is presented im
terms of sun's altitude and azimuth angles in_polar
coordinates. Straight lines represent sun’s azimuth angle and
the circles show sun's elevation or altitude angles in degrees.

2) Solar Angle of Incidence: The solar angles of incidence
are calculated according to (8) for all panel positions during
each sample day. The results are presented in.Fig. 7. All the
graphics are based on Local Solar Time. It is obvious that for
the 1% sample day (08/May/2012) the minimum incidence
angle 1s reached at 12:00 (solar.moon) for the South panel.
This means that the incoming sun light is reaching the panel
surface with the closest angle to perpendicular at this time.
Analysis results show that panel output power increases as the
incidence angle of the sunlight gets closer to 90°.

The minimum incidence angles on the South panel for the
2" and 3" sample days€16/May/2012) and (21/May/2012) are
also obtained/at 12:00. It is thought that cloud coverage and
rain fall ig preventing the panel to generate the maximum
amount of output power when the minimum incidence angle
values.are obtained.
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Fig. 5. The electronic circuit designed for data measurement, analog/digital
data conversion and data transferring

As 1t igsobwious from Fig. 6 and Fig. 7, the sun 1s due
South at solar noon (12:00) and has the highest elevation or
altitude 'in the sky at this time. Also the solar angle of
incidenee takes its smallest value at this time showing that the
sunlight rays come on the module surface with the closest
angle'to normal at this time.

.}—‘

o=

‘o.—

20—
o
L - A
= B N NN 8. W

South

Fig. 6. Simulated sun's position in the sky in a sunny day (08/May/2012)
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—Eﬂrﬂtné’aslz% , —gumgaar{ﬁ 3) Solar Panel Output Characteristics: As a result of the

— Sguth\n?est Fa’:;:el —-NolrlthWeit Panel analysis, it is obvious that the South panel has been producing
=200 the highest amount of power among the other panels for the
@

first two sample days (Sunny and Cloudy conditions). The
maximum value of power output for the 1* day for South
150 panel is obtained at 13:15 pm (Local Time). Taking the
differences between the local solar time and local time into the
consideration, it is observed that this is the time when the

Solar Angle of Incidence (Degre

1004 incidence angle of sunlight beams has the closest value to
normal and the sun has its maximum height in the sky. Hence

50 it is confirmed that the maximum power output is obtained
when the sunlight is hitting the panel surface with the'closest

n angle to 90°. Also it is obvious that beside the lower values of

T T ! output power obtained with the other modules, ‘the maximum

0:00 3:00 6:00 9:00 12:0015:0018:0021:00 0:00  yints are obtained at different time intervals. For North East
Time of Day and South East panels the maximum’ power outputs are
obtained before 13:15 pm and for North West and South West

@ modules this is happened after this timesThe effects of sun's

”ggngaa:tell’anel ggﬂ:nl;:asqellanel movements in the sky on panel output characteristics are
Southwest Panel NorthWest Panel clearly visible from the graphics. The output powers of all

200 solar panels for the specified three sample days are compared
in Fig. 8. Tt is clearly visible that the greatest amount of output
\ power is generated by the South panel on the first two sample
days. South Eastrand South West panels are following this

panel on 08/May/2012. The output power percentage
generated by the South panel is decreased on 16/May/2012
compared to the previous day while the output power
percentage of South East and North East panels is increased.
50 - This i§ continued on 21/May/2012 where the highest power
output percentage belongs to the South East panel. The South
o panel has generated the second highest portion of power and
5 ’ : g g : : . the power produced by the North East panel has also been

0:00 3:00 6:00 9:00 12:0015:0018:0021:00 0:00 increased, compared to the first two days. Though the total
Time of Day amount of output power generated by the panels is decreased

on the last two sample days, due to the effects of cloud

150

100

Solar Angle of Incidence (Degrees)

®) coverage and heavy rain, the increasing rate of power
”ggnl;asnter!'anel :g:uu:th':a;srtlellanel production on North East and South East panels is a result of
SouthWest Panel ——NorthWest Panel changes in the sun's movement in the sky. The contribution of
7z 200 each module to the total generated power is tabulated in
g Table III. It 1s observed that the least amount of power hars;
é 150 \ been generated by the North module dun.ng the 1': and 3
g sample days and the Northwest panel during the 2" sample
g day.
2 100 -
E TABLE III. CONTRIBUTION OF MODULES TO THE TOTAL
c POWER GENERATION
5 50 e
z s 08/05/2012 160052012 21/05/2012
& Alignment
: 0 T South %28 %28 %18
o SouthEast %22 %25 %28
0:00 3:00 6:00 9:00 12:0015:0018:0021:00 0:00 SouthWest %19 %il %11
Time of Day North %06 %11 %10
NorthEast %12 %17 %21
(c) NorthWest %19 %8 %12
Fig. 7. Calculated solar angels of incidence, a) sunny day (08/May/2012), b)
cloudy day (16/May/2012), ¢) rainy day (21/May/2012)
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Fig. 8 Measured Module Qutput Powers, (a) Sunny Day (08/May/2012), (b)
Cloudy Day (16/Mayf2012) , (c) Rainy Day (21/May/2012)

Panel Power Output (mW)
Fy

IV. CONCLUSIONS

The, results of analyses of the collected data show that
almost the highest amount of power has been generated by the
modules which are aligned toward the South direction. The
sunlight beams hit the panel surface of the South aligned
panel with the closest angle to 90° and the sun has its
maximum elevation in the sky at almost 12:00 (LST). It is

ICRERA 2013

observed that the panel generates the highest amount of power
almost at the same time in a sunny day. The incidence angles
present the closest value to the normal line at the same time
for the other sample days but the cloud coverage and heavy
rain cause the output power to be far from the maximum
point. The shading effects caused by the cloud coverage cause
rapid fluctuations in module power outputs. Also analyses of
power generation ratios show that the movement of the sun in
the sky has a direct effect on panel output powers. As the
sun's position is getting closer to the east on any specific day,
the power generation ratios of the east panels starts to be
increased while the other panels produce smaller amounts of
power. As a general result, it is observed that the sun 15 due
south at solar noon when the sun has the highest elevation'in
the sky and sunlight beams come to a South.oriented solar
panel with the closest angle to 90°. The analysis results show
that a South oriented solar panel géneratessthe maximum
power at solar noon during a sunny day.
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Abstract— This paper mainly focuses on the effects of
variations of solar irradiance on PV panel power outputs and
considers the importance of choosing the right orientation for
system installations. The analyses are based on real-time
measured data collected during a 6-Month period (October/2012-
March/2013) in Northern Cyprus. The mentioned data presents
the months with the lowest solar insolation and the results clearly
illustrate the direct relationship between the amounts of the solar
irradiance and power generation by PV panels. The results can
be utilized for effective use of PV systems, especially for rural
areas and locations with relatively less amounts of available solar
irradiance.

Keywords— photovoeltaics, solar energy, solar insolation, solar
power generation, solar data collection, sun s position in the sky
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Abstract— This paper mainly focuses on the effects of
variations of solar irradiance on PV panel power outputs and
considers the importance of choosing the right orientation for
system installations. The analyses are based on real-time
measured data collected during a 6-Month period (October/2012-
March/2013) in Northern Cyprus. The mentioned data presents
the months with the lowest solar insolation and the results clearly
illustrate the direct relationship between the amounts of the solar
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be utilized for effective use of PV systems, especially for rural
areas and locations with relatively less amounts of available solar
irradiance.
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i INTRODUCTION

The rising energy demand for various applications in
today's world and the limitations and treats associated with the
conventional energy sources, all draw the attentions to
renewable energy resources. Research findings show that
utilization of renewable sources canreduce the dependency on
conventional energy resources by 70% by 2040 [1] while solar
energy as a reliable, unlimited and. clean source of energy is
known to have the fastest growth rate among all other
renewable energy sources [2]. Solar cells first entered human's
life in 1883 [3] and found various application areas in today's
energy sector. Just like any other source of energy,
photovoltaic energy production also has some advantages and
disadvantages. While infinity of the power source, low
operation costs; energy production without any moving part,
long life time of the modules, modularity and quick installation
are some of the advantages of PV energy, high installation
costs, lack of economically efficient energy storage and
relatively low efficiency of energy conversion are some
disadvantages which should be overcome for efficient use of
this reniewable power source. However, the cost trend of PV
systems has become downward due to mass production
techniques and facilities for modules and components. The
annual capacity increasing rate of PV energy has been 58%
during 2006-2011[2] and research findings show that PV
energy is becoming cost competitive and will be able to replace
conventional energy sources in near future.

978-1-4799-2402-8/13/$31.00 ©2013 IEEE

Providing energy for off-grid devices and systems together
with large-scale energy production as a substitute for
conventional energy sources are the two main application areas
of PV energy in Today's world. Especially during energy
planning for rural areas in developing countries, off-grid PV
applications play great roles, considering that 1.4 billion people
in the world do not have access to reliable energy [1]. Off-grid
systems can'meet electricity, heat and energy requirements in
such rural areas while large-scale PV power plants contribute
to the existing energy grids. Land-occupation and system
efficiencies are two important concerns regarding both off-gird
and grid-connected PV energy systems. According to research
results, in geographical areas with high amounts of solar
insolation, the area required for ground-mounted PV systems is
less than conventional coal-fuel systems while large-scale PV
power plants should carefully be located and installed to obtain
optimum system performances [2]. According to research
findings, replacement of the existing electricity grids with PV
power plants can reduce emission of greenhouse gases, main
contaminants, heavy metals and radioactive species at least by
89% [2]. The significance 1s better felt considering that
according to the estimations made by the World Health
Orgamzation (WHO), 2.5 million women and children die each
year from breathing the gases produced by conventional energy
sources [1]. Technical and theoretical potentials of solar energy
are compared with the other renewable energy sources in Table
I. The statistics of Table I. clearly show that, solar energy 1s
limitedly being utilized in today's world though that it provides
the greatest potentials among all other renewable energy
sources. The mentioned utilization status of PV energy has
been the reason for many research projects to be conducted in
order to reduce the costs and improve higher energy conversion
efficiencies.

Utilization of PV systems has been analyzed from various
aspects in the literature. As an example, the effects of
penetration of PV  systems, as distributed generation
technologies, on the voltage profile in low-voltage networks 1s
analyzed m [4]. This paper uses the real-time measured PV
panel output power data, collected during a 6-Month time
period, for purposed analysis. The mentioned data sets belong
to the period between October/2012 — March/2013 presenting
the months with the lowest amounts of available solar
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insolation. The data sets are collected from 6 identical solar
panels aligned toward 6 different directions. The obtained
results highlight the importance and effects of selection of the
most appropriate orientation for system installations on power
generation by PV panels. The collected data are also compared
with the calculated hourly solar irradiance values and the direct
relationship between the amounts of available solar insolation
and power production by solar panels 1s illustrated.

TABLE I TECHNICAL AND THEORETICAL POTENTIALS OF RENEWABLE
ENERGY SOURCES [1]
Resaiiies Current Use  Technical Potential ~ Theoretical Potential
(EJ/Year) (EJ/Year) (EJ/Year)

Hydropower 9 50 147
Biomass 50 >276 2900
Solar Energy 01 >1575 3900000
‘Wind Energy 0.12 640 6000

II. SUN AS A SOURCE OF ENERGY

The amount of solar energy provided by the sun m just one
hour can meet the energy requirements of the entire world for
one year [5]. Such a huge potential of energy and the other
advantages mentioned in the previous part of the paper makes
the 'Sun’ an attractive source of energy. However, the
limitations and other disadvantages corresponding to this
energy source should be taken into the consideration for
effective and optimum utilization of solar energy.

The amount of energy delivered from the sun to the Earth's
surface directly depends on the position of the sun with respect
to observation points on the Earth. The amount of available
solar insolation for different geographical locations is not
constant and similar to each other. Latitudes of observation
points, envirommental conditions, shadows, ete. all affect the
meoming solar irradiance. Thus, estimation or calculation of
the available solar insolation is of prior importance for PV
energy related application planning and design procedures. The
mentioned importance is better felt-in locations with lower
amounts of sunlight, where an efficient use of the available
solar irradiance plays a great role in meeting the energy
requirements. Analysis of satellite image data, utilization of
numerical weather prediction models, neural network based
models, etc. are some ©f the techmiques employed for
prediction or calculation ‘of the amount of available solar
insolation and many research projects have been conducted on
such methods and techniqties [6]-[11].

The sun's position in the sky with respect to observation
points on the Earth's surface can be defined using two main
factors [18], as follows;

e Sun s Altitude Angle (¥s): The sun's elevation in the
sky.

e The Solar Azimuth Angle“ (). The gmgle between the
sun and the South axis (0 = South,90 = West )

As indicated before, the amount of incoming solar
mradiance to the Earth's surface directly depends on the
position of the sun in the sky. Thus, various sun tracking
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techniques have been developed and many valuable researches
have been conducted for determination and tracking of the
sun's position in the sky [12]-[15].

The total amount of incoming solar radiation from the sun
to the Earth's surface is defined as "Global Radiation’ and
consists of three main components [3] as follows;

e Direct or Beam Radiation: Beam of sunlight that
reaches the surface in a straight line from the sun
without any reflection or scattering,.

e Diffuse Radiation: The radiation scattered toward the
recelver.

e Albedo Radiation: The radiation retlected from the
ground.

In order to highlight the influences of geographical location
on the amounts of the received solar nradiance, the monthly
mean values of global solar irradiance on a horizontal surface
for some different cities around the world are illustrated in
Fig. 1. The comparisons are made based on 22-years averaged
real-time measured datassets provided by "NASA Atmospheric
Science Data Centre’. Tt is obvious from the figure that the
geographical locations: of observation and measurement
stations have strong effects on the amount of the received solar
insolation. The locations closer to the equator receive more
energy from the sun while the cities in northern parts receive
relatively smaller amounts of solar insolation.

III.  METHODOLOGY

The utilized methodology for field data collection and
measurements, calculation methods of hourly wradiance values
and the methods of analyses of the measured data are briefly
introduced during this part of the paper. The data sets belong
to a 6-Month period collected between October/2012 —
March/2013 in Famagusta, Northern Cyprus. The statistics of
Fig. 1, clearly show that Famagusta, due to its geographical
location, receives relatively high amounts of solar insolation
during a year. The mentioned time period is chosen to
represent the months with minimum incoming solar msolation
amounts. Six identical crystalline silicon solar panels
(Puax = 15 W, T,e= 096 A, V.= 21.6 V) are utilized for data
collection purposes. The panels are alighed toward six different
directions (South, South Fast, South West, North, North Fast
and North) with a tilt angle of 45" The panels are mounted at
17 meters height from sea level on top of the Electrical and
Electronic Eng. Dept., Eastern Mediterranean University (35°
8' 51" N, 33° 53' 58" E). The main idea is to track the effects of
variations in the position of the sun in the sky on panel power
outputs during a day and to determime the most appropriate
orientations for PV system installations. An electronic circuit is
utilized to transfer the measured power output data from the
solar panels to a computer through serial port. The terminals of
each panel are connected to a constant valued power resistor
(load) to record and scale the variations in panel power outputs
with respect to the variations in the incoming solar insolation
as a function of the sun's position in the sky.
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with the rate of 60 samples per hour in order to obtain ho
mean values of power generation by each individual

panel. The mentioned hourly mean values of pa
powers are caloulated between 08:00 — 18:00 for ea
during the mentioned time period. These data are” then
averaged over each month in order to obtain the monthly
average values of mean hourly power ion by solar
panels during the time period.

On the other hand, the hourly mean values of global
irradiance incoming to the surface of solar modules with the
mentioned tilt angle are calcul ed on the monthly mean
values of global irradiance orizontal surface for the
observation point, as desci g. 1. The caleulations are
made based on the me uced by [3]. The main goal is
to highlight the di ship between the variations in the
values of the in ar irradiance and the amounts of
panels.

SULTS AND EXPERIMENTAL ANALYSIS OF
COLLECTED DATA

-time measured solar panel output power data sets
ulated hourly global solar irradiance values are
analyzed and the relationship between the incoming solar
insolation and power generation by solar modules is
considered during this part of the paper.

It was mentioned before that the generated output power
data from 6 identical solar panels are used to calculate the

de Jariero, BRAZIL
oussoukro, IVORY COST
PPINES
EXICO

ly average of mean hourly power generation ratios
ing the mentioned 6-months period. The results are
illustrated in Fig. 2 for South and North oriented panels
representing the maximum and minimum ratios of power
generation during the time period, respectively. The results are
illustrated as hourly mean values between 08:00 — 18:00
during each month.

Iig. 2 clearly shows that the ratio of power generation by
the South oriented solar panel has been greater than the power
generation ratio by the North oriented panel for each hour
during the whole time period. The South oriented panel has
been generating the highest power while the North oriented
panel has the least amount of power generation among the
mentioned 6 solar panels. According to the results of Fig, 2,
both of the panels have generated their maximum amounts of
power in October and March and the minimum power
generation belongs to December. Also the power generation
rate has reached to the maximum between 12:00 — 13:00 and
the minimum power generation occurs after 16:00 during the
time period.

The hourly mean values of power generation by solar
panels are averaged during a day to obtain the daily average
values of power generation by solar panels during each month
and the resulls are presented in Fig, 3. The figure shows that
the North, North East and North West oriented panels have
generated very small amounts of power in a day during the
mentioned time period.
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Fig. 2. Monthly Averag of Hourly Mean Values of Output Power Gencrated
by a) South Oriented Panel, b) North Oriented Panel

The results of Fig, 3 show that the panels aligned toward
the South orientations (South, South East and South West)
have generated the most power during the mentioned time
period. The South panel has generated the most amount of
power during each month while Seuth East and South West
panels have followed this amount. At the same time, the power
generated by the South East directed panel has been greater
than the amount of gengrated power by the South West
oriented panel during each menth. Also Fig 3 clearly shows
that the power generation by the South oriented panel has been
minimum during January and December and the maximum
values obtained during October and March. It should be
considered that January and December have the least amounts
of incoming solar msolation and October and March represent
the maximum amounts among the mentioned time period. This
situation clearly illustrates the direct relationship between the
amount of received solar insolation on panel surface and the
amount of power generation by each individual solar panel.

In order to obtain the share of contributions of each solar
panel in total power generation, the mean daily values of power
generation by each individual solar panel have been averaged
during the whole time period and the results are illustrated in

Fig. 4

= North

= North East

= North West
= South West
= South East

= South

Daily Power

ig. 3. Monthly Mean Values of Average Daily Power Generation Ratios By
olar Panels

Fi
S
Fig. 4 shows that the South oriented solar panel has the
greatest contribution inpower generation with %50. The South
East and South West riented panels have been following this
amount by %24 and %20, respectively. At the same time, the
North oriented panels (North, North East and North West) have
presented the least contribution to power generation during the
specified time period. The results are all confirming the direct
relationship between the movement of the sun in the sky and
power generation by solar panels. The importance of
installation of PV systems in appropriate orientations for
efficient and optimum utilization of the available solar
insolation is clearly confirmed by the results. The results can
be interpreted as a small representation of the situation of
power generation by solar energy systems installed in different
orientations, Also the results of Tig. 4 clearly show that
variations in the orientation of solar modules can cause
considerable variations in their power generation capabilities.

In order to highlight the relationship between the amounts
of incoming solar insolation and power generation in solar
panels, the data sets of Fig. 1 have been used to caleulate the
hourly mean values of global solar irradiance falling on solar
panels during the time period. The calculations are made based
on the method introduced by [3]. The caleulation results are
averaged over each month and the monthly average values of
mean hourly solar irradiance on solar panels are obtained. The
mentioned results are presented in Fig. 5 for the South oriented
solar panel.

= North East

= North

= North West
= South

= South West
= South East

Fig. 4. Average Power Generation Ratio by Solar Panels During the Time
Period
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Fig. 5. Monthly Average Value of Mean Hourly Global Solar Irradiance
Falling on South Oriented Solar Panel

The results of Fig. 5 show that the maximum amounts of
mean hourly solar irradiance belong to October and March
while the minimum values are obtamed during December and
January. Comparison of the mentioned results with the results
of Fig. 3 shows that there 1s a direct relationship between the
amounts of the received solar insolation on panel surface and
the amounts of the generated power. The energy production of
the South oriented panel has been maximum during October
and March where according to the results of Fig. 2a. the
maximum power generation in March and October has
occurred between 12:00-13:00. Comparison of these results
with the results obfained in Fig. 3, once again, approves the
dependency of power generation by solar panels to the amount
of the received solar insolation on their surface.

For a better comparison of the improvements obtained with
an appropriate alignment, MATLAB/Simulink platform is
utilized to simulate a series string including 17 SOLAREX
MSX-60 type (Pua = 60 W, V.= 21.1 V, I = 3.84A) solar
panels. The simulations are based on one-diode mathematical
model of a solar cell [16].[17]. The theoretical MPP of the
mentioned string of panels under STC 1s 1020 W which, as an
example, can be used to meet the small-scale off-grid home
lighting requirements in rural areas or during energy outage
situations. The monthly average wvalue of imaxamum mean
hourly solar irradiance received by the string with the
previously mentioned 6 different” orientations 1s used for
simulations and the string maximum. power point values are
recorded. The simulation results of string MPP values are
presented in Fig. 6. The resulfs clearly show that the highest
value of maximum power preduced by the string belongs to the
South oriented string while, the smallest value corresponds to
the North oriented. string, during the time period. According to
the results, even in December with the smallest amount of the
received solar insolation, the maximum power generated by the
South oriented string is almost 6 times greater than the
maximum power produced by the North oriented string and
this ratio is greater during the other months.

As indicated in the earlier parts of the paper, the land-use
and system efficiency are two important concems which
should be considered for efficient use of PV systems. The
simulation results confirm that an appropriate alignment of PV
systems leads to significant improvements in power generation
which leads to cost reduction and overall -efficiency
improvement.

mNorth

B NorthEast

mSouthEast
@ SouthWest
mNorthWest
mSouth

Power (W)
- 28858883888

Fig. 6. Monthly Average Value of the Simulated Maximum Power Amounts
Generated by Solar Panels in 6 Different Oricntations

Higher power generation amount creates the opportunity
of having more power with the same cost and land-use, which
1s highly considerable both in rural places of developing
countries and areas with less msolation amounts.

V& CoNCLUSIONS

Solar energy has found a greater share in meeting energy
requirements in today’s world. Beside the disadvantages of this
clean energy source, the advantages have made it one of the
meost 1mportant potential sources during energy planning
procedures and the technological developments have increased
1ts growth rate and popularity.

Though the sun is one of the most reliable clean energy
sources, the amount of solar energy available on different
geographical locations on the earth’s surface 1s not i1dentical
and similar to ecach other. The geographical location,
environmental conditions, etc. all affect the incoming solar
energy. Therefor having a detailed and precise knowledge
regarding the available energy amounts carries a great
importance for effective and optimum utilization of this clean
energy source. The mentioned importance is better felt in
countries and locations with relatively less amounts of solar
energy where efficient use of the energy plays great role in
energy management and meeting energy requirements.

The results of this study clearly highlight the direct
relationship between the amount of incoming solar energy and
the power generated by solar panels. The mentioned amount of
energy directly depends on the sun's movement in the sky. The
system which is utihized for this study is designed to create the
opportunity of tracking the effects of variations in the sun's
position in the sky on solar panel output powers.

According to the results, the South oriented solar panel is
capable of generating the most amount of energy among panels
aligned toward other orientations, even during the time period
with relatively less amounts of incoming solar insolation. Also
the results show that the North oriented solar panel has been
generating the least energy amounts during the same fime
period as an opposite to the South oriented panel. Obfaining
more power with the same number of solar panels leads to
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reduction of energy generation cost and land-occupation. The
results provide helpful information for selection of the most
appropriate orientation for solar system installations in
northern hemisphere while PV systems in the southern
hemisphere or near the equator would need to be oriented
toward the sun.

The results show that a South oriented solar panel has % 50
shares in power generation in a system including 6 identical
solar panels with different orientations. According to the
results, %94 of total energy production during a 6-month time
period has been handled by South, South West and South East
oriented panels and North oriented panels have presented very
small contributions to energy production during the mentioned
time period.

The results of this study can be assumed as a presentation
for a big picture of solar energy systems which highlight the
effects of installation orientations and dependencies of power
generation by PV systems on the amounts of incoming solar
irradiance and sun's movement in the sky. The results can be
considered for an efficient use of solar energy, especially for
applications i rural areas or locations with relatively less
amounts of sunshine. The results also illustrate that how can
the selection of appropriate installation orientations improve
the overall system efficiency and reduce the cost of energy
produetion from sunlight.
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Abstract—This paper proposes a simple and practical
simulation model for solar modules using MATLAB/Simulink
The model is based on a single-diode mathematical model of a
solar cell and is capable of accurate modeling of I-V and P-V
characteristics of a solar module. Model parameters are obtained
from manufacturer' s datasheets and series and shunt resistances
are calculated using a simple method based on open-circuit
voltage, short-circuit current and irradiance values. The model is
interfaced with SimPowerSystems toolbox. This feature makes
the model capable of being used with power electronic devices
and elements for advance analyses. The model is validated using
measured I[-V characteristics of a commercially available
crystalline silicon solar module and the effects of environmental
conditions (temperature and irradiance) as well as the effects of
cell parameters like series and shunt resistances on module
characteristics are investigated. The proposed model is capable of
being used by solar energy researchers, system analysts and
designers as a simple and helpful tool for advance analysis
requirements.

Keywords—solar energy, selar cell, seolar modile, module
characteristics, simulink.
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The model is based on a single-diode mathematical model of a
solar cell and is capable of accurate modeling of I-V and P-V
characteristics of a solar module. Model parameters are obtained
from manufacturer”s datasheets and series and shunt resistances
are calculated using a simple method based on open-circuit
voltage, short-circuit current and irradiance values. The model is
interfaced with SimPowerSystems toolbox. This feature makes
the model capable of being used with power electronic devices
and elements for advance analyses. The model is validated using
measured I-V characteristics of a commercially available
crystalline silicon solar module and the effects of environmental
conditions (temperature and irradiance) as well as the effects of
cell parameters like series and shunt resistances on module
characteristics are investigated. The proposed model is capable of
being used by solar energy researchers, system analysts and
designers as a simple and helpful tool for advance analysis
requirements.

Keywords—solar energy, solar cell, solar module, module
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1. INTRODUCTION

The rising energy demand for various applications in
today's world and limited amount, pollution and other risks of
conventional energy resources all point to the sun as a reliable,
unlimited and clean resource of energy. Solar cells first entered
human's life i 1883 [1] and found various application areas in
today's energy sector. While mfinity of the power source, low
operation costs, energy production without any moving part,
long life time of the modules, modularity and quick installation
are some of the advantages, high installation costs, lack of
economically “efficient energy storage and relatively low
efficiency of energy conversion form some disadvantages for
this renewable power source. However the cost trend of PV
systems ‘has become downward due to mass production
techniques and facilities for modules and components and
researches show that PV energy 1s becoming cost competitive
and will be able to replace the conventional energy sources in
near future.

However having precise and detailed information regarding
the behavior of solar generators (solar cells, solar modules,

978-1-4799-2569-8/13/$31.00 ©2013 IEEE

solar arrays, etc.) is a must for an efficient use of this clean and
unlimited energy source, planning and design procedures of
solar power generating systems.

Mathematical modeling of the electrical equivalent circuit
of a solar cell, as the smallest-building block of every solar
energy system, is the most widely used method by researchers
to characterize solar generator systems and investigate the
behavior of the  systems under various environmental
conditions.

Various models have been proposed by researchers to
investigate the characteristics of solar cells/modules. Among
all, the simplest models are single-diode models based on a
linear independent current source in parallel to a diode [2,3].
Improvements to the single-diode model have been made by
adding a series connected resistance, (Ry), to the model. These
models are referred to as Ry-models [4,5]. A more accurate
model] known as Ry-model, including a shunt resistance, (Rqp),
also has been utilized by many researchers [6-8]. Two-diode
model of a solar cell [9-12], including an additional diode, 1s a
more detailed model being utilized in literature. Among all of
the above mentioned models, R,-model as the most improved
version of the single-diode model has been preferred in a large
number of applications due to its simplicity.

The Ry-model or simply the one-diode model comprises
five unknown parameters to completely represent the I-V
characteristics of a solar cell. These parameters are namely the
photocurrent, (I3), the diode reverse saturation current, (Ig),
series resistance, (R;), shunt resistance, (R,) and diode ideality
factor (n). Once these parameters are determined, the model
will be able to return the accurate characteristics of a solar cell.

This paper proposes a simple and practical
MATLAB/Simulink based simulation model for solar modules
based on single-diode model of a solar cell Information
regarding the open-circuit voltage, short-circuit current, voltage
and current values at maximum power point and diode ideality
factor are determined using the manufacturer's datasheet. The
values of series and shunt resistances are determined using a
single mathematical approach based on open-circuit voltage
and short-circuit current values. The model is interfaced with
SimPowerSystem toolbox and is capable of being utilized in
further advanced analyses.

a4
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II.  MATHEMATICAL MODEL OF A SOLAR CELL

As it was mentioned previously, various mathematical
models have been utilized to determine the characteristics of
solar cells. In this paper, the improved R,-model or simply the
one-diode model of a solar cell 1s preferred due to its simplicity
and wide application areas. The equivalent electrical circuit of
the one-diode model of a solar cell is illustrated in Fig.1. The
model consists of a linear current source, a diode, a parallel
resistance expressing the leakage current and a series resistance
representing the internal resistance of a solar cell.

iph t)

Fig. 1. Equivalent One-Diode Circuit of a Solar Cell

According to the one-diode model of a solar cell, the
relationship between the cell's current and voltage can be
determined using the following equation,

[=1—Is (exp q(Vn:-c:gl) = 1) = 4 ;S‘(’\” ()
Where;
Loh : Photocurrent (A)
Is . Diode Saturation Current (A)
- Electron Charge (1.60217646 < 102 C)
: Diode Ideality Factor
- Boltzmann Constant (1.3806503 »10% J/K)
: Temperature of the p-n Junction (K)
Rs . Series Resistance ((2)
Rgu : Shunt Resistance ()

Generally the values of the open-circuit voltage, (V).
short-circuit current, (Is), maximum power point, (Puas),
current and voltage at the maximum power point, (Vp, and
Lnp). are provided in the manufacturer's datasheet under
Standard Test. Conditions (STC) (Irradiance = 1000 Wim®,
Temperature =25 C, Air Mass = 1.5).

The aim of an accurate simulation model is to precisely
calculate/estimate the above mentioned values under variable
environmental conditions. To reach this goal, the simulation
model should be capable of appropriate calculation/estimation
of the parametrs affecting cell's I-V characteristics. In the case
of considering a one-diode model of a solar cell, there are five
unkonwn parameters according to (1), namely being I Ig, n,
R, and Ry, to be caleulated/estimated by the model.

III.  DETERMINATION OF CELL PARAMETERS
Considering the points highlighted in the previous part, the

unknown parameters of (1) should be appropriately
determined for an accurate simulation of the I-V
characteristics of a solar cell. A description of the

methodology utilized for determination of cell parameters is
given during the following parts of the paper.

A. Determination of Iy,

The photocurrent, (I,p), can simply be calculated according
to the following equation as a function of mradiance and
temperature values,

G
Iph = [Isc + k(T — TSTC)] ES_T; @

Where;
T : Short-Circuit Current (A)
: Short-Circuit Current Coefficient
T : Working Temperature
Tere  :25C
G : Irradiance on the Surface of the Cell (Wh/m?)
Ggre 1000 Wh/m®

The value of k; is generally provided in the manufacturer's
datasheet.

B. Determination of Diode Saturation Curvent, (1) and
Idelaity Factor (n)
The diode saturation current, (I,), can be determined using
the following formula considering the effects of variations in
cell temperature [8],

B Tsrc)3 qu( 1 1)] @
]S - ISVSTC( T e nk TSTC T

I = ISC
T exp (Vo V) — 1 W
Where;
B, : The band gap energy of the semiconductor

Vi : Thermal voltage of the cell (Vy =kT/q)

B, is defined by [13] using (5) and the diode ideality factor,
(n), depends on cell's manufacturing technology. Generally the
ideality factor for a silicon cell varies in the range of n=1-2.

TZ
E,=116-7.02x107*| ——— &)
T —1108
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C. Determination of Series and Shunt Resistances

Once the first three unknown parameters in (1) have been
obtained according to the mentioned methodologies, the
values of R, and Ry, are required to complete the simulation
model. Although in general it is assumed that R>>R,, it
should be considered that the simulation model should reflect
the real characteristics of a solar module/array. Thus an
accurate determination of the R, and Ry, is required. Various
methods have been proposed by many researchers to obtain
the values of these unknown parameters. Extracting the values
from I-V characteristics provided in manufacturer's datasheet
or analytical and iteration based calculation methods have
been subjects of many researches in the literature [8,9]
However the unavailability of information on I-V
characteristics, computational complexity, uncertaimities, ete.
are the main issues of utilizing these methods.

The values of R, and Ry, are obtamned using the methods
introduced by [14] and [15] due to their simplicity and reliable
results. According to [14] Ry, and R, can be obtained using (6)
and (7) and [15] defines (8) to take the effects of irradiance
variations on the value of Ry, into account.

v,
Ry, >10-% (6)
ISC
%
Ro <012 @)
ISC
Rsh s G (8)

Rsnsre  Gsre

IV. THE PROPOSED SIMULATICN MODEL

Considering the mentioned pomts, the focus of thig paper
1s to propose a simple, practical and accurate simulation model
for solar modules. The construction procedure of the
simulation model has been described during the following
parts of the paper.

A. Simulation Model of a Solar Module

The proposed simulation model of solar modules is based
on the simulation of a solar cell as the smallest building block
of every solar energy generator system. The simulation model
of a single solar cell 1s ‘constructed based on (1) — (8)
MATLAB/Simulink software environment. The mentioned
platform is chosen due to its wide application area and
popularity for almost all engineering branches.

A masked implementation of the proposed simulation
model for a solar module 1s shown in Fig. 2. The model
accepts the information provided in the manufacturer's
datasheet as I ., Vie, Vi, Ly along with the temperature and
irradiance information, number of series, (Ns), and parallel,
(Np), eomnected solar cells in a module, diode ideality factor
and short-circuit current coefficient, (k). as inputs and returns
the module I-V and P-V characteristics as the output.

Continuous
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powergui
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PV Module

B Source Block Parameters: PV Module
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Parameters
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Temperature(Degree)
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Number of Series Cells in a Module
Number of Parallel Cells in 2 Module
Diode Ideality Factor

Short-Circuit Current Coefficient (Ki)

oK [ cancel |[ wep ][ aApply |

Fig. 2. Masked Implementation of the Solar Module Simulation Model

The blocks contained in the masked implementation are
shown in Fig. 3. As it 1s obvious from the figure, the nput
parameters are included in a separate subsystem while the
main construction block is a solar cell. The solar cell is
simulated separately in a subsystem according to (1) — (8).
The simulation model is designed for analyses of module
behaviors under homogeneous wrradiance conditions when the
module is not subjected to any partial shading and the
irradiance values received at any point on module surface are
constant. Under the mentioned conditions the voltage across
the terminals of the module is equivalent to the terminal
voltage of one cell multiplied by the number of series
cormnected cells in the module. Module's current value is
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Fig. 3. Blocks of the Solar Module Simulation Model

equivalent to the current of one cell multiplied by the number
of parallel connected cells in the module. Generally the open-
circuit voltage of each individual solar cell is very small (Vg
= 0.6 Voltsy and hence, considering the application
requirements, a number of solar cells are internally connected
in series and/or parallel combinations in a module to obtain
the desired voltage and/or current values, respectively.

The simulation model is interfaced with SymPowerSystem
Toolbox to create the possbility for advanced analyze
purposes. The output current is connected to a controlled

S e »(T)

= Imedule
Current Measurement

H Voltage Source

L o=
REET

Vmodule
Voltage Measurementl

current source and the voltage across the terminals is sensed
and externally fed back to the solar cell block. The module
output current and voltage signals are considered to obtain the
module I-V and P-V characteristics.

The internal architecture of the solar cell simulation block
is shown in Fig. 4. The values of Ly, I, R and R, are
calculated in ‘separate subsystems according to 2) — (8),
regpectively. " The main loop retums the cell current value
according to (1).

Saturation

Fig. 4. Simulation Model of a Single Solar Cell
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V. SIMULATION RESULTS

The proposed simulation model is designed to return the
1-V and P-V characteristics of a solar module. The model is
utilized to simulate the behavior of a commercially available
crystalline silicon solar module with 36 series connected solar
cells under STC and the simulation results are shown in Fig, 5.
The parameters of the solar module provided by manufacturer
are illustrated in Table I. As it is clearly visible from the figure,
the terminal voltage of the module varies between 0-V,, while
the current value changes between [,-0 when the module's
operation point moves between short-circuit and open-circuit
conditions, respectively, Under STC, the maximum voltage,
(Voe)s 18 equal to the total open-circuit voltage values of
individual series connected cells while the module's maximum
current, (I,,), is equivalent to each individual cell's I, in a
series connection combination,

The model is wvalidated using the measured [-V
characteristics of the mentioned module. The results are
compared and illustrated in Fig. 6, It is obvious that the model
is capable of accurate simulation of the characteristics of the
module and the measured and simulated values are in a very
good agreement. The values of R, and Ry, are chosen as 0.22 ()
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Fig. 5. Simulated I-V and P-V Characteristics of a Solar Module
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Fig. 6. Measured vs. Simulated -V Characteristics of a Solar Module

TABLE 1. SPECIFICATIONS OF THE SIMULATED MODULE
Parameter Value
Pruax 40W
Voo 216V
Lie 257A
Ve 173V
™ 231 A
n 1.3
K; 2 mA/°C

and 126 € respectively corresponding to 0.027 V,/le and
18 Vellice

Parameters like cell's working temperature, irradiance,
diode ideality factor, series and shunt resistances have all
significant effects on cell's [-V and P-V characteristics. The
effects of different factors on cell's operation are analyzed
during the following parts.

A. Temperature Effects

The effects of variations of working temperature on
module’s IV and P-V characteristics are illustrated in Fig, 7.
It is observed that Vo is reduced when module’s working
temperature is increased beyond 25 C in parallel with small
increments in I, As it is illustrated in P-V characterisitcs
curve, increments in.working temperature cause significant
reductions in madule's power output and maximum power
point.

Module I-V Characteristics

3 i
! = 0 Degree
P =—————_-
| O PR [ .. SO ). A N
= T =80
S 1.8 e
1
T =75 De
0.5
0
0 s 1 25 30

15
Voltage (V)

Module P-V Characteristics

15 20 25 30
Voltage (V)

Tig. 7. Effects of Temperature Varations on Module -V & P-V
Characteristics
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B. Irradiance Effects

The effects of variations of the amounts of the received
solar irradiance on module's 1-V and P-V characteristics are
shown in Fig. 8. The module output characteristics are
simulated under five different irradiance levels, namely being
1000 Wh/m?, 800 Wh/m?*, 600 Wh/m?, 400 Wh/m* and 200
Wh/m?, Tt is obvious that reductions in the amount of solar
ingolation received by the module have direct effects on
module short-circuit current value while Vo, is also subjected
to small reductions at the same time. It is observed that
reductions in solar irradiance cause significant amounts of
power loss by the module.

C. Effects of Series Resistance (Ry)

The value of R, is very small and is neglected in some
studies [2,3,16]. However, appropriate caleulation/prediction
of this parameter improves the accuracy of the simulation
model. Iig. 9 illustrates the module’'s [-V and P-V
characteristics for 5 different values of R, namely being
0.168 Q, 0336 Q, 0.504 Q, 0.672 Q and 0.840 € which
correspond to 0.02 V,/Ii, 0.04 Vo/I,. 0.06 VoI, 0.08 Vo/1I,,
and 0.1 V,o/ly, respectively. It is obvious that variations of R,
changes the slope of the characteristic curves near Vo,
operating point and increments in the value causes reductions
in power generated by the module.

Module IV Characteristics
= 1000 Wh/m2

G = 800 Wh/m2

00 Wi/m2
2 = 400 Wi/m2
2 5 = 200 Wh/m2,
g 1.5F=
1}
) ~ \\\
0 i
o ] 10 15 20 25
Voltage (V)
Module P-V Characteristics
40
G=1000 Wh/m2-.
asf Lt
800 Wi/m2-.
P
3ol el

G=600 Wh/m2~__

G400 Wh/md

d‘iﬂﬂ wt/‘m‘l o

10 15 20 28
Voltage (V)

Fig. 8. Effects of liradiance Variations on Module 1-V & P-V Characteristics
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Fig. 9, Effects of Variations of R, on Module I-V & P-V Characteristics

Vi Ejfecrs of Shunt Resistance (R)

The value of the shunt resistance, (Ry,), is assumed to be
very large compared to R, As it was mentioned previously,
several methods have been introduced to predict/caleulate this
value, As an example, [14] defines the value of the Ry, by (6).
The effects of variations in Ry, on module’s I-V and P-V
characteristics are illustrated in Fig. 10. The curves are
simulated for {ive different values of Ry, namely being 42 €,
84 €, 168 £, 504 €, which correspond to 5 Vool . 10 Vo,
20 Vool and 60 Vo1, respectively. It is observed that
variations in Ry, changes the slope of the characteristics curves
near I, operatin point and increments in the value of Ry,
inerease the power generated by the module,

Module IV Characteristics
3
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—— Rp = 84 Ohm
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——— Rp ~ 504 Ohm

N
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=
n

-
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Module P-V Characteristics
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Tig. 10. Effects of Variations of Ry, on Module [-V & P-V Characteristics

VI.  CONCLUSIONS

Solar energy generators show different behaviors under
different environmental conditions. Having a precise and
detailed knowledge of system characteristics under different
conditions helps system designers and planners to improve the
accuracy of predictions/calculations and as a result creates the
possibility of optimal and efficient use of this clean and
renewable energy resource,

An accurate and precise simulation of solar modules plays a
major role in defining system characteristics under variable
conditions, In general, the output characteristics of solar
modules highly depends on their working temperature and the
received solar irradiance as environmental factors as well as the
parametric specifications of the module like the diode ideality
factor, series and shunt resistance values. The mentioned
factors should all be precisely speecified for an accurate
simulation of the output characteristics of a solar module,

The single-diode mathematical model of a solar cell is used
to simulate the I-V and P-V characteristics of a solar module
based on (1) — (8), The simulated I-V characteristics are
validated using the measured values of ‘a commercially
available solar module and it is observed that the simulation
results are in a very good agreement with the measurement
results. The effects of different parameters on module output
characteristics are analyzed and the dependencies of the
module characteristics to each parameter are highlighted. It is
observed that inerements of working temperature of the module
cause significant reduetions in power generation by the
module. It is also illustrated that the short-circuit current of the
module is in a.direct relationship with the amounts of received
solar irradiance and any reduction in solar insolation causes I
to be reduced. It is also obtained that variations in the values of
series and shunt resistances also affect the shape of the
characteristic curves where variations of R, and Ry, values
cause variations in the slope of curves near V., and I,
operaling points, respectively. At the same time it is observed
that increments in R, cause reductions in power generation
while the increments in Ry, directly affect the power generation
and cause increments in power generation amount by the
modules,
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Artificial Neural Network

Kian Jazayeri, Sener Uysal, Moein Jazayeri, “Determination of Power Losses in Solar
Panels Using Artificial Neural Network”, in Proceedings - IEEE AFRICON

Conference, Port Luis, Mauritius, 2013.

Abstract— The main purpose of this paper is on developing an
intelligent system which provides real time monitoring and fault
detection for solar panels. Utilizing artificial neural network
technology, the solar panel fault detection system is capable of
perceiving sun’s position in the sky and estimating the
corresponding output power of a solar panel based on the
algorithms derived by the artificial neural network which has
been trained on solar data at several time intervals. The system is
capable of operating in any geographical location providing 24-
hour monitoring and fault detection as well as future power
estimations for solar panels.
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photoveltaic cells, photovoltaic systems, solar energy, solar power
generation.
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I.  INTRODUCTION

It 1s of prior importance to put effort into developing
techniques of gaining benefit from renewable energy
resources. The term renewable refers to the sustainability of
the energy resource. According to Lynn (2010), “The Sun’s
radiation beamed at us day by day, year by year, and century
by century, is effectively free income to be used or ignored as
we wish. This income is expected to flow for billions of years.
Nothing 1s wasted or exhausted if we don’t use it because it 1s
there anyway” [1]. The free and sustainable selar energy will
be available for human use through the next centuries without
causing any environmental damage t6 the planet earth.

The performance estimation methods for solar panels and
solar power stations have been the subject of many scientific
works such as the irradiance  forecast based PV power
prediction methods introduced wn [2] and the map-based
simulation model discussed in [3].

As an alternative to such PV performance estimation
methods, this paper focuses on developing an Artificial Neural
Network (ANN) based fault detection system which is capable
of calculating ‘sun’s position in the sky and estimating the
corresponding solar panel output power.

In the following parts the details about collection and
normalization of the solar data used to prepare the ANN
training ‘data sets will be given. When the ANN is
implemented and trained, the solar data will also be used in
execution of the fault detection system.

The solar panel fault detection system is developed using
C programming language and the artificial neural network

978-1-4673-5943-6/13/$31.00 €2013 IEEE

utilized in the system is implemented using the Fast Artificial
Neural Network (FANN) library [4].

1L SUN’S POSITION DATA

As described in [5], the sun’s position in the sky is
expressed by three different angles which are the Solar
Altitude Angle, the Solar Azimuth Angle and the Solar Angle
of Incidence. These three values are fed as inputs to the ANN
which will be utilized in the solar panel fault detection system.
The methods of calculation and normalization of each of the
angles in order to make them ready to be fed as inputs to the
ANN are described in the following sections. All the sun’s
position data calculations are based on local solar time.

A. The Solar Altitude Angle

The Solar Altitude angle y, indicates sun’s elevation from
earth’s surface and is calculated by (1):

¥ = sin~!(singsind + cos@cosscosw) @]

§=sin" {0.3987 sin (§'80.2°+1.92(sin(j-2.80°)) )} @)

w=15(—12) 3)
Where,
@ : The latitude of the observation point
8 . The solar declination angle (Degrees)
w . The solar hour angle (Degrees)
t : Decimal hours on the 24 hour clock

Tt is observed that the solar altitude angle values range
between -40 degrees to 90 degrees during a 24-hour period.
The highest value of the solar altitude angle which optimally
affects the performance of the solar panel is reached at 12:00
hrs and corresponds to the sun’s highest elevation.

Before feeding the value as an input to the ANN it is
normalized between 0 and 1. The value O refers to the value of
the solar altitude angle that has the least effect on the
performance of the solar panel. The value 1 refers to the angle
value that has the most effect on panel’s power output, which
1s 90 degrees and is reached at noon.
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Fig. 1. The normalized solar altitude angle calculation results over a 24-hour
period on July 1%, 2012

The normalization used to modify (1) is given in (4) and
the result 1s given in (5), which represents ¥g jnpy,; that is
passed as the first input to the artificial neural network.

) Value — Minimum 4
Normalized Value = ————————
Max — Minimum

Vs + 40 5)
Vsjimput = —35

As discussed in [6] the factor j'=)*(360/365.25) indicates
the effect of the Julian day number in the declination angle (§)
calculation.

Fig. 1, shows the results of per minute calculations of
Vs inpue for constant latitude and different time angles over a
24-hour period for Julian day number 182 which refers to July
1% As it is obvious from the figure, ¥s,mpue 8lmost reaches its

optimal value 1 which refers to 90 degrees for ¥ at 12:00 hrs
on July 1%,

B. The Solar Azimuth dngle

The second value which is fed as input to the artificial
neural network is the Solar Azimuth Angle. As described in
[5] the solar azimuth angle indicates sun’s deviation from
north direction and is represented by (6):

{065 = 180'= cos"t{cos a;) If sina, <0 (6)

a, = 180+ cos™ '{cos a,) If sina, >0
Where,
cosa, = (singsiny, —sind)/ cos @ cos ¥, @)
sina, = cosa, Sinw/ cos y, 8

=
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Fig. 2. The normalized solar azimuth angle caleulation results over a 24 -hour
period on July 1%, 2012

Normalized Solar Azimuth Angle

0:00

The effect of time angle o (3) makes sin a5 take on
positive values from 12:00 to 00:00 hrs and negative values
from 00:00 to 12:00 hrs; therefore (6) is modified in the data
collection system to calculate the solar azimuth angle sin a,
for these two different periods of time.

The solar panel used. for data collection is south oriented,
therefore the values of the solar azimuth angle which represent
the location of sun in south direction mostly affect the
performance of the panel.

Since (6) represents sun’s deviation from north direction, it
takes on:0 and 180 degrees when sun is located in north and
south directions respectively. Therefore, again using (4) we
can normalize (6) in the form of (9) and (10):

For a, <180,
180 —a ©)
s input = 1- Ws
For a,>180,
@, — 180 (10)
s input — 1 — W

Fig. 2, shows the results of per minute calculations of
s mpnt OVEr a 24-hour period for July 1* using (9) and (10).
As it is obvious from the figure, amp: takes on its highest
value 1 at 12:00 hrs which shows that the sun is located in
south direction at noon. Since the solar panel is also headed in
south direction, the value of @ gy at noon refers to the
situation in which the panel is located in front of sun and is
expected to work with its maximum performance.

C. The Solar Incidence Angle

The third and last value to be passed as input to the ANN
is the Solar Angle of Incidence (#). The solar angle of
incidence is the angle between the sun’s radiations and a
vector perpendicular to the solar panel’s surface. When the
sun’s radiations are perpendicularly received on the solar
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panel’s surface, 8 takes on its optimal value 0 degree. Like the
solar altitude and azimuth angles, the solar angle of incidence
which is represented by (11) has a major role in solar panel
output power estimations.

- cos(f) cos(Z) + ]

A [sin(ﬁ) sin(Z) cos(as-a,,) (n
Where,

B : Tilt angle of the solar panel (45° in this case)

2y : Zenith Angle of the Sun (Degrees)

a,, : Module azimuth angle (in this case: South = 180°)
and,

Zg=90 -y

Similar to the first two inputs (Vg impue and Ty inpyeds it is
desired to normalize the value of the solar angle of incidence
between 0 and 1 before feeding it as the third input to the
ANN. The normalized input value takes on I corresponding to
0° which is the optimal value of the angle of in¢idence and as
this value moves towards 180° the normalized input value
decreases down to 0.

Again (4) is used to normali (1 1) which results in (13):
" N (13)
hlpzﬂ - m

Fig. 3, shows lh& j;esulls of per minute calculations of
9,,q,m over a 24-hour period, again for the Julian day number
182 which gefers to July 1%, As it is obvious from the figure,
Binpur takes ‘on its maximum value on 12:00 hrs which
indicates that'sun’s radiations are perpendicularly received on
the solar panel’s surface at noon, and decreases down to its
minimum value at midnight.

1I. SOLAR PANEL OUTPUT POWER

The solar panel used to collect data for the fault detection
system is a 5060 cm® monocrystalline silicon panel
(P : 40W, Vo : 216 V, Igc : 2.56 A) located at 17 meters
above the sea level on the roof of the Electrical and Electronic
Engineering Department, Eastern Mediterranean University at
359 8' 51" N, 33° 53' 58" E. The panel is south oriented tilted
45 degrees.

The short circuit current, Ig-, is the maximum current that
flows in a solar cell when its terminals are shorted with each
other and the open circuit voltage, Vo, is the maximum
voltage generated across the terminals of a solar céll,when
they are kept open [7]. The output voltage and current vﬂuﬁ
of a solar panel vary between 0-Voe and O-Ige yecuwley
under variable load and constant irradiance gonditions. Here, a
constant valued power resistor is connmgedto tlt terminals of
the panel which provides the possibﬂlty of’momtonng and
measurement of the output power as a ﬁmctwn of variable
irradiance during dayu me.

The output power is firstly used while the training data sets
for the artificial neural nétwork (ANN) are being prepared and
then it is used to compare with the estimated output power
after cach execution of the ANN in the fault detection system
(the details about trair r|¢ and execution of the ANN will be
given in later parts), The correspondmg time for solar panel
output power measurements is the local fime at the
observation point.

An_ elqm.mdc circuit is constructed to measure the output
powa" the solar panel and transfer the data to a computer.

dl.ﬁrcnt parts of the solar panel output power

_-n\easm‘emenl circuit consisting of (a) Microprocessor, (b)

Mm32 (¢) Power Resistor and (d) Voltage Divider Circuit

/ afong with their connections are shown and labeled in Fig. 4.

The output power of the solar panel was firstly tracked and
logged over a 24-hour period with a sample rate of 1 reading
per minute. The system was designed to read the computer’s
serial port which was connected to the circuit in Fig. 4, log the
data referred to the output power of the solar panel along with
the time of reading the port and wait for 60 seconds.

Solar Panel =
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Fig. 4. The Circuit Used for Output Power Measurement of the Solar Panel
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Fig. 5. Output power measured with 1 sample per minute for a 40W

monocrystalline silicon solar panel over a 24-hour period on July 3%, 2012

0:00 6:00 0:00

The result of about 1400 times reading and logging the
value of solar panel’s output power over a 24-hour period
starting from 00:00 hrs on July 3, 2012 is shown in Fig, 5.

As 1t 1s obvious from Fig. 5, solar panel’s output power
measured with 1 sample per minute is highly fluctuating.
Logging the fluctuating power value in the artificial neural
network training data sets would decrease the efficiency of the
training process of the ANN and increase its training error.
The solution to this problem is to increase the averaging rate
of the measured output power.

At this point the system is modified to read the output
power of the solar panel through computer’s serial port at 5
second intervals. After 12 readings is completed (which
corresponds to 60 seconds reading time), the average value of
the last 12 samples is logged along with the exact time at the
moment.

Fig. 6, shows the results of about 1400 measurements of
the solar panel’s output power with an averaging rate of 12
readings per minute over a 24-hour period on July 3*,2012.

As shown in Fig. 6, increasing the averaging rate of the
solar panel’s output power measurement decreases the
fluctuations in the logged data and makes it ready to be passed
into the artificial neural network training data sets. Similar to
the mput values, the output value also has to be normalized
before being passed to the training data set.

1A ARTIFICTAL NEURAL NETWORK TRAINING PROCESS

As previously. mentioned, it is ammed to develop an
artificial neural network (ANN) which receives the values of
the solar altitude‘angle, the solar azimuth angle and the solar
angle of incidence as inputs and derive the estimated solar
panel output power corresponding to each set of input.

The ANN needs to be trained with inputs and outputs
collected. formerly. After the training process completed, the
ANN gets ready to derive proper outputs for the inputs given
in training data set as well as generalizations for new inputs.
The training process is done on a .data training file which is
shown in Fig. 7.
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0:00 6:00 12:00 18:00 0:00
Time of Day

Fig. 6. Output power measured with 12 samples per minute for a 40W
monocrystalline silicon solar panel over a 24-hour period on July 3™, 2012

The first line in the training file indicates that the ANN
goes through 1339 training paths with 3 inputs and 1 output.
The next couple of lines consist of the input values which are
Vlnpits (5), O i (9,.10) and Onputs (13) in the first line
and the normalized solar panel output value in the second line.
These two lines represent the first training path for the ANN
and are followed by 1338 other paths which are all formed in
the same way with different input and output values.

The artificial neural network utilized in the solar panel
fault detection system has multilayer feed-forward architecture
with back-propagation algorithm. During the training process
each training path is processed separately and inputs of each
path are propagated through different layers of the network
until they reach to the output layer.

" neursltrain3 - Notepad

Fie Edit Format View Help
1339 3 1

0.059495 0.000055 0.070746 e
0.002022

0.059499 0.001513 0.070759

0.

(B EE

0.059510 0.003031 0.070796

0.
0.059529 0.004550 0.070859
0.001672

0.059555 0.006065 0.070946
0.002623

0.059588 0.007581 0.071058
0

02059630 0.009097 0.071195

0.
0.059678 0.010613 0.071356
0.002009
0.059734 0.012128 0.071542
0.001580
0.059798 0.013643 0.071752

0.

0.059869 0.015157 0.071986
0.005639

0.059948 0.016672 0.072243
0.001476

0.060034 0.018185 0,072524

0
0.060127 0.019698 0.072829
0

0.060228 0.021210 0.073156
0.002584

0.060337 0.022723 0.073506
0.002180

0.060453 0.024234 0.073878
0.

0.060576 0.025744 0.074272

0.
0.060707 0.027254 0.074687 v

Fig. 7. Artificial neural network training data set
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Fig. 8. The artificial neural network architecture utilized in the solar panel
fault detection system

At this point the error of the training process is calculated
with respect to the output specified to each input array in the
training data set. After all the training paths are processed, the
back-propagation algorithm is applied to adjust the weights on
neurons in different layers of the network. The procedure
continues until the training error falls below a preset threshold.

The architecture of the multilayer fully connected artificial
neural network shown in Fig. 8, consists of an input layer, two
hidden layers and an output layer. This ANN architecture with
symmetric sigmoid activation function with steepness factor 1
is selected to be utilized in the solar panel fault detection
system since it provides the lowest error during the training
and execution phases.

Executing the training process, the ANN falls below the
pre-set training error threshold 1.2<10™ after 15215 epochs of

back-propagation and at this point a .net file is created to be

used for execution of the ANN with future inputs.

Y. EXECUTION RESULTS OF THE PROPOSED SOLAR
PANEL FAULT DETECTION SYSTEM

At this point, having the artificial neural network trained
with collected solar data, the solar panel fault detection system
is ready to be executed. When the system is run, it connects to
the computer’s serial port to get the value of the solar panel
output power every 5 seconds and calculate the average output
power with 12 samples per minute. After calculating the
average power for each minute, the system gets the time and
calculates the values of ¥ impur (5), @ impue (9, 10) and Bmp.,“
(13) and feeds them as inputs to the artificial neural nehmrk
shown in Fig. 8.

The inputs propagate through the network Iaym's to reach
the output layer. After the execution of the ANN is completed
the output value is reconstructed from the nmnahzad form
and logged as the estimated output power " for the
corresponding time. At this point the root.mean square error
between the estimated and the actually measured output power
values are calculated and logged as a percentage error with
respect to the measured output power value.

If the calculated percentage error value falls below a pre-
set threshold, the execution window of the fault detection
system produces the nﬁn.sage “System Performance Check:
Successful” along with the exact time, measured power value,
estimated power value and the root mean square error value.
On the other hand, if the percentage error value exceeds the
threshold, th system reports the message “System
Performange Check: Fault Detected” again along with the
previously mentioned values.

. The ‘solar panel output power values (measured vs.

‘estimated) and the root mean square error between the

measured and the estimated power values over a 24-hour

speriod on July 6™ 2012 which was a clear, sunny day are
" shown in Fig. 9.
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Fig. 9. Output power values (measured vs. estimated ) and the root mean square error between the measured and the estimated output power values for a 40W

monocrystalline silicon solar panel on July 6%, 2012,
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TABLE L AVERAGE PERCENTAGE RMSE BETWEEN THE MEASURED
AND THE ESTIMATED OUTPUT POWER VALUES FOR DIFFERENT DAYLIGHT
TIME INTERVALS ON JULY 6™, 2012

DAYLIGHT TIME AVERAGE

INTERVAL (HOURS) RMSE (%)
12:30- 1330 3309906
12:00 - 14.00 3420657
11.30—14:30 3.188346
11.00 - 15:00 3175156
10:30- 1530 357076
10:00— 16:00 3.950062
9:30 — 16:30 4.602882
9:00 — 17.00 5207249
830 — 17:30 5551695
$:00 — 18:00 3405882

Table 1, shows the different values of the average
percentage RMSE between the measured and the estimated
solar panel output power for different daylight time intervals
from 1 up to 12 hours on a clear, sunny day (July 6™ 2012).

The daylight time interval 8:00-18:00 corresponds to the
period in which the solar panel operates effectively and the
solar panel fault detection system is executed within this
interval providing overall %RMSE values between 3.17% and
8.40%. These values may be compared to the RMSE values
for different models of irradiance estimation introduced in [8].

Nguyen [9] indicates that in a solar panel/module
consisting of 10 sub-modules each containing 10 solar cells
interconnected by 2 different connection types (Simple Series-
Parallel and Total-Cross-Tied), the effect of 6 solar cells being
shaded or damaged results in 17% to 48% overall power loss
based on the locations and connection types of the
shaded/damaged solar cells. Respecting the above, the 15%
RMSE value between the measured and the estimated output
power 1s decided as threshold for the solar panel fault
detection system.

Setting the RMSE threshold for the solar panel fault
detection system to 15% provides the possibility of detecting
any failure higher than 6% in a solar panel’s surface [9].

VL CONCLUSIONS

The artificial neural network based fault‘detection system
provides 24-hour monitoring and real time fault detection of
solar panels. The mechanism of the fault detection system
relies on the position of the stin - the sky. During the data
collection procedure, the sun’s position is calculated and
recorded along with the' corresponding solar panel output
power in the artificial neural network training data sets. The
ANN is trained with the solar training data sets and derives the
algorithms that relate the solar panel output power to the
position of the sunun the sky.

At this“point the artificial neural network is capable of
estimating the output power of the solar panel with respect to
the sun’s position. The fault detection system is designed to
measure the average output power of the solar panel with 12
samples per minute and compare it with the output power
estimated by the ANN. If the root mean square error between
the measured and the estimated output powers exceeds some
pre-set threshold an error message is produced to report the

RMSE value along with the measured and estimated output
power values and system time.

Utilizing the solar panel fault detection system, any power
loss due to damaged cells, shadows etc. 1s detected and
reported immediately which increases the efficiency of the
solar power stations and decreases the long term maintenance
and support costs.
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Abstract — 1t is basically approved that the output power of a
solar cell/module directly depends on the amount of solar
irradiance which it receives from the sun. Also it is known that
the irradiance values are not constant at any specific time
interval. The changes in the position of the sun with respect to
earth are one of the main reasons causing the variations in the
amount of incoming sunlight and its energy to the earth’s
surface. The main focus of this paper is to analyze the effects of
changes in the position of the sun in the sky on the incoming solar
radiation during a whole year. Also the effects of such changes on
the hourly values of solar radiation as well as the effects on the
output power generated by a solar panel during a specific sample
day is analyzed.

Keywords—solar energy, solar power generation, solar radiation,
irradiance, photovoltaic cells, data acquisition, data analysis
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I. INTRODUCTION

The importance of use of solar energy as a huge, reliable
and clean source of renewable energy is assumed to be well-
known by any individual energy consumer. This impottance
can best be sensed when the pollution caused by conventional
energy sources and their limited amount are taken into the
consideration. Despite the relatively low efficiency of the
current solar power generators, the applications that employ
solar energy as a power source are growing fast and there are
lots of researches to improve the PV power generation
efficiency. Sun tracking systems, solar concentrators,
maximum power point tracking techmiques etc. are all
strategies and technologies used to-obtain higher efficiency
from the available sunlight.

Having an appropriate, precise and reliable knowledge of
the available solar radiation is of the most important factors,
which plays a great role during design and planning stage of
almost any solar enerpy dependent application. The amount of
incoming energy to.the earth’s surface highly depends on the
position of the sun in the sky during different time intervals.
Also some other tactors like aerosols, water vapor etc. all have
decreasing effects on the amount of incoming sunlight energy.
Hence 1t ‘is necessary for almost all applications to estimate,
measure or calculate the real values of solar radiation for the
specific applications sites. Taking the high expenses of
measurement equipment and techniques into the consideration,
a number of prediction and estimation models have been

978-1-4673-5943-6/13/$31.00 ©2013 IEEE

developed to obtain the required solar radiation data. Analysis
of satellite data for irradiance foreécasts, use of numerical
weather prediction models, neural network based models for
irradiance forecasts etc. are some of the methods which are
used to determine the wradiance walues for desired
applications. Some prediction and estimation methods of solar
radiation data are reviewed in [1]— [6].

In this paper it is aimed to analyze the effects of variations
n the sun’s position in the sky on the incoming solar radiation
on a tilted solar panel. Also variations in the output power of a
tilted solar panel are analyzed during a sample day, as a factor,
which is directly related to the incoming uradiance values.

For the mentioned purposes a precise knowledge of solar
radiation.amount and determination of sun’s position in the sky
for the specific location of the observation site where the solar
system 1s mounted is required as well as output power data
obtained from the system. In the later parts of the paper, the
methods, which are used to obtain the required data for the
proposed analyses, are described and the results of the analyses
are discussed.

II. METHODOLOGY

The information on the sun’s position in the sky, incoming
irradiance on tilted solar panels and output power of the panel,
which 1s used during the study, form the basis of the analyses
discussed in the present paper. In this part, the methods, which
are used to obtain each set of the above information, are briefly
explained. Electrical and Electronic Engmeering Dept. of
Eastern Mediterranean University in  Northern  Cyprus
(35'8'51" N,33'53'58" E) is chosen as the observation point.

A. Calculations of Solar Radiation Data

As it is mentioned before the purpose of this paper is to
analyze the effects of changes in the position of the sun on the
incoming solar radiation to the earth's surface. For this purpose
the method of calculation of radiation data introduced by [7] is
used for solar radiation calculations. The monthly mean value
of daily global irradiance data provided by “NASA
Atmospheric Science Data Center” for the location of the
observation point is used. The mentioned data source is
averaged based on 22 years of data measurements. A brief
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review on the calculation procedure of the solar radiation
components is given during the following sections.

1) Calculation of Radiation Data on a Horizontal Surface:
Different factors utilized during the calculations of solar
radiation data on a horizontal surface are listed as following;

a) Air Mass: The Air Mass factor is calculated using the
following equation,

1
M= 1
cosOz¢ (1
Where,
B¢ . The Solar Zenith Angle

b) Solar Declination: The solar declination angle is
calculated according to the following equation,

360(d,, +284)
§ = 23.45%sin |——m— 2
- [ 365 e
Where,
d, . The Julian Day Number

¢) Extraterrestrial Irradiance: The daily mean value of
the extraterrestrial irradiance over a horizontal surface for the
observation point can be calculated as;

T b ) )
By, (0) :;B’Oeo [—mws.sm&smd) 3)
— cos 6 cos ¢ sin ws]

Where,
il : Day length, in hours
Bo - Solar constant (1367 W/m®)
wg : Sunrise hour angle
& : Eccentricity correction factor

d) Clearness Index: Clearness index as a measure of the
atmospheric transparency can be obtained as;

KTM e @& (4)

e) Beam Irradiance on a Horizontal Surface : The mean
value of daily beam irradiance on a horizontal surface can be
obtained as a result of extraction of the value of diffuse
irradiance from the global irradiance. The value of daily beam
irradiance on a horizontal surface can be calculated using the
following equation,

Bdm(o) = deco) - de (0) (5)

Where, Dy, (0) is the daily mean value of diffuse irradiance
and 1s calculated as;
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D (0) = Ggm (0) X Fgp ()
And, F,, = de(O)/de(O) is the diffuse fraction of the

horizontal irradiance.

2) Calculation of Solar Irradiance on Inclined Surfaces:
During this part, the calculation method of solar irradiance
components on inclined solar panels is described using the
data obtained in the previous part. In general the global
irradiance falling on an inclined surface consists of three
components, respectively named as direct irradiance, diffuse
irradiance and albedo. Hence the general form of the equation
defining the global solar irradiance onan inclined solar panel
is defined as follows,

Gy =Bp a)+DB.a)+RB.a) (D

Where,

G{f3,a) : Global Solar Irradiance on an Inclined Surface
B{(f,a) : The Direct Solar Irradiance on an Inclined Surface
D(f,a) : The Diffuse Solar Irradiance on an Inclined Surface
R(B,a) : The Albedo Component of Solar Irradiance on an

Inclined surface

a) Direct Irradiance on Inclined Surfaces: The direct
irradiance component on an inclined surface is defined as,

B(B, ) = Bmax(0,cos 6;) (8)
Where,
B : Tilt angle of the solar panel
a . Panel azimuth angle
R . The incidence angle of sunlight rays on the
panel
B= B[g)s . The direct irradiance on a surface normal
cos 8z,

to sunlight rays.

B(0) = G(0) — D(0) 1s the beam irradiance on a horizontal
surface.

G(0) = [(Ex

4 ()5 COS Wy—SiN @,
Teos 5 s,

COS 0—COS W

)(a +bcos w)] X Ggn(0)  (9)
Where,

a = 0.409 — 0.5016 X sin(w, + 60) (10)

b = 0.6609 + 04767 x sin{w, + 60)  (11)

and,



m COS & — COS Wy
O e T —
00 @s COS ws — sin ws

) X Da 0y (12)

b) Diffuse Irradiance on Inclined Surfaces : In general
anisotropic models have shown better results during the
calculations of diffuse irradiance values. Accoring to these
models the diffuse irradiance is assumed to be composed of
two main components, respectively named as circumsolar
component D¢(f, a), which directly comes from the sun's
direction and the isotropic component D' (£, ), which comes
from the entire celestial hemisphere. According to the
mentioned model,

D(B,a) =DI(B,a)+ DB, a) (13)
where,
1+ cos
DI(B,a) = D(O)(l—kl)Tﬁ (14)
D0k,
& =— 15
DB, ) il max(0, cos 0;) (15)
and,
ky = B : Anisotropy Index
Bpgy

¢) Albedo Irradiance on Inclined Surfaces : The albedo
irradiance on inclined solar panels, R(8, &), can be obtained
using the following equation,

R.a) = pe0) —F

Where p is the reflectivity of the ground and generally is
taken as 0.2 when its value is not known.

(16)

3) Calculations of Daily Solar Irradiance on Inclined
Surfaces: A general approach to calculate the monthly mean
value of daily solar irradiance can be defined in three steps as
follows,

1. Calculation of the hourly horizontal irradiance
components Gy, (), Dy (0), By, (0) from G,y (0)

2. Calculation of the hourly solar irradiance values on
inclined surfaces, Gpm (B, @), Dy (B, @), Brm (8, @)

3. Integration of the hourly values over one day (24
hours) according to the following equation,

Can(P@) = ) Gun(5,2) an

e
B Caleulations of Sun’s Position in the Sky

The position of the sun in the sky 1s basically explained
using two main factors as followings;

1. Sun’s altitude angle, (y,), which is a measure of sun’s
height in the sky

1. Sun’s azimuth angle, (a,), which determines the
position of the sun with respect to the south direction

In this paper the method described in [8] is used for
derivation of information about the sun’s position in the sky.

These three factors are obtained as follows;

1) Solar Altitude Angle (y,)

¥s = sin~(singsind + cosgcosdeosw) (18)
§ = sin~1{0.3978sin(j’ — 80.2°
+1.92(sin(j — 2.800))yp U
— 360
A (m) (20)
w=15(—12) (21)

@ : The latitude of the observation point
) : The solar declination angle (Degrees)

j : The Julian day number expressed as a day angle
w : The solar hour angle (Degrees)

2) The Solar Azimuth Angle {a;)

cos o =(sin @siny,-sin8)/ cospcosy, (22)
sin &, = cos &g sinw/ cos ¥, (23)
If sing, <0 a, = —cos (cosa,)
It sina, >0 a, = cos Ycosa,)
Where 0° = South, 90" = West
3) Solar Angle of Incidence
8,=cos cos(B) cos(Z,) + sin(B) sin(Z,) cos(as-a,)]  (24)
Where,
B - Tilt angle of the solar collector (Horizontal = 0°)
Z . Zenith Angle of the Sun
lo A : Module azimuth angle (North = 0%, East = 90°)

The sun’s position in the sky for the observation point is
calculated with 30 min. time intervals for a whole year.

C. Collection of Solar Panel Output Data

A 20W, 12V Polyerystalline Silicon solar panel is used
and the output characteristics of the panel are measured and
recorded. The panel specifications are given in Table I.
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TABLE L. SOLAR PANEL PARAMETERS
Panel Size 21.7"x 13.8"x 0.98"

Number of cells and 36 (2x18)
Maximum Power (Pryz) 20W
Maximum Power Voltage (Vps) 172V
1 Power Current (Ioq) 1.17A
Open Circuit Voltage (Voc) 217V
Short Circuit Current (1) 1.25A

The panel is mounted at 17 m height from sea level on the
roof of the Electrical and Electronics Eng. Dept.. and is
aligned toward South with a tilt angle of 45°. The terminals of
the panel are connected to a constant valued resistive load and
the output voltage, current and power characteristics are
measured and recorded. An electronic circuit 1s constructed to
measure and send the panel output characteristic data to a
computer. A microprocessor in the circuit is responsible of
these measurements which senses and sends the data to the
computer with 1 min. time intervals. A program is developed
using C programing language which saves the panel output
characteristic data. Hence 1440 sets of panel output voltage,
current and power data are recorded for each day.

ITI. ANALYSIS OF RESULTS

Results of analyses on the sun's position in the sky and
effects of that on the incoming solar irradiance to the inclined
solar panels and their output powers are discussed in this part.
The analyses are based on calculation results and real-time
measurement data.

As mentioned before, Electrical and Electronic Eng. Dept.,
Eastern Mediterranean  University, Northern Cyprus
(35'8'51" N,33°53'58" E) is chosen as the observation point.
All the calculations and real-time observations are based on
this geographical location.

A. Analysis of Selar Radiation Data

As a result of calculations, the monthly average value,of
the daily extraterrestrial radiation falling on a horizontal
surface is obtained using (3). Fig. 1, shows a general
overview of the results. As it is obvious from the figure, the
highest values belong to June with approximately 11.5
kW/m?/day. This value is then followed by May and July with
almost 11 kW/m®/day. The monthly average values of
Clearness Index, as a measure of atmospheric transparency,
are obtained using (4). It 1s seen that'the best amounts belong
to June and July for the mentiohed‘@bservation area.

The monthly average values of daily global, beam and
diffuse irradiance falling'on a horizontal surface, based on (5)
and (6) are shown in Fig. 2. The results show that the value of
the global irradiance. as a combination of beam and diffuse
components, reach’ its maximum with approximately
8 kW/m?/day in June and July and is then followed by May
and August,

Baséd on the discussed method and according to the
calculation results of the incoming irradiance on horizontal
surfaces, the irradiance components for tilted panels are
calculated using (7) — (17). The values are calculated for the
mentioned test panel and the results are shown in Fig. 3.
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Fig. 1. Monthly Average of Daily Extratemrestrial Radiation on a Horizontal
Surface

B. Analysis of the Effects of Sun’s Position inthe Sky on Panel
Output Powers
In this part, the effects of variationssin the Sun's position
m the sky on the output power generated by a tilted solar panel
are analyzed. The panel specifications are given in Table L.

The panel is mounted at 17 m height from sea level at the
observation point and the panel power output data is recorded
as described insthe prévious chapter. The data is recorded
during a 24 hour fime interval in July 3", 2012 which
represents a'clear summer sky with no cloud coverage. The
sun's altitude angle and sunlight incidence angle values are
also caleulated for the same day according to (18) — (24).

The effects of the sun's position in the sky on hourly
values of incoming global irradiance on a tilted panel is
Hllustrated in Fig. 4. The hourly values of global solar
ifradiance are drawn against values of sun's altitude angle and
incidence angle of sunlight from 05:30 AM — 18:30 PM for
Tuly 3™ 2012. The calculations of sun's position data are
made based on local solar time and the corresponding time for
the incoming hourly global irradiance values is the local time
at the observation point.

Wonthly Average of W

Surface"
®m"Monthly Average of Mean Daily Beam Irradiance on a Horizontal

Surface"
Wm"Monthly Average of Mean Daily Global Irradiance on a Horizontal
Surface”

Fig. 2. Monthly Average Values of Solar Radiation Components on a
Horizontal Surface
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® Monthly Average of Mean Daily Global Irradiance
on South Tilted Panel
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2000

Solar Irradiance (W/m?)

Fig. 3. Monthly Average Values of Mean Daily Solar Radiation Components
for South Tilted Solar Panel

The figure shows that the sun's altitude angle reaches its
maximum value at 12:00 (LST) meaning that the sun will be
at the maximum height at this time. At the same time the
sunlight incidence angle is minimum and indicates that the
sunlight rays come to the panel with the closest angle to

perpendicular at this time. Taking the difference between the
local solar time and local time at the observation point, it is
obvious that the hourly values of global irradiance falling on
the panel will be maximum with approximately $50 W/m?
during the same time interval. The results clearly show that
there is a direct relation between the sun's position in the sky
and hourly values of global irradiance falling on a tilted panel.
According to the results, maximum hourly irradiance is falling
on the panel when the sun reaches the maximum altitude and
the incidence angle takes its minimum value.

The effects of incoming hourly global solar irradiance on
the solar panel output power are also shown in Fig. 5. The data
sets belong to July 3", 2012, The graphic is showing the
variations for 05:30 AM — 18:30 PM. The figure clearly shows
that the increasing values of hourly global irradiance have
direct effects on the generated power by the solar panel. The
output powers reach their maximum at 12:30' PM while the
hourly global irradiance falling on the panel has the maximum
value at the same time interval The corresponding time for
both panel power outputs and hourly values of global solar
irradiance is local time at the observation point.
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Fig. 4. Effects of Sun’s Position in the Sky on Incoming Global Solar Irradiance on a Tilted Panel

mmm Hourly Global Irradiance

@m==PowerOutput |

5:30 6:30 7:30 830 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30 19:30

_1000 ——a Tl e iy o iy ; i i g
s T
S 800 £
8 L. 105
c 600 bt
8 2
g 400 3
5 508
2500 —— H
N g
0 - — , - . - — | o
5:30 6:30 7:30 830 9:30 10:30 11:30 12:30 13:30 14:30 15:30 16:30 17:30 18:30

Time of Day

Fig. 5. Effects of Hourly Global Solar Irradiance on Panel Power Output
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C. dAnalysis of the Effects of Sun’s Position in the Sky on Daily
Global Radiation

This part of the paper involves analyses and results of the
effects of variations in the sun's position in the sky on
monthly average values of daily global solar irradiance falling
on a tilted panel during a whole year. For this purpose the
effects of variations in sun's elevation on radiation statistics
are analyzed in a figure.

The effects of variations in solar altitude angle on monthly
average of daily global irradiance values are shown in Fig. 6.
The irradiance data are obtained according to the methods
discussed in chapter II. Also the monthly average of sun's
altitude angles at 12:30 PM (LS3T) is taken into the
consideration. The mentioned time interval is chosen because
the sun’s altitude takes its maximum value at this time interval
and the variations during a year will be clearly visible.

According to the figure it is approved that the increasing
rate of sun's height in the sky during a year has direct effects
on the daily values of global solar irradiance. While sun's
altitude reaches its maximum at the same time interval during
June and July, the monthly average value of daily global
irradiance also takes the maximum value for these months.

As it is clearly visible in Fig. 6, although the sun’s altitude
angle has a decreasing rate during July, August and September
the monthly average value of daily global irradiance almost
remains constant. It is thought that this behavior can be
presumed ordinary as the variations between maximum and
minimum values of sun's altitude during each individual day
happens in a smaller range compared to those of the previous
months.

IV. CoNCLUSIONS

Having a precise knowledge of the sun's position in the
sky and the incidence angle of sunlight plays an important role
during design and preparation of solar energy applications.
Also the power yield of solar energy systems directly depends
on the irradiance values falling on solar generators. Various
methods and equipment for measurement, prediction and
estimation of solar irradiance values exist but due to high
expenses of measurement equipment and methods, calculation
methods of solar irradiance are preferred in some applications.

In this paper a method for calculation of solar radiation
data 1s described and the calculations are made based.on 22
year average values provided by NASA As @ result of
calculations, the relationship between the sun’s/position in the
sky and incoming solar irradiance on inclined ‘solar panels is
analyzed. The results show that acdirect relation exists
between the sun's height and solar angle of mncidence and the
hourly solar radiation amounts incident at an inclined solar
panel at any time interval during a year. Increases in sun's
height cause decreases in solar angle of incidence with respect
to perpendicular during‘each day and cause increases in the
incoming values of solar radiation.

Also the relationships ™ between the incoming solar
radiation amount to inclined solar panels and the output power
generated by the panels are discussed. The results show that
increases in hourly solar radiation amounts falling on inclined
solar panels as a result of increases in sun's elevation cause
the panel cutput power values to be increased. This result is
valid forany individual day or specific time interval.

mmm """ Monthly Average Value of Daily Global Irradiance™"
e="""onthly Average Value of Sun’s Altitude Angle at 12:30 PM"""

Solar Irradiance (W/m?2)

Sun’s Altitude Angle (Degrees)

Fig. 6. Effects of Sun's Altitude on Monthly Average of Global Daily Solar Irradiance
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